

2023 Mathematical Methods (Unit 1-2) Task 8 *Paper 1 – Calculator not allowed*

Number of marks: 10 Writing time: 15 minutes

Name:

Marks:

Instructions

Answer **all** questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Let
$$y = \frac{x^5 + 2\sqrt{x}}{x^2}$$
. Find $\frac{dy}{dx}$.

Question 2

The graph of f(x) is given. Sketch the graph of its derivative function on the same set of the axes shown below.

2 marks

2 marks

Question 3

A particle moves in a straight line so that its displacement, *x* metres, from a fixed origin at time *t* seconds is given by $x = \frac{1}{3}t^3 - 2t^2 + at - 9$. The particle temporarily at rests at t = 1. **a.** Find a. 2 marks

b. When is the second time the particle is at rest?

Question 4

The graphs of $f:[0,4] \to R$, $f(x) = x(2-\sqrt{x})$ and part of the graph of $g:[0,\infty) \to R$, g(x) = x, are shown below.

a. A tangent is drawn to f(x) at x = a, such that it is perpendicular to g(x). Find a. 2 marks

b. Hence find the equation of the tangent drawn to f(x) at x = a. 1 mark

1 mark

2023 Mathematical Methods (Unit 1-2) Task 8 *Paper 2 – Calculator allowed*

Number of marks: 15 Writing time: 25 minutes

Marks – Section 1:

Section 2:

Instructions for Section 1

Answer **all** questions in pencil on the answer sheet provided for multiple-choice questions.

Choose the response that is **correct** for the question.

A correct answer scores 1, an incorrect answer scores 0.

Marks will **not** be deducted for incorrect answers.

No marks will be given if more than one answer is completed for any question.

Question 1

The derivative of $f(x) = 3x^2 + 5x$ can be found using central difference theorem by evaluating:

A.
$$\lim_{h \to 0} \frac{3(x+h)^2 - 5xh - x^2 - 5x}{h}$$

B.
$$\lim_{h \to 0} \frac{3(x+h)^2 - 3(x-h)^2 - x^2 - 3x}{2h}$$

C.
$$\lim_{h \to 0} \frac{3(x+h)^2 + 5(x+h) - 3x^2 - 5x}{2h}$$

D.
$$\lim_{h \to 0} \frac{3(x+h)^2 - 5(x+h) - 3(x-h)^2 + 5(x-h)}{2h}$$

E.
$$\lim_{h \to 0} \frac{3(x+h)^2 + 5(x+h) - 3(x-h)^2 - 5(x-h)}{2h}$$

Question 2

The tangent to the curve $y = x^2 - 5$ is parallel to the line connecting the positive *x*-intercept and the *y*-intercept when *x* is equal to;

A.
$$\sqrt{5}$$

B. $-\sqrt{5}$
C. $\frac{1}{\sqrt{5}}$
D. $\frac{-1}{\sqrt{5}}$
E. $\frac{\sqrt{5}}{2}$

Name:

SECTION 1

Question 3

The average rate of change of the function with the rule $f(x) = x^2 - 2x$ over the interval [1, a], where

- a > 1, is 8. The value of a is:
 - A. 9B. 8
 - **C.** 7
 - **D.** 4
 - **E.** $1 + \sqrt{2}$

Question 4

Which one of the following functions is **not** continuous over R? $\begin{cases} x+1 & x < 0 \end{cases}$

A.
$$f(x) = \begin{cases} x+1 & x < 0 \\ x^2+1 & x \ge 0 \end{cases}$$

B. $f(x) = \begin{cases} x & x < 0 \\ x(x-1) & x \ge 0 \end{cases}$
C. $f(x) = \begin{cases} 2^x & x \le 0 \\ 1-x & x > 0 \end{cases}$
D. $f(x) = \begin{cases} x^2 & x < 0 \\ x+1 & x \ge 0 \end{cases}$
E. $f(x) = \begin{cases} 0 & x \le 0 \\ \sqrt{x} & x > 0 \end{cases}$

Question 5

Part of the graph y = f(x) is shown below;

f'(x) < 0 for

A.
$$x \in (-\infty, -2) \cup (\frac{1}{3}, \infty)$$

B. $x \in (-\infty, -2] \cup [1, \infty)$
C. $x \in (-2, \frac{1}{3})$
D. $x \in (-9, \frac{100}{27})$
E. $x \in (-2, 0) \cup (\frac{1}{3}, \infty)$

SECTION 2

Instructions for Section 2

Answer **all** questions in the spaces provided.

In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

Alisha is planning to make conical party hats. The conical hats are as shown in the diagram

below, where h equals the height of the cone and r is equal to the radius of the base of the cone.

All measurements are in centimetres.

a. Express r in terms of h and hence show that the volume of the cone in terms of its height 3 marks h, is $V = \frac{1}{3}\pi(100h - h^3)$. (Volume of a cone is $\frac{\pi r^2 h}{3}$)

b. Find the volume of the cone if the height is 7.5 cm, rounding off to 2dps.

1 mark

Alisha wants the volume of the hats to be as large as possible.

c. Find the value of h that gives the maximum volume for the cone, and hence find the 3 marks corresponding value of r, rounding off to the nearest centimetre.

d. Find the maximum volume of the cone (to the nearest cubic centimetre). 1 mark

nus		xes m	iercepi	5.										
	ΓV													
500-														t
-450-														
														t
400-														Ť
350-														
500														
300-														+
250														
														+
200-														t
150-														T
-100-														
100														
-50-														+
		1				5	6	7				4	h	1
0		1	Z	3	4	5	o		5	9 1	10 1	1 1	2	

e. Hence sketch the graph of V against h over an appropriate domain. Label the turning 2 marks points and axes intercepts. 2