T03 Functions and Relations

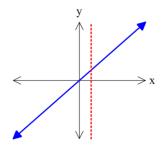
Ex 5D – One-to-one functions and implied domains

There of four types of relations:

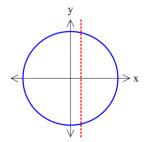
- 1. one to one
- 2. many to one
- 3. one to many
- 4. many to many

Functions have <u>unique</u> *y* values for every *x* value. This means <u>one to one</u> and <u>many to one</u> are relations that we consider to be **functions**.

To determine if a relation is a function we use the **vertical line test**.

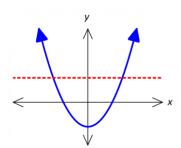


This is a function

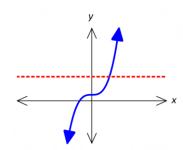


This is NOT a function

To determine if a function is <u>one to one</u> we use the **horizontal line test**.



This is NOT one-to-one



This is one-to-one

We can force a one-to-one function by **restricting** the domain.

When the domain of a function is not explicitly stated, we determine the implied (maximal) domain.

e.g. for
$$f(x) = x^2$$
 we assume $dom f = R$

Example: Find the maximal domain and range of the following.

a)
$$f(x) = \sqrt{x-2} + 3$$

note: to determine the RANGE of any function, you must sketch the graph.

CHN -1-

b)
$$f(x) = \frac{4}{3x-6} - 5$$

Ex 5F – Applying function notation

Remember function notation: $f:(-\infty,4] \to R, f(x)=(x-4)^2+1$ function name function na

When finding the rule of a function, always use the form of the function based on the information given.

For quadratic functions this means:

- General form: $y = ax^2 + bx + c$ where the turning point occurs at $\left(-\frac{b}{2a}, c \frac{b^2}{4a}\right)$.
- Turning point form: $y = a(x-h)^2 + k$ where the turning point occurs at (h, k).
- Intercept form: y = a(x-d)(x-e) where the x-intercepts occur at x = d and x = e.

Example: Find the quadratic function g such that g(2) = g(-4) = 0 and g(0) = 32

CHN - 2 -

Ex 5G - Inverse functions

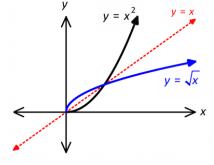
A relation can be represented by a set of ordered points.

The **inverse** of a relation is the set of ordered pairs obtained by interchanging the co-ordinates of each ordered pair. Inverse functions can only exist for a one to one function.

Consider: $f(x) = x^2$, where $x \ge 0$

The inverse, $f^{-1}(x)$, of f(x) is reflected in the line y = x.

$$domf = ranf^{-1}$$
 $ranf = domf^{-1}$



To determine the equation for the inverse function we swap the x and y values and then solve to make y the subject.

e.g.
$$y = x^2$$
, where $x \ge 0$
swap $x \leftrightarrow y$
 $x = y^2$
 $y = \pm \sqrt{x}$
but $x \ge 0$
 $\therefore y = \sqrt{x}$

don't forget that you must always put a \pm in front the $\sqrt{}$ and then reject the side not needed.

Example: Determine the inverse of $f:[2,\infty)\to R$, $f(x)=(x-2)^2+4$ and state the domain and range of the function.

to determine the RANGE
you MUST sketch the graph
over the given DOMAIN.

CHN - 3 -

Ex 5H – Functions and Modelling exercises

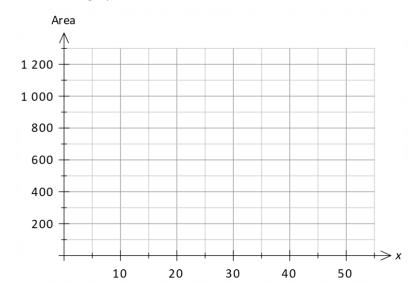
Using function notation and transformations and applying these concepts to real-life application.

Example:

A farmer uses 100 metres of fencing to make a rectangular sheep pen. The straight bank of a river is used for a fourth side of the pen.

a) If x is the width of the sheep pen (the sides perpendicular to the river), draw a diagram of the sheep pen.

- b) Express the area of the sheep pen as a function of the x.
- c) What is the domain of this function?
- d) Sketch the graph of this function over the above domain.



e) What is the maximum area of the sheep pen?