

Scotch College

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
ij	2	2	2	2
ant	3	3	3	3
ev	4	4	4	4
Circle the relevant digits	5	5	5	5
the	6	6	6	6
<u>e</u>	7	7	7	7
تَ	8	8	8	8
	9	9	9	9

Teacher's Name	

MATHEMATICAL METHODS

Unit 3-SAC 1c - Application Task: Test

Wednesday 2nd June 2021

Reading Time	none
Writing Time	45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature: _			

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are allowed
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (13 marks)

The graph of the function $f:(0,a) \to \mathbb{R}$, $f(x) = \frac{3}{2\sqrt{3x-x^2}}$, including asymptotes at x = 0 and x = a is shown below.

a. Show that a = 3.

$$3x - x^2 > 0$$

$$x(3-x) > 0$$

$$x < 3$$

b. Write down the equations of asymptotes of the curve $y = f\left(\frac{x}{2}\right) + 3$.

- c. Let $g:(0,c] \to \mathbb{R}$, g(x) = f(x), where c is the largest value of x such that g has an inverse function.
 - i. State c.

$$(=3/2)$$

ii. Hence or otherwise, find the absolute minimum of f.

1 mark

Absolute minimum of f is 1

iii. Find the rule and domain of g^{-1} , the inverse of g.

2 marks

lu	y = g(x)
y= 3 2 3x-x2	$y = 3 \chi - 3 \sqrt{x^2 - 1}$
2 3x-x2	zx
$\mathcal{X} = \frac{3}{2\sqrt{3}y - y^2}$	$g(x) = 3x - 3\sqrt{x^2 - 1}$
= 139-ye	22
	Dom g = [1,00)

iv. The axes below show the graph of y = g(x). Sketch the graph of $y = g^{-1}(x)$ on the same set of axes. Include exact coordinates of any endpoints, equations of any asymptotes and coordinates of any points of intersection correct to two decimal places. 2 marks

For what values of n does the tangent to the graph of y = f(x) at the point (n, f(n))have x and y-intercepts which equal the same value? Give your answer correct to two decimal places.

3 marks

f. Let $k:(-5,1) \to \mathbb{R}, k(x) = \frac{3}{\sqrt{(x+5)(1-x)}}$.

The graph of k can be obtained by applying the transformation T to the graph of f where

$$T: \mathbb{R}^2 \to \mathbb{R}^2, T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -2 & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ n \end{bmatrix}$$

Find the value of m and the value of n.

2 marks

Question 2 (11 marks)

Andrew's heart rate can be modelled using the family of functions:

$$H(t) = kt e^{\left(-\frac{t}{k}\right)} + c$$

where H(t) gives the heart rate in beats per minute (bpm) at time t minutes after a workout begins, $t \ge 0$, $k \in \mathbb{R}^+$ and $c \in \mathbb{R}^+$. Andrew's resting heart rate (at t = 0) is 65 bpm.

a. Show that c = 65.

1 mark

b. At what time, in terms of k, does the maximum heart rate for this session occur?

2 marks

$$H(t) = Ke^{-t/K} - te^{-t/K} = 0$$

$$\vdots \quad t = K$$

c. Using the value of c from part a and $k = \sqrt{85e}$, find Andrew's maximum heart rate and the time, to the nearest minute, that this occurs.

2 marks

d. Given $H:[0,\infty) \to \mathbb{R}$, $H(t) = kt e^{\left[-\frac{t}{k}\right]} + 65$ and $k = \sqrt{85e}$, sketch the graph of y = H(t) on the axes below. Include exact coordinates of any endpoints, stationary points and axis intercepts and the equations of any asymptotes.

2 marks

e. For the function in **part d**, how many minutes after reaching his maximum heart rate does Andrew's heart rate return to 70 bpm? State your answer correct to one decimal place.

2 marks

H(t)=70 solve for t
t=0.3 or t=84.3
so after reaching max
84.3- \85e = 69.1 min

- **f.** Andrew wants his maximum heart rate, of 150 bpm, to occur at t = 20 minutes. This can be modelled as the function $H^*(t)$, which is a transformation of H(t), where his resting heart rate remains 65 beats per minute and $k = \sqrt{85e}$.
 - i. Describe the single dilation that transforms H(t) into $H^*(t)$.

1 mark

ii. State the rule of $H^*(t)$.

1 mark

$$H^*(t) = \frac{85e}{20} \cdot t \cdot e + 65$$

$$= \frac{17}{4} \cdot t \cdot e + 65$$

Question 3 (6 marks)

a. Given $h: \mathbb{R} \to \mathbb{R}$, $h(x) = \frac{x(x-25)^2}{500}$, and $g: [3, \infty) \to \mathbb{R}$, $g(x) = \sqrt{x^2 - 3x}$, state the range of $h \circ g$.

1 mark

- **b.** Using the equation y = h(x) from **part a**,
 - i. for what values of x is the gradient function of h(x) strictly decreasing?

1 mark

ii. find the value of b for which h(x) + b = 0 has one solution.

1 mark

iii. find the value of b for which h(x) + b = 0 has three solutions.

1 mark

iv. find the real values of d for which only one of the solutions of $h(x+d) = \frac{3}{2}$ is positive.

2 marks

Solve for
$$h(x)=\frac{3}{2}$$

$$x=10-5\sqrt{3}, 10+5\sqrt{3}, 30$$

$$\therefore 10+5\sqrt{3} \leq d \leq 30$$

END OF SAC 1c