

	Scotch Student ID #			
	0	0	0	0
gits	1	1	1	1
di	2	2	2	2
ant	3	3	3	3
lev	4	4	4	4
e	5	5	5	5
the	6	6	6	6
cle	7	7	7	7
cir	8	8	8	8
	9	9	9	9

Scotch College

Teacher's Name

MATHEMATICAL METHODS

Unit 4-SAC 1b – Application Task: Test

August 2023

Reading Time	none
Writing Time	45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature:

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are not allowed
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are **not** allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (4 marks)

a. Find the value of *n*.

1 mark

The graph above is transformed under the following sequence of transformations.

- 1. Dilation of factor $\frac{1}{2}$ from the *y*-axis.
- 2. Reflection in the *x*-axis.
- 3. Translation of 1 unit in the negative direction of the *y*-axis.
- **b.** On the axes above, sketch the transformed graph over the domain $x \in [-\pi, 2\pi]$. Label all end points, intercepts and stationary points with their coordinates.

3 marks

Question 2 (5 marks)

Let
$$f:\left[-\frac{\pi}{3},\frac{\pi}{3}\right] \to \mathbb{R}$$
, where $f(x) = \tan(3x) - 1$.

a. Solve f(x) = 0 for x.

2 marks

3 marks

b. Sketch the graph of f on the axes below. Label any asymptotes with the appropriate equation and label the end points and axis intercepts with their coordinates.

Qu	estion 3 (4 marks)	
a.	Evaluate $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x - \sin(x)) dx$.	2 marks
b.	Let $f'(x) = (2-x)^3$. Find $f(x)$ given that $f(1) = \frac{3}{2}$.	2 marks

Question 4 (6 marks)

Let $f:[0,\pi] \to \mathbb{R}$, $f(x) = \sin(2x)$ $g:[0,\pi] \to \mathbb{R}$, $g(x) = k\cos(2x)$

a. If the graphs of y = f(x) and y = g(x) have a point of intersection at $x = \frac{2\pi}{3}$, show that the value of k is $\sqrt{3}$.

b. Find the *x*-coordinate of the other point of intersection of the two graphs.

Hence, find the area enclosed between the two graphs. c.

3 marks

1 mark

Question 5 (7 marks)

Consider the family of functions $f:[0,\infty) \to \mathbb{R}$, $f(x) = 2a\sqrt{x} - x$, where $a \in \mathbb{R}^+$. Part of the graph of f is shown below.

a. Point *B* is a stationary point and point *C* is an *x*-intercept. Show that the coordinates of points *B* and *C*, respectively, are (a^2, a^2) and $(4a^2, 0)$.

4 marks

b. If the area of the region bounded by the graph of f and the line segment *BC* is 3 square units, find the value of a. 3 marks

Question 6 (4 marks)

Part of the graph of $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x \cos(2x)$ is shown below.

c. Hence, or otherwise, evaluate
$$\int_{\pi+1}^{2\pi+1} 4f\left(\frac{x-1}{2}\right) + 1 dx$$
.

1 mark

END OF SAC 1b

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1}$	$r+c, n \neq -1$
$\frac{d}{dx}\left((ax+b)^n\right) = an$	$\left(ax+b\right)^{n-1}$	$\int (ax+b)^n dx = \frac{1}{a(n+b)}$	$\frac{1}{n+1}(ax+b)^{n+1} + c, n \neq -1$
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c$	x, x > 0
$\frac{d}{dx}(\sin\left(ax\right)) = a\cos\left(ax\right)$	S(ax)	$\int \sin{(ax)} dx = -\frac{1}{a}c$	$\cos(ax) + c$
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$	
$\frac{d}{dx}(\tan(ax)) = \frac{d}{\cos^2}$	$\frac{a}{(ax)} = a\sec^2(ax)$		
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
trapezium rule approximation	$Area \approx \frac{x_n - x_0}{2n} \Big[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n) \Big]$		