

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
di	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
e	5	5	5	5
the	6	6	6	6
Circle the relevant digits	7	7	7	7
Cir	8	8	8	8
	9	9	9	9

Scotch College

Teacher's Name

MATHEMATICAL METHODS

Unit 3-SAC 1b – Application Task: Test

Thursday 2nd June 2022

Reading Time	none
Writing Time	45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature:

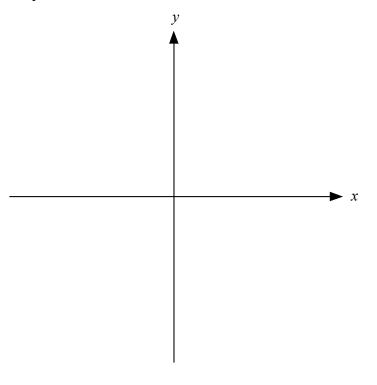
General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are not allowed
- Notes and/or references are not allowed.

At the end of the task


• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (3 marks)

Sketch the graph of $y = \log_e(2x-1)$. Label all axis intercepts with their co-ordinates and all asymptotes with their equations.

Que	estion 2 (3 marks)	
Solv	ve each of the equations below.	
a.	2 × 3 ^x = 5	1 mark
b.	$\log_5(2) - \log_5(x) = 3$	2 marks
Quo a.	estion 3 (4 marks) The graph given by the rule $y = a \times 10^{x} - 2$ passes through the point $(\log_{10}(3), 4)$. Find the value of <i>a</i> .	2 marks
b.	The graph given by the rule $y = 3 \times \log_2(x-b)$ passes through the point $\left(\frac{3}{2}, -3\right)$. Find the value of <i>b</i> .	 2 marks

Question 4 (5 marks)

Consider the polynomial $P(x) = 2x^3 + 3x^2 - 12x - 6$.

a. Find P'(x).

1 mark

b. Hence, find the co-ordinates of all stationary points of the graph of $y = e^{2x^3 + 3x^2 - 12x - 6}$. 4 marks

Question 5 (6 marks)

Consider the function $f:(0,\infty) \to \mathbb{R}, f(x) = \log_e(x^2)$.

a. Find the rule of the derivative, f'(x).

1 mark


b. Show that the tangent to the graph of y = f(x) at the point where x = a is given by

$$y = \frac{2x}{a} + 2(\log_e(a) - 1).$$
 2 marks

c. Find the value of *a* such that the tangent to the graph passes through the origin. 1 mark

d. Using the value of *a* you found in **part c**, find the equation of the normal to the graph of y = f(x) at the point x = a. 2 marks

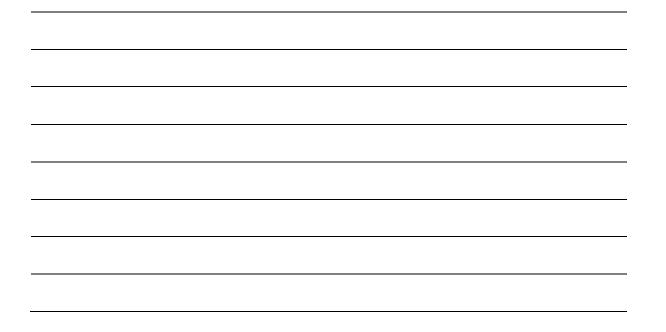
a. Sketch the graphs of $y_1 = x^2$, $x \ge 0$ and $y_2 = x^{\frac{1}{2}}$, $x \ge 0$, on the same axes below, labelling any axis intercepts, endpoints and points of intersection with their co-ordinates. 3 marks

b. For each of the graphs in **part a** find the co-ordinates of the point where the gradient of the tangent to the curve is one.

3 marks

c. Find the value of k so that the graphs with equations $y = x^2 + k$ and $y = (x - k)^{\frac{1}{2}}$ have a common tangent at a single point of intersection.

d. Let $f:[0,\infty) \to \mathbb{R}$, $f(x) = x^3 + b$, and


$$g:[b,\infty) \rightarrow \mathbb{R}, g(x)=(x-b)^{\frac{1}{3}}.$$

Find the value of b such that the graphs of y = f(x) and y = g(x) have a common tangent at a single point of intersection.

2 marks

1 mark

END OF SAC 1b

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left(\left(ax+b\right)^{n}\right) = an\left(ax+b\right)^{n}$	$(b)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x >$	0	
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$	$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$	
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} =$	$= a \sec^2(ax)$			
product rule $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$		quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			

Probability

$\Pr(A) = 1 - \Pr(A')$		$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$	
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$			
mean	$\mu = \mathrm{E}(X)$	variance	$\operatorname{var}(X) = \sigma^2 = \operatorname{E}((X - \mu)^2) = \operatorname{E}(X^2) - \mu^2$

Prob	ability distribution	Mean	Variance
discrete	$\Pr(X=x) = p(x)$	$\mu = \sum x \ p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$