T03 Functions and Relations

Ex 5D – One-to-one functions and implied domains

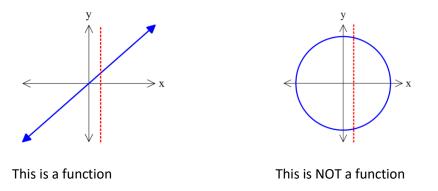
There of four types of relations:

1.	one	to	one

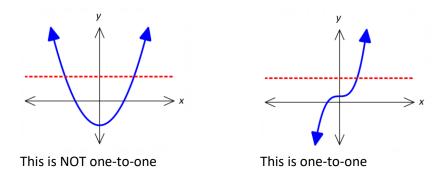
- 2. many to one
- 3. one to many
- 4. many to many

Functions have <u>unique</u> *y* values for every *x* value. This means <u>one to one</u> and <u>many to one</u> are relations that we consider to be **functions**.

To determine if a relation is a function we use the **vertical line test**.



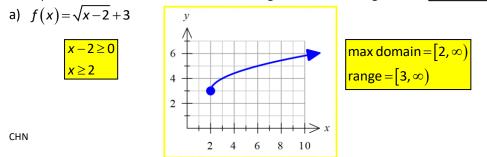
To determine if a function is <u>one to one</u> we use the **horizontal line test**.



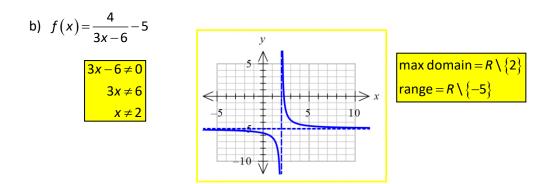
We can force a one-to-one function by **restricting** the domain.

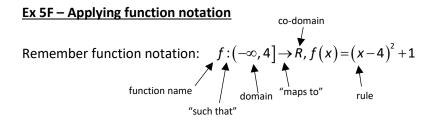
When the domain of a function is not explicitly stated, we determine the implied (maximal) domain. e.g. for $f(x) = x^2$ we assume dom f = R

Example: Find the maximal domain and range of the following.



note: to determine the RANGE of any function, you must sketch the graph.





When finding the rule of a function, always use the form of the function based on the information given.

For quadratic functions this means:

- General form: $y = ax^2 + bx + c$ where the turning point occurs at $\left(-\frac{b}{2a}, c \frac{b^2}{4a}\right)$.
- Turning point form: $y = a(x-h)^2 + k$ where the turning point occurs at (h, k).
- Intercept form: y = a(x-d)(x-e) where the x-intercepts occur at x = d and x = e.

Example: Find the quadratic function g such that g(2)=g(-4)=0 and g(0)=32

$$g(2) and g(-4) \text{ are x-ints}$$

$$\therefore g(x) = a(x-b)(x-c)$$

$$g(x) = a(x-2)(x+4)$$

use $g(0) = 32$ to find a
 $32 = a(0-2)(0+4)$
 $32 = -8a$
 $a = -4$

$$\therefore g(x) = -4(x-2)(x+4)$$

In function notation:
 $g: R \rightarrow R, g(x) = -4(x-2)(x+4)$
Do not expand unless you are asked
to put your answer in a specific form.

Ex 5G – Inverse functions

A relation can be represented by a set of ordered points.

The **inverse** of a relation is the set of ordered pairs obtained by interchanging the co-ordinates of each ordered pair. Inverse functions can only exist for a one to one function.

Consider: $f(x) = x^2$, where $x \ge 0$ The inverse, $f^{-1}(x)$, of f(x) is reflected in the line y = x. $domf = ranf^{-1}$ $ranf = domf^{-1}$

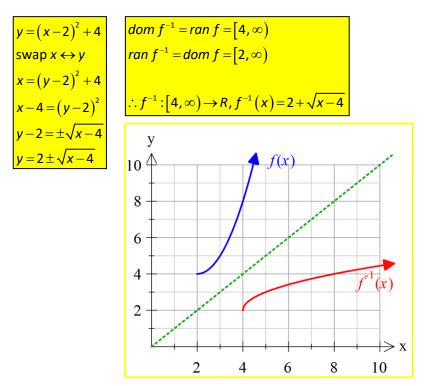
 $y = \sqrt{x}$

To determine the equation for the inverse function we swap the *x* and *y* values and then solve to make *y* the subject.

e.g. $y = x^2$, where $x \ge 0$ swap $x \leftrightarrow y$ $x = y^2$ $y = \pm \sqrt{x}$ but $x \ge 0$ $\therefore y = \sqrt{x}$

don't forget that you must always put a \pm in front the $\sqrt{}$ and then reject the side not needed.

Example: Determine the inverse of $f:[2,\infty) \to R$, $f(x)=(x-2)^2+4$ and state the domain and range of the function.



remember: to determine the RANGE you MUST sketch the graph over the given DOMAIN.

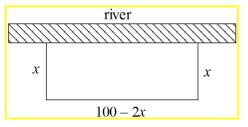
Ex 5H – Functions and Modelling exercises

Using function notation and transformations and applying these concepts to real-life application.

Example:

A farmer uses 100 metres of fencing to make a rectangular sheep pen. The straight bank of a river is used for a fourth side of the pen.

a) If x is the width of the sheep pen (the sides perpendicular to the river), draw a diagram of the sheep pen.



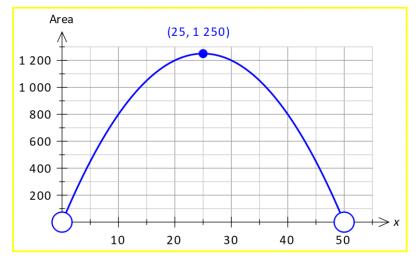
b) Express the area of the sheep pen as a function of the *x*.

Area = x(100 - 2x) $= -2x^2 + 100x$

c) What is the domain of this function?

Area > 0 so find x-ints x = 0 and 100 - 2x = 0 x = 50∴ domain = (0, 50)

d) Sketch the graph of this function over the above domain.



e) What is the maximum area of the sheep pen?

1250 m²