

	Scotch Student ID #			
	Scotten Student ID #			
	0	0	0	0
gits	1	1	1	1
di	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
e	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
Circ	8	8	8	8
	9	9	9	9

Scotch College

Teacher's Name

MATHEMATICAL METHODS

U4-SAC 1a – Application Task: Project

Date of distribution: Monday 5th August 2019

Due date: Thursday 15th August 2019

Task Sections	Marks	Your Marks
Extended Response Questions	72	
Total Marks	72	

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- A scientific calculator and a CAS calculator.
- Any notes or references.

At the end of the task

• Submit the task to your teacher by the due date.

Question 1 (2 marks)

The diagram shows the graph of y = f(x) which intercepts at x = -1, 0, 3 and 4.

The area of shaded region R_1 is 2.

The area of shaded region R_2 is 3. It is given that $\int_0^4 f(x) dx = 10$. What is the value of $\int_{-1}^3 f(x) dx$?

The diagram shows the graphs of $y = \sqrt{3} \cos x$ and $y = \sin x$. The first two points of intersection to the right of the *y*-axis are labelled *A* and *B*.

a. Solve the equation $\sqrt{3} \cos x = \sin x$ to find the *x*-coordinates of *A* and *B*.

2 marks

2 marks

Question 3 (4 marks)

The diagram shows the curve $y = \frac{1}{x}$, for x > 0.

The area under the curve between x = a and x = 1 is A_1 . The area under the curve between x = 1 and x = b is A_2 .

The areas A_1 and A_2 are each equal to 1 square unit.

Find the values of *a* and *b*.

Question 4 (4 marks)

The shaded region shown is enclosed by two parabolas, each with x-intercepts at

x = -1 and x = 1.

The parabolas have equations $y = 2k(x^2 - 1)$ and $y = k(1 - x^2)$, where k > 0.

Given that the area of the shaded region is 8, find the value of k. Show all working.

Question 5 (5 marks)

The cross section of a waterway is parabolic. Its depth is 3 metres, and the width across the top of the waterway is 4 metres. When the waterway is one-third full, what is the depth of the water in metres, correct to two decimal places?

Question 6 (4 marks)

Find the value of k for which the line with equation y = k bisects the area enclosed by the curve $y = x^2$ and the lines y = 9 and x = 0. Write your answer correct to two decimal places.

Question 7 (4 marks)

Find the value of k for which the line with equation y = kx bisects the area enclosed by the curve $4y = 4x - x^2$ and the x-axis. Write your answer correct to four decimal places.

Question 8 (3 marks)

The region bounded by the *x*-axis and part of the graph of y = cos(x) between x = 0and $x = \frac{\pi}{2}$ is separated into two regions by the line x = k. Find the value of *k*, correct to three decimal places, if the area of the region for $0 \le x \le k$ is one third of the area of the region for $k \le x \le \frac{\pi}{2}$.

Question 9 (6 marks)

a. Differentiate $\log_e(\cos x)$ with respect to x.

b. Hence, show that $\int_0^{\frac{\pi}{4}} \tan x \, dx = \frac{1}{2} \log_e 2$.

2 marks

4 marks

Question 10 (9 marks)

a. Let $f : \mathbb{R}^+ \to \mathbb{R}$, $f(x) = e^{-\frac{x}{3}} (m \cos(x) + n \sin(x))$ Given that $f'(x) = e^{-\frac{x}{3}} \sin(x)$, find the constants *m* and *n*. 3 marks

c.

Calculate the area of the shaded region as shown above, correct to 4 decimal places. 3 marks

Question 11 (14 marks) All answers in this question should be given to 2 decimal places.

A layer of ore beneath the ground in outback Australia has surfaces that are sinusoidal in cross section. A mining company has drawn up a rough sketch on a set of axes so that the *x*-axis represents the surface:

The mining company feels that an appropriate equation to represent the upper layer of the sinusoidal curve, relative to the set of axes is

$$y = a\sin(kx) + d, \qquad 0 \le x \le 120.$$

3 marks

The layer can be assumed to have everywhere, a vertical depth of 8m.

a. Show that a = 11, d = -30 and $k = \frac{\pi}{60}$

What is the minimum distance from the surface that the miners will need to drill to reach the ore?
2 marks

c.	How deep must the miners drill when they are at point C, if they must drill through			
	to the lower layer of the ore?	2 marks		
		_		
		_		
		_		
		_		
		_		
Once	the miners have drilled at point C and have reached the lower layer, a pipe is to run			
horiz	contally until it hits the layer of ore once again.			
d.	What is the minimum length that this horizontal pipe will need to be?	4 marks		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
e.	Calculate the cross-sectional area of ore that lays above the pipe in part d .	3 marks		
		-		
		_		
		_		
		_		
		_		
		-		

Question 12 (6 marks)

a.

b.

It is common practice in the building industry to include heating in concrete slabs. Hot water runs through pipes within the concrete slab of a house. The concrete slab absorbs the heat from the water and releases it into the area above. The number of litres/minute of water flowing through the piping over *t* minutes can be modelled by the rule

$$\frac{dV}{dt} = 2\left(\cos\left(\frac{\pi t}{3}\right) + \sin\left(\frac{\pi t}{9}\right) + 3\right)$$

The graph of this function is shown below:

c. Find the volume of water that flows through the pipes during the time period for one entire cycle.
 2 marks

Question 13 (7 marks)

a. Given that:

 $A(2\sin x + \cos x) + B(2\cos x - \sin x) = 7\sin x + 11\cos x,$

find the values of A and B.

2 marks

b. Hence, or otherwise, show that

$$\int_{0}^{\frac{\pi}{2}} \frac{7\sin x + 11\cos x}{2\sin x + \cos x} \, dx = \frac{5\pi}{2} + \log_{e} 8$$
 5 marks

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n) nx^{n-1}$		$\int x^n dx \frac{1}{n+1} x^{n+1} + c, \ n$	<i>ı</i> ≠ 1
$\frac{d}{dx}\left(\left(ax+b\right)^n\right) an\left(ax+b\right)^n$	$b)^{n-1}$	$\int (ax+b)^n dx \frac{1}{a(n+1)}(ax+b)^n dx \frac{1}{a(n+1)}(ax+b)^n dx \frac{1}{a(n+1)}(ax+b)^n dx$	$ax+b)^{n+1}+c, n \neq 1$
$\frac{d}{dx}(e^{ax})$ ae^{ax}		$\int e^{ax} dx \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx} \left(\log_e(x) \right) \frac{1}{x}$		$\int \frac{1}{x} dx \log_e(x) + c, \ x > 0$	0
$\frac{d}{dx}(\sin(ax)) a \cos(ax)$		$\int \sin(ax) dx = \frac{1}{a} \cos(ax)$	+c
$\frac{d}{dx}(\cos(ax)) = a\sin(ax)$	c)	$\int \cos(ax) dx \frac{1}{a} \sin(ax) +$	- <i>C</i>
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$	$a \sec^2(ax)$		
product rule	$\frac{d}{dx}(uv) u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) \frac{v\frac{du}{dx} u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$		