Solutions

Question 1

a. The number of nucleons in the nucleus

b. The number of protons in the nucleus or, equivalently, the number of electrons in the electron cloud of a neutral atom.

Question 2

 ${}_{4}^{9}$ Be gives 4 protons and (9 - 4) = 5 neutrons

∴ D (ANS)

Question 3

- a. 226 Ra 88 protons, (226 - 88) = 138 neutrons 226 nucleons
- **b.** $^{35}_{17}$ Cl 17 protons, (35 - 17) = 18 neutrons 35 nucleons
- c. $^{184}_{74}$ Ta 74 protons, (184 - 74) = 110 neutrons 184 nucleons

Question 4

Isotopes have the same number of protons but different numbers of neutrons.

∴ D (ANS)

Question 5

An **ion** is an atom or molecule in which the total number of electrons is not equal to the total number of protons, giving the atom or molecule a net positive or negative electrical charge.

∴ C (ANS)

Question 6

Isotopes have the same number of protons but different numbers of neutrons.

 \therefore A and B (ANS)

Question 7

Alpha particle radiation consists of two neutrons and two protons, a helium nucleus, emitted from the nucleus of large atoms that are unstable.

Question 8

Beta-particle radiation consists of fast moving electrons or positrons (anti-electron, positively charged). A proton is transformed into a neutron, or vice versa, inside an atomic nucleus. They emanate from the nucleus of radioactive nuclei that has too many neutrons for stability. This process allows the atom to move closer to the optimal ratio of protons and neutrons.

Question 9

Changes of energy states within the nucleus result in the emission of gamma rays (high energy photons, outside the visible spectrum). Gamma rays are electromagnetic waves, similar in nature to light waves and x-rays. They have no charge and do not alter the mass number of the nucleus that emits them.

Question 10

- a) X-rays, infrared, microwaves and gamma rays
- b) alpha particles
- c) alpha particles
- d) beta particles
- e) alpha, beta, gamma, X-rays
- f) gamma rays

Question 11

 β -decay involves the loss of an electron (or positron) from the nucleus. Therefore the atomic number will increase by one (hence the original element becomes a new element) and the mass number remains constant.

∴ D (ANS)

Question 12

Alpha decay is the emission of a helium nucleus, ${}_{2}^{4}$ He²⁺.

Therefore the mass number decreases by 4, and the atomic number decreases by 2.

∴ A (ANS)

Question 13

∴ A (ANS) by definition

Question 14

Alpha particle radiation consists of two neutrons and two protons. C (ANS)

, (AN

Question 15

Gamma radiation is produced by the decay of atomic nuclei as they transition from a high energy state to a lower state, in order to become more stable.

D (ANS)

Question 16

A (ANS)

Question 17

Gamma rays travel at the speed of light, beta particles can go as fast as 90% of the speed of light, and Alpha particles can travel up to 10% of the speed of light.

∴ A (ANS)

(ANS)

Question 18

∴ A by definition

Question 19

(i) C (ANS) (ii) D (ANS)

Question 20

(i)	F	(ANS)
(ii)	G	(ANS)

Question 21

You need to balance the 'equations' on both sides. The first equation becomes ${}^{214}_{83}\text{Bi} \rightarrow {}^{210}_{81}\text{Q} + {}^4_2\alpha$ The second equation becomes ${}^{214}_{83}\text{Bi} \rightarrow {}^{214}_{84}\text{R} + {}^0_{-1}\beta$ \therefore B (ANS)

Question 22

You need to balance the 'equations' on both sides. The first equation becomes $^{214}_{83}\text{Bi} \rightarrow ^{210}_{81}\text{Q} + ^{4}_{2}\alpha$ The second equation becomes $^{214}_{83}\text{Bi} \rightarrow ^{214}_{84}\text{R} + ^{0}_{-1}\beta$ \therefore C (ANS)

Question 23

4.2 MeV = $4.2 \times 10^{6} \times 1.6 \times 10^{-19}$ = 6.72×10^{-13} ∴ **B** (ANS)

Question 24

The equation is ${}^{212}_{84}Po \rightarrow X + {}^{4}_{2}He$ $\therefore X = {}^{208}_{82}Pb$ $\therefore D$ (ANS)

Question 25

The decay process is $^{214}_{83}\text{Bi} \rightarrow ^{Z}_{A}X + ^{4}_{2}\text{He} + ^{0}_{-1}\text{e} + 2\gamma$ $\therefore \mathbf{Z} = \mathbf{210}, \mathbf{A} = \mathbf{82}$ (ANS)

Question 26 and 27

The decay process is $^{237}_{93}Np \rightarrow ^{213}_{83}Bi + n(^{4}_{2}He) + m(^{0}_{-1}e)$ Use the mass number to determine the number of alpha particles released. ∴ n = (237 - 213)/4 ∴ n = 24/4 ∴ n = 6 This would mean that the atomic number should be $93 - (6 \times 2) = 81$ Since it is 83, then m = 2. : 6 alpha particles and 2 beta particles (ANS)

Question 28

The probability that any particular nucleus will decay in the next half life is always 0.5 ∴ C (ANS)

Question 29

With a half-life of 10 days, after 20 days there will ¼ of the original sample undecayed. ∴ 2.5 × 10⁻⁴ gm (ANS)

Question 30

With a title of "decay constant", you would expect it to remain the same. The decay constant is the % that decay in a particular time frame. (ANS)

∴ 0.07 per day

Question 31

18 hours is 3 half-lives. Therefore you will initially need 2³ times the final amount. ∴ 8 µg (ANS)

Question 32

The fraction $\frac{2.0}{16}$ reduces to $\frac{1}{8} = \frac{1}{2^3}$ It will take 3 half-lives for the amount of radon to decrease to 2.0 mg. \therefore 3 × 3.8 = 11.4 days.

 \therefore 11.4 days (ANS)

Question 33

The activity will drop to 50% after the first halflife and to 25% after the second.

Question 34

 $\frac{1}{16} = \frac{1}{2^4}$, therefore 4 half-lives in 24 hours. ∴ 6 hours (ANS)

Question 35

The equation must always balance the mass number and the atomic number.

Therefore the first step in this process must be

 ${}^{98}_{42}\text{Mo} + {}^{1}_{0}\text{n} \rightarrow {}^{99}_{42}\text{Mo}$

this will lead to

 $^{99}_{42}\text{Mo} \rightarrow {}^{99\text{m}}_{43}\text{Tc} + \beta^- + \gamma$ ∴ C (ANS)

Question 36 (1983, 76, 77)

The equation becomes

 ${}^{56}_{25}\text{Mn} \rightarrow {}^{56}_{26}\text{D} + {}^{0}_{-1}\text{e}$

Therefore D has 26 protons and 30 neutrons. \therefore N = 30, Z = 26 (ANS)

Question 37

10 hours is 4 half-lives, therefore there will be $\frac{1}{16}$ the number of $\frac{56}{25}$ Mn but the same number of the stable ⁵⁵₂₅Mn

 $\cdot \frac{1}{2} \times 10 \times 10^{-10}$

$$\frac{-1}{16} \times 1.0 \times 10^{-12} \text{ (ANS)}$$

Question 38

If ${}^{14}_{6}C$ decays by β^{-} emission, then the atomic number will increase by 1, whilst the mass number remains constant.

> $\therefore \frac{14}{7}N$ ∴ C (ANS)

Question 39

If the ratio was greater by a ratio of 8, that is a factor of 2^3 . This implies that one sample is 3 half-lives older than the other.

3 × 5740 = **17,220 Years** (ANS)

Question 40

If we assume that all of the 206 Pb has come from the decay of 238 U, and the rocks contain roughly equal numbers of atoms of 238 U and 206 Pb, then one half life must have past. One half life is 4.5 x 10⁹ years. \therefore 4.5 x 10⁹ years (ANS)

Question 41

Looking at the mass numbers 238-206/4 = 32/4 = 8 ∴ 8 alpha particles (ANS)