Supervision Instructions

Mathematics Methods (Unit 1-2) Task #3 18th May 2021 – Period 4

Task consists of two papers: **Paper 1** and **Paper 2**. Students will have access to only one paper at a time.

Paper 1:

- 15 minutes
- Calculator is not allowed

After 15 minutes **Paper 1** is to be collected and **Paper 2** will be given.

Paper 2:

- 25 minutes
- Calculator is allowed

After 25 minutes **Paper 2** is to be collected.

Check that students put their names.

2021 Mathematical Methods (Unit 1-2) Task 3

Paper 1 – Calculator not allowed

Number of marks: 10 Writing time: 15 minutes

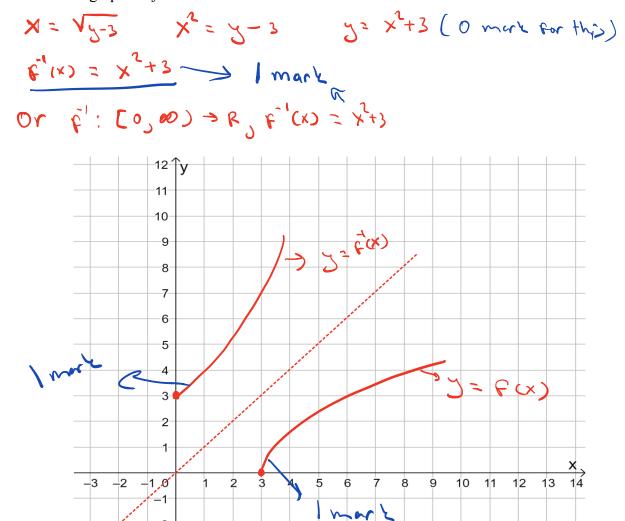
Name: Marks:

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.


Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Sketch the graph of $f:[3,\infty) \to R$, $f(x) = \sqrt{x-3}$ and find the inverse function f^{-1} .

3 marks

Sketch the graph of f^{-1} on the same set of axes.

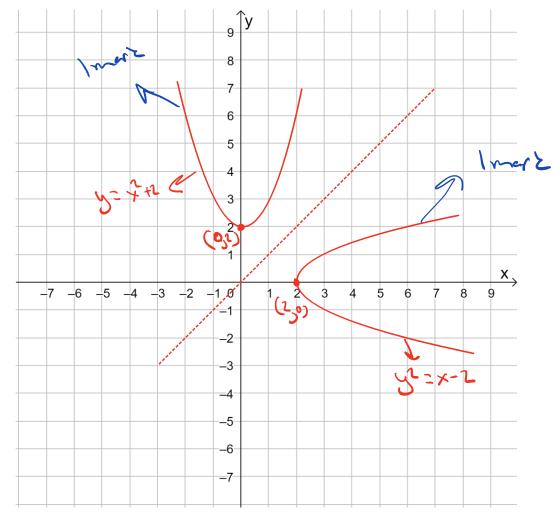
Question 2

Describe a sequence of transformations applied to the graph of $y = x^4$ to obtain

$$y = \left(\frac{x}{3} + 1\right)^4 + 2.$$

$$n=\frac{1}{3}$$
 $h=-3$ $k=2$ and as 1

Describe a sequence of transformations applied to the graph of y = x to obtain $y = \left(\frac{x}{3} + 1\right)^4 + 2.$ $y = \left(\frac{x}{3} + 1\right)$


Ouestion 3

a. Form the rule for the inverse of $y^2 = x - 2$.

1 mark

Hence sketch the graphs of $y^2 = x - 2$ and its inverse on the same set of axes.

2 marks

c. State the type of correspondence of each graph.

1 mark

mi { 52 = x-2 > One - to - many correspondence 5 = x2 +2 > many - to - one correspondence

2021 Mathematical Methods (Unit 1-2)

Task 3

Paper 2 – Calculator allowed

Number of marks: 15 Writing time: 25 minutes

Name: Marks – Section 1: Section 2:

SECTION 1

Instructions for Section 1

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Question 1

The graph of the function $f: D \to R$, $f(x) = \frac{3x-5}{2-x}$, where *D* is the maximal domain has asymptotes:

B
$$x = -2, y = 3$$

C
$$x = 3, y = -2$$

D
$$x = 2, y = 3$$

E
$$x = -2, y = -3$$

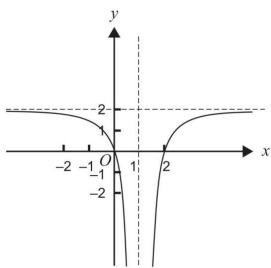
Question 2

Which of the following is correct for the graph of $y = \sqrt[3]{8x+1}$?

- **A** The endpoint of the domain is $\left(-\frac{1}{8}, 0\right)$.
- **B** The endpoint of the domain is $\left(-\frac{1}{2},0\right)$.
- C There is a point of inflection at $\left(-\frac{1}{8}, 0\right)$.
 - **D** There is a point of inflection at (0,1).
 - **E** There is a point of inflection at $\left(-\frac{1}{2}, 0\right)$.

Question 3

The radius measure of the circle $(2x+1)^2 + (2y+1)^2 = 100$ is:

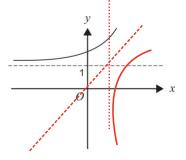

- 100 A
- В 10
- $7\sqrt{2}$ C
- $5\sqrt{2}$ D
- E
- $(x+\frac{1}{2})^2 + (y+\frac{1}{2})^2 = 100$ $(x+\frac{1}{2})^2 + (y+\frac{1}{2})^2 = 25$

Question 4

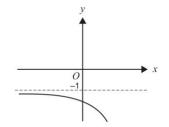
Part of the graph of the function with rule $y = \frac{a}{(x+b)^2} + c$ is shown below.

The values of a, b and c respectively are

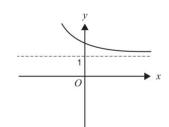
- 2
- -2
- 2
- 1
- 2 D
- -2
- \mathbf{E} -2
- b-10 2 1 1 1

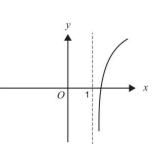


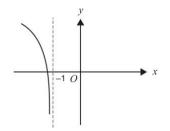
Question 5

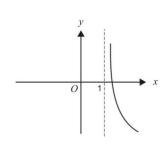

The graph of the function with equation y = f(x) is shown below. (A one to-one scale has been used.)

2


Which one of the following is most likely to be the graph of the inverse function?


A


B


 \mathbf{C}

D

 \mathbf{E}

SECTION 2

Instructions for Section 2

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Ouestion 1

Let $f: R\setminus\{-2\} \to R$, $f(x) = \frac{2x+1}{x+2}$.

3 marks

Find the rule and domain of f^{-1} , the inverse function of f.

interchanging x and y in the equation of original function & I mark

 $F'(x) = -2 - \frac{3}{x-2}$ or $F'(x) = \frac{3}{2-x} - 2$ I must

I mark

6

 F^{-1} : $R \setminus \{2\} \rightarrow R$, $F(x) = -2 - \frac{3}{x-1} \rightarrow 2$ marks

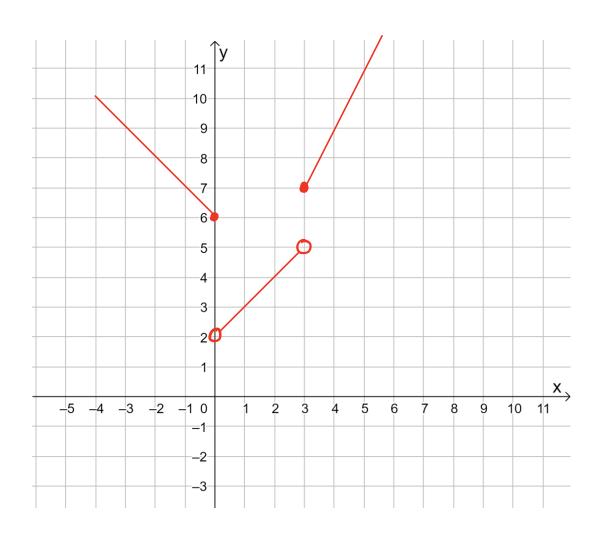
Question 2

A circle has the equation $x^2 + (y+4)^2 = 16$.

Center (0-4) } Imark State the centre and radius. 1 mark

Give the equation of the top semicircle function.

2 marks


x2+(5+4) = 16 (4+4)2= 16-x2 9+4=+VI6-x2 = = 111-x2-4 > /mark

Sketch the graph of the following function and state its range:

$$f(x) = \begin{cases} -x+6, & x \le 0 \\ x+2, & 0 < x < 3 \\ 2x+1, & x \ge 3 \end{cases}$$

(= (2,5) U [6,00) - 1 mark

2 mars > All 3 graphs are correct (endpoints) I mark > if only I graph is wrong

Explain whether or not the function is continuous at x = 3.

1 mark

From graph or mathematical solution

The Left and Right when x=3

branches are not Joining 2+3 = 5

So its not

Continuos

Continuos

1 may