Supervision Instructions

Mathematics Methods (Unit 1-2) Task #5 23rd August 2022

Task consists of two papers: **Paper 1** and **Paper 2**. Students will have access to only one paper at a time.

Paper 1:

- 15 minutes
- Calculator is not allowed

After 15 minutes **Paper 1** is to be collected and **Paper 2** will be given.

Paper 2:

- 25 minutes
- Calculator is allowed

After 25 minutes **Paper 2** is to be collected.

Check that students put their names.

2022 Mathematical Methods (Unit 1-2) Task 5

Paper 1 – Calculator not allowed

Number of marks: 10 Writing time: 15 minutes

Name:

Marks:

Instructions

Answer **all** questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Solve $2\sin(2\theta) = -\sqrt{3}$ for $0 \le \theta \le \pi$.

Question 2

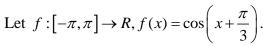
2 marks

Write down a sequence of transformations that takes the graph of y = sin(x) to the graph of

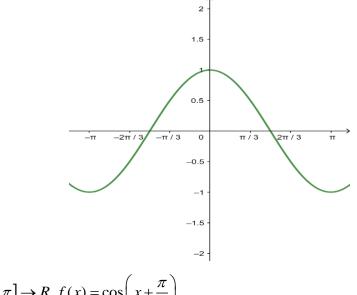
 $y = -4\sin(3x + \frac{\pi}{6}).$

2 marks

Question 3


The graph of $y = a \tan(nx)$ has the domain $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ with vertical asymptotes at $x = -\frac{\pi}{3}$ and $x = \frac{\pi}{3}$ only. The graph passes through the origin and the point $\left(-\frac{\pi}{6}, -\frac{1}{2}\right)$ Determine its

equation.


Question 4

a. Solve
$$\cos\left(x + \frac{\pi}{3}\right) = 0$$
 for $x \in [-\pi, \pi]$

b. The function $g(x) = \cos(x)$ is shown on the axes below.

Sketch the graph of the function f on the same set of axes above. Label y-intercept and turning points with their coordinates. Label endpoints of the graph with their coordinates.

2 marks

Name:

SECTION 1

2022 *Math*ematical Methods (Unit 1-2) **Task 5** *Paper 2 – Calculator allowed*

Number of marks: 15

Writing time: 25 minutes

Marks – Section 1:

Section 2:

Instructions for Section 1

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions. Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Question 1

Given that $sin(\theta) = 0.465$ and θ is in the first quadrant, which of the following is **not** true?

A $\sin(5\pi + \theta) = -0.465$ B $\sin(4\pi - \theta) = 0.465$ C $\sin(\pi + \theta) = -0.465$ D $\sin(-\theta) = -0.465$ E $\sin(3\pi - \theta) = 0.465$

Question 2

The number of solutions of the equation $\sqrt{2}\sin(3x) = -1, -\pi \le x \le \pi$ is

A 2

B 3

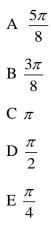
C 4

D 5

E 6

Question 3

The graph is most likely to be the graph of


A
$$y = 2\sin(x + \frac{\pi}{3})$$

B $y = 2\sin(x + \frac{\pi}{4})$
C $y = 2\sin(x + \frac{\pi}{4}) + \sqrt{2}$
D $y = 2\sin(x) + \sqrt{2}$
E $y = 2\cos(x + \frac{\pi}{4})$

Question 4

If
$$\cos(a) = -\frac{4}{5}$$
 and $\pi \le a \le \frac{3\pi}{2}$, the **exact** value for $\sin(a)$ is
A $\frac{4}{5}$
B $\frac{3}{4}$
C $-\frac{3}{4}$
D $\frac{3}{5}$
E $-\frac{3}{5}$

Question 5

Sum of the solutions to the equation $2\cos(2\theta) = -\sqrt{2}$, $0 \le x \le \pi$ is

SECTION 2

Instructions for Section 2

Answer **all** questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1

Ms G is in a boat out at sea fishing. The weather makes a change for the worse and the water becomes very choppy. The depth of water above the seabed can be modelled by the function with equation

$$d(t) = 1.5 \sin\left(\frac{\pi t}{12}\right) + 12.5$$

Where d is the depth of water in metres and t is the time in hours since the change of weather began at 5 am.

a. How far from the seabed was the boat when the change of weather began?

b. What is the period of the function?

c. What are the maximum and minimum heights of the boat above the seabed and the times when these occurs? 2 marks

1 mark

1 mark

- d. What is the depth of water above the seabed, correct to two decimal places, at 11:30 am?
- 1 mark

e. Ms G is interested in when the depth of water above the seabed is 13 meters at least. For how long, in minutes, this occurs?
 2 marks

f. Sketch one cycle of the graph of the function d(t). Label maximum, minimum and 3 marks endpoints of the graph with their coordinates.

