

	Sco	tch Stu	Ident	ID #
	0	0	0	0
gits	1	1	1	1
dig	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
e re	5	5	5	5
the	6	6	6	6
Circle the relevant digits	7	7	7	7
Cir	8	8	8	8
	9	9	9	9

Teacher's Name

Scotch College

MATHEMATICAL METHODS

U4-SAC 1a – Application Task: Project

Date of distribution: Monday 2nd August 2021

Due date: Wednesday 11th August 2021

Task Sections	Marks	Your Marks
Extended Response Questions	60	
Total Marks	60	

Remote Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature: _

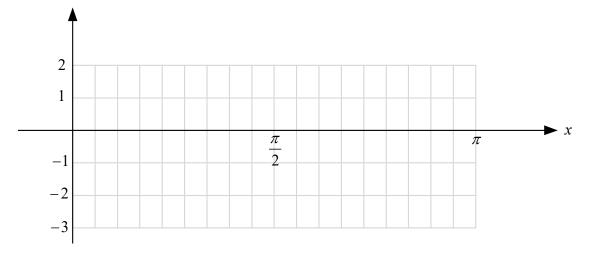
General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

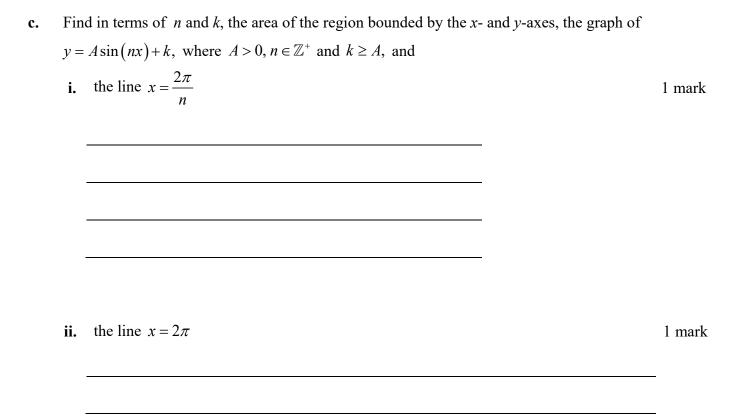
Allowed Materials

- A scientific calculator and a CAS calculator.
- Any notes or references.

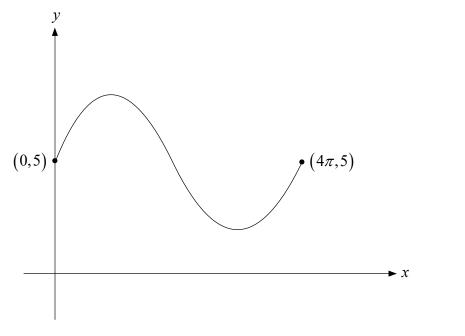
At the end of the task


• Submit the task to your teacher by the due date and before the test SAC.

Question 1 (11 marks)


a. Find the area of the regions bounded by the graph of $y = 2\sin(3x)$, $0 \le x \le \frac{2\pi}{3}$ and the x-axis. 2 marks

b. Let $f:[0,\pi] \to \mathbb{R}, f(x) = 2\sin(3x) - 1.$


i. Sketch the graph of *f*. Label axes intercepts, turning points and endpoints with their coordinates.
3 marks

ii. Find the area of the regions bounded by the graph of f and the x-axis.

d. The graph drawn is a transformation of the graph with equation y = sin(x). Find the area of the region bounded by the graph, the *x*- and *y*-axes and the line $x = 4\pi$. 1 mark

Question 2 (5 marks)

a. Find the area of the regions bounded by the graph of $y = 3\sin(x)$, $0 \le x \le 2\pi$ and the

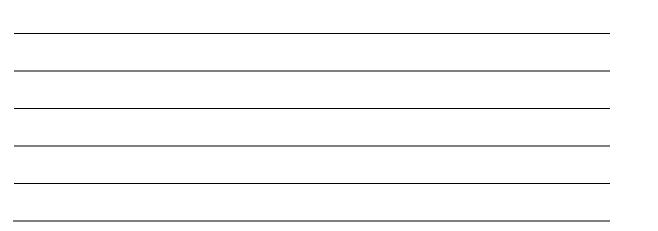
- $y = 3\sin(bx), \quad 0 \le x \le \frac{2\pi}{b}$ and the x-axis is
- **i.** 6 square units

b.

ii. 3 square units

1 mark

1 mark


c. Find the values of $b (b \in \mathbb{Z}^+)$ such that the area of the regions bounded by the graph of $y = 3\sin(bx)$, $0 \le x \le 2\pi$ and the *x*-axis is 12 square units.

1 mark

Question 3 (13 marks)

a. Find the area of the region bounded by the graphs of

$$y = \sin(x), \qquad 0 \le x \le 2\pi$$

and $y = \cos(x), \qquad 0 \le x \le 2\pi$ 3 marks

b. Find in terms of *b*, the area of the region bounded by the graphs of

$$y = \sin(bx),$$
 $0 \le x \le \frac{2\pi}{b}$
and $y = \cos(bx),$ $0 \le x \le \frac{2\pi}{b},$ where $b \in \mathbb{Z}^+$ 1 mark

c. Find in terms of *b*, the area of the regions bounded by the graphs of

$$y = \sin(bx), \qquad 0 \le x \le 2\pi$$

and
$$y = \cos(bx), \qquad 0 \le x \le 2\pi, \text{ where } b \in \mathbb{Z}^+$$
 2 marks

d. Let
$$g:\left[0,\frac{2\pi}{b}\right] \to \mathbb{R}, g(x) = a\sin(bx) + a$$
 where $0 < a \le 2$ and $b \in \mathbb{Z}^+$,

i. find in terms of a, b and h, the area of the region bounded by the graphs of

$$y = g(x)$$

and $y = g(x-h)$, where $0 < h < \frac{\pi}{b}$ 4 marks

ii. find three sets of values for *a*, *b* and *h* when the area of the region found in **part d i** is $\sqrt{3}$ square units. 3 marks

Question 4 (16 marks)

ii.

a. i. Find the value of k so that the line y = kx is tangent to the graph of $y = \sqrt{2x-3}$. 3 marks

Using the value of k found in part a i , find the area of the region	on enclosed by the	
Using the value of k found in part a i , find the area of the region tangent line $y = kx$, the graph of $y = \sqrt{2x-3}$ and the x-axis.		marks
tangent line $y = kx$, the graph of $y = \sqrt{2x-3}$ and the x-axis.		6 marks
tangent line $y = kx$, the graph of $y = \sqrt{2x-3}$ and the x-axis.		6 marks
tangent line $y = kx$, the graph of $y = \sqrt{2x-3}$ and the <i>x</i> -axis.		6 marks
tangent line $y = kx$, the graph of $y = \sqrt{2x-3}$ and the <i>x</i> -axis.		6 marks

b. i. Find the equation of the normal to the graph of $y = \sqrt{2x-3}$ at the point where x = 3. 1 mark

ii. Hence find the area of the region bounded by the normal, the curve and the *x*-axis. 3 marks

c. Let $f:\left[\frac{1}{a},\infty\right] \to \mathbb{R}, f(x) = \sqrt{ax-1}, a > 0.$

i. Find the value of a so that the line y = x is a tangent to the graph of f.

3 marks

ii. Using the value of *a* found in **part c i**, find the area of the region bounded by the graphs of *f*, f^{-1} and the *x*- and *y*-axes.

Question 5 (15 marks)

- **a.** Let $f: \mathbb{R} \to \mathbb{R}, f(x) = e^{2x} + 1$,
 - i. find the area of the region bounded by the graph of *f*, the *x* and *y*-axes and the line
 - $x = \frac{1}{2}\log_e(2)$ 2 marks

ii. find the rule for $f^{-1}(x)$, the inverse function of f

- iii. find the area of the region enclosed by the graphs of f and f^{-1} , the lines x = 3 and y = 3, and the x- and y-axes.
- 2 marks

c. i. Find the area of the region bounded by the graphs of $y = e^{2x}$ and $y = 3e^{x} - 2$. 4 marks

- ii. Let $g: \mathbb{R} \to \mathbb{R}$, $g(x) = e^{2x}$ and $h: \mathbb{R} \to \mathbb{R}$, $h(x) = ae^x b$ where $a, b \in \mathbb{Z}^+$ find the relationship for *b* in terms of *a* so that the graphs of *g* and *h* have only one intersection point.