

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
di	2	2	2	2
ant	3	3	3	3
eva	4	4	4	4
e e	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
Circ	8	8	8	8
	9	9	9	9

Scotch College

Teacher's Name

MATHEMATICAL METHODS

Unit 3-SAC 1c – Application Task: Test

June 2023

Reading Time	none
Writing Time	45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature:

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are allowed
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are **<u>not</u>** allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (6 marks)

Functions f and g are defined as $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{1}{x}$ and $g : [0, \infty) \to \mathbb{R}$, g(x) = x. Let k(x) = f(x) + g(x). Part of the graph of y = k(x) is shown below.

d. Determine the coordinates of the stationary point on the graph of y = k(x).

1 mark

e. Determine the values of x for which k(x) is strictly increasing.

1 mark

Question 2 (12 marks)

Consider the function given by $f(x) = 3(x-1)^3 e^{(1-x)} + 3$.

a. The graph of f has a horizontal asymptote at y = a. State the value of a.

1 mark

1 mark

b. The graph of f passes through the point (0,b). Find the exact value of b.

c. Consider the function $g_1 : \mathbb{R} \to \mathbb{R}$, $g_1(x) = f(2x - h) + k$, where *h* and *k* are positive real numbers. List the sequence of transformations which maps the graph of y = f(x) to the graph of $y = g_1(x)$. 3 marks

- **d.** Consider the function $g_2 : \mathbb{R} \to \mathbb{R}$, $g_2(x) = f(2x p) + q$, where p and q are real numbers.
 - i. Determine the coordinates of the *y*-intercept and the stationary points of g_2 , giving your answers in terms of *p* and *q*. 2 marks

ii. Hence or otherwise, find the value(s) of q for which g_2 has exactly one x-intercept. 2 marks

iii. If p = q, find the non zero value(s) of q for which the graph of g_2 cuts the y-axis at $y = \frac{1 - e^q}{2}$, giving your answer(s) correct to two decimal places.

e. Let $g_3 : \mathbb{R} \to \mathbb{R}$, where $g_3(x) = (x-a)^3 e^{(1-x)}$, where $a \in \mathbb{R}$. The coordinates of the stationary points of g_3 are A(a,0) and $B(a+r+s,27e^{-(a+r)})$, where *r* and *s* are positive integers.

Find the values of *r* and *s*.

2 marks

1 mark

Question 3 (4 marks)

Let $f:(0,\infty) \to \mathbb{R}$, $f(x) = x \log_e(x) - x$. Part of the graph of f is shown below.

a. Find the values of x for which f(x) > 0.

b. The equation of the tangent to the graph of y = f(x) at the point $(\sqrt{n}, f(\sqrt{n}))$ is

$$y = \frac{\log_e(n)}{2}x + b$$
. Find b in terms of n.

c. Find the value(s) of *n* for which the tangents to the graph of y = f(x) at the points with coordinates (n, f(n)) and $(\frac{1}{n}, f(\frac{1}{n}))$ are perpendicular, giving your answer(s) correct to two decimal places.

1 mark

1 mark

2 marks

Question 4 (8 marks)

Functions f and g are defined as $f:(-14,\infty) \to \mathbb{R}$, $f(x) = \log_e(\frac{x}{2}+7)$ and $g:(0,\infty) \to \mathbb{R}$, $g(x) = \log_e(\frac{x}{2})$. Let h(x) = f(x) + g(x), for $x \in (0,\infty)$.

a. The *x*-intercept of function *h* is $x = \sqrt{a} - b$. Find the value of *a* and *b*.

b. Sketch the graph y = h(x) on the set of axes below. Label the asymptote with its equation and the axial intercept with its coordinates correct to two decimal places. 2 marks

c. i. Find the rule for the inverse function h^{-1} .

1 mark

1 mark

ii. Find the coordinates of the point(s) of intersection of the graphs of y = h(x) and $y = h^{-1}(x)$, giving your answer(s) correct to two decimal places. 1 mark Consider the function $h_2(x) = \log_e \left(\frac{x}{k} + 7\right) + \log_e \left(\frac{x}{k}\right)$ where *k* is a positive real constant. d. Find the value of *x* in terms of *k* such that $h'_2(x) = 1$. 1 mark e. Hence or otherwise, find the value of *k* so that the graphs of h_2 and h_2^{-1} have only one

END OF SAC 1c

2 marks

point of intersection. Give your answer correct to two decimal places.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left(\left(ax+b\right)^{n}\right) = an\left(ax+b\right)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a\sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
trapezium rule approximation	$Area \approx \frac{x_n - x_0}{2n} \Big[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n) \Big]$			