Supervision Instructions

Mathematics Methods (Unit 1-2) Task #2 March 2022 – Period 4

Task consists of two papers: **Paper 1** and **Paper 2**. Students will have access to only one paper at a time.

Paper 1:

- 15 minutes
- Calculator is not allowed

After 15 minutes **Paper 1** is to be collected and **Paper 2** will be given.

Paper 2:

- 25 minutes
- Calculator is allowed

After 25 minutes **Paper 2** is to be collected.

Check that students put their names.

2022 Mathematical Methods (Unit 1-2) Task #2 *Paper 1 – Calculator not allowed*

Marks:

Number of marks: 10 Writing time: 15 minutes

Name:

Instructions

Answer **all** questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Solve for *x* where $x \in R$.

 $\sqrt[3]{x^2} + \sqrt[3]{x} - 2 = 0$

Question 2

3 marks

For what values of *k* there will be at least one intersection point between the line y = x - 3

and the parabola $y = x^2 - kx - 2$.

2 marks

Question 3

Determine the *x*-intercepts of the cubic graph $x^3 + 4x^2 - 7x - 10$.

Question 4

Determine the rule for the region shaded in the diagram below.

2 marks

2022 Mathematical Methods (Unit 1-2) Task #2 *Paper 2 – Calculator allowed*

Number of marks: 15 Writing time: 25 minutes

Marks – Section 1:

Section 2:

SECTION 1

Name:

Instructions for Section 1

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question.

Question 1

The parabola $y = x^2 + 5$ is translated horizontally 3 units to the left and 4 units downwards. The resulting

graph has equation:

- $A \qquad y = (x-3)^2 + 9$
- $\mathbf{B} \quad y = (x+3)^2 4$
- C $y = (x+3)^2 + 1$
- D $y = (x-3)^2 1$
- $E \quad y = (x-3)^2 + 1$

Question 2

Select the **correct** statement about the polynomial $P(x) = a\sqrt[n]{x^m} + bx^2 + c$.

- A $m, b, c \in \mathbb{Z}$ B $n \in \mathbb{Q}$ C $n, m, c \in \mathbb{Q}^+$ D $m = nk, k \in \mathbb{Z}^+$
- $E \quad a,b,c \in \mathbb{Z}^+$

Question 3

The equation of the graph shown, where a is a positive constant, could be:

- C $y = a(x+4)^2(x-2)$
- D $y = -a(x+4)(x-2)^2$

E
$$y = -a(x+2)(x-4)^2$$

Question 4

Given that the points (-1, -3), (2, 21) and (3, 37) lie on a parabola with equation $y = ax^2 + bx + c$. Find the values of a, b and c.

- A a = 2, b = 6, c = 1
- B a = -2, b = 6, c = 3
- C a = -1, b = 3, c = -4
- D a = 4, b = -2, c = 1

E a = 6, b = -2, c = 3

Question 5

If P(-3) = 0, then

- A -3 is the remainder when P(x) is divided by (x+3).
- B (x+3) is a factor of P(x)
- C (x-3) is a factor of P(x)
- D 3 is the remainder when P(x) is divided by (x+3)
- E (x+3) is the quotient when P(x) is divided by (x-3)

SECTION 2

Instructions for Section 2

Answer all questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Consider $P(x) = 3x^3 + kx^2 + 4$. Given that (3x+2) is a factor of P(x).

a. Find k and hence express P(x) as a product of linear factors.

2 marks

b. Sketch the graph of P(x).

					5-					
					4					
					3					
					2					
					1					
-	-5 –	4 –	3 –	2 -	1 0	1 :	2 3	3 4	1 E	5
-	-5 -	4 –	3 -	2 -	-1 0	1 :	2 :	3 4	1 6	5
-	5 –	4 –	3 -	2 -	-1 0	1 :	2 :	3 4	1 6	5
-	5 –	4 –	3 -	2 -	.1 0 1- 	1 :	2	3 4	1 6	5
	5 -	4 -	3 -	2 -	1 0 1- -2- -3-	1	2 :	3	1	5
	5 -	4 -	3 -	2 -		1 :	2 :	3	4 5	5
	-5 –	4 –	3 -	2 -	-1 0 -1- -2- -3- -4-	1 :	2 :	3 4		5

1 mark

Question 2

An ant is moving from point A to point B in a parabolic path as shown in the diagram below. The height of the ant is modelled by $h(t) = t^2 - 6t + p - 2$ meters for *t* minutes. How long, in minutes, will it take for ant to reach to the point B?

Question 3

The triangular box below consists of sides x mm in length and x + 2 mm in width and a height of y mm. The length, width, and height added together equal 24 mm.

a. Find the volume, V, of the box in terms of x.
(The formula of volume is V = Area of the base x Length of the prism)

b. Find the possible values of *x*.

2 marks

2 marks