

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
di	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
e e	5	5	5	5
the	6	6	6	6
Circle the relevant digits	7	7	7	7
Cir	8	8	8	8
	9	9	9	9

Teacher's Name	

Scotch College

MATHEMATICAL METHODS

Unit 3-SAC 1b - Application Task: Test VERSION 2

Tuesday 11th June 2019

Reading Time	none	
Writing Time	45 minutes	

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are not allowed
- Notes and/or references are not allowed

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (7 marks)

Consider the two functions:

 $f:[0,\infty)\to\mathbb{R}$, where f(x)=x+4 and $g:[0,\infty)\to\mathbb{R}$, where $g(x)=\sqrt{x}$

a. Sketch on the axes below the graphs of both y = f(x) and y = g(x)

2 marks

b. Write down the rule for h(x), the vertical distance between the two graphs.

Give an appropriate domain for h(x).

1 mark

c. Calculate the value of *x* which corresponds to the minimum vertical distance between the two functions over the appropriate domain.

3 marks

d. Hence evaluate the minimum vertical distance between the two functions f(x) and g(x).

1 mark

Question 2 (7 marks)

Consider the two functions:

$$f:[0,10] \to \mathbb{R}$$
, where $f(x) = \frac{\sqrt{x^2 + 16}}{3}$ and $g:[0,10] \to \mathbb{R}$, where $g(x) = \frac{10 - x}{5}$

The graph of y = f(x) is sketched on the axes below.

a. i. On the above axes, sketch y = g(x).

1 mark

ii. On the above axes, sketch y = h(x), where $h(x) = \frac{\sqrt{x^2 + 16}}{3} + \frac{10 - x}{5}$ for $x \in [0,10]$

1 mark

b. Use calculus to show that $h'(x) = \frac{x}{3\sqrt{x^2 + 16}} - \frac{1}{5}$

1 mark

c.	Calculate the value of x that corresponds to any stationary points for $h(x)$.	3 marks
d.	Hence, find the minimum value of $h(x)$ for $x \in [0,10]$	1 mark

Question 3 (7 marks)

The point S is an island 2 km offshore from the point O which is located on a straight sandy stretch of beach, as shown in the diagram above. The point F is on the beach, 5 km from the point O. Competitors race from the island to the finish point at F by rowing in a straight line to some point E along the beach and then running along the beach to F.

A particular competitor rows at 4 km/h and runs at 8 km/h.

a. Show that if the distance OL is x km, the time taken by this competitor to complete the race (in hours) is given by:

2 marks

$$T(x) = \frac{\sqrt{x^2 + 4}}{4} + \frac{5 - x}{8}$$

b. Show that the time taken by this competitor to complete the race has its minimum value when $x = \frac{2\sqrt{3}}{3}$

3 marks

c.	Hence state the competitor's minimum race time.	
	Write your answer in the form $\frac{1}{8}(a\sqrt{3}+b)$	2 marks

Question 4 (9 marks)

Eagle Ridge is located 20 km north and 30 km east of Skull Rock. There is a track that runs in an east-west direction that is 10 km north of Skull Rock. A group of explorers are able to hike at a speed of 3 km/h through the jungle to a point P on the track and then at a speed of 3n km/h along the track until they reach Eagle Ridge. The explorers wish to reach Eagle Ridge in the shortest time possible.

For the purposes of your calculations let the distance AP = x km.

a.	Explain why it should be assumed that $n > 1$.	1 mark

b. Find an expression in terms of x for the total time in hours, T(x), it will take to hike from Skull Rock to Eagle Ridge via point P on the track.
Give an appropriate domain for T(x).

1 mark

i.	Use calculus to show that $T'(x) = \frac{\pi}{3\sqrt{400 + x^2}} - \frac{\pi}{3n}$	2 mai
		-
		_
ii.	Use calculus to show the route which uses the least time to travel from Skull Rock to Eagle Ridge occurs when $x = \frac{20}{\sqrt{n^2 - 1}}$	3 ma
		- - -
		-
iii.	Find the possible values of n in order that the minimum turning point of the	
	graph $y = T(x)$ occurs within the domain for which the model is valid.	2 ma -

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n)$ nx^{n-1}		$\int x^n dx \frac{1}{n+1} x^{n+1} + c, \ n \neq 1$		
$\frac{d}{dx}\Big((ax+b)^n\Big) an\Big(ax+b\Big)^{n-1}$		$\int (ax+b)^n dx \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq 1$		
$\frac{d}{dx}(e^{ax})$ ae^{ax}		$\int e^{ax} dx \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}(\log_e(x)) \frac{1}{x}$		$\int \frac{1}{x} dx \log_e(x) + c, \ x >$	0	
$\frac{d}{dx}(\sin(ax)) a \cos(ax)$		$\int \sin(ax)dx \qquad \frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = a\sin(ax)$		$\int \cos(ax)dx \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$	$a \sec^2(ax)$			
product rule $\frac{d}{dx}(uv) u\frac{dv}{dx} + v\frac{du}{dx}$		quotient rule	$\frac{d}{dx} \left(\frac{u}{v} \right) \frac{v \frac{du}{dx} u \frac{dv}{dx}}{v^2}$	
chain rule $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$				