

Scotch College

	Sco	tch Sti	udent	D#
	0	0	0	0
Circle the relevant digits	1	1	1	1
dig	2	2	2	2
ant	3	3	3	3
ev	4	4	4	4
re	5	5	5	5
the	6	6	6	6
9	7	7	7	7
5	8	8	8	8
	9	9	9	9

Te	eac	he	r's	Na	me
DECEMBER 1974	ordinandos.	Miles Cont	Section 15	Deliberation.	Self-delitions

MATHEMATICAL METHODS

Unit 3-SAC 1b – Application Task: Test

WORKED

Solutions

Thursday 2nd June 2022

Reading Time	none
Writing Time	45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

		I	-	9 1 1 1 1		
	ec	121	\mathbf{r}_{21}	П	O	П
Section 11			Anna Harri		1000	21

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature:		

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are not allowed
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (3 marks)

Sketch the graph of $y = \log_e(2x-1)$. Label all axis intercepts with their co-ordinates and all asymptotes with their equations.

Question 2 (3 marks)

Solve each of the equations below.

 $\mathbf{a.} \qquad 2 \times 3^x = 5$

1 mark

$$3^{7} = \frac{5}{2}$$

b. $\log_5(2) - \log_5(x) = 3$

2 marks

$$\log_5\left(\frac{5}{\alpha}\right) = 3$$

$$\frac{5}{\alpha} = 5^3$$

Question 3 (4 marks)

a. The graph given by the rule $y = a \times 10^x - 2$ passes through the point $(\log_{10}(3), 4)$.

Find the value of a.

2 marks

$$4 = a \times 10^{\log_{10}(3)} - 2$$
 $6 = 3a$

b. The graph given by the rule $y = 3 \times \log_2(x - b)$ passes through the point $\left(\frac{3}{2}, -3\right)$.

Find the value of b.

$$-3 = 3 \times \log_2\left(\frac{3}{2} - b\right)$$

$$-1 = \log_2(\frac{3}{2} - 5)$$

Question 4 (5 marks)

Consider the polynomial $P(x) = 2x^3 + 3x^2 - 12x - 6$.

a. Find P'(x).

1 mark

b. Hence, find the co-ordinates of all stationary points of the graph of $y = e^{2x^3 + 3x^2 - 12x - 6}$.

$$dy_{dx} = (6x^{2} + 6x - 12) e^{2x^{3} + 3x^{2} - 12x - 6}$$

$$dy_{dx} = 0 \quad \text{when} \quad 0 = 6x^{2} + 6x - 12$$

$$\alpha = 1$$
 , $\alpha = -2$

$$(1, e^{-13})$$
 and $(-2, e^{14})$

Question 5 (6 marks)

Consider the function $f:(0,\infty)\to\mathbb{R}, f(x)=\log_{\alpha}(x^2)$.

Find the rule of the derivative, f'(x).

1 mark

$$S'(x) = \frac{2x}{x^2} = \frac{2}{x}$$

Show that the tangent to the graph of y = f(x) at the point where x = a is given by b.

$$y = \frac{2x}{a} + 2(\log_e(a) - 1).$$

2 marks

at $\alpha = a$, $y = \log_e(a^2)$ and $m = \frac{2}{a}$

$$y - \log_2(\alpha^2) = \frac{2}{\alpha}(x - \alpha)$$

$$= \frac{2}{2}\alpha - 2 + 2\log_e(\alpha)$$

$$= \frac{2x}{a} + 2\left(\log_{e}(a) - 1\right)$$

Find the value of a such that the tangent to the graph passes through the origin.

1 mark

$$x=0, y=0$$
 $0=2(ig_e(a)-1)$

d. Using the value of a you found in part c, find the equation of the normal to the graph of y = f(x) at the point x = a.

$$x=e$$
, $f(e) = \log_{e}(e^{2}) = 2$ $f'(e) = \frac{2}{e}$

$$y-2=-\frac{e}{2}(x-e)$$

Question 6 (9 marks)

a. Sketch the graphs of $y_1 = x^2$, $x \ge 0$ and $y_2 = x^{\frac{1}{2}}$, $x \ge 0$, on the same axes below, labelling any axis intercepts, endpoints and points of intersection with their co-ordinates.

3 marks

b. For each of the graphs in **part a** find the co-ordinates of the point where the gradient of the tangent to the curve is one.

dy = Zx	$\frac{dy_2}{dx} = \frac{1}{2}x^{-\lambda} = \frac{1}{2\sqrt{x}}$
1 = ba	$1 = \frac{1}{2\sqrt{x}}$
x o K	Jx = 1
so at part (1, 4)	$x = \frac{1}{4}$
	so point $\left(\frac{1}{4}, \frac{1}{2}\right)$
	-

c. Find the value of k so that the graphs with equations $y = x^2 + k$ and $y = (x - k)^{\frac{1}{2}}$ have a common tangent at a single point of intersection.

1 mark

d. Let $f:[0,\infty) \to \mathbb{R}$, $f(x) = x^3 + b$, and

$$g:[b,\infty)\to\mathbb{R}, g(x)=(x-b)^{\frac{1}{3}}.$$

Find the value of b such that the graphs of y = f(x) and y = g(x) have a common tangent at a single point of intersection.

2 marks

gradient = 1 of points
$$\left(\frac{1}{13}, \frac{1}{127} + 6\right)$$
 and $\left(\frac{1}{127} + 6, \frac{1}{13}\right)$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{27}} + 6$$

END OF SAC 1b

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$	$= a \sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$			

Probability

Pr(A) = 1 - Pr(A)	A')	$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$	
$\Pr(A B) = \frac{\Pr(A B)}{\Pr(A B)}$	$\frac{A\cap B}{B}$		ε
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Pro	bability distribution	Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$