

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
di	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
Circle the relevant digits	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
Circ	8	8	8	8
	9	9	9	9

Teacher's Name

Scotch College

MATHEMATICAL METHODS

Unit 3-SAC 1c - Application Task: Test

Tuesday 28th July 2020

Reading Time	none	
Writing Time	45 minutes	

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

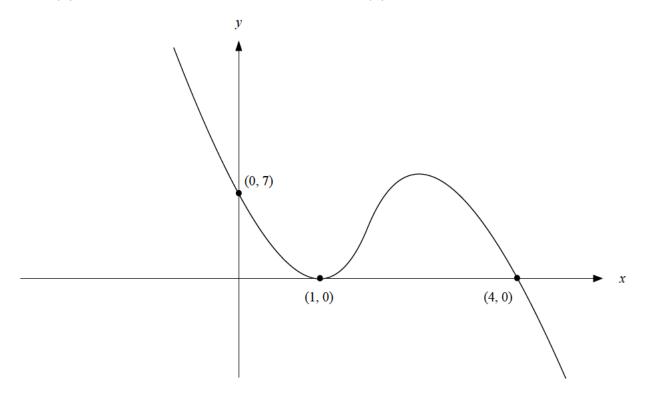
General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- A scientific calculator and CAS calculator are allowed.
- Notes and/or references are not allowed.

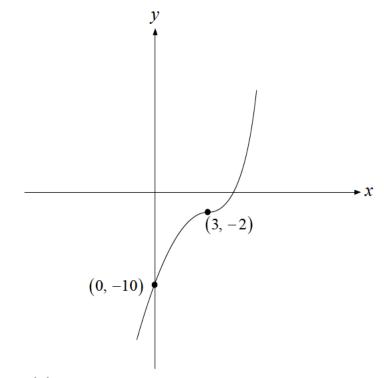
At the end of the task


• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (8 marks)


a. f(x) is a polynomial of degree 3. The graph of f(x) is shown below:

Find the rule for f(x) in factorised form.

2 marks

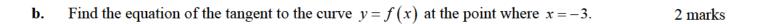
b. g(x) is a polynomial of degree 3, with one stationary point at (3, -2). The graph of g(x) is shown below:

Find the rule for g(x).

3 marks

c. A cubic function h(x) has turning points at (3,5) and (-2,10). Find the rule for h(x) in the form $h(x) = ax^3 + bx^2 + cx + d$.

3 marks


Question 2 (12 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 5 - (x+2)^2$.

a. Sketch the graph of y = f(x), labelling the turning point and the axes intercepts with

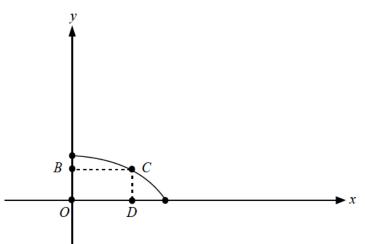
their coordinates. 3 marks

→ x

c. The tangent to the curve y = f(x) at the point (b, f(b)) passes through the point (1, 0). Find the value(s) of *b*.

```
3 marks
```

4 marks

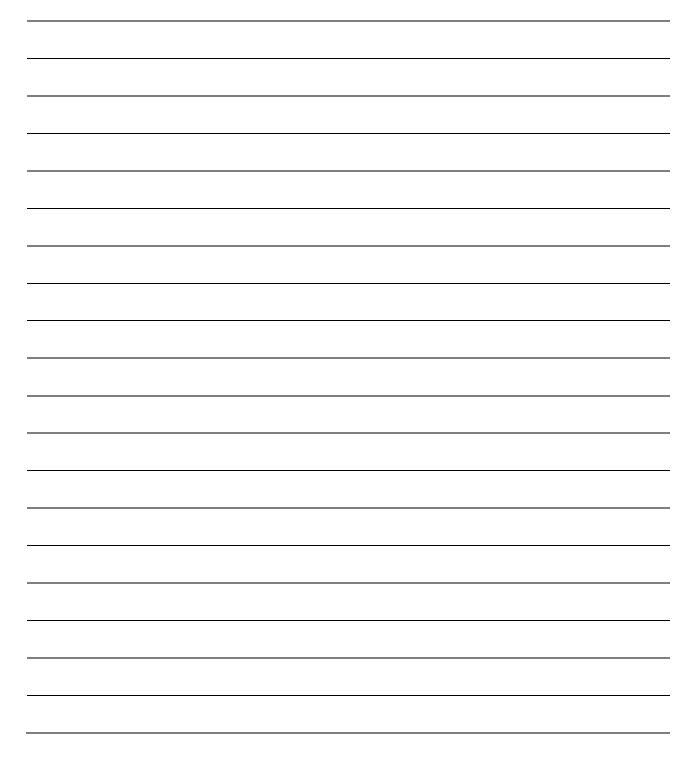

d. Given $g(x) = a(x-4)^2 - 3$, a > 0 and that the graphs of *f* and *g* are to join smoothly (i.e. join at a point where they have the same gradient), find the value of *a* and the coordinates of the point at which the parabolas join.

Question 3 (6 marks)

a. Determine the sequence of transformations which map the graph of $y = xe^x$ to the graph of

$$y = -(x-1)e^{x-1}$$
. 2 marks

b. A rectangle is drawn with *O* at the origin, *B* on the *y*-axis, *C* on the curve with equation $y = (1-x)e^{x-1}$ and *D* on the *x*-axis. Let D = (x, 0).


i. Write down the rule for the function, A(x), for the area of the rectangle *OBCD*. 1 mark

ii.	Use calculus to find the value of x for the area of rectangle <i>OBCD</i> to be a maximum.	3 marks
		_
		-
		-
		-
		-
		-
		-
		_
		_
		-
		-
		-

Question 4 (4 marks)

Let $f(x) = x^2 + 8x + 6$ and $g(x) = -x^2 + 6x - 7$.

The graphs of y = f(x) and y = g(x) are to be joined by a line which is a tangent to both curves. Find the equations of all possible lines.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^{n}\right) nx^{n-1}$		$\int x^n dx \frac{1}{n+1} x^{n+1} + c, \ n \neq 1$		
$\frac{d}{dx}\left((ax+b)^n\right) an\left(ax+b\right)^n$	$b)^{n-1}$	$\int (ax+b)^n dx \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq 1$		
$\frac{d}{dx}(e^{ax})$ ae^{ax}		$\int e^{ax} dx \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) \frac{1}{x}$		$\int \frac{1}{x} dx \log_e(x) + c, \ x >$	0	
$\frac{d}{dx}(\sin(ax)) a \cos(ax)$		$\int \sin(ax)dx \frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = a\sin(ax)$	$\frac{d}{dx}(\cos(ax)) = a\sin(ax)$		$\int \cos(ax) dx \frac{1}{a} \sin(ax) + c$	
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$	$a \sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) \frac{v\frac{du}{dx} u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			

Probability

$\Pr(A) = 1 - \Pr(A')$		$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$	
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$			
mean	$\mu = \mathrm{E}(X)$	variance	$\operatorname{var}(X) = \sigma^2 = \operatorname{E}((X - \mu)^2) = \operatorname{E}(X^2) - \mu^2$

Prob	ability distribution	Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x \ p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) \int_{a}^{b} f(x) dx$	$\mu \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$\mathbf{E}(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$