

	Scotch Student ID #			
	0	0	0	0
sits	1	1	1	1
ij	2	2	2	2
Circle the relevant digits	3	3	3	3
e e	4	4	4	4
ē	5	5	5	5
the	6	6	6	6
<u>e</u>	7	7	7	7
Ċ	8	8	8	8
	9	9	9	9

Scotch College

Teacher's Name	

MATHEMATICAL METHODS

Unit 3-SAC 1b - Application Task: Test

Tuesday 28th July 2020

Reading Time	none	
Writing Time	45 minutes	

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- · Calculators are not allowed
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (13 marks)

- **a.** Let $f(x) = x^3 + 9x^2 + 15x 25$.
 - i. Show that x-1 is a factor of f(x).

1 mark

ii. Hence, solve f(x) = 0.

2 marks

iii. Find the coordinates of the stationary points for the graph of y = f(x).

3 marks

iv. Sketch the graph of y = f(x) labelling the axis intercepts and stationary points with their coordinates.

- **b.** Let $g(x) = x^3 + 9x^2 + mx + k$.
 - i. Find the value of m so that the graph of y = g(x) has exactly one stationary point.

3 marks

ii. Hence, find the value of k so that the stationary point found in **part i** is on the x-axis.

Z	marks	

-		

Question 2 (8 marks)

Let $f(x) = 2\log_e(x-1)$.

a. State the maximal domain for the function *f*.

1 mark

b. Sketch the graph of y = f(x). Label the intercept(s) with coordinates and the asymptote(s) with equations.

2 marks

c. i. Find the rule for f^{-1} .

2 marks

ii. State the domain for f^{-1} .

1 mark

d.	State the sequence transformations which map the graph of $y = \log_e(x)$ to the graph of			
	$y = 2\log_e(x-1).$	2 marks		
		_		
		_		
		_		
		_		

Question 3 (9 marks)

The parabola drawn has equation y = -2x(x-m) where m > 0.

A rectangle PQRS, is drawn so that:

- P and S are on the x-axis
- *Q* and *R* are on the parabola

as shown in the diagram.

Let P = (x, 0).

a. i. Show that the rule of the function A(x) for the area of the rectangle *PQRS* is

$$A(x) = 4x^3 - 6mx^2 + 2m^2x$$

2 marks

ii. State the domain for the function A in terms of m.

1 mark

i.	Show that the area of the rectangle <i>PQRS</i> is a maximum when $x = \frac{m}{2} - \frac{m\sqrt{3}}{6}$.	3 ma
		_
		<u> </u>
		_
		<u> </u>
		<u> </u>
		<u> </u>
ii.	Find PS in the form $\frac{\sqrt{a}}{b}m$, where $a, b \in \mathbb{Z}$.	1 ma
		_
iii.	Find PQ in the form $\frac{m^2}{c}$ where $c \in \mathbb{Z}$.	2 ma
		_
		_

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}(x^n) nx^{n-1}$		$\int x^n dx \frac{1}{n+1} x^{n+1} + c, \ n \neq 1$		
$\frac{d}{dx}\Big((ax+b)^n\Big) an\Big(ax+b\Big)^n$	$b)^{n-1}$	$\int (ax+b)^n dx \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq 1$		
$\frac{d}{dx}(e^{ax})$ ae^{ax}		$\int e^{ax} dx \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}(\log_e(x)) \frac{1}{x}$		$\int \frac{1}{x} dx \log_e(x) + c, \ x >$	0	
$\frac{d}{dx}(\sin(ax)) a \cos(ax)$		$\int \sin(ax)dx \qquad \frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = a\sin(ax)$	()	$\int \cos(ax)dx \frac{1}{a}\sin(ax) - \frac{1}{a}$	+ <i>c</i>	
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$	$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} a \sec^2(ax)$			
product rule $\frac{d}{dx}(uv) u\frac{dv}{dx} + v\frac{du}{dx}$		quotient rule	$\frac{d}{dx} \left(\frac{u}{v} \right) \frac{v \frac{du}{dx} u \frac{dv}{dx}}{v^2}$	
chain rule $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$				

Probability

Pr(A) = 1 - Pr(A')		$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	
$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$			
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Probability distribution		Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) \int_{a}^{b} f(x) dx$	$\mu \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$