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Declaration

1 declare that any work I have mbmmed far th:s VCE assessment is wholly my own, amiesv
properly referenced or authorised for use by my teacher. I have had no assistance from any
person in my home nor have I been assisted by, or given assistance to, a boy in my class or
cohort unless specifically permitted to do so by my teacher. I have not used the internet or other
sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge
my work may be reproduced, communicated, compared and archived for the purposes of
detecting plagiarism and collusion,

Signature:

_General Instructions

s Answer all questions in the spaces prowded
¢ In all questions where a numerical answer is required, an exact value must be given
unless otherwise spec:f'cd

“Allowed Materials

e A scientific calculator and a CAS calculator
e Any notes or references.

"Attheend of the task

e  Submit the task to your teacher.
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Component I

a.  Consider functions of the form f:[& — R, f(x)=e" —k where k is a real constant.
i. Investigate for which value(s) of k the graph of y = f(x) has a positive y-intercept, a

y-intercept of zero and a negative y-intercept respectively.

ii. Investigate for which value(s) of k the graph of y = f(x) has a positive x-intercept,

an x-intercept at x =0 and a negative x-intercept respectively.
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b.  Consider functions of the form f:D — R, f(x)=log, (3x—/), where  is a real constant.

i.  Find the maximal domain D of £, giving your answer in terms of 4.

ii. Investigate for which value(s) of 4 the graph of y = f (x) has an x-intercept at point (2,0).

iii. Investigate for which value(s) of /4 the graph of y = f (x) has a negative x-intercept.
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Component I1

a.  Consider functions of the form f:R — R, f(x)=e" —k where a and k are real constants

and a > 0.

Investigate for which value(s) of k the graph of y = f(x) has a positive y-intercept, a

y-intercept of zero and a negative y-intercept respectively.

Investigate for which value(s) of k the graph of y = j'(x) has a positive x-intercept,

an x-intercept at x = 0 and a negative x-intercept respectively.
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b. Consider functions of the form f:& —> R, f (x) =ax’ —4ax +6, where a > 0.

i. By considering the coordinates of stationary points, or otherwise, investigate the

number of x-intercepts the graph of y = f (x) may have, giving the range of possible

a values in each case.

ii. Let a=2. Find the value(s) of k for which the graph of y = f(k—x) has zero,

one, two and three positive x-intercepts, respectively.
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Component ITI

Consider functions of the form f:R - E, f (x) =ax’ +bx* +cx+5, where a, b and ¢ are real constants.
The graph of y = f(x) has a turning point at (2,-2).

a.  Generate two simultaneous equations and hence express @ and b in terms of c.

b. Hence investigate for which value(s) of ¢ all stationary points on the graph of y = f (x) have

positive x-coordinates.
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Mathematical Methods formulas

Mensuration
area of a trapezium %(rﬁb}h volume of a pyramid %Ah
curved §urfacc area rrh volume of a sphere 40
of a cylinder 3
volume of a cylinder nrh area of a triangle —besin(A4)
L2
volume of a cone Em' h

Calculus
i(x’l)=nx"_' ‘[-‘-"dszx'“' +e, n#E—|
dx n+1
%((ax +b)" ) =an(ax + :‘J]'H ’[(ax +b)'dx = e (ax+b)"" v ne -1

T

. 1 .
Ie‘“dx == e e

d 3 =L
Z(loge(.\)) ==

I%dx: log,(x)+¢, x>0

d ., . N e
:f-'-;(sm (aa)] = acos{ax)

I sin(ax)dx =— %cos (ax)+¢

% (cos(ax))=—asin (ax)

-[ cos (ax)dx = -(l;sin (ax)+c

d a 2
—(tan(ax))= = ascc” (ax)
dx( ) cos® (ax)
product rule i(uu] L] quotient rule dfu __dy  dx
dx dv dx di b v 2

. dy _dydu Newton’s o f(x,)
chain rule dx  du dx method for1 =% f '(-\-n]
trapezium rule e TN e v e e Vi flx
approximation Area= n [-”-‘u) +2 )+ 21 () + o+ 2f(x, )+ 2/(x, ) j(A,,)]
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