

Scotch College

	Scotch Student ID#			
	0	0	0	0
Circle the relevant digits	1	1	1	1
ij	2	2	2	2
ant	3	3	3	3
es	4	4	4	4
9	5	5	5	5
the	6	6	6	6
ele	7	7	7	7
Ġ.	8	8	8	8
	9	9	9	9

Teacher's Name

SOLUTIONS

MATHEMATICAL METHODS

Unit 3-SAC 1c – Application Task: Test

June 2023

Reading Time none
Writing Time 45 minutes

Task Sections	Marks	Your Marks
Extended Response Questions	30	
Total Marks	30	

Declaration

I declare that any work I have submitted for this VCE assessment is wholly my own, unless properly referenced or authorised for use by my teacher. I have had no assistance from any person in my home nor have I been assisted by, or given assistance to, a boy in my class or cohort unless specifically permitted to do so by my teacher. I have not used the internet or other sources to assist me in my responses unless specifically permitted by my teacher. I acknowledge my work may be reproduced, communicated, compared and archived for the purposes of detecting plagiarism and collusion.

General Instructions

- Answer all questions in the spaces provided.
- In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working must be shown.
- Unless otherwise indicated, the diagrams in this task are not drawn to scale.

Allowed Materials

- Calculators are allowed
- Notes and/or references are not allowed.

At the end of the task

• Ensure you cease writing upon request.

Electronic Devices

Students are <u>not</u> allowed to have a mobile phone, smart watch and/or any other unauthorised electronic device in the SAC, unless it is TURNED OFF and is placed on the front teacher desk.

Question 1 (6 marks)

Functions f and g are defined as $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{1}{x}$ and $g: [0, \infty) \to \mathbb{R}$, g(x) = x.

Let k(x) = f(x) + g(x). Part of the graph of y = k(x) is shown below.

a. Show that $k(x) = \frac{x^2 + 1}{x}$

1 mark

$$k(x) = f(x) + g(x)$$

$$= \frac{1}{x} + x$$

$$= \frac{1}{x} + \frac{x^{2}}{x}$$

$$= \frac{x^{2} + 1}{x}$$
as required.

b. Determine the domain of k.

1 mark

$$(0, \infty) \qquad (\alpha R^{+})$$

c. Show that $k'(x) = \frac{(x-1)(x+1)}{x^2}$ $k'(x) = \frac{2x \cdot x - 1(x^2+1)}{x^2}$

2 marks

$$\frac{2x^2-1}{x^2}$$

d.	Determine the coordinates of the stationary point on the graph of $y = k(x)$.	1 mark
	(1, 2)	
e.	Determine the values of x for which $k(x)$ is strictly increasing.	 1 mark
	<u> </u>	

•

Question 2 (12 marks)

Consider the function given by $f(x) = 3(x-1)^3 e^{(1-x)} + 3$.

a. The graph of f has a horizontal asymptote at y = a. State the value of a.

1 mark

a = 3

b. The graph of f passes through the point (0,b). Find the exact value of b.

1 mark

 $b = 3(-1)^3 e' + 3$ b = -30 + 3

c. Consider the function $g_1 : \mathbb{R} \to \mathbb{R}$, $g_1(x) = f(2x - h) + k$, where h and k are positive real numbers. List the sequence of transformations which maps the graph of y = f(x) to the graph of $y = g_1(x)$.

3 marks

· dilation of factor & from y axis · translated & units in the positive y direction · translated \(\frac{h}{2} \) units in the positive x direction.

(alternatives possible
$$x' = \frac{x+h}{2}$$
 $y' = y+k$)

	onsider the function $g_2: \mathbb{R} \to \mathbb{R}$, $g_2(x) = f(2x - p) + q$, where p and q are real numbers.	
i.	Determine the coordinates of the y-intercept and the stationary points of g_2 , giving your answers in terms of p and q.	2 mark
	y intercept $(0, -3(p+1)^3e^{p+1}+q+3)$	Z mark
	Stat pt. $(\frac{p+1}{2}, 9+3)$ and $(\frac{p+4}{2}, 9+8)e^{-3}+3$	A proposition of the state of t
ii.	Hence or otherwise, find the value(s) of q for which g_2 has exactly one x -intercept.	2 marks
	$[\xi-3-81e^{-3}]$ $[V]$ $[-3,\infty)$	-
		-
ii.	If $p = q$, find the non zero value(s) of q for which the graph of g_2 cuts the y -axis at	
ii.		l mark
ii.	$y = \frac{1 - e^q}{2}$, giving your answer(s) correct to two decimal places.	l mark
ii.	$y = \frac{1 - e^q}{2}$, giving your answer(s) correct to two decimal places.	l mark
ii.	$y = \frac{1 - e^q}{2}$, giving your answer(s) correct to two decimal places.	l mark
	$y = \frac{1 - e^q}{2}$, giving your answer(s) correct to two decimal places.	1 mark
Le	$y = \frac{1 - e^q}{2}$, giving your answer(s) correct to two decimal places. $q = -5.52$ -0.25 et $g_3 : \mathbb{R} \to \mathbb{R}$, where $g_3(x) = (x - a)^3 e^{(1 - x)}$, where $a \in \mathbb{R}$.	l mark
Le	$y=\frac{1-e^q}{2}$, giving your answer(s) correct to two decimal places. $g_3:\mathbb{R}\to\mathbb{R}$, where $g_3(x)=(x-a)^3e^{(1-x)}$, where $a\in\mathbb{R}$. The coordinates of the stationary points of g_3 are $A(a,0)$ and $B(a+r+s,27e^{-(a+r)})$,	l mark
Le Tl	$y = \frac{1 - e^q}{2}$, giving your answer(s) correct to two decimal places. $q = -5.52$ -0.25 et $g_3 : \mathbb{R} \to \mathbb{R}$, where $g_3(x) = (x - a)^3 e^{(1 - x)}$, where $a \in \mathbb{R}$.	1 mark
T	$y=\frac{1-e^q}{2}$, giving your answer(s) correct to two decimal places. $g_3:\mathbb{R}\to\mathbb{R}$, where $g_3(x)=(x-a)^3e^{(1-x)}$, where $a\in\mathbb{R}$. The coordinates of the stationary points of g_3 are $A(a,0)$ and $B(a+r+s,27e^{-(a+r)})$, where r and s are positive integers.	1 mark

d.

e.

Question 3 (4 marks)

Let $f:(0,\infty)\to\mathbb{R}$, $f(x)=x\log_e(x)-x$. Part of the graph of f is shown below.

a. Find the values of x for which f(x) > 0.

1 mark

$$x \in (e, \infty)$$

b. The equation of the tangent to the graph of y = f(x) at the point $(\sqrt{n}, f(\sqrt{n}))$ is $y = \frac{\log_e(n)}{2}x + b$. Find b in terms of n.

1 mark

c. Find the value(s) of n for which the tangents to the graph of y = f(x) at the points with coordinates (n, f(n)) and $(\frac{1}{n}, f(\frac{1}{n}))$ are perpendicular, giving your answer(s) correct to two decimal places.

2 marks

$$m_1 = \log_e(n)$$
 $m_2 = \log_e(\frac{1}{n})$
 $\log_e(n) \times \log_e(\frac{1}{n}) = -1$
 $n = 0.37$, 2.72

Question 4 (8 marks)

Functions f and g are defined as $f: (-14, \infty) \to \mathbb{R}$, $f(x) = \log_e(\frac{x}{2} + 7)$ and $g: (0, \infty) \to \mathbb{R}$, $g(x) = \log_e(\frac{x}{2})$. Let h(x) = f(x) + g(x), for $x \in (0, \infty)$.

a. The x-intercept of function h is $x = \sqrt{a} - b$. Find the value of a and b.

1 mark

b. Sketch the graph y = h(x) on the set of axes below. Label the asymptote with its equation and the axial intercept with its coordinates correct to two decimal places.

2 marks

c. i. Find the rule for the inverse function h^{-1} .

1 mark

		$y = h^{-1}(x)$, giving your answer(s) correct to two decimal places.	1 mark
	_	(0.42, 0.42) and (2.17, 2.17)	
Coi	- nside	er the function $h_2(x) = \log_e\left(\frac{x}{k} + 7\right) + \log_e\left(\frac{x}{k}\right)$ where k is a positive real constant.	
l.		and the value of x in terms of k such that $h_2'(x) = 1$.	1 marl
		2 = V49K2+4 = = 7K5+2	***************************************
·.		nce or otherwise, find the value of k so that the graphs of h_2 and h_2^{-1} have only one	
	poı	int of intersection. Give your answer correct to two decimal places. $h_2(x) = x$ and $x = \frac{\sqrt{49k^2 + 4} - 7k + 2}{2}$	2 mark

END OF SAC 1c