	Scotch Student ID #			
	0	0	0	0
Circle the relevant digits	1	1	1	1
	2	2	2	2
	3	3	3	3
	4	4	4	4
	5	5	5	5
	6	6	6	6
cle	7	7	7	7
Cir	8	8	8	8
	9	9	9	9

Teacher's Name

Scotch College

MATHEMATICAL METHODS

U3-SAC 1a – Application Task: Project

Date of distribution: Thursday 16th July 2020

Due date: Tuesday 28th July 2020

Task Sections	Marks	Your Marks
Extended Response Questions	70	
Total Marks	70	

Remote Declaration

I declare that any work I have submitted for this Unit 1 or 3 assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Gener	ral Instructions		
•	Answer all questions in the spaces provided.		
•	In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.		
•	In questions where more than one mark is available, appropriate working must be shown.		
•	Unless otherwise indicated, the diagrams in this task are not drawn to scale.		
Allow	Allowed Materials		
•	A scientific calculator and a CAS calculator.		
•	Any notes or references.		

At the end of the task

• Submit the task to your teacher by the due date.

Question 1 (7 marks)

Sketch the graphs for each of the following labelling, with coordinates, stationary points and

intersections with the axes where they exist.

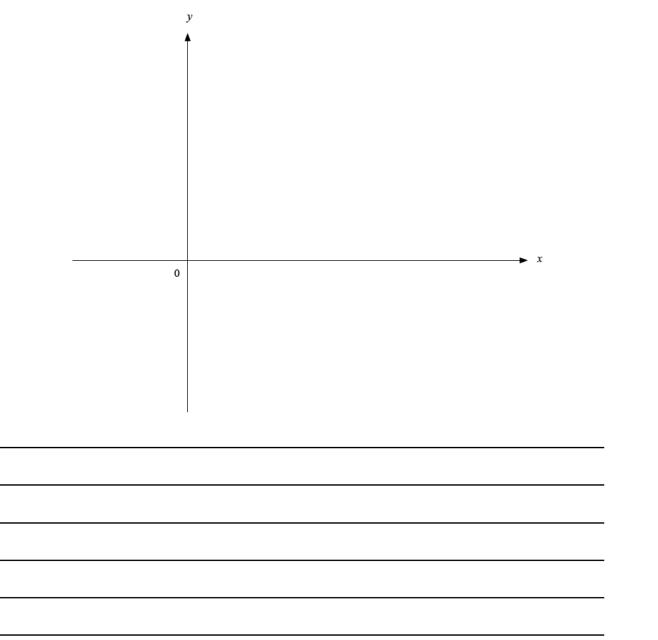
a.
$$y = x^3 - 6x^2 + 12x - 7$$
 3 marks



Question 2 (7 marks)

a. A cubic, in the form $f(x) = ax^3 + bx^2 + cx + d$, has turning points at (1,2) and (3,-2), determine the equation of the cubic.

b. Sketch the graph of y = f(x), labelling axes intercepts and turning points with their coordinates.



c. Find values of q so that the graphs of y = f(x) + q have exactly two x-intercepts.

1 mark

Question 3 (5 marks)

Given $g(x) = x^3 + kx^2 + 9x - 2$, determine the value(s) of k so that the graph of y = g(x) has

a. one stationary point

3 marks

b. two stationary points

1 mark

c. no stationary points

1 mark

Question 4 (8 marks)

Let $h(x) = x^3 + mx^2 + nx$, $(m, n \neq 0)$

Determine the conditions for *m* and *n* so that the graph of y = h(x) has two stationary points. a. Indicate values of *m* in terms of *n* for the cases n < 0 and n > 0. 4 marks

- Hence determine, for the cubic h(x) which has two stationary points, the conditions for m b. and n so that the cubic also has only one x-intercept. Indicate values of m in terms of n for the cases n < 0 and n > 0.
 - 4 marks

Question 5 (14 marks)

i.

Consider the function $f:[0,1] \to \mathbb{R}$, f(x) = x(x+6). The graph of y = g(x) is the graph of a. y = f(x) reflected in the line y = x.

Find the rule for y = g(x). State the domain for g(x). ii. 1 mark

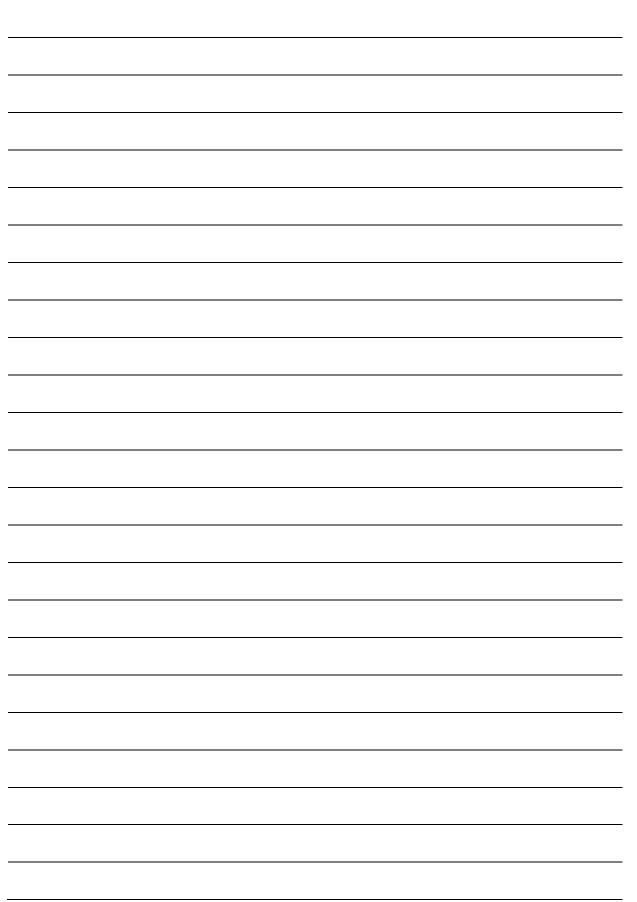
List the sequence of transformations which map the graph of $y = \frac{1}{x}$ to the graph of b.

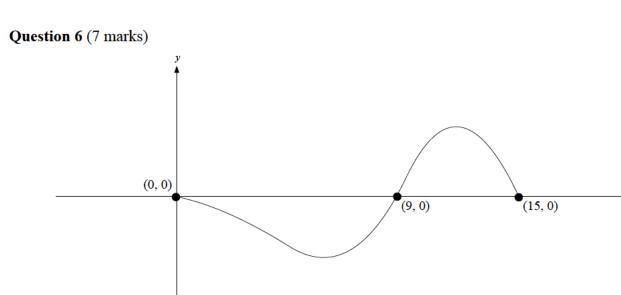
$$y = \frac{-A}{x-b} - k$$
 where A, b and $k \in \mathbb{Z}^+$.

4 marks

c. The graph of y = h(x) joins smoothly to the graph of y = g(x) at the point where x = 7. Graphs join smoothly when they have the same gradient at the point of joining. Given

$$h(15) = 3$$
 and $h(x) = \frac{-A}{x-b} - k$, find the rule for $h(x)$. 6 marks





► x

3 marks

The graph drawn above is defined by

$$f(x) = \begin{cases} g(x), & 0 \le x \le 9 \\ h(x), & 9 < x \le 15 \end{cases}$$

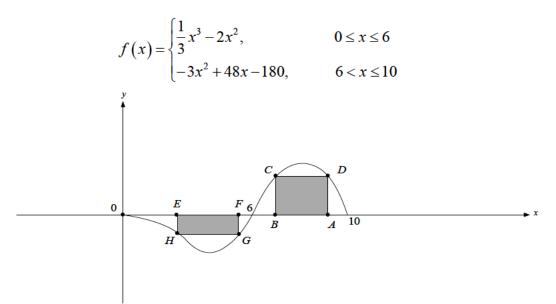
g(x) is a cubic and h(x) is a quadratic.

a. For the graph y = g(x), g(9) = 0, $g(1) = \frac{-2}{3}$ and at (0,0) the gradient is zero. Determine the rule for g(x).

b. For the graph y = h(x), h(15) = 0 and it joins smoothly with the graph y = g(x) at (9,0). Determine the rule for h(x). 4 marks

Question 7 (13 marks)

Let



- **a.** A rectangle *ABCD* is to be drawn with *A* and *B* on the *x*-axis and *C* and *D* on the parabola. Let B = (x, 0).
 - i. Find an expression $A_1(x)$, in terms of x, for the area of rectangle ABCD.

ii. Use calculus to determine the dimensions of the rectangle when its area is a maximum and find the area.

- **b.** A rectangle *EFGH* is to be drawn with *E* and *F* on the *x*-axis and *G* and *H* on the cubic. Let E = (x, 0) and F = (x + h, 0), where h > 0.
 - i. Find an expression $A_2(x)$, in terms of x, for the area of rectangle EFGH.

3 marks

ii. Determine the dimensions, correct to two decimal places, of the rectangle when its area is a maximum.

Question 8 (9 marks)

Let $f: \mathbb{R} \to \mathbb{R}, f(x) = e^{-x}$.

a. i. Find the equation of the tangent to the graph of f at the point (0, 1). 2 marks

ii. Find the area of the triangular region bounded by the tangent found in **part a i**, the positive *x*-axis and the positive *y*-axis.

1 mark

b. A tangent to the graph of f is drawn at the point (a, f(a)), where a > 0, to form a triangular region bounded by the tangent, the positive *x*-axis and the positive *y*-axis. Use calculus to find the value of a when the area of a triangle is a maximum. 6 marks

