

	Scotch Student ID #				
	0	0	0	0	
gits	1	1	1	1	
dig	2	2	2	2	
ant	3	3	3	3	
lev	4	4	4	4	
e re	5	5	5	5	
the	6	6	6	6	
cle	7	7	7	7	
Cir	8	8	8	8	
	9	9	9	9	

Teacher's Name

Scotch College

MATHEMATICAL METHODS

U3-SAC 1a – Application Task: Project

Date of distribution: Wednesday 19th May 2021

Due date: Wednesday 2nd June 2021, prior to SAC 1b

Task Sections	Marks	Your Marks
Extended Response Questions	75	
Total Marks	75	

Remote Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature: _

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- A scientific calculator and a CAS calculator.
- Any notes or references.

At the end of the task

• Submit the task to your teacher by the due date.

Question 1 (6 marks)

A pair of equations are defined as follows:

$$(k+1)x - ky = 6$$
$$3x + 2ky + 4 = 0$$

where k is a real constant.

For what values of *k* do the pair of equations have:

a. a unique solution?

3 marks

b. no solutions?

2 marks

c. infinitely many solutions?

1 mark

Question 2 (5 marks)

The function f has rule $f(x) = x^{-\frac{1}{3}}$.

a. State the maximal domain for f.

1 mark

b. Sketch the graph of y = f(x) on the axes below, labelling all intercepts, asymptotes and endpoints, if they exist.

c. State the values of x for which the function f is strictly decreasing.

1 mark

Question 3 (9 marks)

- $f(x) = ax^3 + bx^2 + cx + d$, where a, b, c and d are real numbers.
- **a.** The graph of y = f(x) has stationary points at (-3,8) and (5,3). Find the rule f(x). 2 marks

b. Sketch the graph of y = f'(x) on the axes below, labelling all intercepts and the stationary point(s) with their coordinates.

c. State the solutions to the equation f'(x) = 0.

1 mark

p	Consider another quadratic equation $x^2 + px + q = 0$, where <i>p</i> and <i>q</i> are real numbers and $p > 0, q > 0$.		
i.	Find the value(s) of p , in terms of q , for which this equation has exactly one solution.	1 m	
-		_	
-		_	
-			
ii.	Find the one solution to the equation in this case, in terms of q .	1 m	
-			
-			
-		_	
The	e equation of a curve is $y = x^2 + px + q$, where <i>p</i> and <i>q</i> are real numbers.	_	
- The i.	e equation of a curve is $y = x^2 + px + q$, where <i>p</i> and <i>q</i> are real numbers. For what values of <i>p</i> is the <i>x</i> -coordinate of the turning point of the curve positive?	 1 m	
The	e equation of a curve is $y = x^2 + px + q$, where <i>p</i> and <i>q</i> are real numbers. For what values of <i>p</i> is the <i>x</i> -coordinate of the turning point of the curve positive?	1 m	
- The i.	e equation of a curve is $y = x^2 + px + q$, where <i>p</i> and <i>q</i> are real numbers. For what values of <i>p</i> is the <i>x</i> -coordinate of the turning point of the curve positive?	 1 m 	
- The i.	e equation of a curve is $y = x^2 + px + q$, where <i>p</i> and <i>q</i> are real numbers. For what values of <i>p</i> is the <i>x</i> -coordinate of the turning point of the curve positive?	- 1 m 	
- The i. ii.	e equation of a curve is $y = x^2 + px + q$, where <i>p</i> and <i>q</i> are real numbers. For what values of <i>p</i> is the <i>x</i> -coordinate of the turning point of the curve positive?	- 1 m - 1 m	
The i. ii.	e equation of a curve is y = x ² + px + q, where p and q are real numbers. For what values of p is the x-coordinate of the turning point of the curve positive? Find the coordinates of the turning point of the curve in terms of p and q.		

Question 4 (13 marks)

Two functions f and g are defined as:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = e^{3x} - 2$$
$$g: \mathbb{R} \to \mathbb{R}, g(x) = e^{x}$$

a. List a sequence of transformations which maps the graph of y = g(x) to the graph of

y = f(x).

b. Find a rule for the inverse, f^{-1} , of f and state its domain.

3 marks

c. Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same set of axes below, labelling all intercepts with exact coordinates, all asymptotes with their equations and the intersection point(s) between the curves to two decimal places.

d. Fully define $h(x) = f(f^{-1}(x))$.

2 marks

e. Show that
$$f(-2f^{-1}(3x)) = -\frac{18x^2 + 24x + 7}{9x^2 + 12x + 4}$$
.

Question 5 (17 marks)

Consider the function f such that

$$f: D \to \mathbb{R}, f(x) = \frac{-1}{\sqrt{4 - x^2}}$$

Find *D*, the maximal domain of *f*. a.

b. Sketch the graph of y = f(x) over its maximal domain. Label all key features.

- Hence, or otherwise, find the absolute maximum of *f*. c.
- d. Consider the function *g* such that

$$g:(-1,4] \rightarrow \mathbb{R}, g(x) = -\sqrt{x+1}$$

On the above axes, sketch y = g(x) including the exact coordinates of all endpoints and intercepts and the coordinates of the point(s) of intersection with y = f(x) correct to two decimal places.

1 mark

1 mark

3 marks

1 mark

- **f.** Let $g^*: X \to \mathbb{R}, g^*(x) = -\sqrt{x+1}$ where X is the domain of g^* .
 - i. Find the maximal domain X such that $f(g^*(x))$ exists.

1 mark

ii. Find the rule $f(g^*(x))$.

g. Let $p:(0,4) \to \mathbb{R}$, $p(x) = \frac{2}{\sqrt{x(4-x)}} - 1$. The graph of *p* can be obtained by applying the

transformation T to the graph of f where

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} q \\ n \end{bmatrix}$$

Find the values of m, n and q.

3 marks

h. Find the coordinates of the point P on the curve with equation y = f(x) at which the tangent to f(x) is normal to the line 3x+8y=15, giving your answer correct to two decimal places.

Question 6 (9 marks)

c. Hence show that the distance D(m) between (0,1) and Point B is given by the function:

$$D(m) = \sqrt{m^2 + (m-4)^2 (m-2)^2}$$
 2 marks

coordinates of all endpoints and stationary points, rounded to two decimal places.

e. Find the value(s) of *m* for which D(m) = 4, giving your answer(s) correct to two decimal places.

2 marks

Question 7 (16 marks)

A function N(t) measures the intensity level of a treadmill workout *t* minutes after a workout begins. All workouts begin with the treadmill stationary, at intensity level zero, that is, N(0) = 0. If the treadmill workout reaches an intensity level of 10 (that is, N(t) = 10) the treadmill enters the **override** mode. This means it will reduce the intensity level at a constant rate over a 5 minute period until N(t) = 0, and the treadmill stops.

$$N(t) = \frac{1}{9000}(at-10)^3(b-t)+1$$
, where $t \ge 0, 0 \le N(t) \le 10$, and *a* and *b* are real constants.
a. i. Show that $b = 9$.

2 marks

ii. When a = 0, calculate the time taken, in minutes, to achieve the intensity level of 10. 2 marks

iii. When a = 2, calculate the time taken after the workout has started for the intensity level, N(t), to reduce to zero. State your answer in minutes correct to one decimal place.

iv.	State, in terms of a, the possible value(s) of t for which $(t, N(t))$ is a stationary point			
	of the function $N(t)$.	2 marks		
		_		
		_		
		_		
v.	For what value(s) of $a, a \in [0, 6]$, does $N(t)$ have no stationary points?	1 mark		
vi.	For what value(s) of $a, a \in [0, 6]$, does $N(t)$ have one stationary point?	2 marks		
		_		
		_		
vii.	What is the maximum number of stationary points $N(t)$ can have?	1 mark		

b. i. What is the maximum intensity level achieved when a = 6 correct to one decimal place. 1 mark

ii. When a = 6, at what time is this maximum intensity level achieved? Give your answer in minutes, correct to one decimal place.

c. *a* is restricted to the possible set of values below:

 $a \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

What is the least value of $a \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which will cause the treadmill

to enter the override mode, and how many minutes in total will this workout last?

State your answer in minutes, correct to one decimal place.

2 marks

1 mark

END OF SAC 1a

Mathematical Methods formula sheet

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left(\left(ax+b\right)^n\right) = an\left(ax+b\right)^n$	$b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x >$	0	
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	c)	$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} =$	$= a \sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			