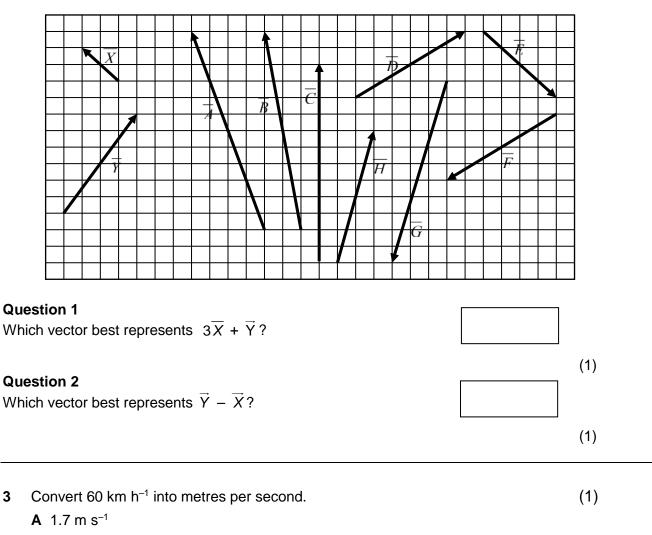
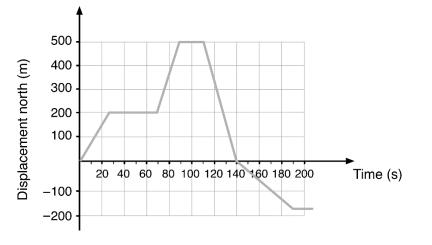
Unit 2 Physics 2018


Motion Test

/45

(60 mins)


Name_____

On the grid below two displacement vectors, \vec{X} and \vec{Y} , are drawn to scale, along with a sample of other vectors.

- **B** 17 m s⁻¹
- **C** 216 m s⁻¹
- **D** 21.6 m s⁻¹
- A super-bouncy ball hits a wall with a velocity of 7.0 m s⁻¹ east and rebounds with a velocity of 6.0 m s⁻¹ west. Determine the change in velocity of the ball. (1)
 - A 1 m s⁻¹ west
 - **B** 13 m s⁻¹ east
 - **C** 13 m s⁻¹ west
 - D 1 m s⁻¹ east

The following information applies to questions 5–8. The graph shows the displacement of a farmer on a motorcycle, riding to and fro along a boundary of his property while counting livestock. He initially was travelling north.

(1) 5 How far did the farmer travel during the first minute? **A** 60 m **B** 9000 m **C** 200 m **D** 6.7 m (1) 6 At t = 120 s the farmer was: **A** stationary. **B** heading south with a speed of 17 m s^{-1} . **C** decelerating. **D** heading north with a speed of 17 m s^{-1} . 7 What was the total distance was travelled by the farmer over the entire period? (1) **A** 500 m **B** 300 m **C** 700 m **D** 1180 m 8 What was the average velocity of the farmer during the last 60 seconds of his journey? (1) A -3.0 m s⁻¹ **B** -4.0 m s⁻¹ **C** 0 m s⁻¹ **D** -18 m s⁻¹

- 9 A car reached a speed of 72 km h⁻¹, from rest, in a time interval of 5.0 seconds.
 a What was the average acceleration of the car in m s⁻²? (2)
 - **b** How far did the car travel in this time?
 - **c** The car then maintained this speed for 15 seconds. How far is it from its starting position now? (2)

- **d** The car now decelerates uniformly at a rate of 4.0 m s^{-2} , until it comes to a stop. On the axes provided, draw the velocity–time graph for the car's *entire* journey. (3)

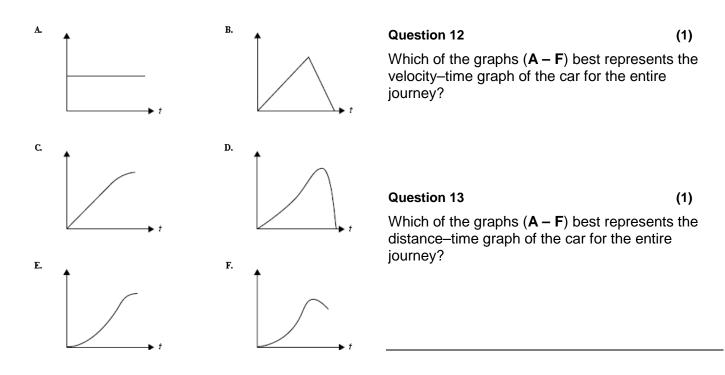
e What was the average velocity of the car during the entire journey?

(2)

(2)

Question 10

In a road test, a car was uniformly accelerated from rest over a distance of 400 m in 19.0 s. The driver then applied the brakes, stopping the car in 5.1 s with constant deceleration.


Calculate the acceleration of the car for the first 400 m.

Question 11

(3)

Calculate the average speed of the car for the entire journey, covering both the acceleration and braking sections. (Hint consider the velocity-time graph)

The graphs (A - F) in the key below should be used when answering the two questions below. The horizontal axis represents time and the vertical axis could be velocity or distance.

Question 14				(2)
What is the dept	h of the mine shaft?			
a) 90 m	b) 45 m	c) 30 m	d) 15 m	
Question 15				(2)
What is the mag	nitude of the velocity of	the stone at the instant	before striking the botto	
a) 90 m/s	b) 45 m/s	c) 30 m/s	d) 15 m/s	
reaches a maxim		caught at the same po	oall is thrown vertically up int that it was thrown from	
reaches a maxim	hum height of 20 m. It is	caught at the same po		
reaches a maxim down. SHOW Question 16	hum height of 20 m. It is	caught at the same po 2 MARKS		m. Use g = 10 m/s
reaches a maxim down. SHOW Question 16	num height of 20 m. It is YOUR WORKING FOR	caught at the same po 2 MARKS		m. Use g = 10 m/s
reaches a maxim down. SHOW Question 16 The initial upware	hum height of 20 m. It is YOUR WORKING FOR d velocity of the ball wa	caught at the same po 2 MARKS	int that it was thrown from	m. Use g = 10 m/s
reaches a maxim down. SHOW Question 16 The initial upware	hum height of 20 m. It is YOUR WORKING FOR d velocity of the ball wa	caught at the same po 2 MARKS	int that it was thrown from	m. Use g = 10 m/s
reaches a maxim down. SHOW Question 16 The initial upward a) 40 m/s Question 17	hum height of 20 m. It is YOUR WORKING FOR d velocity of the ball wa	caught at the same po 2 MARKS s c) 10 m/s	int that it was thrown from	n. Use g = 10 m/s (2)

a) 1.0 s	b) 2.0 s	c) 3.0 s	d) 4.0 s

Question 18 The total time of flig	uht was			(1)
a) 2.0 s	b) 4.0 s	c) 6.0 s	d) 8.0 s	
Question 19				(2)
The speed of the ba	all when it was caught (at the same point of proj	jection) was	
a) 40 m/s	b) 20 m/s	c) 10 m/s	d) 5 m/s	
Question 20				(1)
	where the acceleration of the second		a) increase the s	
a) 10 m/s² up	b) 10 m/s² down	c) 0 m/s ²	d) impossible to determine.	
	g at a constant speed of sses, accelerating at 2.5	of 15.0 ms ⁻¹ passes a sta 50 ms ⁻² .	tionary car. The car s	starts to move just
•	J			
	car reach the same spe	ed as the truck?		
a. When does the c				(2 marks)