

	Scotch Student ID #				
	0	0	0	0	
gits	1	1	1	1	
Circle the relevant digits	2	2	2	2	
	3	3	3	3	
	4	4	4	4	
	5	5	5	5	
	6	6	6	6	
	7	7	7	7	
	8	8	8	8	
	9	9	9	9	

Teacher's Name

Scotch College

MATHEMATICAL METHODS

U3-SAC 1 – Application Task

2023

Task Sections	Marks	Your Marks
Investigation	25	
Total Marks	25	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

Signature: _

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

Allowed Materials

- A scientific calculator and a CAS calculator.
- Any notes or references.

At the end of the task

• Submit the task to your teacher.

Component I

- **a.** Consider functions of the form $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{3x} k$ where k is a real constant.
 - i. Investigate for which value(s) of k the graph of y = f(x) has a positive y-intercept, a y-intercept of zero and a negative y-intercept respectively.
 - ii. Investigate for which value(s) of k the graph of y = f(x) has a positive x-intercept, an x-intercept at x = 0 and a negative x-intercept respectively.

- **b.** Consider functions of the form $f: D \to \mathbb{R}$, $f(x) = \log_e(3x h)$, where *h* is a real constant.
 - i. Find the maximal domain D of f, giving your answer in terms of h.
 - ii. Investigate for which value(s) of h the graph of y = f(x) has an x-intercept at point (2,0).
 - iii. Investigate for which value(s) of h the graph of y = f(x) has a negative x-intercept.

Component II

- **a.** Consider functions of the form $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{ax} k$ where *a* and *k* are real constants and a > 0.
 - i. Investigate for which value(s) of k the graph of y = f(x) has a positive y-intercept, a y-intercept of zero and a negative y-intercept respectively.
 - ii. Investigate for which value(s) of k the graph of y = f(x) has a positive x-intercept, an x-intercept at x = 0 and a negative x-intercept respectively.

- **b.** Consider functions of the form $f : \mathbb{R} \to \mathbb{R}$, $f(x) = ax^3 4ax + 6$, where a > 0.
 - i. By considering the coordinates of stationary points, or otherwise, investigate the number of x-intercepts the graph of y = f(x) may have, giving the range of possible a values in each case.
 - ii. Let a = 2. Find the value(s) of k for which the graph of y = f(k x) has zero, one, two and three positive x-intercepts, respectively.

Component III

Consider functions of the form $f : \mathbb{R} \to \mathbb{R}$, $f(x) = ax^3 + bx^2 + cx + 5$, where *a*, *b* and *c* are real constants. The graph of y = f(x) has a turning point at (2, -2).

- **a.** Generate two simultaneous equations and hence express *a* and *b* in terms of *c*.
- **b.** Hence investigate for which value(s) of *c* all stationary points on the graph of y = f(x) have positive *x*-coordinates.

END OF SAC 1

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$		$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left(\left(ax+b\right)^{n}\right) = an\left(ax+b\right)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a\sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
trapezium rule approximation	$Area \approx \frac{1}{2} + \frac{1}{2}$			