

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
di	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
e	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
Circ	8	8	8	8
	9	9	9	9

Scotch College

Teacher's Name

MATHEMATICAL METHODS

Unit 4-SAC 1b – Application Task: Test

Thursday 15th August 2019

Reading Time	none	
Writing Time	45 minutes	

Task Sections	Marks	Your Marks
Extended Response Questions	35	
Total Marks	35	

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are not allowed
- Notes and/or references are not allowed
- At the end of the task
 - Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (4 marks)

The diagram below shows the parabolas $y = 5x - x^2$ and $y = x^2 - 3x$. The parabolas intersect at the origin *O* and the point A. The region enclosed between the two parabolas is shaded.

a. Find the *x*-coordinate of the point A.

b. Find the area of the shaded region.

2 marks

2 marks

In the diagram above, the shaded region is bounded by the curve $y = \log_e (x-2)$, the *x*-axis and the vertical line x = 7.

Find the exact value of the area of the shaded region.

Question 3 (5 marks)

The diagram shows a region bounded by the curve $y = \frac{1}{x+3}$ and the lines x = 0, x = 45and y = 0. The region is divided into two parts of equal area by the line x = k, where k is a positive integer.

What is the value of the integer k, given that the two parts have equal areas?

Question 4 (8 marks)

The diagram below shows the parabola with equation $y = x^2 - 7x + 10$. The parabola intersects the *x*-axis at points *A* and *B*. The point *C* on the parabola has the same *y*-coordinate as the *y*-intercept of the parabola.

a. Find the *x*-coordinates of points *A* and *B*.

b. Find the coordinates of *C*.

c. Evaluate $\int_{0}^{2} (x^{2} - 7x + 10) dx$.

2 marks

2 marks

2 marks

Question 5 (3 marks)

Find the exact value of the shaded area.

Question 6 (11 marks)

a. Differentiate $x\cos(x)$

4 marks

b. Hence, show that the area of the shaded region below bounded by the curve with equation $y = 4x \sin(x)$ and the x axis is 4π square units.

c. The vertical line with equation x = b bisects the area of the same shaded region.

Is *b* greater than or less than $\frac{\pi}{2}$? Use calculus to justify your response. 3 marks

d. Let *k* denote the *x*-coordinate of the turning point. Show that the fraction of the area of the dotted rectangle that is shaded is equal to $\frac{2}{k^2}$. 3 marks

END OF SAC 1b

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) nx^{n-1}$		$\int x^n dx \frac{1}{n+1} x^{n+1} + c, \ n \neq 1$		
$\frac{d}{dx}\left(\left(ax+b\right)^{n}\right) an\left(ax+b\right)^{n-1}$		$\int (ax+b)^n dx \frac{1}{a(n+1)}(ax+b)^{n+1} + c, n \neq 1$		
$\frac{d}{dx}(e^{ax}) = ae^{ax}$		$\int e^{ax} dx \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) \frac{1}{x}$		$\int \frac{1}{x} dx \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) a \cos(ax)$		$\int \sin(ax)dx \frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = a\sin(ax)$		$\int \cos(ax)dx \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} a \sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) \frac{v\frac{du}{dx} u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			