

	Sco	tch Stu	udent	D#
	0	0	0	0
gits	1	1	1	1
di di	2	2	2	2
ant	3	3	3	3
Circle the relevant digits	4	4	4	4
	5	5	5	5
the	6	6	6	6
Circle	7	7	7	7
	8	8	8	8
	9	9	9	9

Scotch College

MATHEMATICAL METHODS

U3-SAC 1a – Application Task: Project

Worked

Solutions

Date of distribution: Monday 23rd May 2022

Due date: Thursday 2nd June 2022, prior to SAC 1b

Task Sections	Marks	Your Marks
Extended Response Questions	60	
Total Marks	60	

Remote Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature:			

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- A scientific calculator and a CAS calculator.
- Any notes or references.

At the end of the task

• Submit the task to your teacher by the due date.

Question 1 (3 marks)

Sketch the graph of $y = 4e^x - 2$. Label all axis intercepts with their co-ordinate points and all asymptotes with their equations.

Question 2 (15 marks)

a. i. The graph below has rule $f(x) = -2^{x+b}$, where $b \in \mathbb{R}$. Find the value of b.

1 mark

$$-4 = -7^{(5+6)}$$

ii. The graph below has rule $g(x) = \log_2(-x) + m$, where $m \in \mathbb{R}$. Find the value of m.

- **b.** The curve given by rule $h(x) = a \times 2^x b$ passes through the points (1,5) and (2,11).
 - i. Find the rule h(x).

ii. Find the rule $h^{-1}(x)$.

$$y = \log_{1}\left(\frac{\chi+1}{3}\right)$$

i. Fully define p^{-1} , the inverse of $p:[-4,6) \to \mathbb{R}$, $p(x) = 2\log_{10}(6-x)+1$. State the range of p^{-1} .

$$x = 2\log_{10}(6-y) + 1$$
 $\frac{x-1}{2} = \log_{10}(6-y)$

$$p^{-1}: (-\infty, 3] \to \mathbb{R}, p^{-1}(x) = 6 - 10^{(\frac{x-1}{2})}$$

ii. Sketch the graph of y = p(x) and $y = p^{-1}(x)$ on the same set of axes. Label all axis intercepts, endpoints and points of intersection with their co-ordinates. Points of intersection co-ordinates to be given correct to two decimal places. Label all asymptotes with their equations.

Question 3 (5 marks)

Consider the function $f(x) = e^{\sqrt{x}}$.

a. Find f'(x).

1 mark

b. For the graph of y = f(x), find, in terms of a, the equation of the tangent to the graph at the point where x = a.

2 marks

$$y - e^{\sqrt{a}} = \frac{1}{2\sqrt{a}} e^{\sqrt{a}} (x-a)$$

$$y = \frac{e^{\sqrt{a}}}{2\sqrt{a}} \times + e^{\sqrt{a}} - \frac{ae^{\sqrt{a}}}{2\sqrt{a}}$$

c. Find the value of a such that the tangent to the graph of y = f(x) at x = a passes through the origin.

1 mark

d. Using the value of a found in **part c**, find the equation of the normal to the graph of y = f(x) at x = a.

$$y = -\frac{4}{e^2} x + \frac{16}{e^2} + e^2$$

Question 4 (10 marks)

a. The graphs of $y = -(x-2)^2$ and $y = x^2 - k$ are to join smoothly (that is, their gradients are equal at the point of intersection). Find the value of k and the co-ordinates of their point of intersection.

3 marks

$$0 - (\alpha - 2)^2 = \alpha^2 - k$$

$$\bigcirc \Rightarrow \qquad \propto = 1$$

sub auto
$$0$$
 $-1 = 1-k$

b. i. The graph of the equation $y = \frac{1}{10}(x-3)(x+2)(x-6)$, where $x \in [-2,8]$, is to join smoothly to the graph of a certain parabola, where $x \in [8,16]$, at the point (8,10). The parabola also passes through the point (12,26). Find the equation of the parabola.

$$y = -x^2 + 24x - 118$$

ii. Sketch the cubic and parabola from **part** i on the same set of axes below. Label all stationary points, intercepts, points of intersection and endpoints with their co-ordinates.

Question 5 (5 marks)

Consider the functions $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{\frac{7}{2}x^2 - x - 1}$ and $g(x) = \begin{cases} e^{\frac{7}{2}x^2 - x - 1} &, -\infty < x \le a \\ \log_e(x - k) + 2 &, a < x < \infty \end{cases}$

where $a, k \in \mathbb{R}$ and a > k.

a. Solve f'(x) = 0.

2 marks

b. Hence state the largest interval over which f is strictly increasing.

1 mark

c. Find the values of a and k (both correct to two decimal places) such that g'(x) exists for all $x \in \mathbb{R}$.

$$e^{\frac{1}{2}\alpha^{2}-\alpha-1} = log_{e}(a-k)+2$$
 $(7a-1)e^{\frac{1}{2}\alpha^{2}-\alpha-1} = \frac{1}{a-k}$

Question 6 (8 marks)

Find the common tangent for the graphs with equation $y = e^x - 1$ and $y = \log_a(x+1)$.

2 marks

i. y=xl is common tangent

- The graphs with equations $y = e^{x+2} 1$ and $y = \log_{e}(x+h) + k$ intersect at a single point b. and have a common tangent with gradient 1 at that point.
 - Find the values of h and k.

2 marks

i. h=3

Find the equation of the common tangent.

c.	Ine	e graphs with equations $y = e^{xy} + q$ and $y = \log_e(x+2) + 2$ intersect at a single point	
	an	d have a common tangent with gradient 1 at that point.	
	i.	Find the values of p and q .	2 marks
		Translating y= loge (x+1) to y= loge (x+2) + 2	_
		is a translation I unit lest and I will up.	
			-
		Apply transformations to y= ex-1	-
			- #
		p=1	_
		2=1	
			1
	ii.	Find the equation of the common tangent.	1 mark
		y= x+3	- e

Question 7 (7 marks)

a. Sketch the graph of $y = xe^{x^2+4x+3}$ on the axes below, labelling all intercepts and stationary points with their co-ordinates.

i. Find the relationship of b in terms of a for the graph of $y = xe^{ax^2 + bx + c}$ to have one stationary point.

2 marks

$$\frac{dy}{dx} = x(2ax+b)e^{ax^2+bx+c} + e^{ax^2+bx+c}$$
= (20x2+bx+1) e^{ax^2+bx+c}

ii. Given the graph of $y = xe^{ax^2 + bx + c}$ has one stationary point at $\left(1, e^{\frac{1}{2}}\right)$, find the values of

a, b and c.

Question 8 (7 marks)

The number of virions in a person's body t days after becoming infected is modelled by

$$f:[0,\infty)\to\mathbb{R}, f(t)=3t\times10^8\times e^{\frac{-t^2+3}{3}}$$

a. Calculate the number of virions 1 day after infection. Give your answer correct to three significant figures.

1 mark

- **b.** If the number of virions is greater or equal to 5×10^8 , a person has a heightened risk of being admitted to hospital.
 - i. Find how long after becoming infected a person will have a heightened risk of being admitted to hospital. Give your answer in days, correct to three decimal places.

2 marks

$$S(t) = 5 \times 10^8$$

 $\therefore t = 0.734$ days

ii. For how long does a person experience the heightened risk of hospital admission. Give your answer in days, correct to two decimal places.

1 mark

c. Find the maximum number of virions predicted by the model. Give your answer correct to three significant figures.

$$f'(t) = 0$$

A new medication is in trials and the number of virions in a person's body t days after infection, g(t), is linked to the amount of the drug administered, k, where $k \in (0,10]$, such that

$$g:[0,\infty)\to\mathbb{R}, g(t)=kt\times 10^8\times e^{\frac{-t^2+3}{k}}$$

d. Find the value of k for which the peak number of virions is smallest.

2 marks

$$g'(t) = 0$$

$$t = \frac{\sqrt{k}}{2}$$

$$h(k) = g(\frac{\sqrt{k}}{2})$$

END OF SAC 1a

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

Cuicuius				
$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)}$	$= a \sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			

Probability

Pr(A) = 1 - Pr(A')		$\Pr(A \cup B) = \Pr$	$Pr(A) + Pr(B) - Pr(A \cap B)$
$Pr(A B) = \frac{Pr(A B)}{Pr}$	$\frac{A \cap B}{(B)}$		
mean	$\mu = E(X)$	variance	$var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

Prol	bability distribution	Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$