

Scotch College

	Scotch Student ID#			
	0	0	0	0
gits	1	1	1	1
ij	2	2	2	2
ant	3	3	3	3
<u>6</u>	4	4	4	4
<u>e</u>	5	5	5	5
the	6	6	6	6
Circle the relevant digits	7	7	7	7
تَ	8	8	8	8
	9	9	9	9

Solution S

MATHEMATICAL METHODS

Unit 3-SAC 1b – Application Task: Test

June 2023

Reading Time	none
Writing Time	45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are not allowed
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (4 marks)

a. If
$$y = \frac{\log_e(3x)}{2x}$$
, show that $\frac{dy}{dx} = \frac{1 - \log_e(3x)}{2x^2}$.

2 marks

Let
$$u = \log_e(3x)$$
 $V = 2x$ $\frac{3}{dx} = \frac{dx}{v^2}$

$$\frac{du}{dx} = \frac{3}{3x}$$
 $\frac{dv}{dx} = 2$ $= \frac{\frac{2x}{x} - 2\log_e(3x)}{(2x)^2}$

$$= \frac{1}{x}$$

b. Let
$$f(x) = x(2x+1)^3$$
. Find $f'(1)$.

Let
$$u = x$$
 $v = (2x+1)^3$

$$\frac{du}{dx} = 1 \qquad \frac{dv}{dx} = 3(2)(2x+1)^2 = 6(2x+1)^2$$

$$f'(x) = \frac{du}{dx} v + \frac{dv}{dx} u$$

$$= (2x+1)^3 + 6x(2x+1)^2$$

$$f'(1) = (3)^3 + 6(3)^2$$

$$= 27 + 54$$

Question 2 (7 marks)

Consider the polynomial function p with rule $p(x) = x^3 - 3x^2 - 8x + 10$ over the domain [m, n] where $m, n \in \mathbb{R}$.

a. i. Show that (x-1) is a factor of p(x).

1 mark

$$p(1) = (1)^{3} - 3(1)^{2} - 8(1) + 10$$

$$= (1 - 3 - 8 + 10)$$

$$= 0 \quad \therefore (x-1) \text{ is a factor of } p(x)$$

ii. Hence, express p(x) in the form $p(x) = f(x) \times g(x)$, where f(x) = x - 1 and $g(x) = x^2 - ax - b$ where $a, b \in \mathbb{Z}$.

1 mark

$$\frac{x^{2} - 2x - 10}{x^{3} - 3x^{2} - 8x + 10}$$

$$\frac{-(x^{3} - | x^{2})}{-2x^{2} - 8x}$$

$$\frac{-(x^{3} - | x^{2})}{-(-2x^{2} + 2x)}$$

$$\frac{-(-2x^{2} + 2x)}{-(-10x + 10)}$$

$$\frac{-(x^{3} - | x^{2})}{-(-10x + 10)}$$

b. The domain of f is (-10,10) and the domain of g is $[1,\infty)$. Using this information, find the domain of p, in the form [m,n).

1 mark

if
$$p(x) = f(x) \times g(x)$$

then dom $p = dom f \cap dom g :: dom $p = [1, 10]$$

- c. The function f undergoes the following sequence of transformations to produce the function f_t .
 - Dilation of factor 2 from the *x*-axis
 - Reflection in the *x*-axis
 - Translation of 3 units in the positive direction of the *x*-axis.

Write down the rule for the transformed function f_t .

2 marks

$$(x,y) \rightarrow (x,2y) \rightarrow (x,-2y) \rightarrow (x+3,-2y)$$

$$x' = x+3 \qquad y' = -2y \qquad y = f(x)$$

$$x'-3 = x \qquad -\frac{y'}{2} = y \qquad -\frac{y'}{2} = f(x'-3)$$

$$-\frac{y}{2} = (x'-3) - 1$$

$$-\frac{y'}{2} = x'-4$$

$$y' = -2x' + 8$$

d. Find the domain and range for the transformed function f_t .

$$\frac{(x,y) \Rightarrow (x+3,-2y)}{\text{dom } f = (-10,10)} \Rightarrow \text{dom } f_t = (-7,13)$$

$$\text{ran } f = (-11,9) \Rightarrow \text{ran } f_t = (-18,22)$$

Question 3 (4 marks)

Let $f(x) = \sqrt{x-3}$ and $g(x) = x^2 - 13$, which are both defined over their maximal domains.

a. State the maximal domain and range of $g \circ f$.

$$g \circ f = g[f(x)]$$
 $dom(g \circ f) = dom f = [3, \infty)$

$$g \circ f = g[f(x)] = g[\sqrt{1x-3}] = (\sqrt{1x-3})^2 - 13$$

= $x - 3 - 13$

For
$$x \in [3, \infty)$$
, ran $(q \circ f) = [-13, \infty)$

b. Find the maximal domain of g such that $f \circ g$ is defined.

If
$$f \circ g$$
 defined, then ran $g \subseteq dom f$

$$dom f = \begin{bmatrix} 3 & \infty \end{pmatrix} \quad \therefore \text{ Solve } g(x) \geqslant 3$$

$$ran g = \begin{bmatrix} -13 & \infty \end{pmatrix} \qquad \qquad x^2 - 13 \geqslant 3$$

$$x^2 - 16 \geqslant 0$$

$$(x - 4)(x + 4) \geqslant 0$$

.. max domain of g
such that
$$f \circ g$$
 is defined
= $(-\infty, -4] \cup [4, \infty)$

Question 4 (4 marks)

A hybrid function h is defined as follows:

$$h(x) = \begin{cases} \log_e(x) + a & \text{for } 1 \le x < e \\ e^{x - (e + b)} & \text{for } e \le x \le 2e \end{cases}$$

where $a, b \in \mathbb{Z}$.

a. Express a in terms of b if h is a continuous function.

2 marks

loge(e) + a = e - (e+b) | + a = e - b

- **b.** Assuming h is a continuous function, find the value of b such that h is differentiable for
 - Assuming n is a continuous function, find the value of b such that n is differentiable for $x \in (1, 2e)$.

- <u>|</u> = e (e+b)
 - 1 = e-b
- $\frac{1}{e} = \frac{1}{e^b} \qquad \therefore \quad b = 1$

Question 5 (2 marks)

Let $T_1: \mathbb{R}^2 \to \mathbb{R}^2$, $T_1(x, y) = (x - 2, 2y)$ and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$, $T_2(x, y) = (3x, -y)$.

Find the image of the curve $y = \frac{1}{x}$, under the transformation $T_1 \circ T_2$

$$T_1 \circ T_2 = T_1 \left[T_2(x,y) \right] = T_1 \left[3x, -y \right] = \left(3x-2, -2y \right)$$

$$x' = 3x - 2$$
 $y' = -2y$
 $x' + 2 = x$ $- y' = y$
 3

$$y = \frac{1}{x} \rightarrow \frac{-y'}{2} = \frac{1}{x'+2}$$

$$\frac{-y'}{2} = \frac{3}{x'+2}$$

$$y' = \frac{-6}{x'+2}$$

Question 6 (6 marks)

Consider the function $f:(a,\infty)\to\mathbb{R}$, $f(x)=-4\log_e(\sqrt{2x+3})$, where a is the smallest real number such that f is defined.

a. What is the value of *a*?

1 mark

$$\frac{2x+3>0}{x>-\frac{3}{2}} \quad \therefore \quad \alpha=-\frac{3}{2}$$

K

b. The function $f(x) = -4\log_e(\sqrt{2x+3})$ can be written as $f(x) = h\log_e(2x+3)$. Show that h = -2.

1 mark

$$f(x) = -4 \log_{e} \left((2x+3)^{\frac{1}{2}} \right)$$

$$= \frac{-4}{2} \log_e (2x+3)$$
= -2 \log_e (2x+3) :. \(\times = -2 \)

c. List the sequence of transformations which maps the graph y = f(x) to the graph $y = 6\log_e(x-5)$.

$$\frac{y = -2 \log_{e}(2x+3)}{-\frac{9}{2}} = \log_{e}(2x+3) \qquad \frac{y' = 6 \log_{e}(x'-5)}{y'} = \log_{e}(x'-5)$$

$$x'-5=2x+3$$
 Dilation of factor 2 from

 $x'=2x+8$ the y-axis, followed by a translation of 8 right

 $y'=-\frac{y}{2}$ A reflection in the x-axis

and a dilation of factor 3

 $y'=-3y$ from the x-axis

d. The gradient of the normal to the graph of f at the point (b, f(b)) is $\frac{2}{3}$.

Find the value of b. 2 marks

$$f(x) = -2\log_e(2x+3)$$

$$f'(x) = \frac{-2(2)}{2x+3} = \frac{-4}{2x+3}$$

Cradient of normal = $\frac{2}{3}$

As
$$M_T \times M_N = -1$$
 $M_T = -\frac{3}{2}$

$$\frac{-4}{2x+3} = -\frac{3}{2}$$

$$-8 = -3(2x+3)$$

$$-8 = -6x - 9$$

$$x = -\frac{1}{6} \qquad \therefore \quad b = -\frac{1}{6}$$

Question 7 (3 marks)

The function $g(x) = 25 - x^2$ has a tangent at the point (p, g(p)) which has the equation $y = -2px + p^2 + 25$, where p > 0.

Find the value of p for which the area enclosed by the tangent at the point (p, g(p)), the x-axis and the y-axis is a minimum and find this minimum area.

$y = -2px + p^2 + 25$, as p >	0
3	$\frac{dA}{d\rho} = \sqrt{\frac{du}{d\rho}} - u \frac{dv}{d\rho}$
Avea	V ²
	$= 4\rho \left[4\rho \left(\rho^2 + 25 \right) \right] - 4 \left(\rho^2 + 25 \right)^2$
- ² . 1	(4p)2
$\frac{yint : y = p^2 + 25}{xint : 0 = -2px + p^2 + 25}$	$= b ^{2}(p^{2}+25) - 4(p^{2}+25)^{2}$
$\chi = \frac{\rho^2 + 25}{2\rho}$	16 p2
2 p	$= 4 p^{2} (p^{2}+25) - (p^{2}+25)^{2}$
Let A = Area enclosed	4 02
$A = \frac{1}{2} \left(p^2 + 25 \right) \left(\frac{p^2 + 25}{2p} \right)$	Min area when $\frac{dA}{dp} = 0$
$\frac{\left(\frac{2}{p} + 25\right)^2}{}$	$0 = 4p^{2}(p^{2}+25) - (p^{2}+25)^{2}$
= (β + 23)	$O = (p^2 + 25) (4p^2 - (p^2 + 25))$
	$O = (p^2 + 25) (3p^2 - 25)$
Minimum area where $\frac{dA}{dp} = 0$	$p = \frac{5}{\sqrt{3}}$
Let $u = (\rho^2 + 25)^2$	$A = \left(\left(\frac{5}{\sqrt{3}} \right)^2 + 25 \right)^2$
	4(5)
$\frac{du}{d\rho} = 2(2\rho)(\rho^2 + 25)$ $= 4\rho(\rho^2 + 25)$	$= \left(\frac{25}{3} + \frac{75}{3}\right)^2 \times \frac{\sqrt{3}}{20}$
$\frac{V = 4p}{\frac{dv}{dp} = 4}$	= 10000 <u>13</u>
dρ	$= \frac{500\sqrt{3}}{9} \text{ units}^2$

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$	
$\frac{d}{dx}\Big((ax+b)^n\Big) = an\Big(ax+b\Big)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$	
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$	
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$	
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$	
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a\sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
trapezium rule approximation	$Area \approx \frac{1}{16} + $		