	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
dig	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
e	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
Cir	8	8	8	8
	9	9	9	9

Scotch College

Teacher's	Name

MATHEMATICAL METHODS

Unit 3-SAC 1b – Application Task: Test

Wednesday 2nd June 2021

Reading Time	none
Writing Time	45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature:

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are not allowed
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (9 marks)

A graph *f* has the rule $f(x) = (3x-5)^3$.

a. Find f'(x).

2 marks

2 marks

b. Find the equation of the tangent to the graph of f at point R	' (2,1).
---	-----------------

c. The tangent to the graph of f at point Q is parallel to the tangent to the graph of f at P.Find the coordinates of point Q.

2 marks

d.	List the sequence of transformations which maps the graph $y = (3x-5)^3$ to the graph
	$y = 2(5-x)^3 - 4$.

3 marks

_

Page 4 of 9

Question 2 (3 marks)

A normal to the curve $y = \sqrt{x}$ has the equation y = -8x + a, where *a* is a real constant. Find the value of *a*.

Question 3 (9 marks)

Two curves f and g are defined as follows:

$$f:[2,\infty) \to \mathbb{R}, \quad f(x) = \sqrt{x-2}$$
$$g:(-\infty,0] \to \mathbb{R}, \quad g(x) = 4-2x^2$$

a. Is $g \circ f$ defined? Give reasons for your answer.

b. Find the domain of a suitably restricted function g^* of g such that $f \circ g^*(x)$ is defined on its maximal domain.

c. i. Find the rule for g^{-1} , the inverse of g.

1 mark

2 marks

2 marks

d. Sketch the graphs of y = g(x) and $y = g^{-1}(x)$ on the same set of axes below, showing all intersections, endpoints and intercepts. You may use the lines below for working. 3 marks

Question 4 (4 marks)

The curve with rule $f(x) = 6\log_e(x) - 4x^{\frac{1}{2}}$ and the tangent to the curve at point *P* are shown below:

Point *P* has an *x*-coordinate of 4. The tangent to the graph of y = f(x) at *P* crosses the *x*-axis at *Q* and the *y*-axis at *R*. Find *a* and *b* if the area of the triangle *OQR* is $(a+b\log_e 2)^2$.

Question 5 (5 marks)

Let b, c, p and q be real numbers.

- **a.** Consider the equation $0 = x^2 + bx + c$, where c > 0.
 - i. Find the range of values of *b* for which the equation has two distinct real solutions, giving your answer in terms of *c*.

2 marks

1 mark

ii. Determine the range of values of b for which both distinct real solutions are positive, giving your answer in terms of c. Justify your answer.

b. Consider the equation $x^3 + px + q = 0$, where p > 0 and q < 0. Find the number of solutions to this equation and state the sign(s), justifying your answer. 2 marks

END OF SAC 1b

Mathematical Methods formula sheet

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n = \frac{1}{n+1} x^{n+1} + c$	$n \neq -1$
$\frac{d}{dx}\left(\left(ax+b\right)^n\right) = an\left(ax+b\right)^n$	$b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^n dx$	$ax+b)^{n+1}+c, n\neq -1$
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x >$	0
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$) + <i>c</i>
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	c)	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + \frac{1}{a} \sin(ax) +$	+ <i>C</i>
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} =$	$= a \sec^2(ax)$		
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$		