Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Question 1 (14 marks)

At Suzanne Cory High School students have the opportunity to participate in a number of activities as part of their school life. Let X be a discrete random variable representing the number of different activities that a junior class (year 9 and year 10) takes part in. The table below shows the probability distribution for X:

X	2	3	4	5	6
$\Pr(X=x)$	$\frac{2}{3+k}$	$\frac{k}{2}-1$	$\frac{k^2}{30}$	$\frac{1}{8}$	$\frac{1}{16}$

Where $k \in R^+$

a. Find the value of k correct to two decimal places.

$\frac{2}{2} + \frac{k}{2} - 1 + \frac{k^2}{2} + \frac{1}{2} + \frac{1}{2} - 1$	
$\frac{3+k}{3+k} + \frac{2}{2} + \frac{1}{30} + \frac{3}{8} + \frac{1}{16} + \frac{1}{16}$	
k = 2.48	(A1)

Let Y be a discrete random variable representing the number of different activities that any senior class (year 11 and year 12) takes part in. The table below shows the probability distribution for Y:

Y	2	3	4	5	6
$\Pr(Y=y)$	0.19	0.27	0.35	0.12	0.07

b. Find the probability, correct to two decimal places, that a senior class:

i. Participates in more than 3 activities. \bigcirc

Pr(Y > 3) = 0.35 + 0.12 + 0.07= 0.54

(A1)

ii. Participates in at least 5 activities given that they participate in more than 3 activities. 2 marks $Pr(Y \ge 5 \setminus Y > 3) = \frac{Pr(Y \ge 5 \cap Y > 3)}{Pr(Y > 3)}$ $= \frac{Pr(Y \ge 5)}{Pr(Y > 3)} \text{ or } \frac{Pr(Y \ge 5)}{Pr(Y \ge 4)}$

2 marks

1 mark

_ 0.19	(M1)
$-\overline{0.54}$	
= 0.35	(A1)

c. Find (correct to two decimal places)

i. the mean ii. the median iii. the mode iv. the variance E(Y) = 2(0.19) + 3(0.27) + 4(0.35) + 5(0.12) + 6(0.07)		4 marks
= 3.61	(A1)	
median = 4	(A1) (A1)	
Mode = 4 $VAR(Y) = 1.28$	(A1) (A1)	

2 marks

1 mark

2 marks

d. Find $Pr(\mu - \sigma \le Y \le \mu + 3\sigma)$ correct to two decimal places.

$$Pr(\mu - \sigma \le Y \le \mu + 3\sigma) = Pr(2.4796 \le Y \le 7.0013)$$

= Pr(3 \le Y \le 7)
= 0.81 (M1) (A1)

e. A senior class is randomly selected out of 16 classes. Find the probability, correct to two decimal places that 12K2 participates in at most 3 activities.
 2 marks

$\Pr(12K2 \cap Y \le 3) = \frac{1}{1}$	$\frac{1}{6} \times 0.46$	(M)	1)
=	0.03	(A1	.)

f. Find the probability that out of 16 senior classes more than half participate in at least three activities.

Pr(X > 8) = 0.9949Note: Binomial Cdf

Question 2 (8)

There are two types of activities (physical and mental). Let A denote the event that a boy is selected and B denote the event that a student enjoys physical activities. It is known that boys occupy 60%of the whole cohort and the probability that a boy likes physical activity is 30%. Let **x** be the probability that a randomly selected student prefers mental activities.

a. Represent the information using a Karnaugh map.

	А	A'	
В	0.3	0.7 – x	1 - x
B'	0.3	x – 0.3	х
	0.6	0.4	1

All correct: 2 marks 5 or more correct: 1 mark Less than 5 correct: 0 mark b. It is known that the probability that a randomly selected student prefers physical activity is equal to the square of that who likes mental activity. Find the value of x (correct to two decimal places).

2 marks

2 marks

$1 - x = x^2$	(M1)
x = 0.62	(A1)

c. Find the probability that a randomly selected student who likes physical activities is a girl (correct to two decimal places). 2 marks

$\Pr(A \setminus B) = \frac{\Pr(A \cap B)}{\Pr(B)}$	
$=\frac{0.7-x}{1-x}$	(M1)
$=\frac{0.7-0.62}{1-0.62}$	
= 0.21	(A1)

d. Are A and B independent? Justify your answer.

 $\Pr(A \cap B) = 0.3$

$\Pr(A) \times \Pr(B) = 0.6 \times (1 - 0.6180)$	
= 0.2292	
A and B are not independent	(A1)
Because $\Pr(A \cap B) \neq \Pr(A) \times \Pr(B)$	(A1)
Note: Students must show the value of $Pr(A) \times Pr(B)$	

Question 3 (8)

There are 167 students enrolled in Mathematical Methods 3&4 at Suzanne Cory in 2016. The probability that a randomly selected student loves the subject is 0.3. Let X be the number of students who love Maths Methods

a.	What is the expected number of students who love Maths Methods? $\Gamma(X)$		1 mark
	$E(X) = np$ $= 167 \times 0.3$		
	=50.1	(A1)	
b.	Find the standard deviation of X correct to two decimal places. $SD(X) = \sqrt{np(1-p)}$		1 mark

c. Find the probability that more than 25% of students love Maths methods correct to two decimal places. 1 mark

$$\Pr(X \ge 42) = 0.93$$
 (A1)

d.	10 Students are randomly selected. Find the probabil	lity that only the first and the last students
love	Maths Methods correct to four decimal places.	2 marks
	$Pr(First andLast) = 0.3 \times 0.7^8 \times 0.3$	(M1)

$\Pr(First and Last) = 0.3 \times 0.7^8 \times 0.3$	
= 0.0052	

e. Every year the number of enrolments changes slightly. However, we can assume that the probability that a student obtains a perfect ATAR score is 15%. What is the least number of enrolments required to make sure that the probability that at least two students will have this ATAR is more than 90%?

(A1)

$\Pr(X \ge 2) \ge 0.9$	
$1 - \Pr(X = 0) - \Pr(X = 1) \ge 0.9$	(M1)
$1 - 0.85^n - \binom{n}{1} (0.15)(0.85)^{n-1} \ge 0.9$	
$1 - 0.85^n - n(0.15)(0.85)^{n-1} \ge 0.9$	(M1)
$n \ge 25$ The least number is 25	(A1)

Question 4 (14)

The amount of time each student spends on homework varies with year levels. The average amount of time X (in hours) each student spends on homework every night has a probability density function defined by \bigcirc

$$f(x) = \begin{cases} g(x) = a [2\sin(x) + 4], 0 \le x < \pi \\ h(x) = \frac{a}{\pi} [-2x + 6\pi], \pi \le x \le 2\pi \\ 0, \text{elsewhere} \end{cases}$$

where a is a constant

a. Use calculus to show that
$$a = \frac{1}{7\pi + 4}$$
. **Do not use CAS** 3 marks

$$\int_{0}^{\pi} a[2\sin(x)+4]dx + \int_{\pi}^{2\pi} \frac{a}{\pi} \left[-2x+6\pi\right]dx = 1$$
(M1)

$$a\left[-2\cos(x) + 4x\right]_{0}^{\pi} + \frac{a}{\pi}\left[-x^{2} + 6\pi x\right]_{\pi}^{2\pi} = 1$$
(M1)

$$a[2+4\pi+2-0] + \frac{a}{\pi} \Big[-4\pi^2 + 12\pi^2 + \pi^2 - 6\pi^2 \Big] = 1$$

$$a \times [7\pi+4] = 1 \text{ so } a = \frac{1}{7\pi+4} \text{ as required}$$
(A1)

b. Sketch the graph of f(x) versus x labelling any intercepts and turning point using coordinates. Give all values correct to three decimal places. 2 marks

с.

v. If a student spends at most 4 hours on homework, find the probability that he/she spends at

least 2 hours on homework. Give your answer correct to two decimal places 2 marks

$$Pr(X \ge 2 \setminus X \le 4) = \frac{Pr(X \ge 2 \cap X \le 4)}{Pr(X \le 4)}$$

$$= \frac{Pr(2 \le X \le 4)}{Pr(X \le 4)}$$

$$= \frac{\int_{-\pi}^{\pi} g(x) dx + \int_{-\pi}^{4} h(x) dx}{\int_{0}^{\pi} g(x) dx + \int_{-\pi}^{4} h(x) dx}$$

$$= 0.45$$
(M1)