

	Scotch Student ID #			
	0	0	0	0
digits	1	1	1	1
	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
e re	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
Cir	8	8	8	8
	9	9	9	9

Teacher's Name

Scotch College

MATHEMATICAL METHODS

U4-SAC 1a – Application Task: Project

Date of distribution: Monday 8th August 2022

Due date: Monday 15th August 2022

Task Sections	Marks	Your Marks
Extended Response Questions	60	
Total Marks	60	

Remote Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature: _

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- A scientific calculator and a CAS calculator.
- Any notes or references.

At the end of the task

• Submit the task to your teacher by the due date and before the test SAC.

Question 1 (7 marks)

The function $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 4 - e^{2x}$ is shown below.

a. The function *f* crosses the *y*-axis at *A* and the *x*-axis at *B*. Find the co-ordinates of *A* and *B*. 2 marks

b. Find the area enclosed by the curve, the *x*-axis and the *y*-axis.

c. Find the equation of the normal to the curve at *B*.

2 marks

1 mark

d. Find the area of the region enclosed by the curve y = f(x), the *y*-axis and the normal to the curve at *B*.

2 marks

Question 2 (6 marks)

Function g is defined such that $g(x) \ge 0$ for all x. The area of the region enclosed by the graph y = g(x), the x-axis and the lines x = 0 and x = 3 is a square units. Calculate the following, giving your answers in terms of a and the positive constant k, where appropriate.

a.
$$\int_{0}^{3} g(x) dx$$

$$l mark$$
b.
$$\int_{0}^{3k} g\left(\frac{x}{k}\right) dx$$

$$l mark$$
c.
$$\int_{0}^{3} -kg(x) dx$$

$$l mark$$
d.
$$\int_{k=k}^{k} g(x-k) dx$$

$$l mark$$
e.
$$\int_{0}^{3} g(x) - k dx$$

$$l mark$$
f.
$$\int_{0}^{k} g\left(\frac{x}{k}\right) + k dx$$

$$l mark$$

Question 3 (11 marks)

a. i. Function f has the rule $f(x) = a \sin(b(x+c)) + d$, where a, b, c and d are real numbers and $c \in \left[0, \frac{3\pi}{10}\right]$.

Function f has the following properties:

• Period = $\frac{2\pi}{3}$ • Range = $\left[\sqrt{3} - 2, \sqrt{3} + 2\right]$

Given that point $\left(\frac{\pi}{4}, 0\right)$ lies on the graph of y = f(x), find the values of *a*, *b*, *c* and *d*. 3 marks

ii. Sketch the curve on the axes below, for $x \in \left[-\frac{\pi}{36}, \frac{23\pi}{36}\right]$, labelling the co-ordinates of all endpoints, intercepts and turning points.

y ▲ 4 marks

→*x*

b. i. List a sequence of transformations which maps the graph of y = tan(x) to the graph

ii.

The graph
$$y = \tan\left(\frac{\pi x}{2} - \frac{\pi}{3}\right)$$
.
The graph $y = \tan\left(\frac{\pi x}{2} - \frac{\pi}{3}\right)$ has vertical asymptotes at $x = an + b$, where $n \in \mathbb{Z}$.
Find the values of a and b .
2 marks

Question 4 (12 marks)

Function f is defined as $f:[0,4] \rightarrow \mathbb{R}, f(x) = -2x(x-4).$

y

a. Sketch the graph of y = f(x) on the axes below, labelling the co-ordinates of all endpoints, intercepts and turning points.

2 marks

1 mark

3 marks

→ *x*

c. The line y = 3 splits the region found in **part b** into two areas. Find the larger of the two areas.

d.	The normal to the curve at $x = 0.5$ splits the region found in part b into two areas. Find
	the larger of these areas.

3 marks

e. The line y = k splits the region found in **part b** into two equal areas. Find the value of k. 3 marks

Question 5 (5 marks)

Function g is defined as $g:[0,4] \rightarrow \mathbb{R}, g(x) = \sqrt{x}$.

a. Find the area enclosed by the graph y = g(x), the x-axis and the line x = 4. 1 mark

b. i. Find the equation of the normal to y = g(x) at the point x = a, for $a \in \left(0, \frac{7}{2}\right)$. 1 mark

ii. Find the co-ordinates of the point at which the normal to y = g(x) at x = a crosses the x-axis. Give your answer in terms of a. 1 mark

iii. The normal to the curve y = g(x) at point x = a is drawn from the point where x = a to the point at which it crosses the x-axis. This divides the area enclosed by the graph y = g(x), the x-axis and the line x = 4 into two regions. Find the value of a if these two regions have equal area, giving your answer correct to two decimal places. 2 marks

Question 6 (4 marks)

a. Given that *k* is a constant, show that

$$\frac{d}{dx}(x^{2}\sin(2x) + 2kx\cos(2x) - k\sin(2x)) = 2x^{2}\cos(2x) + (2 - 4k)x\sin(2x).$$
 1 mark

b. Using the result from **part a** with a suitable value of *k*, find:

 $\int_{0}^{\frac{\pi}{8}} x^{2} \cos(2x) dx$ Give your answer in the form $a\sqrt{2}(b\pi^{2}+c\pi+d)$ where *a*, *b*, *c* and *d* are rational numbers. Show your full working.

Question 7 (15 marks)

Function *f* is defined as follows:

$$f:[0,6] \to \mathbb{R}, f(x) = 4\sin\left(\frac{\pi}{3}x\right)$$

a. Write down the period and range of *f*.

2 marks

b. Cubic function g has the same x-intercepts as f and passes through point $\left(\frac{3}{2}, 4\right)$. Find the rule of g.

c. Function g has the same domain as function f. Sketch the graph of y = g(x) on the axes below. Label the co-ordinates of all endpoints, intercepts and turning points.

d. i. Find the co-ordinates of the points of intersection between the graphs of y = f(x)and y = g(x). 1 mark

ii. Hence find the total area enclosed by the graphs y = f(x) and y = g(x), from x = 0to x = 6.

> SAC 1a - continued TURN OVER

e. i. Let
$$h: \left[-\frac{3}{2}, \frac{9}{2}\right] \to \mathbb{R}, h(x) = 4\cos\left(\frac{\pi x}{3}\right)$$

State a single transformation which maps the graph of f to the graph of h.

1 mark

1 mark

ii. Hence write the rule of the cubic function q with domain [-1.5, 4.5] with the same x-intercepts as h and the same maximum and minimum values as g.

iii. Find the total area enclosed by the graph of y = q(x) and the graph of y = g(x). 2 marks

iv. Function *p* has the rule p(x) = g(x+k), where $k \in \mathbb{R}$. Find the maximum possible area enclosed by the graphs of y = g(x) and y = p(x), and the value(s) of *k* for which this maximum area occurs.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left(\left(ax+b\right)^{n}\right) = an\left(ax+b\right)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			