T01 Linear and Quadratic Relations

W4 – Completing the square and graphing quadratics

We can 'complete the square' using our knowledge of perfect squares and difference of perfect squares. This method is useful for easily determining the turning point of a quadratic graph.

Follow these simple steps:

- Step 1: Take out any common factors (*Note*: the coefficient of x^2 MUST be 1)
- Step 2: Half and square the middle term
- Step 3: Include in the equation (**add** and **minus** the term so that we have not changed the equation)
- Step 4: The first three terms create a perfect square which we then factorise and simplify
- Step 5: Square root and square the final term to create a difference of perfect squares.
	- (*Note*: if the final term is positive we cannot continue further).

Example: Factorise the following by completing the square.

The axis of symmetry

For a quadratic function written in the form $y = ax^2 + bx + c$, the axis of symmetry of its graph has

the equation $x = -$ 2 $x = -\frac{b}{2}$ *a*

Example:

Use the axis of symmetry to find the turning point of the graph, and hence express in turning point form:

 $y = x^2 - 4x + 3$

Graphing Quadratics

To sketch the graph of a quadratic function:

- Find the *y*-intercept
- Find the *x*-intercept(s)
- Find the equation of the axis of symmetry
- Find the co-ordinates of the turning point

Example: sketch the following parabolas, clearly showing all important points.

a) $y = 2x^2 - 4x$

b) $y=6-x-x^2$

Ex 3G – Solving Quadratic Inequalities

To solve a quadratic inequality:

- Factorise and solve the *equation* normally (i.e. let it $= 0$)
- Sketch the graph of the quadratic (you only need the *x*-intercepts for this)
- Use the graph to determine the set of *x*-values for which the inequality is satisfied.

Example: Solve each of the following inequalities

a) $(x+4)(x+3) < 0$ b) $10x^2 - 11x + 3 \ge 0$

Ex 5A – Set notation and sets of numbers

A set is a collection of 'elements' that have a common theme.

Consider $A = \{1,3,4,5,9\}$. *A* is a **set** with elements 1, 3, 4, 5 and 9.

- If $x = 3$ (where is x is an arbitrary element), therefore we can say that $x \in A$ (x is an element of *A*)
- If $x=2$, $\Rightarrow x \notin A$

Also consider $B = \{1,4,9\}$. *B* contains elements common to *A*.

We say: $B \subseteq A$ (*B* is a subset of *A*)

Now consider $A = \{1,3,4,5,9\}$, $B = \{1,4,6,9,10\}$ and $C = \{2,6,7,8\}$.

- Elements common to both *A* and *B* are the **intersection** of *A* and *B*.
	- $A \cap B = \{1,4,9\}$
- If there are no common elements, *A* and *C* contain an empty or **null** set.
	- $A \cap B = \emptyset$
- All elements in *A*, *B* and *C* are the **union** of *A*, *B* and *C*.

 $A \cup B \cup C = \{1,2,3,4,5,6,7,8,9,10\}$

- **A** $\set{B} = \{x : x \in A, x \notin B\}$. This means that *x* is an element of *A*, but not an element of *B*.
	- $A \setminus B = \{3,5\}$
	- $B \setminus A = \{6, 10\}$

We can illustrate sets intervals on a number line.

Remember: Closed circle \rightarrow included

Open circle \rightarrow not included

Example: Illustrate the following intervals on a number line:

a)
$$
(-4, 8]
$$
 b) $[-2, \infty)$

Ex 5B – Relations, Domain and Range

Ordered pairs (denoted (x, y)) are a pair of elements x and y (i.e. x and y co-ordinates). A **relation** is made up of ordered pairs. The set of elements for *x* gives the **domain** of the relation, and the set of elements for *y* gives the **range**.

Some relations may be defined by a rule. To fully define a relation, we need to specify both the rule and the domain. $\{(x, y): y = 2x - 3, x \in R\}$

Implied (maximal) domain refers to the domain that is possible for a relation given the restrictions of the equation.

e.g.
$$
y = \frac{1}{x}
$$

 $x \neq 0$: $x \in R \setminus \{0\}$

Example: Sketch $y = x^2 - 4$ for $x \in (-\infty, 2]$ and state the range of the function.

Example: Sketch $y = \sqrt{4-x^2 + 1}$ and state the maximal domain and range.

Ex 5C – Functions

A function is a relation that has a unique *y* value of every *x* value in an ordered pair. This is called a one-to-one relation (we will cover this further next exercise).

The **vertical line test** can be used to identify if a relation is a function. If a vertical line cuts the curve only once anywhere it is drawn, then it is an function.

Function Notation: $f: R \rightarrow R, f(x) = f(x)$

"the function f such that the domain maps onto the co-domain, of $f(x)$ equals to the rule"

Example: If $f(x)=x^2+3$, find $f(-1)$ and $f(a^2)$

Example: Sketch $f:[0,4]{\rightarrow} R$, $f(x)=3x-2$

For every ordered pair (x, y) of a function, the element *y* is called the <u>image</u> of *x* under *f* or the value of *f* at *x*. The corresponding value of *y* is called the pre-image of *y*.

Example: For $f(x)=2x-4$, find the image of 3 and pre-image of 6.

Ex 5E – Piecewise-defined functions

Piecewise-defined (or hybrid) functions have different rules for different subsets of the domain.

Example: Sketch the following function and state its range.

$$
f(x) = \begin{cases} x, & (-\infty, 0] \\ x - 2, & (0, 4) \\ x^2 - 12, & [4, \infty) \end{cases}
$$

Ex 3H – The Quadratic Formula

The Quadratic Formula can be used to solve for the value of *x* by substituting the corresponding values into the following equation:

For a quadratic in the form: $ax^2 + bx + c = 0$

then:
$$
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

Note: This formula is derived by completing the square of $ax^2 + bx + c = 0$.

Example: Solve a) $x^2 + 3x - 4 = 0$ b) $-3x^2 + 8x - 2 = 0$

Ex 3I – The Discriminant

Under the square root is an expression called the *discriminant*, Δ . We use the discriminant to determine how many solutions an equation has.

$$
\Delta=b^2-4ac
$$

If

 Δ > 0 there will be 2 real solutions

 $\Delta = 0$ there will be 1 real solution 2 $x = -\frac{b}{2}$ $\left(x=-\frac{b}{2a}\right)$

 Δ <0 there will be no real solutions $\begin{pmatrix} 2a \end{pmatrix}$ is undefined when Δ is negative)

Example: Determine the number of solutions for the following. a) $2x^2 + 5x + 7 = 0$ b) $x^2 - 4x + 2 = 0$

Example: For which values of *k* does $x^2 + kx + 1 = 0$ have: a) no solutions

b) one solution

c) two solutions

Ex 3J – Solving simultaneous linear and quadratic equations

Depending on where a linear line cuts (or does not cut) a quadratic, there may be zero, one or two intersection points between a parabola and a straight line.

Two points of intersection One point of intersection No point of intersection

The **discriminant** may also be used to determine the number of intersection points.

Remember that if $y = ax^2 + bx + c$, then $\Delta = b^2 - 4ac$, where:

- If $\Delta > 0$, there are two intersection points
- If $\Delta = 0$, there is one intersection point (i.e. a tangent to the curve)
- If $\Delta < 0$, there are no intersection points.

Example: Solve the following pair of equations:

 $y = x^2 + x - 5$ $y = -x - 8$

Example: Solve the following pair of equations:

 $y = 5x^2 + 9x$ $y = 12 - 2x$

Ex 3K – Families of quadratic polynomial functions

- $y = ax^2$, $a \ne 0$
	- All graphs with vertices at the origin

• $y = a(x-2)^2 + 3, a \ne 0$

• $y = a(x-h)(x-2)$, $a \ne 0$

- All graphs have a turning point at $(2,3)$

- All graphs have one x-intercept at $(2,0)$

- The width of the curve changes

Example:

A quadratic rule for a particular parabola is of the form $y = ax^2$. The parabola passes through the point with co-ordinates 2, 8 . Find the value of *a*.

Ex 3L – Quadratic Models

In order to solve quadratic models we must first manipulate the information given to form a quadratic equation which can then be solved.

Example: (p 134, Q6)

A construction firm has won a contract to build cable-car pylons at various positions on the side of a mountain. Because of the difficulties associated with construction in alpine areas, the construction firm will be paid an extra amount, \$C, given by the formula $C = 240h + 100h^2$, where h is the height in km above sea level.

a. Sketch the graph of *C* as a function of *h*. Comment on the possible values of *h*.

- b. Does *C* have a maximum value?
- c. What is the value of *C* for a pylon built at an altitude of 2500m?