

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
dig	2	2	2	2
Circle the relevant digits	3	3	3	3
	4	4	4	4
e e	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
cir	8	8	8	8
	9	9	9	9

Teacher's Name

Scotch College

MATHEMATICAL METHODS

U4-SAC 1b – Application Task: Test REMOTE

Tuesday 24th August 2021

Reading Time	none
Writing Time	45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Remote Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature: _

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are not allowed.
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

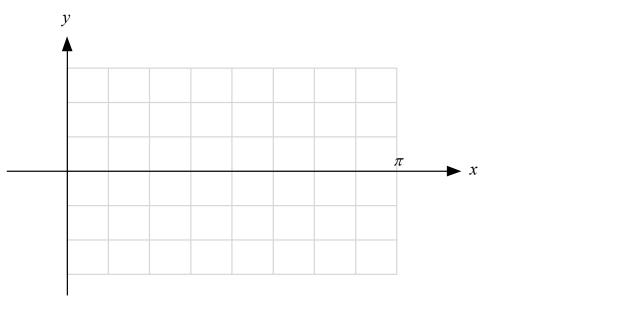
Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (7 marks)

a. The equation of the graph below is of the form $y = A\cos(bx)$ for $0 \le x \le 4$.

Find the values of *A* and *b*.


y 3 3 1 2 3 4 x-3 2 marks

- **b.** Let $f:[0,\pi] \to \mathbb{R}, f(x) = 1 \sqrt{2}\cos(2x)$.
 - i. Solve f(x) = 0

2 marks

3 marks

ii. Sketch the graph of *f*. Label axis intercepts, turning points and endpoints with their coordinates.

Question 2 (5 marks)

- **b.** Find the value of b(b > 0) such that the area of the region bounded by the graph of

 $y = 2\sin(bx), \ 0 \le x \le \frac{2\pi}{b}$ and the x-axis is 4 square units. 1 mark

Question 3 (11 marks)

- a. Find the area of the region bounded by the graphs of $y = \sqrt{3x-2}$ and y = x. 4 marks
- **b.** Find the value of h such that the line y = x is a tangent to the graph of $y = \sqrt{3x h}$. 3 marks

c. Find the area of the region bounded by the graphs of y = x and $y = \sqrt{4x - 4}$, and the x-axis. 4 marks

Question 4 (7 marks)

Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x - 2$

a. Find the area of the regions bounded by the graph of *f*, the *x*-axis and the lines x = 0 and $x = \log_e(4)$.

4 marks

3 marks

- **b.** Find, in terms of *a*, the area of the region bounded by the graphs of $y = e^x$ and $y = a + 1 ae^{-x}$, where $a \in \mathbb{Z}^+$.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2h$		

Calculus

$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$		$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left((ax+b)^n\right) = an(ax+b)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} =$	$= a \sec^2(ax)$			
product rule $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$		quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			

Probability

$\Pr(A) = 1 - \Pr(A')$		$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$			
mean	$\mu = \mathrm{E}(X)$	variance	$\operatorname{var}(X) = \sigma^2 = \operatorname{E}((X - \mu)^2) = \operatorname{E}(X^2) - \mu^2$

Prob	ability distribution	Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x \ p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$