

Student Name			
Teacher	Mr Trufitt	Ms Tan	Ms Bergamin

MATHEMATICAL METHODS UNIT 3

Application Task – Curve fitting

PART 3 – Approximating a function by its tangent

Date: May 2020

Writing time: 60 minutes (one on-line class)

	Structure of Task	
Section	Number of	Number of questions
	questions	to be unswered
Part 3	2	2

- Students are permitted to bring into the examination room: pens, pencils, highlighters, ٠ erasers, sharpeners, rulers, one CAS calculator and/or one scientific calculator, and one approved bound reference.
- Students are not permitted to use: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 6 pages. ٠
- Working space is provided throughout the book. ٠

Instructions

- Write your name in the space provided above on this page.
- All responses must be written in English.

Stu dents are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Students must not disclose the contents of the task; to do so will be a breach of School guidelines.

Continuing with the theme of modelling curves, part 3 of the task will require you to apply your knowledge of differential calculus and various functions to further model the curves of given functions, and reflect on your findings.

Approximating a function locally by its tangent

The linear approximation of any function y = f(x) may be considered as using the tangent at a point to approximate the curve in an immediate neighbourhood "locally" of the point at which the tangent is determined.

In the diagram, $t_1(x)$ is the tangent to the curve at the point (x, f(x)).

f'(x) is the gradient of the tangent at x.

Recall:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Question 1

Consider the function $f(x) = e^x$, $x \in R$.

(a) Find f(0) and f'(0).

(b) Show algebraically that the equation of the tangent $t_1(x)$ to f(x) at x = 0 is given by $t_1(x) = x + 1$.

(c) On the set of axes, sketch, so that the point of intersection is shown, the graphs of y = f(x) and its tangent at x = 0, $x \in [-2, 2]$.

Show end-points, the coordinates of any axial intercepts and point of intersection.

When "locally" approximating a function, two important issues are the accuracy of the approximation and the interval over which the approximation has a desired level of accuracy. These issues can be explored by considering how close the y-values on the tangent, t(x), are to the actual y-values on the curve f(x).

The error term, $\mathcal{R}(x) = f(x) - t(x)$, gives the difference of the *y*-values of each function for a particular value of *x*. We will be using the |...| sign, so that we work with the magnitude (size) of the error. So |f(x) - t(x)| just removes the negative sign, if f(x) < t(x).

The percentage error can be found by calculating $\frac{R(x)}{f(x)} \times 100$, where $f(x) \neq 0$.

(d) Use CAS to complete the following table of values showing f(x), $t_1(x)$, $R(x) = f(x) - t_1(x)$ and $\frac{R(x)}{f(x)} \times 100$, for $x \in [-0.2, 0.2]$ in increments of 0.05. Note that $t_1(x)$ is the rule for the tangent to the graph of $f(x) = e^x$ at x = 0. Give your answers correct to three decimal places.

			Error	Percentage Error
x	$f(x) = e^x$	$t_1(x) = x + 1$	$R(x) = e^x - (x+1) $	$\frac{R(x)}{f(x)} imes 100$
- 0.2				
- 0.15				
- 0.1				
- 0.05				
0				
0.05				
0.1				
0.15				
0.2				

(e) The table gives an indication of how good an approximation the tangent at x = 0 is to $f(x) = e^x$, for $x \in [-0.2, 0.2]$. In your own words, do you think that this is a good approximation? If so, why?

- - (ii) Does this graph confirm your response to part (e)? Explain.

(g) Hence, or otherwise, find the interval, correct to four decimal places, for which the linear approximation has a percentage error of less than 1%.

Question 2

Consider the function $g(x) = \log_e(3 + 2x)$.

(a) Show that the equation of the tangent $t_2(x)$, to g(x) at x = 0 is given by $t_2(x) = \frac{2}{3}x + \log_e(3)$.

(c) Investigate the accuracy of the tangent in approximating g(x) in the vicinity of x = 0. This process is also referred to as finding the 'goodness of fit'. Complete the table, giving answers to 4 decimal places.

x	$g(x) = \log_e(3+2x)$	$t_2(x) = \frac{2}{3}x + \log_e(3)$	Error	Percentage Error
- 0.2				
- 0.15				
- 0.1				
- 0.05				
0				
0.05				
0.1				
0.15				
0.2				

(d) Compare the values in the previous table to the one in Question 1 part (d). Considering only $x \in [-0.2, 0.2]$, which of the two options below gives the better approximation?

 \Rightarrow the tangent at x = 0 to the curve $f(x) = e^x$, or

 \Rightarrow the tangent at x = 0 to the curve $g(x) = \log_e(3 + 2x)$.

Justify your reason(s).

Finally, one last bit of mathematical notation you will require for part 4

First, second, third and higher derivatives

Consider $f(x) = 5x^4 - 7x^3 + 4x^2$:

f'(x) is the **first derivative** of f(x). For this example: $f'(x) = 20x^3 - 21x^2 + 8x$

f''(x) is the second derivative of f(x). For this example: $f''(x) = 60x^2 - 42x + 8$

f'''(x) is the **third derivative** of f(x). For this example: f'''(x) = 120x - 42.

For higher order derivatives, typically greater than the third derivative, we use the notation $f^{(n)}(x)$ where *n* is the *n*th derivative of *f* with respect to *x*.

For example, CAS can show that, given: $g(x) = 2x^6 + 3x^4 - 2x^3 + 8$:

the fourth derivative $g^{(4)}(x) = 720x^2 + 72$ the fifth derivative $g^{(5)}(x) = 1440x$ better than writing $g^{\prime\prime\prime\prime\prime\prime}(x)$!!

The more I learn,

the more I realize

how much I don't know.

I'm, like, really smart and a stable GENIUS !

End of part 3