

Name : _____ Teacher : _____

2014 MATHEMATICAL METHODS (CAS) UNIT 4

SAC 5 – Analysis Task

Chapters 14, 15, 16 and 17 – Probability and distributions

Reading time: 10 minutes Writing time: 80 minutes QUESTION AND ANSWER BOOKLET

Structure of Booklet

Section	Number of Questions	Number of questions to be answered	Number of Marks	
1	4	4	60 Total 60	

- Students are permitted to bring into the test room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, one bound reference (which will be collected for the duration of the SAC), one approved CAS calculator (memory DOES NOT need to be cleared) and, if desired, one scientific calculator. For approved computer-based CAS, their full functionality may be used.
- Students are NOT permitted to bring into the test room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

• 1 question and answer booklet as well as a formula sheet.

Instructions

- Write your **name** and **teacher** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the test room.

This page is intentionally left blank.

Do not write your answer on the page!

Question 1 (15 marks)

A highway toll booth charges cars that pass through it. The highway toll company has found that the number of passengers in each vehicle varies with accordance with the following probabilities.

Number of	0	1	2	3	4
passenger, x					
Pr(X= x)	0.22	0.16	0.24	К	0.18

a. Find k.

(1 mark)

All probabilities should be correct to four decimal places.

- b. Find the probability that a vehicle that passes the toll booth carries (1+1 marks)
 - i. at least two passengers.
 - ii. at most three passengers.
- c. What is the probability that a vehicle carries at least two passengers given that the vehicle carries at most three passengers?(2 marks)

d. Find the mean number of passengers per vehicle.

(1 mark)

f. Find the standard deviation, correct to two decimal places, of the number of passengers per vehicle. (2 marks)

Let A be the event that a vehicle carries between one and three passengers inclusive and B be the event that a vehicle carries more two passengers.

g. Are A and B independent events? Justify.

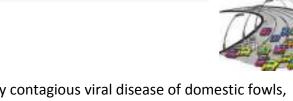
The toll booth charges \$6 per vehicle (including driver) plus \$2 per passenger. Let Y be the toll fee per vehicle.

 h. Write down Y in terms of X.
 (1 mark)

 i. Find the expected fee per vehicle.
 (2 marks)

(2 marks)

i. Find the probability that over the next three vehicles, the first two vehicles each carries at least two passengers but the third carries more than two passengers? (1 mark)



Question 2 (15 marks)

The incubation period, *T* days, for a highly contagious viral disease of domestic fowls, commonly known as Infectious bursal disease (IBD) is 2 to 10 days. Infected birds are depressed, have ruffled feathers, droopy appearance and may be seen pecking at the vent. The probability density function, *S*, of showing the symptom, *T* days, after close contact with a symptomatic fowl, assuming 100% morbidity, is modelled by the following function:

 $S(t) = \begin{cases} -a(t-2)(t-10) & 2 \le t \le 10\\ 0 & otherwise \end{cases}$

- a. Show that a = $\frac{3}{256}$.
- b. Sketch the graph of y = s(t) on the grid below. Label axes intercepts and any stationary points with their **exact** coordinates. (3 marks)

c. Find the **mode** incubation period for this disease.

(1 mark)


```
(1 mark)
```

- d. Find the mean incubation period for this disease, in days.
- e. Find the standard deviation for the incubation period for this disease, in days, correct to two decimal places.
 (2 marks)

(2 marks)

- f. Find the probability that symptoms will occur within the first 5 days of contracting the disease. (1 mark)
- g. When will 50% of the fowls have shown the initial symptoms? (2 marks)

Using more recent data, the probability of showing the initial symptom was found to be modelled by a cubic probability density function with a mode of 5.

$$S_{2}(t) = \begin{cases} -a(t-2)(t-10)(t-b) & 2 \le t \le 10 \\ \\ 0 & otherwise \end{cases}$$

(3 marks)

h. Find **a** and **b**.

Question 3 (16 marks)

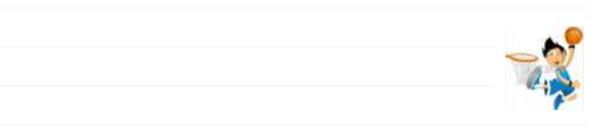
Tasmania is the shooting guard for his basketball team. During his matches, he has many attempts at scoring a goal.

Assume that each attempt at scoring a goal is **independent** of any other attempt. In the long term, his scoring rate has been shown to be 75% (that is, 75 out of 100 attempts to score a goal are successful).

a. What is the probability, correct to four decimal places, that his first 7 attempts at scoring a goal in a match are successful? (1 mark)

b. What is the probability, correct to four decimal places, that exactly 5 of his first 7 attempts at scoring a goal in a match are successful?
 (2 marks)

c. What is the probability, correct to three decimal places, that his first 4 attempts at scoring a goal are successful, given that exactly 5 of his first 7 attempts at scoring a goal in a match are successful?
 (2 marks)



d. If Tasmania attempts 4 shots at goal, find the expected number of successful attempts. (1 mark)

e. Find $E(X^2)$.

(1 mark)

f. **Hence,** determine the standard deviation of the number of successful attempts, correct to three decimal places. (2 marks)

g. Find $Pr(\mu - 2\sigma \le X \le \mu + 2\sigma)$. Give your answer correct to 2 decimal places. (2 marks)

Assume instead that the success of an attempt to score a goal depends only on the success or otherwise of his previous attempt at scoring a goal.

If an attempt at scoring a goal in a match is successful, then the probability that his next attempt at scoring a goal in the match is successful is 0.87. However, if an attempt at scoring a goal in a match is unsuccessful, then the probability that his next attempt at scoring a goal in the match is successful is 0.69.

His first attempt at scoring a goal in a match is successful.

- **h.** What is the probability, correct to four decimal places, that:
 - i. his next 7 attempts at scoring a goal in the match will be successful? (1 mark)

ii. exactly 1 of his next 2 attempts at scoring a goal in the match will be successful?(2 marks)

Before leaving a training session, Tasmania decides that he will not leave until he makes a shot from the half-court line. Assume that each attempt at making a shot from the half-court line is independent of any other attempt, and that the probability that he will make a half-court shot is 0.04.

h. What is the **minimum** number of shots that Tasmania needs to attempt so that the probability of making a shot is greater than 0.95? (2 marks)

Question 4 (14 marks)

Victoria Jones runs a tomato packing and distribution company. Various plantations pick their tomatoes and send them to Victoria's company where they undergo quality assurance. Inspectors assess each tomato for its colour, size and any defects. Each tomato can either be accepted or rejected.

If a tomato is accepted (A) then the probability that the next tomato is accepted is p.

If a tomato is rejected (R) then the probability that the next tomato is accepted is p - 0.1.

Victoria knows that the tomatoes from **Acme** planation have p = 0.8.

For the tomatoes from Acme planation,

a. use the information provided to complete the 2×2 transition matrix (1 mark)

b. if the first tomato inspected is accepted, find the probability that the third tomato is rejected.
 (2 marks)

c. if the first tomato inspected is rejected, find the probability that the next two tomatoes are rejected. (1 mark)

d. find the steady state probability that any one of the tomatoes from this particular plantation are accepted.
 (2 marks)

Tomatoes from a different plantation, **Beep** planation, are inspected. It is found that if the first tomato inspected is accepted, then the probability that the third tomato inspected is accepted is accepted is 0.67.

e.	Show that the value of	<i>p</i> from Beep	planation is 0.7.	(3 marks)
C .	Show that the value of			

Let *C* be the probability that a tomato has unacceptable scarring and let *D* be the probability that the tomato is of an unacceptable size.

A new shipment of tomatoes from **Coyote** plantation have arrived at Victoria's company, such that $Pr(C) = \frac{1}{4}$ and $Pr(D) = \frac{1}{5}$

f. Create a probability table (Karnaugh map) **labelling** all rows and columns, *OR* create a Venn diagram for when $Pr(C \cap D) = \frac{1}{8}$. (2 marks) h. Find $Pr(C \cap D')$

(1 mark)

i. Calculate $Pr(C \cap D')$ when C and D are **mutually exclusive** events. (1 mark)

End of analysis task

