

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
dig	2	2	2	1 2
Circle the relevant digits	3	3	3	3
	4	4	4	4
	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
Cir	8	8	8	8
	9	9	9	9

Teacher's Name

Scotch College

MATHEMATICAL METHODS

U4-SAC 1b – Application Task: Test

Monday 15th August 2022

Reading Time	none	
Writing Time	45 minutes	

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Remote Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature: _

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

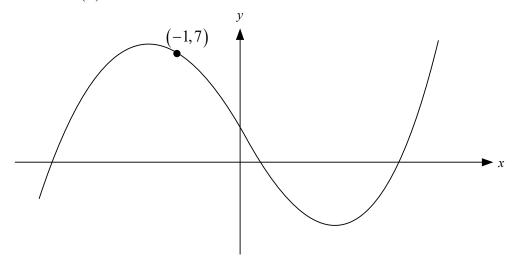
Allowed Materials

- Calculators are not allowed.
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices


Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (6 marks) Evaluate $\int_0^{\frac{\pi}{6}} 1 - \sin(3x) dx$ 2 marks a. Evaluate $\int_{1}^{4} \sqrt{x} + 2 dx$ b. 2 marks The gradient of a curve is given by the formula $\frac{dy}{dx} = \frac{18}{x^3} + 2$. The curve passes through c. point (-3,6). Find the rule of the curve. 2 marks

Question 2 (5 marks)

Function *f* is defined as $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 6x + 2$.

The graph of y = f(x) is shown below:

a. Show that the equation of the tangent to the curve y = f(x) at point (-1,7) has the rule y = -3x + 4.

2 marks

b. The tangent to y = f(x) at point (-1,7) meets the curve again at point (2,-2). Find the area enclosed by the tangent to the curve at (-1,7) and the graph of y = f(x). 3 marks

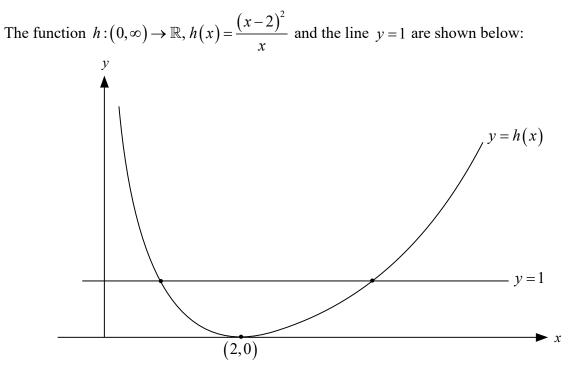
Question 3 (7 marks)

y

A function g is defined as $g:[0,a] \to \mathbb{R}, g(x) = 2\cos\left(\frac{\pi}{2}x\right) + \sqrt{2}$

a. If g completes one full cycle on domain [0, a], find the value of a.

1 mark


1 mark

b. Write down the range of function *g*.

- **c.** Sketch the function g on the axes below, labelling the co-ordinates of all endpoints, intercepts and turning points.
- 3 marks

▶ x

Question 4 (9 marks)

a. Show that the line y = 1 meets the curve y = h(x) at (1,1) and (4,1).

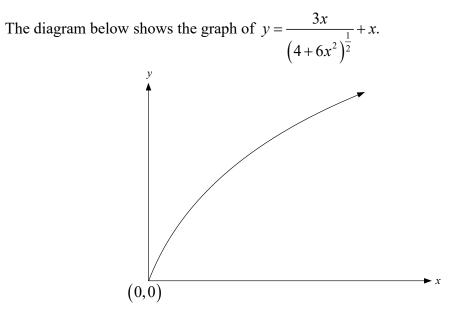
2 marks

b. Hence find the area of the region enclosed by the line y = 1 and the curve y = h(x). Give your answer in the form $a + b \log_e(4)$, where *a* and *b* are rational numbers.

3 marks

c. The curve y = h(x) is translated one unit in the negative x-direction and one unit in the negative y-direction. The resultant curve has the rule y = g(x). Using your answer to part b, or otherwise, evaluate the following:

i.
$$\int_{0}^{3} g(x) dx$$
 1 mark
ii.
$$\int_{0}^{\frac{3}{2}} g(2x) dx$$
 1 mark
iii.
$$\int_{0}^{\frac{3}{2}} g(2x) dx$$
 1 mark
iii.
$$\int_{0}^{3k} -2g\left(\frac{x}{k}\right) + k dx$$
, giving your answer in terms of k. 2 marks


Question 5 (3 marks)

Function f has the rule $f(x) = (2+3x^2)^{\frac{1}{2}}$

a. Find f'(x)

b.

1 mark

Using your answer to part a, or otherwise, find the exact area of the region bounded by

the curve $y = \frac{3x}{\left(4+6x^2\right)^{\frac{1}{2}}} + x$, the x-axis and the line x = 1. 2 marks

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left((ax+b)^n\right) = an(ax+b)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$			