

 Student Name

 Teacher
 Mr Trufitt
 Mr Woodlock

MATHEMATICAL METHODS UNIT 3

SAC 1: Application Task

PART 4 – "FOCUS ON A RELATED ASPECT"

Thursday 23 May 2019

Reading time: 10 minutes **Writing time:** 90 minutes

Structure of Task

Section	Number of questions	Number of questions to be answered
A. Packaging the Wine Carafe	1	1
B. Investigating the General Case for Packaging	1	1
C. Final Packaging Considerations	6	6

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, one CAS calculator and/or one scientific calculator, and one approved bound reference.
- Students are not permitted to use: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages.
- Working space is provided throughout the book.

Instructions

- Write your name in the space provided above on this page.
- All responses must be written in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Students must not disclose the contents of the task; to do so will be a breach of School guidelines.

MATHEMATICAL METHODS UNIT 3

2019 SAC 1: Application Task

PART 4: "FOCUS ON A RELATED ASPECT"

After the wine carafe had been designed, Michelle put her expertise into the design of the packaging.

Side profile

A. Packaging the Wine Carafe

1. The trial design model of the horizontal cross-section of the box to carry the wine carafe is symmetrical in shape and is framed by the functions:

$$g(x) = \frac{2x+1}{x+2}$$
 and $g^{-1}(x)$.

a. Find the rule and state the domain for $g^{-1}(x)$.

b. Sketch the graphs of g(x) and $g^{-1}(x)$ for $x \in [-1, 1]$ on the axes below, labelling key features.

c. Find the coordinates of the point on the curve g(x) such that the distance to the origin is a minimum. Show all working.

d. If the wine carafe has a circular cross-section, write an equation representing the largest carafe that can fit into the box.

B. Investigating the General Case for Packaging

- 1. For the function $h(x) = \frac{ax+1}{x+a}$,
 - a. Express h(x) in the form: $A + \frac{B}{x+a}$.

b. Find h'(x).

c. Quickly sketch the graph of h(x) and $h^{-1}(x)$ for $x \in [-1, 1]$ for a range of values of *a*.

d. What effect does *a* have on the shape of the box?

e. Investigate the effect on the size of the carafe that can fit into the box as *a* varies.

C. Final Packaging considerations

The material that the carafe box is made from is a high-quality cardboard, essential for the protection of the carafe. The cardboard, however, has a limited ability to bend to the required shape for this box. For this particular product, the bending factor, k, is defined as:

$$k(a) = \frac{h'(-1)}{h'(1)}$$
 for $h(x) = \frac{ax+1}{x+a}$ where $a \in (1, \infty)$.

1. Write down the rule for k(a).

2. Sketch the graph of k vs a for $a \in (1, \infty)$.

WORKING SPACE

3. Find the values of *a* for which the bending factor $k \leq 8$.

4. Solve k(a) = d, where d is the value of the bending factor. Express a in terms of d.

5. Using the formula, verify the value of *a* required to achieve a bending factor of 8 for question 4.

WORKING SPACE

6. Design a container that can fit a carafe of base diameter 20 cm and height 25 cm. Note that the bending factor is maintained at $k \le 8$. Include calculations and diagrams.

END OF SAC