

Chemistry Teach Yourself Series

Topic 1: pH

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au

© TSSM 2010 Page I of II

Contents

pH	3
pHpH formula: Derivation of formula	3
As it appears in Unit 2pH of strong acids	Δ
As it appears in Unit 2	4
Review Questions	5
Alkaline solutions	6
As it appears in Unit 2	6
Review Question.	
pH of weak acids	8
As it appears in Unit 4	8
Review Questions	
Solutions to Review Ouestions	10

pН

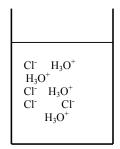
What is it? A measure of the acidity or alkalinity of a solution.

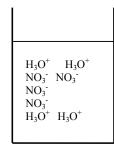
$$pH = -\log_{10}[H_3O^+]$$

pH formula: Derivation of formula

As it appears in Unit 2

$$\begin{aligned} & \text{HCI}(aq) + \text{H}_2\text{O}(\textit{I}) & \longrightarrow & \text{H}_3\text{O}^+(aq) + \text{CI}^-(aq) \\ & \text{HNO}_3(aq) + \text{H}_2\text{O}(\textit{I}) & \longrightarrow & \text{H}_3\text{O}^+(aq) + \text{NO}_3^-(aq) \\ & \text{CH}_3\text{COOH}(\textit{I}) + \text{H}_2\text{O}(\textit{I}) & \longleftrightarrow & \text{H}_3\text{O}^+(aq) & + \text{CH}_3\text{COO}^-(aq) \end{aligned}$$


Acid definition. A substance that can donate a proton (H⁺)


CH₃COOH is a weak acid. This means that it only donates a proportion of its protons.

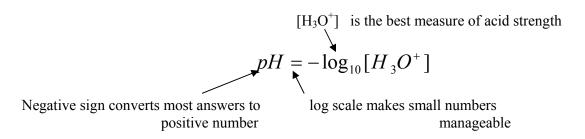
2 M HCl 2 M HNO₃ dangerous solution

2 M CH₃COOH not a dangerous solution

Concentration of the acid itself does not indicate the acidity of the solution that will form.

H₃O⁺ CH₃COO⁻ CHCOOH CHCOOH CHCOOH

Page 3 of 11


Diagram: The first two solutions are strong acids, the third is a weak acid.

Note that $[H_3O^+]$ is a better measure of acidity, hence it is used in pH formula.

Lactic acid has a $[H_3O^+]$ of 0.000001 M.

That is a very small number, hence the pH formula uses log to make this a more familiar number $log_{10}(0.000001) = -6$.

© TSSM 2010

pH of strong acids

As it appears in Unit 2

Example

Calculate the pH of the following strong acids

a. 0.01 M HCl

b. 0.0001 M HNO₃

Solution

Strong acid \Rightarrow [H₃O⁺] assumed = concentration of the acid itself

a. [HCl] =
$$0.01 \Rightarrow [H_3O^+] = 0.01 \Rightarrow pH = -log_{10}(0.01) = 2$$

b. [HCl] =
$$0.0001 \Rightarrow [H_3O^+] = 0.0001 \Rightarrow pH = -log_{10}(0.0001) = 4$$

Short cut

If the concentration is a simple power of 10, a calculator is not required i.e.

a.
$$pH = -log_{10}(0.01)$$

 $pH = -log_{10}(10^{-2}) = 2$
b. $pH = -log_{10}(0.0001)$
 $pH = -log_{10}(10^{-4}) = 4$ note that the answer = the power of 10 with sign changed

This technique is helpful when working in reverse;

If the pH - is 4, then
$$[H_3O^+] = 10^{-4}$$

- is 2, then $[H_3O^+] = 10^{-2}$

© TSSM 2010 Page 4 of 11

Review Questions

- 1. Calculate the pH of the following solutions of nitric acid, HNO₃
- **a.** 1.0 M
- **b.** 0.1 M
- **c.** 0.00001 M
- **2.** Complete the table below

concentration M	pН
1.0	0
0.10	
0.001	
	1
	4
	6

- 3. Given the pH of the following solutions, what is the hydronium ion concentration?
- **a.** pH = 1.0

b. pH = 5.0

Alkaline solutions

As it appears in Unit 2

Solutions containing or producing OH ions are alkaline i.e. NaOH or NH₃

The amount of $[H_3O^+]$ has to be found using the formula

$$[H_3O^+][OH^-] = 10^{-14} \text{ M}^2 \text{ at 25 } {}^{0}\text{C}.$$

Example

Calculate the pH of the following alkaline solutions

- **a.** 0.01 M LiOH
- **b.** 0.5 M NaOH

Solutions

Example a. can be completed without a calculator because powers of 10 are used. Example b. is best completed with a calculator.

a.
$$[H_3O^+][OH^-] = 10^{-14}$$

$$[OH^{-}] = 0.01 = 10^{-2}$$

$$\Rightarrow$$
 [H₃O⁺] x 10⁻² = 10⁻¹⁴

$$=>$$
 $[H_3O^+] = \frac{10^{-14}}{10^{-2}} = 10^{-12}$ $=> pH = -log(10^{-12}) = 12$

b.
$$[H_3O^+][OH^-] = 10^{-14}$$

$$[OH^{-}] = 0.5$$

$$=> [H_3O^+] \times 0.5 = 10^{-14}$$

=>
$$[H_3O^+] = \frac{10^{-14}}{0.5} = 2.0x10^{-14}$$
 => $pH = -\log(10^{-12}) = 13.7$

Example

c. Calculate the pH of a 0.005 M Mg(OH)₂

Note: pH uses the [OH $^{-}$]. If the Mg(OH)₂ is 0.005, then [OH $^{-}$]. = 2 x 0.005 = 0.01 M

Therefore the working is exactly the same as example **a** above and the answer is the same, 12.

Review Question

4. Calculate the pH of a solution of

a. 0.001 M NaOH

Care: watch for 2 here

b. b. 0.01 M Mg(OH)₂

© TSSM 2010 Page 7 of 11

pH of weak acids

As it appears in Unit 4

CH₃COOH is a weak acid. It only donates a small percentage of its protons.

$$CH_3COOH(1) + H_2O(1) \Leftrightarrow H_3O^+(aq) + CH_3COO^-(aq)$$

The [H₃O⁺] concentration is much less than the CH₃COOH concentration, therefore the process of calculating pH is different.

$$K = [\underline{\text{H}_3}\text{O}^+][\underline{\text{CH}_3}\text{COO}^-]$$
 hence $K_a = [\underline{\text{H}_3}\text{O}^+][\underline{\text{CH}_3}\text{COO}^-]$ [CH₃COOH]

$$K_a = [\underline{\mathbf{H}}_3\underline{\mathbf{O}}^+][\underline{\mathbf{CH}}_3\underline{\mathbf{COO}}^-]$$

[CH₃COOH]

Questions will – give K_a and ask for pH **OR** give pH and ask for K_a

Examples

- **a.** A 0.05 M ethanoic acid solution has a pH of 3.2. Calculate the value of K_a for the ethanoic acid.
- **b.** The K_a value for a 0.01 M sample of hydocyanic acid is 6.3 x10⁻¹⁰. Calculate the pH of the solution.

Solutions

a.
$$K_a = [\underline{\text{H}_3\text{O}^+}][\underline{\text{CH}_3\text{COO}^-}]$$

[CH₃COOH]

If pH = 3.2, then
$$[H_3O^+] = 10^{-3.2} = 6.31 \times 10^{-4}$$

Since CH₃COOH was the only acid added, $[H_3O^+] = [CH_3COO^-] = 6.31 \times 10^{-4}$

$$K_a = [\underline{\text{H}}_3\underline{\text{O}}^+][\underline{\text{CH}}_3\underline{\text{COO}}^-] = \underline{6.31 \times 10^{-4} \times 6.31 \times 10^{-4}} = 7.96 \times 10^{-6} \text{ M}$$

 $[\underline{\text{CH}}_3\underline{\text{COOH}}] = 0.05$

b.
$$K_a = [\underline{\mathbf{H}}_{\underline{3}}\underline{\mathbf{O}}^+][\underline{\mathbf{C}}\underline{\mathbf{N}}^-]$$
 [HCN]

To calculate pH, the $[H_3O^+]$ needs to be determined.

If
$$[H_3O^+] = X$$
, then $[CN^-]$ also = X

$$=> Ka = X X X = 6.3 \times 10^{-10}$$

$$\Rightarrow$$
 X = 6.3 x 10⁻¹⁰ x 0.01 = 6.3 x 10⁻¹²

$$=> X = 2.5 \times 10^{-6}$$

© TSSM 2010

$$pH = -log_{10}[H_3O^+]$$

= $-log_{10}(2.5 \times 10^{-6}) = 5.6$

Review Questions

	Calculate the <i>Ka</i> of a 0.01 M solution of hydrocyanic acid if the pH is 4.7.		
-			
	The acidity constant for ethanoic acid is 1.7×10^{-5} . Calculate the pH of a 0.05 M solution of acid.		
•			

© TSSM 2010 Page 9 of 11

Solutions to Review Questions

1.

a.
$$pH = -log_{10}(1.0) = 0$$

b.
$$pH = -log_{10}(0.10) = 1$$

c.
$$pH = -log_{10}(0.00001) = 5$$

2.

concentration M	pН
1.0	0
0.10	1
0.001	3
0.10	1
0.0001	4
0.000001	6

3.

a.
$$[H_3O^+] = 10^{-1} = 0.1$$

b.
$$[H_3O^+] = 10^{-5} = 0.00001$$

4.

a.
$$[H_3O^+][OH^-] = 10^{-14}$$

 $[OH^-] = 0.001 = 10^{-3}$

$$[OH^{-}] = 0.001 = 10^{-3}$$

=> $[H_{3}O^{+}] \times 10^{-3} = 10^{-14}$

$$=>$$
 $[H_3O^+] = \frac{10^{-14}}{10^{-3}} = 10^{-11}$ $=> pH = -log(10^{-11}) = 11$

b. $[H_3O^+][OH^-] = 10^{-14}$

$$[OH^{-}] = 0.01 \times 2 = 0.02$$

$$=> [H_3O^+] \times 0.02 = 10^{-14}$$

=>
$$[H_3O^+] = \frac{10^{-14}}{0.02} = 5x10^{-13}$$
 => $pH = -\log(5 \times 10^{-13}) = 12.3$

5. If pH = 4.7, then $[H_3O^+] = 10^{-4.7} = 2.0 \times 10^{-5}$

$$K_a = [\underline{\text{H}_3\text{O}^+}][\underline{\text{CN}^-}] = \underline{2.0 \times 10^{-5} \times 2.0 \times 10^{-5}} = 8.0 \times 10^{-9} \text{ M}$$

[HCN] 0.05

6. The acidity constant for ethanoic acid is 1.7×10^{-5} . Calculate the pH of a 0.05 M solution of acid. $K_a = [\underline{\text{H}_3\text{O}^+}][\underline{\text{CH}_3\text{COO}^-}][\underline{\text{CH}_3\text{COOH}}]$

To calculate pH, the [H₃O⁺] needs to be determined.

If
$$[H_3O^+] = X$$
, then $[CH_3COO^-]$ also = X
=> $Ka = \frac{X \times X}{0.01} = 1.7 \times 10^{-5}$
=> $X^2 = 1.7 \times 10^{-5} \times 0.01 = 1.7 \times 10^{-7}$
=> $X = 4.1 \times 10^{-4}$
pH = $-\log_{10}[4.1 \times 10^{-4}]$

= 3.38

© TSSM 2010 Page 11 of 11