SAC 1 Worked Solutions

	Scotch Student ID #			
				0
5	0	0	0	0
git		1	1	1
5	2	2	2	2
ant	3	3	3	3
ev	4	4	4	4
Circle the relevant digits	5	5	5	5
the	6	6	6	6
e	7	7	7	7
5	8	8	8	8
	9	9	9	9

Teacher's Name

Scotch College

MATHEMATICAL METHODS

U3-SAC 1 – Application Task

MARKSCHEME

2023	
	Marks Your Marks

Task Sections	Marks	Your Marks
Investigation	25	
Total Marks	25	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature: ____

Gener	al Instructions
	Answer all questions in the spaces provided.
	In all questions where a numerical answer is required, an exact value must be given
	unless otherwise specified.
Allow	ed Materials
	A scientific calculator and a CAS calculator.
	Any notes or references.
At the	end of the task
•	Submit the task to your teacher.

Component I

- a. Consider functions of the form $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{3x} k$ where k is a real constant.
 - i. Investigate for which value(s) of k the graph of y = f(x) has a positive y-intercept, a y-intercept of zero and a negative y-intercept respectively.
 - ii. Investigate for which value(s) of k the graph of y = f(x) has a positive x-intercept, an x-intercept at x = 0 and a negative x-intercept respectively.

1

: positive y-intercept when
$$k \in (-\infty, 1)$$

y-intercept of 0 when $k=1$
we also be $k \in (1, \infty)$

(ii) positive x-intercept when
$$k \in (1, \infty)$$

x-intercept of 0 when $k=1$
regative x-intercept when $k \in (0, 1)$

- **b.** Consider functions of the form $f: D \to \mathbb{R}$, $f(x) = \log_e(3x h)$, where h is a real constant.
 - i. Find the maximal domain D of f, giving your answer in terms of h.
 - ii. Investigate for which value(s) of h the graph of y = f(x) has an x-intercept at point (2,0).

iii. Investigate for which value(s) of h the graph of y = f(x) has a negative x-intercept.

b(i)
$$3\alpha - h > 0$$

 $\therefore \alpha > \frac{h}{3}$ $D = \left(\frac{h}{3}, \infty\right)$

(iii) Consider transformations taking y=lege(x) to y=lege(3x-h)
 Translation h units in positive x-direction
 Diletion factor \$\frac{1}{3}\$ from the y-axis.

y=loge (x) has an x-interest w (1,0), so y=loge (3x-h)

has a negative x-interest when hE (-00, -1)

Component II

- **a.** Consider functions of the form $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{ax} k$ where *a* and *k* are real constants and a > 0.
 - i. Investigate for which value(s) of k the graph of y = f(x) has a positive y-intercept, a y-intercept of zero and a negative y-intercept respectively.
 - ii. Investigate for which value(s) of k the graph of y = f(x) has a positive x-intercept, an x-intercept at x = 0 and a negative x-intercept respectively.

(ii) positive x-interest when
$$k \in (1, \infty)$$

x-intercept of 0 when $k = 1$
regative ~~x-interest~~ when $k \in (0, 1)$

- **b.** Consider functions of the form $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax^3 4ax + 6$, where a > 0.
 - i. By considering the coordinates of stationary points, or otherwise, investigate the number of x-intercepts the graph of y = f(x) may have, giving the range of possible a values in each case.
 - ii. Let a = 2. Find the value(s) of k for which the graph of y = f(k-x) has zero, one, two and three positive x-intercepts, respectively.

b(i)
$$S'(x) = 0$$
 at points $\left(-\frac{2\sqrt{3}}{3}, \frac{16\alpha\sqrt{3}}{9} + 6\right)$
and $\left(\frac{2\sqrt{3}}{3}, 6 - \frac{16\alpha\sqrt{3}}{9}\right)$

in number of x-intercents is determined by the value of $\left(6 - \frac{16 \alpha J_3}{9}\right)$.

•
$$f$$
 has two scriptercepts when $6 - \frac{16a\sqrt{3}}{9} > 0$, so when $a \in \left(0, \frac{9\sqrt{3}}{8}\right)$
• f has two scriptercepts when $6 - \frac{16a\sqrt{3}}{7} = 0$, so when $a = \frac{9\sqrt{3}}{8}$

- f has three x-intercerpts when
$$6 - 16a\sqrt{3} \times 0$$
, so when $a \in \left(\frac{9\sqrt{3}}{8}, \infty\right)$

$$b(ii) \quad f(x) = 2x^{3} - 8x + 6$$

$$f(k-x) \text{ has x-intercents at :}$$

$$x = k + \frac{1 - \sqrt{13}}{2} , \quad x = k - 1 \quad \text{and} \quad x = k + \frac{1 + \sqrt{13}}{2}$$

$$\therefore \text{ zero positive x-intercents when } k + \frac{1 + \sqrt{13}}{2} \leq 0 \text{ , so } k \in \left(-\infty, -\frac{\sqrt{13} - 1}{2}\right)$$

$$\cdot 1 \text{ positive x-intercents when } k - 1 \in 0 \text{ n } k + \frac{1 + \sqrt{13}}{2} > 0 \text{ , so } k \in \left(-\frac{\sqrt{13} - 1}{2}, \frac{1}{2}\right)$$

$$\cdot 2 \text{ positive x-intercents when } k + \frac{1 - \sqrt{13}}{2} \leq 0 \text{ n } k - 1 > 0 \text{ , so } k \in \left(1, \frac{\sqrt{13} - 1}{2}\right)$$

$$\cdot 3 \text{ positive x-intercent when } k + \frac{1 - \sqrt{13}}{2} > 0 \text{ , so } k \in \left(\frac{\sqrt{13} - 1}{2}, \infty\right)$$

Component III

Consider functions of the form $f : \mathbb{R} \to \mathbb{R}$, $f(x) = ax^3 + bx^2 + cx + 5$, where *a*, *b* and *c* are real constants. The graph of y = f(x) has a turning point at (2, -2).

- **a.** Generate two simultaneous equations and hence express *a* and *b* in terms of *c*.
- **b.** Hence investigate for which value(s) of *c* all stationary points on the graph of y = f(x) have positive *x*-coordinates.

(a)
$$f(2) = -2$$
 ... $-2 = 300000 \text{ AM} 8a + 4b + 2c + 5$
 $-7 = 8a + 4b + 2c$ (1)

$$S'(2) = 0$$
 ... $0 = 3a(2)^2 + 2b(2) + c$
 $0 = 12a + 4b + c$ 2

$$7 = 4a - c \qquad (0 - 6)$$

$$a = \frac{7 + c}{4}$$

$$-21 = 24a + 12b + 6c$$
 (1) × 3

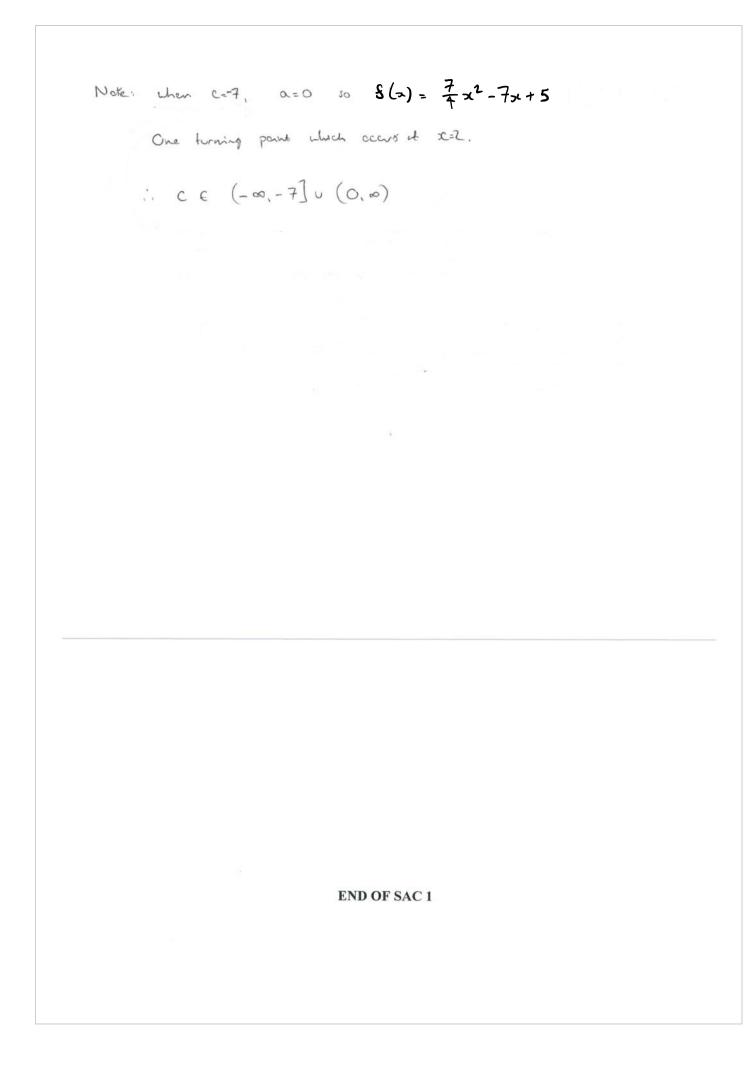
$$0 = 24a + 8b + 2c$$
 (2) × 2

b = -21 - 4b + 4cb = -21 - 4c4

(b)
$$S(x) = \left(\frac{7+c}{4}\right) x^3 + \left(\frac{-21-4c}{4}\right) x^2 + cx + 5$$

 $S'(x) = 0$
 $\therefore x = 2, x = \frac{2c}{3(c+7)}$

Solve
$$\frac{2c}{3(c+7)} > 0$$
 :. $c \in (-\infty, -7) \cup (c, \infty)$



Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	2 <i>πr</i> h	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$		$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$	
$\frac{d}{dx}((ax+b)^n) = an(ax+b)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$	
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$	
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$	
$\frac{d}{dx}(\sin\left(ax\right)) = a\cos\left(ax\right)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$	
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$	
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a\sec^2(ax)$			
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
trapezium rule approximation	Area $\approx \frac{x_n - x_0}{2n} \Big[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n) \Big]$		