

MATHEMATICAL METHODS CAS Teach Yourself Series

Topic 13: Continuous Probability Distributions

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au

© TSSM 2011 Page 1 of 12

Contents

Continuous Random Variables	3
As it appears in Unit 4	3
Finding the Interquartile Range	3
Calculator skills	7
Review Questions	8
Solutions to Review Questions	11

Continuous Random Variables

As it appears in Unit 4

These are probabilities that are calculated by finding area under curves that are described by functions. The areas between values on the x axis correspond to the probabilities.

Key ideas:

$$\int_{a}^{b} f(x)dx = 1$$

$$\mu = \int_{a}^{b} x.f(x)dx$$

Median:
$$\int_{a}^{med} f(x)dx = 0.5$$

Mode: Max value that lies between
$$a$$
 and b for $f(x)$. If this is a max stationary point - solve $f'(x)=0$.

$$\sigma^{2} = \int_{a}^{b} x^{2} \cdot f(x) dx - \mu^{2} = \int_{a}^{b} (x - \mu)^{2} f(x) dx$$

$$\sigma = \sqrt{\sigma^2}$$

Percentiles

The value along the x axis that corresponds to an area under the curve is called a percentile.

 $\int_a^p f(x)dx = q$, a is the starting value of the continuous random variable.

That is to find the 80^{th} percentile q = 0.80, and you find the value of p.

Finding the Interquartile Range

The interquartile range is the difference between the upper and lower quartiles.

The upper quartile is found by: $\int_a^{q_3} f(x) dx = 0.75$

The lower quartile is found by: $\int_{a}^{q_1} f(x) dx = 0.25$

Interquartile range = $q_3 - q_1$.

Example

Let a continuous random variable be defined as $f(x) = \begin{cases} ke^{-x}, x \ge 0 \\ 0, elsewhere \end{cases}$

a. Show find the value of k.

b. Sketch f(x).

Answer

a.

$$\int_0^\infty ke^{-x} dx = 1$$
$$\left[\frac{-k}{e^x}\right]_0^\infty = 1$$
$$k = 1$$

b.

From part a, $f(x) = \begin{cases} e^{-x}, x \ge 0 \\ 0, elsewhere \end{cases}$

Example

Let a continuous random variable be defined as $f(x) = \begin{cases} 12x^2(1-x), 0 \le x \le 1 \\ 0, elsewhere \end{cases}$,

a. Show that this is a continuous random variable.

b. Calculate Pr(X>0.2).

c. Find the expected value of the continuous random variable, E(X).

Answer

a.

Show that the integral equals 1.

$$\int_0^1 12x^2 (1-x) dx$$
= $[4x^3 - 3x^4]_0^1$
= 1

b.

$$Pr(X > 0.2) = \int_{0.2}^{1} f(x)dx$$
$$= [4x^{3} - 3x^{4}]_{0.2}^{1}$$
$$= 0.9728$$

c.

$$E(x) = \int_0^1 x f(x) dx$$
$$\int_0^1 x \times 12x^2 (1 - x) dx$$
$$= 0.6$$

Example

The probability of the life span of a certain brand of cheap AAA batteries is described by the function: $f(x) = \begin{cases} 2(1-x), 0 \le x \le 1 \\ 0, elsewhere \end{cases}$, x is measured in hours.

- **a.** Sketch f(x).
- **b.** Calculate the probability that a battery will last for more than 45 minutes.
- **c.** Calculate the interquartile range of the battery life span.
- **d.** Calculate the median life span.

Answer

a.

b.

$$\Pr\left(X > \frac{45}{60}\right) = \int_{\frac{45}{60}}^{1} 2(1-x)dx$$
$$= \frac{1}{16} = 0.0625$$

C.

Lower Quartile

$$[2x - x^2]_0^{q_1} = 0.25$$

Upper Quartile

$$[2x - x^2]_0^{q_3} = 0.75$$

$$\int_0^{q_1} 2(1-x)dx = 0.25$$

$$q_1 = 0.134$$

$$\int_0^{q_3} 2(1-x)dx = 0.75$$

$$q_3 = 0.5$$

Interquartile Range

$$q_3 - q_1 = 0.366$$

d.

$$\int_0^m 2(1-x)dx = 0.5$$

$$[2x - x^2]_0^m = 0.5$$

$$m = 0.293$$

Calculator skills

Define functions Graphing functions Evaluate definite integral Evaluate f'(x) = 0.

Review Questions

1. Show by calculation if the following are continuous probability distributions:

a.
$$f(x) = \begin{cases} \frac{1}{2}(x^2 + 4) & 0 < x < 1 \\ 0 & x \le 0 \text{ or } x \ge 1 \end{cases}$$

b. .	$f(x) = \begin{cases} \frac{1}{2} & 2 \le x \le \\ 0 & x < 2 \text{ or } x \end{cases}$	4 > 4		

2. The probability density function of the age of puppies, X years, brought into a vet is given by:

$$f(x) = \begin{cases} \frac{3}{4}x(2-x) & 0 < x < 2\\ 0 & \text{otherwise} \end{cases}$$

If 60 puppies are brought in on a particular day, how many are expected to be less than 8 months old?

3. The probability density function of X is given by:

$$f(x) = \begin{cases} \sin(2x) & 0 \le x \le \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases}$$

Find	the	mean	median	and	mode	of X
mu	uic	mcan,	meanan	unu	mouc	01 21.

4. The life of a brand of sparklers, in seconds, can be modeled by the probability function:

$$f(x) = \begin{cases} \frac{c}{x^2} & x \ge 100 \\ 0 & elsewhere \end{cases}$$

	Find	tha	1701110	$\alpha f \alpha$
а.	rına	tne	value	oi c

h.	Find	the	median	life	of a	sparkler.

	Draw a sketch of $f(x)$.
=	inuous probability density function is modeled by the function $\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$ Find the value of a .
=	$\int ax(2-x) \qquad 0 \le x \le 2$
=	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$
=	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$
=	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$
= 1.	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$ Find the value of a .
= 1.	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$
= 1.	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$ Find the value of a .
= 1.	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$ Find the value of a .
= a.	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$ Find the value of a .
= a.	$\begin{cases} ax(2-x) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$ Find the value of a .

5.

© TSSM 2011 Page 10 of 12

Solutions to Review Questions

1.

$$\mathbf{a.} \quad \int_0^1 f(x) \neq 1$$

No it is not

b.
$$\int_{2}^{4} f(x) = 1$$

Yes it is

2.

$$\int_0^{\frac{8}{12}} f(x) = \frac{7}{27}$$

$$60 \times \frac{7}{27} = \frac{140}{9} \approx Answer$$

Approximately 16 puppies.

3.

Mean:
$$\int_0^{\frac{\pi}{2}} x. f(x) dx$$

Median:
$$\int_0^{med} f(x)dx = 0.5$$

Mode: Solution to f'(x) = 0.

Mean=
$$\frac{\pi}{4}$$
 Median = $\frac{\pi}{4}$ Mode= $\frac{\pi}{4}$

4.

- **a.** Integrate between x=100 and $x=\infty$. 100
- **b.** Solve the equation: $\int_{100}^{med} f(x) dx = 0.5$

200

c.

5.

a. Solve the equation: $\int_0^2 f(x) dx = 1$

 $\frac{3}{4}$

b. Evaluate: $\int_0^{\frac{1}{2}} f(x) dx$