

PART ONE - TECHNOLOGY FREE

MATHEMATICAL METHODS

MONDAY 2ND AUGUST

3.45 pm - 5.55 pm

- Listen carefully to the supervisor's instructions.
- Permissible items include: pens, pencils, highlighters, erasers, sharpeners, rulers.
- You are not permitted to use white out (liquid paper).
- You have 10 minutes reading (for both papers) and 1 hour writing to complete this part.
- · Complete this task in the spaces provided.
- Give answers in exact form unless told otherwise.
- You MAY NOT use your CAS calculator OR a bound set of notes to complete this part of the SAC.
- A number of questions are consequential in nature. You are advised to show all working, even for questions worth one mark. In questions worth more than 1 mark, working is required to gain full marks.
- You must work silently and independently for the duration of the task. Only questions of clarification can be asked of your teacher.
- It is not in your interest to talk about this task with students from other classes.

PLEASE NOTE: Students are NOT permitted to have mobile phones or any other unauthorised electronic devices in their possession during a SAC/examination

COMPULSORY STUDENT DECLARATION				
I, (print your name neatly)	acknowledge			
that I have read the SAC/examination conditions and understand which items/materials I am permitted				
to use and have in my possession.				
If you have any doubts as to what is permitted, raise your hand and DO NOT sign this declaration				
Student's Signature:				
Student's Name:				
Teacher's Name:				

MATHEMATICAL METHODS MODELLING/PROBLEM SOLVING SAC 2021 (SAC 2)

PART ONE TECHNOLOGY FREE

37 Marks

Question 1 (4 marks)

a. If $f: R \to R$, $f(x)$	$=\frac{5}{(2x-1)^3}$	find $f'(x)$
-----------------------------	-----------------------	--------------

2 marks

b.	Evaluate $f'\left(\frac{\pi}{6}\right)$	given $f(x) = -\frac{1}{3}\sin(x)\cos(x)$.	2 marks
----	---	---	---------

\sim	4 •	
	estion	,
VΨ	CSCIOII	_

Let $g(x) = 3e^{-2x} - x^3 + \frac{1}{\sqrt{2x-1}}$. Find an antiderivative of g(x)

Question 3

If the line $y = 4x + 3$ is parallel to the tangent of $y = (x - k)^3 - 8$ at $x = 2$, what is the value(s) of k ?	3 marks
Express your answer in the form $\frac{a\pm b\sqrt{c}}{d}$, where a, b, c and $d \in Z$.	

Question 4

a.	If $y = (1-5x)(1-x)$, find $\frac{dy}{dx}$	2 mark

b.	If $f(x) = \frac{1}{\log_e(x)}$, evaluate $f(e^2)$	2 marks

Question 5 (7 marks)

For the graph of $f:[-1,2] \rightarrow R$, $f(x) = x^2(1-x)$

a. Find the exact coordinates of the turning points.

3 marks

b. Sketch the graph of y = f(x), clearly labelling coordinates of intercepts, turning points and endpoints.

Question 6 (4 marks)

a. Find $\int (x-x^2)dx$

1 mark

b. Hence evaluate the area of the shaded region of the graph of y = x(1-x)

3 marks

Question 7 (6 marks)

The graphs of $y = x^2$ and y = 2x + 3 are shown below.

Show that the points of intersection of the two graphs are A(-1,1) and B(3,9). 2 marks a.

Find the gradient of the line AB. b.

1 mark

A line parallel to the line AB is a tangent to the curve $y = x^2$. Find the equation of this tangent and c. sketch it on the axes above. 3 marks

Question 8 (10 marks)

Let $f:(a,b) \to R: f(x) = x \log_e(x)$

a.	i. Find a , such that $f(x)$ has a maximum domain.	1 mark
	ii. Find $f'(x)$	1 mark
	iii. Hence find the coordinates of the stationary point.	2 marks
b.	Using your answer for part a ii. find an antiderivative of $\log_e(x)$	2 marks

END OF PART ONE