Name:	

Teacher: _____

School No: _____

Department of Mathematics

2018

Mathematical Methods

Unit 3 SAC 1c Application Task

CAS calculator and scientific calculator allowed

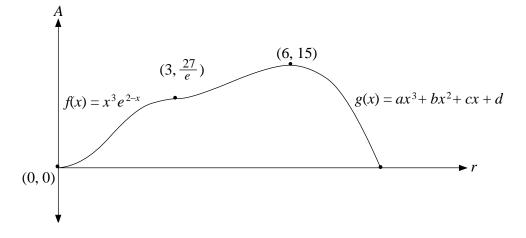
No notes allowed

Date: 3:30pm, Thursday 7 June 2018

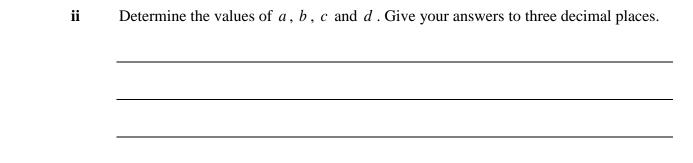
Time: 45 minutes

Marks: 32

Instructions

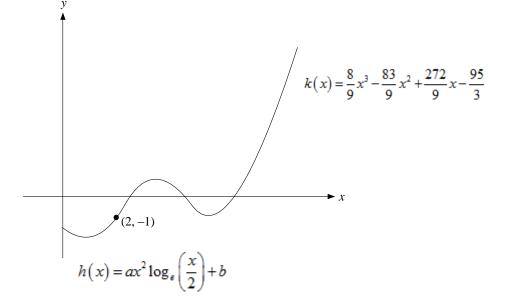

Answer **all** questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified. In questions where more than one mark is available, appropriate working **must** be shown.


Unless otherwise indicated, the diagrams in this task are **not** drawn to scale.

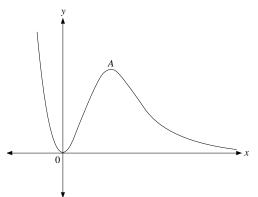
- 1 Consider the function $f(x) = x^3 e^{2-x}$.
 - **a** Show using calculus that f(x) has a local maximum at $(3, \frac{27}{e})$. Justify it is a local maximum.

b Consider a second curve g, where $g(x) = ax^3 + bx^2 + cx + d$. This curve is smoothly connected to function f at the point $\left(3, \frac{27}{e}\right)$ and has a second stationary point at (6,15).



i Write four equations relating to function g from the information provided.

(Marks: 4 + (4 + 1) = 9)


2 Two curves h(x) and k(x) are connected smoothly at (2, -1) as shown in the diagram below.

a Determine the value of *a* and *b*.

b Show the equation of the tangent to k(x) at x = 3 is given by 9y + 10x = 30.

- **c** Show the equation of the normal to k(x) at x = 5 is given by 14y + 3x = 15
- **d** Find the acute angle, to the nearest degree, between the two lines in **b** and **c**. (Marks: 4 + 3 + 3 + 3 = 13) The function *p* is defined as $p : \mathbb{R} \to \mathbb{R}$, where $p(x) = x^m e^{(n-x)}$ where *m* and *n* are positive integers.
- 3 The function p is defined as $p: \mathbb{R} \to \mathbb{R}$, where $p(x) = x^m e^{(n-x)}$ where m and n are positive integers. The graph of y = p(x) is shown below.

a Let m = 2 and n = 3.

- i Find the value of x, for x < 0, such that p(x) = 1. Give your answer correct to three decimal places.
- ii State the values of x, correct to three decimal places, such that p(x) > 1.

b	i	State the transformations from the graph of $y = x^2 e^{3-x}$ to the graph of				
		$y_1 = \left(\frac{x-h}{2}\right)^2 e^{\frac{6+h-x}{2}}$ where <i>h</i> is constant.				
	ii	State the coordinates of the stationary points of y_1 , in terms of h .				
с	For <i>p</i>	$p: \mathbb{R} \to \mathbb{R}, \ p(x) = x^m e^{(n-x)}$ and <i>m</i> and <i>n</i> are unknown.				
	i	Show that the stationary points occur at $x = 0$ and $x = m$.				

Continued on next page

ii Show that the only tangents drawn to the curve that pass through the origin are at x=0 and x=m-1.

(Marks: (1 + 1) + (2 + 2) + (2 + 2) = 10)

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n) nx^{n-1}$		$\int x^n dx \frac{1}{n+1} x^{n+1} + c, dx = 0$	$n \neq 1$
$\frac{d}{dx}\left((ax+b)^n\right) an\left(ax+b\right)^n$	$b)^{n-1}$	$\int (ax+b)^n dx \frac{1}{a(n+1)}(ax+b)^n dx \frac{1}{a(n+1)}(ax+b)^n dx$	$ax+b)^{n+1}+c, n\neq 1$
$\frac{d}{dx}(e^{ax})$ ae^{ax}		$\int e^{ax} dx \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx} \left(\log_e(x) \right) \frac{1}{x}$		$\int \frac{1}{x} dx \log_e(x) + c, \ x >$	0
$\frac{d}{dx}(\sin(ax)) a \cos(ax)$)	$\int \sin(ax) dx = \frac{1}{a} \cos(ax)$)+c
$\frac{d}{dx}(\cos(ax)) = a\sin(ax)$	(x)	$\int \cos(ax) dx \frac{1}{a} \sin(ax) + \frac{1}{a} \sin(ax) +$	+ <i>c</i>
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$	$a \sec^2(ax)$		
product rule	$\frac{d}{dx}(uv) u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) \frac{v\frac{du}{dx} u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$		

Probability

$\Pr(A) = 1 - \Pr(A')$		$\Pr(A \cup B) = \Pr(A \cup B)$	$r(A) + Pr(B) - Pr(A \cap B)$
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$			
mean	$\mu = \mathrm{E}(X)$	variance	$\operatorname{var}(X) = \sigma^2 = \operatorname{E}((X - \mu)^2) = \operatorname{E}(X^2) - \mu^2$

Prob	ability distribution	Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x \ p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) \int_{a}^{b} f(x) dx$	$\mu \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$\mathrm{E}(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$