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How to use this book

Heinemann Physics 12 
4th Edition
Heinemann Physics 12 4th Edition has 
been written to the new VCE Physics 
Study Design 2017–2021. The book covers 
Units 3 and 4 in an easy-to-use resource. 
Explore how to use this book below.

CHAPTER

Gravity is, quite literally, the force that drives the universe. It was gravity that first 
caused particles to coalesce into atoms, and atoms to congregate into nebula, 
planets and stars. An understanding of gravity is fundamental to understanding 
the universe.

This chapter centres on Newton’s law of universal gravitation. This will be used to 
predict the size of the force experienced by an object at various locations on the 
Earth and other planets. It will also be used to develop the idea of a gravitational 
field. Since the field concept is also used to describe other basic forces such as 
electromagnetism and the strong and weak nuclear forces, this will provide an 
important foundation for further study in Physics.

Key knowledge 
By the end of this chapter you will have studied the physics of gravity, and will be 
able to:

• Describe gravitation using a field model.
• Investigate gravitational fields including directions and shapes of fields. 
• Investigate gravitational fields about a point mass with reference to:

 - the direction of the field
 - the use of the inverse square law to determine the magnitude of the field
 - potential energy changes (qualitative) associated with a point mass moving 
in the field.

• Analyse the use of gravitational fields to accelerate mass, including 

 - gravitational field and gravitational force concepts: g = G
M
r2  and Fg = G

m1m2

r2

 - potential energy changes in a uniform gravitational field: Eg = mg∆h
 - the change in gravitational potential energy from area under a force–distance 
graph and area under a field–distance graph multiplied by mass.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Gravity
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Worked example 2.4.2

DIRECTION OF FORCE ON A NEGATIVELY CHARGED PARTICLE

A single, negatively charged particle with a charge of –1.6 × 10–19 C is travelling 
horizontally out of a computer screen and perpendicular to a magnetic field, B, 
that runs horizontally from left to right across the screen. In what direction will 
the force experienced by the charge act?

Thinking Working 

(�ngers)
�eld B

(palm)
force F

(thumb)
v (positive charge)

The right-hand rule is used to 
determine the direction of the force 
on a positively charged particle.

Align your hand so that your fingers are 
pointing in the direction of the magnetic 
field, i.e. left to right and horizontal.

If the negatively charged particle is 
travelling out of the screen, a positively 
charged particle would be moving in the 
opposite direction. Align your thumb so it 
is pointing into the screen, in the direction 
that a positive charge would travel. 

Your palm should be facing downwards. 
That is the direction of the force applied 
by the magnetic field on the negative 
charge out of the screen.

Worked example: Try yourself 2.4.2

DIRECTION OF FORCE ON A NEGATIVELY CHARGED PARTICLE

A single, negatively charged particle with a charge of –1.6 × 10–19 C is travelling 
horizontally from left to right across a computer screen and perpendicular to a 
magnetic field, B, that runs vertically down the screen. In what direction will the 
force experienced by the charge act?

EXTENSION

Objects moving at an angle to the magnetic field
The force experienced by a charge moving in a magnetic field is a vector quantity.  
The original expression noted above applies only to that component of the velocity of 
the charge perpendicular to the magnetic field. To find the force acting on an object 
moving at an angle θ to the magnetic field, use:

F = qvB sin θ
A charged particle travelling at a steady speed in a magnetic field experiences this 

force at an angle to its path and will be diverted.

This is the theory behind CRT screens. As the direction of the charged particle 
changes, so does the angle of the force acting on it. In a very large magnetic field 
the charged particles will move in a circular path. Mass spectrometers and particle 
accelerators both work on this principle. 

When high-energy particles in the solar wind from the Sun meet the Earth’s magnetic 
field, they also experience this type of force. As the particles approach the Earth, they 
encounter the magnetic field and are deflected in such a way that they spiral towards 
the poles, losing much of their energy and creating the auroras (the southern aurora, or 
aurora australis, and the northern aurora, or aurora borealis, as shown in Figure 2.4.4).

FIGURE 2.4.4 Charged particles from the Sun or deep space are trapped by the Earth’s magnetic field,  
causing them to spiral towards the poles. As they do this, they lose energy and create the auroras.

THE FORCE ON A CURRENT-CARRYING CONDUCTOR 
Since a conducting wire is essentially a stream of charged particles flowing in one 
direction, it is not hard to imagine that a conductor carrying a stream of charges 
within a magnetic field will also experience a force. This is the theory behind the 
operation of electric motors that will be explained in the chapter ‘Applications 
of fields’.

The current in a conductor is dependent on the rate at which charges are moving 
through the conductor; that is:

I = Qt
where I is the current (A) 
 Q is the total charge (C) 
 t is the time taken (s). 
For a 1 m length of conductor, the velocity of the charges through the conductor is:

v = s
t  = 1t

And hence

I = Qt  = Q × 1t  = Qv

As F = qvB for a single charge, q, moving perpendicular to a magnetic field, 
then: 

F = IB for a one metre conductor, 
and for a conductor of any length, l, F = IlB
and for a conductor made up of n loops or conductors of length l:

F = nIlB

where F  is the force on the conductor perpendicular to the magnetic field in 
newtons (N)

 n is the number of loops or conductors

 I is the current in the conductor in amperes (A) 

 l is the length of the conductor in metres (m)

 B is the strength of the magnetic field in tesla (T)

Just as for a single charge moving in a magnetic field, the force on the conductor 
is at a maximum when the conductor is at right angles to the field. The force is 
zero when the conductor is parallel to the magnetic field. The right-hand rule is 
used to determine the direction of the force.

PHYSICS IN ACTION

The current balance
A current balance can be used to determine the force on a 
conductor in a magnetic field, as shown in Figure 2.4.5.

FIGURE 2.4.5 A current balance is used to measure the interaction between  
an electric conductor and a magnetic field. The relationship between force,  

current and conductor length can be shown.

PHYSICSFILE

Gravitational repulsive 
forces 
A leading theory in the explanation 
of the expansion of the universe is 
the concept of dark energy. While 
little is understood about dark energy 
at this time, it may be a source of 
a repulsive force of gravity possibly 
originating from the interaction of 
matter and antimatter.
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forces 
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a repulsive force of gravity possibly 
originating from the interaction of 
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Extension 
The extension boxes include material 
that goes beyond the core content of 
the Study Design and are intended 
for students who wish to expand 
their depth of understanding.

Physics in Action 
Physics in Action place 
physics in an applied 
situation or relevant 
context. These refer to 
the nature and practice 
of physics, applications 
of physics and the 
associated issues 
and the historical 
development of 
concepts and ideas.

Worked examples 
Worked examples are set out in steps that show both thinking and working. This enhances student understanding 
by linking underlying logic to the relevant calculations.
Each Worked example is followed by a Worked example: Try Yourself. This mirror problem allows students to 
immediately test their understanding. 
The fully worked solution to each Worked example: Try Yourself is available on Heinemann Physics 12 4th edition 
ProductLink.

Chapter opener 
Chapter opening 
pages links the Study 
Design to the chapter 
content. Key knowledge 
addressed in the 
chapter is clearly listed.

PhysicsFile 
PhysicsFiles include 
a range of interesting 
information and real 
world examples.

Highlight  
The highlight boxes 
provide important 
information such as key 
definitions, formulae 
and summary points.
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How to use this book

Glossary 
Key terms are shown in bold and 
listed at the end of each chapter. 
A comprehensive glossary at the end 
of the book provides comprehensive 
definitions for all key terms.

Answers
Numerical answers and key short response answers are included at the 
back of the book. Comprehensive answers and fully worked solutions for 
all section review questions, each Worked example: Try Yourself, chapter 
review questions and Area of Study review questions are provided via 
Heinemann Physics 12 4th edition ProductLink.

UNIT 4 • Area of Study 2

REVIEW QUESTIONS

372 373REVIEW QUESTIONSAREAS OF STUDY 1 & 2   |   WAVES AND LIGHT BEHAVIOUR & LIGHT AND MATTER

How are light and matter similar?
The following information relates to questions 1–4.
Light passing through a yellow filter is incident on the 
cathode in a photoelectric effect experiment as shown 
in diagram (a). The reverse current in the circuit can be 
altered using a variable voltage. At the stopping voltage, 
V0 , the photocurrent is zero. The current in the circuit is 
plotted as a function of the applied voltage in diagram (b).

µAV

V0

0

Y

Current (µA)

(a)

(b)

Potential di�erence between
emitter and collector (V)

X

emitter

yellow �lter light beam

collector

1  Which of the following changes would result in an 
increase in the size of V0?
A replacing the yellow filter with a red filter
B replacing the yellow filter with a blue filter
C increasing the intensity of the yellow light

2  Which one of the following options best describes why 
there is zero current in the circuit when the applied 
voltage equals the stopping voltage?
A  The threshold frequency of the emitter increases to 

a value higher than the frequency of yellow light.
B  The work function of the emitter is increased to 

a value higher than the energy of a photon of 
yellow light.

C  The emitted photoelectrons do not have enough 
kinetic energy to reach the collector.

3  Which of the following descriptions of the graphs X 
and Y in diagram (b) are correct?
A Both graphs are produced by yellow light of 

different intensities.
B Graph X is produced by yellow light while graph Y 

is produced by blue light.
C Each graph is produced by light of a different 

colour and different intensity.

4  The emitter of the photocell is coated with nickel. 
The filter is removed and a 200 nm light is directed 
onto the cathode. The minimum value of V0 that will 
result in zero current in the circuit is 1.21 V. What is 
the work function of nickel?

5  Describe three experimental results associated with 
the photoelectric effect that cannot be explained by 
the wave model of light.

The following information relates to questions 6–9.
In a double-slit interference experiment, an electron 
beam travels through two narrow slits, 20 mm apart, in 
a piece of copper foil. The resulting pattern is detected 
photographically at a distance of 2.0 m. The speed of the 
electrons is 0.1% of the speed of light.

6  Calculate the de Broglie wavelength of the electrons 
used in the experiment.

7  What do you expect to see on the photographic plate?

8  Given that electrons are particles, how do you interpret 
the behaviour of the electrons in this experiment?

9  If the experiment were to be repeated using neutrons, 
at what speed would a neutron need to travel to have 
the same de Broglie wavelength as the electrons in 
Question 8?

The following information relates to questions 10–12.
The energy levels for atomic mercury are as follows.

0

–1.6

–3.7

–5.5

–10.4

n = ∞

n = 4

n = 3

n = 2

n = 1

E (eV)

Determine the frequency and wavelength of the light 
emitted when the atom makes the following transitions:

10  n = 4 to n = 1

11  n = 2 to n = 1

12  n = 4 to n = 3

The following information relates to questions 13–15.
An electron is accelerated across a potential difference 
of 65 V.

13  What kinetic energy will the electron gain?

14  What speed will the electron reach?

15  What is the de Broglie wavelength of the electron?

16  How did Niels Bohr explain the observation that for 
the hydrogen atom, when the frequency of incident 
light was below a certain value, the light would simply 
pass straight through a sample of hydrogen gas 
without any absorption occurring?

The following information relates to questions 17–19.
Physicists can investigate the spacing of atoms in a 
powdered crystal sample using electron diffraction. This 
involves accelerating electrons to known speeds using an 
accelerating voltage. In a particular experiment, electrons 
of mass 9.11 × 10–31 kg are accelerated to a speed of 
1.75 × 107 m s–1. The electrons pass through a powdered 
crystal sample, and the diffraction pattern is observed on 
a fluorescent screen.

17  Calculate the De Broglie wavelength (in nm) of the 
accelerated electrons.

18  Describe the main features of the expected diffraction 
pattern.

19  If the accelerating voltage is increased, what difference 
would you expect to see in the diffraction pattern 
produced? Explain your answer.

20  How would de Broglie explain the light and dark rings 
produced when a beam of electrons is fired through a 
sodium chloride crystal?

21  Describe how the wave–particle duality of electrons 
can be used to explain the quantised energy levels of 
the atoms.

22  Which one or more of the following phenomena can 
be modelled by a pure wave model of light?
A  the photoelectric effect
B  refraction
C  the double-slit interference of light
D  reflection
E  diffraction

23  Define the electron-volt.

24  Why are all of the frequencies of light above the 
ionisation energy value for hydrogen continuously 
absorbed?

25  How do our wave and particle models of light parallel 
the ideas related to electrons and matter waves?

26 For an electron and a proton to have the same 
wavelength:
A the electron must have the same energy as the 

proton.
B the electron must have the same speed as the 

proton.
C the electron must have the same momentum as 

the proton.
D It is impossible for an electron and a proton to have 

the same wavelength.
The following information relates to questions 27 and 28.
When conducting a photoelectric effect experiment, a 
student correctly observes that the energy of emitted 
electrons depended only on the frequency of the incident 
light and was independent of the intensity.

27  Explain how the particle model accounts for this 
observation.

28  Explain why the wave model cannot account for 
this observation.

The following information relates to questions 29–33.
Consider the energy-level diagram for the hydrogen atom 
shown below. A photon of energy 14.0 eV collided with a 
hydrogen atom in the ground state.

n = ∞ E  = 0

E  = –0.88 eV

E  = –1.51 eV

E = –3.39 eV

E  = –13.6 eV

n = 4

n = 3

n = 2

n = 1

29  Explain why this collision will eject an electron from 
the atom.

30  Calculate the energy of the ejected electron in 
electronvolts and in joules.

31  What is the momentum of the ejected electron?

32  Determine the wavelength of the ejected electron.

33  A hydrogen atom in the ground state collides with a 
10.0 eV photon. Describe the result of such a collision.
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Chapter review

KEY TERMS

apparent weight
apparent weightlessness
armature
artificial satellites
cathode ray tube
centripetal acceleration
commutator

direct current
electromagnet
electron gun
free fall
geostationary satellite
natural satellite
normal reaction force

particle accelerator
satellite
stator
synchrotron
torque
weight

1  Calculate the apparent weight of a 45.0 kg child 
standing in a lift that is decelerating while travelling 
upwards at 3.15 m s–2. 

2  Which description best describes the motion of 
astronauts when orbiting the Earth?
A  They float in a zero gravity environment.
B  They float in a reduced gravity environment.
C  They fall down very slowly due to the very small 

gravity.
D  They fall in a reduced gravity environment.

3  Select the statement below that correctly states how 
a satellite in a stable circular orbit 200 km above the 
Earth will move.
A  It will have an acceleration of 9.8 m s–2.
B  It will have constant velocity.
C  It will have zero acceleration.
D  It will have acceleration of less than 9.8 m s–2.

4  What can be said about an object if that object 
is orbiting the Earth in space and appears to be 
weightless?
A  It is in freefall.
B  It is in zero gravity.
C  It has no mass.
D It is floating.

5  A low-Earth-orbit satellite X has an orbital radius of r 
and period T. A high-Earth-orbit satellite Y has orbital 
radius of 5r. In terms of T, what is the orbital period 
of Y?

6  The planet Neptune has a mass of 1.02 × 1026 kg. 
One of its moons, Triton, has a mass of 2.14 × 1022 kg 
and an orbital radius equal to 3.55 × 108 m. 
a  Calculate the orbital acceleration of Triton. 
b  Calculate the orbital speed of Triton.
c  Calculate the orbital period of Triton (in days).

7  Ceres, the first asteroid to be discovered, was found 
by Giuseppe Piazzi in 1801. Ceres has a mass of 
7.0 × 1020 kg and a radius of 385 km. 
a  What is the gravitational field strength at the 

surface of Ceres?

b  Determine the speed required by a satellite in 
order to remain in orbit 10 km above the surface 
of Ceres.

The following information applies to questions 8–11.
Diagram (a) below shows an end-on view of a current-
carrying loop, LM. The loop is free to rotate about a 
horizontal axis XY. You are looking at the loop from the 
Y end of the axis. The same loop is seen from the top in 
figure (b). Initially, arms L and M are horizontal (L1–M1). 
Later they are rotated so that they are vertical (L2–M2). 
The loop is located in an external magnetic field of 
magnitude B directed east (at right angles to the axis of 
the loop). Note the current directions in (a): out of the 
page in M and into the page in L. With reference to the  
up–down, W–E cross arrows in (a):

B

x
Y

M2

M1

L2

L1

x

W E

up

down

X

Y

L M

(a)

(b)

3.3 Review
SUMMARY

• Particle accelerators are machines that accelerate 
charged particles, such as electrons, protons or 
atomic nuclei, to speeds close to that of light. 

• The device used to provide these particles is 
called an electron gun.

• The force, F, on a particle of charge q in an electric 
field of strength E is given by F = qE. This force 
causes work to be done on the charged particle.

• The work done on a charged particle in an electric 
field can cause a change in the kinetic energy of 
the particle. If the particle is accelerated from rest, 
the work done is equal to the final kinetic energy, 

W = qV = 
1
2mv2

• The magnitude of the force on a charged object 
within a magnetic field is given by F = qvB.

• The right-hand rule is used to determine the 
direction of the force on a positive charge moving 
in a magnetic field, B. The direction of the force 
on a negatively charged particle is in the opposite 
direction.

• The radius of the path of an electron travelling at 
right angles to a uniform magnetic field is given 

by r = 
mv
qB .

KEY QUESTIONS

1  How are particle accelerators able to provide the 
centripetal acceleration to change the direction of a 
charged particle using electromagnetic fields?
A  Charged particles are part of the electromagnetic 

spectrum.
B  Charged particles experience a force from the 

magnetic field that is proportional to the particle’s 
velocity, constantly accelerating the charged 
particle.

C  The accelerator is curved around the magnetic field.
D  Charged particles will always accelerate when 

placed in a vacuum.

2 An electron with a charge magnitude of 1.6 × 10–19 C  
is moving eastwards into magnetic field of strength 
B = 1.5 × 10–5 T acting into the screen, as shown 
below. If the magnitude of the initial velocity is 
1.0 m s–1, what is the magnitude and direction 
of the force it initially experiences as it enters the 
magnetic field?

N

S

W E
V

3 Electrons in a cathode ray tube (CRT) are accelerated 
through a potential difference of 2.5 kV. Calculate the 
speed at which they hit the screen of the CRT.

4 An electron travelling at a speed of 7.0 × 106 m s–1 

passes through a magnetic field of strength 
8.6 × 10–3 T. The electron moves at right angles to 
the field. 
a  Calculate the force exerted on the electron by the 

magnetic field.
b  Given that this force directs the electron in a 

circular path, calculate the radius of its motion.

5 An electron with speed 7.6 × 106 m s–1 travels through 
a uniform magnetic field and follows a circular path 
of diameter 9.2 × 10–2 m. Calculate the magnetic field 
strength through which the electron travels. 

6  In an experiment similar to Thomson’s for determining 
the charge to mass ratio 

e
m of cathode rays (electrons), 

electrons travel at right angles through a magnetic 
field of strength 1.5 × 10–4 T. Given that they travel in 
an arc of radius 6 cm and that 

e
m = 1.76 × 1011 C kg–1, 

calculate the speed of the electrons. 

7 A particle accelerator uses magnetic fields to 
accelerate electrons to very high speeds. Explain, 
using appropriate theory and relationships, how the 
accelerator achieves these high speeds.

8 In an electron gun, an electron is accelerated by a 
potential difference of 28 kV. With what velocity does 
the electron exit the assembly? 

9  An electron beam travelling through a cathode 
ray tube is subjected to simultaneous electric and 
magnetic fields. The electrons emerge with no 
deflection. Given that the potential difference across 
the parallel plates X and Y is 3.0 kV, and that the 
applied magnetic field is of strength 1.6 × 10–3 T, 
calculate the distance between the plates. 
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Chapter review 
A set of higher order questions are 
provided at the end of each chapter 
to test students’ ability to apply the 
knowledge gained from the chapter.

Area of Study review 
A comprehensive set of 
exam-style questions, 
including multiple choice 
and extended response 
are provided at the end of 
each Area of Study section. 
The questions are designed 
to assist students in to 
apply their knowledge and 
understanding across the 
entire Area of Study.

Section review 
A set of ‘key questions’ are 
provided at the end of each 
section to test students’ 
understanding and ability 
to recall the key concepts 
of the section as well as 
highlight areas that they 
need to revise.

Section summary 
A summary is provided at 
the end of each section to 
assist students consolidate 
key points and concepts.
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AREA OF STUDY 1

How do things move without contact? 
Outcome 1: On completion of this unit the student should be able to analyse 
gravitational, electric and magnetic fields, and use these to explain the operation of 
motors and particle accelerators and the orbits of satellites.

AREA OF STUDY 2  

How are fields used to move electrical energy? 
Outcome 2: On completion of this unit the student should be able to analyse and 
evaluate an electricity generation and distribution system.

AREA OF STUDY 3  

How fast can things go? 
Outcome 3: On completion of this unit the student should be able to investigate 
motion and related energy transformations experimentally, analyse motion using 
Newton’s laws of motion in one and two dimensions, and explain the motion of 
objects moving at very large speeds using Einstein’s theory of special relativity.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

How do fields explain  
motion and electricity?UNIT





CHAPTER

Gravity is, quite literally, the force that drives the universe. It was gravity that first 
caused particles to coalesce into atoms, and atoms to congregate into nebulas, 
planets and stars. An understanding of gravity is fundamental to understanding 
the universe.

This chapter centres on Newton’s law of universal gravitation. This will be used to 
predict the size of the force experienced by an object at various locations on the 
Earth and other planets. It will also be used to develop the idea of a gravitational 
field. Since the field concept is also used to describe other basic forces such as 
electromagnetism and the strong and weak nuclear forces, this will provide an 
important foundation for further study in Physics.

Key knowledge 
By the end of this chapter you will have studied the physics of gravity, and will be 
able to:

• describe gravitation using a field model
• investigate gravitational fields including directions and shapes of fields
• investigate gravitational fields about a point mass with reference to:

 - the direction of the field
 - the use of the inverse square law to determine the magnitude of the field
 - potential energy changes (qualitative) associated with a point mass moving 
in the field

• analyse the use of gravitational fields to accelerate mass, including 
 - gravitational field and gravitational force concepts: g = G

M
r2  and Fg = G

m1m2

r2

 - potential energy changes in a uniform gravitational field: Eg = mg∆h
 - the change in gravitational potential energy from area under a force–distance 
graph and area under a field–distance graph multiplied by mass.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Gravity
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1.1 Newton’s law of universal 
gravitation
In 1687, Sir Isaac Newton (see Figure 1.1.1) published a book that changed 
the world. Entitled Philosophiæ Naturalis Prinicipia Mathematica (Mathematical 
Principles of Natural Philosophy), Newton’s book (shown in Figure 1.1.2) used 
a new form of mathematics now known as calculus and outlined his famous laws 
of motion. 

The Principia also introduced Newton’s law of universal gravitation. This was 
particularly significant because, for the first time in history, it scientifically explained 
the motion of the planets. This led to a change in humanity’s understanding of its 
place in the universe.

FIGURE 1.1.2 The Principia is one of the most influential books in the history of science.

UNIVERSAL GRAVITATION
Newton’s law of universal gravitation states that any two bodies in the universe 
attract each other with a force that is directly proportional to the product of their 
masses and inversely proportional to the square of the distance between them.

Mathematically, Newton’s law of universal gravitation can be expressed as: 

Fg  = G
m1m2

r2

where Fg is the gravitational force (N)

 m1 is the mass of object 1 (kg)

 m2 is the mass of object 2 (kg)

 r is the distance between the centres of m1 and m2 (m) 

 G is the gravitational constant, 6.67 × 10–11 N m2 kg–2

The fact that r appears in the denominator of Newton’s law of universal 
gravitation indicates an inverse relationship. Since r is also squared, this relationship 
is known as an inverse square law. The implication is that as r increases, Fg 
will decrease dramatically. This law will reappear again later in the chapter when 
gravitational fields are examined in detail.

FIGURE 1.1.1 Sir Isaac Newton was one of the 
most influential physicists who ever lived.
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PHYSICS IN ACTION

Measuring the gravitational constant, G 
The gravitational constant, G, was first  
accurately measured by the British scientist 
Henry Cavendish in 1798, over a century after 
Newton’s death. Cavendish used a torsion 
balance (shown in Figure 1.1.3), a device that 
can measure very small twisting forces. 
Cavendish’s experiment could measure forces 
smaller than 1 µN (i.e. 10–6 N). He used this 
balance to measure the force of attraction 
between lead balls held a small distance apart. 
Once the size of the force was known for a 
given combination of masses at a known 
separation distance, a value for G could be 
determined. 

FIGURE 1.1.3 Henry Cavendish used a torsion balance 
to measure the small twisting force created by the 

gravitational attraction of lead balls.

As its name suggests, the law of universal gravitation predicts that any two objects 
that have mass will attract each other. However, because the value of G is so small, 
the gravitational force between two everyday objects is too small to be noticed.

Worked example 1.1.1

GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS

A man with a mass of 90 kg and a woman with a mass of 75 kg have a distance 
of 80 cm between their centres. Calculate the force of gravitational attraction 
between them. 

Thinking Working 

Recall the formula for Newton’s law of 
universal gravitation.  

Fg = G
m1m2

r2

Identify the information required, and 
convert values into appropriate units 
when necessary. 

G = 6.67 × 10–11 N m2 kg–2 

m1 = 90 kg

m2 = 75 kg

r = 80 cm = 0.80 m

Substitute the values into the equation. Fg = 6.67 × 10–11 × 
90 × 75

0.802

Solve the equation. Fg = 7.0 × 10–7 N

Worked example: Try yourself 1.1.1

GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS

Two bowling balls are sitting next to each other on a shelf so that the centres of 
the balls are 60 cm apart. Ball 1 has a mass of 7.0 kg and ball 2 has a mass of 
5.5 kg. Calculate the force of gravitational attraction between them. 
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GRAVITATIONAL ATTRACTION BETWEEN MASSIVE 
OBJECTS
Gravitational forces between everyday objects are so small (as seen in Worked 
example 1.1.1) that they are hard to detect without specialised equipment and can 
usually be considered to be negligible. 

For the gravitational force to become significant, at least one of the objects must 
have a very large mass—for example, a planet (see Figure 1.1.4).

FIGURE 1.1.4 Gravitational forces become significant when at least one of the objects has a large 
mass, for example the Earth and the Moon.

Worked example 1.1.2

GRAVITATIONAL ATTRACTION BETWEEN MASSIVE OBJECTS

Calculate the force of gravitational attraction between the Sun and the Earth 
given the following data:

mSun = 2.0 × 1030 kg

mEarth = 6.0 × 1024 kg

rSun–Earth = 1.5 × 1011 m

Thinking Working 

Recall the formula for Newton’s law 
of universal gravitation.

Fg = G
m1m2

r2

Identify the information required. G = 6.67 × 10–11 N m2 kg–2

m1 = 2.0 × 1030 kg

m2 = 6.0 × 1024 kg

r = 1.5 × 1011 m

Substitute the values into the 
equation. 

Fg = 6.67 × 10–11 × 
2.0 × 1030 × 6.0 × 1024

(1.5 × 1011)2

Solve the equation. Fg = 3.6 × 1022 N 
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Worked example: Try yourself 1.1.2

GRAVITATIONAL ATTRACTION BETWEEN MASSIVE OBJECTS

Calculate the force of gravitational attraction between the Earth and the Moon, 
given the following data:

mEarth = 6.0 × 1024 kg

mMoon = 7.3 × 1022 kg

rMoon–Earth = 3.8 × 108 m

The forces in Worked example 1.1.2 are much greater than those in Worked 
example 1.1.1, illustrating the difference in the gravitational force when at least one 
of the objects has a very large mass.

EXTENSION

Understanding the structure of the universe
In the century before Newton, there had been some 
controversy about the structure of the universe. In 1543, 
the commonly accepted geocentric (i.e. Earth-centred) 
model of the universe had been challenged by a Polish 
astronomer called Nicolaus Copernicus. He proposed that 
the Sun was the centre of the universe. Unfortunately, 
some faulty assumptions meant that the predictions of 
Copernicus’ Sun-centred or heliocentric model (shown in 
Figure 1.1.5) did not match observations any better than 
the geocentric model. 

FIGURE 1.1.5 Nicolaus Copernicus’ proposed heliocentric model of the 
solar system.

The Danish astronomer Tycho Brahe had been observing 
and studying the heavens for many years, accumulating 
a comprehensive collection of data. According to Brahe’s 
documentation, his assistant, German mathematician 

Johannes Kepler, refined the Copernican model to reflect 
actual observations. 

Through these calculations, Kepler discovered that the 
orbit of the planets around the Sun was elliptical and not 
circular as previously thought (see Figure 1.1.6). At the 
time, this discovery challenged conventional beliefs about 
the ‘perfection’ of heavenly bodies, and, as a consequence, 
Kepler’s ideas were not widely accepted. In fact, in some 
countries his books were banned and publicly burned.

FIGURE 1.1.6 Johannes Kepler discovered that the orbit of planets 
around the Sun was elliptical.

One of Newton’s great achievements was that he 
was able to use his law of universal gravitation to 
mathematically derive all of Kepler’s planetary laws.

This allowed Newton to accurately explain the motion of 
the planets in terms of gravitational attraction. Within a few 
years of the publication of Newton’s work, the geocentric 
model had largely been abandoned in favour of the 
heliocentric model.
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EFFECT OF GRAVITY 
According to Newton’s third law of motion, forces occur in action–reaction pairs. 
An example of such a pair is shown in Figure 1.1.7. The Earth exerts a gravitational 
force on the Moon and, conversely, the Moon exerts an equal and opposite force 
on the Earth. Using Newton’s second law of motion, you can see that the effect 
of the gravitational force of the Moon on the Earth will be much smaller than 
the corresponding effect of the Earth on the Moon. This is because of the Earth’s 
larger mass.

Worked example 1.1.3

ACCELERATION CAUSED BY A GRAVITATIONAL FORCE

The force of gravitational attraction between the Moon and the Earth is 
approximately 2.0 × 1020 N. Calculate the acceleration of the Earth and the Moon 
caused by this force. Compare these accelerations by calculating the ratio aMoon

aEarth
 .

Use the following data:

mEarth = 6.0 × 1024 kg

mMoon = 7.3 × 1022 kg

Thinking Working 

Recall the formula for Newton’s 
second law of motion.

F = ma

Transpose the equation to make a the 
subject.

a = 
F
m

Substitute values into this equation to 
find the accelerations of the Moon and 
the Earth. 

aEarth = 
2.0 × 1020

6.0 × 1024  = 3.3 × 10–5 m s–2

aMoon = 
2.0 × 1020

7.3 × 1022  = 2.7 × 10–3 m s–2

Compare the two accelerations. aMoon

aEarth
 = 

2.7 × 10–3

3.3 × 10–5  = 82

The acceleration of the Moon is 
82 times greater than the acceleration 
of the Earth.

Worked example: Try yourself 1.1.3

ACCELERATION CAUSED BY A GRAVITATIONAL FORCE

The force of gravitational attraction between the Sun and the Earth is 
approximately 3.6 × 1022 N. Calculate the acceleration of the Earth and the Sun 
caused by this force. Compare these accelerations by calculating the ratio aEarth

aSun
 .

Use the following data:

mEarth = 6.0 × 1024 kg

mSun = 2.0 × 1030 kg

Gravity in the solar system 
Although the accelerations caused by gravitational forces in Worked example 1.1.3 
are small, over billions of years they created the motion of the solar system. 

In the Earth–Moon system, the acceleration of the Moon is many times greater 
than that of the Earth, which is why the Moon orbits the Earth. Although the 
Moon’s gravitational force causes a much smaller acceleration of the Earth, it does 
have other significant effects, such as the tides.

Similarly, the Earth and other planets orbit the Sun because their masses are 
much smaller than the Sun’s mass. However, the combined gravitational effect of 
the planets of the solar system (and Jupiter in particular) causes the Sun to wobble 
slightly as the planets orbit it.

FIGURE 1.1.7 The Earth and Moon exert 
gravitational forces on each other.

PHYSICSFILE

Extrasolar planets  
In recent years, scientists have been 
interested in discovering whether other 
stars have planets like those in our 
own solar system. One of the ways in 
which these ‘extrasolar planets’ (or 
‘exoplanets’) can be detected is from 
their gravitational effect.

When a large planet (i.e. Jupiter-sized 
or larger) orbits a star, it causes the 
star to wobble. This causes variations 
in the star’s appearance, which can 
be detected on Earth. Hundreds of 
exoplanets have been discovered using 
this technique.
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WEIGHT AND GRAVITATIONAL FORCE 
In Unit 2 Physics the weight of an object was calculated using the formula 
W  =  Fg  =  mg. Weight is another name for the gravitational force acting on an 
object near the Earth’s surface. 

Worked example 1.1.4 below shows that the formula Fg = mg and Newton’s 
law of universal gravitation give the same answer for the gravitational force acting 
on objects on the Earth’s surface. It is important to note that the distance used in 
these calculations is the distance between the centres of the two objects, which is 
effectively the radius of the Earth.

Worked example 1.1.4
GRAVITATIONAL FORCE AND WEIGHT

Compare the weight of an 80 kg person calculated using Fg = mg with the 
gravitational force calculated using Fg = G

m1m2

r2  .

Use the following dimensions of the Earth in your calculations: 

g = 9.8 m s–2

mEarth = 6.0 × 1024 kg

rEarth = 6.4 × 106 m

Thinking Working 

Apply the weight equation. Fg = mg

= 80 × 9.8

= 784 N

= 780 N (to two significant figures)

Apply Newton’s law of universal 
gravitation. 

Fg = G
m1m2

r2

= 6.67 × 10–11 × 
6.0 × 1024 × 80

(6.4 × 106)2

= 780 N 

Compare the two values. Both equations give the same result 
to two significant figures.

Worked example: Try yourself 1.1.4
GRAVITATIONAL FORCE AND WEIGHT

Compare the weight of a 1.0 kg mass on the Earth’s surface calculated using 
the formulas Fg = mg and Fg = G

m1m2

r2 . Use the following dimensions of the 
Earth where necessary:

g = 9.8 m s–2

mEarth = 6.0 × 1024 kg

rEarth = 6.4 × 106 m

Worked example 1.1.4 shows that the constant for the acceleration due to 
gravity, g, can be derived directly from the dimensions of the Earth. An object 
with mass m sitting on the surface of the Earth is a distance of 6.4 × 106 m from 
the centre of the Earth. 

Given that the Earth has a mass of 6.0 × 1024 kg, then:

Weight = Fg

	∴	mg = G 
mEarthm
(rEarth)2

 = mG 
mEarth

(rEarth)2

	 ∴	g = G 
mEarth

(rEarth)2

 = 6.67 × 10–11 × 6.0 × 1024

(6.4 × 106)2

 = 9.8 m s–2 
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So, the rate of acceleration of objects near the surface of the Earth is a result of 
the Earth’s mass and radius. A planet with a different mass and/or different radius 
will therefore have a different value for g. Likewise, if an object is above the Earth’s 
surface, the value of r will be greater and the value of g will be smaller (due to the 
inverse square law). This is why the strength of the Earth’s gravity reduces as you 
travel away from the Earth.

APPARENT WEIGHT 
Scientists use the term ‘weight’ simply to mean ‘the force due to gravity’. It is 
also correct to interpret weight as the contact force (or normal reaction force) 
between an object and the Earth’s surface. In most situations these two definitions 
are effectively the same; however there are some cases, for example when a person 
is accelerating up or down in an elevator, where they give different results. In these 
situations, the normal force (FN) is referred to as the apparent weight since this is 
the force that the person will feel through their feet.

Worked example 1.1.5

APPARENT WEIGHT 

A 74 kg person is standing in an elevator which is accelerating upwards 
at 1.5 m s–2. Calculate the weight and apparent weight of the person.  
Use g = 9.8 m s–2.

Fnet

Fg

a = 1.5 m s‒2
FN

v

Thinking Working 

Calculate the weight of the person 
using Fg = mg.

Fg = mg = 74 × 9.8 = 725 N

Calculate the force required to 
accelerate the person upwards at 
1.5 m s–2.

Fnet = ma = 74 × 1.5 = 111 N

The net force that causes the 
acceleration results from the normal 
reaction force (upwards) and the 
weight force (downwards). Since the 
elevator is accelerating upwards, 
FN > Fg. Recall that the normal reaction 
force gives the apparent weight.

Fnet = 111

FN – Fg = 111

FN – 725 = 111

FN = 725 + 111 

FN = apparent weight = 836 N

Worked example: Try yourself 1.1.5

APPARENT WEIGHT 

Calculate the apparent weight of a 90 kg person in an elevator which is 
accelerating downwards at 0.8 m s–2. Use g = 9.8 m s–2.

EXTENSION

Multi-body 
systems 
So far, only gravitational systems 
involving two objects have been 
considered, such as the Moon 
and the Earth. In reality, objects 
experience gravitational force 
from every other object around 
them. Usually, most of these 
forces are negligible and only the 
gravitational effect of the largest 
object nearby (i.e. the Earth) 
needs to be considered.

When there is more than one 
significant gravitational force 
acting on a body, the gravitational 
forces must be added together 
as vectors to determine the 
net gravitational force (see 
Figure 1.1.8). 

m3 m2

m1

FIGURE 1.1.8 For the three masses 
m1 = m2 = m3, the gravitational forces 
acting on the central red ball are shown 
by the green arrows. The vector sum 
of the green arrows is shown by the 
blue arrow. This will be the direction 
of the net (or resultant) gravitational 
force on the red ball due to the other 
three masses. 

The direction and relative 
magnitude of the net gravitational 
force in a multi-body system 
depends entirely on the masses 
and positions of the attracting 
objects (i.e. m1, m2 and m3 in 
Figure 1.1.8). 
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1.1 Review

KEY QUESTIONS

1  What are the proportionalities in Newton’s law of 
universal gravitation?

2  What does the symbol r represent in Newton’s law of 
universal gravitation?

3  Calculate the force of gravitational attraction between 
the Sun and Mars given the following data:
mSun = 2.0 × 1030 kg 
mMars = 6.4 × 1023 kg 
rSun–Mars = 2.2 × 1011 m 

4  The force of gravitational attraction between the Sun 
and Mars is 1.8 × 1021 N. Calculate the acceleration 
of Mars given that mMars = 6.4 × 1023 kg.

5  On 14 April 2014, Mars came within 93 million km 
of Earth. Its gravitational effect on the Earth was 
the strongest it had been for over 6 years. Use the 
following data to answer the questions below.
mSun = 2.0 × 1030 kg
mEarth = 6.0 × 1024 kg
mMars = 6.4 × 1023 kg
a  Calculate the gravitational force between the Earth 

and Mars on 14 April 2014.
b  Calculate the force of the Sun on the Earth if the 

distance between them was 153 million km.
c  Compare your answers to parts (a) and (b) above 

by expressing the Mars–Earth force as a percentage 
of the Sun–Earth force.

6  The acceleration of the Moon caused by the 
gravitational force of the Earth is much larger than 
the acceleration of the Earth due to the gravitational 
force of the Moon. What is the reason for this?

7  Calculate the acceleration of an object dropped near 
the surface of Mercury if this planet has a mass of 
3.3 × 1023 kg and a radius of 2500 km. Assume that 
the gravitational acceleration on Mercury can be 
calculated similarly to that on Earth.

8  Calculate the weight of a 65 kg cosmonaut standing 
on the surface of Mars, given that the planet has a 
mass of 6.4 × 1023 kg and a radius of 3.4 × 106 m.

9  In your own words, explain the difference between the 
terms weight and apparent weight, giving an example 
of a situation where the magnitudes of these two 
forces would be different.

10  Calculate the apparent weight of a 50 kg person in 
an elevator under the following circumstances.
a accelerating upwards at 1.2 m s–2

b moving upwards at a constant speed of 5 m s–1

SUMMARY

• All objects with mass attract one another with a 
gravitational force.

• The gravitational force acts equally on each of 
the masses.

• The magnitude of the gravitational force is given 
by Newton’s law of universal gravitation: 

Fg = G
m1m2

r2

• Gravitational forces are usually negligible unless 
one of the objects is massive, e.g. a planet.

• The weight of an object on the Earth’s surface is 
due to the gravitational attraction of the Earth, 
i.e. weight = Fg .

• The acceleration due to gravity of an object near 
the Earth’s surface can be calculated using the 
dimensions of the Earth: 

g = G
mEarth

(rEarth)2 = 9.8 m s–2

• Objects can have an apparent weight that is 
greater or less than their normal weight. This 
occurs when they are accelerating vertically. 
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1.2 Gravitational fields
Newton’s law of universal gravitation describes the force acting between two 
mutually attracting bodies. In reality, complex systems like the solar system involve 
a number of objects (i.e. the Sun and planets shown in Figure 1.2.1) that are all 
exerting attractive forces on each other at the same time.

In the 18th century, to simplify the process of calculating the effect of 
simultaneous gravitational forces, scientists developed a mental construct known as 
the gravitational field. In the following centuries, the idea of a field was also applied 
to other forces and has become a very important concept in physics.

FIGURE 1.2.1 The solar system is a complex 
gravitational system. GRAVITATIONAL FIELDS 

A gravitational field is a region in which a gravitational force is exerted on all 
matter within that region. Every physical object has an accompanying gravitational 
field. For example, the space around your body contains a gravitational field 
because any other object that comes into this region will experience a (small) force 
of gravitational attraction to your body. 

The gravitational field around a large object like a planet is much more 
significant than that around a small object. The Earth’s gravitational field exerts 
a significant  influence on objects on its surface and even up to thousands of 
kilometres into space.



11CHAPTER 1   |   GRAVITY

Representing gravitational fields 
Over time, scientists have developed a commonly understood method of 
representing fields using a series of arrows known as field lines (see Figure 1.2.3). 
For gravitational fields, these are constructed as follows:
• the direction of the arrowhead indicates the direction of the gravitational force 
• the space between the arrows indicates the relative magnitude of the field:

 - closely spaced arrows indicate a strong field
 - widely spaced arrows indicate a weaker field
 - parallel field lines indicate constant or uniform field strength.

An infinite number of field lines could be drawn, so only a few are chosen to 
represent the rest. The size of the gravitational force acting on a mass in the region 
of a gravitational field is determined by the strength of the field, and the force acts 
in the direction of the field.

PHYSICS IN ACTION

Discovery of Neptune 

    

FIGURE 1.2.2 This star chart published in 1846 shows the location 
of Neptune in the constellation Aquarius when it was discovered on 
23 September, and its location one week later.

The planet Neptune was discovered through its 
gravitational effect on other planets. Two astronomers, 
Urbain Le Verrier of France and John Couch Adams of 
England, each independently identified that the observed 
orbit of Uranus varied significantly from predictions made 
based on the gravitational effects of the Sun and other 

known planets. Both suggested that this was due to the 
influence of a distant, undiscovered planet.

Le Verrier sent a prediction of the location of the new 
planet to Gottfried Galle at the Berlin Observatory and, on 
23 September 1846, Neptune was discovered within 1° of 
Le Verrier’s prediction (see Figure 1.2.2).

FIGURE 1.2.3 The arrows in this gravitational 
field diagram indicate that objects will be 
attracted towards the mass in the centre; the 
spacing of the lines shows that force will be 
strongest at the surface of the central mass 
and weaker further away from it.
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Worked example 1.2.1

INTERPRETING GRAVITATIONAL FIELD DIAGRAMS

The diagram below shows the gravitational field of a moon.

A

B

a   Use arrows to indicate the direction of the gravitational force acting at points 
A and B.

Thinking Working

The direction of the field arrows indicates 
the direction of the gravitational force, 
which is inwards towards the centre of 
the moon.

A

B

b  Indicate the relative strength of the gravitational field at each point.

Thinking Working

The closer the field lines, the stronger the 
force. The field lines are closer together 
at point A than they are at point B, as 
point A is closer to the moon.

The field is stronger at point A than 
at point B.

Worked example: Try yourself 1.2.1

INTERPRETING GRAVITATIONAL FIELD DIAGRAMS

The diagram below shows the gravitational field of a planet.

A

B

C

a   Use arrows to indicate the direction of the gravitational force acting at points 
A, B and C.

b  Indicate the relative strength of the gravitational field at each point.
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GRAVITATIONAL FIELD STRENGTH 
In theory, gravitational fields extend infinitely out into space. However, since 
the magnitude of the gravitational force decreases with the square of distance, 
eventually these fields become so weak as to become negligible.

In Section 1.1, it was shown that it is possible to calculate the acceleration due to 
gravity of objects near the Earth’s surface using the dimensions of the Earth:

g = G 
mEarth

(rEarth)2 = 9.8 m s–2

The constant g can also be used as a measure of the strength of the gravitational 
field. When understood in this way, the constant is written with the equivalent units 
of N kg–1 rather than m s–2. This means gEarth = 9.8 N kg–1. 

These units indicate that objects on the surface of the Earth experience 9.8 N of 
gravitational force for every kilogram of their mass.

Accordingly, the familiar equation Fg = mg can be transposed so that the 
gravitational field strength, g, can be calculated: 

g = 
Fg

m

where g is gravitational field strength (N kg–1)

 Fg is the force due to gravity (N)

 m is the mass of an object in the field (kg)

PHYSICS FILE

N kg–1 = m s–2

It is a simple matter to show that N kg–1 and m s–2 are equivalent units.

From Newton’s second law, F = ma, you will remember that:

1 N = 1 kg m s–2

	∴ 1 N kg–1 = 1 kg m s–2 × kg–1

 = 1 m s–2

Worked example 1.2.2

CALCULATING GRAVITATIONAL FIELD STRENGTH

When a student hangs a 1 kg mass from a spring balance, the balance 
measures a downwards force of 9.8 N.

According to this experiment, what is the gravitational field strength of the Earth 
in this location?

Thinking Working 

Recall the equation for gravitational 
field strength. g = 

Fg

m

Substitute in the appropriate values. g = 
9.8
1

Solve the equation. g = 9.8 N kg–1 
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Worked example: Try yourself 1.2.2

CALCULATING GRAVITATIONAL FIELD STRENGTH

A student uses a spring balance to measure the weight of a piece of wood 
as 2.5 N.

If the piece of wood is thought to have a mass of 260 g, calculate the 
gravitational field strength indicated by this experiment.

The formula for gravitational field strength, g = 
Fg

m , can be combined with 

Newton’s law of universal gravitation, Fg = G Mm
r2 , to develop the formula for 

gravitational field strength:

g = 
Fg

m  = 
(G Mm

r2 )
m

Therefore:

g = GM
r2

where g is the gravitational field strength (N kg−1)

 G is the gravitational constant, 6.67 × 10−11 N m2 kg−2

 M is the mass of the planet or moon (the central body; kg)

 r is the radius of the planet or moon (m)

Inverse square law 
The concept of a field is a very powerful tool for understanding forces that act at a 
distance. It has also been applied to forces such as the electrostatic force between 
charged objects and the force between two magnets. 

The study of gravitational fields introduces the concept of the inverse square law. 
From the point source of a field, whether it be gravitational, electric or magnetic, 
the field will spread out radially in three dimensions. When the distance from the 
source is doubled, the field will be spread over four times the original area. 

In Figure 1.2.4, going from r to 2r to 3r, the area shown increases from one 
square to four squares (22) to nine squares (32). Using the inverse part of the 
inverse square law, at a distance 2r the strength of the field will be reduced to a 
quarter of that at r, as is the force that the field would exert. At 3r from the source, 
the field will be reduced to one-ninth of that at the source, and so on.

In terms of the gravitational field, the strength of the force varies inversely with 
the distance between the objects squared:

F ∝ 
M
r2

where F is the force and r is the distance from the source of the 
gravitational field. 

This is referred to as the inverse square law.

One key difference between the gravitational force and other inverse square 
forces is that the gravitational force is always attractive, whereas like charges or 
magnets repel one another.

Inverse square laws are an important concept in physics, not only in the study of 
fields but also for other phenomena where energy is moving away from its source 
in three dimensions, such as in sound and other waves. 

�eld 
source

r

2r

3r

FIGURE 1.2.4 As the distance from the source of 
a field increases, the field is spread over an area 
that increases with the square of the distance 
from the source, resulting in the strength of 
the field decreasing by the same ratio.
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Variations in gravitational field strength of the Earth 
The gravitational field strength of the Earth, g, is usually assigned a value of 
9.81 N kg–1. However, the field strength experienced by objects on the surface of 
the Earth can actually vary between 9.76 N kg–1 and 9.83 N kg–1, depending on 
the location.

PHYSICSFILE

Variations in gravitational field strength  
The Earth’s gravitational field strength is not the same at every point on the Earth’s 
surface. As the Earth is not a perfect sphere, objects near the equator are slightly 
further from the centre of the Earth than objects at the poles. This means that the 
Earth’s gravitational field is slightly stronger at the poles than at the equator.

Geological formations can also create differences in gravitational field strength, 
depending on their composition. Geologists use a sensitive instrument known as a 
gravimeter (see Figure 1.2.6) that detects small local variations in gravitational 
field strength to indicate underground features. Rocks with above-average density, 
such as those containing mineral ores, create slightly stronger gravitational fields, 
whereas less-dense sedimentary rocks produce weaker fields.

FIGURE 1.2.6 A gravimeter can be used to measure the strength of the local gravitational field.

If the surface of the Earth is considered a flat surface as it appears in everyday 
life, then the gravitational field lines are approximately parallel, indicating a uniform 
field (see Figure 1.2.7). 

g

FIGURE 1.2.7 The uniform gravitational field, g, is represented by evenly spaced parallel lines in the 
direction of the force.

PHYSICSFILE

The shape of the Earth
The shape of the Earth is known as an 
oblate spheroid  (see Figure 1.2.5). 
Mathematically, this is the shape that’s 
made when an ellipse is rotated around 
its minor axis. The diameter of the 
Earth between the North and South 
poles is approximately 40 km shorter 
than its diameter at the equator.

FIGURE 1.2.5 The Earth is a flattened 
sphere, which means its gravitational field 
is slightly stronger at the poles.
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However, when the Earth is viewed from a distance as a sphere, it becomes 
clear that the Earth’s gravitational field is not uniform at all (see Figure 1.2.8). 
The increasing distance between the field lines indicates that the field becomes 
progressively weaker out into space.

This is because gravitational field strength, like gravitational force, is governed 
by the inverse square law: 

g = G 
MEarth

(r Earth)2

The gravitational field strength at different altitudes can be calculated by adding 
the altitude to the radius of the Earth to calculate the distance of the object from 
Earth’s centre (see Figures 1.2.9 and 1.2.10).

2
3

1

10
9
8
7
6
5
4

25 30 35 402015105
0

0
h [106 m]

g [N kg–1]

[106 m]
403020100

FIGURE 1.2.10 As the distance from the surface of the Earth is increased from 0 to 40 × 106 m, the 
value for g decreases rapidly from 9.8 N kg–1, according to the inverse square law. The blue line on 
the graph gives the value of g at various altitudes (h). 

g = 
GMEarth

(rEarth + altitude)2

Worked example 1.2.3

CALCULATING GRAVITATIONAL FIELD STRENGTH AT DIFFERENT ALTITUDES

Calculate the strength of the Earth’s gravitational field at the top of Mt Everest 
using the following data:

rEarth = 6.38 × 106 m

mEarth = 5.97 × 1024 kg

height of Mt Everest = 8850 m

Thinking Working 

Recall the formula for gravitational 
field strength.

g = GM
r2

Add the height of Mt Everest to the 
radius of the Earth.

r = 6.38 × 106 + 8850 m

= 6.389 × 106 m

Substitute the values into the formula. g = GM
r2

= 6.67 × 10–11 × 
5.97 × 1024

(6.389 × 106)2

= 9.76 N kg–1 

36 000 km g = 0.22 N kg–1

g = 7.3 N kg–11000 km

g = 8.7 N kg–1

g = 9.8 N kg–1
400 km
surface

6400 km g = 2.5 N kg–1

FIGURE 1.2.9 The Earth’s gravitational field 
strength is weaker at higher altitudes.

g

FIGURE 1.2.8 The Earth’s gravitational field 
becomes progressively weaker out into space.
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Worked example: Try yourself 1.2.3

CALCULATING GRAVITATIONAL FIELD STRENGTH AT DIFFERENT ALTITUDES

Commercial airlines typically fly at an altitude of 11 000 m. Calculate the 
gravitational field strength of the Earth at this height using the following data:

rEarth = 6.38 × 106 m

mEarth = 5.97 × 1024 kg

Gravitational field strengths of other planets 
The gravitational field strength on the surface of the Moon is much less than on 
Earth, at approximately 1.6 N kg–1. This is because the Moon’s mass is smaller than 
the Earth’s. 

The formula g = G Mr2  can be used to calculate the gravitational field strength on 
the surface of any astronomical object, such as Mars (see Figure 1.2.11). 

Worked example 1.2.4

GRAVITATIONAL FIELD STRENGTH ON ANOTHER PLANET OR MOON

Calculate the strength of the gravitational field on the surface of the Moon given 
that the Moon’s mass is 7.35 × 1022 kg and its radius is 1740 km.

Give your answer correct to two significant figures.

Thinking Working 

Recall the formula for gravitational 
field strength.

g = GM
r2

Convert the Moon’s radius to m. r = 1740 km

= 1740 × 1000 m

= 1.74 × 106 m

Substitute values into the formula. g = GM
r2

= 6.67 × 10–11 × 
7.35 × 1022

(1.74 × 106)2

= 1.6 N kg–1 

Worked example: Try yourself 1.2.4

GRAVITATIONAL FIELD STRENGTH ON ANOTHER PLANET OR MOON

Calculate the strength of the gravitational field on the surface of Mars.

mMars = 6.42 × 1023 kg

rMars = 3390 km

Give your answer correct to two significant figures.

FIGURE 1.2.11 The gravitational field strength on 
the surface of Mars (shown here) is different to 
the gravitational field strength on the surface of 
the Earth, which, in turn, is different from that 
on the Moon.

PHYSICSFILE

Moon walking  
Walking is a process of repeatedly stopping yourself from falling 
over. When astronauts first tried to walk on the Moon, they found 
that they fell too slowly to walk easily. Instead, they invented a 
kind of shuffling jump that was a much quicker way of moving 
around in the Moon’s weak gravitational field. This type of ‘moon 
walk’ should not be confused with the famous dance move of the 
same name!

FIGURE 1.2.12 Astronauts had to invent a new way of 
walking to deal with the Moon’s weak gravitational field.
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1.2 Review

KEY QUESTIONS

1  Give the most appropriate unit for measuring 
gravitational field strength.

2  A group of students use a spring balance to measure 
the weight of a 150 g set of slotted masses to be 
1.4 N. According to this measurement, what is the 
gravitational field strength in their classroom?

3  A gravitational field, g, is measured as 5.5 N kg–1 at 
a distance of 400 km from the centre of a planet. 
The distance from the centre of the planet is then 
increased to 1200 km. What would the ratio of the 
magnitude of the gravitational field be at this new 
distance compared to the original measurement?

4  Different types of satellite have different types of 
orbit, as shown in the table below. Calculate the 
strength of the Earth’s gravitational field in each orbit.
rEarth = 6380 km
mEarth = 5.97 × 1024 kg

Type of orbit Altitude (km)

a low Earth orbit 2 000

b medium Earth orbit 10 000

c semi-synchronous orbit 20 200

d geosynchronous orbit 35 786

5  On 12 November 2014, the Rosetta spacecraft landed 
a probe on the comet 67P/Churyumov–Gerasimenko. 
Assuming this comet is a roughly spherical object 
with a mass of 1 × 1013 kg and a diameter of 1.8 km, 
calculate the gravitational field strength on its surface.

6  The masses and radii of three planets are given in the 
following table.

Planet Mass (kg) Radius (m)

Mercury 3.30 × 1023 2.44 × 106

Saturn 5.69 × 1026 6.03 × 107

Jupiter 1.90 × 1027 7.15 × 107

Calculate the gravitational field strength, g, at the 
surface of each planet. 

7  There are bodies outside our solar system, such as 
neutron stars, that produce very large gravitational 
fields. A typical neutron star can have a mass of 
3.0 × 1030 kg and a radius of just 10 km. Calculate 
the gravitational field strength at the surface of such 
a star.

8  A newly discovered solid planet located in a distant 
solar system is found to be distinctly non-spherical in 
shape. Its polar radius is 5000 km, and its equatorial 
radius is 6000 km.
The gravitational field strength at the poles is 
8.0 N kg – 1. How would the gravitational field strength 
at the poles compare with the strength at the equator?

9  There is a point between the Earth and the Moon 
where the total gravitational field is zero. The 
significance of this is that returning lunar missions 
are able to return to Earth under the influence of the 
Earth’s gravitational field once they pass this point. 
Given that the mass of Earth is 6.0 ×1024 kg, the mass 
of the Moon is 7.3 ×1022 kg and the radius of the 
Moon’s orbit is 3.8 ×108 m, calculate the distance of 
this point from the centre of the Earth.

10  An astronaut travels away from Earth to a region in 
space where the gravitational force due to Earth is 
only 1.0% of that at Earth’s surface. What distance, 
in Earth radii, is the astronaut from the centre of 
the Earth?

SUMMARY

• A gravitational field is a region in which a 
gravitational force is exerted on all matter within 
that region. 

• A gravitational field can be represented by a 
gravitational field diagram: 

 - The arrowheads indicate the direction of the 
gravitational force. 

 - The spacing of the lines indicates the relative 
strength of the field. The closer the line spacing, 
the stronger the field.

• The strength of a gravitational field can be 
calculated using the following formulas: 

g = 
Fg

m or g = G
M

r2

The gravitational field strength on the Earth’s 
surface is approximately 9.8 N kg–1. This varies 
from location to location and with altitude.

• The gravitational field strength on the surface of 
any other planet depends on the mass and radius 
of the planet.
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1.3 Work in a gravitational field
The concept of gravitational potential energy should be familiar to you from Unit 2 
Physics. However, the nature of a gravitational field means that a more sophisticated 
understanding of gravitational potential energy is needed when considering the 
motion of objects like rockets or satellites (see Figure 1.3.1).

FIGURE 1.3.1 Satellites in orbit have gravitational potential energy.

REVISITING WORK AND CONSERVATION OF ENERGY 
The gravitational potential energy of an object, Eg , is directly proportional to 
the mass of the object, m, its height above the surface of the planet, ∆h, and the 
strength of the gravitational field, g. So:

Eg = mgΔh

where Eg is the gravitational potential energy of an object (J)

 m is the mass of the object (kg)

  g is the gravitational field strength (N kg–1; 9.8 N kg–1 near the surface 
of the Earth)

 ∆h is the height of the object above a reference point (m)

The formula for gravitational potential energy is developed from the work–
energy theorem, which assumes that work done against the force of gravity is 
converted into potential energy:

ΔE = W = Fs 

where ΔE is the change in gravitational potential energy (J)

 W is the work done (J)

 F is the force of gravity (N)

 s is the distance moved in the gravitational field (m)
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Worked example 1.3.1

WORK DONE FOR A CHANGE IN GRAVITATIONAL POTENTIAL ENERGY

A mountaineer climbs from a height of 700 m above sea level to the top of 
Mount Everest, which is 8848 m above sea level.

The total mass of the mountaineer (with equipment) is 100 kg. Assuming 
that the gravitational field strength of the Earth (g) is 9.8 N kg–1, calculate the 
amount of work done (in MJ) by the mountaineer in climbing to the summit 
of the mountain.

Thinking Working 

Calculate the change in height. ∆h = 8848 – 700

= 8148 m

Substitute appropriate values into  
Eg = mg∆h. Remember to give your 
answer in MJ to two significant figures.

Eg = mg∆h

= 100 × 9.8 × 8148

= 7 985 040 J

= 8.0 MJ 

The work done by the mountaineer is 
equal to the change in gravitational 
potential energy.

W = ∆E = 8.0 MJ

Worked example: Try yourself 1.3.1

WORK DONE FOR A CHANGE IN GRAVITATIONAL POTENTIAL ENERGY

Calculate the work done (in MJ) to lift a weather satellite of 3.2 tonnes from the 
Earth’s surface to the limit of the atmosphere, which ends at the Karman line 
(exactly 100 km up from the surface of the Earth). Assume g = 9.8 N kg–1.

Interplay between gravitational, kinetic and 
mechanical energy 
Gravitational potential energy calculations are important because, when combined 
with the concepts of kinetic energy and conservation of mechanical energy, they 
allow the speed of a falling object to be determined. 

Accordingly, we can define kinetic energy by the following equation:

Ek = 1
2
mv2

where Ek is the kinetic energy of an object (J)

 m is the mass of the object (kg)

 v is the speed of the object (m s–1)
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Worked example 1.3.2

SPEED OF A FALLING OBJECT

In a unique demonstration of Galileo’s famous experiment, Apollo 15 astronaut 
Dave Scott simultaneously dropped a hammer and a feather while standing on 
the surface of the Moon (see Figure 1.3.2).

FIGURE 1.3.2 Astronaut Dave Scott dropping a hammer and feather on the Moon.

If the gravitational field strength on the Moon is 1.6 N kg–1, the hammer had a 
mass of 450 g and it was dropped from a height of 1.4 m, calculate the speed 
of the hammer as it hit the Moon’s surface.

Thinking Working 

Calculate the gravitational potential energy 
of the hammer on the Moon. Change the 
units of measurement when necessary.

Eg = mg∆h

= 0.45 × 1.6 × 1.4

= 1.0 J 

Assume that when the hammer hit the 
surface of the Moon, all of its gravitational 
potential energy had been converted into 
kinetic energy.

Ek = Eg = 1.0 J 

Use the definition of kinetic energy to 
calculate the speed of the hammer as it 
hit the ground.

Ek = 
1
2mv2

1.0 = 
1
2 × 0.45 × v2

1.0 × 2
0.45  = v2

v = 2.1 m s–1

Worked example: Try yourself 1.3.2

SPEED OF A FALLING OBJECT

Calculate how fast a 450 g hammer would be going as it hit the ground if it were 
dropped from a height of 1.4 m on Earth, where g = 9.8 N kg–1.

Work in a non-constant gravitational field 
The formula Eg = mg∆h is developed assuming that work is done against a constant 
force of gravity: ∆E = W = Fs. While this assumption holds true for objects close 
to the surface of a planet, it is not adequate for objects like satellites that move 
to altitudes at which the gravitational field of the planet becomes significantly 
diminished. 
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Newton’s law of universal gravitation indicates that the strength of the Earth’s 
gravitational field changes with altitude: the field is stronger close to the ground and 
weaker at high altitudes (see Figure 1.3.3).

Consider the example of a 10 kg meteor falling towards the Earth from deep 
space as shown in Figure 1.3.4. Closer to the Earth, the meteor moves through 
regions of increasing gravitational field strength. So the gravitational force, Fg , on the 
meteor increases as it approaches Earth. Since the force is not constant, this means 
that the work done on the meteor (which corresponds to its change in gravitational 
potential energy) cannot be found by simply multiplying the gravitational force by 
the distance travelled. 

Fg Fg Fg

FIGURE 1.3.4 As a meteor approaches Earth, it moves through an increasingly stronger gravitational 
field and so is acted upon by a greater gravitational force.

Using the force–distance graph
When a free-falling body, like the meteor in Figure 1.3.4, is acted upon by a varying 
gravitational force, the energy changes of the body can be analysed by using a 
gravitational force–distance graph. As with other force–distance graphs, the area 
under the graph is equal to the work done, i.e. the energy change of the body. The 
area under the graph has units of newton metres (N m), which are equivalent to 
joules (J). 

The area under a gravitational force–distance graph gives the change in energy 
that an object will experience as it moves through the gravitational field.

The shaded area in Figure 1.3.5 represents the decrease in gravitational potential 
energy of the 10 kg meteor as it falls from a distance of 2.0 × 107 m to 1.0 × 107 m 
from the centre of the Earth. This area also represents the amount of kinetic energy 
that the meteor gains as it approaches Earth.

Note that the energy change of the meteor will be the same regardless of whether 
the meteor falls directly towards the planet (Figure 1.3.6(a)) or follows a more 
indirect path (Figure 1.3.6(b)).

Earth

10 kg

2 × 107 m 

1 × 107 m

Earth

10 kg

2 × 107 m 

1 × 107 m

(a) (b)

FIGURE 1.3.6 The shaded region on the gravitational force–distance graph in Figure 1.3.5 could 
represent the change in energy in the free-fall situations in either (a) or (b).

Worked example 1.3.3 shows how a force–distance graph can be used to 
determine the change in gravitational potential energy of a meteor.

FIGURE 1.3.3 The Earth’s gravitational field 
extends out into space, and the field is 
strongest close to the Earth where the lines 
are closer together. 
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FIGURE 1.3.5 The gravitational force acting on 
a 10 kg meteor at different distances from the 
Earth. The shaded region represents the work 
done by the gravitational field as the body 
moves between 2.0 × 107 m and 1.0 × 107 m 
from the centre of the Earth.
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Worked example 1.3.3

CHANGE IN GRAVITATIONAL POTENTIAL ENERGY USING A  
FORCE–DISTANCE GRAPH

A 10 kg meteor falls from a distance of 2.0 × 107 m to 1.0 × 107 m from 
the centre of the Earth. Use the graph below to determine the change in 
gravitational potential energy of the meteor.
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Thinking Working 

Count the number of shaded squares. 
(In this example, count the partially 
shaded squares as half squares.) 

Number of shaded squares = 2 

Calculate the area (energy value) of 
each square.

Esquare = 0.5 × 107 × 20 

= 1 × 108 J

To calculate the energy change, 
multiply the number of shaded squares 
by the energy value of each square.

∆Eg = 2 × (1 × 108)

= 2 × 108 J

Worked example: Try yourself 1.3.3

CHANGE IN GRAVITATIONAL POTENTIAL ENERGY USING A  
FORCE–DISTANCE GRAPH

A 500 kg lump of space junk is plummeting towards the Moon. The Moon has a 
radius of 1.7 × 106 m. Using the force–distance graph, determine the decrease 
in gravitational potential energy of the junk as it falls to the Moon’s surface.
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PHYSICSFILE

Using a force–distance graph in a constant field 
A force–distance graph can also be used to calculate the change in gravitational 
potential energy of an object falling in a uniform gravitational field. Consider the 
graph in Figure 1.3.7 of a 10 kg rock that falls from a height of 40 m to 10 m.
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FIGURE 1.3.7 In a uniform field, the gravitational force–distance graph is a horizontal line.

The area under the graph in Figure 1.3.7 is 98 N × 30 m = 294 J, which is exactly 
what would have been calculated using the formula Eg = mgΔh. Therefore, it is more 
convenient to use the formula in uniform field situations.

USING THE GRAVITATIONAL FIELD STRENGTH–DISTANCE 
GRAPH
The change in gravitational potential energy of an object can also be calculated using 
a graph of the gravitational field strength of an object, as shown in Figure 1.3.8. 

The area under a gravitational field strength–distance graph gives a quantity 
that has units of N kg–1 × m, which is equivalent to J kg–1, so the area indicates the 
change in energy for each kilogram of the object’s mass. To find the work done or 
energy change ( J), the area ( J kg–1) must therefore be multiplied by the mass (kg) 
of the object.

The area under a gravitational field–distance graph gives the energy change 
per kilogram of mass. To find the change in energy, the area must be multiplied 
by the mass of the object in kg.

area = energy change 
         per kg (J kg–1)

Distance (m)

g 
(N

 k
g–1

)

FIGURE 1.3.8 A graph of gravitational field 
strength–distance can also be used to analyse 
the energy changes of a body moving through 
a gravitational field.
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Worked example 1.3.4

CHANGE IN GRAVITATIONAL POTENTIAL ENERGY USING A GRAVITATIONAL 
FIELD STRENGTH–DISTANCE GRAPH

A wayward satellite of mass 1500 kg has developed a highly elliptical orbit 
around the Earth. At its closest approach (perigee), it is just 500 km above the 
Earth’s surface. Its furthest point (apogee) is 3000 km from the Earth’s surface. 
Using the graph of the gravitational field strength of the Earth shown below, 
determine the approximate change in the gravitational potential energy of the 
satellite as it orbits. (Note: the radius of the Earth is 6400 km.)
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Thinking Working 

Count the number of shaded squares. 
Only count squares that are at least 
50% shaded. 

Number of shaded squares = 82

Calculate the energy value of each 
square.

Esquare = 0.2 × 106 m × 1 N kg–1

= 2 × 105 J kg–1

To calculate the energy change, 
multiply the number of shaded 
squares by the energy value of each 
square and the mass of the satellite.

∆Eg = 82 × (2 × 105) × 1500

= 2.5 × 1010 J

Worked example: Try yourself 1.3.4

CHANGE IN GRAVITATIONAL POTENTIAL ENERGY USING A GRAVITATIONAL 
FIELD STRENGTH–DISTANCE GRAPH

A 3000 kg Soyuz rocket moves from an orbital height of 300 km above the 
Earth’s surface to dock with the International Space Station at a height of 
500 km. Use the graph of the gravitational field strength of the Earth below 
to determine the approximate change in the gravitational potential energy of 
the rocket. 
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1.3 Review

KEY QUESTIONS

1  Which one of the following statements is correct?
A satellite in a stable circular orbit around the Earth 
will have:
A  varying potential energy as it orbits
B  varying kinetic energy as it orbits
C  constant kinetic energy and constant potential 

energy
The following information applies to questions 2–4.
Ignore air resistance when answering these questions.
The path of a meteor plunging towards the Earth is 
as shown.

A

B

C

D

2  How does the gravitational field strength of the Earth 
change from point A to point D?

3  How will the acceleration of the meteor change as it 
travels along the path shown?

4  Which one or more of the following statements is 
correct?
A  The kinetic energy of the meteor increases as it 

travels from A to D.
B  The gravitational potential energy of the meteor 

decreases as it travels from A to D.
C  The total energy of the meteor remains constant.
D  The total energy of the meteor increases.

5  The Saturn V rocket that took the first astronauts to 
the Moon had a mass of 3000 tonnes. Its Stage I 
rockets fired for 6 minutes and took the rocket to an 
altitude of 67 km. How much work did the Stage I 
rockets do in this time?

6  The Valles Marineris on Mars is one of the most 
spectacular land formations in the solar system: a 
gigantic canyon 4000 km long, 200 km wide and 
7 km deep. If a Martian explorer were to drop a 400 g 
rock from the edge of the canyon to its floor 7000 m 
below, how fast would the rock be going when it hit 
the bottom? The gravitational field strength on Mars 
is weaker than on Earth: 6.1 N kg–1. 

SUMMARY

• The principles of work and conservation of energy 
are useful for understanding gravitational potential 
energy. This includes the following formulas:

W = Fs

W = ∆E

Ek = 
1
2mv2

• The gravitational potential energy formula 
Eg = mg∆h assumes that the Earth’s gravitational 
field is constant. This is approximately true for 
objects that are within a few kilometres of the 
Earth’s surface.

• The strength of the Earth’s gravitational field 
decreases as altitude increases.

• The area under a gravitational force–distance 
graph gives the change in kinetic energy or 
change in gravitational potential energy of 
a body, and indicates the work done by the 
gravitational field.

• The area under a gravitational field–distance 
graph gives the change in energy per kilogram 
(J kg–1) of the object. To calculate the energy 
change, the area is multiplied by the mass (kg).
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1.3 Review
The following information applies to questions 7–9.
The graph shows the force on a mass of 1.0 kg as a 
function of its distance from the centre of the Earth.
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7  a   Use the graph to determine the gravitational force 
between the Earth and a 1.0 kg mass 100 km 
above the Earth’s surface.

b  Use the graph to determine the height above the 
Earth’s surface at which a 1.0 kg mass would 
experience a gravitational force of 5.0 N.

8  A meteor of mass 1.0 kg is speeding towards the Earth. 
When this meteor is at a distance of 9.5 × 106 m from 
the centre of the planet, its speed is 4.0 km s–1.
a  Determine the kinetic energy of the meteor when it 

is 9.5 × 106 m from the centre of the Earth.
b  Calculate the increase in kinetic energy of the 

meteor as it moves from a distance of 9.5 × 106 m 
from the centre of the Earth to a point that is 
6.5 × 106 m from the centre.

c  Ignoring air resistance, what is the kinetic energy of 
the meteor when it is 6.5 × 106 m from the centre 
of the Earth?

d  How fast is the meteor travelling when it is 
6.5 × 106 m from the centre of the Earth?

9  A communications satellite of mass 240 kg is 
launched from a space shuttle that is in orbit 600 km 
above the Earth’s surface. The satellite travels directly 
away from the Earth and reaches a maximum 
distance of 8000 km from the centre of the Earth 
before stopping due to the influence of the Earth’s 
gravitational field.
Use the graph to estimate the kinetic energy of this 
satellite as it was launched.

10  A 20 tonne remote-sensing satellite is in a circular 
orbit around the Earth at an altitude of 600 km. 
The satellite is moved to a new stable orbit with 
an altitude of 2600 km. Use the following graph to 
estimate the increase in the gravitational potential 
energy of the satellite as it moved from its lower 
orbit to its higher orbit.
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Chapter review

KEY TERMS

acceleration due to gravity
altitude
apparent weight
field
gravimeter
gravitational constant

gravitational field
gravitational field strength
gravitational force
gravitational potential 

energy
inverse square law

Newton’s law of universal 
gravitation

normal reaction force
torsion balance
uniform
weight

1  Use Newton’s law of universal gravitation to calculate 
the gravitational force acting on a person with a mass 
of 75 kg. Use the following data: 
mEarth = 6.0 × 1024 kg
rEarth = 6400 km

2  The gravitational force of attraction between 
Saturn and Dione, a moon of Saturn, is equal to 
2.79 × 1020 N. Calculate the orbital radius of Dione. 
Use the following data: 
mass of Dione = 1.05 × 1021 kg
mass of Saturn = 5.69 × 1026 kg

3  Of all the planets in the solar system, Jupiter exerts 
the largest force on the Sun: 4.2 × 1023 N.  Calculate 
the acceleration of the Sun due to this force, using 
the following data: mSun = 2.0 × 1030 kg.

4  The planet Jupiter and the Sun exert gravitational 
forces on each other. 
a  Compare, qualitatively, the force exerted on 

Jupiter by the Sun to the force exerted on the 
Sun by Jupiter. 

b  Compare, qualitatively, the acceleration of Jupiter 
caused by the Sun to the acceleration of the Sun 
caused by Jupiter.

5  Calculate the acceleration due to gravity on the 
surface of Mars if it has a mass of 6.4 × 1023 kg 
and a radius of 3400 km.

6  Calculate the apparent weight of a 50 kg person in 
an elevator under the following circumstances.
a  accelerating downwards at 0.6 m s–2

b  moving downwards at a constant speed of 2 m s–1

7  A comet of mass 1000 kg is plummeting towards 
Jupiter. Jupiter has a mass of 1.90 × 1027 kg and a 
planetary radius of 7.15 × 107 m. If the comet is about 
to crash into Jupiter, calculate the:
a  magnitude of the gravitational force that Jupiter 

exerts on the comet
b  magnitude of the gravitational force that the comet 

exerts on Jupiter
c  acceleration of the comet towards Jupiter
d  acceleration of Jupiter towards the comet.

8  A person standing on the surface of the Earth 
experiences a gravitational force of 900 N. What 
gravitational force will this person experience at a 
height of two Earth radii above the Earth’s surface?
A  900 N
B  450 N
C  zero
D  100 N

9  During a space mission, an astronaut of mass 80 kg 
initially accelerates at 30 m s–2 upwards, then travels 
in a stable circular orbit at an altitude where the 
gravitational field strength is 8.2 N kg–1.
a  What is the apparent weight of the astronaut during 

lift-off?
A  zero
B  780 N
C  2400 N
D  3200 N

b  During the lift-off phase, the astronaut will feel:
A  lighter than usual
B  heavier than usual
C  the same as usual

c  The true weight of the astronaut during the lift-off 
phase is:
A  lower than usual
B  greater than usual
C  the same as usual

d  During the orbit phase, the apparent weight of the 
astronaut is:
A  zero
B  780 N
C  2400 N
D  660 N

e  During the orbit phase, the true weight of the 
astronaut is:
A  zero
B  780 N
C  2400 N
D  660 N

10  What are the main steps to follow when drawing 
gravitational field lines?
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11  A set of bathroom scales is calibrated so that when 
the person standing on it has a weight of 600 N, the 
scales read 61.5 kg. What gravitational field strength 
has been assumed in this setting?

12  The Earth is a flattened sphere. Its radius at the poles 
is 6357 km compared to 6378 km at the equator. 
The Earth’s mass is 5.97 × 1024 kg.
a  Calculate the Earth’s gravitational field strength at 

the equator. 
b  Using the information in part (a), calculate how 

much stronger the gravitational field would be at 
the North Pole compared with the equator. Give 
your answer as a percentage of the strength at 
the equator.

13  Neptune has a planetary radius of 2.48 × 107 m and 
a mass of 1.02 × 1026 kg.
a  Calculate the gravitational field strength on the 

surface of Neptune.
b  A 250 kg lump of ice is falling directly towards 

Neptune. What is its acceleration as it nears the 
surface of Neptune? Ignore any drag effects.
A  9.8 m s–2

B  zero
C  11 m s–2

D  1.6 m s–2

14  Two stars of masses M and m are in orbit around 
each other. As shown in the following diagram, they 
are a distance R apart. A spacecraft located at point 
X experiences zero net gravitational force from these 
stars. Calculate the value of the ratio M

m
.

0.8R 0.2R
m

M
X

R

15  A 20 kg rock is speeding towards Mercury. The 
following graph shows the force on the rock as a 
function of its distance from the centre of the planet. 
The radius of Mercury is 2.4 × 106 m.
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When the rock is 3.0 × 106 m from the centre of the 
planet, its speed is estimated at 1.0 km s–1. Using the 
graph, estimate the:
a  increase in kinetic energy of the rock as it moves 

to a point that is just 2.5 × 106 m from the centre 
of Mercury

b  kinetic energy of the rock at this closer point
c  speed of the rock at this point
d  gravitational field strength at 2.5 × 106 m from 

the centre of Mercury.
The following information relates to questions 16–20.
The diagram shows the gravitational field and distance 
near the Earth. A wayward satellite of mass 1000 kg is 
drifting towards the Earth.
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16  What is the gravitational field strength at an altitude 
of 300 km?

17  Which of the following units is associated with the area 
under this graph?
A J
B  m s–2

C  J s
D  J kg–1

18  Which one of the following quantities is represented 
by the shaded area on the graph? (Ignore air 
resistance.)
A  the kinetic energy per kilogram of the satellite at an 

altitude of 600 km
B  the loss in gravitational potential energy of the 

satellite
C  the loss in gravitational potential energy per kilogram 

of the satellite as it falls to the Earth’s surface
D  the increase in gravitational potential energy of the 

satellite as it falls to the Earth’s surface

19  How much kinetic energy does the satellite gain as it 
travels from an altitude of 600 km to an altitude of 
200 km?

20  In reality, would the satellite gain the amount of kinetic 
energy that you have calculated in Question 19? 
Explain your answer.





CHAPTER

In 1820, Hans Christian Oersted discovered that an electric current could produce a 
magnetic field. His work established the initial ideas behind electromagnetism. Since 
then, our understanding and application of electromagnetism has developed to the 
extent that much of our modern way of living relies upon it.

In this chapter you will investigate electric and magnetic fields, the concepts that apply 
to each, and some of the interactions between these closely related phenomena.

Key knowledge 
By the end of this chapter you will have studied the physics of electric and magnetic 
fields, and will be able to:

• describe magnetism and electricity using a field model
• investigate and compare theoretically and practically gravitational, magnetic and 

electric fields, including directions and shapes of fields, attractive and repulsive fields, 
and the existence of dipoles and monopoles

• investigate and compare electrical fields about a point charge (positive or negative) 
with reference to:
 - the direction of the field
 - the shape of the field
 - the use of the inverse square law to determine the magnitude of the field 
 - potential energy changes (qualitative) associated with a point charge moving 
in the field

• investigate and apply theoretically and practically a vector field model to magnetic 
phenomena, including shapes and directions of fields produced by bar magnets and 
by current-carrying wires, loops and solenoids

• identify fields as static or changing, and as uniform or non-uniform
• analyse the use of an electric field to accelerate a charge, including:

 - electric field and electric force concepts: E = k 
Q
r2 and F = k 

q1q2

r2  

 - potential energy changes in a uniform electric field: W = qV and E = V
d

 - the magnitude of the force on a charged particle due to a uniform electric field: F = qE
• analyse the use of a magnetic field to change the path of a charged particle, including:

 - the magnitude and direction of the force applied to an electron beam by a magnetic 
field: F = qvB, in cases where the directions of v and B are perpendicular or parallel

• describe the interaction of two fields, allowing that electric charges, magnetic poles 
and current carrying conductors can either attract or repel, whereas masses only 
attract each other

• investigate and analyse theoretically and practically the force on a current-carrying 
conductor due to an external magnetic field, F = nllB, where the directions of I and B 
are either perpendicular or parallel to each other. 

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Electric and  
magnetic fields
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2.1 Electric fields
A field is a region of space where objects experience a force due to a physical 
property related to the field. Gravity, electricity and magnetism can all be described 
by fields. In Chapter 1 ‘Gravity’, the direction, shape and strength of gravitational 
fields around a mass were described. In this section the electric field will be explained. 

An electric field surrounds positive and negative charges, and exerts a force on 
other charges within the field. Just as a gravitational field can be represented by field 
lines, so can the electric field around charged objects. This is shown in Figure 2.1.1.

ELECTRIC FIELDS 
There are four fundamental forces in nature that act at a distance. That is, they can 
exert a force on an object without making any physical contact with it. These are 
called non-contact forces, and include the strong nuclear force, the weak nuclear 
force, the electromagnetic force and the gravitational force.

In order to understand these forces, scientists use the idea of a field. A field is 
a region of space around an object that has certain physical properties, such as 
electric charge or mass. Another object with that physical property in the field will 
experience a force without any contact between the two objects. 

For example, as you saw in Chapter 1, there is a gravitational field around the 
Earth due to the mass of the Earth. Any object with mass that is located within this 
gravitational field experiences a force of attraction towards the Earth. According to 
Newton’s third law, there is also an equal and opposite force due to gravity acting 
on the Earth due to the gravitational field of the object. An example of this is shown 
in Figure 2.1.2.

Similarly, any charged object has a region of space around it (an electric field) 
where another charged object will experience a force. This is one aspect of the 
electromagnetic force. Unlike gravity, which only exerts an attractive force, electric 
fields can exert forces of attraction or repulsion.

ELECTRIC FIELD LINES 
An electric field is a vector quantity, which means it has both direction and strength.

In order to visualise electric fields around charged objects you can use electric 
field lines. Some field lines are already visible—for example the girl’s hair in 
Figure 2.1.3 is tracing out the path of the field lines. Diagrams of field lines can also 
be constructed.

Field lines are drawn with arrowheads on them indicating the direction of the 
force that a small positive test charge would experience if it were placed in the 
electric field. Therefore, field lines point away from positively charged objects 
and towards negatively charged objects. Usually, only a few representative lines 
are drawn.

Remember: like charges repel and unlike (opposite) charges attract.

The density of field lines (how close they are together) is an indication of 
the relative strength of the electric field. This is explained in more detail later in 
this section.

Rules for drawing electric field lines 
When drawing electric field lines (in two dimensions) around a charged object 
there are a few rules that need to be followed. 
• Electric field lines go from positively charged objects to negatively charged 

objects.
• Electric field lines start and end at 90° to the surface, with no gap between the 

lines and the surface.
• Field lines can never cross; if they did it would indicate that the field is in two 

directions at that point, which can never happen.

FIGURE 2.1.2 The gravitational field of the 
Earth applies a force on the skydiver, while 
the gravitational field of the skydiver exerts 
a force on the Earth.

FIGURE 2.1.3 The girl’s hair follows the lines of 
the electric field produced when she became 
charged while sliding down a plastic slide.

FIGURE 2.1.1 Charged plasma follows lines of 
the electric field produced by a Van de Graaff 
generator.



33CHAPTER 2   |   ELECTRIC AND  MAGNETIC FIELDS

• Around small charged spheres, called point charges, the field lines radiate like 
spokes on a wheel.

• Around point charges you should draw at least eight field lines: top, bottom, left, 
right and another field line in between each of these.

• Between two point charges, the direction of the field at any point is the resultant 
field vector determined by adding the field vectors due to each of the two 
point charges.

• Between two oppositely charged parallel plates, the field lines between the 
plates are evenly spaced and are drawn straight from the positive plate to the 
negative plate.

• Always remember that these drawings are two-dimensional representations of a 
three-dimensional field. 
Figure 2.1.4 shows some examples of how to draw electric field lines.

+ +Two positive
charges

+ –A positive and a
negative charge

+ + + + + + ++ + + + + +

– ––––––––––––

Parallel oppositely
charged plates

A single positive charge +

FIGURE 2.1.4 Grass seeds suspended in oil align themselves with the electric field. The diagram next 
to each photo shows lines representing the electric field.

Strength of the electric field 
The distance between adjacent field lines indicates the strength of the field. 
Around a point charge, the field lines are closer together near the charge and get 
further apart as you move further away. You can see this in the field-line diagrams 
in Figure 2.1.4. Therefore, the electric field strength decreases as the distance 
from a point charge increases. 

A uniform electric field is established between two parallel metal plates that are 
oppositely charged. The field strength is constant at all points within a uniform 
electric field, so the field lines are parallel.
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FORCES ON FREE CHARGES IN ELECTRIC FIELDS 
If a charged particle, such as an electron, were placed within an electric field, it 
would experience a force. The direction of the field and the sign of the charge allow 
you to determine the direction of the force.

Figure 2.1.5 shows a positive test charge (proton) and a negative test charge 
(electron), within a uniform electric field. Recall that the direction of an electric 
field is defined as the direction of the force that a positive charge would experience 
within the electric field. So, an electron will experience a force in the opposite 
direction to the electric field, while a proton will experience a force in the same 
direction as the field.

PHYSICSFILE

Bees 
Bees are thought to use electric fields to communicate, find food and to avoid flowers 
that have been visited by another bee recently. Their antennae are bent (deflected) by 
electric fields and they can sense the amount of deflection (see Figure 2.1.6).

The charge that builds up on their bodies helps them collect pollen grains and 
transport them to other flowers. The altered electric field around a flower that has 
recently been visited is a signal to other bees to find food elsewhere.

FIGURE 2.1.6 A bee can detect changes in the electric field around its body.

The magnitude of the force experienced by a charged particle due to an electric 
field can be determined using the equation:

F = qE

where F is the force on the charged particle (N)

 q is the charge of the object experiencing the force (C)

 E is the strength of the electric field (N C–1)

⊕

−

+

−

+

−

+

−

+

−

+

−

+

−

+

⊝

F

F
E

FIGURE 2.1.5 The direction of the electric field 
(E ) indicates the direction in which a force 
would act on a positive charge. A negative 
charge would experience a force in the opposite 
direction to the field.
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This equation illustrates that the force experienced by a charge is proportional 
to the strength of the electric field, E, and the size of the charge, q. The force on 
the charged particle will cause the charged particle to accelerate in the field. This 
means that the particle could increase its velocity, decrease its velocity, or change its 
direction while in the field.

To calculate the acceleration due to the force experienced, you can use the 
equation from Newton’s second law:

F = ma
where m is the mass of the accelerating particle (kg)
 a is the acceleration (m s–2).

Worked example 2.1.1

USING F = qE

Calculate the magnitude of the uniform electric field that would cause a force of 
5.00 × 10–21 N on an electron. 

(qe = –1.602 × 10–19 C)

Thinking Working 

Rearrange the relevant equation 
to make electric field strength the 
subject.

F = qE

E = 
F
q

Substitute the values for F and q into 
the rearranged equation and calculate 
the answer. (As only magnitude is 
required, q can be kept positive.)

E = 
F
q

= 
5.00 × 10–21

1.602 × 10–19

= 3.12 × 10–2 N C–1 

Worked example: Try yourself 2.1.1

USING F = qE

Calculate the magnitude of the uniform electric field that creates a force of 
9.00 × 10–23 N on a proton. 

(qp = +1.602 × 10–19 C)

Electric field strength 
Electric field strength can be thought of as the force applied per coulomb of charge, 
which is expressed in the equation:

E = 
F
q

An alternative measure of the electric field strength is volts per metre, which is 
calculated using the equation: 

E = 
V
d

where d is distance (m).
You can equate both expressions and rearrange them to find an expression for 

the work done (J) to make a charged particle move a distance against a potential 
difference: 

F
q  = 

V
d

Fd = qV and since W = Fd
W = qV
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EXTENSION

Gravitational force and electric force
Oppositely charged parallel plates can be arranged one above the other, 
such that the electric field is vertical. The direction of the field can then be 
manipulated to create an upwards force on a charged particle in the field. 

If the electric force created by the field on the charged object is equal to the 
gravitational force on (or weight of) the object, then these two forces can add 
to provide a net force equal to zero. This means that the charged object will 
either be suspended between the plates, or (by Newton’s first law of motion) 
will be falling or rising at constant velocity. 

This phenomenon was used by Robert Millikan and his PhD student Harvey 
Fletcher in their oil drop experiment, performed in 1909, to determine 
the fundamental charge of an electron to within 1% of the currently 
accepted value.

WORK DONE IN UNIFORM ELECTRIC FIELDS 
Electrical potential energy is a form of energy that is stored in a field. Work is 
done on the field when a charged particle is forced to move in the electric field. 
Conversely, when energy is stored in the electric field then work can be done by the 
field on the charged particle.

Electrical potential (V) is defined as the work required per unit charge to move 
a positive point charge from infinity to a place in the electric field. The electrical 
potential at infinity is defined as zero. This definition leads to the equation:

V = 
W
q

W = qV

where W is the work done on a positive point charge or on the field (J)

 q is the charge of the point charge (C)

 V is the electrical potential (J C–1) or volts (V)

Consider two parallel plates, as shown in Figure 2.1.7, in which the positive 
plate is at a potential (V ) and the other plate is earthed, which is defined as zero 
potential. The difference in potential between these two plates is called the electrical 
potential difference (V ).

Between any two points in an electric field (E ) separated by a distance (d ) that 
is parallel to the field, the potential difference V is then defined as the change in the 
electrical potential between these two points. See Figure 2.1.8.

E = 
V
d

V = Ed

where V is the difference in electrical potential (V)

 E is the electrical field strength (V m–1) 

 d is the distance between points, parallel to the field (m)

+ + + + + ++

E

V

V = 0

FIGURE 2.1.7 The potential of two plates when 
one has a positive potential and the other is 
earthed.

�V1

+ + + + + ++

E
d1 d2

�V2

V

V = 0

FIGURE 2.1.8 The potential difference between 
two points in a uniform electric field.
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CALCULATING WORK DONE 
By combining the two equations mentioned so far, you can derive an equation 
for calculating the work done on a point test charge to move it a distance across a 
potential difference.

W = qV and V = Ed
so W = qEd
where W is the work done on the point charge or on the field (J)
 q is the charge of the point charge (C)
 E is the electrical field strength (V m–1 or N C–1)
 d is the distance between points, parallel to the field (m).

EXTENSION

Dimensional analysis of the units for 
field strength 
For the value of E in the above equation you can use either units for electrical 
field strength, since they are equivalent. The following dimensional analysis 
shows why they are equivalent.

E = 
V
d and E = 

F
q

so 
V
d = 

F
q

Looking at the units for each side of the equation, V m–1 must equal N C–1.

To prove this, you can break down each unit:

V = J C–1 = kg m2 s–2 C–1

so V m–1 = (kg m2 s–2 C–1) m–1 = kg m s–2 C–1

Since N = kg m s–2:

V m–1 = kg m s–2 C–1 = N C–1

Work done by or on an electric field 
When calculating work done, which changes the electrical potential energy, 
remember that work can be done either:
• by the electric field on a charged object, or
• on the electric field by forcing the object to move.

You need to examine what’s happening in a particular situation to know how the 
work is being done. 

For example, if a charged object is moving in the direction it would naturally 
tend to go within an electric field, then work is done by the field. So when a positive 
point charge is moved in the direction of the electric field, the electric field has done 
work on the point charge. (Refer to q2 in Figure 2.1.9.)

When work is done by a charged object on an electric field, the object is forced 
to move against the direction it would naturally go. Work has been done on the field 
by forcing the object to move. For example, if a force causes a positive charge to 
move towards the positive plate within a uniform electric field, work has been done 
on the electric field by forcing the object to move. (See q1 in Figure 2.1.9.)

If a charge doesn’t move any distance parallel to the field then no work is done 
on or by the field. (See q3 in Figure 2.1.9.)

+ + + + + ++

E
d1

q1 q3

V

V = 0

⊕
d2

d3

q2⊕

⊕

FIGURE 2.1.9 Work is being done on the field by 
moving q1 and work is being done by the field 
on q2. No work is done on q3 since it is moving 
perpendicular to the field.
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2.1 Review
SUMMARY

• An electric field is a region of space around a charged 
object in which another charged object will experience 
a force.

• Electric fields are represented using field lines.

• Electric field lines point in the direction of the 
force that a positive charge within the field would 
experience.

• A positive charge experiences a force in the direction of 
the electric field and a negative charge experiences a 
force in the opposite direction to the field.

• The spacing between the field lines indicates the 
strength of the field. The closer together the lines 
are, the stronger the field.

• Electric field strength can be expressed as E = Fq 
and also E = Vd

• Around point charges the electric field radiates in all 
directions (three dimensionally).

• Between two oppositely charged parallel plates, the 
field lines are parallel and therefore the field has a 
uniform strength.

• When charges are in an electric field, they 
accelerate in the direction of the force acting 
on them.

• The force on a charged particle can be determined 
using the equation F = qE. 

Worked example 2.1.2

WORK DONE ON A CHARGE IN A UNIFORM ELECTRIC FIELD

A student sets up a parallel plate arrangement so that one plate is at a potential 
of 12.0 V and the other earthed plate is positioned 0.50 m away. Calculate the 
work done to move a proton a distance of 10.0 cm towards the negative plate.

(qp = +1.602 × 10–19 C)

In your answer identify what does the work and what the work is done on.

Thinking Working 

Identify the variables presented in the 
problem to calculate the electric field 
strength E.

V2 = 12.0 V

V1 = 0 V

d = 0.50 m

Use the equation E = 
V
d to determine 

the electric field strength. 
E = 

V
d

= 
12.0 – 0

0.50

= 24.0 V m–1

Use the equation W = qEd to determine 
the work done. Note that d here is the 
distance that the proton moves.

W = qEd 

= 1.602 × 10–19 × 24.0 × 0.100

= 3.84 × 10–19 J

Determine if work is done on the 
charge by the field or if work is done 
on the field.

As the positively charged proton is 
moving naturally towards the negative 
plate then work is done on the proton 
by the field.

Worked example: Try yourself 2.1.2

WORK DONE ON A CHARGE IN A UNIFORM ELECTRIC FIELD

A student sets up a parallel plate arrangement so that one plate is at a potential 
of 36.0 V and the other earthed plate is positioned 2.00 m away. Calculate the 
work done to move an electron a distance of 75.0 cm towards the negative plate.

(qe = –1.602 × 10–19 C)

In your answer identify what does the work and what the work is done on.
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KEY QUESTIONS

1  Which of the following options correctly describes an 
electric field?
A  a region around a charged object that causes a 

charge on other objects within that region
B  a region around a charged object that causes a 

force on other objects within that region
C  a region around a charged object that causes a 

force on other charged objects in that region
D  a region around an object that causes a force on 

other objects within that region

2  Which of the following options correctly defines the 
direction of an electric field?
A  away from a negatively charged object
B  away from a positively charged object
C  away from a neutrally charged object
D  towards a positively charged object

3  Identify whether the rules below for drawing electric 
field lines are true or false:
a  Electric field lines start and end at 90° to the 

surface, with no gap between the lines and the 
surface.

b  Field lines can cross; this indicates that the field is 
in two directions at that point.

c  Electric fields go from negatively charged objects 
to positively charged objects.

d  Around small charged spheres called point charges 
you should draw at least eight field lines: top, 
bottom, left, right and in between each of these.

e  Around point charges the field lines radiate like 
spokes on a wheel.

f  Between two point charges the direction of the field 
at any point is the field due to the closest of the two 
point charges.

g  Between two oppositely charged parallel plates 
the field between the plates is evenly spaced and 
is drawn straight from the negative plate to the 
positive plate.

4  Calculate the force applied to a balloon carrying 
a charge of 5.00 mC in a uniform electric field of 
2.50 N C–1.

5  Calculate the charge on a plastic disk if it experiences 
a force of 0.025 N in a uniform electric field of 
18 N C–1.

6  Calculate the acceleration of an electron in a uniform 
electric field of 3.25 N C–1. The mass of an electron is 
9.11 × 10–31 kg and its charge is –1.602 × 10–19 C.

7  Calculate the potential difference that exists between 
two points separated by 30.0 cm, parallel to the field 
lines, in an electric field of strength 4000 V m–1.

8  A researcher sees an oil drop with a of mass 
1.161 × 10–14 kg stationary between two horizontal 
parallel plates. Between the plates exists an electric 
field of strength 3.55 × 104 N C–1. The field is 
pointing vertically downwards. Calculate how 
many extra electrons are present on the oil drop. 
(qe = –1.602 × 10–19 C and g = 9.8 N kg–1)

9  For each for each of the following charged objects in a 
uniform electric field, determine if work was done on 
the field or by the field or if no work is done.
a  An electron moves towards a positive plate.
b  A positively charged point remains stationary.
c  A proton moves towards a positive plate.
d  A lithium ion (Li+) moves parallel to the plates.
e  An alpha particle moves away from a negative plate.
f  A positron moves away from a positive plate.

10  An alpha particle is located in a parallel plate 
arrangement that has a uniform electric field of 
34.0 V m–1. 
a  Calculate the work done to move the alpha 

particle a distance of 1.00 cm from the earthed 
plate to the plate with a positive potential.  
(qα = +3.204 × 10–19 C)

b  For the situation in part (a) decide whether work 
was done on the field, by the field or if no work 
was done.

• Force can be related to the acceleration of a 
particle using the equation F = ma. 

• Electrical potential energy is stored in an 
electric field.

• When a charged object is moved against the 
direction it would naturally move in an electric 
field, then work is done on the field.

• When a charged object is moved in the direction 
it would naturally tend to move in an electric field, 
then the field does work on the particle.

• The work done on or by an electric field can be 
calculated using the equations W = qV or W = qEd.
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2.2 Coulomb’s law
Electricity is one of nature’s fundamental forces. It was Charles Coulomb, in 1785, 
who first published the quantitative details of the force that acts between two 
electric charges. The force between any combination of electrical charges can be 
understood in terms of the force between two ‘point charges’ separated by a certain 
distance, as seen in Figure 2.2.1. The effect of distance on the electric field strength 
from a single charge and the force created by that field between charges is explored 
in this section. 

FF

FIGURE 2.2.1 Two similarly charged balloons will repel each other by applying a force on each other.

THE FORCE BETWEEN CHARGED PARTICLES 
Coulomb found that the force between two point charges (q1) and (q2) separated 
by a distance (r) was proportional to the product of the two charges, and inversely 
proportional to the square of the distance between them. 

This is another example of an inverse square law, as discussed in Chapter 1. 

Coulomb’s law can be expressed by the following equation:

F = 
1

4πε0
 
q1q2

r2

where F is the force on each charged object (N) 

 q1 is the charge on one point (C) 

 q2 is the charge on the other point (C) 

 r is distance between each charged point (m) 

  ε0 is the permittivity of free space, which is equal to  
8.8542 × 10–12 C2 N–1 m–2

By including the sign of the charges in the calculation, a positive force value 
indicates repulsion and a negative force value indicates attraction. 

The permittivity of free space (ε0) has a value of 8.8542 × 10–12 C2 N–1 m–2 in 
air or a vacuum. As this value is constant for air or a vacuum, the expression at the 
front of Coulomb’s law can be calculated. The result of the calculation is given the 
name Coulomb’s constant (k) and is equal to 8.9875 × 109 N m2 C–2. For ease of 
calculations this is usually rounded to two significant figures as 9.0 × 109 N m2 C–2. 
So, in Coulomb’s law, if: 

k = 1
4πε0

then the equation becomes:

F = k 
q1q2

r2

where k = 9.0 × 109 N m2 C–2



41CHAPTER 2   |   ELECTRIC AND  MAGNETIC FIELDS

Factors affecting the electric force 
The force between two charged points is proportional to the product of the two 
charges as seen in Figure 2.2.2. If there was a force of 10 N between two charged 
points and either charge was doubled, then the force between the two points would 
increase to 20 N. It is interesting to note that regardless of the charge on each point, 
the forces on each point in a pair will be the same. For example, if q1 is +10 µC 
and q2 is +10 µC, then the repulsive force on each of these points would be equal 
in magnitude. The forces would also be equal on both points if q1 is +100 µC and 
q2 is +1 µC. 

The force is also inversely proportional to the square of the distance between 
the two charged points. This means that if the distance between q1 and q2 is doubled, 
the force on each point charge will decrease to one-quarter of the previous value. 

One coulomb in perspective 
Using Coulomb’s law you can calculate the force between two charges of 1 C each, 
placed 1 m apart. The force would be 9.0 × 109 N, or approximately 1010 N. This 
is equivalent to the weight provided by a mass of 918 000 tonnes (see Figure 2.2.3). 

This demonstrates that a 1 C charge is a huge amount of charge. In reality, 
the amount of charge that can be placed on ordinary objects is a tiny fraction of 
a coulomb. Even a highly charged Van de Graaff generator will have only a few 
microcoulombs (1 µC = 10–6 C) of excess charge.

F

q1 q2

F

r

F

q1 q2

F

r

FIGURE 2.2.2 Forces acting between two point 
charges.

FIGURE 2.2.3 Two 1 C charges 1 m apart would produce a force of 1010 N, which is almost twice the weight of the Sydney Harbour Bridge.

Another way to get a feel for the magnitude of electrical forces is to realise that 
all matter is held together by the electrical forces between atoms. For example, the 
mass of Mount Everest is supported by the electrostatic repulsion between the 
electrons around neighbouring atoms in the rock underneath it. The strength of 
the hardest steel is due to the electrical forces of attraction between its ions and 
the delocalised electrons between them. In comparison to the Earth’s gravitational 
force on an atom, the electrical forces between atoms are about a billion, billion 
(1 × 1018) times stronger. In fact, only in the last stages of gravitational collapse of 
a giant star can the gravitational forces overwhelm the electrical forces between its 
atoms and cause the star to collapse into a super-dense neutron star.
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Worked example 2.2.1

USING COULOMB’S LAW TO CALCULATE FORCE

Two small spheres A and B act as point charges separated by 10.0 cm in air. 
Calculate the force on each point charge if A has a charge of 3.00 µC and B has 
a charge of –45.0 nC. 

(Use ε0 = 8.8542 × 10–12 C2 N–1 m–2.) 

Thinking Working 

Convert all values to 
SI units.

qA = 3.00 × 10–6 C

qB = 45.0 × 10–9 = –4.50 × 10–8 C

r = 0.100 m

State Coulomb’s law.
F = 

1
4πε0

 
q1q2

r2

Substitute the values for 
qA, qB, r and ε0 into the 
equation and calculate 
the answer.

F = 
1

4π × 8.8542 × 10–12 × 
3.00 × 10–6 × –4.50 × 10–8

0.1002

= –0.121 N

Assign a direction based 
on a negative force being 
attraction and a positive 
force being repulsion.

F = 0.121 N attraction

Worked example: Try yourself 2.2.1

USING COULOMB’S LAW TO CALCULATE FORCE

Two small spheres A and B act as point charges separated by 75.0 mm in air. 
Calculate the force on each point charge if A has a charge of 475 nC and B has 
a charge of 833 pC. 

(Use ε0 = 8.8542 × 10–12 C2 N–1 m–2.)

Worked example 2.2.2

USING COULOMB’S LAW TO CALCULATE CHARGE

Two small positive point charges with equal charge are separated by 1.25 cm 
in air. Calculate the charge on each point charge if there is a repulsive force of 
6.48 mN between them.

(Use k = 9.0 × 109 N m2 C–2.)

Thinking Working 

Convert all values to 
SI units.

F = 6.48 × 10–3 N

r = 1.25 × 10–2 m

State Coulomb’s law. 
F = k

q1q2

r2

Substitute the values for F, 
r and k into the equation 
and calculate the answer.

q1q2 = 
Fr2

k

= 
6.48 × 10–3 × (1.25 × 10–2)2

9.0 × 109

= 1.125 × 10–16

Since q1 = q2:

q1
2 = 1.125 × 10–16

q1 = √1.125 × 10–16

= +1.06 × 10–8 C

q2 = +1.06 × 10–8 C
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Worked example: Try yourself 2.2.2

USING COULOMB’S LAW TO CALCULATE CHARGE

Two small point charges are charged by transferring a number of electrons from 
q1 to q2, and are separated by 12.7 mm in air. The charges the two points are 
equal and opposite. Calculate the charge on q1 and q2 if there is an attractive 
force of 22.5 µN between them. (Use k = 9.0 × 109 N m2 C–2.)

THE ELECTRIC FIELD AT A DISTANCE FROM A CHARGE 
In the previous section ‘Electric fields’, the electric field, E, is defined as being 
proportional to the force exerted on a positive test charge and inversely proportional 
to the magnitude of that charge, and is measured in N C–1. Defining the electric 
field in this way means that it is independent of the size of the charge and describes 
only the effect of the charge creating the field at a particular point.

It is useful also to be able to determine the electric field at a distance from a 
single point charge:

The magnitude of the electric field at a distance from a single point charge is 
given by:

E = k
Q

r2

where E is the strength of the electric field around a point (N C–1)

 Q is the charge on the point creating the field (C)

 r is the distance from the charge (m)

 k = 9.0 × 109 N m2 C–2

The magnitude of E that is determined is independent of the value of the test 
charge and depends only on the charge, Q, producing the field. This formula can 
also be referred to as Coulomb’s law, in this case for determining the magnitude of 
the electric field produced by a point charge.

Worked example 2.2.3

ELECTRIC FIELD OF A SINGLE POINT CHARGE 

Calculate the magnitude and direction of the electric field at a point P at a 
distance of 20 cm below a negative point charge, Q, of 2.0 × 10–6 C.

Thinking Working 

Convert units to SI units as required. Q = –2.0 × 10–6 C

r = 20 cm = 0.20 m

Substitute the known values to find 
the magnitude of E using:

E = k
Q
r2

E = k
Q
r2

= 9.0 × 109 × 
2.0 × 10–6

0.202

= 4.5 × 105 N C–1

The direction of the field is defined as 
that acting on a positive test charge 
(see previous section). Point P is below 
the charge.

Since the charge is negative, the 
direction will be toward the charge Q, 
or upwards.

Worked example: Try yourself 2.2.3

ELECTRIC FIELD OF A SINGLE POINT CHARGE  

Calculate the magnitude and direction of the electric field at point P at a 
distance of 15 cm to the right of a positive point charge, Q, of 2.0 × 10–6 C.
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2.2 Review
SUMMARY

• Coulomb’s law for the force between two charges 
q1 and q2 separated by a distance of r is: 

F = 
1

4πε0
 
q1q2

r2

• The constant, ε0, in Coulomb’s law has a value of 
8.8542 × 10–12 C2 N–1 m–2.

• For air or a vacuum, the expression 
1

4πε0
 at the 

front of Coulomb’s law can be simplified to the 

value of k, called Coulomb’s constant, which has a 

value of approximately 9.0 × 109 N m2 C–2. So:

F = k 
q1q2

r2

• The magnitude of the electric field, E, at a distance 
r from a single point charge Q is given by: 

E = k 
Q
r2 

where k = 9.0 × 109 N m2 C–2

KEY QUESTIONS

1  Choose a response from each shaded box to correctly 
complete the following table summarising forces, 
charges and actions.

Force q1 charge q2 charge Action

a  positive positive positive / 
negative

attraction / 
repulsion

b  negative positive / 
negative

positive attraction / 
repulsion

c  positive negative positive / 
negative

attraction / 
repulsion

d  negative positive / 
negative

negative attraction / 
repulsion

2 A point charge, Q, is moved from a position 30 cm 
away from a test charge to a position 15 cm from 
the same test charge. If the magnitude of the original 
electric field, E, was 6.0 × 103 N C–1, what is the 
magnitude of the electric field at the new position?
A  3.0 × 103 N C–1

B  6.0 × 103 N C–1

C  12.0 × 103 N C–1

D  24.0 × 103 N C–1

3 A hydrogen atom consists of a proton and an electron 
separated by a distance of 53 pm (picometres). 
Calculate the magnitude and sign of the force applied 
to a proton carrying a charge of +1.602 × 10–19 C by 
an electron carrying a charge of –1.602 × 10–19 C.
(1 pm = 1 × 10–12 m and ε0= 8.8542 × 10–12 C2 N–1 m–2.)

4 The electric field is being measured at point P at a 
distance of 5.0 cm from a positive point charge, Q, of 
3.0 × 10–6 C. What is the magnitude of the field at P to 
two significant figures? (Use k = 9 × 109 N m2 C–2.)

5 Calculate the magnitude of the force that would exist 
between two point charges of 1.00 C each, separated 
by 1.00 km. (Use k = 9 × 109 N m2 C–2.)

6 A point charge of 6.50 mC is suspended from a ceiling 
by an insulated rod. At what distance from the point 
charge will a small sphere of mass 10.0 g with a 
charge of –3.45 nC be located if it is suspended in air? 
(Use k = 9 × 109 N m2 C–2.)

7 A charge of +q is placed a distance r from another 
charge also of +q. A repulsive force of magnitude F 
is found to exist between them. Choose the correct 
answer from the options in bold to describe the 
changes, if any, that will occur to the force in the 
following:
a  If one of the charges is doubled to +2q, the force 

will halve/double/quadruple/quarter and repel/
attract.

b  If both charges are doubled to +2q, the force will 
halve/double/quadruple/quarter and repel/attract.

c  If one of the charges is changed to –2q, the force 
will halve/double/quadruple/quarter and repel/
attract.

d  If the distance between the charges is halved 
to 0.5r, the force will halve/double/quadruple/
quarter and repel/attract.

8 Calculate the repulsive force on each proton in a 
helium nucleus separated in a vacuum by a distance 
of 2.50 fm. 
(Use k = 9 × 109 N m2 C–2, 1 fm = 1 × 10–15 m and 
qp = +1.602 × 10–19 C.)

9 Two point charges (30.0 cm apart in air) are charged 
by transferring electrons from one point to another. 
Calculate how many electrons must be transferred so 
that an attractive force of 1.0 N exists. Consider only 
the magnitude of qe in your calculations.
(Use k = 9 × 109 N m2 C–2 and qe = –1.602 × 10–19 C.)
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2.3 The magnetic field
While naturally occurring magnets had been known for many centuries, by the 
early 19th century, there was still no scientifically proven way of creating an artificial 
magnet. In 1820, the Danish physicist Hans Christian Oersted (whose statue is 
pictured in Figure 2.3.1) developed a scientific explanation for the magnetic effect 
created by an electric current. 

Oersted was a keen believer in the ‘unity of nature’, the concept that everything 
in the universe is somehow connected. He noticed that when he switched on a 
current from a voltaic pile (a simple early battery), a magnetic compass nearby 
moved. Intrigued by this observation, he carried out further experimentation, 
which demonstrated that it was the current from the voltaic pile that was affecting 
the compass movement. His experiments showed that the stronger the current, and 
the closer the compass was to it, the greater the observed effect. These observations 
led him to conclude that the electric current was creating a magnetic field. This 
connection between electric and magnetic fields is fundamental to society today.

MAGNETISM 
Before looking further into the connection between electric current and magnetic 
fields, it is necessary to review some fundamentals of magnetism.

The magnetic effect most people are familiar with is the attraction of iron or 
other magnetic materials to a magnet, as seen in Figure 2.3.2. 

But, if you experiment with a magnet yourself, you will find that each end of a 
magnet behaves differently, particularly when interacting with another magnet. One 
end will be attracted while the other is repelled. Each end of a magnet is referred to 
as a magnetic pole.

Like magnetic poles repel each other; unlike magnetic poles attract each other.

EXTENSION

Dipoles
Try breaking a (cheap) magnet in half. All you get is two smaller magnets, 
each with its own north and south poles. No matter how many times you 
break the magnet and how small the pieces are, each will be a separate little 
magnet with two poles. Because magnets always have two poles, they are 
said to be dipolar.

Magnets are dipolar and a magnetic field is said to be a dipole field (see 
Figure 2.3.3). This is similar to electric charges where a positive and negative 
charge in close proximity to each other are said to form a dipole. A key 
difference is that you cannot have a single magnetic pole, whether it be a 
south pole or a north pole; however, charges can exist on their own as either a 
positive or negative charge.

N N N N N N NS S S S S S S

FIGURE 2.3.3 Magnets are always dipolar.

A suspended magnet that is free to move will always orientate itself in a north–
south direction. That’s basically what the needle of a compass is—a freely suspended, 
small magnet. If allowed to swing vertically as well, then the magnet will tend to tilt 
vertically. The vertical direction (upwards/downwards) and the magnitude of the 
angle depend upon the direction of the magnet from either of the Earth’s poles. 

FIGURE 2.3.1 In 1820, Hans Christian Oersted 
discovered the magnetic effect created by an 
electric current. Oersted is honoured by this 
statue in Oersted’s Park, Copenhagen.

 
FIGURE 2.3.2 A bar magnet attracting 
drawing pins.
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As you can see in Figure 2.3.4, the Earth itself can be shown to have a giant 
magnetic field around it.

The names for the poles of a magnet derive from early observations of magnets 
orientating themselves with the Earth’s geographic poles. 

Initially, the end of the magnet pointing toward the Earth’s geographic north 
was denoted the North Pole, and compasses are thus marked with this end 
as north.  However, it is now known that the geographic North Pole and the 
magnetic  North Pole are slightly apart in distance, and the same applies to the 
geographic South Pole and the magnetic South Pole.

PHYSICSFILE

‘Flipping’ poles 
The Earth’s magnetic poles are not static like their geographic counterparts. For many 
years, the magnetic North Pole had been measured as moving at around 9 km per 
year (see Figure 2.3.5). In recent years that has accelerated to an average of 52 km 
per year. Once every few hundred thousand years the magnetic poles actually flip in 
a phenomenon called ‘geomagnetic reversal’, so that a compass would point south 
instead of north. The Earth is well overdue for the next flip, and recent measurements 
have shown that the Earth’s magnetic field is starting to weaken faster than in the 
past, so the magnetic poles may be getting close to a ‘flip’. While past studies have 
suggested such a flip is not instantaneous—it would take many hundreds if not a few 
thousands of years—some more recent studies have suggested that it could happen 
over a significantly shorter time period.

outer core

1900 1996

FIGURE 2.3.5 Diagram of Earth’s interior and the movement of magnetic north from 1900 to 
1996. The Earth’s outer core is believed to be the source of the geomagnetic field.

MAGNETIC FIELD 
In the earlier sections of this chapter, you saw that point charges and charged 
objects produce an electric field in the space that surrounds them. For this reason, 
charged bodies within the field will experience a force. The direction of the electric 
field is determined by the direction of that force.

Magnets also create fields. If you do a simple test like placing a pin near a 
magnet, you will observe that the pin will be pulled toward the magnet. This shows 
that the space around the magnet must therefore be affected by the magnet.

geographic
North Pole

geographic 
South Pole

magnetic
North Pole

magnetic 
South Pole

S

N

FIGURE 2.3.4 The Earth acts somewhat like 
a huge bar magnet. The south pole of this 
imaginary magnet is near the geographic 
North Pole and is the point to which the 
north pole of a compass appears to point.
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If you sprinkle iron filings on a piece of clear acetate that is held over a magnet, 
you will observe that the magnetic field will be clearly defined (see Figure 2.3.6). 
The iron filings will line up with the field, showing clear field lines running from 
one end of the magnet to the other.

(a)

  

(b)

FIGURE 2.3.6 Iron fillings sprinkled around magnets (a) with unlike poles close together and (b) with 
like poles close together. The patterns in the fields show the attraction and repulsion between poles, 
respectively.

Vector field model for magnetic fields 
The diagram in Figure 2.3.7 shows the magnetic field associated with a simple bar 
magnet. The magnetic field around the bar magnet can be defined in vector terms, 
specifying both direction and magnitude. 

The direction of the magnetic field at any point is the direction that a compass 
would point if placed at that point—that is, towards the magnetic South Pole. This 
is also the direction of the force the magnetic field would exert on an (imaginary) 
single north pole.

Denser (closer) lines indicate a relatively stronger magnetic field. As the distance 
from the magnet increases, the magnetic field is spread over a greater area and 
its strength at any point decreases. The strength and direction associated with the 
magnetic field at any point signifies that it is a vector quantity. The strength, or 
vector magnitude, of the magnetic field at a particular point is denoted by B and 
has units of tesla (T).

The fields between magnets are dependent on whether like or unlike poles 
are close together, the distance the poles are apart and the relative strength of the 
magnetic field of each magnet. Iron filings or small plotting compasses can be used 
to visualise the field between and around the magnets, as shown in Figure 2.3.8. 

N S

FIGURE 2.3.8 Plotting field lines around a bar magnet. Small plotting compasses are placed around 
the magnet. Field lines are drawn linking the direction each compass points in, creating field lines 
that run from the north pole to the south pole of the magnet.

N

S

FIGURE 2.3.7 The field lines around and inside a 
bar magnet. The lines show the direction of the 
force on an (imaginary) single north pole.
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Because the Earth has a giant magnetic field around it, you can also predict how 
compasses will orient themselves around the Earth—they will orient themselves 
along the magnetic field lines. In Figure 2.3.7, note the direction of the magnetic 
field close to either pole, where the magnetic field lines run almost vertically. 
Magnets placed near the Earth’s magnetic poles will behave in the same way.

Different shaped magnets produce different shaped fields. The diagram in 
Figure 2.3.9 shows the magnetic field plotted for a horseshoe magnet.

The resultant direction of the magnetic field at a particular point will be the 
vector addition of each individual magnetic field acting at that point.

When two magnets are placed close together, two situations may arise. If the 
poles are unlike as per Figure 2.3.10(b), then attraction will occur between them 
and a magnetic field will be created that extends between the two poles. On the 
other hand, if like poles are very near each other as per Figure 2.3.10(c), repulsion 
will occur. In this situation, there will be a neutral point between the two poles 
where there is no magnetic field.

N

S

S

N

N

S

N

 (a)  (b)  (c)

neutral or
null point

S

S

N

FIGURE 2.3.10 Magnetic field lines plotted for (a) a bar magnet, (b) opposite poles of magnets in 
close proximity and (c) like poles of magnets in close proximity.

As the bar magnets in Figure 2.3.10 have a fixed strength and position, the 
associated magnetic fields will be static. Varying the magnetic field strength, by 
changing the magnets or varying the relative position of the magnets, would 
produce a changing magnetic field.

MAGNETIC FIELDS AND CURRENT-CARRYING WIRES 
In the introduction to this section the connection between electric current and 
magnetic fields was noted. Oersted found that when he switched on the current 
from a voltaic pile, a nearby magnetic compass would move. It’s believed that the 
Earth’s magnetic field is created by a similar effect—circulating electric currents in 
the Earth’s molten metallic core.

A circular magnetic field is created around a current-carrying wire. This can be 
seen in Figure 2.3.11. A compass aligns itself at a tangent to the concentric circles 
around the wire (i.e. the magnetic field). The stronger the current and the closer the 
compass is to the wire, the greater the effect. 

The magnetic field is perpendicular to the current-carrying wire and the 
direction of the field will depend upon the current direction. There’s a simple and 
easy way to determine the direction of the magnetic field, which is commonly 
referred to as the right-hand grip rule.

Grasp the conducting wire with your right hand with your thumb pointing in 
the direction of the conventional electric current, I (positive to negative). Curl 
your fingers around the wire. The magnetic field will be perpendicular to the wire 
and in the direction your fingers are pointing, as shown in Figure 2.3.12 on the 
following page.

Single Horse Shoe Magnet

N S

FIGURE 2.3.9 The horseshoe magnet has two 
unlike poles close to each other. This creates 
a very strong magnetic field.

N

N

N

N

direction
of current

(a)

(b)

FIGURE 2.3.11 (a) The magnetic field around 
a current-carrying wire. The iron filings align 
with the field to show the circular nature of the 
magnetic field. (b) Small compasses will indicate 
the direction of the field.
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Worked example 2.3.1

DIRECTION OF THE MAGNETIC FIELD

A current-carrying wire runs horizontally across a table. The conventional 
current direction, I, is running from left to right. What is the direction of the 
magnetic field created by the current?

Thinking Working 

Recall that the right-hand grip 
rule indicates the direction of the 
magnetic field.

Hold your hand with your fingers 
aligned as if gripping the wire. 

Point your thumb to the right in the 
direction of the current flow.

�ngers point down on
the front side of the wire

current

Describe the direction of the field 
in relation to the reference object 
or wire in simple terms, so that the 
description can be readily understood 
by a reasonable reader.

The magnetic field direction is 
perpendicular to the wire and runs 
from up the back of the wire, over the 
top towards the front of the wire. 

Worked example: Try yourself 2.3.1

DIRECTION OF THE MAGNETIC FIELD

A current-carrying wire runs along the length of a table. The conventional current 
direction, I, is running toward an observer standing at the near end. What is the 
direction of the magnetic field created by the current as seen by the observer?

Magnetic fields between parallel wires
Two current carrying wires arranged parallel to each other will each have their own 
magnetic field. The direction of the magnetic field around each wire is given by the 
right-hand grip rule. If the two wires are brought closer together, their associated 
magnetic fields will interact, just as any two regular magnets would interact. The 
interaction could result in either an attraction or repulsion of the wires, depending 
on the direction of the magnetic fields between them (see Figure 2.3.13). When the 
magnetic fields are in the opposite directions, this represents unlike poles, and so 
the wires attract. When the magnetic fields are in the same direction, the wires repel.

3D FIELDS 
Field lines can also be drawn for more-complex, 3D fields such as that around the 
Earth or those around current-carrying loops and coils. Even in more-complex 
fields, the right-hand grip rule is still applicable, as you can see in figures 2.3.14 
and 2.3.15.

I

I

(a) (b)

FIGURE 2.3.14 The magnetic field lines around (a) a single current loop and (b) a series of loops. 
The blue arrows indicate the direction of the magnetic field. The more concentrated the lines are 
inside the loops, the stronger the magnetic field is in this region.

S

N

I

FIGURE 2.3.12 The right-hand grip rule can 
be used to find the direction of the magnetic 
field around a current-carrying wire, when 
the direction of the conventional current, I, 
is known.
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(a)

(b)

FIGURE 2.3.13 (a) Two current-carrying wires 
attract when current runs through them in the 
same direction. This is because the magnetic 
fields between the wires are in opposite 
directions. (b) Two current-carrying wires 
repel when the current passes through them 
in opposite directions. This is because the 
magnetic fields are in the same direction.
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The direction of a magnetic field can be shown with a simple arrow on a field line 
when the field is travelling within the plane of a page (as shown in Figure 2.3.14), 
or a simple 3D depiction can be used as in Figure 2.3.15. 

Figure 2.3.15 shows a 3D representation of the magnetic field around a loop of 
wire. This same loop can also be represented in two dimensions using the following 
conventions.

When a field is running directly into or out of the plane of a page, dots are 
used to show a field coming out of the page and crosses are used to depict a field 
running directly into the page. This convention was adopted from the idea of 
viewing an arrow. The dot is the point of the arrow coming toward you, and the 
cross represents the tail feathers as the arrow travels away.

Figure 2.3.16 shows the 2D representation of the same magnetic field around a 
simple loop of wire that was shown in Figure 2.3.15.

The strength of a field is depicted by varying the density of the lines or dots 
and crosses. Showing lines coming closer together indicates a strengthening of a 
field, less density indicates a weaker field. More densely placed dots or crosses can 
also show a stronger area of the field. This would be referred to as a non-uniform 
magnetic field.

As the magnetic fields associated with current-carrying coils are dependent 
upon the size of the current, the associated field may also be changing over time, 
either in magnitude, or, if the current is reversed, in direction.

The magnetic field around a solenoid 
If many loops are placed side by side, their fields all add together and there is a 
much stronger effect. This can easily be achieved by winding many turns of wire 
into a coil termed a solenoid. The field around the solenoid is like the field around 
a normal bar magnet. The direction of the overall magnetic field can be determined 
by considering the field around each loop and, in turn, the field around the current-
carrying wire making up the loop. The direction of the field of the solenoid depends 
on the direction of the current in the wire making up the solenoid.

This is explained in the diagram in Figure 2.3.17.

FIGURE 2.3.17 This solenoid has an effective ‘north’ end at the left and a ‘south’ end at the right. 
The compass points in the direction of the field lines.

A simple way to remember which end of a solenoid is which pole is to write the 
letters S and N and put arrows on them as shown in Figure 2.3.17. The arrows 
indicate the direction of the current as seen from that end. Try each of S and N at 
each end to determine which pole ‘fits’ at which end.

I

FIGURE 2.3.15 A 3D representation of the 
magnetic field around a loop of wire in the 
plane of the page. The blue arrows show the 
direction of the magnetic field. Notice that the 
magnetic field is a circular shape, with no field 
lines crossing.
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FIGURE 2.3.16 A 2D representation of the same 
current-carrying loop depicted in Figure 2.3.15. 
Areas where the magnetic field is stronger 
are shown with a greater density of dots 
and crosses.
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CREATING AN ELECTROMAGNET 
The earliest magnets were all naturally occurring. If you wanted a magnet, you 
needed to find one. They were regarded largely as curiosities. Hans Christian 
Oersted’s discoveries made it possible to manufacture magnets, making the 
widescale use of magnets possible.

An electromagnet, as the name infers, runs on electricity. It works because an 
electric current produces a magnetic field around a current-carrying wire. If the 
conductor is looped into a series of coils to make a solenoid, then the magnetic field 
can be concentrated within the coils. The more coils, the stronger the magnetic 
field and, therefore, the stronger the electromagnet.

The magnetic field can be strengthened further by wrapping the coils around 
a core. Normally, the atoms in materials like iron point in random directions and 
the individual magnetic fields tend to cancel each other out. However, the magnetic 
field produced by coils wrapped around an iron core can force the atoms within 
the core to point in one direction. Their individual magnetic fields add together, 
creating a stronger magnetic field. 

The strength of an electromagnet can also be changed by varying the amount of 
electric current that flows through it. 

The direction of the current creates poles in the electromagnet. The poles of 
an electromagnet can be reversed by reversing the direction of the electric current.

Today, electromagnets are used directly to lift heavy objects (see Figure 12.3.18), 
as switches and relays, and as a way of creating new permanent magnets by aligning 
the atoms within magnetic materials.

FIGURE 2.3.18 A large electromagnet being used to lift waste iron and steel at a scrapyard. Valuable 
metals such as these are separated and then recycled.
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2.3 Review
SUMMARY

• Like magnetic poles repel, and unlike magnetic 
poles attract. 

• Magnetic poles exist only as dipoles, having both 
north and south poles. A single magnetic pole 
(monopole) is not known to exist.

• The direction of a magnetic field at a particular point 
is the same as that of the force on a (imaginary) 
single north pole.

• The resultant direction of interacting magnetic fields 
at any particular point will be the vector addition of 
each individual magnetic field acting at that point.

• The Earth has a dipolar magnetic field that acts as 
a huge bar magnet, with the south end near the 
geographic North Pole. 

• A magnetic field associated with a constant 
magnetic field is static. Where the magnetic field 
is changing, such as that associated with an 
alternating current direction, the magnetic field 
will also be changing.

• A uniform distribution of field lines represents a 
uniform magnetic field. A non-uniform field, such 
as that around a non-circular coil, is shown by 
variations in the separation of the field lines.

• An electrical current produces a magnetic 
field that is circular around a current-carrying 
conductor. The direction of the field is given by 
using the right-hand grip rule when considering 
the direction of the conventional current.

• More complex fields can be determined by 
applying the right-hand grip rule to the loops or 
coils making up the current carrying conductor 
in a solenoid.

KEY QUESTIONS

1  Repeatedly cutting a magnet in half always produces 
magnets with two opposite poles. From this 
information, which of the following can be deduced 
in relation to the poles of a magnet? 
A  Magnets are easily sliced in half.
B  All magnets are dipolar.
C  When the magnets are cut, the poles are split 

in half.
D  All split magnets are monopolar.

2  A magnet is suspended on a thin wire at its midpoint 
so that it is free to swing. In which direction, 
approximately, will the north pole of the magnet point?
A  Earth’s geographic north
B  Earth’s geographic south
C  Earth’s equator
D  the sky due to Earth’s gravity

3  The field around a particular current-carrying loop 
shows a variation in the strength of its magnetic field, 
as depicted below. The current in the loop itself is 
being switched on and off but is constant in direction 
and size.
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Which of the following best describes the resulting 
magnetic field of the loop?
A  a reversed magnetic field
B  a static magnetic field
C  a non-uniform magnetic field
D  a uniform magnetic field
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2.3 Review
4  The following diagram shows two bar magnets 

separated by a distance d. At this separation, the 
magnitude of the magnetic force between the poles 
is equal to F. Which of the following is true if the 
distance, d, is increased? 

N NS S
d

A  An attractive force greater than F will exist between 
the poles. 

B  A repulsive force greater than F will exist between 
the poles. 

C  An attractive force less than F will exist between 
the poles. 

D A repulsive force less than F will exist between the 
poles.

5  A current-carrying wire runs horizontally across a 
table. The conventional current direction, I, is running 
from right to left. Draw a diagram showing the 
direction of the magnetic field around the wire.

6  The following diagram shows a current-carrying 
solenoid. 

B A

I I

Which end (A or B) represents the north pole of this 
solenoid?

The following information applies to questions 7–9.
Two strong bar magnets which produce magnetic fields of 
equal strength are arranged as shown.

S N

N

S

EWN S
A     B     C

1.
0 

cm

1.
5 

cm

1.
5 

cm

1.
0 

cm

7  Ignoring the magnetic field of the Earth, what is the 
approximate direction of the resulting magnetic field 
at point A?

8  Ignoring the magnetic field of the Earth, what is the 
approximate direction of the resulting magnetic field 
at point C?

9  Ignoring the magnetic field of the Earth, what is the 
magnitude of the resulting magnetic field at point B?

10  The figure below shows a cross-sectional view of a 
long, straight, current-carrying conductor, with its axis 
perpendicular to the plane of the page. The conductor 
carries an electric current into the page.

N

S

W E

A

C

D B

a  What is the direction of the magnetic field 
produced by this conductor at each of the points 
A, B, C and D?

b  The direction of the current in the conductor is now 
changed so that it is carried out of the page. What 
is the direction of the magnetic field produced by 
this conductor at the four points A, B, C and D?
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2.4 Forces on charged objects due 
to magnetic fields
An electric current is a flow of electric charges. These may be electrons in a metal 
wire, electrons and mercury ions in a fluorescent tube or cations and anions in 
an electrolytic cell. The nature of the flowing charge that makes up the current 
does not matter. A magnetic field is produced around the flow of charge, and a 
force is experienced within this field (see Figure 2.4.1). In each case, it is the total 
rate of flow of charge, i.e. the current, which determines the field produced or the 
magnitude of the force.

FIGURE 2.4.1 Electrons rushing down the length of a CRT (cathode ray tube) were the basis upon 
which old-style television sets worked. The electrons were deflected by the magnetic force they 
experienced as they passed through the ‘yoke’—coils of copper wire at the back of the tube creating 
a strong variable magnetic field. 

MAGNETIC FORCE ON CHARGED PARTICLES 
The principle behind a cathode ray tube (CRT) is that a charged particle moving 
within a magnetic field will experience a force. In Figure 2.4.2, a beam of electrons in 
a CRT is experiencing a force due to a magnetic field. The force causes the beam of 
electrons to bend. The magnitude of the force is proportional to the strength of the 
magnetic field, B, the component of the velocity of the charge that is perpendicular 
(at right angles) to the magnetic field and the charge on the particle; that is:

 When v and B are perpendicular:

F = qvB

where F is the force in newtons (N) 

 q is the electric charge on the particle in coulombs (C) 

  v is the component of the instantaneous velocity of the particle that is 
perpendicular to the magnetic field (m s–1)

 B is the strength of the magnetic field (T)

This force is referred to as the Lorentz force. The force is at a maximum when 
the charged particle is moving at right angles to the field. There is no force acting 
when the charged particles are travelling parallel to the magnetic field.

FIGURE 2.4.2 The electron beam of a cathode 
ray tube being deflected by a magnet.
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Determining the direction of the force 
The simple mnemonic shown in Figure 2.4.3 can be used to determine the 
direction of the force on a charged particle moving in a magnetic field. Using your 
right hand, with fingers outstretched and flat, point the thumb toward the direction 
that a positive charge is moving and the outstretched fingers in the direction of the 
magnetic field. The direction of the resulting force on the charge is the direction 
in which your palm is pointing. The force on a negatively charged particle will 
therefore be in the opposite direction to that on a positively charged particle.

(�ngers)
�eld B (palm)

force F
(thumb)

v (positive charge)

FIGURE 2.4.3 The right-hand rule: Point the thumb of the right hand in the direction of the movement 
of a positive charge (conventional current direction) and the fingers in the direction of the magnetic 
field. The force on the charge will point out from the palm. 

Worked example 2.4.1

MAGNITUDE OF FORCE ON A POSITIVELY CHARGED PARTICLE

A single, positively charged particle with a charge of +1.6 × 10–19 C travels at a 
velocity of 10 m s–1 perpendicular to a magnetic field, B, of strength 4.0 × 10–5 T.

What is the magnitude of the force the particle will experience from the 
magnetic field?

Thinking Working 

Check the direction of the velocity and 
determine whether a force will apply.

Forces only apply on the component of the 
velocity perpendicular to the magnetic field.

The particle is moving 
perpendicular to the field. A force 
will apply, and so F = qvB.

Establish which quantities are known and 
which ones are required.

F = ?

q = +1.6 × 10–19 C

v = 10 m s–1

B = 4.0 × 10–5 T

Substitute values into the force equation. F = qvB

= 1.6 × 10–19 × 10 × 4.0 × 10–5

Express the final answer in an appropriate 
form. Note that only magnitude has been 
requested so do not include direction.

F = 6.4 × 10–23 N

Worked example: Try yourself 2.4.1

MAGNITUDE OF FORCE ON A POSITIVELY CHARGED PARTICLE

A single, positively charged particle with a charge of +1.6 × 10–19 C travels at a 
velocity of 50 m s–1 perpendicular to a magnetic field, B, of strength 6.0 × 10–5 T.

What is the magnitude of the force the particle will experience from the 
magnetic field?

PHYSICSFILE

The tesla
The unit for the strength of a magnetic 
field, B, was given the name tesla (T) 
in honour of Nikola Tesla. Nikola Tesla 
(1856–1943) was the first person 
to advocate the use of alternating 
current (AC) generators for use in town 
power-supply systems. He was also a 
prolific inventor of electrical machines 
of all sorts, including the Tesla coil, a 
source of high-frequency, high-voltage 
electricity.

A magnetic field of 1 T is a very 
strong field. For this reason, a number 
of smaller units, especially the millitesla 
(mT), 10–3 T, and microtesla (µT), 
10–6 T, are in common use. The table 
below shows the strength of some 
magnets for comparison.

Type of magnet Strength of 
magnetic 

field

very strong 
electromagnets and 
‘super magnets’

1 to 20 T 

Alnico and ferrite 
magnets

10–2 to 1 T 

Earth’s surface 5 × 10–5 T

TABLE 2.4.1 Comparison of magnet 
strengths.
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Worked example 2.4.2

DIRECTION OF FORCE ON A NEGATIVELY CHARGED PARTICLE

A single, negatively charged particle with a charge of –1.6 × 10–19 C is travelling 
horizontally out of a computer screen and perpendicular to a magnetic field, B, 
that runs horizontally from left to right across the screen. In what direction will 
the force experienced by the charge act?

Thinking Working 

(�ngers)
�eld B

(palm)
force F

(thumb)
v (positive charge)

The right-hand rule is used to 
determine the direction of the force 
on a positively charged particle.

Align your hand so that your fingers are 
pointing in the direction of the magnetic 
field, i.e. left to right and horizontal.

If the negatively charged particle is 
travelling out of the screen, a positively 
charged particle would be moving in the 
opposite direction. Align your thumb so it 
is pointing into the screen, in the direction 
that a positive charge would travel. 

Your palm should be facing downwards. 
That is the direction of the force applied 
by the magnetic field on the negative 
charge out of the screen.

Worked example: Try yourself 2.4.2

DIRECTION OF FORCE ON A NEGATIVELY CHARGED PARTICLE

A single, negatively charged particle with a charge of –1.6 × 10–19 C is travelling 
horizontally from left to right across a computer screen and perpendicular to a 
magnetic field, B, that runs vertically down the screen. In what direction will the 
force experienced by the charge act?

EXTENSION

Objects moving at an angle to the magnetic field
The force experienced by a charge moving in a magnetic field is a vector quantity.  
The original expression noted above applies only to that component of the velocity of 
the charge perpendicular to the magnetic field. To find the force acting on an object 
moving at an angle θ to the magnetic field, use:

F = qvB sin θ
A charged particle travelling at a steady speed in a magnetic field experiences this 

force at an angle to its path and will be diverted.

This is the theory behind CRT screens. As the direction of the charged particle 
changes, so does the angle of the force acting on it. In a very large magnetic field 
the charged particles will move in a circular path. Mass spectrometers and particle 
accelerators both work on this principle. 

When high-energy particles in the solar wind from the Sun meet the Earth’s magnetic 
field, they also experience this type of force. As the particles approach the Earth, they 
encounter the magnetic field and are deflected in such a way that they spiral towards 
the poles, losing much of their energy and creating the auroras (the southern aurora, or 
aurora australis, and the northern aurora, or aurora borealis, as shown in Figure 2.4.4).

FIGURE 2.4.4 Charged particles from the Sun or deep space are trapped by the Earth’s magnetic field,  
causing them to spiral towards the poles. As they do this, they lose energy and create the auroras.
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THE FORCE ON A CURRENT-CARRYING CONDUCTOR 
Since a conducting wire is essentially a stream of charged particles flowing in one 
direction, it is not hard to imagine that a conductor carrying a stream of charges 
within a magnetic field will also experience a force. This is the theory behind the 
operation of electric motors that will be explained in the chapter ‘Applications 
of fields’.

The current in a conductor is dependent on the rate at which charges are moving 
through the conductor; that is:

I = Qt
where I is the current (A) 
 Q is the total charge (C) 
 t is the time taken (s). 
For a 1 m length of conductor, the velocity of the charges through the conductor is:

v = s
t  = 1t

And hence

I = Qt  = Q × 1t  = Qv

As F = qvB for a single charge, q, moving perpendicular to a magnetic field, 
then: 

F = IB for a one metre conductor, 
and for a conductor of any length, l, F = IlB
and for a conductor made up of n loops or conductors of length l:

F = nIlB

where F  is the force on the conductor perpendicular to the magnetic field in 
newtons (N)

 n is the number of loops or conductors

 I is the current in the conductor in amperes (A) 

 l is the length of the conductor in metres (m)

 B is the strength of the magnetic field in tesla (T)

Just as for a single charge moving in a magnetic field, the force on the conductor 
is at a maximum when the conductor is at right angles to the field. The force is 
zero when the conductor is parallel to the magnetic field. The right-hand rule is 
used to determine the direction of the force.

EXTENSION

Conductors at an angle to a 
magnetic field
The force experienced by a current-carrying conductor is a vector quantity. 
The expression noted above applies only to that component of the conductor 
perpendicular to the magnetic field. To find the force acting on any 
conductor, or part of a conductor, moving at an angle θ to the magnetic field, 
use the equation:

F = nIlB sin θ
This is particularly relevant when applied to practical electric motors.

PHYSICS IN ACTION

The current 
balance
A current balance can be used 
to determine the force on a 
conductor in a magnetic field, 
as shown in Figure 2.4.5.

FIGURE 2.4.5 A current balance is used 
to measure the interaction between an 
electric conductor and a magnetic field. 
The relationship between force, current 
and conductor length can be shown.
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Worked example 2.4.3

MAGNITUDE OF THE FORCE ON A CURRENT-CARRYING WIRE

Determine the magnitude of the force due to the Earth’s magnetic field that acts 
on a suspended power line running east–west near the equator at the moment 
it carries a current of 100 A from west to east. Assume that the strength of the 
Earth’s magnetic field at this point is 5.0 × 10–5 T.

B
F

N

S
E

W

I

Thinking Working 

Check direction of the conductor and 
determine whether a force will apply.

Forces only apply to the component 
of the wire perpendicular to the 
magnetic field.

As the current is running west–east 
and the Earth’s magnetic field runs 
south–north, the current and the 
field are at right angles and a force 
will exist.

Establish what quantities are known 
and what are required. Since the 
length of the power line hasn’t been 
supplied, consider the force per unit 
length (i.e. 1 m).

F = ?

n = 1

I = 100 A

l = 1.0 m

B = 5.0 × 10–5 T

Substitute values into the force 
equation and simplify.

F = nIlB
= 1 × 100 × 1.0 × 5.0 × 10–5 N

= 5.0 × 10–3 N

Express the final answer in an 
appropriate form with a suitable 
number of significant figures. Note 
that only magnitude has been 
requested, so do not include direction.

F = 5.0 × 10–3 N per metre of 
power line

Worked example: Try yourself 2.4.3

MAGNITUDE OF THE FORCE ON A CURRENT-CARRYING WIRE

Determine the magnitude of the force due to the Earth’s magnetic field that acts 
on a suspended power line running east–west near the equator at the moment 
it carries a current of 50 A from west to east. Assume that the strength of the 
Earth’s magnetic field at this point is 5.0 × 10–5 T.

B
F

N

S
E

W

I
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Worked example 2.4.4

DIRECTION OF THE FORCE ON A CURRENT-CARRYING WIRE

A current balance is used to measure the force from a magnetic field on a wire 
of length 5.0 cm running perpendicular to the magnetic field. The conventional 
current direction in the wire is from left to right. The magnetic field can be 
considered to be running into the page. What is the direction of the force on 
the wire?

Thinking Working 

(�ngers)
�eld B

(palm)
force F

(thumb)
v (positive charge)

The right-hand rule is used to 
determine the direction of the force.

Align your hand so that your fingers 
are pointing in the direction of the 
magnetic field, i.e. into the page.

Align your thumb so it is pointing 
right, in the direction of the current.

Your palm should be facing upwards. 
That is the direction of the force 
applied by the magnetic field on 
the wire.

State the direction in terms of 
the other directions included in 
the question. Make the answer 
as clear as possible to avoid any 
misunderstanding.

The force on the wire is acting 
vertically upwards.

Worked example: Try yourself 2.4.4

DIRECTION OF THE FORCE ON A CURRENT-CARRYING WIRE

A current balance is used to measure the force from a magnetic field on a wire 
of length 5.0 cm running perpendicular to the magnetic field. The conventional 
current direction in the wire is from left to right. The magnetic field can be 
considered to be running out of the page. What is the direction of the force 
on the wire?

Worked example 2.4.5

FORCE AND DIRECTION ON A CURRENT-CARRYING WIRE

The Amundsen–Scott South Pole Station sits at a point that can be considered 
to be at the Earth’s southern magnetic pole (which behaves like the north pole 
of a magnet).

Assuming the strength of the Earth’s magnetic field at this point is 5.0 × 10–5 T, 
determine the magnitude and direction of the magnetic force on the following:

a   A 2.0 m length of wire carrying a conventional current of 10.0 A vertically up 
the exterior wall of one of the buildings. 

Thinking Working 

Forces only apply to the components 
of the wire running perpendicular to 
the magnetic field.

The direction of the magnetic field at 
the southern magnetic pole will be 
almost vertically upwards.

The section of the wire running up the 
wall of the building will be parallel to 
the magnetic field, B. Hence, no force 
will apply.

State your answer. A numeric value is 
required. Since there is no force, it is 
not necessary to state a direction.

F = 0 N
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b   A 2.0 m length of wire carrying a conventional current of 10.0 A running 
horizontally right to left across the exterior of one of the buildings.

Forces only apply to the components 
of the wire running perpendicular to 
the magnetic field.

The direction of the magnetic field at 
the southern magnetic pole will be 
almost vertically upwards (that is, out 
of the ground).

The section of the wire running 
horizontally through the building will 
be perpendicular to the magnetic 
field, B. A force F with a strength 
equivalent to nIlB will apply.

Identify the known quantities. F = ?

n = 1

I = 10.0 A

l = 2.0 m

B = 5.0 × 10–5 T

Substitute into the appropriate equation 
and simplify.

F = nIlB
= 1 × 10.0 × 2.0 × 5.0 × 10–5

= 1.00 × 10–3 N

(�ngers)
�eld B

(palm)
force F

(thumb)
v (positive charge)

The direction of the magnetic force is 
also required to fully specify the vector 
quantity. Determine the direction of the 
magnetic force using the right-hand rule.

Align your hand so that your fingers 
are pointing in the direction of the 
magnetic field, i.e. vertically up.

Align your thumb so it is pointing 
left, in the direction of the current.

Your palm should be facing inwards  
(towards the building). That is the 
direction of the force applied by the 
magnetic field on the wire.

State the magnetic force in an 
appropriate form with a suitable 
number of significant figures. Include 
the direction to fully specify the 
vector quantity.

F = 1.0 × 10–3 N inwards

Worked example: Try yourself 2.4.5

FORCE AND DIRECTION ON A CURRENT-CARRYING WIRE

Santa’s house sits at a point that can be considered the Earth’s magnetic North 
Pole (which behaves like the south pole of a magnet).

Assuming the strength of the Earth’s magnetic field at this point is 5.0 × 10–5 T, 
calculate the magnetic force and its direction on the following: 

a   a 2.0 m length of wire carrying a conventional current of 10.0 A vertically up 
the outside wall of Santa’s house.

b   a 2.0 m length of wire carrying a conventional current of 10.0 A running 
horizontally right to left across the outside of Santa’s house.
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2.4 Review
SUMMARY

• The magnitude of the force on a charged object 
within a magnetic field is proportional to the 
strength of the magnetic field, B, the component 
of the velocity of the charge that is perpendicular 
(at right angles) to the magnetic field, and the 
charge on the particle, i.e. F = qvB.

• This force is referred to as the Lorentz force.

• The force is at a maximum when the charged particle 
is moving at right angles to the magnetic field.

• The force is zero when the charged particle is 
travelling parallel to the magnetic field.

• The right-hand rule is used to determine the 
direction of the force on a positive charge moving 
in a magnetic field, B. The direction of the 
force on a negatively charged particle is in the 
opposite direction.

• The magnetic force on a current-carrying wire 
within a magnetic field is

F = nIlB
• The direction of the force is given by the right-

hand rule where the force travels out of the palm 
of the hand, once the thumb and fingers are 
orientated in the direction of the (conventional) 
current and magnetic field, respectively.

KEY QUESTIONS

1  A single, positively charged particle with a charge of 
+1.6 × 10–19 C is travelling into a computer screen 
and perpendicular to a magnetic field, B, that runs 
horizontally from left to right across the screen. 
In what direction will the force experienced by the 
charge act?
A  left to right
B  right to left
C  vertically up
D  vertically down

2  The following diagram shows a particle, with initial 
velocity v, about to enter a uniform magnetic field, B, 
directed out of the page.

N

S

W E

A

C

B
v

a  If the charge on this particle is positive, what is 
the direction of the force on this particle just as it 
enters the field?

b  Which path will this particle follow?
c  Does the kinetic energy of the particle increase 

decrease or remain constant?
d  If this particle were negatively charged, what path 

would it follow?
e  What kind of particle could follow path B?

3  A single, positively charged particle with a charge of 
+1.6 × 10–19 C travels at a velocity of 0.5 m s–1 from 
left to right perpendicular to a magnetic field, B, of 
strength 2.0 × 10–5 T, running vertically downwards. 
What is the magnitude of the force that the particle 
will experience from the magnetic field?
A  1.6 ×10–5 N
B  3.2 ×10–5 N
C  1.6 ×10–19 N
D  1.6 ×10–24 N

4  A single, negatively charged particle with a charge 
of –1.6 × 10–19 travels at a velocity of 1.0 m s–1 from 
right to left parallel to a magnetic field, B, of strength 
3.0 × 10–5 T.
What is the magnitude of the force the particle will 
experience from the magnetic field?

5  A rectangular loop of wire is carrying a current, I, 
in a magnetic field, B, as shown below. What is the 
direction of the force on the length of wire marked PQ?

P Q

RS

I I

II

B

X

Y

top view
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2.4 Review continued
6  An east–west power line of length 100 m is suspended 

between two towers. Assume that the strength of 
the magnetic field of the Earth in this region is 
5.0 × 10–5 T. Calculate the magnetic force (including 
direction) on this power line at the moment it carries 
a current of 80 A from west to east.

7  An electron with a charge of –1.6 × 10–19 C is 
moving eastwards into a magnetic field of strength 
1.5 × 10–5 T acting into the page, as shown below. 
If the magnitude of the initial velocity is 2 m s–1, 
what is the magnitude and direction of the force 
the electron initially experiences as it enters the 
magnetic field?

N

S

W E
v

8  An alpha particle with a charge of +3.2 × 10–19 C is 
moving eastwards into a magnetic field acting into the 
page, as shown below. The force it experiences is F. If 
the velocity, v, of the particle is doubled, what will be 
the magnitude and direction of the magnetic force it 
would experience in terms of F?

N

S

W E
v

9  The diagram below depicts a cross-sectional view of 
a long, straight, current-carrying conductor, located 
between the poles of a permanent magnet. The 
magnetic field, B, of the magnet, and the current, I, are 
perpendicular. Calculate the magnitude and direction 
of the magnetic force on a 5.0 cm section of the 
conductor when the current is 2.0 A into the page and 
B equals 2.0 × 10–3 T.

N

S

W ES NN S

10  An east–west power line of length 80 m is suspended 
between two towers. Assume that the strength of 
the magnetic field of the Earth in this region equals 
4.5 × 10–5 T. 
a  Calculate the magnitude and direction of the 

magnetic force on this power line at the moment 
it carries a current of 50 A from east to west.

b  Over time, the ground underneath the eastern 
tower subsides, so that the power line is lower at 
that tower. Assuming that all other factors are the 
same, is the magnitude of the magnetic force on 
the power line greater than before, less than before 
or the same as before?
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2.5 Comparing fields—a summary
Many of the forces affecting us and the world around us can be described as contact 
forces. There is direct contact as you open a door, kick a ball or rest on a couch. By 
contrast, the forces of gravity, magnetism and electricity act over a distance without 
necessarily having any physical contact (see Figure 2.5.1). This was a difficult 
idea for scientists to come to terms with. Newton still had some misgivings even 
when publishing his ideas of universal gravitation. The concept of fields, used to 
explain how and why forces can act over a distance, is thus a very powerful tool 
and one that has allowed us to better explain the fundamental forces of gravity and 
electromagnetism.

FIGURE 2.5.1 The magnet has an effect on the paper clips even though they are not in contact. This 
is because the paper clips are within the magnetic field produced by the magnet.

In this section key concepts and ideas on gravitational, electric and magnetic 
fields will be summarised, compared and contrasted to give an overview of the 
theoretical ideas covered so far.

DIPOLES AND MONOPOLES  
Gravitational fields consist essentially of monopoles. All objects with mass produce 
a gravitational field that can be considered as being toward the centre of the mass. 
There is a concept of a gravitational dipole but it is a measure of how the mass of 
a single object is distributed away from a particular centre in a particular direction, 
usually selected as the centre of mass.

Magnetic fields exist in a practical sense solely as dipoles; that is, they have 
opposite north and south poles. While a magnetic field is defined as having a 
direction that a north magnetic pole would move (i.e. toward a south pole), this is 
a theoretical single pole.

Electric fields have both monopoles and dipoles. Single positive and negative 
charges represent monopoles. Two equal point charges of opposite sign separated 
by a distance, r, constitute a dipole. These exist often in physics and in areas such 
as molecular biology.
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EXTENSION

Quadrupoles
Gravitational fields are said to also have a ‘quadrupole’. A quadrupole is 
a representation of how the mass of an object is stretched out along a 
particular rotational axis. A sphere would thus have a zero quadrupole as 
the mass is evenly distributed around all axes. A long rod would have a 
quadrupole along its length. A flat plate would also have a quadrupole, but 
with the opposite sign of that of a rod since the axis would be pointing out 
either side of its flat sides rather than along its axis as for a rod. In general, 
quadrupoles can exist along x, y and z axes, each axis being at right angles 
to the others.

PHYSICSFILE

Gravitational repulsive forces 
A leading theory in the explanation of the expansion of the universe is the concept 
of dark energy. While little is understood about dark energy at this time, it may be a 
source of a repulsive force of gravity possibly originating from the interaction of matter 
and antimatter.

DIRECTION AND SHAPE OF FIELDS  
Simple fields associated with a single monopole, whether that be gravitational, 
electric or magnetic (although the magnetic one would be purely theoretical), 
look very similar since they are a representation of the spread of the field over the 
area being affected around a single point. Fields are vector quantities having both 
direction and size. Field lines are used to visualise the extent, shape and strength of 
the field, with arrows on the field lines used to show the direction of the field.

A uniform field would be indicated by lines that remain evenly spaced throughout 
the region of the field. The electric field in the region between two charged plates 
would be uniform. Around a point charge, mass or pole, while the field lines would 
be evenly spaced, the field would not be uniform since the strength of the field 
decreases with the distance from the charge. This is called a radial field.

In a static (unchanging) field, the strength of the field doesn’t change with time. 
This is true of most gravitational and magnetic fields where the mass of the object 
or the strength of the magnet is unchanging. Many electric fields are changing 
fields. Charges are moving or the amount of charge is changing regularly with time. 
Of course there can be static electric fields with a fixed charge just as there can be 
changing gravitational and magnetic fields. The magnetic field associated with a 
changing electric current is one example of a changing magnetic field.

A gravitational field is directed toward the point representing the centre of mass 
of the object and is always attractive (see Figure 2.5.2). In the case of both electric 
and magnetic fields, the field may be either attractive or repulsive so a particular 
direction is defined as the positive direction. In the case of electric fields this is the 
direction of the force on a positive test charge (i.e. positive to negative) and for 
magnetic fields, the direction of the force on a theoretical single north pole (i.e. 
north to south).

One other key difference between each of these fields is that theoretically 
a gravitational field around any mass extends an infinite distance from it. While 
the shape of the field will be influenced by the field of other masses, there is no 
way of stopping the field. The extent of both electric and magnetic fields, while 
theoretically extending to infinity, can be constrained by external electric and 
magnetic influences.

FIGURE 2.5.2 The arrows in this gravitational 
field diagram around a planet indicate that 
objects will be attracted towards the centre 
of mass of the planet. The spacing of the 
lines shows that force is stronger as you 
approach the planet. Very similar field diagrams 
apply to single electric point charges and 
magnetic poles.
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The shape of electrical and magnetic fields around objects can be influenced by 
the shape of the object. An example is shown in Figure 2.5.3. The shape of the field 
around multiple masses, charges or poles becomes increasingly complex. However, 
the direction of a field at any point is always the resultant field vector determined 
by adding the individual field vectors due to each mass, charge or magnetic pole 
within the affected region. Note, again, that gravitational fields are known only to 
be attractive. 

FIGURE 2.5.3 Field lines around a pear-shaped conductor. The uneven nature of their distribution is 
due to the contributions of each individual charge on the surface of the conductor and the greater 
density at more curved regions.

Whether a charge is positive or negative, or a magnetic pole is north or south, 
needs also to be considered when determining the resultant field around multiple 
charges or magnetic poles, as shown in Figure 2.5.4.

FIGURE 2.5.5 The magnetic field around a bar magnet. While fields are generally shown only in 
two dimensions, fields exist and affect the area around poles, charges and masses in all three 
dimensions. 

FIGURE 2.5.4 The electric field resulting when 
unlike charges are brought together. At any 
point the density and direction of the field lines 
represent the resultant field vector at that point.
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SUMMARY

• Gravitational, electric and magnetic fields are 
similar, but display significant differences associated 
with the differences in the fundamental nature of 
the fields.

• The direction of a field at any point is always the 
resultant field vector determined by adding the 
individual field vectors due to each mass, charge or 
magnetic pole within the affected region.

• A uniform field would be indicated by lines that 
remain evenly spaced throughout the region of 
the field.

• In a static (unchanging) field, the strength of the 
field doesn’t change with time.

• The field around a monopole is radial, static but 
not uniform. It varies with the distance from the 
point source.

Quantity or description Gravitational fields Electrical fields Magnetic fields

type of poles monopoles monopoles/dipoles dipoles

type of force attractive attractive/repulsive attractive/repulsive

extent of the field extends to an infinite 
distance

can be constrained to  
a fixed distance

can be constrained to  
a fixed distance

effect of distance on field strength in 
a radial field g = G 

M
r2 E = k 

Q
r2

force between monopoles
Fg = G 

m1m2

r2 F = k 
q1q2

r2

potential energy changes in a 
uniform field

Eg = mg∆h W = qV

force due to a uniform field Fg = mg F = qE

2.5 Review

COMPARING GRAVITATIONAL AND ELECTRIC FIELDS
Gravity is an incredible force. Permeating the universe, it brings gas clouds together 
to form planets, stars and galaxies. It causes stars to collapse to black holes, 
generating gravitational fields strong enough that even light can’t escape. And yet 
the gravitational force of attraction between two electrons is less than 8 × 10–37 N, 
which is the same as the electrostatic repulsion between the same two electrons.

The relationships developed for gravitational and electric fields over the last 
two chapters reveal the parallels and differences between related field concepts for 
gravitational masses and point charges, both of which are essentially monopoles. 
They are summarised in Table 2.5.1.

Quantity or description Gravitational fields Electrical fields

how field strength varies with 
distance, r, from a monopole g = G 

M
r2 E = k 

Q
r2

force between monopoles
Fg = G 

m1m2

r2 F = k 
q1q2

r2

potential energy changes in a 
uniform field

Eg = mg∆h W = qV

force due to a uniform field Fg = mg F = qE

TABLE 2.5.1 Comparison of gravitational and electric fields.

PHYSICSFILE

Field strength around a 
dipole 
While the theories of many particle 
physicists predict magnetic monopoles, 
in practical terms magnetic poles 
exist only as dipoles. The relevant 
relationships for dipoles are somewhat 
different to those for radial fields 
surrounding monopoles. An inverse 
square law, for example, does not 
apply. It can be shown that the field 
strength at a distance from a dipole will 
decrease with the cube of the distance. 
That is, field strength ∝1

r3.
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KEY QUESTIONS

1  The diagram below shows the electric field between 
two electrically charged plates of opposite sign. 

Choose the correct response that explains why the 
electric field lines shown are bulging outwards at the 
ends of the plates. Hint: Consider the field between 
the plates and how this compares with the field 
outside the plates. How would this affect the shape 
of the field at the ends of the plate?
A  The plates are being drawn together by gravity, 

squeezing the electric field outwards at the ends.
B  At either end a magnetic field is created, interacting 

with the electric field.
C  At either end the horizontal component of the 

resultant force is outwards; between the plates 
it is zero.

D  At either end air pressure will cause the field lines 
to bend outwards.

2  Determine which of the following statements is 
incorrect.
A  Gravitational fields are known only to be attractive.
B  In a static field, the strength of the field changes 

with time.
C  Gravitational fields consist essentially of monopoles.
D  Fields are vector quantities having both direction 

and size.

3  The gravitational force of attraction between two 
electrons is said to be less than 8 × 10–37 N. 
At what minimum distance does this hold true for 
the two electrons? 
(Use G = 6.67 × 10–11 m3 kg–1 s–2, and the mass of 
each electron is 9.1 × 10–31 kg.)

4  Describe  the nature of the poles (monopoles, dipoles 
or both) for each of the following fields:
a  gravitational
b  electrical
c  magnetic.

5  Complete the following statement about the field 
around a monopole from the pairs of choices 
provided in bold: 
The field around a monopole is linear/radial, static/
dynamic and uniform/non-uniform.

6  The diagram below shows the field between two 
point charges. 
The charge on the right is shown with no sign. What is 
the charge on the point charge on the right?

7  Which of the following statements explains why an 
inverse square law does not apply to the change in 
magnetic field strength with distance from the source.
A  Magnetic fields are considerably stronger than 

other field types.
B  Magnetic fields are uniform around each pole.
C  Magnetic fields are only associated with monopoles.
D  Magnetic fields are only associated with dipoles.

8  Complete the following statement about the direction 
of a field around a monopole from the choices 
provided in bold:
The direction of a field at any point is defined as the 
maximum/resultant field vector determined by adding 
the total/individual field vectors due to each mass, 
charge or magnetic pole within the field.

9  The electron of a hydrogen atom orbits the single 
proton at the centre at an average distance of 
0.53 × 10–10 m. The charges on both the electron 
and the proton are 1.6 × 10–19 C. What is the electrical 
force of attraction between the two particles?
(Use k = 9 × 109 N m2 C–2.)

10  The electron of a hydrogen atom orbits the single 
proton at the centre at an average distance of 
0.53 × 10–10 m. The mass of the electron is  
9.1 × 10–31 kg and that of the proton is  
1.67 × 10–27 kg. What is the gravitational force 
of attraction between the two particles? 
(Use G = 6.67 ×10–11 m3 kg–1 s–2.)
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Chapter review

KEY TERMS

cathode ray tube
dipole
electric field
electric field strength
electrical potential
field
field lines

Lorentz force
magnetic
magnetic field
magnetic pole
mnemonic
monopole
point charge

pole
potential difference
right-hand rules
solar wind
solenoid
voltaic pile

1  Calculate the force applied to an oil drop carrying 
a charge of 3.00 mC in a uniform electric field of  
7.50 N C–1.

2  A test charge is placed at a point, P, 30 cm directly 
above a charge, Q, of +30 × 10–6 C. What is the 
magnitude and direction of the electric field at 
point P?
A  300 N C–1 downwards
B  300 N C–1 upwards
C  3 × 106 N C–1 downwards
D  3 × 106 N C–1 upwards

3  Explain the difference between electrical potential and 
potential difference.

4  Calculate the potential difference that exists between 
two points separated by 25.0 mm, parallel to the field 
lines, in an electric field of strength 1000 V m–1.

5  Between two plates forming a uniform electric 
field, where will the electrical field strength be at 
a maximum?
A  close to the positive plate
B  close to the earthed plate
C  at all points between the plates
D  at the mid-point between the plates

6  Choose the correct terms from the ones in bold to 
complete the relationship between work done and 
potential difference.
When a positively charged particle moves across a 
potential difference from a positive plate towards 
an earthed plate, work is done by the field/charged 
particle on the field/charged particle.

7  Calculate the work done to move a positively charged 
particle of 2.5 × 10–18 C a distance of 3.0 mm towards 
a positive plate in a uniform electric field of 556 N C–1.

8  A particular electron gun accelerates an electron 
across a potential difference of 15 kV, a distance of 
12 cm between a pair of charged plates. What is the 
magnitude of the force acting on the electron?  
(Use qe = 1.6 × 10–19 C.)

9  A charge of +q is placed a distance r from another 
charge also of +q. A repulsive force of magnitude F 
is found to exist between them. Choose the correct 
options from the ones in bold to describe the 
changes, if any, that will occur to the force in the 
following situations. 
a  The distance between the charges is doubled to 2r, 

so the force will halve/double/quadruple/quarter 
and repel/attract.

b  The distance between the charges is halved to 0.5r, 
so the force will halve/double/quadruple/quarter 
and repel/attract.

c  The distance between the charges is doubled and 
one of the charges is changed to −2q, so the force 
will halve/double/quadruple/quarter and repel/
attract.

10  A gold(III) ion is accelerated by the electric field 
created between two parallel plates separated by 
0.020 m. The ion carries a charge of +3e and has 
a mass of 3.27 × 10–25 kg. A potential difference of 
1000 V is applied across the plates. The work done 
to move the ion from one plate to the other results in 
an increase in the kinetic energy of the gold(III) ion. 
If the ion starts from rest, calculate its final velocity.  
(Use qe = –1.602 × 10–19 C.)

11  Calculate the magnitude of the force that would exist 
between two point charges of 5.00 mC and 4.00 nC 
separated by 2.00 m. (Use k = 9 × 109 N m2 C–2.)

12  A point charge of 2.25 mC is positioned on top of 
an insulated rod on a table. At what distance above 
the point charge should a sphere of mass 3.00 kg 
containing a charge of 3.05 mC be located, so that it 
is suspended in the air? 
(Use k = 9 × 109 N m2 C–2

.)

13  A charged plastic ball of mass 5.00 g is placed in a 
uniform electric field pointing vertically upwards with 
a strength of 300.0 N C–1. Calculate the magnitude 
and sign of the charge required on the ball in order to 
create a force upwards that exactly equals the weight 
force of the ball.
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The following information relates to questions 14–16.
The diagram below shows a loop carrying a current I that 
produces a magnetic field of magnitude B in the centre of 
the loop. It is in a region where there is already a steady 
field of magnitude B (the same magnitude as that due to I) 
directed into the page. The resultant magnetic field has a 
magnitude of 2B.

I I

x

x

x x

x

x x

x

x

x
x

x

x x x x
x

x
x x

x x x x
x x x x

2B

14  What would the magnitude and direction of the 
resultant field be at the centre of the loop if the 
current in the loop is switched off?

15  What would the magnitude and direction of the 
resultant field at the centre of the loop be if the 
current in the loop were doubled?

16  What would the magnitude and direction of the 
resultant field at the centre of the loop be if the 
current in the loop were reversed but maintained 
the same magnitude? 

17  Complete the following sentence by selecting the 
best option.
The magnitude of the magnetic force on a conductor 
aligned so that the current is running parallel to a 
magnetic field is:
A  dependent on the size of the current
B  dependent on the size of the magnetic field
C  dependent on the length of the conductor
D  zero
E  a maximum

18  The right-hand rule is used to determine the force 
on a current-carrying conductor perpendicular to 
a magnetic field. Identify what part of the hand 
corresponds to the following physical quantities:
a  magnetic force
b  magnetic field
c  current in the conductor.

19  The following diagrams (a) and (b) show two different 
electron beams being bent as they pass through 
two different regions of a uniform magnetic field of 
equal magnitudes Bx and By. The initial velocities of 
the electrons in the respective beams are v1 and v2. 
Complete the following sentence by choosing the 
correct term from those in bold. 

v1 Bx(a)
v2

By(b)

For the electron beams to behave as shown in (a), v1 is 
equal to/less than v2 and the region of the magnetic 
field, By, must be acting out of/into the page.

20  How much current, I, must be flowing in a wire 3.2 m 
long if the maximum force on it is 0.800 N and it is 
placed in a uniform magnetic field of 0.0900 T? 

21  Calculate the magnitude and direction of the magnetic 
force on conductors with the following sets of data:
a  B = 1.0 mT left, l = 5.0 mm, I = 1.0 mA up
b  B = 0.10 T left, l = 1.0 cm, I = 2.0 A up

22  Calculate the force exerted on an electron  
(q = 1.6 × 10–19 C) travelling at a speed of  
7.0 × 106 m s–1 at right angles to a uniform 
magnetic field of strength 8.6 × 10–3 T.

23  A horseshoe magnet is held vertically with the north 
pole of the magnet on the left and the south pole of 
the magnet on the right. 

What is the direction of the magnetic force acting on 
the wire?

24  Power lines carry an electric current in the Earth’s 
magnetic field. Which would experience the greater 
magnetic force: a north–south power line or an  
east–west power line? Explain your answer.

25  Which of the following types of fields would you NOT 
expect to be associated with radial fields?
A  gravitational
B  electrical
C  magnetic
D  all of the above

26  Two electrons approach each other at a distance of 
5.4 × 10–12 m. The charge on both the electrons is 
–1.6 × 10–19 C. What is the electrical force of repulsion 
between the two electrons? (Use k = 9 × 109 N m2 C–2.)

27  Two electrons approach each other at a distance of 
5.4 × 10–12 m. The mass of each electron is  
9.1 × 10–31 kg. What is the gravitational force 
of attraction between the two electrons?  
(Use G = 6.67 × 10–11 m3 kg–1 s–2.)





CHAPTER

As explained in the previous chapters, gravitational, magnetic and electric fields 
affect things that are some distance away. There does not need to be direct contact 
for fields to exert a force.

This chapter looks at the application of these gravitational, magnetic and electric 
fields. You will use your understanding of fields to explain how DC motors operate, 
to understand satellite motion and to predict how charged particles will behave in 
electric fields.

Key knowledge
At the end of this chapter, you will have studied the application of fields and will be 
able to:

• analyse the use of a magnetic field to change the path of a charged particle, 
including the radius of the path followed by a low-velocity electron in a 
magnetic field: 

qvB = 
mv2

r
• apply the concepts of force due to gravity, Fg, and normal reaction force, FN, 

including satellites in orbit where the orbits are assumed to be uniform and circular
• model satellite motion (artificial, Moon, planet) as uniform circular orbital motion: 

a = 
v2

r  = 
4π2r
T2

• investigate and analyse theoretically and practically the operation of simple DC 
motors consisting of one coil, containing a number of loops of wire, which is free 
to rotate about an axis in a uniform magnetic field and including the use of a split 
ring commutator 

• model the acceleration of particles in a particle accelerator (limited to linear 
acceleration by a uniform electric field and direction change by a uniform 
magnetic field).

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Applications of fields
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3.1 Satellite motion
When Isaac Newton developed his law of universal gravitation, as discussed 
in Chapter 1 ‘Gravity’, he was building on work previously done by Nicolaus 
Copernicus, Johannes Kepler and Galileo Galilei. Copernicus had proposed a sun-
centred (heliocentric) solar system. Galileo had developed laws relating to motion 
near the Earth’s surface and Kepler had devised rules concerned with the motion 
of the planets. Kepler published his laws on the motion of planets 80 years before 
Newton published his law of universal gravitation. 

In this section, you will look at how Newton synthesised the work of Galileo 
and Kepler and proposed that the force that was causing an apple to fall to the 
Earth was the same force that was keeping the Moon in its orbit. Newton was 
the first to propose that satellites could be placed in orbit around Earth, almost 
300 years before it was technically possible to do this. Now, thousands of artificial 
satellites are in orbit around Earth and are an essential part of modern life (see 
Figure 3.1.1). 

FIGURE 3.1.1 Astronauts on a repair mission to the Hubble Space Telescope (HST) in 1994. The 
satellite initially malfunctioned, but the repair was successful and the HST is still going strongly.

NEWTON’S THOUGHT EXPERIMENT 
A satellite is an object in a stable orbit around another object. Isaac Newton 
developed the notion of satellite motion while working on his theory of gravitation. 
He was comparing the motion of the Moon with the motion of a falling apple 
and realised that it was the gravitational force of attraction towards the Earth that 
determined the motion of both objects (see Figure 3.1.2). He reasoned that if this 
force of gravity was not acting on the Moon, the Moon would move at constant 
speed in a straight line at a tangent to its orbit.

Newton proposed that the Moon, like the apple, was also falling. It was 
continuously falling to the Earth without actually getting any closer to the Earth. 
He devised a thought experiment in which he compared the motion of the Moon 
with the motion of a cannonball fired horizontally from the top of a high mountain.

Fg

Fg

FIGURE 3.1.2 Newton realised that the 
gravitational attraction of the Earth (Fg) was 
determining the motions of both the Moon 
and the apple.
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His thought experiment is illustrated in Figure 3.1.3. In this thought experiment, 
if the cannonball was fired at a low speed, it would not travel a great distance before 
gravity pulled it to the ground (see the shortest dashed line in Figure 3.1.3(b)). If it 
was fired with a greater velocity, it would follow a less curved path and land a greater 
distance from the mountain (see the next two dashed lines in Figure 3.1.3(b)). 
Newton reasoned that, if air resistance was ignored and if the cannonball was fired 
fast enough, it could travel around the Earth and reach the place from where it had 
been launched (shown by the solid circular line in Figure 3.1.3(b)). At this speed, 
it would continue to circle the Earth indefinitely even though the cannonball has no 
propulsion system.

In reality, satellites could not orbit the Earth at low altitudes, because of air 
resistance. Nevertheless, Newton had proposed the notion of an artificial satellite 
hundreds of years before one was actually launched. Any object placed at the right 
altitude with enough speed would simply continue in its orbit.

MASS AND WEIGHT 
In Unit 2 Physics, the concept of weight force was introduced. You will recall that 
the force of weight is another name for the gravitational force on an object when the 
object is near the surface of a planet or other large body, e.g. the Earth or the Moon.

Weight force (Fg or W ) is equal to the mass (m) of the object multiplied by the 
acceleration due to gravity (g) at the place you are measuring the weight. Therefore:

Fg = mg 

where Fg is the force due to gravity or weight (N)

 m is mass of the object (kg)

 g is the gravitational field strength (N kg–1)

On the Earth, the value of g is taken as 9.80665 m s–2 or 9.80665 N kg–1. This 
is often rounded to 9.8 m s–2, or in some cases is approximated as 10 m s–2 for ease 
of calculations.

The weight force or weight of an object is measured in newtons and, because it is 
a vector quantity, requires a direction. The weight of an object is always downwards, 
towards the centre of the planet or moon, etc. (e.g. Earth).

NORMAL FORCE
If you exert a force against a wall, Newton’s third law says that the wall will exert an 
equal but opposite force on you. If you push with a greater force, the wall will also 
exert a greater force. This is shown in Figure 3.1.4. 

F on Joe
F on JoeF on wall F on wall

(a) (b)

FIGURE 3.1.4 (a) If Joe exerts a small force on the wall, the wall exerts a small force on Joe. (b) When 
Joe pushes hard against the wall, the wall pushes back just as hard! In both (a) and (b), the red and 
green arrows are equal in size but opposite in direction. That is, Fon Joe by wall = –Fon wall by Joe.

v

(a)

(b)

FIGURE 3.1.3 These diagrams show how a 
projectile that was fired fast enough from a very 
high mountain (a) would fall all the way around 
the Earth and become an Earth satellite (b).
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The force from the wall acts at right angles to the surface, i.e. it is normal to the 
surface and is thus called a normal force. Like every force, a normal force is one 
half of an action/reaction pair, so it is often called a normal reaction force. The 
normal force is represented by FN or N.

For an object at rest on the ground, the normal force will be equal in size to the 
weight force of the object.

During many interactions and collisions, the size of the normal force changes. 
For example, when a ball bounces, the forces that act on it during its contact with 
the floor are its weight, Fg , and the normal force, FN , from the floor. The series of 
diagrams shown in Figure 3.1.5 depict the changes in the magnitude of the normal 
force throughout the bounce of a ball.

going up and 
slowing down

FN = 0

a

v = 0

FN = 0

FN

Fg Fg Fg

v

FN

falling freely slowing down at rest! bouncing up

vFg Fg

FN

a a a a

FIGURE 3.1.5 The forces acting on a bouncing ball before, during and after striking the floor.

When contact has just been made, the ball is compressed only slightly, indicating 
that the force from the floor is minimal. This force then becomes larger and larger, 
causing the ball to become more and more deformed. At the point of maximum 
compression, the normal force is at its maximum value and the bouncing ball is 
momentarily stationary.

The forces acting on a ball as it bounces (its weight, Fg , and the normal force, 
FN) are not an action/reaction pair. Both act on the same body, whereas Newton’s 
third law describes forces that bodies exert on each other. A pair of action/reaction 
forces that act during the bounce are the upwards force, FN , that the floor exerts 
on the ball and the downwards force that the ball exerts on the floor (not shown in 
Figure 3.1.5). This downwards force is equal in magnitude to the normal force, so 
it too varies during the bounce.

Apparent weight
Your apparent weight is the same size as the normal reaction force that acts 
upwards on your feet from a surface. It results from your weight force pulling you 
downwards onto the floor. The reason why the upwards reaction force is called your 
‘apparent’ weight is because you do not feel the force you apply to the floor, you will 
only experience with your senses the forces that are applied on you. What you feel 
is the normal force acting up on you from the floor. Normally, when you stand on a 
surface that is either stationary or in constant vertical motion, your apparent weight 
is constant and equal to your weight force (see Figure 3.1.6). 

The apparent weight that you experience changes when the surface you are 
standing on is accelerating upwards or downwards. If the floor is accelerating 
downwards at a rate less than 9.80 m s–2, your feet will be pressing less firmly on 
the surface than when the floor was not accelerating. Therefore, the normal force 
is also less and so your apparent weight appears to be less. That is, you would feel 
lighter than usual (see Figure 3.1.7). 

The opposite happens when the floor is accelerating upwards. In this case, the 
floor is pushing up against your feet with a greater force than the normal reaction 
force due to your weight alone. The upwards push of the floor must provide the 
force to accelerate you upwards. This accelerating force adds to the normal force to 
make it appear that your apparent weight is greater than it would be if you weren’t 
accelerating. That is, you would feel heavier than usual (see Figure 3.1.8). 

stationary or
constant vertical

motion

FN

FN

Fg

Fg

Fnet = 0

Fnet = 0

FIGURE 3.1.6 In this case, the forces that act 
on the person, FN and Fg, are equal in size. 
The person will ‘feel’ his normal apparent weight. 

accelerating
downwards

FN

Fnet Fg

FN

Fnet

Fg

FIGURE 3.1.7 In this case, the forces that 
act on the person in the lift cause him to 
feel lighter than his normal apparent weight. 
When accelerating downwards, FN < Fg.

accelerating
upwards

FN

Fnet

Fg

Fnet

FN Fg

FIGURE 3.1.8 In this case, the forces that act 
on the person in the lift cause him to feel 
heavier than his normal apparent weight. 
When accelerating upwards, FN > Fg.
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The normal reaction force (felt as apparent weight) and the force due to gravity 
(weight force) add as vectors to give the net force that causes the acceleration:

Fnet = FN  + Fg 

where FN is the apparent weight force that acts upwards on your feet

 Fg is the weight force due to gravity (which never changes)

 Fnet is the net force causing the acceleration

Worked example 3.1.1

CALCULATING APPARENT WEIGHT 

A 79.0 kg student rides a lift up to the top floor of an office block. During the 
journey, the lift accelerates upwards at 1.26 m s–2 before travelling at a constant 
velocity of 3.78 m s–1 and then finally decelerating at 1.89 m s–2. 

a   Calculate the apparent weight of the student in the first part of the journey 
while accelerating upwards at 1.26 m s–2. 

Thinking Working

Ensure that the variables are in their 
standard units.

m = 79.0 kg

a = 1.26 m s–2 up

g = 9.80 m s–2 down 

Apply the sign and direction 
convention for motion in one 
dimension. Up is positive and 
down is negative.

m = 79.0 kg

a = +1.26 m s–2

g = −9.80 m s–2 

Apply the equation for apparent 
weight (the normal force).

Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= (79.0 × 1.26) − (79.0 × –9.80)

= 99.54 + 774.2

= 874 N

b   Calculate the apparent weight of the student in the second part of the journey 
while travelling at a constant speed of 3.78 m s–1.

Thinking Working

Ensure that the variables are in their 
standard units.

m = 79.0 kg

a = 0 m s–2 

g = 9.80 m s–2 down

Apply the sign and direction 
convention for motion in one 
dimension. Up is positive and 
down is negative.

m = 79.0 kg

a = 0 m s–2 

g = −9.80 m s–2

Apply the equation for apparent 
weight (the normal force).

Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= (79.0 × 0) − (79.0 × –9.80)

= 0 + 774.2

= 774 N
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c   Calculate the apparent weight of the student in the last part of the journey 
while travelling upwards and decelerating at 1.89 m s–2.

Thinking Working

Ensure that the variables are in their 
standard units. Also consider that 
deceleration is a negative acceleration.

m = 79.0 kg

a = −1.89 m s–2 up

g = 9.80 m s–2 down

Apply the sign and direction convention 
for motion in one dimension. Up is 
positive and down is negative.

m = 79.0 kg

a = −1.89 m s–2 

g = −9.80 m s–2

Apply the equation for apparent weight 
or the normal force.

Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= (79.0 × −1.89) − (79.0 × −9.80)

= −149.3 + 774.2

= 625 N

Worked example: Try yourself 3.1.1

CALCULATING APPARENT WEIGHT 

A 79.0 kg student rides a lift down from the top floor of an office block to the ground. 
During the journey the lift accelerates downwards at 2.35 m s–2, before travelling at a 
constant velocity of 4.08 m s–1 and then finally decelerating at 4.70 m s–2.

a   Calculate the apparent weight of the student in the first part of the journey 
while accelerating downwards at 2.35 m s–2. 

b   Calculate the apparent weight of the student in the second part of the journey 
while travelling at a constant speed of 4.08 m s–1.

c   Calculate the apparent weight of the student in the last part of the journey 
while travelling downwards and decelerating at 4.70 m s–2.

From these Worked examples, you can see that: 
• when accelerating upwards the student will feel heavier than normal (FN > mg) 

(Note: this is the same as decelerating while travelling downwards)
• when accelerating downwards, the student will feel lighter than normal (FN < mg) 

(Note: this is the same as decelerating while travelling upwards)
• when travelling upwards or downwards at a constant velocity, the student will 

feel their normal weight, just as they would if the lift was stationary (FN = mg). 

Apparent weightlessness 
Defining apparent weight makes it possible to identify the situations in which you 
will experience apparent weightlessness. Your apparent weight is a contact 
reaction force that acts upwards on you from a surface because gravity is pulling 
you down on that surface. So if you are not standing on a surface, then you will 
experience zero apparent weight or apparent weightlessness. This means that you 
will experience apparent weightlessness the moment you step off the top platform 
of a diving pool or as you skydive from a plane, although the rushing air will hardly 
let you experience the sensation of floating as you skydive.
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FIGURE 3.1.9 Felix Baumgartner experienced apparent weightlessness on his return to Earth from 39 000 m.

Astronauts also experience apparent weightlessness in the International Space 
Station, which orbits about 370 kilometres above the surface of the Earth (about 
the horizontal distance from Melbourne to the town of Orbost).

Whenever you are in free fall, you experience apparent weightlessness. It follows 
then that whenever you experience apparent weightlessness, you must be in free 
fall. When astronauts experience apparent weightlessness, they are not floating in 
space as they orbit the Earth. They are actually in free fall. Astronauts and their 
spacecraft are both falling, but not directly towards the Earth like Baumgartner. 
The astronauts are actually moving horizontally, as shown in Figure  3.1.10. 
Baumgartner stayed approximately above the same place on the Earth from where 
he departed. Astronauts, on the other hand, are moving at a velocity relative to the 
Earth so they are moving across the sky at the same time as they are falling. The 
combined effect is that they fall in a curved path that exactly mirrors the curve of 
the Earth. So they fall, but continually miss the Earth as the surface of the Earth 
curves away from their path.

Importantly there is a significant difference between apparent weightlessness 
and true weightlessness. True weightlessness only occurs when the gravitational 
field strength is zero and hence Fg = 0. This only occurs in deep space, far enough 
away from any planets that their gravitational effect is zero. Apparent weightlessness, 
however, can occur when still under the influence of a gravitational field. 

Felix Baumgartner experienced apparent weightlessness as he fell from his 
balloon 39 kilometres above the Earth (see Figure 3.1.9). This vertical height is 
equivalent to the widest part of Port Phillip Bay.

path of
astronaut

Fg

v

FIGURE 3.1.10 Astronauts are in free fall while 
orbiting the Earth.



AREA OF STUDY 1   |   HOW DO THINGS MOVE WITHOUT CONTACT?78

EXTENSION

Falling at constant speed 
Galileo was able to show more than 400 years ago that 
the mass of a body does not affect the rate at which it falls 
towards the ground. However, our common experience is 
that not all objects behave in this way. A light object, such 
as a feather or a balloon, does not accelerate at 9.80 m s–2 
as it falls. It drifts slowly to the ground, far slower than 
other dropped objects. Parachutists and skydivers also 
eventually fall with a constant speed. However, they can 
change their falling speed by changing their body profile, 
as pictured in Figure 3.1.11. If they assume a tuck position, 
they will fall faster and if they spread out their arms 
and legs, they will fall slower. This enables them to form 
spectacular patterns as they fall. 

FIGURE 3.1.11 Skydivers performing intricate manoeuvres in free fall.

Skydivers, base-jumpers and air-surfers are able to 
use the force of air resistance to their advantage. As a 
skydiver first steps out of their plane, the forces acting 
on them are drag (air resistance), Far, and weight due 
to gravity, Fg. Since their speed is low, the drag force is 
small as shown in Figure 3.1.12(a). There is a large net 
force (Fnet) downwards, so they will experience a large 
downwards acceleration of just less than 9.80 m s–2, 
causing them to speed up. This causes the drag force to 
increase because they are colliding harder with the air 
molecules. In fact, the drag force increases in proportion 
to the square of the speed, Far ∝ v2. This results in a 
smaller net force downwards as shown in Figure 3.1.12(b). 
Their downwards acceleration is therefore reduced. It is 
important to remember that they are still speeding up, but 
at a reduced rate.

As their speed continues to increase, so too does the 
magnitude of the drag force. Eventually, the drag force 
becomes as large as the weight force due to gravity, as 
shown in Figure 3.1.12(c). When this happens, the net 
force is zero and the skydiver will fall with a constant 
velocity. Since the velocity is now constant, the drag force 
will also remain constant and the motion of the skydiver 
will not change, as shown in Figure 3.1.12(d). This velocity 
is commonly known as the terminal velocity.

Far

Fg
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FIGURE 3.1.12 The forces involved in skydiving.
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Natural satellites 
Natural satellites have existed throughout the universe for billions of years. 
The planets and asteroids of the solar system are natural satellites of the Sun (see 
Figure 3.1.13).

The Earth has one natural satellite: the Moon. The largest planets—Jupiter and 
Saturn—have more than sixty natural satellites each in orbit around them. Most 
of the stars in the Milky Way galaxy have planets and more of these exoplanets are 
being discovered each year.

FIGURE 3.1.14 A low-orbit satellite called the 
Soil Moisture and Ocean Salinity (SMOS) probe 
was launched in August 2014. Its role is to 
measure water movements and salinity levels 
on Earth as a way of monitoring climate change. 
It was launched from northern Russia by the 
European Space Agency (ESA).

FIGURE 3.1.13 The planets are natural satellites of the Sun. The planets closer to the Sun have a shorter orbital period than the larger gas giants.

ARTIFICIAL SATELLITES 
Since the Space Age began in 1957 with the launch of Sputnik, about 6000 
artificial satellites have been launched into orbit around the Earth. Today there 
are around 4000 still in orbit, although only around 1200 of these are operational. 

Satellites in orbit around the Earth are classified as low, medium or high orbit.
• Low orbit: 180 km to 2000 km altitude. Most satellites orbit in this range (an 

example is shown in Figure 3.1.14). These include the Hubble Space Telescope, 
which is used by astronomers to view objects right at the edge of the universe. 

• Medium orbit: 2000 km to 36 000 km altitude. The most common satellites 
in this region are the Global Positional System (GPS) satellites used to run 
navigation systems.

• High orbit: 36 000 km altitude or greater. Australia uses the Optus satellites 
for communications, and deep-space weather pictures come from the Japanese 
MTSAT-1R satellite. The satellites that sit at an altitude of 36 000 km and 
orbit with a period of 24 hours are known as geostationary satellites 
(or geosynchronous satellites). Most communications satellites are geostationary.

Earth satellites can have different orbital paths depending on their function:
• equatorial orbits, where the satellite always travels above the equator
• polar or near-polar orbits, where the satellite travels over or close to the North 

and South Poles as it orbits
• inclined orbits, which lie between equatorial and polar orbits.

Satellites are used for a multitude of different purposes, with 60 per cent used for 
communications. Many low-orbit American NOAA satellites have an inclination of 
99° and an orbit that allows them to pass over each part of the Earth at the same 
time each day. These satellites are also known as Sun-synchronous satellites.
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PHYSICS IN ACTION

Three satellites 
Geostationary Meteorological Satellite 
MTSAT-1R 
The Japanese MTSAT-1R satellite was launched in 
February 2005, and orbits at 35 800 km directly over 
the equator. At its closest point to the Earth, known as 
the perigee, its altitude is 35 776 km. At its furthest point 
from the Earth, known as the apogee, it is at 35 798 km. 
MTSAT-1R orbits at a longitude of 140° E, so it is just 
to the north of Cape York and ideally located for use by 
Australia’s weather forecasters. It has a period of 24 hours, 
so is in a geostationary orbit.

Signals from MTSAT-1R are transmitted every 2 hours 
and are received by a satellite dish on the roof of the 
head office at the Bureau of Meteorology in Perth. 
Infrared images show the temperature variations in the 
atmosphere and are invaluable in weather forecasting. 
MTSAT-1R is box-like and measures about 2.6 m along 
each side. It has a mass of 1250 kg and is powered by 
solar panels that, when deployed, take its overall length 
to over 30 m.

Hubble Space Telescope (HST) 
This cooperative venture between NASA and the 
European Space Agency (ESA) was launched by the 
crew of the space shuttle Discovery on 25 April 1990. 
Hubble is a permanent unoccupied space-based 
observatory with a 2.4 m–diameter reflecting telescope, 
spectrographs and a faint-object camera. It orbits above 
the Earth’s atmosphere, producing images of distant stars 
and galaxies far clearer than those from ground-based 
observatories (see Figure 3.1.15). The HST is in a  
low-Earth orbit inclined at 28° to the equator. Its expected 
life span was originally around 15 years, but service and 
repair missions have extended its life and it is still in 
use today.

National Oceanic and Atmospheric 
Administration Satellite (NOAA-19) 
Many of the US-owned and operated NOAA satellites 
are located in low-altitude near-polar orbits. This means 
that they pass close to the poles of the Earth as they 

orbit. NOAA-19 was launched in 
February 2009 and orbits at an 
inclination of 99° to the equator. Its 
low altitude means that it captures 
high-resolution pictures of small 
bands of the Earth. The data is used 
in local weather forecasting as well 
as to provide enormous amounts of 
information for monitoring global 
warming and climate change. 

Table 3.1.1 provides data for the 
three satellites discussed in this 
section.

FIGURE 3.1.15 In August 2014, astronomers 
used the Hubble Space Telescope to 
detect the blue companion star of a white 
dwarf in a distant galaxy. The white dwarf 
slowly siphoned fuel from its companion, 
eventually igniting a runaway nuclear 
reaction in the compact star, which 
produced a supernova blast.

Satellite Orbit Inclination Perigee (km) Apogee (km) Period

MTSAT-1R equatorial 0° 35 776 35 798 1 day

Hubble inclined 28° 591 599 96.6 min

NOAA-19 near polar 99° 846 866 102 min

TABLE 3.1.1 A comparison of the three satellites discussed in this section.
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PHYSICSFILE

SuitSat1 
One of the more unusual satellites was launched from the International Space Station 
on 3 February, 2006. It was an obsolete Russian spacesuit into which the astronauts 
had placed a radio transmitter, batteries and some sensors. Its launch involved simply 
being pushed off by one of the astronauts while on a spacewalk. SuitSat1 was meant 
to transmit signals that would be picked up by ham radio operators on Earth for a 
few weeks, but transmissions ceased after just a few hours (see Figure 3.1.16). The 
spacesuit burned up in the atmosphere over Western Australia in September 2006. 

SuitSat2 was launched in August 2011 and contained experiments created by school 
students. It re-entered Earth’s atmosphere in January 2012 after 5 months in orbit.

FIGURE 3.1.16 This photograph does not show an astronaut drifting off to certain death in 
space. This is SuitSat1, one of the strangest satellites ever launched, at the start of its mission.

Artificial and natural satellites are not propelled by rockets or engines. They orbit 
in free fall and the only force acting on them is the gravitational attraction between 
themselves and the body about which they orbit. This means that the satellites have 
a centripetal acceleration that is equal to the gravitational field strength at their 
location (see Figure 3.1.17). Centripetal acceleration is covered in more detail in 
Chapter 5 ‘Newtonian theories of motion’.

Artificial satellites are often equipped with tanks of propellant that are squirted 
in the appropriate direction when the orbit of the satellite needs to be adjusted.

PHYSICSFILE

See the International Space Station (ISS) and other satellites  
It is easy to see low-orbit satellites if you are away from city lights. The best time to look 
is just after sunset. If you can, go outside and look for any slow moving objects passing 
across the star background.

There are also many websites that will allow you to track and predict the real-time 
paths of satellites. You can use the NASA ‘Spot the Station’ website to see when the 
ISS is passing over your part of the planet. The ISS is so bright that it is easy to see 
from most locations. 

arti�cial satellite

Moon

Fg

Fg

v

v

FIGURE 3.1.17 The only force acting on 
these artificial and natural satellites is the 
gravitational attraction of the Earth. Both orbit 
with a centripetal acceleration equal to the 
gravitational field strength at their locations.
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KEPLER’S LAWS 
Kepler, a German astronomer (depicted in Figure 3.1.19), published his three laws 
regarding the motion of planets in 1609. This was about 80 years before Newton’s 
law of universal gravitation was published. Kepler was analysing the motion of the 
planets in orbit around the Sun, but these laws can be used for any satellite in orbit 
around any central mass.

Kepler’s laws are as follows:
1. The planets move in elliptical orbits with the Sun at one focus.
2. The line connecting a planet to the Sun sweeps out equal areas in equal intervals 

of time (see Figure 3.1.20).
3. For every planet, the ratio of the cube of the average orbital radius, r, to the 

square of the period, T, of revolution is the same, i.e. r3

T2  = a constant, k.

perihelion aphelion

planet

Sun

R

S

A B
M

L

FIGURE 3.1.20 The planets, which are natural satellites of the Sun, orbit in elliptical paths with the 
Sun at one focus. Their speeds vary continually, and they are fastest when closest to the Sun. A line 
joining a planet to the Sun will sweep out equal areas in equal times. So, for example, the time it 
takes to move from R to S is equal to the time it takes to move from L to M, and so area A is the 
same as area B.

Kepler’s first two laws proposed that planets moved in elliptical paths from 
furthest point (the aphelion) to closest point (the perihelion). The closer the planet 
was to the Sun, the faster it moved. It took Kepler many months of laborious 
calculations to arrive at his third law. Newton used Kepler’s laws to justify the 
inverse square relationship. In fact, Kepler’s third law can be deduced, for circular 
orbits, from Newton’s law of universal gravitation. 

FIGURE 3.1.19 Johannes Kepler, who was the 
first to work out that the planets do not travel in 
circular paths, but rather in elliptical paths.

PHYSICSFILE

Space junk 
Today there are around 1200 satellites that are still in operation. There are also  
around 2800 satellites that have reached the end of their operational life or have 
malfunctioned but are still in orbit. 

In 2007, a Chinese satellite was deliberately destroyed by a missile, creating 
thousands of pieces of debris. In 2009, a collision between the defunct Russian 
Cosmos 2251 and operational US Iridium 33 created even more debris. This 
debris and the defunct satellites are classified as space junk (see Figure 3.1.18). 

The presence of this fast-moving space junk puts the other satellites and the 
International Space Station at risk from collision. Currently around 22 000 pieces 
of space junk are being tracked and monitored. There have been a number of 
occasions where satellites have been moved to avoid collisions with space junk.

The UN has passed a resolution to remove defunct satellites from low-Earth 
orbits by placing them in much higher orbits, or bringing them back to Earth 
and allowing them to burn up in the atmosphere.

FIGURE 3.1.18 An exaggerated map showing the location of space debris  
and abandoned satellites in near-Earth orbits.
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CALCULATING THE ORBITAL PROPERTIES OF SATELLITES 
The speed, v, of a satellite can be calculated from its motion for one revolution. 
It will travel a distance equal to the circumference of the circular orbit, 2π r, in the 
time of one period, T.

The speed, v, of a satellite in a circular orbit is given by:

v = distance
time

 = 2πr
T

where r is the radius of the orbit (m)

 T is the time for one revolution, or the period (s)

The centripetal acceleration of a satellite can be determined from the 
gravitational field strength at its location. Satellites are in free fall; therefore, the 
only force acting is gravity, Fg . The International Space Station (ISS) is in orbit 
at a distance from Earth where g is 8.8 N kg–1, and so it orbits with a centripetal 
acceleration of 8.8 m s–2.

The centripetal acceleration, a, of the satellite can also be calculated by 
considering its circular motion. The equation for speed given above can be 
substituted into the centripetal acceleration formula to give:

a = v2

r  and since v = 2πr
T

then v2

r  = 4π2r
T 2

Since the centripetal acceleration of the satellite is equal to the gravitational 
field strength at the location of its orbit, and using the gravitational field strength 
equation from Chapter 1, we can give the following expression.

The centripetal acceleration, a, of a satellite in circular orbit is given by:

a = v2

r
 = 4π2r

T2  = GM
r2  = g 

where v is the speed of the satellite (m s–1)

 r is the radius of the orbit (m)

 T is the period of orbit (s)

 M is the central mass (kg)

 g is the gravitational field strength at r (N kg–1)

 G is the gravitational constant, 6.67 × 10–11 N m2 kg–2

These relationships can be manipulated to determine any feature of a satellite’s 
motion: its speed, radius of orbit or period of orbit. They can also be used to find 
the mass of the central body around which the satellite orbits, M.

In the same way as with freely falling objects at the Earth’s surface, the mass of 
the satellite itself has no effect on any of these orbital properties.

The gravitational force, Fg, acting on the satellite can then be found by using 
Newton’s second law.

The gravitational force on a satellite of mass m in a stable circular orbit is 
given by:

Fg = mv2

r
 = 4π2rm

T2  = GMm
r2  = mg
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Worked example 3.1.2

WORKING WITH KEPLER’S LAWS 

Determine the orbital speed of the Moon, assuming it is in a circular orbit 
of radius 384 000 km around the Earth. Take the mass of the Earth to be 
5.97 × 1024 kg and use G = 6.67 × 10–11 N m2 kg–2.

Thinking Working

Ensure that the variables are in their 
standard units.

r = 384 000 km = 3.84 × 108 m

Choose the appropriate relationship 
between the orbital speed, v, and the 
data that has been provided. 

a = g = 
GM
r2  = 

v2

r

Make v, the orbital speed, the subject 
of the equation.

v = √GM
r

Substitute in values and solve for the 
orbital speed, v.

v = √GM
r

= √(6.67 × 10–11) × (5.97 × 1024)

3.84 × 108

= 1.02 × 103 m s–1

Worked example: Try yourself 3.1.2

WORKING WITH KEPLER’S LAWS 

Determine the orbital speed of a satellite, assuming it is in a circular orbit 
of radius of 42 100 km around the Earth. Take the mass of the Earth to be 
5.97 × 1024 kg and use G = 6.67 × 10–11 N m2 kg–2.

HOW NEWTON DERIVED KEPLER’S THIRD LAW USING 
ALGEBRA 
It took Kepler many months of trial-and-error calculations to arrive at his third law: 

r3

T2 = constant.

Newton was able to use some clever algebra to derive this from his law of 
universal gravitation: 

Fg = m4π2r
T 2

 = GMm
r 2

 = mg

∴ r3

T2 = GM
4π2

For any central mass, M, the term GM
4π2  is constant and the ratio r3

T2 is equal to this 
constant value for all of its satellites (see Figure 3.1.21).

So, for example, if you know the orbital radius, r, and period, T, of one of the 
moons of Saturn, you could calculate r3

T2 and use this as a constant value for all of 
Saturn’s moons. If you knew the period, T, of a different satellite of Saturn, it would 
then be straightforward to calculate its orbital radius, r.

FIGURE 3.1.21 These three satellites are at different distances 
from Earth and hence according to Kepler’s third law will have 
different orbital periods. For all three, the ratio of r3

T2 will equal 
the same constant value.
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PHYSICSFILE

Ganymede
Jupiter is orbited by more  
than 60 known satellites, 
the biggest of which is 
Ganymede. Ganymede is 
very large. It is the biggest 
of all the moons in the solar 
system and is even bigger 
than the planet Mercury.

FIGURE 3.1.22 Ganymede.

Worked example 3.1.3

SATELLITES IN ORBIT 

Ganymede is the largest of Jupiter’s moons. It has a mass of 1.66 × 1023 kg, an 
orbital radius of 1.07 × 106 km and an orbital period of 6.18 × 105 s (7.15 days).

a   Use Kepler’s third law to calculate the orbital radius (in km) of Europa, 
another moon of Jupiter, which has an orbital period of 3.55 days. 

Thinking Working

Note down the values for the known 
satellite. You can work in days and 
km as this question involves ratio.

Ganymede:

r = 1.07 × 106 km

T = 7.15 days

For all satellites of a central mass,  
r3

T2 = constant. Work out this ratio 

for the known satellite.

r3

T2 = constant

= 
(1.07 × 106)3

7.152

= 2.40 × 1016

Use this constant value with the ratio 
for the satellite in question. Make 
sure T is in days to match the ratio 
calculated in the previous step.

Europa: 

T = 3.55 days, r = ?

r3

T2 = constant

r3

3.552 = 2.40 × 1016

Make r3 the subject of the equation. r3 = 2.40 × 1016 × 3.552

= 3.02 × 1017

Solve for r. The unit for r is km as the 
original ratio was calculated using km.

r = 3√3.02 × 1017

= 6.71 × 105 km

Note: Europa has a shorter period 
than Ganymede so you should expect 
Europa to have a smaller orbit than 
Ganymede.
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b  Use the orbital data for Ganymede to calculate the mass of Jupiter.

Thinking Working

Note down the values for the known 
satellite. You must work in SI units to 
find the mass value in kg.

Ganymede/Jupiter:

r = 1.07 × 109 m 

T = 6.18 × 105 s 

m = 1.66 × 1023 kg 

G = 6.67 × 10–11 N m2 kg–2

M = ?

Select the expressions from the 
equation for centripetal acceleration 
that best suit your data.

a = 
v2

r  = 
4π 2r
T 2  = 

GM
r2  = g

Use the 3rd and 4th terms of the 
expression.

4π 2r
T 2  = 

GM
r2

These two expressions use the given 
variables r and T, and the constant G, 
so that a solution may be found for M.

Transpose to make M the subject. M = 
4π 2r3

GT2

Substitute values and solve. M = 
4π 2(1.07 × 109)3

6.67 × 10–11 × (6.18 × 105)2

= 1.90 × 1027 kg

c  Calculate the orbital speed of Ganymede in km s–1.

Thinking Working

Note values you will need to use in the 

equation v = 
2π r

T .

Ganymede:

r = 1.07 × 106 km 

T = 6.18 × 105 s 

v = ?

Substitute values and solve. The 
answer will be in km s–1 if r is 
expressed in km.

v = 
2π r

T

= 
2π × 1.07 × 106

6.18 × 105

= 10.9 km s–1

Worked example: Try yourself 3.1.3

SATELLITES IN ORBIT 

Callisto is the second largest of Jupiter’s moons. It is about the same size as 
the planet Mercury. Callisto has a mass of 1.08 × 1023 kg, an orbital radius of 
1.88 × 106 km and an orbital period of 1.44 × 106 s (16.7 days). 

a   Use Kepler’s third law to calculate the orbital radius (in km) of Europa, 
another moon of Jupiter, which has an orbital period of 3.55 days.

b  Use the orbital data for Callisto to calculate the mass of Jupiter.

c  Calculate the orbital speed of Callisto in km s–1.
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3.1 Review
SUMMARY

• A normal force, FN, is the force that a surface 
exerts on an object that is in contact with it. It acts 
at right angles to the surface and changes as the 
force exerted on the surface changes.

• The apparent weight of an object is equal to the 
normal reaction force acting on the object.

• Apparent weight increases or decreases as the 
surface you are standing on accelerates up or down.

• Astronauts in orbit experience apparent 
weightlessness as they are in free fall around 
the Earth.

• A satellite is an object that is in a stable orbit 
around a larger central mass.

•  The only force acting on a satellite is the 
gravitational attraction between it and the 
central body.

• Satellites are in continual free fall. They move 
with a centripetal acceleration that is equal to 
the gravitational field strength at the location of 
their orbit.

• The speed of a satellite, v, is given by: 

v = 
2πr
T

• For a satellite in a circular orbit:

a = 
v2

r  = 
4π2r

T  = 
GM
r2  = g

• The gravitational force acting on a satellite in a 
circular orbit is given by: 

Fg = 
mv2

r  = 
4π 2rm

T 2  = 
GMm

r2  = mg

• For any central body of mass, M:
r3

T 2  = 
GM
4π2 = constant, so knowing another 

satellite’s orbital radius, r, enables its period, T, 
to be determined.

KEY QUESTIONS

1 Determine the weight of a 6.50 kg box at the surface 
of the Earth where g = 9.80 m s–2 downwards.

2  A box of weight 150 N sits at rest on the floor. What is 
the magnitude of the normal force acting on the box?

3  Calculate the apparent weight of a 45.0 kg child 
standing in a lift that is accelerating upwards at 
2.02 m s–2. 

4 Calculate the apparent weight of a 45.0 kg child 
standing in a lift that is moving upwards at a constant 
speed of 4.04 m s–1.

5 Which of the following objects has the greatest 
apparent weight?
A  a fly flying horizontally
B  a walking fly
C  a show-jumping horse mid jump
D  the International Space Station

6 Which of the following is correct?
A  Earth is a satellite of Mars.
B  The Moon is a satellite of the Sun.
C  Earth is a satellite of the Sun.
D  The Sun is a satellite of Earth.

7 A geostationary satellite orbits above Singapore, 
which is on the equator. Which of the following 
statements about the satellite is correct?
A  It is in a low orbit.
B  It is in a high orbit.
C  It passes over the north pole.
D  It is not moving.

8 A satellite of mass M is in a circular orbit around 
the Moon. A module of mass M then attaches to the 
original satellite so that the combined mass is now 
2M. How does this affect the orbital properties of 
the satellite?
A  The speed of the satellite will decrease and the 

period will increase.
B  Both the speed and period of the satellite will 

decrease.
C  Both the speed and period of the satellite will 

increase.
D  Nothing will change.

9 The gravitational field strength at the location where 
the Optus D1 satellite is in stable orbit around the 
Earth is equal to 0.22 N kg–1. The mass of this satellite 
is 2.3 × 103 kg. 
a Using only the information given, calculate the 

magnitude of the acceleration of this satellite as 
it orbits.

b Calculate the net force acting on this satellite as 
it orbits.

10  One of Saturn’s moons is Atlas, which has an orbital 
radius of 1.37 × 105 km and a period of 0.60 days. 
The largest of Saturn’s moons is Titan. It has an orbital 
radius of 1.20 × 106 km. What is the orbital period of 
Titan in days?
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3.2 DC motors
Physicists have always been interested in the relationship between electricity and 
magnetism because they wanted to understand the basic workings of the universe. 
For the world at large, however, this understanding provided a more practical form 
of excitement. It enabled the generation and use of electricity on a large scale. One 
of the most obvious applications of the understanding of electromagnetism gained 
in the 19th century is the electric motor. 

DC MOTORS 
The main components and the principles have been the same for all DC motors 
since Michael Faraday built the first one in 1821 (see Figure 3.2.1). In Faraday’s 
motor, a magnet was mounted vertically in a pool of mercury. A wire carrying a 
current hung from a support above. (The mercury provided a path for the current.) 
The magnetic field of the magnet spread outwards from the top of the magnet and 
so there was a component of this field that was perpendicular to the wire. This 
produced a horizontal force on the wire that kept it rotating around the magnet. 
Use the right-hand rule from the previous chapter to convince yourself that if the 
current flows down and the magnetic field points out from the central magnet, the 
wire will rotate clockwise when viewed from above.

In modern direct current (DC) motors, a current-carrying coil of wire in a 
magnetic field experiences a magnetic force, F, equal to nIlB on two or more of its 
sides. In practice, many turns of wire (n) are used and the magnetic field is provided 
by more than one permanent magnet or by an electromagnet.

The formula F = nIlB includes the number of coils of wire, n, which equals 1 for 
all the examples in this section. Therefore, F = IlB will be used to solve problems 
throughout this section.

Consider a single square coil of wire, with vertices ABCD, carrying a current, I, 
in a magnetic field, B, as shown in Figure 3.2.2.

Initially the wire coil is aligned horizontally in a magnetic field, B, as in 
Figure 3.2.2(a). Sides AD and BC are parallel to the magnetic field so no magnetic 
force will act on them. Sides AB and CD are perpendicular to the field so both of 
these sides will experience a magnetic force. Using the right-hand rule, there is a 
downwards force on AB and an upwards force on CD. These two forces will act 
together on the coil and cause it to rotate anticlockwise. If the coil is free to turn it 
will move toward the position shown in Figure 3.2.2(b).

In Figure 3.2.2(b), there will be a magnetic force acting on every side of the 
coil. However, the forces acting on sides AD and BC will be equal and opposite in 
direction. They will tend to stretch the coil outwards but won’t affect its rotation. 
The forces on sides AB and CD will remain and the coil will continue to rotate 
anticlockwise.

As the coil rotates to the position shown in Figure 3.2.2(c), the forces acting 
on each side are such that they will tend to keep the coil in this position. The force 
on each side will act outwards from the coil. There are no turning forces at this 
point, but any further rotation will cause a force in the opposite direction that will 
cause the coil to rotate clockwise, back to this perpendicular position. For the coil 
to continue to rotate anticlockwise at this point, the current direction needs to be 
reversed. This is shown in Figure 3.2.2(d). With the current reversed, all of the 
forces are reversed, and provided the coil has a little momentum to get it past 
the perpendicular position, it will continue to rotate anticlockwise. This ability to 
reverse the current direction at the point where the coil is perpendicular to the 
magnetic field is a key design feature in DC motors. It is a commutator that allows 
the current to be reversed.

FIGURE 3.2.1 Michael Faraday’s electric motor.
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FIGURE 3.2.2 The magnetic force acting on each 
side of a current-carrying square wire coil in a 
magnetic field, B.
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Torque 
The turning force that the coil experiences in an electric motor is referred to as the 
torque on the coil. A torque is the turning effect of any force, for example, pushing 
on a swinging door. To achieve the maximum effect, the force should be applied at 
right angles to the door and at the largest distance possible from the point where the 
door is hinged. This idea is illustrated in Figure 3.2.4.

Top view of door

hard

easy

FIGURE 3.2.4 The force required to open a swinging door decreases as the perpendicular distance 
from the point of rotation increases and the torque, or turning effect, is maximised.

Torque is thus defined as:

τ = r⊥F

where τ  is the torque (N m)

  r⊥ is the perpendicular distance between the axis of rotation and the point 
of application of the force (m)

 F is the component of the force perpendicular to the axis of rotation (N)

In the case of a single square or rectangular coil, each of the two sides 
perpendicular to the magnetic field will experience a force contributing to the total 
torque, hence the total torque applied to the coil will be twice that acting on one side.

PHYSICSFILE

Michael Faraday  
Michael Faraday (1791–1867), depicted in Figure 3.2.3, was an English scientist who  
worked in the areas of chemistry and physics. He had little formal education. At the  
age of fourteen he became the apprentice to a London bookbinder. During his 
apprenticeship he read many of the books that came his way. At the age of 21 he 
became a laboratory assistant to Sir Humphry Davy, who was one of the most 
prominent scientists of the day. Faraday was a gifted experimenter and after returning 
from a scientific tour through Europe with Davy, he began to be recognised in his own 
right for the scientific work he was doing. He was admitted to the Royal Society at age 
32. He is credited with the discoveries of benzene, electromagnetic induction and the 
basis of the modern electric motor. He died in 1867 at Hampton Court. His 
contributions to science, and in particular his work in the area of electromagnetism, are 
recognised through the unit of measurement of capacitance known as the farad. In 
Chapter 4 ‘Electromagnetic induction and transmission of electricity’, you will study 
more of Michael Faraday’s work on electromagnetic induction.

FIGURE 3.2.3 Michael Faraday.
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Worked example 3.2.1

TORQUE ON A COIL 

A single square wire coil, ABCD, of side length 5.00 cm, is free to rotate within 
a magnetic field, B, of strength 1.00 × 10–4 T. A current of 1.00 A is flowing 
through the coil. What is the torque on the coil? 

A

B C

D

I B

Thinking Working

Confirm that the coil will experience a 
force based on the magnetic field and 
current directions supplied.

Using the right-hand rule confirms 
that a downwards force applies on 
side AB. An upwards force applies 
on side CD. The coil will turn 
anticlockwise.

Sides AD and BC lie parallel to the 
magnetic field and no force will apply.

Calculate the magnetic force on 
one side.

F = IlB
= 1.0 × 0.0500 × 1.00 × 10–4

= 5.00 × 10–6 N

Determine the distance, r, from the 
point of rotation that the magnetic 
force is applied.

length of side = 5.00 cm

distance between axis of rotation and 
application of force = 

1
2 × side length

r = 2.50 cm 

= 0.0250 m

Calculate the torque applied by the 
magnetic force on one side of the coil.

τ = r⊥F

= 0.0250 × 5.00 × 10–6

= 1.25 × 10–7 N m

Since two sides, AB and CD, both 
experience a magnetic force and 
hence a torque, the torque on one 
side should be multiplied by 2 to find 
the total torque. State the direction 
of rotation.

total torque = 2 × 1.25 × 10–7

= 2.50 × 10–7 N m

The direction is anticlockwise.

Worked example: Try yourself 3.2.1

TORQUE ON A COIL 

A single square wire coil, with a side length of 4.0 cm, is free to rotate within a 
magnetic field, B, of strength 1.0 × 10–4 T. A current of 1.0 A is flowing through 
the coil. What is the torque on the coil? 

1

I

I

I I
2

3

4
B
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PRACTICAL DC MOTORS 
A basic single-coil electric motor with a simple arrangement to reverse the current 
direction will work, but it won’t turn very smoothly. That’s because maximum 
torque will only apply each half turn or twice for every full rotation. A number 
of enhancements have been developed over time to make DC motors the highly 
practical motive force they are today.

The commutator is usually made from a split ring of copper or another good 
conductor on which conducting brushes (usually carbon blocks) rub. Each half 
is connected to one end of the coil of wire. This arrangement of brushes prevents 
the wire from becoming tangled as the coil rotates. The commutator reverses the 
current at the point where the coil is perpendicular to the magnetic field, which 
keeps the coil rotating (see Figure 3.2.5).

N

S

F

brushes

armature

commutator

F

FIGURE 3.2.5 The main parts of a simple but practical single-coil DC electric motor.

Practical motors will have many sets of coils of many turns each, spaced at an 
angle to each other, as shown in Figure 3.2.6. 

armature windings carbon brushes

shaft

stator coils segmented commutator

spring-loaded brush holders

FIGURE 3.2.6 A typical multi-coil DC electric motor, showing the main components. Note that there 
are many sets of coils offset by an angle from each other. The stator coils produce an electromagnet 
that provides the magnetic field. The commutator feeds current to the armature coils in the position 
where maximum torque will be experienced.

The coils are wound around a soft iron core to increase the magnetic field 
that passes through them. The whole arrangement of core and coils is called an 
armature (as shown in Figure 3.2.6). Permanent magnets are generally used to 
provide the magnetic field in small motors, but in larger motors electromagnets 
are used as they can produce larger and stronger fields. These magnets are usually 
stationary, as distinct from the rotating rotor or armature, and are often referred to 
as the stator. The commutator is arranged to feed current to the particular coil that 
is in the best position to provide maximum torque. The total torque will be the sum 
of the torques on all the individual coils.

Generally speaking, the larger the torque in an electric motor the better. This is 
achieved by the use of a strong magnetic field, a large number of turns of wire in 
each coil, a high current and a large area of coil. All this adds to the cost, so when 
designing an electric motor, each aspect may be compromised to some extent in 
light of its potential use.
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3.2 Review
SUMMARY

• The magnetic force on a current-carrying wire 
within a magnetic field is F = nIlB. 

• There is a torque on a coil of wire carrying a current 
whenever the current is not parallel to the field. 
Torque is defined as: τ = r⊥F

• The wire coil of a simple DC motor keeps rotating 
because the direction of current, and hence torque, 
is reversed each half turn by the commutator.

• In the case of a single square or rectangular coil, 
the total torque applied to the coil will be twice 
that acting on the one side.

• The armature of a practical motor consists of 
many coils that are fed current by the commutator 
when they are in the position of maximum torque.

• The total torque will be the sum of the torques 
on all the individual coils.

KEY QUESTIONS

1  For which of the following situations is torque at a 
maximum?
A  when the force is applied perpendicular to the axis 

of rotation
B  when the force is applied parallel to the axis of 

rotation
C  when the force is applied at a maximum regardless 

of direction
D  when the force applied is zero

The information below applies to questions 2–7.
Part (a) of the diagram below depicts a top view of a single 
current-carrying coil in an external magnetic field B.  
Part (b) of the diagram is the corresponding cross-
sectional view as seen from point Y. The following 
data apply: 
B = 0.10 T, PQ = 2.0 cm, PS = QR = 5.0 cm, I = 2.0 A.

P Q

RS
I I

II

B

B

X

Y

top view

S Rx
clockwise

anticlockwise

(a)

(b)

2  What is the magnitude and direction of the magnetic 
force acting on side PS?

3  What is the magnitude and direction of the magnetic 
force acting on side QR?

4  What is the magnitude of the force on side PQ?

5  The coil is free to rotate about an axis through XY. 
In what direction, as seen from Y, would the coil rotate?

6  Which of the following does not affect the magnitude 
of the torque acting on this coil?
A  the dimensions of the coil
B  the magnetic field strength
C  the magnitude of the current through the coil
D  the direction of the current through the coil

7  What is the total torque acting on the coil?
The following information applies to questions 8–10.
The diagram shows a simplified version of a direct-
current motor.

+ –

P

V

X Y

W

N

Qcoil

0.50 m

B = 0.20 T

S

8  For the position of the coil shown, calculate the 
magnitude of the force on segment WY when a 
current of 1.0 A flows through the coil.

9  In which direction will the coil begin to rotate? 
Give your reasoning.

10  Which of the following actions would cause the coil 
to rotate faster?
A  increasing the current
B  increasing the magnetic field strength
C  increasing the cross-sectional area of the coil
D  all of the above
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3.3 Particle accelerators
Melbourne is the home to the most powerful synchrotron in the southern 
hemisphere (see Figure 3.3.1). Looking something like a giant doughnut about 
200  m in circumference, it produces beams of electromagnetic radiation, from 
infrared, through visible light, to ‘hard’ X-rays. 

FIGURE 3.3.1 View of the inside of the Australian Synchrotron, taken from the mezzanine.

A synchrotron is a type of particle accelerator. Bunches of electrons are 
accelerated around a huge evacuated ring to almost the speed of light to energies 
as high as 3 billion electron-volts (3 × 109 eV). These charges are forced to follow 
a curved path, due to the magnetic field generated by bending magnets. As they 
accelerate around curves, the electrons give off bursts of radiation. This synchrotron 
radiation is channelled down tubes called beamlines and utilised by researchers in 
a range of experimental stations. 

This section looks at the acceleration of charged particles in uniform electric 
and magnetic fields, including the change of speed caused by electric fields and the 
change of direction caused by magnetic fields.

PARTICLE ACCELERATORS 
Particle accelerators are machines that were originally designed to investigate the 
nature of matter by examining the structure of atoms and molecules. Charged 
particles, such as electrons, protons or atomic nuclei, are accelerated to speeds 
often close to that of light. These particles travel through an electric field, inside a 
hollow tube pumped to an ultra-high vacuum, with pressures comparable to those 
found in deep space. Strong magnets direct the particles to collide with a target or 
with another moving particle. Scientists obtain information about the make-up of 
the subatomic particles fired from the machine, or the target samples that are hit, 
by analysing the types of collisions that occur.  

One of the first particle accelerators was the Van de Graaff accelerator, similar 
to the Van de Graaff generator (see Figure 3.3.2). Developed in the 1930s, it can 
accelerate charged particles between metal electrodes to energies of about 15 MeV 
before they collide with a fixed target. Currently, the world’s most powerful particle 
accelerator is the Large Hadron Collider. It is located at CERN on the France–
Switzerland border. It can produce energies of 13 TeV. Two sets of particles can be 
accelerated in opposite directions around its central evacuated ring, to meet in a 
collision of mammoth energies!  

FIGURE 3.3.2 This tandem Van de Graaff 
accelerator uses two generators to produce 
beams of charged particles that are accelerated 
by potential differences of up to 10 million volts.
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ACCELERATING CHARGED PARTICLES:  
CHANGING THE SPEED 
A cathode ray tube is a useful type of particle accelerator. Electrons are released 
from a negative terminal, or hot cathode, in a vacuum, and accelerate towards a 
positive terminal, or anode. The beam of electrons is collimated (narrowed) as it 
passes through a slit, and releases light when it hits a fluorescent screen. A potential 
difference of around 2–3 kV exists between the cathode and the anode, which causes 
the charged particles to accelerate. Older style televisions (before plasma, LCD and 
LED screens were invented), visual display units and cathode ray oscilloscopes 
(CROs) all consist of cathode ray tubes (see Figure 3.3.3). 

A computer monitor, cathode ray oscilloscope or larger-scale particle accelerator 
relies on a source of charged particles to be accelerated. The device used to provide 
these particles is called an electron gun. 

In an electron gun, electrons are, in effect, boiled off a heated wire filament, or 
cathode, shown on the left in Figure 3.3.4. They are accelerated from rest across 
an evacuated chamber towards a positively charged plate, or anode, due to the 
electric field created between charged plates (see Figure 3.3.4). Once the electrons 
continue through a gap in this positive plate, their motion can be further controlled 
by additional electric and magnetic fields. Focusing magnets are also used to control 
the width of the beam. 

�lament
heater
circuit

accelerating plates
+

F

E

e–

FIGURE 3.3.4 Electron-gun assembly.

Consider an electric field acting on an electron as the result of a pair of oppositely 
charged parallel plates connected to a DC power supply. The electron is attracted 
to the positive plate and repelled from the negative plate. An electric field is acting 
upon any charged particle within this region. This electric field is a vector quantity 
and may be compared in some ways to the Earth’s gravitational field. Recall from 
Chapter 2 that an electric field has units N C−1 and is defined as: 

E = 
F
q

where F is the force (N) experienced by a charged particle due to an electric field 
and q is the magnitude of the electric charge of a particle in the field, in this case an 
electron (1.6 × 10−19 C). 

A charge will then experience a force equal to qE when placed within such an 
electric field. 

Recall that the magnitude of the electric field may also be expressed as: 

E = V
d

where d is the separation of the plates (m) and V is the potential difference (V). 
Combining these two relationships produces an expression for the force on a charge 
within a pair of parallel charged plates: 

F
q
 = V

d

F = 
qV
d

FIGURE 3.3.3 Cathode ray tube.
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In addition, calculations of the energy gained by an electron as it is accelerated 
towards a charged plate by the electric field can be made. The work done in this 
case is equivalent to: 

W = qV
This equation can be used to calculate the increase in kinetic energy as an 

electron accelerates from one plate to another. 
If a charge is accelerated from rest from an electron gun, then: 
Ek = W = qV

Ek = 
1
2mv2 – 

1
2mu2

where v is the final velocity and u is the initial velocity of the charge. If the electron 
accelerates from rest (u = 0), then this can be simplified to:

Ek = 
1
2mv2 = qV

1
2mv2 = qV

This is often referred to as the electron-gun equation.

Worked example 3.3.1

CALCULATING THE SPEED OF ACCELERATED CHARGED PARTICLES 

Determine the final speed of a single electron, with a charge of magnitude 
1.6 × 10–19 C and a mass of 9.1 × 10–31 kg, when accelerating across a potential 
difference of 1.5 kV.

Thinking Working

Ensure that the variables are 
in their standard units.

1.5 kV = 1.5 × 103 V

Establish what quantities are 
known and what are required.

v = ?

q = 1.6 × 10–19 C

m = 9.1 × 10–31 kg

V = 1.5 × 103 V

Substitute values into the 
electron-gun equation and  
rearrange to solve for the 
speed.

qV = 
1
2mv2

1.6 × 10–19 × 1.5 × 103 = 
1
2 × 9.1 × 10–31 × v2

v = √2 × 1.6 × 10–19 × 1.5 × 103

9.1 × 10–31

= 2.3 × 107 m s–1

Worked example: Try yourself 3.3.1

CALCULATING THE SPEED OF ACCELERATED CHARGED PARTICLES

Determine the final speed of a single electron, with a charge of magnitude 
1.6 × 10–19 C and a mass of 9.1 × 10–31 kg, when accelerating across a potential 
difference of 1.2 kV.
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THE EFFECT ON A CHARGED PARTICLE IN A 
MAGNETIC FIELD
To explore the forces acting on a beam of electrons in a particle accelerator (see 
Figure 3.3.5), the effect of a magnetic field on a charged particle also needs to be 
considered. From Chapter 2, recall that because an electric current is itself a stream 
of moving charges, the magnitude of the force, F, on a charge, q, moving with 
velocity, v, perpendicular to a magnetic field of strength B is given by: 

F = qvB
In the case of the magnetic force on an electron moving within the magnetic 

field of a particle accelerator, the magnitude of charge, q, is equal to 1.6 × 10–19 C.
The direction of the magnetic force exerted on the charge is predicted by the 

right-hand rule. Note that the direction of current is defined as the direction in 
which a positive charge would move, so this direction must be reversed to correctly 
predict the direction of motion of an electron. 

x x x x

x x x x

x x x x

x x x x

force acts at right
angles to motion

electron

magnetic �eld
acting into screen

–

–

–

FIGURE 3.3.6 An electron moving in a 
magnetic field.

FIGURE 3.3.5 Electron beam being deflected by a magnet.

If a moving charge experiences a force of constant magnitude that remains at 
right angles to its motion, its direction will be changed but not its speed. In this way, 
bending magnets within a particle accelerator act to alter the path of the electron 
beam, rather than to speed the electrons up. As a result, the electrons will follow a 
curved path of radius r, as shown in Figure 3.3.6. 

In this case, the net force acting on the charge is: 
F = ma
This is equivalent to the magnetic force on the charge, so that:
qvB = ma
The acceleration in this situation is centripetal (towards the centre of the circular 

path) and has magnitude: 

a = 
v2

r
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Substituting this relationship into the previous equation gives: 

qvB = 
mv2

r

Rearranging this equation gives an expression that predicts the radius of the 
path of an electron travelling at right angles to a constant magnetic field: 

r = 
mv
qB

where r is the radius of the path (m)

 m is the mass of the electron (9.1 × 10–31 kg)

 v is the speed of the charge (m s–1)

 q is the charge on the electron (–1.6 × 10–19 C)

 B is the strength of the magnetic field (T)

This relationship can be used to calculate the radius of the path followed by 
an electron travelling at right angles to any magnetic field. The electron could be a 
low-velocity electron or could be a high-velocity electron that has been accelerated 
by the powerful bending magnets within a particle accelerator.

Worked example 3.3.2

CALCULATING SPEED AND PATH RADIUS OF ACCELERATED CHARGED 
PARTICLES 

An electron gun releases electrons from its cathode which are then accelerated 
across a potential difference of 32 kV, over a distance of 30 cm between a pair 
of charged parallel plates. Assume that the mass of an electron is 9.1 × 10–31 kg 
and the magnitude of the charge on an electron is 1.6 × 10–19 C. 

a  Calculate the strength of the electric field acting on the electron beam.

Thinking Working

Ensure that the variables are in their 
standard units.

32 kV = 32 × 103 = 3.2 × 104 V

30 cm = 0.30 m

Apply the correct equation. E = 
V
d

Solve for E. E = 
3.2 × 104

0.30

= 1.1 × 105 V m–1

b   Calculate the speed of the electrons as they exit the electron gun assembly.

Thinking Working

Apply the correct equation. 1
2mv2 = qV

Rearrange the equation to make v 
the subject.

v = √2qV
m  

Solve for v. v = √2 × 1.6 × 10–19 × 3.2 × 104

9.1 × 10–31  

= 1.1 × 108 m s–1
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c   The electrons then travel through a uniform magnetic field perpendicular to 
their motion. Given that this field is of strength 0.2 T, calculate the expected 
radius of the path of the electron beam. 

Thinking Working

Apply the correct equation. r = 
mv
qB

Solve for r. r = 
9.1 × 10–31 × 1.1 × 108

1.6 × 10–19 × 0.2

= 3.1 × 10–3 m

Worked example: Try yourself 3.3.2

CALCULATING SPEED AND PATH RADIUS OF ACCELERATED CHARGED 
PARTICLES 

An electron gun releases electrons from its cathode which are accelerated across a 
potential difference of 25 kV, over a distance of 20 cm between a pair of charged 
parallel plates. Assume that the mass of an electron is 9.1 × 10–31 kg and the 
magnitude of the charge on an electron is 1.6 × 10–19 C. 

a  Calculate the strength of the electric field acting on the electron beam.

b   Calculate the speed of the electrons as they exit the electron-gun assembly.

c   The electrons then travel through a uniform magnetic field perpendicular to 
their motion. Given that this field is of strength 0.3 T, calculate the expected 
radius of the path of the electron beam. 

PHYSICS IN ACTION

Thomson’s em experiment 
The knowledge and use of the properties of electrons 
are only relatively recent accomplishments in science. 
It was not until 1897 that physicists were able to shed 
any light on the internal physical structure of the atom. 
In that year, Joseph John Thomson demonstrated that 
cathode rays—rays emanating from a heated cathode 
in a vacuum—were particles that are fundamental 
constituents of every atom. For the first time, the atom 
was shown to have component particles rather than 
being indivisible. To indicate their importance, cathode 
rays were renamed electrons.

Thomson’s experiment with cathode rays was performed 
in two stages (see Figure 3.3.7). At first the forces on a 
beam of electrons were balanced using an electric and a 
magnetic field, as shown by the central dotted line striking 
the fluorescent screen in Figure 3.3.7. This enabled 
Thomson to find the speed of the electrons. Then the 
magnetic field was switched off, and the beam was 
deflected under the influence of the electric field alone, 
as shown by the upper dotted line striking the fluorescent 
screen in Figure 3.3.7. The deflection of the beam was 

measured, allowing Thomson to find the charge-to-mass 
ratio ( e

m) for the cathode rays. Thomson repeated the 
experiment with a variety of different cathodes to show 
that all cathode rays yielded the same value. His result 
produced a value of about 1 × 1011 C kg–1; the accepted 
value today is 1.76 × 1011 C kg–1.

+ +
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FIGURE 3.3.7 J. J. Thomson’s apparatus for finding the charge to mass 
ratio ( e

m) for cathode rays (electrons). In 1897, Thomson used an 
electron gun to produce a beam of electrons that could be deflected 
by an electric and magnetic field within an evacuated tube.
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PARTICLE ACCELERATORS 
To study the basic constituents of matter, physicists accelerate particles such as 
electrons and protons to very high speeds before crashing them into other particles. 
The by-products from these collisions have revealed a vast array of sub particles and 
led to a better understanding of the fundamental properties of these particles. One 
of the key findings of recent particle accelerator experiments is the Higgs boson.

The particles are accelerated by electromagnetic fields, but very long paths 
are required for the particles to obtain the extremely high speeds needed (very 
close to the speed of light). To achieve this without the need for tunnels hundreds 
of kilometres long, particles travel through very strong magnetic fields that cause 
them to move in a circle. The Australian Synchrotron, near Monash University in 
Melbourne, is 70 m in diameter.

The Australian Synchrotron accelerates electrons through an equivalent of 
3000 million volts (3 GV). At this energy, they travel at 99.99999% of the speed of 
light. Because of the relativistic effects that occur at these near-light speeds, their 
effective mass is about 6000 times that at rest. Because they are being accelerated, 
the electrons emit electromagnetic radiation. It is this light, ranging from infrared 
through to X-ray wavelengths, that is used for the research projects being conducted 
at the synchrotron (see Figure 3.3.8).

FIGURE 3.3.8 An inside view of the Australian Synchrotron.
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3.3 Review
SUMMARY

• Particle accelerators are machines that accelerate 
charged particles, such as electrons, protons or 
atomic nuclei, to speeds close to that of light. 

• The device used to provide these particles is 
called an electron gun.

• The work done on a charged particle in an electric 
field causes a change in the kinetic energy of the 
particle. If the particle is accelerated from rest, the 
work done is equal to the final kinetic energy, 

W = qV = 
1
2mv2

• The magnitude of the force on a charged object 
within a magnetic field is given by F = qvB.

• The right-hand rule is used to determine the 
direction of the force on a positive charge moving 
in a magnetic field, B. The direction of the force 
on a negatively charged particle is in the opposite 
direction.

• The radius of the path of an electron travelling at 
right angles to a uniform magnetic field is given 

by r = 
mv
qB .

KEY QUESTIONS

1  How are particle accelerators able to provide the 
centripetal acceleration to change the direction of a 
charged particle using electromagnetic fields?
A  Charged particles are part of the electromagnetic 

spectrum.
B  Charged particles experience a force from the 

magnetic field that is proportional to the particle’s 
velocity, constantly accelerating the charged 
particle.

C  The accelerator is curved around the magnetic field.
D  Charged particles will always accelerate when 

placed in a vacuum.

2 An electron with a charge magnitude of 1.6 × 10–19 C  
is moving eastwards into magnetic field of strength 
B = 1.5 × 10–5 T acting into the screen, as shown 
below. If the magnitude of the initial velocity is 
1.0 m s–1, what is the magnitude and direction 
of the force it initially experiences as it enters the 
magnetic field?

N

S

W E
v

3 Electrons in a cathode ray tube (CRT) are accelerated 
through a potential difference of 2.5 kV. Calculate the 
speed at which they hit the screen of the CRT.

4 An electron travelling at a speed of 7.0 × 106 m s–1 

passes through a magnetic field of strength 
8.6 × 10–3 T. The electron moves at right angles 
to the field. 
a  Calculate the force exerted on the electron by the 

magnetic field.
b  Given that this force directs the electron in a 

circular path, calculate the radius of its motion.

5 An electron with speed 7.6 × 106 m s–1 travels through 
a uniform magnetic field and follows a circular path 
of diameter 9.2 × 10–2 m. Calculate the magnetic field 
strength through which the electron travels. 

6  In an experiment similar to Thomson’s for determining 
the charge to mass ratio e

m of cathode rays (electrons), 
electrons travel at right angles through a magnetic 
field of strength 1.5 × 10–4 T. Given that they travel in 
an arc of radius 6 cm and that e

m = 1.76 × 1011 C kg–1, 
calculate the speed of the electrons. 

7 A particle accelerator uses magnetic fields to 
accelerate electrons to very high speeds. Explain, 
using appropriate theory and relationships, how the 
accelerator achieves these high speeds.

8 An electron beam travelling through a cathode 
ray tube is subjected to simultaneous electric and 
magnetic fields. The electrons emerge with no 
deflection. Given that the potential difference across 
the parallel plates X and Y is 3.0 kV, and that the 
applied magnetic field is of strength 1.6 × 10–3 T, 
calculate the distance between the plates. 
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Chapter review

KEY TERMS

apparent weight
apparent weightlessness
armature
artificial satellites
cathode ray tube
centripetal acceleration
commutator

direct current
electromagnet
electron gun
free fall
geostationary satellite
natural satellite
normal reaction force

particle accelerator
satellite
stator
synchrotron
torque
weight

1  Calculate the apparent weight of a 45.0 kg child 
standing in a lift that is decelerating at 3.15 m s–2 
while travelling upwards.

2  Which description best describes the motion of 
astronauts when orbiting the Earth?
A  They float in a zero gravity environment.
B  They float in a reduced gravity environment.
C  They fall down very slowly due to the very 

small gravity.
D  They fall in a reduced gravity environment.

3  Select the statement below that correctly states how 
a satellite in a stable circular orbit 200 km above the 
Earth will move.
A  It will have an acceleration of 9.8 m s–2.
B  It will have constant velocity.
C  It will have zero acceleration.
D  It will have acceleration of less than 9.8 m s–2.

4  What can be said about an object if that object 
is orbiting the Earth in space and appears to be 
weightless?
A  It is in free fall.
B  It is in zero gravity.
C  It has no mass.
D It is floating.

5  A low-Earth-orbit satellite X has an orbital radius of r 
and period T. A high-Earth-orbit satellite Y has orbital 
radius of 5r. In terms of T, what is the orbital period 
of Y?

6  The planet Neptune has a mass of 1.02 × 1026 kg. 
One of its moons, Triton, has a mass of 2.14 × 1022 kg 
and an orbital radius equal to 3.55 × 108 m. 
a  Calculate the orbital acceleration of Triton. 
b  Calculate the orbital speed of Triton.
c  Calculate the orbital period of Triton (in days).

7  Ceres, the first asteroid to be discovered, was found 
by Giuseppe Piazzi in 1801. Ceres has a mass of 
7.0 × 1020 kg and a radius of 385 km. 
a  What is the gravitational field strength at the 

surface of Ceres?
b  Determine the speed required by a satellite in order 

to remain in orbit 10 km above the surface of Ceres.

The following information applies to questions 8–11.
Diagram (a) below shows an end-on view of a current-
carrying loop, LM. The loop is free to rotate about a 
horizontal axis XY. You are looking at the loop from the 
Y end of the axis. The same loop is seen from the top in 
figure (b). Initially, arms L and M are horizontal (L1–M1). 
Later they are rotated so that they are vertical (L2–M2). 
The loop is located in an external magnetic field of 
magnitude B directed east (at right angles to the axis of 
the loop). Note the current directions in (a): out of the 
page in M and into the page in L. With reference to the  
up–down, W–E cross arrows in (a):

B

x
Y

M2

M1

L2

L1

x

W E

up

down

X

Y

L M

(a)

(b)

8  When LM is aligned horizontally (L1–M1), what is the 
direction of the magnetic force on:
a  side L
b  side M?
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9  In what direction, as seen from Y, will the loop rotate?

10  When LM is aligned vertically (L2–M2) what is the:
a  direction of the magnetic force on side L
b  direction of the magnetic force on side M
c  magnitude of the torque acting on the loop?  

Give a reason for your answer.

11  When LM is aligned vertically, which one of the 
following actions will result in a torque acting on 
the coil that will keep it rotating in an anticlockwise 
direction? (Assume it still has some momentum 
when it reaches the vertical position.)
A  decrease the current through the loop
B  increase the magnetic field strength
C  reverse the direction of the current through the coil

12  Briefly explain the function of the commutator in an 
electric motor.

13  Describe the basic set-up of cathode ray tubes and 
how the electrons are accelerated through the tubes.

The following information relates to questions 14 and 15.
An electron-gun assembly emits electrons with energies of 
10 keV. Ignore the effects of relativity when answering the 
following questions.

14  Calculate the magnitude of the predicted exit velocity 
of the electrons.

15  Upon exiting the electron-gun assembly, the electrons 
enter a uniform magnetic field of 1.5 T acting 
perpendicular to their motion. Calculate the predicted 
radius of the electron beam.

16  The diagram below represents an electron being fired 
at right angles towards a uniform magnetic field acting 
out of the page.

–

a  Copy the diagram and mark on it the continued 
path you expect the electron will follow.

b  Which factors would alter the path radius of 
the electron as it travels?

17  A stream of electrons travels in a straight line through 
a uniform magnetic field and between a pair of 
charged parallel plates, as shown in the diagram.

3.5 cm

500 V

Calculate the:
a  electric field strength between the plates
b  speed of the electrons, given that the magnetic 

field is of strength 1.5 × 10–3 T.

18  Electrons in a cathode ray tube are accelerated 
through a potential difference from a cathode to a 
screen. Calculate the speed at which they hit the 
screen if the potential difference between electrodes 
is 4.5 kV.

19  An electron with speed of 4.3 × 106 m s–1 travels 
through a uniform magnetic field and follows a 
circular path of diameter 8.4 × 10–2 m. Calculate 
the magnetic field strength through which the 
electron travels.

20  a   Calculate the force exerted on an electron travelling 
at speed of 6.4 × 106 m s–1 at right angles to a 
uniform magnetic field of strength 9.1 × 10–3 T.

b  Given that this force directs the electron in a 
circular path, calculate the radius of its orbit.

Chapter review continued
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How do things move without contact?
1 Draw the electric field pattern in the space between 

and around these two charges.

 
+–

2 Two charges of +5 μC and −7 μC are positioned 0.4 m 
apart in air. What is the force that acts between them?

3 Calculate the electric field strength and direction at a 
distance of 3.5 mm directly to the left of a charge of 
+9.4 μC.

The following information relates to questions 4–7.
Two parallel plates have a distance of 3.8 cm between 
them and have a potential difference of 400 V 
across them. 

4 What is the size of the electric field strength between 
the plates?

An electron is placed next to the negative plate.

5 What size force will be exerted on the electron? 

6 What amount of energy in joules will be gained by 
the electron?

7 What is the speed of the electron by the time it 
reaches the positive plate?

8 Two metal plates have an electric field of 300 V m−1 
between them and a separation distance of 12 cm. 
What is the voltage across the plates?

The following information relates to questions 9–11.
In a Millikan oil drop experiment, an oil drop of mass 
1.96 × 10−14 kg is stationary between two horizontal 
parallel plates. The plates have a separation distance 
of 1.6 mm with 240 V between them. 

9 Determine the size and direction of the electric field 
strength between the plates.

10 Calculate the size of the charge that must exist on the 
oil drop. 

11 How many excess electrons are on the drop?

12 Study the diagram of a simple cathode ray tube.

 

high voltage (DC)

screen

slit

anode
B

heated �lament
A

low
voltage
supply

–     +

What is the source of electrons in this device?
A the heated filament at A
B the positive anode at B
C the wires used in the circuit
D the screen used in the circuit

13 A particular electron gun accelerates an electron 
across a potential difference of 15 kV, a distance of 
12 cm between a pair of charged plates. Calculate 
the magnitude of the force acting on the electron.

14 In an electron gun, an electron is accelerated by a 
potential difference of 28 kV. At what speed will the 
electrons exit the assembly?

15 If the electron in the previous question was 
accelerated a distance of 20 cm between a pair of 
charged parallel plates, then calculate the size of 
the electric field strength acting on the electron.

16 The left diagram below represents two conductors, 
both perpendicular to the page and both carrying 
equal currents into the page (shown by the crosses in 
the circles). In these questions ignore any contribution 
from the Earth’s magnetic field. Choose the correct 
options from the arrows A–D and letters E–G.

 

A

C

D B

E Out of page
F Into page
G Zero �eld

x xP

Q

R

What is the direction of the magnetic field due to the 
two currents at each of the following points?
a point P
b point Q
c point R
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17 An electromagnet with a soft iron core is set up as 
shown in the diagram below. A small bar magnet 
with its north end towards the electromagnet is 
placed to the right of it. The switch S is initially open. 
The following questions refer to the force between 
the electromagnet and the bar magnet under 
different conditions.

 

+

S

N S

a Describe the force on the bar magnet while the 
switch remains open.

b Describe the force on the bar magnet when the 
switch is closed and a heavy current flows.

c The battery is removed and then replaced so 
that the current flows in the opposite direction. 
Describe the force on the bar magnet now when 
the switch is closed.

The following information applies to questions 18–22.
The diagram below shows a horizontal, east–west electric 
cable, located in a region where the magnetic field of the 
Earth is horizontal and has a magnitude of 1.0 × 10−5 T. 
The cable has a mass of 0.05 kg m−1.

N

S

W E

electric cable

viewed from above

magnetic
�eld direction

18 What is the magnitude of the magnetic force on 
a 1.0 m section of this cable if a 100 A current is 
flowing through it?

19 What is the direction of the current that will produce 
a force vertically upwards on this cable?

20 What magnitude of current would be required to 
produce zero resultant vertical force on a 1.0 m 
section of this cable?

21 Assume that a 100 A current is flowing through this 
cable from west to east. What would be the magnitude 
of the change in magnetic force per metre on this 
cable if the direction of this current was reversed?

22 The cable is no longer at right angles, but makes an 
angle θ with the direction of the Earth’s magnetic 
field. What force would 100 A current passing through 
this cable produce?
A the same magnetic force on the cable as when it 

was horizontal
B a smaller magnetic force than when it was 

horizontal
C a larger magnetic force than when it was horizontal

The following information applies to questions 23–26.
The following diagram shows a section of a conducting 
loop XQPY, part of which is placed between the poles of a 
magnet whose uniform field strength is 1.0 T. The side PQ 
has length 5.0 cm. X is connected to the positive terminal 
of a battery while Y is connected to the negative terminal. 
A current of 1.0 A then flows through this loop.

X

Y

P

Q

N

S

23 What is the magnitude of the force on side PQ?

24 What is the direction of the force on side PQ? 

25 What is the magnitude of the force on a 1.0 cm 
section of side XQ that is located in the magnetic field?

26 The direction of the current through the loop is 
reversed by connecting X to the negative terminal and 
Y to the positive terminal of the battery. What is the 
direction of the force on side PQ?
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The following information relates to questions 27–29.
A rectangular coil containing 100 turns and dimensions 
10 cm × 5 cm is located in a magnetic field B = 0.25 T, 
as shown. It is free to rotate about the axis XY. The coil 
carries a constant current I = 200 mA flowing in the 
direction ADCB.

X

Y

A B

D

N S

C

27 What is the magnitude and direction of the magnetic 
force on the following sides?
a AB
b DC

28 What is the magnitude and direction of the magnetic 
force on the following sides?
A AD
B BC

29 Describe the likely motion of the coil if it is free 
to rotate.

30 A student constructs a simple DC electric motor 
consisting of N loops of wire wound around a wooden 
armature, and a permanent horseshoe-shaped 
magnetic of strength B. The student connects the 
motor to a 9 V battery but is not happy with the speed 
of rotation of the armature. Which one or more of the 
following modifications will most likely increase the 
speed of rotation of the armature?
A increase the number of turns N
B use a 12 V battery instead of a 9 V battery
C replace the wooden armature with one of soft iron
D connect a 100 Ω resistor in series with the 

armature windings

31 Consider the electric motor shown.

 

B

C

D

AN

S

a The direction of the current in the coil is shown 
(from D anticlockwise to A). What is the direction 
of the force on sides AB and CD?

b In what position of the coil is the turning effect of 
the forces greatest?

c At one point in the rotation of the coil the turning 
effect becomes zero. Explain where this occurs and 
why the motor actually continues to rotate.

32 A rectangular loop of 100 turns is suspended in a 
magnetic field B = 0.50 T. The plane of the loop is 
parallel to the direction of the field. The dimensions 
of the loop are 20 cm perpendicular to the field lines 
and 10 cm parallel to them.
a It is found that there is a force of 40 N on each of 

the sides perpendicular to the field. What is the 
current in each turn of the loop?

b This loop is then replaced by a square loop of 
10 cm each side, with twice the current and half 
the number of turns. What is the force on each of 
the perpendicular sides now?

c The original rectangular loop with the original 
current is returned but a new magnet is found 
which provides a field strength of 0.80 T. What is 
the force on the 20 cm side now?

33 If an electron travels through a magnetic field of 
strength 1.2 T with a speed of 4.2 × 106 m s–1, 
calculate the radius of the path it will follow.

34 This diagram shows a stream of electrons entering 
a magnetic field. Reproduce the diagram and show 
the subsequent path of the electrons through the 
magnetic field.

 

electrons
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35 An electron beam travelling through a cathode 
ray tube is subjected to simultaneous electric and 
magnetic fields. The electrons emerge with no 
deflection. Given that the potential difference across 
the parallel plates X and Y is 3 kV, and that the 
applied magnetic field is of strength 1.6 × 10–3 T, 
calculate the distance between plates X and Y.

36 Use Newton’s law of universal gravitation to calculate 
the size of the force between two masses of 24 kg 
and 81 kg, with a distance of 0.72 m between 
their centres.

The following information relates to questions 37–40. 
Consider an astronaut inside a spacecraft from launch to 
a stable orbit. Choose your answers to questions 37 to 40 
from the following options:

A apparent weightlessness
B weightlessness
C apparent weight
D gravitational force
E none of the above 

37 As the astronaut and spacecraft are launched which 
of the above will be greater than normal?

38 As the astronaut and spacecraft are launched, which 
of the above will remain constant?

39 As the astronaut and spacecraft are in a stable 
orbit above the Earth, which of the above will apply 
to the astronaut?

40 If the astronaut and spacecraft ventured into deep 
space, which of the above would apply to the 
astronaut?

The following information applies to questions 41–44.
A 10 000 kg spacecraft is drifting directly towards the 
Earth. When it is at an altitude of 600 km, its speed 
is 1.5 km s–1. The radius of the Earth is 6400 km. 
The following graph shows the force on the spacecraft 
against distance from the Earth.
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41 How much gravitational potential energy would the 
spacecraft lose as it falls to a distance of 6500 km?

42 Determine the speed of the spacecraft at a distance of 
6500 km.

43 What is the weight of the spacecraft when it is at an 
altitude of:
a 3600 km?
b 6.0 × 105 m?

44 How does the acceleration of the spacecraft change as 
it moves from an altitude of 600 km to an altitude of 
100 km? Include numerical data in your answer.

The following information applies to questions 45–47.
The ATV2 satellite was launched by the European Space 
Agency in February 2011 to deliver supplies to the 
International Space Station. The ATV2 satellite is in a 
circular orbit of radius 6.73 × 106 m.
The following information may be required to answer 
these questions.
Mass of ATV2 satellite and cargo = 1.2 × 104 kg
Mass of Earth = 5.98 × 1024 kg
Radius of Earth = 6.37 × 106 m

45 What is the weight of the ATV2 and cargo when it is in 
its orbit?

46 Calculate the orbital period of the ATV2 satellite.

47 The satellite delivers its cargo to the ISS and now 
orbits with a mass of just 6.0 tonnes. How does this 
reduced mass affect the orbital period of the ATV2?

The following information applies to questions 48–50.
A small asteroid has just smashed into the surface of 
Mars and a lump of Martian rock of mass 20 kg has been 
thrown into space with 40 MJ of kinetic energy. A graph 
of gravitational field–distance from the surface of Mars is 
shown below.
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48 What is the gravitational force acting on the Martian 
rock when it is at an altitude of 300 km?

49 How much kinetic energy (in MJ) does the rock lose 
as it travels from the surface of Mars to an altitude of 
6.0 × 105 m?

50 The rock eventually comes to a stop and starts to 
fall back towards Mars. Without actually doing the 
calculations, explain how you would determine the 
altitude at which the rock stopped.



CHAPTER

In this chapter, electromagnetic induction—the creation of an electric current from a 
changing magnetic flux—is explored.

In 1831, Englishman Michael Faraday and American Joseph Henry independently 
discovered that a changing magnetic flux could induce an electric current in a 
conductor. This discovery made possible the production of vast quantities of 
electricity. Today, whether the primary energy source is burning coal, wind, nuclear 
fission or falling water, the vast bulk of the world’s electrical energy production is 
the result of electromagnetic induction.

Key knowledge 
At the end of this chapter you will have investigated the generation of electricity by 
electromagnetic induction and the transmission of electricity. You will be able to:

• calculate magnetic flux when the magnetic field is perpendicular to the area, and 
describe the qualitative effect of differing angles between the area and the field; 
i.e. Φ B = B⊥A

• investigate and analyse theoretically and practically the generation of 
electromotive force (emf) including AC voltage and calculations using induced 
emf: ε = –N ΔΦ B

Δt  with reference to:

 - rate of change of magnetic flux
 - number of loops through which the flux passes
 - direction of induced emf in a coil

• explain the production of DC voltage in DC generators and AC voltage in 
alternators, including the use of split-ring commutators and slip rings respectively

• compare sinusoidal AC voltages produced as a result of the uniform rotation of a 
loop in a constant magnetic field with reference to frequency, period, amplitude, 
peak-to-peak voltage (Vp–p) and peak-to-peak current (Ip–p)

• compare alternating voltage expressed as the root-mean-square (rms) to a 
constant DC voltage developing the same power in a resistive component

• convert between rms, peak and peak-to-peak values of voltage and current
• analyse transformer action with reference to electromagnetic induction for an 

ideal transformer: 
N1

N2
 = 

V1

V2
 = 

I2
I1

• analyse the supply of power by considering transmission losses across 
transmission lines

• identify the advantage of the use of AC power as a domestic power supply.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Electromagnetic induction and 
transmission of electricity
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4.1 Inducing an emf in a 
magnetic field 
After Oersted’s discovery that an electric current produces a magnetic field (see 
Section 2.3 on p45), Michael Faraday, an English scientist, was convinced that 
the reverse should also be true—a magnetic field should be able to produce an 
electric current.

Faraday wound two coils of wire onto an iron ring (see Figure 4.1.1). 
By connecting a battery to one of the coils he created a strong current through 
one  coil which therefore created a strong magnetic field. He expected to then 
detect the creation of an electric current in the second coil. No matter how strong 
the magnetic field, he could not detect an electric current in the other coil.

One day he noticed that the galvanometer (a type of sensitive ammeter) attached 
to the second coil flickered when he turned on the current that created the magnetic 
field. It gave another flicker, in the opposite direction, when he turned the current 
off. It was not the strength of the magnetic field that mattered, but the change in 
the magnetic field.

The creation of an electric current in a conductor due to a change in the magnetic 
field acting on that conductor is now called electromagnetic induction. This 
section focuses on this concept.

CREATING AN ELECTRIC CURRENT 
In his attempts to produce an electric current from a magnetic field, Faraday had 
no success with a constant magnetic field but was able to observe the creation of an 
electric current whenever there was a change in the magnetic field. This current is 
produced by an induced emf, ε. Although the term emf is derived from the name 
electromotive force, it is a voltage, or potential difference, rather than a force. 
Figure 4.1.2 indicates the induction of emf, and therefore current, caused by the 
perpendicular movement of a conducting wire relative to a magnetic field.

N S

N S

N

I = 0

I = 0

S

N S

move wire down: 
current is induced

keep wire still: 
no current

move wire up: 
current is induced 
in the opposite 
direction

move wire parallel 
to �eld of magnet: 
no current

Key
Direction of
movement

Direction
of current

Direction of 
magnetic �eld

FIGURE 4.1.2 Electromotive force (emf) is induced in a wire when it moves perpendicular to a 
magnetic field.

FIGURE 4.1.1 Michael Faraday’s original 
induction coil. Passing a current through 
one coil induces a voltage in the second 
coil by a process called mutual inductance. 
This coil is now on display at the Royal 
Institution in London.

PHYSICSFILE

Models and theories 
Michael Faraday was not alone in 
the discovery of electromagnetic 
induction. Joseph Henry (1797–1878), 
an American physicist, independently 
discovered the phenomenon of 
electromagnetic induction a little ahead 
of Michael Faraday, but Faraday was 
the first to publish his results. Henry 
later improved the design of the 
electromagnet, using a soft iron core 
wrapped in many turns of wire. He 
also designed the first reciprocating 
electric motor. Henry is credited with 
first discovering the phenomenon 
of self-induction, and the unit of 
inductance is named after him. He 
also introduced the electric relay, 
which made the sending of telegrams 
possible. Henry was the first director 
of the Smithsonian Institution.

While Faraday will be largely referred 
to throughout this text, it is worth 
noting that there can be a number of 
contributors who together build on the 
understanding of key ideas. Joseph 
Henry’s contributions should not be 
forgotten.
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MAGNETIC FLUX 
To be able to develop ideas about the change in a magnetic field that induces an 
emf which can then create (or induce) a current, it is useful to be able to describe 
the ‘amount of magnetic field’. This amount of magnetic field is referred to as the 
magnetic flux, a scalar quantity, denoted by the symbol ΦB . Faraday pictured 
a magnetic field as consisting of many lines of force. The density of the lines 
represents the strength of the magnetic field. Magnetic flux can be related to the 
total number of these lines that pass within a particular area. A strong magnetic 
field acting over a small area can produce the same amount of magnetic flux as 
a weaker field acting over a larger area, as shown in Figure 4.1.3. For this reason, 
magnetic field strength, B, is also referred to as magnetic flux density. B can be 
thought of as being proportional to the number of magnetic field lines per unit area 
perpendicular to the magnetic field. The magnetic flux will be at a maximum when 
the area examined is perpendicular to the magnetic field and zero when the area 
being examined is parallel to the magnetic field.

B
B

(a) (b)

FIGURE 4.1.3 Magnetic flux. A strong magnetic field acting over a small area (a) will have the same 
magnetic flux as a weaker magnetic field acting over a larger area (b).

Based on this, magnetic flux is defined as the product of the strength of the 
magnetic field, B, and the area of the field perpendicular to the field lines, i.e.

ΦB = B⊥A

where ΦB,  or simply Φ, is the magnetic flux. The unit for magnetic flux is the 
weber, abbreviated to Wb, where 1 Wb = 1 T m–2

 B is the strength of the magnetic field in tesla (T)

  A is the area perpendicular to the magnetic field, measured in square 
metres (m2). 

The subscript ⊥ is included in the formula to indicate that the area referred to is 
perpendicular to the magnetic field.

Since it is the area perpendicular to the magnetic field, the angle between the 
magnetic field and the area through which the field passes will obviously affect 
the amount of magnetic flux. As the angle increases or decreases from 90° the 
amount of magnetic flux will decrease, until reaching zero when the area under 
consideration is parallel to the magnetic field. Referring to Figure 4.1.4, then the 
relationship between the amount of magnetic flux and the angle θ to the field is: 

ΦB = BA cos θ

It is important to note that θ is not the angle between the plane of the area and 
the magnetic field. Rather, it is the angle between a normal to the area and the 
direction of the magnetic field; hence the use of cos θ. When the area is at right 
angles to the magnetic field, the angle θ between the normal and the field is 0° and 
cos 0° = 1 (top diagram in Figure 4.1.4). When the area is parallel to the magnetic 
field, the angle θ between the normal and the field is 90° and cos 90° = 0 (bottom 
diagram in Figure 4.1.4).

θ

A⟂

A

A

B

ΦB = BA

ΦB = B⟂A

ΦB = 0
A

FIGURE 4.1.4 The magnetic flux is the strength 
of the magnetic field, B, multiplied by the area 
perpendicular to the magnetic field, given by 
A cos θ and shown as the shaded areas in the 
above diagrams.
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Worked example 4.1.1

MAGNETIC FLUX 

A student places a horizontal square coil of wire of side length 5.0 cm into a 
uniform vertical magnetic field of 0.10 T. How much magnetic flux ‘threads’ 
the coil?

Thinking Working

Calculate the area of the coil 
perpendicular to the magnetic field.

side length = 5.0 cm

= 0.05 m

area of the square = (0.05 m)2

= 0.0025 m2

Calculate the magnetic flux. ΦB = B⊥A

= 0.1 × 0.0025

= 0.00025 Wb

State the answer in an appropriate form. ΦB = 2.5 × 10–4 Wb or 0.25 mWb

Worked example: Try yourself 4.1.1

MAGNETIC FLUX 

A student places a horizontal square coil of wire of side length 4.0 cm into a 
uniform vertical magnetic field of 0.050 T. How much magnetic flux ‘threads’ 
the coil?

Note that in Worked example 4.1.1 an area of 5 cm × 5 cm = 25 cm2 was 
considered, and this corresponds to 0.0025 m2 or 25 × 10–4 m2, so:

1 cm2 = 1 × 10–4 m2

THE INDUCED EMF IN A MOVING CONDUCTOR 
It was discovered that a change in the magnetic field, when a magnet is moved closer 
to a conductor, leads to an induced emf that in turn produces an induced current. 
While Faraday largely based his investigations on induced currents in coils, another 
way of inducing an emf is by moving a straight conductor in a magnetic field. It’s 
not hard to understand why this is the case, when you know that charges moving in 
a magnetic field will experience a force. 

In Chapter 2, it was established that when a charge, q, moves at a speed, v, 
perpendicular to a magnetic field, B, the charge experiences a force, F, equal to 
qvB. So:

F = qvB

Considering the direction of movement shown in Figure 4.1.5, the force on the 
positive charges within the moving conductor would be along the conductor and 
out of the page. The force on the negative charges within the conductor would be 
along the conductor but into the page.

S

ν
+++

+++ +

_ ____
__

N

ΔV

    FIGURE 4.1.5 A potential difference, ∆V, will be 
produced across a straight wire moving to the left  
in a downward-pointing magnetic field.
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As the charges in Figure 4.1.5 move apart due to the force they are experiencing 
from the magnetic field, one end of the conductor will become more positive, the 
other more negative and a potential difference, ∆V, or emf will be induced between 
the ends of the conductor.

Consider now an electron moving along the conductor. The force from the 
magnetic field will do work on the electron as it moves along a length, l. To calculate 
the work done:

W = force × distance = qvB × l 
The emf is equal to the work done per unit charge, so:

ε = W
q

 = qlvB
q

and thus:

ε = lvB

where ε is the induced emf (V)

 l is the length of the conductor (m)

 v is the speed of the conductor perpendicular to the magnetic field (m s–1) 

 B is the strength of the magnetic field (T)

Worked example 4.1.2

ELECTROMOTIVE FORCE ACROSS AN AIRCRAFT’S WINGS 

Will a moving airplane develop a dangerous emf between its wing tips solely from 
the Earth’s magnetic field? An aircraft with a wing span of 64 m is flying at a 
speed of 990 km h–1 at right angles to the Earth’s magnetic field of 5.0 × 10–5 T.

Thinking Working

Identify the quantities required in the 
correct units.

ε = ?

l = 64 m

B = 5.0 × 10–5 T

v = 990 km h–1

= 990 × 
1000
3600

= 275 m s–1

Substitute into the appropriate 
formula and simplify.

ε = lvB

= 64 × 275 × 5.0 ×10–5

= 0.88 V

State your answer as a response to 
the question.

ε = 0.88 V

This is a very small emf and would 
not be dangerous.

Worked example: Try yourself 4.1.2

ELECTROMOTIVE FORCE ACROSS AN AIRCRAFT’S WINGS 

Will a moving airplane develop a dangerous emf between its wing tips solely 
from the Earth’s magnetic field? A fighter jet with a wing span of 25 m is flying 
at a speed of 2000 km h–1 at right angles to the Earth’s magnetic field of 
5.0 × 10–5 T.
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Worked example 4.1.3

FLUID FLOW MEASUREMENT 

The rate of fluid flow within a vessel can be measured using the induced emf 
when the fluid contains charged ions. A small magnet and sensitive voltmeter 
calibrated to measure speed are used. This can be applied to measure the flow 
of blood (which contains iron in solution) in the human body. If the diameter 
of a particular artery is 2.00 mm, the strength of the magnetic field applied is 
0.10 T and the measured emf is 0.10 mV, what is the speed of the flow of the 
blood within the artery?

artery

N S

+   A

–   B

to voltmeter 

blood
�ow

electrodes

Thinking Working

Identify the quantities required and put 
them into SI units.

ε = 0.10 mV = 1.0 × 10–4 V

l = 2.00 mm = 2.00 × 10–3 m

v = ?

B = 0.10 T

Rearrange the appropriate formula, 
substitute and simplify.

ε = lvB

v = 
ε
lB

= 
1.0 × 10–4

2.00 × 10–3 × 0.10

= 0.50 m s–1

State your answer with the correct units. v = 0.50 m s–1

Worked example: Try yourself 4.1.3

FLUID FLOW MEASUREMENT 

The rate of fluid flow within a vessel can be measured using the induced emf 
when the fluid contains charged ions. A small magnet and sensitive voltmeter 
calibrated to measure speed are used. This can be applied to measure fluid 
flow in small pipes. If the diameter of a particular small pipe is 1.00 cm, the 
strength of the magnetic field applied is 0.10 T and the measured emf is 
0.50 mV, what is the speed of the fluid flow?

pipe

N S

+   A

–   B

to voltmeter 

�uid
�ow

electrodes
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4.1 Review
SUMMARY

• An induced emf, ε, is produced by a changing 
magnetic flux in a process called electromagnetic 
induction.

• Magnetic flux is defined as the product of the 
strength of the magnetic field, B, and the area 
of the field perpendicular to the field lines,  
i.e. ΦB = B⊥A.

• The amount of magnetic flux varies with the angle 
of the field to the area under investigation. It is a 
maximum when the area is perpendicular (90°) 
and zero when the area is parallel to the field. 
i.e. ΦB = BA cos θ.

• The unit for magnetic flux is the weber, Wb; 
1 Wb = 1 T m–2.

• The induced emf in a straight conductor moving 
in a magnetic field, B, is given by ε = lvB, 
where v⊥B.

KEY QUESTIONS

1  Which of the following scenarios will not induce an 
emf in a long, straight conductor?
A  A magnet is stationary alongside the conductor.
B  A magnet is brought near the conductor.
C  The conductor is brought into a magnetic field.
D  The conductor is rotated within a magnetic field.

2  A student places a 4.0 cm square coil of wire parallel 
to a uniform vertical magnetic field of 0.050 T. 
How much magnetic flux ‘threads’ the coil?

3  A square loop of wire, of side 4.0 cm, is in a region 
of uniform magnetic field, B = 2.0 × 10–3 T north, 
as in the diagram below. The loop is free to rotate 
about a vertical axis XY. When the loop is in its initial 
position, its plane is perpendicular to the direction of 
the magnetic field. What is the magnetic flux passing 
through the loop?

X

Y

W

E

N

S
4.0 cm

B

4  The same square loop of wire as in Question 3 is 
initially perpendicular to the magnetic field. The loop 
is free to rotate about a vertical axis XY. 
Describe what happens to the amount of magnetic 
flux passing through the loop as the loop is rotated 
through one complete revolution. 

5  A circular coil of wire, of radius 5.0 cm, is perpendicular 
to a region of uniform magnetic field, B = 1.6 mT. 
What is the magnetic flux passing through the loop?

6  A moving rod 12 cm long is being moved at a speed 
of 0.150 m s–1 perpendicular to a magnetic field, 
B. If the strength of the magnetic field is 0.800 T, 
calculate the induced emf in the rod. 

7  A metal rod is 13.2 cm long. It generates an emf of 
100 mV while moving perpendicular to a magnetic 
field of strength 0.90 T. At what speed is it moving?

8  A metal rod generates an emf of 80 mV while moving 
at a speed of 1.6 m s–1 perpendicular to a magnetic 
field of strength 0.50 T. How long is the metal rod?

9  A rod of length 10 cm and very small diameter is 
held vertically and dropped downwards through a 
vertically-upwards-directed magnetic field of strength 
0.80 T. If the rod’s initial speed was zero, what would 
be the induced emf in the rod at an instant 5.0 s after 
it was dropped?

10  Calculate the magnitude of the induced emf between 
the ends of the wings of an aircraft whose wingspan 
is 20 m, given that the aircraft is moving at a speed 
of 1000 m s−1 in the magnetic field of the Earth in a 
plane perpendicular to the lines of the field, where the 
flux density is 2.5 × 10−5 T.

1000 m s–1

20 m
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4.2 Induced emf from a changing 
magnetic flux 
Faraday’s early experiments largely centred on investigating electromagnetic 
induction in coils, or multiple loops, of wire. Faraday found that if a magnet is 
quickly moved into a coil, an emf is induced which causes a current to flow in 
the coil. If the magnet is removed, then a current flows in the coil in the opposite 
direction. Alternatively, if the magnet is held steady and the coil is moved in such 
a way that changes the magnetic flux, then once again an emf is induced and an 
electric current flows. It doesn’t matter whether the coil or the magnet is moved—
it is a change in flux that is required to induce the emf (see Figure 4.2.1). This 
discovery led Faraday to his law of induction. Faraday’s law of induction is the 
focus of this section.

FIGURE 4.2.1 Oscilloscope trace from an electric coil, showing the voltage across the coil as a 
magnet is dropped through it.

FACTORS AFFECTING INDUCED EMF 
Faraday quantitatively investigated the factors affecting the size of the emf induced 
in a coil. Firstly, emf will be induced by a change in the magnetic field. A simple 
example of this is to witness the emf induced when a magnet is brought towards or 
away from a wire coil. The greater the change, the greater the emf. 

However, it is not only a change in the strength of a magnetic field, B, that 
induces an emf. It was noticed that an emf can be induced by changing A, the area 
perpendicular to the magnetic field through which the magnetic field lines pass, 
while keeping B constant. An example of this is to witness the emf induced when a 
wire coil is rotated in the presence of a fixed magnetic field. This discovery indicates 
that the requirement for an induced emf is to have a changing magnetic flux, ΦB.

Finally, Faraday discovered that the faster the change in magnetic flux, the 
greater the induced emf. This can be seen in the oscilloscope trace of a magnet 
falling through a coil as shown in the Figure 4.2.1. The magnet is accelerated by 
gravity as it drops through the coil. Hence, the peak emf induced when the magnet 
first enters the coil at a relatively lower speed is noticeably less than the peak emf 
when the magnet leaves the coil at a faster speed. Thus, it is the rate of change of 
magnetic flux that determines the induced emf.
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FARADAY’S LAW OF INDUCTION 
Faraday’s investigations led him to conclude that the average emf induced in a 
conducting loop, in which there is a changing magnetic flux, is proportional to the 
rate of change of flux.

This is now known as Faraday’s law of induction and is one of the basic laws 
of electromagnetism. 

Magnetic flux is defined as ΦB = B⊥A.
If the flux through N turns (or loops) of a coil changes from Φ1 to Φ2 during a 

time t, then the average induced emf during this time will be:

ε = –N 
(Φ2 – Φ1)

t
and if the change in magnetic flux Φ2 – Φ1 = ∆ΦB, then

ε = –N 
∆ΦB

∆t

The negative sign is placed there as a reminder of the direction of the induced 
emf. This is discussed further in the next section ‘Lenz’s law and its applications’. 
Normally you will be concerned only with the magnitude of the emf, which means 
you don’t consider the negative sign or any negative quantities in a calculation.

If the ends of the coil are connected to an external circuit, then a current, I, will 
flow. The magnitude of the current is found using Ohm’s law, which is:

I = V
R

 

where R is the resistance and ΔV is the emf of the coil.
A coil not connected to a circuit will act like a battery not connected to a circuit. 

There will still be an induced emf but no current will flow.

Worked example 4.2.1

INDUCED EMF IN A COIL 

A student winds a coil of area 40 cm2 with 20 turns. He places it horizontally in a 
vertical uniform magnetic field of 0.10 T.

a  Calculate the magnetic flux perpendicular to the coil. 

Thinking Working

Identify the quantities to calculate the 
magnetic flux through the coil and 
convert to SI units where required.

ΦB = B⊥A

B = 0.10 T

A = 40 cm2 = 40 × 10–4 m2

Calculate the magnetic flux and give your 
answer with appropriate units.

ΦB = B⊥A = 0.10 × 40 × 10–4

= 4.0 × 10–4 Wb

b   Calculate the magnitude of the average induced emf in the coil when the coil 
is removed from the magnetic field in a time of 0.5 s.

Identify the quantities for determining the 
induced emf. Ignore the negative sign.

ε = –N 
ΔΦB

Δt
N = 20 turns

ΔΦB = Φ2 − Φ1

= 0 − 4.0 × 10–4

= 4.0 × 10–4 Wb

Δt = 0.5 s

Calculate the magnitude of the average 
induced emf, ignoring the negative sign 
that indicates the direction. 

ε = −N 
ΔΦB

Δt

= 20 × 
4.0 × 10–4

0.5

= 0.016 V

PHYSICSFILE

Microphones
Many microphones operate by 
taking advantage of Faraday’s law of 
induction. The so-called ‘dynamic’ 
microphone uses a tiny coil attached 
to a diaphragm, which vibrates with 
the sound. The coil vibrates within the 
magnetic field of a permanent magnet, 
thus producing an induced emf that 
varies with the original sound.
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Worked example: Try yourself 4.2.1

INDUCED EMF IN A COIL 

A student winds a coil of area 50 cm2 with 10 turns. She places it horizontally in a 
vertical uniform magnetic field of 0.10 T.

a  Calculate the magnetic flux perpendicular to the coil. 

b   Calculate the magnitude of the average induced emf in the coil when the coil 
is removed from the magnetic field in a time of 1.0 s.

Worked example 4.2.2

NUMBER OF TURNS IN A COIL 

A coil of cross-sectional area 1.0 × 10–3 m2 experiences a change in the strength 
of a magnetic field from 0 to 0.20 T over 0.50 s. If the magnitude of the average 
induced emf is measured as 0.10 V, how many turns must be on the coil?

Thinking Working

Identify the quantities needed to 
calculate the magnetic flux through 
the coil when in the presence of the 
magnetic field and convert to SI units 
where required.

ΦB = B⊥A

B = 0.20 T

A = 1.0 × 10−3 m2

Calculate the magnetic flux when in 
the presence of the magnetic field.

ΦB = B⊥A 

= 0.20 × 1.0 × 10−3

= 2.0 × 10−4 Wb

Identify the quantities from the 
question required to complete 
Faraday's law.

ε = −N 
ΔΦB

Δt

N = ?

ΔΦB = Φ2 − Φ1

= 2.0 × 10−4 − 0

= 2.0 × 10−4 Wb

Δt = 0.50 s

ε = 0.10 V

Rearrange Faraday’s law and solve for 
the number of turns on the coil. Ignore 
the negative sign.

ε = −N 
ΔΦB

Δt

N = −
εΔt
ΔΦB

= 
0.10 × 0.50
2.0 × 10−4

= 250 turns

Worked example: Try yourself 4.2.2

NUMBER OF TURNS IN A COIL 

A coil of cross-sectional area 2.0 × 10–3 m2 experiences a change in the strength 
of a magnetic field from 0 to 0.20 T over 1.00 s. If the magnitude of the average 
induced emf is measured as 0.40 V, how many turns must be on the coil?
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4.2 Review
SUMMARY

• The emf induced in a conducting loop in which 
there is a changing magnetic flux is proportional 
to the negative rate of change of flux.

• ε = –N 
ΔΦB

Δt , which is Faraday’s law of induction.

• The negative sign in Faraday’s law indicates 
direction. For questions involving only magnitudes, 
you should not use the negative sign or any 
negative quantities.

KEY QUESTIONS

The following information relates to questions 1–3.
A single rectangular wire loop is located with its plane 
perpendicular to a uniform magnetic field of 2.0 mT, 
directed out of the page, as shown below. The loop is 
free to rotate about a horizontal axis XY.

B out of page

3 cm

2 
cmX Y

1  How much magnetic flux is threading the loop in this 
position?

2  The loop is rotated about the axis XY, through an 
angle of 90°, so that its plane becomes parallel to the 
magnetic field. How much flux is threading the loop 
in this new position?

3  If the loop completes one-quarter of a rotation in 
40 ms, what is the average induced emf in the loop?

4  When a magnet is dropped through a coil, a voltage 
sensor will detect an induced voltage in the coil as 
shown below. 

The area under the curve above zero is exactly equal 
to the area above the curve below zero because:
A  The strength of the magnet is the same.
B  The area of the coil is the same.
C  The strength of the magnet and area of the coil are 

the same.
D  The magnet speeds up as it falls through the coil.

The following information relates to questions 5 and 6.
A coil of 500 turns, each of area 10 cm2, is wound around 
a square frame. The plane of the coil is initially parallel 

to a uniform magnetic field of 80 mT. The coil is then 
rotated through an angle of 90° so that its plane becomes 
perpendicular to the field. The rotation is completed in 
20 ms.

5  What is the average emf induced in each turn during 
this time?

6  What is the average emf induced in the coil in 
Question 5 during the time the coil rotated?

7  A student stretches a flexible wire coil of 30 turns 
and places it in a uniform magnetic field of strength 
5.0 mT, directed into the page, as shown. While it 
is in the field, the student allows the coil to regain 
its original shape. In doing so, the area of the coil 
changes at a constant rate from 250 cm2 to 50 cm2 
in 0.50 s. 

Find the average emf induced in the coil during 
this time. 

8  A student has a flexible wire coil of variable area of 
100 turns and a strong bar magnet, which has been 
measured to produce a magnetic field of strength 
B = 100 mT, a short distance from it. She has been 
instructed to demonstrate electromagnetic induction 
by using this equipment to light up an LED rated at 
1.0 V. Explain, including appropriate calculations, one 
method with which she could complete this task.

9  A wire coil consisting of a single turn is placed 
perpendicular to a magnetic field that experiences 
a decrease in strength of 0.10 T in 0.050 s. If the 
emf induced in the coil is 0.020 V, what is the area 
of the coil?

10  A wire coil consisting of 100 turns with an area of 
50 cm2 is placed inside a vertical magnetic field of 
strength 0.40 T, and then rotated about a horizontal 
axis. For each quarter turn, the average emf induced 
in the coil is 1600 mV. Calculate the time taken for 
a quarter turn of the coil.



AREA OF STUDY 2   |   HOW ARE FIELDS USED TO MOVE ELECTRICAL ENERGY?118

4.3 Lenz’s law and its applications 
In the previous section Faraday’s law of induction was introduced, including the 
equation:

ε = –N 
∆ΦB

∆t

The negative sign is there to remind you in which direction the induced emf 
acts—that is, in which direction current flows as a result of the induced emf.

Lenz’s law, which is the focus of this section, is a common way of understanding 
how electromagnetic induction obeys the principles of conservation of energy and 
explains the direction of the induced emf. It is named after Heinrich Lenz, whose 
research put a definite direction to the current created by the induced emf resulting 
from a changing magnetic flux.

Understanding the direction of the current resulting from an induced emf and 
how it is produced has allowed electromagnetic induction to be used in a vast 
array of devices that have transformed modern society, in particular in electrical 
generators. A metal detector is another example of a device that uses Lenz’s law 
(see Figure 4.3.1).

THE DIRECTION OF AN INDUCED EMF 

Lenz’s law states that an induced emf always gives rise to a current whose 
magnetic field will oppose the original change in flux.

Figure 4.3.2 applies the law to the relative motion between a magnet and a 
single coil of wire. Moving the magnet towards or away from the coil will induce an 
emf in the coil, as there is a change in flux. The induced emf will produce a current 
in the coil. And this induced current will then produce its own magnetic field. It is 
worth noting that Lenz’s law is a necessary consequence of the law of conservation 
of energy: if Lenz’s law were not true then the new magnetic field created by a 
changing flux would encourage that change, which would have the effect of adding 
energy to the universe. 

NN N S SS

(a)

– +

v

(b)

– +

v = 0

(c)

B

I
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v

B

I

FIGURE 4.3.2 (a) The north end of a magnet is brought towards a coil from right to left, inducing a 
current that flows anticlockwise. (b) Pulling the north end of the magnet away from the coil from left 
to right induces a current in a clockwise direction. (c) Holding the magnet still creates no change in 
flux and hence no induced current.

Applying Lenz’s law, the magnetic field created by the induced current will 
oppose the change in flux caused by the movement of the magnet. When the 
north end of a magnet is brought toward the loop from the right, the magnetic 
flux from right to left through the loop increases. The induced emf produces a 
current that flows anticlockwise around the loop when viewed from the right. The 
magnetic field created by this current, shown by the little circles around the wire, 
is directed from left to right through the loop. It opposes the magnetic field of the 
approaching magnet.

If the magnet is moved away from the loop, as in part (b) of Figure 4.3.2, 
the magnetic flux from right to left through the loop decreases. The induced emf 
produces a clockwise current when viewed from the right. This creates a magnetic 
field that is directed from right to left through the loop. This field is in the same 

FIGURE 4.3.1 A diver using a metal detector. If a 
metal object is found underneath the coil of the 
detector, an emf will be induced which creates a 
current that will affect the original current. The 
direction of the induced current is predicted by 
using Lenz’s law.
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direction as the original magnetic field of the retreating magnet. However, note that 
it is opposing the change in the magnet’s flux through the loop by attempting to 
replace the declining flux.

And when the magnet is held stationary, as in part (c) of Figure 4.3.2, there is 
no change in flux to oppose and so no current is induced.

The right-hand grip rule and induced current direction 
The right-hand grip rule (see Section 2.3 on p48) can be used to find the direction 
of the induced current. Keep in mind that the current must create a magnetic 
field that opposes the change in flux due to the relative motion of the magnet 
and conductor. Point your fingers through the loop in the direction of the field 
that is opposing the change and your thumb will then indicate the direction of the 
conventional current, as shown in Figure 4.3.3.

There are three distinct steps to determine the induced current direction 
according to Lenz’s law: 

1  What is the change that is happening?
2 What will oppose the change and/or restore the original conditions?
3 What must be the current direction to match this opposition?

These steps will be further examined using Worked example 4.3.1.

Worked example 4.3.1

INDUCED CURRENT IN A COIL FROM A PERMANENT MAGNET 

The south pole of a magnet is brought upwards toward a horizontal coil initially 
held above it. In which direction will the induced current flow in the coil?

S

Thinking Working

Consider the direction of the 
change in magnetic flux.

The magnetic field direction from the magnet 
will be downwards towards the south pole. The 
downwards flux from the magnet will increase 
as the magnet is brought closer to the coil. 
So the change in flux is increasing downwards.

What will oppose the change 
in flux?

The induced magnetic field that opposes the 
change would act upwards.

Determine the direction of the 
induced current required to 
oppose the change.

In order to oppose the change, the current 
direction would be anticlockwise when viewed 
from above (using the right-hand grip rule).

Worked example: Try yourself 4.3.1

INDUCED CURRENT IN A COIL FROM A PERMANENT MAGNET 

The south pole of a magnet is moved downwards away from a horizontal coil 
held above it. In which direction will the induced current flow in the coil?

S

B

I

FIGURE 4.3.3 The right-hand grip rule can be 
used to determine the direction of a magnetic 
field from a current or vice versa. Your thumb 
points in the direction of the conventional 
current in the wire and your curled fingers 
indicate the direction of the magnetic field 
through the coil.
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Worked example 4.3.2

INDUCED CURRENT IN A COIL FROM AN ELECTROMAGNET 

Instead of using a permanent magnet to change the flux in the loop in Worked 
example 4.3.1, an electromagnet (on the right, in the diagram below) could 
be used. What is the direction of the current induced in the solenoid when the 
electromagnet is:

(i) switched on 

(ii) left on 

(iii) switched off? 

X Y

– +

Thinking Working

Consider the direction of the 
change in magnetic flux for 
each case. 

(i) Initially there is no magnetic flux through 
the solenoid. When the electromagnet is 
switched on, the electromagnet creates 
a magnetic field directed to the left. So 
the change in flux through the solenoid is 
increasing to the left.

(ii) While the current in the electromagnet 
is steady, the magnetic flux through the 
solenoid is constant and the flux is not 
changing. 

(iii) In this case, initially there is a magnetic 
flux through the solenoid from the 
electromagnet directed to the left. When the 
electromagnet is switched off, there is no 
longer a magnetic flux through the solenoid. 
So the change in flux through the solenoid 
is decreasing to the left. 

What will oppose the change in 
flux for each case?

(i) The magnetic field that opposes the 
change in flux through the solenoid is 
directed to the right.

(ii) There is no change in flux and so 
there will be no opposition needed and no 
magnetic field created by the solenoid. 

(iii) The magnetic field that opposes the 
change in flux through the solenoid is 
directed to the left.

Determine the direction of 
the induced current required 
to oppose the change for 
each case.

(i) In order to oppose the change, the 
current will flow through the solenoid in the 
direction from X to Y (or through the meter 
from Y to X), using the right-hand grip rule. 

(ii) There will be no induced emf or current 
in the solenoid. 

(iii) In order to oppose the change, the 
current will flow through the solenoid in the 
direction from Y to X (or through the meter 
from X to Y), using the right-hand grip rule.
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Worked example: Try yourself 4.3.2

INDUCED CURRENT IN A COIL FROM AN ELECTROMAGNET 

What is the direction of the current induced in the solenoid when the 
electromagnet is:

(i) switched on 

(ii) left on 

(iii) switched off? 

X Y

– +

INDUCED CURRENT DIRECTION BY CHANGING AREA 
It’s very important to note that an induced emf is created while there is a change in 
flux, no matter how that change is created. As magnetic flux ΦB = B⊥A, a change 
can be created by any method that causes a relative change in the strength of the 
magnetic field, B, and/or the area of the coil perpendicular to the magnetic field. So 
an induced emf can be created in three ways:
• by changing the strength of the magnetic field
• by changing the area of the coil within the magnetic field
• by changing the orientation of the coil with respect to the direction of the 

magnetic field.
Figure 4.3.4 illustrates an example of the direction of an induced current that 

results during a decrease in the area of a coil.
As the area of the coil decreases due to its changing shape, the flux through 

the coil (which is directed into the page) also decreases. Applying Lenz’s law, the 
direction of the induced current would oppose this change and will be such that it 
acts to increase the magnetic flux through the coil into the page. Using the right-
hand grip rule, a current would therefore flow in a clockwise direction while the 
area is changing.

In Figure 4.3.5, the coil is being rotated within the magnetic field. The effect 
is the same as reducing the area. The amount of flux flowing through the coil is 
reduced as the coil changes from being perpendicular to the field to being parallel 
to the field. An induced emf would be created while the coil is being rotated. This 
becomes particularly important in determining the current direction in a generator.

B
(inward)

�ux
decreasing

FIGURE 4.3.5 Changing the orientation of a coil within a magnetic field by rotating it reduces the 
amount of flux through the coil and so induces an emf in the coil while it is being rotated.

B
(inward)

/

B
(inward)

/

FIGURE 4.3.4 Inducing a current by changing 
the area of a coil. The amount of flux (the 
number of field lines) through the coil is 
reduced and an emf is therefore induced during 
the time that the change is taking place. The 
current flows in a direction that creates a field 
to oppose the reduction in flux into the page.
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Worked example 4.3.3

FURTHER PRACTICE WITH LENZ’S LAW 

The north pole of a magnet is moving towards a coil, into the page (the south 
pole is shown at the top looking down). In what direction will the induced 
current flow in the coil while the magnet is moving towards the coil?

S

Thinking Working

Consider the direction of the change 
in magnetic flux.

The magnetic field direction from the 
magnet will be away from the north 
pole, into the page. The flux from the 
magnet will increase as the magnet 
is brought closer to the coil. So the 
change in flux is increasing into 
the page.

What will oppose the change in flux? The magnetic field that opposes the 
change would act out of the page.

Determine the direction of the induced 
current required to oppose the 
change.

In order to oppose the change, 
the current direction would be 
anticlockwise when viewed from above 
(using the right-hand grip rule).

Worked example: Try yourself 4.3.3

FURTHER PRACTICE WITH LENZ’S LAW 

A coil is moved to the right and out of a magnetic field that is directed out of the 
page. In what direction will the induced current flow in the coil while the magnet 
is moving?
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PHYSICSFILE

Eddy currents 
Lenz’s law is important for many practical applications such as 
metal detectors, induction stoves, and regenerative braking. 
These all rely on an eddy current, which is a circular electric 
current induced within a conductor by a changing magnetic field. 

Applying Lenz’s law, an eddy current will be in a direction that 
creates a magnetic field that opposes the change in magnetic flux 
that created it. Thus eddy currents can be used to apply a force 
that opposes the source of the motion of an external magnetic 

field. For example, if a metal plate is dragged out of a magnetic 
field, an eddy current will form within the plate that opposes the 
change in flux through the area of the plate, and thus opposes 
the motion of the plate itself due to the interaction of the 
magnetic fields (see Figure 4.3.6).

This is the basis of regenerative braking, where the drag of the 
opposing magnetic field is utilised as a braking force. An eddy 
current flowing through a conductor with some resistance will 

also lose energy to the conductor by heating it. 
This makes eddy currents useful for an induction 
stovetop, but a potentially major source of 
energy loss within an AC generator, motor, or 
transformer. Laminated cores with insulating 
material between the thin layers of iron are 
used in these applications to reduce the overall 
conductivity and suppress eddy currents.

The Earth’s magnetic field is also a result 
of eddy currents. The energy that drives the 
Earth’s dynamo comes from the enormous 
heat produced by radioactive decay deep in 
the Earth’s core. The heat causes huge swirling 
convection currents of molten iron in the outer 
core. These convection currents of molten iron 
act rather like a spinning disk. They are moving 
in the Earth’s magnetic field and so eddy 
currents are induced in them. It is these eddy 
currents that produce the Earth’s magnetic field.

PHYSICSFILE

Induction stoves 
In contrast to a conventional gas or electric stove that heats 
via radiant heat from a hot source, an induction stove heats 
via the metal pot in which the food is being cooked. A coil of 
copper wire is placed within the cooktop (see Figure 4.3.7). 
The AC electricity supply produces a changing magnetic field in 
the coil. This induces an eddy current in the conductive metal 
pot. The resistance of the metal in the pot, in which the eddy 
current flows, transforms electrical energy into heat and cooks 
the food.

While induction cooktops have only reached the domestic 
market in relatively recent times, the first patents for induction 
cookers where issued in the early 1900s. They have significant 
advantages over traditional electric cooktops in that they allow 
instant control of cooking power (similar to gas burners), they 
lose less energy through ambient heat loss and heating time, 
and they have a lower risk of burn injuries. Overall, the heating 
efficiency of an induction cooktop is around 12% better than 
traditional electric cooktops and twice that of gas.

FIGURE 4.3.7 The coil of an induction zone within an induction cooktop. 
The large copper coil creates an alternating magnetic field.

B

FIGURE 4.3.6 As the metal plate is moved towards the right, out of the magnetic 
field which is directed into the page, an eddy current forms in a clockwise direction.  
This eddy current would resist the motion of the plate.
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PHYSICS IN ACTION

Superconductors and superconducting magnets
Technological breakthroughs have often led to advances 
in physics. This was the case in 1908 when Kamerlingh 
Onnes, at the University of Leiden in the Netherlands, 
succeeded in liquefying helium. Helium liquefies at 4.2 K 
(–268.9°C). It was known that the electrical resistance of 
metals decreases as they cool, so one of the first things 
that Onnes and his assistant did was to measure the 
resistance of some metals at these very low temperatures.

Onnes was hoping to find that as the temperature of 
mercury dropped towards absolute zero its resistance 
would also gradually drop towards zero. What they found, 
however, was a complete surprise. At 4.2 K its resistance 
vanished completely!

Onnes coined the word ‘superconductivity’ to describe 
this phenomenon. Soon he found that some other 
metals also became superconducting at extremely low 
temperatures: lead at 7.2 K and tin at 3.7 K, for example. 
Curiously, metals such as copper and gold, which are 
very good conductors at normal temperatures, do not 
become superconducting at all. Onnes was awarded 
the 1913 Nobel Prize in Physics for his work in low-
temperature physics.

Much of the great promise of superconductivity has 
to do with the magnetic properties of superconductors. 
In a superconductor an induced current does not fade 
away! As the resultant field opposes the changing 
flux, the magnet is repelled. This gives rise to the 
‘magnetic levitation’ effect that is by now well known 
(see Figure 4.3.8). On a large scale 
this could perhaps one day provide 
a virtually frictionless maglev 
(magnetic levitation) train.

Unfortunately, the superconducting 
metals lost their superconductivity in 
magnetic fields around 0.1 T, which 
is quite a moderate field. However, 
in the 1940s it was found that some 
alloys of elements such as niobium 
had higher ‘critical temperatures’ 
and, more particularly, retained their 
properties in stronger magnetic 
fields. By 1973 the niobium–
germanium alloy Nb3Ge held the 
record with a critical temperature of 
23.2 K in a critical field of 38 T, an 
extremely strong field.

In 1986 an entirely new and 
exciting class of superconductors 
was discovered. Georg Bednorz and 

Karl Müller, working in Switzerland, found that compounds 
of some rare earth elements and copper oxide had 
considerably higher critical temperatures. They received 
the 1987 Nobel Prize in Physics for their work.

These new ‘warm superconductors’ are ceramic 
materials made by powdering and baking the metal 
compounds. Most ceramics are insulators; it was a 
combination of good science and inspired guesswork 
that led Müller to try such unlikely candidates for 
superconductivity. So far, the record is held by bismuth 
and thallium oxides with a critical temperature around 
125 K—still rather cold, but significantly above the 
temperature of readily available liquid nitrogen (77 K).

Superconductivity, particularly in the newer materials, 
is still not fully understood. It can really only be discussed 
in terms of quantum physics, but one rather picturesque 
way of thinking about it is that electrons pair up and ‘surf’ 
electrical waves set up by each other in the crystal lattice 
of the material.

The promise of superconductivity is enormous: low 
friction transport, no-loss transmission of electricity, and 
smaller and more powerful electric motors and generators. 
Superconducting magnets might be used to contain the 
extremely hot plasma needed to bring about hydrogen 
fusion, producing almost pollution-free energy in much 
the same way that the Sun does. There are, however, many 
difficulties to be overcome before these promises can 
be realised.

FIGURE 4.3.8  A disk magnet is repelled by a superconductor because the magnet induces a 
permanent current into the superconductor, which results in an opposing field.
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ELECTRIC POWER GENERATORS 
These days we take the supply of electric power to our homes, schools and 
businesses  for granted, and yet it was only in 1881 that the Victorian Electric 
Light  Company demonstrated an electric lamp lit by a gas-powered generator 
outside its premises in Swanston Street, Melbourne.

The electric generator is probably the most important practical application 
of Faraday’s discovery of electromagnetic induction. The principle of electric 
power generators is the same whether the result is alternating current or direct 
current. Relative motion between a coil and a magnetic field induces an emf in 
the coil. In small generators, the coil is rotated within a magnetic field, but in large 
power stations, car alternators, and other industrial-level production, the coils are 
stationary and an electromagnet rotates inside them. 

This might all sound quite similar to the way electric motors work (see 
Chapter 3). In fact, it is—a generator is basically just the inverse of a motor.

Induced emf in an alternator or generator 
A basic electric generator, or alternator, consists of many coils of wire wound on 
an iron core framework. This is called an armature and it is made to rotate in a 
magnetic field. The axle is turned by some mechanical means—mechanical energy 
is being converted to electrical energy—and an emf is induced in the rotating coil.

Consider a single loop of wire in the generator shown in Figure 4.3.9. The loop 
is rotated clockwise in a uniform magnetic field, B. The amount of flux threading 
through the loop will vary as it rotates. It is this change in flux that induces the emf. 

Lenz’s law tells you that as the flux in the loop decreases from position (a) to 
(b) in Figure 4.3.9, the induced current will be in a direction such as to restore a 
magnetic field in the same direction, relative to the loop, as the external field. The 
right-hand grip rule can then be used to show that the direction of the induced 
current will be D → C → B → A.

The direction of the induced current will reverse every time the plane of the 
loop reaches a point perpendicular to the field. The magnitude of the induced emf 
will be determined by the rate at which the loop is rotating. It will be a maximum 
when the rate of change of flux is a maximum. This is when the loop has moved to 
a position parallel to the magnetic field and the flux through the loop is zero, i.e., 
the gradient of the flux versus time graph shown in Figure 4.3.10 is a maximum.

ΦB

∆ΦB

∆temf ∝ –

90˚ 180˚ 270˚ 360˚

90˚ 180˚ 270˚ 360˚

(a)

(b)

θ

θ

FIGURE 4.3.10 (a) The flux, ΦB, through the loop of Figure 4.3.9 as a function of the angle between 
the field and the normal to the plane of the area, θ. (b) The rate of change of flux and hence emf 
through the loop as a function of the angle between the field and the normal to the plane of the 
loop, θ. The loop is rotating at a constant speed.
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FIGURE 4.3.9 A single loop of a generator 
rotating in a magnetic field. (a) The plane of 
the area of the loop is perpendicular to the 
field B and the amount of flux Φ = BA is at a 
maximum. (b) The loop has turned one quarter 
of a turn and is parallel to the field; Φ = 0. (c) 
As the loop continues to turn, the flux increases 
to a maximum but in the opposite sense relative 
to the loop in (a); Φ = –BA. (d) The flux then 
decreases to zero again as the loop is parallel 
to the field before repeating the cycle again 
from (e) onwards.
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An alternative way to think about how the emf changes as the loop rotates is to 
remember that the emf is actually created as the wires AB and CD cut across the 
magnetic field lines. Maximum emf occurs when these wires cut the magnetic field 
lines perpendicularly, when θ is 90° or 270°, and zero emf occurs when the motion 
of these wires is parallel to the field lines when θ is 0°, 180° or 360°.

AC generators and alternators 
A generator’s construction is basically the same as a motor. The main components 
of an AC generator are shown in Figure 4.3.11.

Consider a coil, or armature, with a number of turns, being rotated in a magnetic 
field, inducing an emf as shown previously in Figure 4.3.9. The resultant emf 
alternates in direction as shown by the graph going above and below the zero emf 
line in Figure 4.3.10. This type of emf or voltage produces an alternating current 
(AC) in the coil. How this alternating current in the coil is harnessed determines if 
the device is an AC alternator or a DC generator.  

As was stated earlier, many industrial generators will instead have the coils 
remain static and the electromagnet rotates within them. The principle of inducing 
an emf is the same. The coil itself may take a variety of shapes, sizes and positions.

If the output from the coils is transferred to a circuit via continuous slip rings, 
the alternating current in the coil will be maintained at the output. The slip rings 
also allow the coil to rotate without tangling. Carbon brushes press against the slip 
rings to allow a constant output to be transferred to a circuit without a fixed point 
of connection.

PHYSICS IN ACTION

Three-phase generators
Many industrial applications require a more constant maximum voltage 
than is possible from a single coil. These applications require a three-phase 
power supply. The coils are arranged such that the emfs vary at the same 
frequency, but with the peaks and troughs of their waveforms offset to 
provide three complementary currents with a phase separation of one-third 
of a cycle, or 120°. The resulting output of all three phases maintains an emf 
near the maximum voltage more continuously. Standard electrical supplies 
include three phases, but most home applications only require a single 
phase to be connected.

120°
240°
360°

N
N

S

S

A1

A2

C1

B
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C2
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1

(a) (b)

FIGURE 4.3.12 (a) A three-phase power supply has three coils, each producing an output 
120° out of phase with the adjoining coil. (b) The resulting output can be combined for a 
more constant supply voltage.

coil rotated

carbon
brushes

slip
rings

SN

FIGURE 4.3.11 A schematic of an AC generator 
showing the main features.
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DC generators 
A DC generator is much like an AC generator in basic design. The continuous 
slip rings are replaced by a split ring commutator. That is, the ring picking up 
the output from the coils has two breaks (or splits) in it at opposite sides of the 
ring. The direction of the output is changed by the commutator every half turn so 
that the output current is always in the same direction (see Figure 4.3.13(a)). The 
output will still vary from zero to a maximum every half cycle. The output can be 
smoothed by placing a capacitor in parallel with the output. More commonly, the 
use of multiple armature windings and more splits in the split ring commutator can 
smooth the output by ensuring that the output is always connected to an armature 
that is in the position for generating maximum emf (see Figure 4.3.13(b)).

coil
axle

commutator commutator
carbon brush carbon brush

+

–

Time Time
emf

+

–

emf

emf at brushes

emf in coil
two-coil DC generator

(a) (b)

FIGURE 4.3.13 (a) A DC generator has a commutator to reverse the direction of the alternating 
current every half cycle and so produce a DC output. (b) Multiple armature windings can smooth 
the output. 

In the past, cars used DC generators to power ancillary equipment. More 
common now is the use of AC generators or alternators, which avoid the problems 
of wear and sparking across the commutator inherent in the design of DC generators 
by using a moving electromagnet inside a set of stationary coils to generate current.

PHYSICS IN ACTION

Back emf in DC motors 
The description of the construction and operation of 
a generator shows that a DC motor and a generator 
share a lot in common and may even function either 
way. In fact, every motor can also be used as a generator. 
The motors of electric trains, for instance, work as 
generators when a train is slowing down, converting 
kinetic energy to electrical energy and putting it back 
into the electrical supply grid. Regenerative brakes in 
cars work in a similar way. A DC motor will also generate 
an emf when running normally. This is termed the 
‘back emf’.

The back emf generated in a DC motor is the result of 
current produced in response to the rotation of the rotor 
inside the motor in the presence of an external magnetic 
field. The back emf, following Lenz’s law, opposes the 
change in magnetic flux that created it, so this induced 

emf will be in the opposite direction to the emf creating it. 
The net emf used by the motor is thus always less than 
the supplied voltage:

εnet = V – εback

As the motor increases speed, the current induced in 
it will increase and the back emf will also increase. When 
a load is applied to the motor, the speed will generally 
reduce. This will reduce the back emf and increase the 
current in the motor. If the load brings the motor to a 
sudden halt—say, an electric drill bit getting stuck—the 
current may be high enough to burn out the motor and 
the motor windings. To protect the motor, a resistor is 
placed in series. It is switched out of the circuit when 
the current drops below a predetermined level and is 
switched back into the circuit for protection once the 
level is exceeded.
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ALTERNATING VOLTAGE AND CURRENT 
An AC generator produces an alternating current varying sinusoidally over time 
with the change in magnetic flux. The maximum emf is only achieved for particular 
points in time. In Australia, mains power oscillates at 50 Hz and reaches a peak 
voltage of ±340 V each cycle or a peak-to-peak voltage of 680 V (see Figure 4.3.14).

10 20

+340

+240

–340

–240

emf peak forward emf +340 V

peak reverse emf –340 V

peak-to-peak emf 680 V

0

Time (ms)

FIGURE 4.3.14 The voltage in Australian power points oscillates between +340 V and –340 V, 50 
times each second. The value of a DC supply that would supply the same average power is 240 V.

It is often more useful to know the average power produced in a circuit. 
The average power can be obtained by using a value for the voltage and current 
equal to the peak values divided by √2. This is referred to as the root mean square 
or rms value.

EXTENSION

Deriving the root mean square formulae
In an AC circuit, the power produced in a resistor is equal 
to: V

2

R
 sin2 θ

The average power will be given by:
1

2 
Vp

2

R

If this same power was to be supplied by a steady (DC) 
source, the voltage Vave of this source would have to be 
such that:

Vave
2

R  = 
1

2 
Vp

2

R

Simplifying:

Vave
2 = 

Vp
2

2

Vave = 
Vp

√2

This voltage is known as the root mean square voltage or 
Vrms . It is the value of a steady voltage that would produce 
the same power as an alternating voltage with a peak value 
equal to √2 times as much.
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Vp
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V2

mean value
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FIGURE 4.3.15 The power transmitted is proportional to the area under 
a V2 graph. Clearly, the power transmitted by an AC circuit (with Vp) is 
the same as that in a DC circuit with a voltage equal to the square root 
of 1

2
 (Vp)2, that is Vp

√2
.
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In effect, the rms values are the values of a DC supply that would be needed 
to provide the same average power as the AC supply. It is the rms value of the 
voltage (340

√2
 = 240) that is normally quoted. This is the effective average value of 

the voltage and is the value that should be used to find the actual power supplied 
each cycle by an AC supply. So:

Vrms = 
Vp

√2

Irms = 
Ip
√2

Prms = Vrms × Irms = 1
2
 VpIp , and

Pp = √2Vrms × √2Irms = 2VrmsIrms

Worked example 4.3.4

PEAK AND RMS AC CURRENT VALUES 

A 60 W light globe is connected to a 240 V AC circuit. What is the peak power 
use of the light globe?

Thinking Working

Note that the values given in the 
question represent rms values. Power is 
P = VI so both V and I must be known 
to calculate the power use. The voltage 
V is given, and the current I can be 
calculated from the rms power supplied.

Prms = VrmsIrms

Irms = 
Prms

Vrms

= 
60
240 = 0.25 A

Substitute in known quantities and solve 
for peak power.

Pp = √2Vrms × √2Irms = 2VrmsIrms

= 2 × Vrms × Irms

= 2 × 240 × 0.25

= 120 W

Worked example: Try yourself 4.3.4

PEAK AND RMS AC CURRENT VALUES 

A 1000 W kettle is connected to a 240 V AC power outlet. What is the peak 
power use of the kettle? 
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4.3 Review
SUMMARY

• An induced emf always gives rise to a current 
whose magnetic field will oppose the original 
change in flux.

• There are three distinct steps to determine the 
induced current direction according to Lenz’s law:

1. What is the change that is happening?

2.  What will oppose the change and/or restore the 
original conditions?

3.  What must be the current direction to match 
this opposition?

• An induced emf can be created in three ways: 

 - by changing the strength of the magnetic field

 - by changing the area of the coil within the 
magnetic field

 - by changing the orientation of the coil with 
respect to the direction of the magnetic field.

• The principle of electric power generators is the 
same whether the result is alternating current or 
direct current. Relative motion between a coil and 
a magnetic field induces an emf in the coil.

• A generator’s, or alternator’s, construction is very 
similar to that of an electric motor.

• A coil rotated in a magnetic field will produce an 
alternating induced current in the coil. How that 
current is harnessed will determine if the device 
is an AC alternator or a DC generator.

• An AC alternator has slip rings that transfer 
the alternating nature of the current in the coil 
to the output. A DC generator has a split ring 
commutator to reverse the current direction every 
half turn so that the output current is always in 
the same direction.

• The alternating current produced by power 
stations and supplied to cities varies sinusoidally 
at a frequency of 50 Hz. The peak value of the 
voltage of domestic power (Vp) is ±340 V, and the 
peak-to-peak voltage (Vp–p) is 680 V. 

• The root mean square voltage, Vrms, is the value 
of an equivalent steady voltage (DC) supply that 
would provide the same power. 

Vrms = 
Vp

√2
• The rms value of domestic mains voltage in 

Australia is 240 V.

• The average power in a resistive AC circuit is: 

P = VrmsIrms

   = 
1
2 × Vp × Ip

KEY QUESTIONS

1  A conducting loop is located in an external magnetic 
field whose direction (but not necessarily magnitude) 
remains constant. A current is induced in the loop. 
Which of the following alternatives best describes 
the direction of the magnetic field due to the 
induced current?
A  It will always be in the same direction as the 

external magnetic field.
B  It will always be in the opposite direction to the 

external magnetic field.
C  It will be in the same direction as the external 

magnetic field if the external magnetic field gets 
weaker, and it will be in the opposite direction to 
the external magnetic field if the external magnetic 
field gets stronger.

D  The direction can’t be determined from the 
information supplied.

2  A rectangular conducting loop forms the circuit 
shown below. The plane of the loop is perpendicular 
to an external magnetic field whose magnitude and 
direction can be varied. The initial direction of the 
field is out of the page.

G

B out of this page

a  When the magnetic field is switched off, what will 
be the direction of the magnetic field due to the 
induced current?
A  out of the page
B  into the page
C  clockwise
D  anticlockwise
E  left to right
F  right to left
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4.3 Review
b  When the direction of the magnetic field is reversed, 

what is the direction of the magnetic field due to 
the induced current?
A  out of the page
B  into the page
C  clockwise
D  anticlockwise
E  left to right
F  right to left

3  A bar magnet is falling towards the centre of a 
horizontal copper coil, as shown below.

G

N
S

v

large copper ring

a  What is the direction (as seen from above) of the 
induced current in the coil when the magnet is in 
the position shown in the diagram? 

b  Name four factors that would influence the 
magnitude of the induced current in the 
copper ring.

4  The back emf generated in a DC motor is the result 
of current produced in response to the rotation of the 
armature in the motor in the presence of an external 
magnetic field. As a result of the back emf, what will 
the net emf used by a DC motor be?
A  the same as the supplied voltage
B  less than the supplied voltage
C  greater than the supplied voltage
D  greater or less than the supplied voltage, depending 

on the speed of the motor

5  Assuming that an anticlockwise rotation of a coil 
starting from θ = 0° perpendicular to a constant 
magnetic field initially produces a positive current, 
which of the graphs best illustrates the variation of 
the induced current as a function of time for one full 
revolution of the coil?
A 

0

I

t

 B 

0

I

t

C 

0

I

t

 D 

0

I

t

The following information relates to questions 6 and 7.
A simple generator consists of a coil of N = 1000 turns, 
each of radius 10 cm, mounted on an axis in a uniform 
magnetic field of strength, B. The following graph shows 
the voltage output as a function of time when the coil is 
rotated at a frequency of 50 Hz.

8.0

0

0.01 0.02 t (s)

V (V)

6  Determine the values of Vp , Vp–p and Vrms.

7  The generator is modified so that the magnetic field 
strength is doubled and the frequency of rotation is 
increased to 100 Hz. The radius of the coil is halved 
to 5.0 cm. Draw a line graph representing the new 
output from the generator.

8  An AC supply of frequency 50 Hz is connected to 
a circuit, resulting in an rms current of 1.0 A being 
observed. Draw a graph that shows one full period 
of the variation of current with time for this circuit.

9  A student decides to test the output power of a new 
amplifier by using a voltage sensor to capture and 
display the alternating current I and voltage V that 
it produces. The result is shown below.
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What is the rms power rating of the amplifier?

10  An electric toaster designed to operate at a Vrms of 
240 V has a power rating of 600 W. What is the peak 
current in the heating element?
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4.4 Supplying electricity—
transformers and large-scale 
power distribution 
When Faraday first discovered electromagnetic induction, he had effectively 
invented the transformer. A transformer is a device for increasing and decreasing 
an AC voltage. Transformers can be found in just about any electrical device, are an 
essential part of any electrical distribution system and are the focus of this section 
(see Figure 4.4.1).

THE WORKINGS OF A TRANSFORMER 
A transformer works on the principle of a changing magnetic flux inducing an 
emf. No matter what the size or application, a transformer will consist of two coils 
known as the primary and secondary coils. The changing flux originates with the 
alternating current supplied to the primary coil. The changing magnetic flux is 
directed to the secondary coil where the changing flux will induce an emf in that 
coil (see Figure 4.4.2).

changing magnetic �ux

AC supply

primary coil secondary coil

load

(a) (b)

FIGURE 4.4.2 (a) In an ideal transformer, the iron core ensures that all the flux generated in the 
primary coil also passes through the secondary coil. (b) The symbol used in circuit diagrams for an 
iron-core transformer.

The two coils can be interwoven using insulated wire or they can be linked 
by a soft iron core, laminated to minimise eddy current losses. Transformers are 
designed so that nearly all of the magnetic flux produced by the primary coil will 
pass through the secondary coil. In an ideal transformer the assumption is that 
this will be 100% efficient and energy losses can be ignored. In a real transformer, 
this assumption remains a good approximation. Transformers are one of the most 
efficient devices around, with practical efficiencies often being better than 99%.

PHYSICSFILE

Laminations 
Eddy currents that are set up in the iron core of transformers can generate a 
considerable amount of heat. Energy that has been lost from the electrical circuit and 
the transformer as heat may become a fire hazard. To reduce eddy current losses, the 
core is made of laminations, which are thin plates of iron electrically insulated from 
each other and placed so that the insulation between the laminations interrupts the 
eddy currents.

AC VERSUS DC 
The power distribution system works on alternating current. That may seem odd 
when many devices run on direct current, but one of the primary reasons is the ease 
with which alternating current can be transformed from one voltage to another.

A transformer works on the basis of a changing current in the primary coil 
inducing a changing magnetic flux. This in turn induces a current in the secondary 
coil. For this to work, the original current must be constantly changing, as it does 
in an AC supply.

(a)

(b)

FIGURE 4.4.1 (a) View of transformers at an 
electrical substation. The substation takes 
electricity from the distribution grid and 
converts it to lower voltages used by industrial 
or residential equipment. More common are 
the smaller distribution transformers, found on 
every suburban street (b). See if you can locate 
at least one on your street.
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A DC voltage has a constant, unchanging current. With no change in the size 
of the current, no changing magnetic flux will be created by the primary coil and, 
hence, no current is induced in the secondary coil. Transformers do not work with 
the constant current of a DC electrical supply. There will be a very brief induced 
current when a DC supply is turned on, and a change occurs from zero current to 
the supply level. There is a similar spike if the DC supply is switched off, but while 
the DC supply is constant there is no change in magnetic flux to induce a current 
in the secondary coil.

THE TRANSFORMER EQUATION 
When an AC voltage is connected to the primary coil of a transformer, the changing 
magnetic field will induce an AC voltage of the same frequency as the original 
supply in the secondary coil. The voltage in the secondary coil will be different and 
depends upon the number of turns in each coil.

From Faraday’s law, the average voltage in the primary coil, Vp , will affect the 
rate at which the magnetic flux changes:

V1 = N1 
∆ΦB

∆t

or 
∆ΦB

∆t  = 
V1

N1

where Np is the number of turns in the primary coil.
The induced voltage in the secondary coil, Vs, will be

V2 = N2 
∆ΦB

∆t

and 
∆ΦB

∆t  = 
V2

N2

where Ns is the number of turns in the secondary coil.
Assuming that there is little or no loss of flux between the primary and secondary 

coil, then the flux in each will be the same and 
V1

N1
 = 

V2

N2

or 
V2

V1
 = 

N2

N1

The transformer equation, relating voltage and number of turns in each coil, is: 

V1

V2
 = 

N1

N2
 or 

V2

V1
 = 

N2

N1
 or 

V1

N1
 = 

V2

N2
 

where the subscript ‘1’ refers to the primary or first coil, and the subscript ‘2’ 
refers to the secondary coil.

The transformer equation explains how the secondary (output) voltage is 
related to the primary input voltage. Either the rms voltage for both or the peak 
voltage for both can be used.

A step-up transformer increases the secondary voltage compared with the 
primary voltage. The secondary voltage is greater than the primary voltage and the 
number of turns in the secondary coil is greater than the number of turns in the 
primary coil, i.e. if N2 > N1 then V2 > V1.

A step-down transformer decreases the secondary voltage compared with 
the primary voltage. The secondary voltage is less than the primary voltage and 
the number of turns in the secondary coil is less than the number of turns in the 
primary coil, i.e. if N2 < N1 then V2 < V1.
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Worked example 4.4.1

TRANSFORMER EQUATION—VOLTAGE 

A transformer is built into a portable radio to reduce the 240 V supply voltage 
to the required 12 V for the radio. If the number of turns in the secondary coil 
is 100, what is the number of turns required in the primary coil?

Thinking Working

State the relevant quantities given 
in the question. Choose a form 
of the transformer equation with 
the unknown quantity in the top 
left position.

V2 = 12 V

V1 = 240 V

N2 = 100 turns

N1 = ?
N1

N2
 = 

V1

V2

Substitute the quantities into the 
equation, rearrange and solve for N1.

N1

100 = 
240
12

N1 = 
100 × 240

12

= 2000 turns

Worked example: Try yourself 4.4.1

TRANSFORMER EQUATION—VOLTAGE 

A transformer is built into a phone charger to reduce the 240 V supply voltage 
to the required 6 V for the charger. If the number of turns in the secondary coil 
is 100, what is the number of turns required in the primary coil?

POWER OUTPUT 
Although a transformer very effectively increases or decreases an AC voltage, 
energy conservation means that the output power cannot be any greater than the 
input power. Since a well-designed transformer with a laminated core can be more 
than 99% efficient, the power input can be considered equal to the power output, 
making it an ‘ideal’ transformer. 

Since power supplied is P = VI, then: 
V1I1 = V2I2

The transformer equation can then be written in terms of current, I.

The transformer equation, relating current and the number of turns in 
each coil:

I1
I2

 = 
N2

N1
 or 

I2
I1

 = 
N1

N2
 or 

I1
N2

 = 
I2
N1

 

Note carefully that the number-of-turns ratio for currents is the inverse of that 
for the transformer equation written in terms of voltage.

PHYSICSFILE

Overload 
A transformer will be overloaded if too much current is drawn and the resistive power 
loss in the wires becomes too great. There will be a point at which the transformer 
starts to overheat rapidly. For this reason, it is important not to exceed the rated 
capacity of a transformer.

PHYSICSFILE

Standby power 
Because very little current will flow in 
the primary coil of a good transformer 
to which there is no load connected, 
it will use little power when not in 
use. However, this ‘standby power’ 
can add up to around 10% of power 
use. This is why devices such as TVs 
and computers should be switched 
completely off when not in use. Over 
the whole community, standby power 
amounts to megawatts of wasted 
power and unnecessary greenhouse 
emissions! Special switches, such as 
the ‘Ecoswitch’ shown below, have 
been developed that can be connected 
between the power outlet and the 
device to make it easier to remember 
to turn devices completely off when 
not in use.

FIGURE 4.4.3 Standby switches such as 
the ‘Ecoswitch’ make it easier and more 
convenient to turn devices completely 
off when not in use, saving up to 10% 
on power bills.
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Worked example 4.4.2

TRANSFORMER EQUATION—CURRENT 

A radio with 2000 turns in the primary coil and 100 turns in its secondary coil 
draws a current of 4.0 A. What is the current in the primary coil?

Thinking Working

State the relevant quantities given 
in the question. Choose a form of 
the transformer equation with the 
unknown quantity in the top left 
position.

I2 = 4.0 A

N2 = 100 turns

N1 = 2000 turns

I1 = ?
I1
I2

 = 
N2

N1

Substitute the quantities into the 
equation, rearrange and solve for I1.

I1
4.0 = 

100
2000

I1 = 
4.0 × 100

2000

= 0.20 A

Worked example: Try yourself 4.4.2

TRANSFORMER EQUATION—CURRENT 

A phone charger with 4000 turns in the primary coil and 100 turns in its 
secondary coil draws a current of 0.50 A. What is the current in the primary coil?

Worked example 4.4.3

TRANSFORMERS—POWER 

The power drawn from the secondary coil of the transformer by a portable radio 
is 48 W. What power is drawn from the mains supply if the transformer is an 
ideal transformer?

Thinking Working

The energy efficiency of a transformer 
can be assumed to be 100%. The 
power in the secondary coil will be the 
same as that in the primary coil.

The power drawn from the mains 
supply is the power in the primary 
coil, which will be the same as the 
power in the secondary coil: P = 48 W.

Worked example: Try yourself 4.4.3

TRANSFORMERS—POWER 

The power drawn from the secondary coil of the transformer by a phone 
charger is 3 W. What power is drawn from the mains supply if the transformer 
is an ideal transformer?

POWER FOR CITIES: LARGE-SCALE AC SUPPLY 
In your school experiments using electrical circuits it is likely that you have 
ignored the resistance of the connecting wires because the wires (generally made 
from copper) are good conductors, and so the resistance is very small over short 
distances. However, over large distances, even relatively good electrical conductors 
like copper have a significant resistance.

Modern cities use huge amounts of electrical energy, most of which is supplied 
from power stations built at a considerable distance from the metropolitan 
areas.  The efficient transmission of the electrical energy with the least amount 
of power loss over that distance is therefore a very important consideration for 
electrical engineers, particularly given the vast distances between population 
centres in Australia. 
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The power lost in an electrical circuit is given by P = ∆VI, where ∆V is the 
voltage drop across the load. Recalling Ohm’s law, ∆V = IR, and substituting, the 
power can be expressed in terms of either current and load resistance or voltage 
drop and load resistance:

Ploss = ∆VI = I2R = ∆V 2

R
By considering the form of the equation including the current carried by the circuit 

and its electrical resistance (Ploss = I 2R), it is clear that transmitting large amounts of 
power using a large current will create very large power losses. If the current in the 
power lines can be reduced, it will significantly reduce the power loss. Since the power 
loss is proportional to the square of the current then if the current is reduced by a 
factor of 3, for example, the power loss will be reduced by a factor of 32 or 9.

The challenge, then, is to transmit the large amounts of power being produced 
at power stations using a very low current. Transformers are the most common 
solution to this problem. Using a step-up transformer near the power station, the 
voltage is increased by a certain factor and, importantly, the current is decreased by 
the same factor. Due to the Ploss = I 2R equation, the power lost during transmission 
is reduced by the square of that factor.

At this point you might be confused by the alternative equation for power loss: 
Ploss = ∆V 2

R . A simple misunderstanding could make you think that increasing the 
voltage through the use of a step-up transformer would actually lead to greater 
power loss, if you use this equation to calculate power loss. However, ∆V represents 
the voltage drop in a circuit. You must be careful not to confuse the voltage being 
transmitted along the wires with the voltage drop across the wires. So, even though the 
voltage being transmitted is increased through the use of a step-up transformer, the 
voltage drop across the wires would be reduced since ∆V = IR, and thus the power 
loss would also be reduced.

AC power from the generator is readily stepped up by a transformer to 
somewhere between 240 kV and 500 kV prior to transmission. Once the electrical 
lines reach the city, the voltage is stepped down in stages at electrical substations for 
distribution. The power lines in streets will have a voltage of around 2400 V, before 
being stepped down via small distribution transformers to 240 V for home use.

Worked example 4.4.4

TRANSMISSION-LINE POWER LOSS 

300 MW is to be transmitted from the Hazelwood power station to Melbourne 
along a transmission line with a total resistance of 1.0 Ω. What would be the 
total transmission power loss if the initial voltage along the line was 250 kV?

Thinking Working

Convert the values to SI units. P = 300 MW = 300 × 106 W

V = 250 kV = 250 × 103 V

Determine the current in the line 
based on the required voltage.

P = VI ∴ I = PV

I = 
300 × 106

250 × 103

= 1200 A

Determine the corresponding 
power loss.

P = I2R

= 12002 × 1

= 1.44 × 106 W or 1.44 MW

Worked example: Try yourself 4.4.4

TRANSMISSION-LINE POWER LOSS 

300 MW is to be transmitted from the Hazelwood power station to Melbourne 
along a transmission line with a total resistance of 1.0 Ω. What would be the 
total transmission power loss if the voltage along the line was now to be 500 kV?
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Worked example 4.4.5

VOLTAGE DROP ALONG A TRANSMISSION LINE 

Power is to be transmitted from the Loy Yang power station to Melbourne along 
a transmission line with a total resistance of 1.0 Ω. The current is 1200 A. What 
voltage would be needed at the Loy Yang end of the transmission line to achieve 
a supply voltage of 250 kV? 

Thinking Working

Determine the voltage drop along the 
transmission line.

ΔV = IR

= 1200 × 1.0

= 1200 V

Determine the initial supply voltage. Vinitial = Vsupplied + ΔV

= 250 × 103 + 1200

= 251 200 V or 251.2 kV

Worked example: Try yourself 4.4.5

VOLTAGE DROP ALONG A TRANSMISSION LINE 

Power is to be transmitted from the Loy Yang power station to Melbourne along 
a transmission line with a total resistance of 1.0 Ω. The current is 600 A. What 
voltage would be needed at the Loy Yang end of the transmission line to achieve 
a supply voltage of 500 kV?

LARGE-SCALE ELECTRICAL DISTRIBUTION SYSTEMS 
Large-scale energy transmission is done through an interconnected grid between 
the power stations and the population centres where the bulk of the electrical energy 
is used. A wide-area synchronous grid, also known as an interconnection, directly 
connects a number of generators, delivering AC power with the same relative phase, 
to a large number of consumers. 

No matter the source, the path the electrical power takes to the final consumer 
is very similar (see Figure 4.4.4). Step-up transformers in a large substation near 
the power station will raise the voltage from that initially generated to 240 000 V 
or 240  kV or more. The electrical power will then be carried via high-voltage 
transmission lines to a number of substations near key centres of demand. 
Substations with step-down transformers then reduce the voltage to more safe 
levels for distribution underground or via the standard ‘electricity pole’ you would 
be familiar with around city and country areas. Each group of 10–15 houses will 
be supplied by a smaller distribution transformer, mounted on the poles, which 
reduces the voltage down to the 240 V AC rms voltage that home and business 
installations are designed to run on (see Figure 4.4.4).

power
plant

step-up
transformer

high voltage
transmission line

step-down
transformer
(substation)

step-down
transformer

home

240 V2400 V240 000 V12 000 V

FIGURE 4.4.4 Transmitting electric power from generator to home uses AC power, so transformers 
can be used to minimise power losses through the system.
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The use of AC as the standard for distribution allows highly efficient and 
relatively cheap transformers to convert the initial voltages created at the power 
station to much higher levels. The same power transmitted at a higher voltage 
requires less current and therefore less power loss. If it were not for this, the 
resistance of the transmission wires would need to be significantly reduced, which 
would require more copper in order to increase their cross-sectional area. This is 
both expensive and heavy. Less metal will make cables lighter and thinner, and the 
supporting towers themselves can be comparatively shorter, cheaper and lighter 
to build.

PHYSICS IN ACTION

The War of Currents
AC and DC power supplies have been in competition for 
nearly as long as humans have been generating electricity. 
The heated debates about the benefits and disadvantages 
of each type of current prompted what has been called the 
‘War of Currents’ in the late 1800s. During this time 
Thomas Edison, an American inventor and businessmen, 
had created the Edison Electric Light Company that he 
hoped would supply electricity to large parts of America 
with his DC generators. Meanwhile, Nikola Tesla, a 
Serbian–American physicist, had invented the AC 
induction motor and, with financial support from George 
Westinghouse, hoped AC would become the dominant 
power supply. Ultimately, the ease with which AC could 
be stepped up using transformers for long-distance 
transmission with minimal power loss (as discussed in 
detail throughout this chapter) proved to be the prevailing 
benefit that led to AC winning the ‘war’. However, in his 
attempt to win the competition, Edison attempted to 
portray the high voltage AC power as terrifyingly 
dangerous by using it to electrocute elephants and by 
inventing the AC-powered electric chair for the American 
government to execute prisoners on death row.

While AC power is now universal in large-scale power 
distributions, there is a limit to how high the voltage 
of an AC system can go and still be efficient. Above 
approximately 100 kV, 
corona loss (due to the high 
voltage ionising air molecules) 
begins to occur, and above 
500 kV it no longer becomes 
feasible to transmit electric 
power due to these effects. 

To transmit the same power 
as DC, an AC system would 
need to operate with a higher 
peak voltage. During the 
portion of the cycle when the 
AC is lower than peak voltages, 
efficiency is compromised 
because the higher the voltage 

the better. Up until recently the expense of alternative 
methods to raise and lower the voltage at either end of the 
transmission line more than negated this negative aspect 
of AC systems.

High DC voltage levels can now be reached more 
easily with new technology employing small, high-
frequency switching converters. Projects such as the 
Three Gorges Dam in China (see Figure 4.4.5), and 
undersea transmission lines are now planning to use DC 
transmission. There are some other benefits, with many of 
the AC/DC transformers and three-phase industrial power 
currently in use becoming unnecessary. However, there 
is a whole range of other devices to be considered that 
would need to be allowed for, and major issues with safety. 
For example, safety switches won’t work with DC power.

In some ways, the competition between Edison and 
Tesla continues. The Edison Electric Company merged 
in 1892 to become the General Electric Company, which 
exists to this day as one of the largest and most profitable 
companies in the world, while Westinghouse is still in 
business as a large home-appliance brand.

FIGURE 4.4.5 Transmitting projects at the Three Gorges Dam in China 
look to use DC transmission at higher voltages than is possible with 
AC to further reduce transmission losses.
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4.4 Review
SUMMARY

• A transformer works on the principle of a 
changing magnetic flux inducing an emf. 
No matter what the size or application, it will 
consist of two coils known as the primary 
and secondary coils.

• Ideal transformers are 100% efficient; real 
transformers are often over 99% efficient, 
and for this reason power losses within the 
transformer can be ignored in calculations.

• The transformer equation can be written in 
different versions but is based on: 
V2

V1
 = 

N2

N1

• A step-up transformer increases the secondary 
voltage compared with the primary voltage.

• A step-down transformer decreases the secondary 
voltage compared with the primary voltage.

• The transformer equation can also be written in 
terms of current, i.e.:
I1
I2

 = 
N2

N1

• Transformers will not work with DC voltage since 
it has a constant, unchanging current that creates 
no change in magnetic flux.

• The power supplied in an electrical circuit is given 
by: P = VI

• The power lost in an electrical circuit is given by:  
P = I2R

• The AC electrical supply from a generator is 
readily stepped up or down by transformers, 
hence AC is the preferred form of electrical energy 
in large-scale transmission systems.

KEY QUESTIONS

1  A non-ideal transformer has a slightly smaller power 
output from the secondary coil than input to the 
primary coil. The voltage and current in the primary 
coil are denoted V1 and I1 respectively. The voltage 
and current in the secondary coil are denoted V2 and 
I2 respectively. Which of the following expressions 
describes the power output in the secondary coil?
A  V1I1
B  V2I2
C  V1I2
D  I22R

2  A voltage sensor is connected to the output of a 
transformer and a series of different inputs is used. 
Which of the following graphs is the most likely 
output displayed on a voltage graph for a steady 
DC voltage input?

A 

0 t

 B 

0 t

C 

0 t

 D 

0 t

3  A security light is operated from mains voltage 240 V 
rms through a step-down transformer with 800 turns 
on the primary winding. The security light operates 
normally on an rms voltage of 12 V.
How many turns are on the secondary coil?

4  The figure below depicts an iron core transformer. 
An alternating voltage applied to the primary coil 
produces a changing magnetic flux. The secondary 
circuit contains a switch, S, in series with a resistor, R. 
The number of turns in the primary coil is N1 and in 
the secondary, N2. The power in the first coil is P1 and 
that in the second coil, P2. Assume that this is an ideal 
transformer.

primary
AC voltage

V1
secondary
AC voltage

V1

I1 I1

Nl turns N2 turns
iron core

S

R

a  Write an equation that defines the relationship 
between the power in the primary coil, P1, and the 
power in the secondary coil, P2.

b  Write an equation that defines the relationship 
between the current in the secondary coil, I2, and 
the current in the primary coil, I1, in terms of the 
number of turns in each coil.

5  The primary windings of a transformer consist of 
20 turns and the secondary of 200 turns. The primary 
rms voltage input is 8.0 V and a primary rms current 
of 2.0 A is flowing.
a  What is the rms voltage across the load attached to 

the secondary coil?
b  What power is being supplied to the load attached 

to the secondary coil?
c  What is the rms current in the secondary coil?
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4.4 Review continued
6  A security light is connected to a mains voltage of 

240 V rms. It runs on a voltage of 12 V rms and an 
rms current of 2.0 A. A step-down transformer with 
800 turns on the primary winding is used to reduce 
the voltage from the mains level to the required 
operating voltage. Assume that the light is operating 
normally and that there is no power loss in the 
transformer.
a  Calculate the number of turns, to the nearest whole 

number, in the secondary coil.
b  What is the value of the peak current in the 

primary coil?
c  Calculate the rms power input to the primary coil 

of the transformer. 
d  During some routine maintenance work, the 

primary coil of the transformer for the security 
light is unplugged from the AC mains supply and 
plugged into a DC supply of 240 V instead. What 
is the new output (secondary) voltage?
A  0 V
B  12 V
C  24 V
D  240 V

7  A solar-powered generator produces 5.0 kW of 
electrical power at 500 V. This power is transmitted 
to a distant house via twin cables of total resistance 
4.0 Ω. What is the total power loss in the cables?

8  A 100 km transmission line made from aluminium 
cable has a total resistance of 10 Ω. The line carries 
the electrical power from a 500 MW power station to 
a substation. If the line is operating at 250 kV, what 
is the power loss in the line?

9  A power station generates 500 MW of power to 
be used by a town 100 km away. The power lines 
between the power station and the town have a total 
resistance of 2.0 Ω.
a  If the power is transmitted at 100 kV, what current 

would be required?
b What voltage would be available at the town? 

Give your answer in kilovolts (kV).

10  Power loss can be expressed by the formula  
P = ΔV2

R  = I2R. Therefore, select which of the 
following statements is true, and justify why the 
other response is incorrect:
A  The greater the voltage being transmitted in a 

transmission line, the greater the power loss.
B  The greater the current in the transmission line, 

the greater the power loss.

Chapter review

KEY TERMS

alternator
armature
brushes
electromagnetic induction
Faraday’s law
generator

ideal transformer
induced current
Lenz’s law
magnetic flux
magnetic flux density
root mean square

slip rings
split ring commutator
step-down transformer
step-up transformer
transformer

1  A rectangular coil of area 40 cm2 and resistance 1.0 Ω 
is located in a uniform magnetic field B = 8.0 × 10–4 T 
which is directed out of the page. The plane of the coil 
is initially perpendicular to the field as depicted in the 
diagram below.

X Y

P

Q

a What is the magnitude of the emf induced in the 
coil when the strength of the magnetic field is 
doubled in a time of 1.0 ms?

b  What is the direction of the current caused by the 
induced emf in the coil when the strength of the 
magnetic field is doubled in a time of 1.0 ms?

2  During a physics experiment a student pulls a 
horizontal circular coil from between the poles of two 
magnets in 0.10 s. The initial position of the coil is 
entirely in the field while the final position is free of 
the field. The coil has 40 turns, each of radius 4.0 cm. 
The field strength between the magnets is 20 mT.
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A

N

S

X X

Y
A

Y
initial position �nal position

coil moved to the right

a  What is the magnitude of the average emf induced 
in the coil as it is moved from its initial position to 
its final position?

b  What is the direction of the current in the coil 
caused by the induced emf?

3  A copper rod, XY, of length 20 cm is free to move 
along a set of parallel conducting rails as shown in 
the following diagram. These rails are connected to a 
switch, S, which completes a circuit when it is closed. 
A uniform magnetic field of strength 10 mT, directed 
out of the page, is established perpendicular to the 
circuit. S is closed and the rod is moved to the right 
with a constant speed of 2.0 m s–1.

S

X

Y

left right

a  What is the magnitude of the induced emf in the 
rod in mV?

b  What is the direction of the current through the rod 
caused by the induced emf?

4  A ship with a vertical steel mast of length 8.0 m is 
travelling due west at 4.0 m s–1 in a region where the 
Earth’s magnetic field is horizontal and is equal to 
5.0 × 10–5 T north. What average emf, in mV, would be 
induced between the top and the bottom of the mast?

5  Coils S1 and S2 are close together and linked by a soft 
iron core. The emf in S1 varies as shown in the graph 
below. Draw a line graph to show the shape of the 
variation of the current in S2.

V

t (s)0

1

2

3

4

1 2 3 4 5 6 7

The following information relates to questions 6 and 7.
An ideal transformer is operating with an rms input 
voltage of 14 V and rms primary current of 3.0 A. 
The output voltage is 42 V. There are 30 turns in the 
secondary winding. 

N2 = 30N1 R 42 V14 V

3.0 A

6  What is the rms output current?

7  How many turns are there in the primary coil?

8  The following diagram shows a graph of induced 
voltage versus time as it appears on the screen of 
a CRO. 

Which of the following input voltages would produce 
the voltage shown in the CRO display?
A Vi

0 t

 B Vi

0
t

 C Vi

0
t

9  A physics student uses a voltage/current sensor to 
display the current, I, through, and the voltage, V, 
across, the output terminals of a small generator. 
The graph obtained from the display is shown below.

30
20
10
0

–10
–20
–30

30
20
10
0

–10
–20
–30

I (
A

)

V 
(V

)

V

I
1.0 2.0 3.0 4.0

t (ms)

a  What is the approximate rms voltage for the signal?
b  Calculate the peak power output of the generator.
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10  A student decides to test the power output of a new 
stereo amplifier. The maximum rms power output 
guaranteed by the manufacturer (assumed accurate) 
is 60 W. Which set of specifications is consistent with 
this power output?

peak–peak voltage (V) peak–peak current (A)

A 20 3.0

B 40 6.0

C 40 12.0

D 20 6.0

The following information refers to questions 11 and 12.
A student builds a simple alternator consisting of a coil 
containing 500 turns, each of area 10 cm2, mounted on 
an axis that can rotate between the poles of a permanent 
magnet of strength 80 mT. The alternator is rotated at a 
frequency of 50 Hz.

11  Find the average emf of the alternator.

12  Explain what the effect will be on the average emf 
when the frequency is doubled to 100 Hz. 

13  A generator is to be installed in a farm shed to provide 
240 V power for the farmhouse. A twin-conductor 
power line with total resistance 8 Ω already exists 
between the shed and house. The farmer has seen a 
cheap 240 V DC generator advertised and is tempted 
to buy it.
Identify and explain two significant problems that you 
foresee with using the 240 V DC generator.

14  A coil in a magnetic field directed into the page is 
reduced in size. In what direction will the induced 
current flow in the coil while the coil is being 
reduced in size? 

15  A single loop of wire is rotated within a magnetic field, 
B, as shown below.

A

B C

D
θ = 0°

A
B

C

D θ = 90°

C B

AD
θ = 180°

(a) (b) (c)

A

B C

D
θ = 360°

A

B

C
D

θ = 270°

(d) (e)

While the coil is rotating, an emf will be generated as 
a result of which sides of the coil? Give a reason for 
your answer. 

The following information relates to questions 16–19.
A wind turbine runs a 150 kW generator with an 
output voltage of 1000 V. The voltage is increased by a 
transformer T1 to 10 000 V for transmission to a town 
5 km away through power lines with a total resistance 
of 2 Ω. Another transformer, T2, at the town reduces the 
voltage to 250 V. Assume that there is no power loss in 
the transformers (i.e. they are ‘ideal’).

T1 T2

5 km

Total resistance = 2 Ω

16  What is the current in the power lines? 

17  What is the voltage at the input to the town 
transformer T2?

18  How much power is lost in the power lines?

19  It is suggested that some money could be saved 
from the scheme by removing the first transformer. 
Explain, using appropriate calculations, whether this 
is a good plan.

20  A coil is rotated about its vertical axis such that the 
left-hand side would be coming out of the page and 
the right-hand side would be going into it. A magnetic 
field runs from right to left across the page. In what 
direction would the induced current in the coil flow? 

B

Chapter review continued
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How are fields used to move electrical energy?
The following information relates to questions 1–4.
A rectangular loop of 100 turns is suspended in a 
magnetic field B = 0.50 T. The plane of the loop is 
parallel to the direction of the field. The dimensions of 
the loop are 20 cm perpendicular to the field lines and 
10 cm parallel to them.

1 What amount of flux threads the loop in the position 
described above?

2 How can the amount of flux threading the loop be 
increased?

3 How should the plane of the loop and the magnetic 
field direction be arranged so the maximum possible 
flux threads the loop?

4 Calculate the maximum possible flux as described in 
Question 3.

The following information relates to questions 5–11.
A square conducting loop with sides 20 cm and resistance 
0.50 Ω is moving with a constant horizontal velocity of 
5.0 cm s−1 towards a region of uniform magnetic field of 
strength 0.40 T directed vertically downwards, as shown in 
the following diagram. The magnetic field is confined to a 
cubic region of side 30 cm.

B = 0.40 T

v = 5.0 cm s–1

X Y

5 Describe the direction of the induced current in the 
side XY of the loop just as it begins to enter the field. 
Justify your answer.

6 Calculate the average emf induced in the loop when 
it is halfway into the field.

7 What current flows in the loop when it is halfway into 
the field?

8 How much electrical power is consumed in the loop 
when it is halfway into the field?

9 What is the source of this power?

10 What is the average emf induced in the loop 5 s after 
it started to enter the cube? Justify your answer.

11 What is the direction of the induced current in the side 
XY just as it begins to emerge from the field? Justify 
your answer.

The following information relates to questions 12–16.
A rectangular conducting loop of dimensions 
100 mm × 50 mm and resistance R = 2.0 Ω, is located 
with its plane perpendicular to a uniform magnetic field 
of strength B = 1.0 mT.

12 Calculate the magnitude of the magnetic flux ΦB 
threading the loop.

13 The loop is rotated through an angle of 90° about 
an axis, so that its plane is now parallel to B. 
Determine the magnetic flux ΦB threading the loop 
in the new position.

14 The time interval for the rotation Δt = 2.0 ms. 
Determine the average emf induced in the loop.

15 Determine the value of the average current induced 
in the loop during the rotation.

16 Will the current keep flowing once the rotation is 
complete and the loop is stationary? Explain your 
answer.

The following information relates to questions 17–18.
A 5.0 Ω coil, of 100 turns and radius 3.0 cm, is placed 
between the poles of a magnet so that the flux is a 
maximum through its area. The coil is connected to a 
sensitive current meter that has an internal resistance of 
595 Ω. It is then moved out of the field of the magnet and 
it is found that an average current of 50 μA flows for 2 s.

17 Had the coil been moved out more quickly so that it 
was removed in only 0.5 s, what would have been the 
average current?

18 What is the strength of the magnetic field?
The following information relates to questions 19–21.
A physics student constructs a simple generator consisting 
of a coil of 400 turns. The coil is mounted on an axis 
perpendicular to a uniform magnetic field of strength 
B = 50 mT and rotated at a frequency f = 100 Hz. It is 
found that during the rotation, the peak voltage produced 
is 0.9 V.

19 Sketch a graph showing the voltage output of the 
generator for at least two full rotations of the coil. 
Include a scale on the time and voltage axes.

20 What is the RMS voltage generated?

21 The student now rotates the coil with a frequency 
f = 200 Hz. How would your answers to questions 19 
and 20 be affected?
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The following information relates to questions 22–26.
A generator is rotating at a rate of 3000 revolutions per 
minute. The magnetic field strength is 0.50 T. The total 
number of turns in the armature coils is N = 200, each of 
area A = 100 cm2.

22 Calculate the frequency of rotation of the generator.

23 Calculate the average emf generated during a quarter 
revolution of the generator coil.

The following graphs A–D and table apply to questions 
24–26.

A

B

C

D

f(Hz) B(T) N A(cm2)

A 50 0.50 200 100

B 100 0.50 200 100

C 100 1.00 50 100

D 50 0.50 400 100

24 Which of the diagrams A–D best describes the display 
on the CRO when the generator is operating at a 
frequency of 100 Hz?

25 Which of the specifications in the table could produce 
a CRO display described by diagram A? 

26 Which of the specifications in the table could produce 
a CRO display illustrated by diagram C?

The following information relates to questions 27–31.
The following diagram shows the voltage–time graph 
and corresponding current–time graph for an alternator 
that was built by a physics student as part of a 
research project.

V (V)
10.0

5.0

0

–5.0

–10.0

1.0 2.0 3.0 4.0 t (ms)

I (A)

1.0

–1.0

1.0 2.0 3.0 4.0 t (ms)

f(Hz) B(T) N A(cm2)

A 50 0.50 200 100

B 100 0.50 200 100

C 100 1.00 50 100

D 50 0.50 400 100

27 What is the frequency of the voltage produced by the 
alternator?

28 What is the peak-to-peak output voltage of this 
alternator?

29 What is the rms output voltage of the alternator?

30 Calculate the rms output current of the alternator.

31 Calculate the rms output power of the alternator.

32 What feature distinguishes an alternator from a DC 
generator?

33 How does an alternator operate?
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The following information relates to questions 34–38.
An ideal transformer is operating with peak input voltage 
of 600 V and an rms primary current of 2.0 A. The peak 
output voltage is 3000 V. There are 1000 turns in the 
secondary winding.

34 What is the rms output current?

35 What is the output peak-to-peak voltage?

36 How many turns are there in the primary winding?

37 Determine the RMS power consumed in the 
secondary circuit.

38 Calculate the peak power consumed in the 
secondary circuit.

39 Which of the following is the best description of how 
a transformer transfers electrical energy from the 
primary windings to the secondary windings?
A The current through the primary windings produces 

a constant electric field in the secondary windings.
B The current through the primary windings produces 

a steady magnetic field in the secondary windings.
C The current through the primary windings produces 

a changing magnetic field in the secondary 
windings.

40 When a transformer is plugged in to the 240 V mains 
but nothing is connected to the secondary coil, very 
little power is used. What is the best explanation 
for this?
A The primary and secondary coils are in series and 

so no current can flow in either if the secondary coil 
is open.

B There can be no magnetic flux generated in the 
transformer if the secondary coil has no current in it.

C The magnetic flux generated by the current in 
the primary produces an emf that opposes the 
applied voltage.

D The magnetic flux generated by the secondary coil 
almost balances out that due to the primary coil.

The following information relates to questions 41–50.
A farmer has installed a wind generator on a nearby hill, 
along with a power line consisting of two cables with a 
combined total resistance of 2.0 Ω. The output of the 
generator is given as 250 V AC (RMS) with a maximum 
power of 4000 W. She connects up the system and 
finds that the voltage at the house is indeed 250 V. 
However, when she turns on various appliances so that 
the generator is running at its maximum power output of 
4000 W, she finds that the voltage supplied at the house 
is rather low.

41 Explain why the voltage dropped when the farmer 
turned on the appliances in the house. 

42 Calculate the voltage and power at the house when 
the appliances are turned on.

She then decides to install ideal transformers at either 
end of the same power line so that the voltage transmitted 
from the generator end of the line in this system becomes 
5000 V.

43 Describe the essential features of the types of 
transformers that are needed at either end of the 
power line.

For Questions 44–47, assume the generator is operating at 
full load, i.e. 4000 W. 

44 What is the current in the power line now when the 
same appliances are turned on?

45 What is the voltage drop along the power line?

46 What is the power loss in the power line?

47 What voltage is delivered to the house?

48 What power is delivered to the house?

49 How do the power losses in the system without 
the transformers compare to the system with the 
transformers as a percentage of the power generated?

50 Explain why the system operated with much lower 
power losses when the voltage was transmitted at the 
higher voltage.





CHAPTER

An understanding of forces and fields has allowed humans to land on the Moon and 
to explore the outer reaches of the solar system. Satellites in orbit around the Earth 
have changed the way people live. 

These advances have been achieved using Newton’s laws of motion, which were 
published in the 17th century. Newton suggested that it should be possible to 
put satellites in orbit around the Earth almost 300 years before it was technically 
possible to do so. While relativistic corrections introduced by Einstein are important 
in a limited number of contexts, Newton’s description of gravitation and the laws 
governing motion are accurate enough for most practical purposes.

In this chapter Newton’s laws will be used to analyse motion when two or more 
forces act on a body and how projectiles travel in the Earth’s gravitational field. 
How forces keep objects travelling in a circular path will also be covered.

Key knowledge
By the end of this chapter, you will have covered material from the study of 
Newton’s laws including how to:

• investigate and apply theoretically and practically Newton’s three laws of motion 
in situations where two or more coplanar forces act along a straight line and in 
two dimensions 

• investigate and analyse theoretically and practically the uniform circular motion 
of an object moving in a horizontal plane: Fnet = mv2

r , including: 
 - a vehicle moving around a circular road 
 - a vehicle moving around a banked track 
 - an object on the end of a string 

• model natural and artificial satellite motion as uniform circular motion 
• investigate and apply theoretically Newton’s second law to circular motion in a 

vertical plane (forces at the highest and lowest positions only) 
• investigate and analyse theoretically and practically the motion of projectiles near 

Earth’s surface, including a qualitative description of the effects of air resistance 
• investigate and apply theoretically and practically the laws of energy and 

momentum conservation in isolated systems in one dimension. 

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Newtonian theories  
of motion



AREA OF STUDY 3   |   HOW FAST CAN THINGS GO?148

5.1 Newton’s laws of motion 
On 14 July 2015, NASA’s New Horizon’s spacecraft (shown in Figure 5.1.1) sped 
past Pluto and sent back images to Earth that appeared on news broadcasts across 
the world. The trip had taken nine and a half years, and set the record for the fastest 
launch of a man-made object from Earth. The principles of physics on which this 
mission depended were published by Isaac Newton in 1687 in a set of laws that 
radically challenged the understanding of his time. 

Newton’s laws are, in fact, only an approximation and are superseded by 
Einstein’s relativistic theories. In situations involving extremely high speeds (greater 
than 10% of the speed of light) or strong gravitational fields, Newton’s laws become 
imprecise, and Einstein’s theories must be used instead. However, Newton’s laws 
are not obsolete. For the most part, Newton’s laws remain invaluable for describing 
the motion of objects as diverse as planets and ping-pong balls.

NEWTON’S THREE LAWS OF MOTION 
Newton’s laws describe how forces can be used to explain the motion of bodies. 
The first law describes what happens to a body when there is no net force on it. The 
second law explains motion when there is an unbalanced force acting, and the third 
states that all forces act in action–reaction pairs.

Newton’s first law 
Newton’s first law states that every object continues to be at rest, or continues 
with  constant velocity, unless it experiences an unbalanced force. This is also 
called  the law of inertia. An object that is moving at constant velocity will keep 
moving. This is seldom observed in everyday life due to the presence of forces such 
as friction and air resistance which will eventually slow the motion of the object. 
To maintain constant motion, frictional forces must be balanced with some other 
force. For example, an object can keep moving at a constant velocity if it is driven 
by a motor. 

An object that is stationary will remain stationary while the forces acting on it 
are balanced. For example, an object will fall due to the force of gravity, but will 
remain at rest when this force is balanced by the normal reaction force applied by 
a table. 

FIGURE 5.1.1 Artwork representing New 
Horizon’s path to Pluto, flying past Jupiter 
on the way.
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Newton’s second law 
Newton’s second law states that the acceleration of a body experiencing an 
unbalanced force is directly proportional to the net force acting on it and inversely 
proportional to the mass of the body:

Fnet = ma

In other words, an object will accelerate at a greater rate when the force acting on 
it is increased; bigger forces mean greater acceleration. Heavy objects are harder to 
accelerate than lighter ones. So the rate of acceleration decreases for larger masses.

The net or resultant force, Fnet , is measured in newtons (N), when the mass 
is measured in kilograms (kg) and the acceleration, a, is measured in metres per 
second squared (m s–2).

Newton’s third law 
Newton’s third law states that when one body exerts a force on another body (an 
action force), the second body exerts an equal force in the opposite direction on the 
first (the reaction force):

Fon A by B = –Fon B by A

To simplify the notation, this text will use the convention 
FAB = Fon A by B

Hence the first subscript always shows the body experiencing the force.
It is important to note that action–reaction pairs can never be added together, 

because they act on different bodies (see Figure 5.1.2). The forces in an action–
reaction pair:
• are the same magnitude (size)
• act in opposite directions and 
• are exerted on two different objects. 

(a) (b)

FIGURE 5.1.2 Figure (a) shows an action–reaction pair. The hand pulls on the spring and the spring 
pulls back on the hand with an equal and opposite force. Figure (b) does not show an action–reaction 
pair. This is because the force due to gravity and the normal reaction force both act on the same 
object, the basketball.

While the force is the same size on both objects, the resulting acceleration may 
not be. That’s because the rate of acceleration depends on the mass of the objects 
concerned (from Newton’s second law). Sometimes, when the objects have very 
different masses, the effect of one force in the pair is much more noticeable. For 
example, if you stub your toe on a large, heavy rock, the force exerted on your toe 
by the rock causes your foot to decelerate significantly. The equal and opposite 
force exerted by your toe on the rock, does not cause significant acceleration of the 
rock, because of its much greater mass. 
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Worked example 5.1.1

APPLICATION OF NEWTON’S FIRST AND THIRD LAWS 

A toddler drags his 4.5 kg cart of blocks across a floor at a constant speed of 
0.75 m s–1. The force of friction between the cart and the floor is 5.0 N, and it is 
being pulled by a handle which is at an angle of 35° above the horizontal. 

a  Calculate the net force on the cart.

Thinking Working

The cart has constant velocity. 
According to Newton’s first law, the net 
force acting on the cart must be zero.

Fc net = 0 N

b  Calculate the force that the toddler exerts on the cart.

Thinking Working

Draw a diagram.

FCT

FCTx
FCF

35°

If the net force is zero then the 
horizontal forces must be in balance. 
Therefore, the horizontal component 
of the force on the cart by the toddler, 
FCTx, is equal to the magnitude of the 
frictional force, FCF.

FCTx = FCT cos 35° = FCF

FCT cos 35° = 5.0 N

FCT = 
5.0

cos 35°  = 6.1 N

c  Determine the force that the cart exerts on the toddler.

Thinking Working

Apply Newton’s third law to find the 
force on the toddler by the cart.

According to Newton’s third law, the 
force on the cart by the toddler is 
equal and opposite to the force on 
the toddler by the cart.

FCT = −FTC

Since the force on the cart is at an 
angle of 35° above the horizontal, 
the force of the cart on the toddler 
is 6.1 N at an angle of 35° below 
the horizontal.

Worked example: Try yourself 5.1.1

APPLICATION OF NEWTON’S FIRST AND THIRD LAWS 

The toddler adds extra blocks to the cart and drags it across the floor more slowly. 
The 5.5 kg cart travels at a constant speed of 0.65 m s–1. The force of friction 
between the cart and the floor is 5.2 N and the handle is now at an angle of 30° 
above the horizontal. 

a  Calculate the net force on the cart.

b  Calculate the force that the toddler exerts on the cart.

c  Calculate the force that the cart exerts on the toddler.

PHYSICSFILE

Tethered spacewalks
When stationed on the International 
Space Station (ISS), astronauts 
are often required to conduct 
spacewalks—that is, they need 
to complete tasks outside of their 
spacecraft. During spacewalks, 
astronauts are tethered (attached) 
to their vehicles. If they weren’t they 
would float off into space (remember 
Newton’s first law of motion!). All of the 
astronaut’s tools are attached to their 
spacesuits, otherwise, they too would 
float off into space. If an astronaut were 
to become accidentally untethered, it 
could be a disaster. Without a surface 
to push against, the astronaut would 
float off into space without the ability 
to return to the spacecraft. As a safety 
precaution, every astronaut is fitted 
with a small jet pack that they can fire 
to propel and manoeuvre them back 
to their vehicle. The jet pack propels 
the astronaut forward when it is fired 
backwards (remember Newton’s third 
law of motion!).
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Applying Newton’s first or second laws 
When solving motion problems, a key strategy is to determine whether Newton’s 
first or second law should be applied. In the following examples the objects in the 
questions are accelerating, hence the second law should be used, and the net force 
is proportional to the acceleration. In problems involving connected bodies, both 
the whole system and each component of the system have the same acceleration. 

Worked example 5.1.2

APPLICATION OF NEWTON’S LAWS 

A vehicle towing a caravan accelerates at 1.8 m s–2 in order to overtake a car in 
front. The vehicle’s mass is 2700 kg and the caravan’s mass is 2000 kg. The drag 
forces on the vehicle are 1100 N, while the drag forces on the caravan are 1500 N. 

a  Calculate the thrust of the engine.

Thinking Working

Draw a sketch showing all 
forces acting.

caravan
m = 2000 kg

vehicle 
m = 2700 kg

FC drag FC tension

FV tension FV thrust = ?

FV drag

1500 N 1100 N

a = 1.8 m s–2

Since there is an 
acceleration, Newton’s 
second law may be 
applied to the whole 
system.

Note that the caravan 
and vehicle are joined by 
the coupling and so the 
tension forces are not 
included at this stage. 
Consider the system as 
a whole.

Fsystem = msystema

FV thrust − FV drag − FC drag = (mC + mV) a

FV thrust − 1100 − 1500 = (2000 + 2700) × 1.8

FV thrust = 1.1 × 104 N in the direction of motion

b  Calculate the magnitude of the tension in the coupling.

Thinking Working

Consider only one 
part of the system, for 
example the caravan, 
once again applying 
Newton’s second law.

FC net = mCa

FC tension − FC drag = mCa

FC tension = 2000 × 1.8 + 1500

= 5.1 × 103 N

Worked example: Try yourself 5.1.2

APPLICATION OF NEWTON’S LAWS

A vehicle towing a trailer accelerates at 2.8 m s–2 in order to overtake a car in front. 
The vehicle’s mass is 2700 kg and the trailer’s mass is 600 kg. The drag forces on 
the vehicle are 1100 N, and the drag forces on the caravan are 500 N. 

a  Calculate the thrust of the engine.

b  Calculate the magnitude of the tension in the coupling.
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THE NORMAL FORCE 
One reaction force deserves a special mention. When an object exerts a force on 
a surface, the surface exerts a reaction force on the object that is normal (at right 
angles) to the surface.

For example, the block in Figure 5.1.3(a) exerts a force on the surface because it 
is attracted towards the centre of the Earth by gravity. The surface exerts a normal 
reaction force on the block. The weight Fg is thus balanced by FN as shown in the 
figure. There is no net force on the block, and so Newton’s first law applies and the 
object remains stationary.

On an inclined plane, FN is at an angle to Fg . There is a net force down the 
slope and the block accelerates as predicted by Newton’s second law.

Another way of viewing the forces along the inclined plane is to resolve the weight 
vector into two components: one perpendicular (at right angles) to the slope, and 
one parallel to the slope as shown in Figure 5.1.4. The component perpendicular 
to the surface is balanced by the normal force FN . The component of the weight 
directed along the slope is the force that actually causes the acceleration.

Worked example 5.1.3

INCLINED PLANES 

A skier of mass 50 kg is skiing down an icy slope that is inclined at 20° to the 
horizontal. Assume that friction is negligible and that the acceleration due to 
gravity is 9.8 m s–2. 

g = 9.8 m s–2

acceleration

20° Fg = 490 N

FN

a   Determine the components of the weight of the skier perpendicular to the 
slope and parallel to the slope. 

Thinking Working

Draw a sketch including the values 
provided.

Fg cos 20°

Fg sin 20°

Fg 20°

20°

Resolve the weight into a component 
perpendicular to the slope.

The perpendicular component is:

F⊥ = Fg cos 20°

= 490 cos 20°

= 460 N

Resolve the weight into a component 
parallel to the slope.

The parallel component is 

F = Fg sin 20°

= 490 sin 20°

= 168 N

Fnet = Fg + FN
 = 0

Fnet = Fg + FN

Fnet

θ

θ

FN

FN

FN

FN

Fg

Fg

Fg

Fg

body remains
at rest

(a)

(b)

FIGURE 5.1.3 (a) Block on level surface: the net 
force is zero as FN and Fg cancel. (b) Block on 
incline: FN = Fg cos θ, and the net force is given 
by Fnet = Fg + FN added as vectors.

FN = Fg cos θ

Fg cos θ

Fg sin θ = Fnet

Fg

θ

θ

FIGURE 5.1.4 Block on an incline: the weight 
force can be resolved into a force perpendicular 
to the surface and a force parallel to the surface.
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b  Determine the normal force that acts on the skier.

Thinking Working

The normal force is equal in 
magnitude to the perpendicular 
component of the weight force.

FN = 460 N

c  Calculate the acceleration of the skier down the slope.

Thinking Working

Apply Newton’s second law.

The net force along the plane is the 
component of the weight parallel to 
the slope.

a = 
Fnet

m

= 
168
50

= 3.36 m s–2 down the slope

Worked example: Try yourself 5.1.3

INCLINED PLANES 

A much heavier skier of mass 85 kg travels down the same icy slope inclined at 
20° to the horizontal. Assume that friction is negligible and that the acceleration 
due to gravity is 9.8 m s–2.

a   Determine the components of the weight of the skier perpendicular to the 
slope and parallel to the slope. 

b  Determine the normal force that acts on the skier.

c  Calculate the acceleration of the skier down the slope.

Aside from rounding differences, the acceleration calculated in the Worked 
example and Try yourself questions above were equal. That’s because acceleration 
is independent of the mass of the object. This is because:

a = 
Fnet

m  = 
mg sin θ

m  = g sin θ

STRATEGIES FOR SOLVING FORCE AND MOTION 
PROBLEMS 
Where forces on a body are given, Newton’s laws can be applied. 

Two questions can be asked:
1 Is the object described as stationary or travelling at constant velocity? In this 

case Fnet = 0.
2 Is the object accelerating? In this case, Fnet = ma.

When dealing with connected bodies, consider the whole system first, and then 
consider the separate parts of the system.

For coplanar forces that are not aligned, resolve forces into components.
Newton’s second law can be used to find the acceleration of an object, after which 

the other equations of motion may be used to find quantities such as displacement 
and final velocity.
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5.1 Review
SUMMARY

• Newton’s first law states that every object 
continues to be at rest, or continues with constant 
velocity, unless it experiences an unbalanced 
force. This is also called the law of inertia.

• Newton’s second law states that the acceleration 
of a body experiencing an unbalanced force is 
directly proportional to the net force and inversely 
proportional to the mass of the body: Fnet = ma. 

• Newton’s third law states that when one body 
exerts a force on another body (an action force), 
the second body exerts an equal force in the 
opposite direction on the first (the reaction force): 
FAB = −FBA .

• The forces in an action–reaction pair are the same 
magnitude, act in opposite directions and are 
exerted on two different objects. 

• A normal reaction force, FN , acts between an 
object and a surface, at right angles to the surface. 

 - On a horizontal surface, FN = Fg and the object 
is stationary.

 - On an inclined surface, FN is equal and opposite 
to the component of the weight force acting 
perpendicular to the plane: FN = Fg cos θ.

• The net force acting on an object on a plane 
inclined at an angle θ is: Fnet = Fg sin θ when 
friction is negligible.

KEY QUESTIONS

1  Phil is standing inside a tram when it starts off 
suddenly. Len, who was sitting down, commented 
that Phil was ‘thrown backwards’ as the tram started 
moving. Is this a correct statement? Explain in terms 
of Newton’s laws.

2  A table-tennis ball of mass 10 g is falling towards the 
ground with a constant speed of 8.2 m s–1. Calculate 
the magnitude and direction of the air resistance force 
acting on the ball.

3  Ishtar is riding a motorised scooter along a level bike 
path. The combined mass of Ishtar and her scooter is 
80 kg. The frictional and drag forces that are acting 
total to 45 N. What is the magnitude of the driving 
force being provided by the motor if she is:
a moving with a constant speed of 10 m s–1

b accelerating at 1.5 m s–2?

4  A cyclist and his bike have a combined mass of 
80 kg. When starting off from traffic lights, the 
cyclist accelerates uniformly and reaches a speed 
of 7.5 m s–1 in 5.0 s.
a  What is the acceleration during this time?
b  Calculate the driving force being provided by the 

cyclist’s legs as he starts off. Assume that drag 
forces are negligible during this time.

c  The cyclist now rides along with a constant speed 
of 15 m s–1. Assuming that the force being provided 
by his legs is now 60 N, determine the magnitude 
of the drag forces that are acting.

5  During preseason football training, Matt was required 
to run with a bag of sand dragging behind him. The 
bag of mass 50 kg was attached to a rope, which 
made an angle of 25° to the horizontal. When Matt ran 
with a constant speed of 4.0 m s–1, a frictional force of 
60 N was acting on the bag.
a  What was the net force acting on the bag of sand?
b  Calculate the size of the tension force acting in 

the rope.
c  What was the magnitude of the force that the rope 

exerted on Matt as he ran?

6  Complete each of these force diagrams, showing the 
reaction pair to the action force that is shown. For 
each force that you draw, state what the force is acting 
on and what is providing the force.

F

Ff

FN

Fg

(c) (d)

(a) (b)
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5.1 Review
7  A block on the table is accelerated by a falling weight 

as shown in the figure below. Calculate the tension in 
the cord if the block experiences a frictional force of 
1.5 N as it slides on the table. 

2.0 kg

0.5 kg

8  A 2000 kg tractor tows a 250 kg tree stump along 
a level surface with an acceleration of 1.5 m s–2. 
The frictional drag on the tractor is 600 N and the 
drag on the tree is 1025 N. 
a  Calculate the thrust required by the tractor engine. 
b  The breaking strength of the towrope is 1500 N. 

Complete a calculation to determine whether or 
not the rope will break. 

9  Kirsty is riding in a bobsled that is sliding down a 
snow-covered hill with a slope of 30° to the horizontal. 
The total mass of the sled and Kirsty is 100 kg. Initially 
the brakes are on and the sled moves down the hill 
with a constant velocity.

30°F

A

C

D

E

B

a  Which one of the arrows (A–F) best represents the 
direction of the frictional force acting on the sled?

b  Which one of the arrows (A–F) best represents the 
direction of the normal force acting on the sled?

c  Calculate the net frictional force acting on the sled.
d  Kirsty then releases the brakes and the sled 

accelerates. What is the magnitude of her initial 
acceleration?

e  Finally, Kirsty rides the bobsled down the same 
slope but with the brakes off, so friction can be 
ignored. It now has an extra passenger so that its 
total mass is now 140 kg. How will this affect the 
acceleration of the bobsled?

10  Which of the following statements describe the forces 
acting on an object on a stationary level surface? 
(More than one correct answer is possible.)
A  The normal force is always perpendicular to 

the surface.
B  The normal force is always equal in magnitude 

to the weight.
C  The normal force and the weight are action–

reaction pairs.
D  The normal force and the weight cancel out.

11  Which of the following statements describes the 
forces acting on an object on a plane inclined at 
an angle θ?
A  The normal force is always perpendicular to 

the surface.
B  The normal force is equal in magnitude to 

the weight.
C  The normal force and the weight cancel out.
D  In the absence of friction, a component of the 

normal force causes the object to accelerate 
down the slope.
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5.2 Circular motion in a 
horizontal plane
Circular motion is common throughout the universe. On a small scale, this could 
involve children moving in a circular path on a fair ride (see Figure 5.2.1) or 
passengers in a car as it travels around a roundabout. In athletics, hammer throwers 
swing the hammer in a circular path before releasing it at high speed. On a much 
larger scale, the planets orbit the Sun in roughly circular paths; and on an even 
grander scale, stars can travel in circular paths around the centres of their galaxies. 
This section explains the nature of circular motion in a horizontal plane, and applies 
Newton’s first and second laws to different circular-motion problems.

FIGURE 5.2.1 The people on this ride are travelling in a circular path at high speed.

UNIFORM CIRCULAR MOTION 
Figure 5.2.2 shows an athlete in a hammer throw event, swinging a steel ball in a 
horizontal circle with a constant speed of 25 m s–1. As the hammer travels in its 
circular path, its speed is constant, but its velocity is continually changing.

Remember that velocity is a vector. Since the direction of the hammer is 
changing, so too is its velocity, even though its speed is not changing. 

The velocity of the hammer at any instant is tangential (at a tangent) to its 
path. At one instant, the hammer is travelling at 25 m s–1 north, then an instant later 
at 25 m s–1 west, then 25 m s–1 south, and so on.

PERIOD AND FREQUENCY 
Imagine that an object is moving in a circular path with a constant speed, v, and 
a radius of r metres, and it takes T seconds to complete one revolution. The time 
required to travel once around the circle is called the period, T, of the motion. The 
number of rotations each second is the frequency, f. 

f = 1
T

 and T = 1
f

where f is the frequency (Hz)

 T is the period (s)

N

W E
S

C

25 m s–1

25 m s–1

25 m s–1

B

A

25 m s–1

FIGURE 5.2.2 The velocity of the hammer (steel 
ball) at any instant is tangential to its path and 
is continually changing even though it has 
constant speed. This changing velocity means 
that the hammer is accelerating.
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SPEED 
An object that travels in a circle will travel a distance equal to the circumference of 
the circle, C = 2πr, with each revolution (see Figure 5.2.3). Given that the time for 
each revolution is the period, T, the average speed of the object is: 

speed = 
distance

time  = circumference
period

In circular motion, this equation is represented as follows.

The average speed of an object moving in a circular path is:

v = 2πr
T

where v is the speed (m s–1)

	 r is the radius of the circle (m)

 T is the period of motion (s)

PHYSICSFILE

Wind generators 
The wind generator in Figure 5.2.4 is part of a wind farm at Macarthur in south-west  
Victoria. This is the largest wind farm in Australia and consists of 140 turbines. 
The towers are 85 m high. Each blade is 55 m long and they rotate at a maximum 
rate of 20 revolutions per minute. From this information, you should be able to 
calculate that the tip of each blade is travelling at around 400 km h–1!

FIGURE 5.2.4 The tips of these wind-generator blades are travelling in circular paths at speeds 
of around 400 km h–1.

r

distance = 2πr v

FIGURE 5.2.3 The average speed of an 
object moving in a circular path is given 
by the distance travelled in one revolution 
(the circumference) divided by the time 
taken (the period, T ).
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Worked example 5.2.1

CALCULATING SPEED

A wind turbine has blades 55.0 m in length that rotate at a frequency of 
20 revolutions per minute. At what speed do the tips of the blades travel? 
Express your answer in km h–1.

Thinking Working

Calculate the period, T. Remember 
to express frequency in the correct 
units. 

Alternatively, recognise that 
20 revolutions in 60 s means that 
each revolution takes 3 s.

20 revolutions per minute = 
20
60 = 0.333 Hz

T = 
1
f

= 
1

0.333  = 3 s

Substitute r and T into the formula 
for speed and solve for v.

v = 
2πr
T

= 
2 × π  × 55.0

3

= 115.2 m s–1

Convert m s–1 into km h–1 by 
multiplying by 3.6.

115.2 × 3.6 = 415 km h–1

Worked Example: Try yourself 5.2.1

CALCULATING SPEED

A water wheel has blades 2.0 m in length that rotate at a frequency of 
10 revolutions per minute. At what speed do the tips of the blades travel? 
Express your answer in km h–1.

CENTRIPETAL ACCELERATION 
When objects travel in circular paths, they can have a constant speed, yet at the 
same time have a velocity that is changing. This seeming contradiction arises 
because speed is a scalar quantity whereas velocity is a vector. 

Since the velocity of the object is changing, it is accelerating even though its 
speed is not changing. The object is continually deviating inwards from its straight-
line direction and so has an acceleration towards the centre. This acceleration is 
known as centripetal acceleration, a. In Figure 5.2.5, the velocity vector of an 
object travelling in a circular path is shown with an arrow labelled v. Notice how it 
is at a tangent to the circular path. The acceleration, a, is towards the centre of the 
circular path. 

However, as Figure 5.2.5 shows, even though the object is accelerating towards 
the centre of the circle, it never gets any closer to the centre. This is the same 
principle that applies to satellites in orbit, which were studied in Chapter 3.

The centripetal acceleration, a, of an object moving in a circular path of radius 
r with a velocity v can be found from the relationship:

a = 
v2

r
A substitution can be made for the speed of the object in this equation.

v = 2πr
T

so

 a = 
v2

r

 = (2πr
T )2

 × 
1
r

 = 4π2r
T2

C a

a

v

v

v

v

a

a

N

W E
S

FIGURE 5.2.5 A body moving in a circular 
path has an acceleration towards the centre 
of the circle. This is known as a centripetal 
acceleration.
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Centripetal acceleration is always directed towards the centre of the circular 
path and is given by:

a = v
2

r
 = 4π

2r
T2

where a is the centripetal acceleration (m s–2)

 v is the speed (m s–1)

	 r is the radius of the circle (m)

 T is the period of motion (s)

FORCES THAT CAUSE CIRCULAR MOTION 
As with all forms of motion, an analysis of the forces that are acting is needed 
to understand why circular motion occurs. In the hammer-throw event described 
earlier in this section, the hammer ball is continually accelerating. It follows from 
Newton’s second law that there must be a net unbalanced force continuously acting 
on it. The net unbalanced force that gives the hammer ball its acceleration towards 
the centre of the circle is known as a centripetal force.

In every case of circular motion, a real force is necessary to provide the centripetal 
force. The force acts in the same direction as the acceleration, that is, towards the 
centre of the circle. This centripetal force can be provided in a number of ways. For 
the hammer in Figure 5.2.6, the centripetal force is the tension force in the cable. 
Other examples of centripetal force are also shown in Figure 5.2.6.

Ft Fg
Ff

FN

(a) (b) (c) (d)

FIGURE 5.2.6 (a) In a hammer throw, tension in the cable provides the centripetal force. (b) For 
planets and satellites, the gravitational attraction to the central body provides the centripetal force. 
(c) For a car on a curved road, the friction between the tyres and the road provides the centripetal 
force. (d) For a person in the Gravitron ride, it is the normal force from the wall that provides the 
centripetal force. 

Now, consider the consequences if the unbalanced force ceases to act. In the 
example of the hammer thrower, if the tension in the wire became zero because 
the thrower released the ball, there is no longer a force causing the ball to change 
direction. The result is that the ball then moves in a straight line tangential to its 
circular path, as would be expected from Newton’s first law.

Centripetal force is given by:

Fnet = ma = mv2

r
 = 4π2rm

T2

where Fnet is the net or centripetal force on the object (N)

 m is the mass (kg)

 a is the acceleration (m s–2)

 v is the speed (m s–1)

 r is the radius of the circle (m)

 T is the period of motion (s)
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Worked example 5.2.2

CENTRIPETAL FORCES 

An athlete in a hammer throw event is swinging the ball of mass 7.0 kg in a 
horizontal circular path. The ball is moving at 20 m s–1 in a circle of radius 1.6 m.

a  Calculate the magnitude of the acceleration of the ball.

Thinking Working

As the object is moving in a circular 
path, the centripetal acceleration is 
towards the centre of the circle. To find 
the magnitude of this acceleration, 
write down the other variables that 
are given.

v = 20 m s–1

r = 1.6 m

a = ?

Find the equation for centripetal 
acceleration that fits the information 
you have, and substitute the values.

a = 
v2

r

= 
202

1.6

= 250 m s–2

Calculate the magnitude only, so no 
direction is needed in the answer.

The acceleration of the ball is 
250 m s–2.

b  Calculate the magnitude of the tensile (tension) force acting in the wire.

Thinking Working

Identify the unbalanced force that 
is causing the object to move in 
a circular path. Write down the 
information that you are given.

m = 7.0 kg

a = 250 m s–2

Fnet = ?

Select the equation for centripetal 
force, and substitute the variables 
you have.

Equation for centripetal forces:

Fnet = ma

= 7.0 × 250

= 1.8 × 103 N

Calculate the magnitude only, so no 
direction is needed in the answer.

The force of tension in the wire is the 
unbalanced force that is causing the 
ball to accelerate.

Tensile force FT
 = 1.8 × 103 N

Worked example: Try yourself 5.2.2

CENTRIPETAL FORCES 

An athlete in a hammer throw event is swinging the ball of mass 7.0 kg in a 
horizontal circular path. The ball is moving at 25 m s–1 in a circle of radius 1.2 m.

a  Calculate the magnitude of the acceleration of the ball.

b  Calculate the magnitude of the tensile force acting in the wire.
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PHYSICS IN ACTION

The Gravitron 
When a car turns sharply to the left, the passengers in 
the car seem to sway to the right inside the car. Many 
mistakenly think that a force to the right is acting. In 
fact, the passengers are simply maintaining their motion 
in the original direction of the car as described by 
Newton’s first law, that is, they are experiencing inertia. 
If the passengers are (unwisely) not wearing seatbelts, 
they will be squashed against the right-hand door as the 
car turns. This will exert a large force to the left on them, 
which causes them to move to the left.

People moving rapidly in circular paths also mistakenly 
think that there is an outward force acting on them. 
For example, riders on the Gravitron (also known as the 
Vortex or Rotor), like those in Figure 5.2.7, will ‘feel’ a 
force pushing them into the wall. This outwards force 
is commonly known as a centrifugal (meaning ‘centre-
fleeing’) force. This force does not actually exist in an 
inertial frame of reference. The riders think that it does this 
because they are in the rotating frame of reference. From 
outside the Gravitron, it is evident that there is an inwards 
force (the normal reaction force) that is holding them in 
a circular path. If the walls disintegrated and this normal 
force ceased to act, they would not ‘fly outwards’ but move 
at a tangent to their circle.

The Gravitron can rotate at 24 rpm and has a radius of 
7 m. The centripetal acceleration can be over 40 m s–2. 
This is caused by a very large centripetal force from the wall 
i.e. the normal force, FN, which is greater than the weight 
force, Fg. Since the wall exerts such a large force, the patrons 
are pinned firmly to the wall as an upwards frictional force, 
Ff, acts to hold them up. The floor then drops away. It is 
important to note that there is no outwards force acting. 
In fact, as you can see in Figure 5.2.8, these forces are 
unbalanced and the net force is equal in size and direction 
to the normal force towards the centre of the circle.

Ff

FN

Fg

FIGURE 5.2.8 The forces acting on the person are unbalanced. 
There is an unbalanced force from the wall, FN, giving the 
person a centripetal acceleration.

FIGURE 5.2.7 There is a large inwards force from the wall 
(a normal reaction force) that causes these children to travel 
in a circular path.

BALL ON A STRING 
You may have played Totem Tennis at one time. This is a game where a ball is 
attached to a pole by a string and can travel in a horizontal circle, although the 
string itself is not horizontal. This kind of motion is shown in Figure 5.2.9.

If the ball at the end of the string was swinging slowly, the string would swing 
down at an angle closer to the pole. If the ball was swung faster, the string would 
become closer to being horizontal. In fact, it is not possible for the string to be 
absolutely horizontal, although as the speed increases, the closer to horizontal it 
becomes. This system is known as a conical pendulum.

If the angle of the conical pendulum is known, trigonometry can be used to find 
the radius of the circle and the forces involved.

st
rin

g

X

C

r

FIGURE 5.2.9  This ball is travelling in a 
horizontal circular path of radius r. The centre 
of its circular motion is at C.
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Worked example 5.2.3

OBJECT ON THE END OF A STRING

During a game of Totem Tennis, the ball of mass 150 g is swinging freely in a 
horizontal circular path. The cord is 1.50 m long and is at an angle of 60.0° to 
the vertical, as shown in the diagram.

1.50 m60.0˚

a  Calculate the radius of the ball’s circular path.

Thinking Working

The centre of the circular path is 
not the top end of the cord, but is 
where the pole is level with the ball. 
Use trigonometry to find the radius.

r = 1.50 sin 60.0° = 1.30 m

b   Draw and identify the forces that are acting on the ball at the instant shown 
in the diagram.

Thinking Working

There are two forces acting—the 
tension in the cord, Ft , and gravity, 
Fg . These forces are unbalanced.

Ft

Fg

c  Determine the net force that is acting on the ball at this time.

Thinking Working 

First calculate the weight force, Fg . Fg = mg

= 0.150 × 9.8

= 1.47 N

The ball has an acceleration that 
is towards the centre of its circular 
path. This is horizontal and towards 
the left at this instant. The net 
force will also lie in this direction 
at this instant. A force triangle and 
trigonometry can be used here.

60.0˚
Ft = ?

Fg = 1.47 N

Fnet = ?

Fnet = 1.47 tan 60.0° 

= 2.55 N towards the left

d  Calculate the size of the tensile force in the cord.

Thinking Working 

Use trigonometry to find Ft . Ft = 
1.47

cos 60.0°

= 2.94 N 
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Worked example: Try yourself 5.2.3

OBJECT ON THE END OF A STRING

During a game of Totem Tennis, the ball of mass 200 g is swinging freely in a 
horizontal circular path. The cord is 2.00 m long and is at an angle of 50.0° to 
the vertical, as shown in the diagram.

2.00 m

50.0˚

a  Calculate the radius of the ball’s circular path.

b   Draw and identify the forces that are acting on the ball at the instant shown 
in the diagram.

c  Determine the net force that is acting on the ball at this time.

d  Calculate the size of the tensile force in the cord.

5.2 Review
SUMMARY

• Frequency, f, is the number of revolutions each 
second and is measured in hertz (Hz). 

• Period, T, is the time for one revolution and is 
measured in seconds.

• The relationship between T and f is: 

f = 
1
T  and T = 

1
f

• An object moving with a uniform speed in a 
circular path of radius, r, and with a period, T, 
has an average speed that is given by: 

v = 
2πr
T

• The velocity of an object moving (with a constant 
speed) in a circular path is continually changing. 
The velocity vector is always directed at a tangent 
to the circular path.

• An object moving in a circular path (with a 
constant speed) has an acceleration due to its 
circular motion. This acceleration is directed 
towards the centre of the circular path and is 
called centripetal acceleration, a: 

a = 
v2

r  = 
4π2r
T2

• Centripetal acceleration is a consequence of a 
centripetal force acting to make an object move 
in a circular path.

• Centripetal forces are directed towards the 
centre of the circle and their magnitude can be 
calculated by using Newton’s second law:

Fnet = 
mv2

r  = 
4π2rm

T2

• Centripetal force is always supplied by a real force, 
the nature of which depends on the situation. 
The real force is commonly friction, gravitation 
or the tension in a string or cable.
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5.2 Review continued
KEY QUESTIONS

1  A car is travelling with a constant speed around a 
roundabout. What is the centripetal force that is 
causing this circular motion?
A  gravity
B  friction
C  drag
D  tension

2  A boy is swinging a yo-yo in a horizontal circle 5 times 
each second. What is the period of the yo-yo?

The following information applies to questions 3–7.
A car of mass 1200 kg is travelling on a roundabout in 
a circular path of radius 9.2 m. The car moves with a 
constant speed of 8.0 m s–1. The direction of the car is 
anticlockwise around the roundabout when viewed from 
above as shown.

9.2 m

N

S

EW

3  Which two of the following statements correctly 
describe the motion of the car as it travels around the 
roundabout? More than one answer is possible. 
A  It has a constant speed.
B  It has a constant velocity.
C  It has zero acceleration.
D  It has an acceleration that is directed towards the 

centre of the roundabout.

4  When the car is in the position shown in the diagram 
what is the:
a  speed of the car
b  velocity of the car
c  magnitude and direction of the acceleration of 

the car?

5  Calculate the magnitude and direction of the net force 
acting on the car at the position shown.

6  Sometime later, the car has travelled halfway around 
the roundabout. What is the:
a  velocity of the car at this point
b  direction of its acceleration at this point?

7  If the driver of the car kept speeding up, what would 
eventually happen to the car as it travelled around 
the roundabout? Explain your answer.

8  An ice skater of mass 50 kg is skating in a horizontal 
circle of radius 1.5 m at a constant speed of 2.0 m s–1. 
Answer the questions below about the ice skater’s 
motion.
a  Determine the magnitude of the skater’s 

acceleration.
b  Are the forces acting on the skater balanced or 

unbalanced? Explain.
c  Calculate the magnitude of the centripetal force 

acting on the skater.

9  Fiona and Mark are flying their remote-controlled 
model plane. It has a mass of 1.6 kg and travels in a 
horizontal circular path of radius 62 m with a speed 
of 50 km h–1. A radio transmitter controls the plane so 
there are no strings attached. Answer the questions 
below about the plane’s motion.
a  Calculate the period of the model plane’s motion.
b  Determine the magnitude of the net force that is 

acting on the plane.

10  An athlete competing at a junior sports meet swings a 
2.5 kg hammer in a horizontal circle of radius 0.80 m 
at 2.0 revolutions per second. Assume that the wire is 
horizontal at all times.
a  What is the period of rotation of the ball?
b  What is the orbital speed of the ball?
c  What is the magnitude of the acceleration of 

the ball?
d  What is the magnitude of the net force acting on 

the ball?

11  A child of mass 30 kg is playing on a maypole swing 
in a playground. The rope is 2.4 m long and at an 
angle of 60˚ to the horizontal as she swings freely in 
a circular path. Ignore the mass of the rope in your 
calculations.

A

B

C

60˚

2.4
 m

a  Calculate the radius of her circular path.
b  Identify the forces that are acting on her as she 

swings freely.
c  What is the direction of her acceleration when she 

is at the position shown in the diagram?
d  Calculate the net force acting on the girl.
e  What is her speed as she swings?
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5.3 Circular motion on banked tracks 
The previous section focused on relatively simple situations involving uniform 
circular motion in a horizontal plane. However, there are more complex situations 
involving this type of motion. On many road bends, the road is not horizontal, but 
is at a small angle to the horizontal. This enables vehicles to travel at higher speeds 
without skidding. A more dramatic example of this effect is at a cycling velodrome 
like that shown in Figure 5.3.1. The Darebin International Sports Centre in 
Thornbury has a velodrome that has banked or inclined corners that peak at 43°. 
This enables the cyclists to travel at much higher speeds than if the track were 
flat. This section examines the principles underlying banked cornering and applies 
Newton’s laws to solving problems involving circular motion on banked tracks. 

FIGURE 5.3.1 The Australian women’s pursuit track cycling team in action on a banked velodrome 
track during the London Olympics in 2012.

BANKED CORNERS 
Cars and bikes can travel much faster around corners when the road or track surface 
is inclined or banked at some angle to the horizontal. Banked tracks are most 
obviously used at cycling velodromes or motor sport events such as NASCAR 
races. Road engineers also design roads to be banked in places where there are 
sharp corners such as exit ramps on freeways.

When cars travel in circular paths on horizontal roads, they are relying on the 
force of friction between the tyres and the road to provide the sideways force that 
keeps the car turning in the circular path.

Consider a car travelling clockwise around a horizontal roundabout with 
a constant speed, v. As can be seen in Figure 5.3.2, the car has an acceleration 
towards C (the centre of the circle) and so the net force is also sideways on the car 
towards C.

The forces acting on the car are shown in Figure 5.3.3. As you can see, the 
vertical forces (gravity and the normal reaction force) are balanced. The only 
horizontal force is the sideways force that the road exerts on the car tyres. This is a 
force of friction, Ff , and is unbalanced, so this is equal to the net force, Fnet .

Fnet

a

Top view

C υ

FIGURE 5.3.2 The car is travelling in a circular 
path on a horizontal track.

Fnet

Rear view

Ff

FN

Fg
C

FIGURE 5.3.3 The vertical forces balance, and it 
is friction between the tyres and the road that 
enables the car to corner.
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If the car drove over an icy patch, there would be no friction and the car would 
not be able to turn. It would skid in a straight line at a tangent to the circular path.

Banking the road reduces the need for a sideways frictional force and allows 
cars to travel faster without skidding off the road and away from the circular path. 
Consider the same car travelling around a circular, banked road with constant 
speed, v, as shown in Figure 5.3.4. It is possible for the car to travel at a speed so 
that there is no sideways frictional force. This is called the design speed and it 
is dependent on the angle, θ, at which the track is banked. At this speed, the car 
exhibits no tendency to drift higher or lower on the track.

Fnet

Fnet

aC

C
θ

θ

a

Top view

(a) (b) (c)

Rear view

FN

FN

Fg

Fgυ
Fnet

FIGURE 5.3.4 (a) The car is travelling in a circular path on a banked track. (b) The acceleration 
and net force are towards C. The banked track means that the normal force (FN) has an inwards 
component. This is what enables the car to turn the corner. (c) Vector addition gives the net force 
(Fnet) as acting horizontally towards the centre.

The car still has an acceleration towards the centre of the circle, C, and so there 
must be an unbalanced force in this direction. Due to the banking, there are now 
only two forces acting on the car: its weight, Fg , and the normal force, FN , from 
the track. 

As can be seen in part (b) of Figure 5.3.4, these forces are unbalanced. They 
add together to give a net force that is horizontal and directed towards C. 

At the design speed, the angle of bank, θ, of the road or track can be found 
by using:

tan θ = 
Fnet

Fg

where Fnet is the force acting to the centre of the circle (N)

 Fg is the force due to gravity on the object (N).

Extending this equation by substituting Fnet  = mv2

r  and Fg = mg gives:

tan θ = v2

rg and hence θ = tan–1 (v2

rg)
where m is the mass of the vehicle and passengers (kg)

 v is the speed of the vehicle (m s–1)

	 r is the radius of the track (m)

 θ is the angle of bank (degrees)

 g is the acceleration due to gravity (9.8 m s–2 near the surface of the Earth)

If the angle and weight are known, trigonometry can be used to calculate the net 
force (see Figure 5.3.4(c)) and therefore the design speed. 

Rearranging tan θ = v2

rg to make the design speed, v, the subject gives:

v2 = rg tan θ

v = √rg tan θ
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It is worth noting that the normal force will be larger here than on a flat track. 
In the case of a cyclist, the rider and bike would feel a larger force acting from the 
road when they are on a banked track compared to when they are cycling on a flat 
track (see Figure 5.3.5).

Worked example 5.3.1

BANKED CORNERS 

A curved section of track on an Olympic velodrome has a radius of 50 m and is 
banked at an angle of 42° to the horizontal. A cyclist of mass 75 kg is riding on 
this section of track at the design speed.

a   Calculate the net force acting on a cyclist at this instant if they are riding at 
the design speed.

Thinking Working

Draw a force diagram and 
include all forces acting on 
the cyclist.

The forces acting on the cyclist are gravity 
and the normal force from the track, and 
these are unbalanced. The net force is 
horizontal and towards the centre of the 
circular track as shown in diagram (a) and 
the force triangle of diagram (b).

Fnet

FNFg

Fnet

FN

Fg

42°

42°C

(a) (b)

Calculate the weight force, Fg. Fg = mg

= 75 × 9.8

= 735 N

Use the force triangle and 
trigonometry to work out 
the net force, Fnet .

tan θ = 
Fnet

Fg

tan 42° = 
Fnet

735

Fnet = 0.90 × 735

= 662 N

As force is a vector, a direction 
is needed in the answer.

Net force is 662 N horizontally towards the 
centre of the circle.

b  Calculate the design speed for this section of the track.

Thinking Working

List the known values. m = 75 kg

r = 50 m

θ = 42°

Fg = 735 N

Fnet = 662 N

v = ?

Use the design speed formula. v = √rg tan θ

= √50 × 9.8 × tan 42°

= 21 m s–1

FIGURE 5.3.5 Australian cyclist Anna Meares 
on this banked velodrome track is cornering 
at speeds far higher than she could use on a 
flat track. Cyclists on a velodrome do not need 
to rely on friction to turn, and so experience a 
larger normal force than usual.

PHYSICSFILE

Wall of Death 
In some amusement parks in other 
parts of the world, there is a ride known 
menacingly as the Wall of Death (see 
Figure 5.3.6). It consists of a cylindrical 
enclosure with vertical walls. People 
on bicycles and motorbikes ride into 
the enclosure and around the vertical 
walls, so the angle of banking is 90°! 
The riders need to keep moving and are 
depending on friction to hold them up. 
By travelling fast, the centripetal force 
(the normal force from the wall) is large 
and this increases the size of the grip 
(friction) between the wall and tyres. 
If the rider slammed on the brakes and 
stopped, they would simply plummet 
to the ground.

FIGURE 5.3.6 For a rider to successfully 
conquer the Wall of Death, they need to 
travel reasonably fast and there must be 
good grip between the tyres and the track. 
The rider is relying on friction to maintain 
their motion along the wall.
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Worked example: Try yourself 5.3.1

BANKED CORNERS 

A curved section of track on an Olympic velodrome has radius of 40 m and is 
banked at an angle of 37° to the horizontal. A cyclist of mass 80 kg is riding on 
this section of track at the design speed. 

a   Calculate the net force acting on a cyclist at this instant as they are riding at 
the design speed. 

b  Calculate the design speed for this section of the track.

EXTENSION

Leaning into corners 
In many sporting events, participants need to travel 
around corners at high speeds. As shown in Figure 5.3.7, 
motorbike riders lean their bikes over almost onto the 
track as they corner. This leaning technique is also evident 
in ice skating, bicycle races, skiing and even when you run 
round a corner. It enables the competitor to corner at high 
speed without falling over. 

FIGURE 5.3.7 Australia’s Casey Stoner won the 2012 Moto GP 
championship. Here he is leaning his bike as he takes a corner at 
Phillip Island. Leaning into the corner enables him to corner at higher 
speeds. In fact, the bike would go out of control if he did not lean it.

Consider a bike rider cornering on a horizontal road 
surface (see Figure 5.3.8). The forces acting on the bike 
and rider are unbalanced. The forces are the weight force, 
Fg , and the force from the track. The track exerts a reaction 
force, on the rider that acts both inwards and upwards. 
The inwards component is the frictional force, Ff , between 
the track and the tyres. The upwards component is the 
normal force, FN , from the track.

 Ff = Fnet = 

centre
of circle

mv2

r

FN

Ff

Fnet

Fg = mg

FN = Fg = mg

FIGURE 5.3.8 The forces acting as the rider turns a corner are the 
weight, Fg , the normal force, FN , and the friction, Ff , between the tyres 
and the road. The friction supplies the unbalanced force that leads to 
the corner turning motion.

The rider is travelling in a horizontal circular path at 
constant speed, and so has a centripetal acceleration 
directed towards the centre of the circle. Therefore, the 
net force is directed towards the centre of the circle. 
By analysing the vertical and horizontal components 
in Figure 5.3.8, you see that the weight force, Fg , must 
balance the normal force, FN . The net force that is 
producing the centripetal acceleration is supplied by the 
frictional force, Ff . In other words, the rider is depending on 
a sideways frictional force to turn the corner. An icy or oily 
patch on the track would cause the tyres to slide out from 
under the rider, and he or she would slide painfully along 
the road at a tangent to the circular path.
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5.3 Review
SUMMARY

• A banked track is one where the track is inclined 
at some angle to the horizontal. This enables 
vehicles to travel at higher speeds when cornering, 
compared with around a horizontal curved path.

• Banking a track eliminates the need for a sideways 
frictional force to turn. When the speed and angle 
are such that there is no sideways frictional force, 
the speed is known as the design speed.

• The forces acting on a vehicle travelling at the 
design speed on a banked track are gravity and 
the normal force from the track. These forces are 
unbalanced and add to give a net force directed 
towards the centre of the circular motion.

• At the design speed, the angle of bank of the 
track, θ = tan–1 ( v2

rg ).
• For a given bank angle and curve radius, the 

design speed is given by: v = √rg tan θ.

KEY QUESTIONS

1  A cyclist is riding along a circular section of a 
velodrome where the radius is 30 m and the track 
is inclined at 30° to the horizontal. The cyclist is 
riding at the design speed and maintains a constant 
speed. Describe the direction of the acceleration on 
the cyclist.

2  An architect is designing a velodrome and the original 
plans have semi-circular sections of radius 15 m 
and a banking angle of 30°. The architect is asked 
to make changes to the plans that will increase the 
design speed for the velodrome. What two design 
elements could the architect change in order to 
meet this requirement?

3  A racing car is travelling around a circular banked 
track which has a design speed of 100 km h–1. On one 
lap, the car travels at 150 km h–1. At this higher speed, 
the car would tend to travel in a different position 
along the banked surface. Would the car travel higher 
or lower up the banked track? Explain your answer.

4  A racing car travels at high speed along a horizontal 
track and tries to turn a corner. The car skids and 
loses control. The racing car then travels along a 
banked track and is able to travel much faster around 
the corners without skidding at all. Complete the 
sentences below by choosing the correct term in bold.
On the horizontal track, the car is depending on 
the force of friction/weight to turn the corner. The 
friction/normal force is equal to the weight/friction 
of the car so these vertical forces are balanced/
unbalanced. When driving on the banked track, the 
normal/weight force is not vertical and so is not 
balanced by the weight/normal force. In both cases, 
the forces acting on the car are unbalanced.

5  Copy and complete the following diagram by drawing 
and labelling the normal force, weight force and net 
force acting on the bicycle.

42˚

C

The following information relates to questions 6 and 7.
A cycling velodrome has a turn that is banked at 33° to 
the horizontal. The radius of the track at this point is 28 m. 

6  Determine the speed (in km h–1) at which a cyclist of 
mass 55 kg would experience no sideways force on 
their bike as they ride this section of track.

7  a   Calculate the size of the normal force that is acting 
on the cyclist.

b  How would this compare with the normal force if 
they were riding on a flat track?

8  A car racing track is banked so that when the cars 
corner at 40 m s–1, they experience no sideways 
frictional forces. The track is circular with a radius 
of 150 m. 
Calculate the angle to the horizontal at which the 
track is banked.

The following information applies to questions 9 and 10.
A section of track at a NASCAR raceway is banked to the 
horizontal. The track section is circular with a radius of 
80 m and it has a design speed of 18 m s–1. A car of mass 
1200 kg is being driven around the track at 18 m s–1.

9  a  Calculate the magnitude of the net force acting on 
the car (in kN).

b  Calculate the angle to the horizontal at which the 
track is banked.

10  The driver now drives around the track at 30 m s–1. 
What would the driver have to do to maintain their 
circular path around the track?
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5.4 Circular motion in a  
vertical plane
In previous sections, the motion of objects travelling in circular paths was discussed. 
It was explained that a body moving with constant speed in a horizontal circular 
path has an acceleration that is directed towards the centre of the circle. The same 
applies for vertical circular paths.

If you have ever been on a rollercoaster ride, you will have travelled over 
humps and down through dips at high speeds and, at times, in circular arcs (see 
Figure 5.4.1). There are also other rides that travel through full 360° vertical circles. 
During these rides, your body will experience forces that you may or may not 
find pleasant.

When you travel on a rollercoaster, you can experience quite strong forces 
pushing you down into the seat as you fly through the dips. On the other hand, 
as you travel over the humps, you tend to lift off the seat. These forces relating 
to circular motion in a vertical plane will be discussed in this section. Like in the 
previous sections, Newton’s laws are used to solve problems involving this type of 
circular motion.

FIGURE 5.4.1 This rollercoaster has a circular path in a vertical plane at this point.

MOVING IN VERTICAL CIRCLES 
A body moving with constant speed in a horizontal circular path has an acceleration 
that is directed towards the centre of the circle. The same applies for vertical 
circular  paths. However, circular motion in a vertical plane in real life is often 
more complex as it does not usually involve constant speeds. 

An example of this is illustrated in Figure 5.4.2(a). The speed of the 
skateboarder practising in a half-pipe will increase on the way down as gravitational 
potential energy is converted into kinetic energy. This means the skater will 
experience a linear  acceleration, a1 , as well as a centripetal acceleration, ac . The 
resultant acceleration is not directed towards the centre of the circular path. 

At the bottom of the ‘pipe’, the skateboarder will be neither slowing down nor 
speeding up, so the acceleration is purely centripetal at this point, as shown in 
part (b) of Figure 5.4.2. The same applies at the very top of a circular path. For this 
reason, motion at these points is easier to analyse.

C

C

ac

ac

al

anet

(a)

(b)

FIGURE 5.4.2 (a) High on the sides of the ‘pipe’, 
the skateboarder speeds up, and so has both 
a linear and a centripetal acceleration. The net 
acceleration, anet , is not towards C. (b) At the 
lowest point the speed of the skateboarder is 
momentarily constant, so there is no linear 
acceleration. The acceleration is supplied 
completely by the centripetal acceleration, ac , 
and is acting towards C.
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Uniform horizontal motion 
Theme park rides make you appreciate that the forces you experience throughout a 
ride can vary greatly. First, consider the case of a person in a rollercoaster cart, like 
that shown in Figure 5.4.3, travelling horizontally at 4.0 m s–1. If the person’s mass 
is 50 kg and the gravitational field strength is 9.8 m s–2, the forces acting on the 
person can be calculated. These forces are the weight, Fg , and the normal reaction 
force, FN , from the seat. 

The person is moving in a straight line with a constant speed, so there is 
no  unbalanced force acting. The weight force balances the normal reaction 
force from the seat. The normal force is therefore 490 N up, which is what usually 
acts upwards on this person when moving horizontally and they would feel the 
same as their usual weight. 

Circular motion: travelling through dips 
Now consider the forces that act on the person after the cart has reached the bottom 
of a circular dip of radius 2.5 m and is moving at 8.0 m s–1. Figure 5.4.4 illustrates 
these forces.

The person will have a centripetal acceleration due to the circular path. This 
centripetal acceleration is directed towards the centre, C, of the circular path—in 
this case, vertically upwards. The person’s centripetal acceleration, a, is:

 a = v2

r

 = 8.02

2.5

 = 26 m s–2 towards C, or upwards
The net (centripetal) force acting on the person is given by:
 Fnet = ma
 = 50 × 26
 = 1300 N upwards
The normal force, FN , and the weight force, Fg , are not in balance anymore. 

They add together to give an upwards force of 1300 N. This indicates that the 
normal force must be greater than the weight force by 1300 N. In other words, 
the normal force is 490 N + 1300 N = 1790 N up. This is over three times larger 
than the normal force of 490 N that usually acts. That is the reason why, when in 
a ride, you feel the seat pushing up against you much more strongly at this point. 
This normal force of 1790 N in this instance is equal to the apparent weight of the 
person and indicates they would feel much heavier than usual. 

Circular motion: travelling over humps 
Now consider the situation as the cart moves over the top of a hump of radius 
2.5 m with a lower speed of 2.0 m s–1, as illustrated in Figure 5.4.5. 

The person now has a centripetal acceleration that is directed vertically 
downwards towards the centre, C, of the circle. Therefore, the net force acting at 
this point is directed vertically downwards. The centripetal acceleration is:

 a = v2

r

 = 2.02

2.5

 = 1.6 m s–2 towards C, or downwards
The net (centripetal) force is:
 Fnet = ma
 = 50 × 1.6
 = 80 N downwards
As in the dip, the weight force and the normal force are not in balance. They 

add to give a net force of 80 N down. The weight force, Fg , must therefore be 80 N 
greater than the normal force, FN . This tells us that the normal force is:

490 N + (–80) N = 410 N up.

Fg = 490 N

g = 9.8 m s–2 4.0 m s–1

m = 50 kg FN = 490 N

Fnet = 0

FIGURE 5.4.3 The vertical forces are in balance 
in this situation, i.e. FN = Fg.

8.0 m s–1

2.5 m FN = ?

C

Fg = 490 N

g = 9.8 m s–2 Fnet = 1300 N

FIGURE 5.4.4 The person has a centripetal 
acceleration that is directed upwards towards 
the centre of the circle, and so the net force is 
also upwards. In this case, the magnitude of the 
normal force, FN, is greater than the weight, Fg, 
and produces a situation where the rider feels 
heavier than usual.

2.0 m s–1

2.5 m

FN = ?

C

Fg = 490 N
g = 9.8 m s–2

Fnet = 80 N

FIGURE 5.4.5 The centripetal acceleration is 
downwards towards the centre of the circle, and 
so the net force is also in that direction. At this 
point, the magnitude of the normal force, FN, is 
less than the weight, Fg, of the person.
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How the normal force varies during the ride 
It is interesting to compare the normal forces that act on the person in these three 
situations. 
• The normal force when travelling horizontally is 490 N upwards. 
• At the bottom of the dip, the normal force is 1790 N upwards. In other words, 

in the dip, the seat pushes into the person with a greater force than usual. This 
gives the person an apparent weight of 1790 N and makes the person feel much 
heavier than normal. If the person had been sitting on weighing scales at this 
time, it would have shown a higher than usual reading. 

• At the top of the hump, the normal force is 410 N upwards. In other words, over 
the hump, the seat pushes into the person with a smaller force than usual. This 
gives the person an apparent weight of 410 N and gives them the sensation of 
feeling lighter.
The weight of the person has not changed. Fg is 490 N throughout the duration 

of the ride; it is the normal force acting on them that varies. The normal force is 
equal to the person’s apparent weight, and this makes the person ‘feel’ heavier and 
lighter as they travel through the dips and humps respectively. 

A rollercoaster cart going through dips and over humps is always moving above 
the rollercoaster track, so the normal reaction force acts upwards. It is also possible 
for the cart to travel on the underside of the track when it goes upside down through 
a loop. Worked example 5.4.1 shows a toy car travelling through a vertical loop, on 
the inside of the loop.

PHYSICSFILE

Fighter pilots 
A fighter pilot in a vertical loop manoeuvre can safely experience centripetal accelerations of up to around 5g, or 49 m s–2. In a loop 
where the g-forces are greater than this, the pilot may pass out. If the pilot flies with his or her head inside the loop, the centripetal 
acceleration of the plane will push the pilot into their seat and make the blood flow away from their head. The resulting lack of blood 
in the brain may cause the 
pilot to ‘grey out’ and they 
may totally lose consciousness 
(‘black out’). This type of 
force is a called a positive-g 
force. Fighter pilots wear 
‘g-suits’, which pressurise the 
legs to prevent blood flowing 
into them which helps them 
to maintain consciousness 
(see Figure 5.4.6).

On the other hand, if the 
pilot’s head is on the outside 
of the loop, the centripetal 
acceleration will pull the 
pilot onto their harness and 
the additional blood flow 
to the head can make the 
whites of the eyes turn red. 
The excess blood flow in the 
head may cause ‘red out’. 
This type of force is called 
a negative-g force.

FIGURE 5.4.6 Fighter pilots wear 
pressurised suits to allow their 

bodies to withstand the large 
forces that act during tight turns.
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Worked example 5.4.1

VERTICAL CIRCULAR MOTION

A student arranges a toy car track with a vertical loop of radius 20.0 cm, as shown.

A toy car of mass 150 g is released from rest at a height of 1.00 m at point X. 
The car rolls down the track and travels inside the loop. Assume g is 9.80 m s–2, 
and ignore friction.

g = 9.80 m s–2
C

20.0 cm

mass = 150 g

1.00 m

X

Z

Y

a  Calculate the speed of the car as it reaches the bottom of the loop, point Y.

Thinking Working

Note all the variables given to 
you in the question.

At X:

m = 150 g = 0.150 kg

h = 1.00 m

v = 0

g = 9.80 m s–2

Use an energy approach to 
calculate the speed. Calculate 
the total mechanical energy first.

The initial speed is zero, so Ek at X is zero. 
The total mechanical energy, Em , at X is:

Em = Ek + Eg

= 
1
2 mv2 + mg∆h

= 0 + (0.150 × 9.80 × 1.00)

= 1.47 J

Use conservation of energy  
(Em = Ek + Eg) to determine the 
velocity at point Y. As the car 
rolls down the track, it loses its 
gravitational potential energy 
and gains kinetic energy. At the 
bottom of the loop (Y), the car 
has zero potential energy. 

At Y:

Em = 1.47 J

h = 0

Eg = 0

Em = Ek + Eg

Em = 
1
2 mv2 + mg∆h

1.47 = 0.5 × 0.150v2 + 0

v2 = 
1.47

0.0750

v = √19.6

= 4.43 m s–1
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b  Calculate the normal reaction force from the track at point Y.

Thinking Working

To solve for FN , start by working 
out the net, or centripetal, 
force. At Y, the car has a 
centripetal acceleration towards 
C (i.e., upwards), so the net 
(centripetal) force must also be 
vertically upwards at this point.

Fnet = 
mv2

r

= 
0.150 × 4.432

0.200

= 14.7 N up

Calculate the weight force, Fg , 
and add it to a force diagram.

Fg = mg

= 0.150 × 9.80

= 14.7 N down

At point Y
FN = ?

Fg = 1.47 N

Fnet = 14.7 N

Work out the normal force 
using vectors. Note up as 
positive and down as negative 
for your calculations.

The forces acting are 
unbalanced, as the car has 
a centripetal acceleration 
upwards (towards C). 
The upwards (normal) force 
must be larger than the 
downwards force.

Fnet = Fg + FN

+14.7 = –1.47 + FN

FN = +14.7 + 1.47

= 16.2 N up

Note that the force the track exerts on the car 
is much greater (by about ten times) than 
the weight force. If the car were travelling 
horizontally, the normal force would be just 
1.47 N up. 

c  What is the speed of the car as it reaches point Z?

Thinking Working

Calculate the velocity from 
the values you have, using  
Em = Ek + Eg .

At Z:

m = 0.150 kg

∆h = 2 × 0.200 = 0.400 m

Mechanical energy is conserved,  
so Em = 1.47 J

At Z:

Em = Ek + Eg

= 
1
2 mv2 + mg∆h

1.47 = 
1
2 × 0.150 × v2 + 0.150 × 9.80 × 0.400

1.47 = 0.075v2 + 0.588

0.075v2 = 1.47 – 0.588

v2 = 11.76

v = 3.43 m s–1
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d  What is the normal force acting on the car at point Z?

Thinking Working

To find FN, start by working out 
the net, or centripetal, force.

At Z, the car has a centripetal 
acceleration towards C (i.e., 
downwards), so the net 
(centripetal) force must also be 
vertically downwards at this point.

Fnet = 
mv2

r

= 
0.150 × 3.432

0.200

= 8.82 N down

Work out the normal force using 
vectors. Note up as positive 
and down as negative for your 
calculations.

FN = ?

Fg = 1.47 N

Fnet = 8.82 N

Z

Fnet = Fg + FN

− 8.82 = −1.47 + FN

FN = −8.82 +1.47

= −7.35

= 7.35 N down

Note that there is still strong contact between 
the car and the track as given by the normal 
force, but that is only around half the size 
compared to the bottom of the track.

If the car had progressively lower speeds, 
the normal force at Z would decrease and 
eventually drop to zero. At this point, the 
car would lose contact with the track, fall 
off the track and its acceleration would be 
equal to g.

Worked example: Try yourself 5.4.1

VERTICAL CIRCULAR MOTION

A student arranges a toy car track with a vertical loop of radius 25.0 cm, as shown.

A toy car of mass 150 g is released from rest at a height of 1.20 m at point X. 
The car rolls down the track and travels around the loop. Assume g is 9.80 m s–2, 
and ignore friction for the following questions. 

g = 9.80 m s–2 C
25.0 cm

mass = 150 g

1.20 m

X

Z

Y

a  Calculate the speed of the car as it reaches the bottom of the loop, point Y.

b  Calculate the normal reaction force from the track at point Y.

c  What is the speed of the car as it reaches point Z?

d  What is the normal force acting on the car at point Z?
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PHYSICS IN ACTION

Travelling upside down without falling out 
You might have been on a rollercoaster like the one in 
Figure 5.4.7, where you were actually upside down at 
times during the ride. These rides use their speed and 
the radius of their circular path to prevent the riders from 
falling out. In theory, the safety harnesses worn by the 
riders are not needed to hold the people in their seats.

FIGURE 5.4.7 The thrill seekers on this rollercoaster ride don’t fall out 
when upside down because the centripetal acceleration of the cart is 
greater than 9.8 m s–2 down.

The reason people don’t fall out is that their centripetal 
acceleration while on the rollercoaster is greater than the 
acceleration due to gravity (9.8 m s–2). To understand the 
significance of this, try the following activity. Stand up, 
reach up with one hand, place an eraser on the palm of 
that hand, then turn your hand palm down and move it 
rapidly towards the floor. 

You should find, after one or two attempts, that it is 
possible to keep the eraser in contact with your hand 
as you ‘push’ it down. The eraser is upside down, but it 
is not falling out of your hand. Your hand must be for a 
short time moving down with a downwards acceleration 
in excess of 9.8 m s–2 and continually exerting a normal 
force on the eraser. This acceleration of 9.8 m s–2 down 
is the critical point in this exercise. If your hand had an 
acceleration less than this, the eraser would fall away 
from your hand to the floor. Try it to confirm that is 
what happens. 

A similar principle holds with rollercoaster rides. The 
people on the ride don’t fall out at the top because the 

motion of the rollercoaster gives them a centripetal 
acceleration that is greater than 9.8 m s–2 down. The 
engineers who designed the ride would have ensured that 
the rollercoaster moves with sufficient speed and in a 
circle of the appropriate radius so that this happens.

As an example, consider a ride of radius 15 m in a 
simple vertical circle (see Figure 5.4.8). 

C

15 m

v = ?

g = 9.8 m s–2

Fnet = 440 N

Fg = 440 N

FN = 0

mass = 45 kg

FIGURE 5.4.8  Rollercoaster travelling upside down through a loop. 
At the critical point where the rollercoaster just stays in contact with 
the track, the normal reaction force can be considered to be zero. 

It is possible to calculate the speed that would ensure 
that a rider cannot fall out. Assume that the person has a 
mass of 45 kg and that g is 9.8 m s–2. At the critical speed, 
the normal force, FN, on the person will be zero. In other 
words, the seat will exert no force on the person at this 
speed. The centripetal force, Fnet, is 

 Fnet = Fg + FN but FN = 0, so:

 = Fg

therefore 
mv2

r  = mg

 v2 = mgr
m

 = gr

 v = √gr

 = √9.8 × 15

 = 12 m s–1

This speed is equal to 43 km h–1 and is the minimum 
needed to prevent the riders from falling out for that 
radius. In practice, the rollercoaster would move with a 
speed much greater than this to ensure that there was 
a significant force between the riders and their seats. 
Corkscrew rollercoasters can travel at up to 110 km h–1 
and the riders can experience accelerations of up to 
50 m s–2 or (5g). So, safety harnesses are really only 
needed when the speed is below the critical value; their 
primary function is to prevent people from moving around 
while on the ride.
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5.4 Review
SUMMARY

• The gravitational force, Fg , and normal force, FN , 
must be considered when analysing the motion of 
an object moving in a vertical circle.

• If the normal force is greater than the gravitational 
force (FN > Fg ) the passenger or rider will feel heavier.

• If the normal force is less than the gravitational force 
(FN < Fg ) the passenger or rider will feel lighter.

• In vertical circular motion, the gravitational force 
always acts vertically downwards regardless of 
position around the circle, the net force always 
acts towards the centre of the circle and the 
normal force always acts between the seat and 
the passenger or rider. 

• The normal force and the gravitational force must 
add together as vectors in a force diagram to give 
the resultant as the net force. 

• At the point where a moving object lifts off from its 
circular path, the normal force is zero. The object 
will be moving with a centripetal acceleration that 
is equal to that due to gravity (9.8 m s–2 down).

• Problems relating to motion in vertical circles can 
also be solved using an energy approach. This 
involves using the equation: 

Em = Ek + Eg = 
1
2 mv2 + mg∆h

KEY QUESTIONS

In the following questions, assume that g = 9.80 m s–2 
and ignore the effects of air resistance.
The following information applies to questions 1 and 2.
A yo-yo is swung with a constant speed in a vertical circle.

1  a   Describe the magnitude of the acceleration of the 
yo-yo along its path.

b  At which point in the circular path is there the 
greatest amount of tension in the string?

c  At which point in the circular path is there the 
lowest amount of tension in the string?

d  At which point is the string most likely to break?

2  If the yo-yo has a mass of 80 g and the radius of the 
circle is 1.5 m, find the minimum speed that this  
yo-yo must have at the top of the circle so that the 
cord does not slacken.

3  A car of mass 800 kg encounters a speed hump 
of radius 10 m. The car drives over the hump at a 
constant speed of 14.4 km h–1.
a  Name all the vertical forces acting on the car when 

it is at the top of the hump.
b  Calculate the resultant force acting on this car when 

it is at the top of the hump.
c  After travelling over the hump, the driver remarked 

to a passenger that she felt lighter as the car moved 
over the top of the speed hump. Is this possible? 
Explain your answer.

d  What is the maximum speed (in km h–1) that this 
car can have at the top of the hump and still have 
its wheels in contact with the road?

The following information applies to questions 4 and 5.
A popular amusement park ride is the ‘loop-the-loop’, in 
which a cart descends a steep incline at point X, enters 
a circular loop at point Y, and makes one complete 
revolution of the circular loop. The car, whose total mass is 
500 kg, carries the passengers with a speed of 2.00 m s–1 
when it begins its descent at point X from a vertical height 
of 50.0 m.

Z

Y

X

2.00 m s–1

500 kg

50.0 m

15.0 m

4 a  Calculate the speed of the car at point Y.
b  What is the speed of the car at point Z?
c  Calculate the normal force acting on the car at Z.

5  What is the minimum speed that the car can have at 
point Z and still stay in contact with the track?

The following information applies to questions 6 and 7.
A stunt pilot appearing at an air show decides to perform 
a vertical loop so that she is upside down at the top of the 
loop. During the stunt she maintains a constant speed of 
35 m s–1 while completing the 100 m radius loop.

6  Calculate the apparent weight of the 80 kg pilot when 
she is at the top of the loop.
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5.4 Review continued
7  What minimum speed would the pilot need at the top 

of the vertical loop in order to experience zero normal 
force from the seat (i.e. to feel weightless)?

8  The maximum value of acceleration that the human 
body can safely tolerate for short time intervals is 
nine times that due to gravity. Calculate the maximum 
speed with which a pilot could safely pull out of a 
circular dive of radius 400 m.

9  A skateboarder of mass 55 kg is practising on a  
half-pipe of radius 2.0 m. At the lowest point of 
the half-pipe, the speed of the skater is 6.0 m s–1. 
(Ignore air resistance and friction.)
a  What is the acceleration of the skater at this point? 

Indicate both magnitude and direction.
b  Calculate the size of the normal force acting on the 

skater at this point. 

10  A ball bearing of mass 25 g is rolled along a smooth 
track in the shape of a loop-the-loop. The ball bearing 
is given a launch speed at A so that it just maintains 
contact with the track as it passes through point C. 
Ignore air resistance and friction.

A

B

C

0.50 m

a  Determine the magnitude of the acceleration of the 
ball bearing as it passes point C.

b  How fast is the ball bearing travelling at point C?

11  On the Mad Mouse ride, a cart of mass 500 kg 
encounters a hill of radius 5.0 m. The cart’s speed 
at the top of the hump is 6.0 m s–1.

FN 

6.0 m s–1

C

Fg = 4900 N

g = 9.8 m s–2

5.0 m

a  Calculate the magnitude and direction of the 
resultant force acting on this cart when it is at 
the top of the hump.

b  Calculate the magnitude and direction of the 
normal force acting on this cart when it is at the 
top of the hump.

c  What is the maximum speed that this cart can have 
at the top of the hump and still have its wheels in 
contact with the track?



179CHAPTER 5   |   NEWTONIAN THEORIES  OF MOTION

5.5 Projectiles launched horizontally
A projectile is any object that is thrown or projected into the air and is moving 
freely—that is, it has no power source (such as a rocket engine or propeller) driving 
it. A netball as it is passed, a cricket ball that is hit for six, and an aerial skier flying 
through the air are all examples of projectiles. People have long argued about the 
path that projectiles follow; some thought they were circular or had straight sections. 
It is now known that if projectiles are not launched vertically and if air resistance is 
ignored, they move in smooth parabolic paths, like that shown in Figure 5.5.1. This 
section considers projectiles that are launched horizontally and uses Newton’s laws 
to solve problems involving this type of motion.

PROJECTILE MOTION 
It is a very common misconception that when a projectile, such as a netball, travels 
forwards through the air, it has a forwards force acting on it. This is incorrect. There 
may have been some forwards force acting as the projectile is launched, but once 
the projectile is released, this forwards force is no longer acting. 

In fact, if air resistance is ignored, the only force acting on a projectile during 
its flight is its weight, which is the force due to gravity, Fg . This force is constant 
and always directed vertically downwards. This causes the projectile to continually 
deviate from a straight-line path to follow a parabolic path, as seen in Figure 5.5.2. 
This motion is known as free fall.

FIGURE 5.5.2 The motorcycle and rider are travelling in parabolic paths as they fly through the air.

Projectile motion is quite complex compared to straight-line motion. It must 
be analysed by considering the different components—horizontal and vertical—
of the actual motion. The vertical and horizontal components of the motion are 
independent of each other and must be treated separately.

FIGURE 5.5.1 A multi-flash photograph of a golf 
ball that has been bounced on a hard surface. 
The ball moves in a parabolic path.
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Given that the only force acting on a projectile is the force due to gravity, Fg , 
it follows that the projectile must have a vertical acceleration of 9.8 m s–2 downwards 
throughout its motion.

In the vertical direction, a projectile accelerates due to the force of gravity, 
that is, at a rate of 9.8 m s–2 downwards.

In the horizontal direction a projectile has a uniform velocity since there are 
no forces acting in this direction (if air resistance is ignored). So, the horizontal 
acceleration is zero.

PROJECTILES LAUNCHED HORIZONTALLY 
Projectiles can be launched at any angle. The launch velocity needs to be resolved 
into vertical and horizontal components using trigonometry in order to complete 
most problems. For projectiles launched horizontally, calculating the vector 
components of the launch velocity is easy to do. That’s because the initial vertical 
velocity is zero (but increases during the flight). The horizontal velocity is constant 
and is equal to the launch velocity. This can be verified using trigonometric ratios 
and a launch angle of 0°. 

Tips for solving projectile motion problems 
1 Construct a diagram showing the projectile’s motion to set the problem out 

clearly. Write out the information supplied for the horizontal and vertical 
components separately.

2 In the horizontal direction the velocity, v, of the projectile is constant, so the only 
formula needed is vav = s

t .
3 In the vertical direction, the projectile is moving with a constant acceleration 

(9.8 m s–2 down), and so the equations of motion for uniform acceleration must 
be used. These include: 
v = u + at
s = ut + 12 at2

v2 = u2 + 2as
4 In the vertical direction it is important to clearly specify whether up or down is 

the positive or negative direction. Either choice will work just as effectively. The 
same convention needs to be used consistently throughout each problem.

5 If a projectile is launched horizontally, its horizontal velocity throughout the 
flight is the same as its initial velocity. 

6 Pythagoras’ theorem can be used to determine the actual speed of the projectile 
at any point. 

7 If the velocity of the projectile is required, it is necessary to provide a direction 
with respect to the horizontal plane as well as the speed of the projectile.

PHYSICSFILE

Cartoon physics 
It is easy to get the wrong idea about projectile motion when you watch cartoon 
characters running or driving off cliffs. In many cartoons, the character leaves 
the cliff and travels horizontally outward, stopping in mid-air (see Figure 5.5.3). 
Once they realise where they are, they immediately fall vertically downwards. 
This is not what happens in reality! The character should start falling in a smooth 
parabolic arc as soon as they leave the cliff-top! 

FIGURE 5.5.3 Many misconceptions can arise from what is shown in cartoons.  
In real life, this car would start falling as soon as it leaves the  

cliff top and it would travel in a parabolic arc.
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Worked example 5.5.1

PROJECTILE LAUNCHED HORIZONTALLY 

A golf ball of mass 150 g is hit horizontally from the top of a 40.0 m–high cliff with 
a speed of 25.0 m s–1. Using g = 9.80 m s–2 and ignoring air resistance, calculate 
the following values.

–

+
40.0 m

25.0 m s–1 g = 9.80 m s–2

a  Calculate the time that the ball takes to land.

Thinking Working

Let the downward direction be 
positive. Write out the information 
relevant to the vertical component 
of the motion. Note that the instant 
the ball is hit, it is travelling only 
horizontally, so its initial vertical 
velocity is zero.

Down is positive.

Vertically:

u = 0 m s–1

s = 40.0 m

a = 9.80 m s–2

t = ?

In the vertical direction, the ball 
has constant acceleration, so use 
equations for uniform acceleration. 
Select the equation that best fits the 
information you have.

s = ut + 
1
2at2

Substitute values, rearrange and solve 
for t.

40.0 = 0 + 
1
2 × 9.80 × t2

t = √40.0
4.90 

= 2.86 s

b   Calculate the distance that the ball travels from the base of the cliff, i.e. the 
range of the ball.

Thinking Working

Write out the information relevant 
to the horizontal component of the 
motion. As the ball is hit horizontally, 
the initial speed gives the horizontal 
component of the velocity throughout 
the flight.

Horizontally:

v = 25.0 m s–1

t = 2.86 s from part (a)

s = ?

Select the equation that best fits the 
information you have.

vav = 
s
t

Substitute values, rearrange and 
solve for s.

25.0 = 
s

2.86

s = 25.0 × 2.86

= 71.5 m

Note that the mass of the ball does 
not affect its motion, as with all objects 
in projectile motion or in free fall.
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c  Calculate the velocity of the ball as it lands.

Thinking Working

Find the horizontal and vertical 
components of the ball’s speed as 
it lands. Write out the information 
relevant to both the vertical and 
horizontal components.

Horizontally: u = v = 25.0 m s–1

Vertically, with down as positive:

u = 0

a = 9.8 m s–2

s = 40.0 m

t = 2.86 s

v = ?

To find the final vertical speed, use the 
equation for uniform acceleration that 
best fits the information you have.

v = u + at

Substitute values, rearrange and 
solve for the variable you are looking 
for, in this case v.

Vertically:

v = 0 + 9.80 × 2.86

= 28.0 m s–1 down

Add the components as vectors. 25.0 m s–1

28.0 m s–1v

θ

Use Pythagoras’ theorem to work out 
the actual speed, v, of the ball.

v = √vh
2 + vv

2

= √25.02 + 28.02

= √1409

= 37.5 m s–1

Use trigonometry to find the angle, θ. θ = tan–1 (28.0
25.0)

= 48.2°

Indicate the velocity with a magnitude 
and direction relative to the horizontal.

The final velocity of the ball is 37.5 m s–1 
at 48.2° below the horizontal.

Worked example: Try yourself 5.5.1

PROJECTILE LAUNCHED HORIZONTALLY 

A golf ball of mass 100 g is hit horizontally from the top of a 30.0 m high cliff with 
a speed of 20.0 m s–1. Using g = 9.80 m s–2 and ignoring air resistance, calculate 
the following values.

–

+

30.0 m

A

20.0 m s–1 g = 9.80 m s–2

a  Calculate the time that the ball takes to land.

b   Calculate the distance that the ball travels from the base of the cliff, i.e. the 
range of the ball.

c  Calculate the velocity of the ball as it lands.
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THE EFFECTS OF AIR RESISTANCE 
The interaction between a projectile and the air can have a significant effect on the 
motion of the projectile, particularly if the projectile has a large surface area and a 
relatively low mass. If you try to throw an inflated party balloon, it will not travel 
very far compared to throwing a marble at the same speed.

The size of the air resistance or drag force that acts on an object as it moves 
depends on several factors: 
• The speed, v, of the object. The faster an object moves, the greater the drag 

force becomes.
• The cross-sectional area of the object in its direction of motion. Greater area 

means greater drag.
• The aerodynamic shape of the object. A more streamlined shape experiences 

less drag.
• The density of the air. Higher air density means greater drag.

PHYSICSFILE

Aerodynamic design
In the track and field event of javelin, the aerodynamic shape of the javelin was too successful. The javelin was originally designed to 
reduce the drag force so that the athletes could throw further. This was not a problem until the 1980s, when athletes began to throw so 
far that runners competing in track events were endangered. The design of the javelin was changed and it was made more snub-nosed 
to increase drag and reduce distances thrown (this can be seen in Figure 5.5.4). In 1983, the world record was 104.8 m. In 1986 with 
the modified design, the world record dropped to 85.7 m. 

FIGURE 5.5.4 Australia’s Kathryn Mitchell in action during the women’s javelin final at the London 2012 Olympic Games. 

When a pilot drops a supply parcel from a plane, the drag force from the air 
would act in the opposite direction to the parcel’s velocity. If the parcel was dropped 
on the Moon, where there is no air and hence no air resistance, this would not be 
a factor and the parcel would continue its horizontal motion and would remain 
directly below the plane as it fell.
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Figure 5.5.5 shows a supply parcel being dropped from a plane moving at a 
constant velocity. If air resistance is ignored, the parcel falls in the parabolic arc 
shown by the darker blue curved line in diagram (a). It would continue moving 
horizontally at the same rate as the plane; that is, as the parcel falls it would stay 
directly beneath the plane until it hits the ground. The effect of air resistance is 
also shown by the light-blue curved path in diagram (a). Air resistance (or drag) 
is a retarding force and it acts in a direction that is opposite to the motion of the 
projectile. Air resistance makes the parcel fall more slowly, over a shorter path. 
If air resistance is taken into account, there are now two forces acting, as shown in 
diagram (b): weight, Fg , and air resistance, Fa . Therefore, the resultant force, Fnet , 
that acts on the projectile is not vertically down and nor is its acceleration. 

without air resistance

with air resistance

Fa

Fa

Fa

Fg
Fg

Fg

Fg

Fg

Fg

Fg

Fg

Fg

Fg

Fg

Fa

Fa

(a)  

Fa

Fg

Fnet

(b)

FIGURE 5.5.5 (a) The paths of a supply parcel dropped from a plane with and without air resistance. 
(b) When air resistance is acting, the net force on the parcel is not vertically down. 

SUMMARY

• If air resistance is ignored, the only force acting on 
a projectile is its weight, i.e. the force of gravity, Fg. 
This results in the projectile having a vertical 
acceleration of 9.8 m s–2 down during its flight.

• Projectiles move in parabolic paths that can be 
analysed by considering the horizontal and vertical 
components of the motion.

• The following equations of motion for uniform 
acceleration must be used for the vertical component 
of the motion: 

v = u + at

s = ut + 
1
2at2

v2 = u2 + 2as

• The horizontal velocity of a projectile remains 
constant throughout its flight if air resistance is 
ignored. Therefore, the following equation for 
average velocity can be used for this component 
of the motion: 

vav = 
s
t

KEY QUESTIONS

For the following questions, assume that the 
acceleration due to gravity is 9.8 m s–2 and ignore 
the effects of air resistance unless otherwise stated.

1  A boy throws a stone horizontally at 5 m s–1 into a 
pond. Ignoring air resistance, which statement(s) 
best describe the stone as it falls towards the pond? 
More than one option can be correct.
A  The only force acting on it is gravity.
B  It travels in a circular path.
C  There is a driving force acting on it.
D  Its speed increases.

2  A marble travelling at 2.0 m s–1 rolls off a horizontal 
bench and takes 0.75 s to reach the floor.
a  How far does the marble travel horizontally 

before landing?
b  What is the vertical component of the marble’s 

speed as it lands?
c  What is the speed of the marble as it lands?

5.5 Review
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3  A skateboard travelling at 4.0 m s–1 rolls off a 
horizontal bench that is 1.2 m high.
a  How long does the board take to hit the ground?
b  How far does the board land from the base of 

the bench?
c  What is the magnitude and direction of the 

acceleration of the board just before it lands?

4  A golfer practising on a range with an elevated tee 
4.9 m above the fairway is able to strike a ball so that 
it leaves the club with a horizontal velocity of 20 m s–1.

20 m s–1

4.9 m

fairway

tee

a  How long after the ball leaves the club will it land 
on the fairway?

b  What horizontal distance will the ball travel before 
landing on the fairway?

c  What is the acceleration of the ball 0.50 s after 
being hit?

d  Calculate the speed of the ball 0.80 s after it leaves 
the club.

e  With what speed will the ball hit the ground?

5  A tourist stands on top of a sea cliff that is 80 m high. 
The tourist throws a rock horizontally at 25 m s–1 into 
the sea.

vH = 25 m s–1

v = ?

θ = ?

vV = ?

a  What is the speed of the rock as it reaches the 
water?

b  At what angle is the rock travelling relative to the 
horizontal as it reaches the water?

6  In 1971, American astronaut Alan Shepard took a golf 
club to the Moon and hit a couple of balls. Which of 
the following answers is/are correct?
A  The balls travelled in straight lines because there is 

no gravity.
B  The balls travelled in parabolic arcs. 
C  The balls travelled much further than if they had 

been hit in an identical manner on Earth.
D  The balls went into orbit.

7  Joe throws a hockey ball horizontally at 5 m s–1. 
He then throws a polystyrene ball of identical 
dimensions at the same speed horizontally. If air 
resistance is taken into account, which of the balls 
will travel further? Why?

8  Two identical tennis balls X and Y are hit horizontally 
from a point 2.0 m above the ground with different 
initial speeds: ball X has an initial speed of 5.0 m s–1, 
while ball Y has an initial speed of 10 m s–1.
a  Calculate the time it takes for ball X to strike the 

ground.
b  Calculate the time it takes for ball Y to strike the 

ground.
c  How much further than ball X does ball Y travel in 

the horizontal direction before bouncing?

9  An archer stands on top of a platform that is 20 m 
high and fires an arrow horizontally at 50 m s–1. 
a  What is the speed of the arrow as it reaches the 

ground?
b  At what angle is the arrow travelling as it reaches 

the ground, relative to the horizontal?

10  A bowling ball of mass 7.5 kg travelling at 10 m s–1 
rolls off a horizontal table 1.0 m high.
a  Calculate the ball’s horizontal velocity just as it 

strikes the floor.
b  What is the vertical velocity of the ball as it strikes 

the floor?
c  Calculate the velocity of the ball as it reaches 

the floor.
d  What time interval has elapsed between the ball 

leaving the table and striking the floor?
e  Calculate the horizontal distance travelled by the 

ball as it falls.
f  Draw a diagram showing the forces acting on the 

ball as it falls towards the floor.
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5.6 Projectiles launched obliquely
The previous section looked at projectiles that were launched horizontally. A more 
common situation is projectiles that are launched obliquely (at an angle), by being 
thrown forwards and upwards at the same time. An example of an oblique launch 
is shooting for a goal in basketball, like in Figure 5.6.1. Once the ball is released, 
the only forces acting are gravity pulling it down to Earth and air resistance, which 
retards the ball’s motion slightly. 

In this section, the principles covering horizontal projectile motion will still 
apply, as described by Newton’s first law.

FIGURE 5.6.1 The basketball was thrown up towards the ring, travelling in a smooth parabolic path.

PROJECTILES LAUNCHED AT AN ANGLE 
As with projectiles launched horizontally, if drag forces are ignored, the only 
force that is acting on a projectile that is launched at an angle to the horizontal is 
gravity, Fg .

Gravity acts vertically downward and so it has no effect on the horizontal 
motion of a projectile. The vertical and horizontal components of the motion are 
independent of each other and once again must be treated separately.

In the vertical direction, a projectile accelerates due to the force of gravity, that 
is, at a rate of 9.8 m s–2 downwards. The effect of the force due to gravity is that 
the vertical component of the projectile’s velocity decreases as the projectile rises. 
It is momentarily zero at the very top of the flight and then it increases again as the 
projectile descends.

In the horizontal direction a projectile has a uniform velocity since there are no 
forces acting in this direction (if air resistance is ignored). 

Tips for problems involving projectile motion 
General rules for solving problems involving projectile motion were given in the 
previous section—see p180 for a reminder.

If a projectile is launched at an angle to the horizontal, trigonometry can be used 
to find the initial horizontal and vertical velocity components. Pythagoras’ theorem 
can be used to determine the actual velocity of the projectile at any point as well as 
a direction with respect to the horizontal plane.

Worked example 5.6.1 will show you how this is done.
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Worked example 5.6.1

LAUNCH AT AN ANGLE 

A 65 kg athlete in a long-jump event leaps with a velocity of 7.50 m s–1 at an angle 
of 30.0° to the horizontal. 

g = 9.80 m s–2

7.50 m s–1

30.0°

+

–

For the following questions, treat the athlete as a point mass, ignore air resistance 
and use g = 9.80 m s–2.

a  What is the athlete’s velocity at the highest point?

Thinking Working

First find the horizontal and vertical 
components of the initial speed.

30.0°

7.50 m s–1

uV

uH

Using trigonometry:

uH = 7.50 cos 30.0°

= 6.50 m s–1

uV = 7.50 sin 30.0°

= 3.75 m s–1

Projectiles that are launched obliquely move 
horizontally at the highest point. The vertical 
component of the velocity at this point is 
therefore zero. The actual velocity is given 
by the horizontal component of the velocity 
throughout the motion. 

At maximum height:  
v = 6.50 m s–1 horizontally to 
the right.

b   What is the maximum height gained by the athlete’s centre of mass during 
the jump?

Thinking Working

To find the maximum height that is gained, 
you must work with the vertical component. 
Recall that the vertical component of 
velocity at the highest point is zero.

Vertically, taking up as positive:

u = 3.75 m s–1

a = –9.80 m s–2

v = 0

s = ?

Substitute these values into an appropriate 
equation for uniform acceleration. 

v2 = u2 + 2as

0 = 3.752 + 2 × –9.80 × s

Rearrange and solve for s. s = 
3.752

19.6

= 0.717 m
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c   Assuming a return to the original height, what is the total time the athlete is 
in the air?

Thinking Working

As the motion is symmetrical, the 
time required to complete the motion 
will be double that taken to reach the 
maximum height. First, the time it 
takes to reach the highest point must 
be found.

Vertically, taking up as positive:

u = 3.75 m s–1

a = –9.80 m s–2

v = 0

t = ?

Insert these values into an appropriate 
equation for uniform acceleration.

v = u + at

0 = 3.75 – 9.80t

Rearrange the formula and solve for t. t = 
3.75
9.80

= 0.383 s

The time to complete the motion is 
double the time it takes to reach the 
maximum height.

Total time = 2 × 0.383 

= 0.766 s

Worked example: Try yourself 5.6.1

LAUNCH AT AN ANGLE 

A 50 kg athlete in a long-jump event leaps with a velocity of 6.50 m s–1 at 20.0° to 
the horizontal.

g = 9.80 m s–2

6.50 m s–1

20.0°

+

–

For the following questions, treat the athlete as a point mass, ignore air resistance 
and use g = 9.80 m s–2.

a  What is the athlete’s velocity at the highest point?

b   What is the maximum height gained by the athlete’s centre of mass during 
the jump?

c   Assuming a return to the original height, what is the total time the athlete is 
in the air?
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PHYSICS IN ACTION

Physics of shot putting 
In shot-put competitions, there is an 
advantage in being tall. This enables 
the release height of the shot to be 
higher, which means the distance 
travelled by the shot will be greater. 
At the London Olympic Games in 
2012, the men’s event was won by 
Poland’s Tomasz Majewski, with 
a distance of 21.89 m. Tomasz 
is 201 cm tall. The gold medal 
for women was won by Valerie 
Adams of New Zealand, who threw 
20.70 m (see Figure 5.6.2). Valerie 
is 193 cm tall. 

When a projectile is launched at an angle to the 
horizontal, the theoretical launch angle that gives the 
optimum range is 45°. This applies only where the 
projectile is launched from zero elevation—that is, when 
a projectile lands at the same height as it was launched. 
It is also possible that a projectile lands at a point lower 
than its launch height. For example with shot putters, 
the projectile is launched from above the ground. 
The theoretical launch angle for maximum range in this 
case is around 43°, depending on the actual release 
height. In reality, however, shot putters never release 
at this angle. This is because the speed at which they 
can launch the shot decreases as the angle gets further 
from the horizontal. The graph in Figure 5.6.3 shows the 

relationship between launch 
speed and launch angle. 

The decrease in launch speed with increasing projection 
angle is caused by two factors:

• When throwing with a high projection angle, the shot 
putter must expend a greater effort during the delivery 
phase to overcome the weight of the shot. This reduces 
the projection speed. 

• The structure of the shoulder and arm favours the 
production of putting force in the horizontal direction 
more than in the vertical direction. 

The optimum projection angle for an athlete is obtained 
by combining the speed–angle relation for the athlete 
with the equation for the range of a projectile in free flight. 
For these reasons, the optimum projection angle for shot 
putters is actually around 34° (see Figure 5.6.4).

FIGURE 5.6.2 Valerie 
Adams, of New Zealand, 
is a tall woman, which 
helps her to throw the 
put long distances.

FIGURE 5.6.4 Tomasz 
Majewski from Poland won 
the gold medal for the shot 
put in London 2012 with a 
throw of 21.87 m. He would 
have launched the shot at 
an angle of around 34°.

5.6 Review
SUMMARY

• Projectiles move in parabolic paths that can be 
analysed by considering the horizontal and vertical 
components of the motion.

• If air resistance is ignored, the only force acting on a 
projectile is its weight, that is, the force due to gravity, 
Fg . This results in the projectile having a vertical 
acceleration of 9.8 m s–2 down during its flight. 

• The equations for uniform acceleration: 

v = u + at

s = ut + 
1
2at2 and

v2 = u2 + 2as 

must be used for the vertical component. 

• The horizontal velocity of a projectile remains 
constant throughout its flight if air resistance 
is ignored and vav = s

t
 is used.

• For objects initially launched at an angle to 
the horizontal, it is useful to calculate the 
initial horizontal and vertical velocities using 
trigonometry.

• At its highest point, the projectile is moving 
horizontally. Its velocity at this point is given by 
the horizontal component of its launch velocity. 
The vertical component of the velocity is zero at 
this point.
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FIGURE 5.6.3 A graph showing how 
launch speed is greatest with a 
horizontal launch, and decreases as 
the launch angle increases.
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5.6 Review continued
KEY QUESTIONS

For the following questions, assume that the acceleration 
due to gravity is 9.8 m s–2 and ignore the effects of air 
resistance unless otherwise stated.

1  A javelin thrower launches her javelin at 40° above 
the horizontal. Select the correct statement regarding 
the javelin at the highest point of its path.
A  It has zero acceleration.
B  It has its slowest speed. 
C  There are forwards and downwards forces acting 

on it.
D  There are no forces acting on it since it is in  

free-fall.

2  A child is holding a garden hose at ground level 
and the water stream from the hose is travelling at 
15 m s–1. Which angle to the horizontal will result in 
the water stream travelling the greatest horizontal 
distance through the air?

3  A rugby player kicks for a goal by taking a place kick 
with the ball at rest on the ground. The ball is kicked 
at 30° to the horizontal at 20 m s–1. At its highest 
point, what is the speed of the ball?

4  A basketballer shoots for a goal by launching the ball 
at 15 m s–1 at 25° to the horizontal.
a  Calculate the initial horizontal speed of the ball.
b  What is the initial vertical speed of the ball?
c  What are the magnitude and direction of the 

acceleration of the ball when it is at its maximum 
height?

d  What is the speed of the ball when it is at its 
maximum height?

5  In a shot put event a 2.0 kg shot is launched from a 
height of 1.5 m, with an initial velocity of 8.0 m s–1 
at an angle of 60° to the horizontal. Answer the 
questions below about the motion of the shot put.

1.5 m

8.0 m s–1

60°

a  What is the initial horizontal speed of the shot?
b  What is the initial vertical speed of the shot?
c  How long does it take the shot to reach its 

maximum height?

d  What is the maximum height from the ground that 
is reached by the shot?

e  What is the speed of the shot when it reaches its 
maximum height?

The following information relates to questions 6–11.
A senior physics class conducting a research project on 
projectile motion constructs a device that can launch a 
cricket ball. The launching device is designed so that the 
ball can be launched at ground level with an initial velocity 
of 28.0 m s–1 at an angle of 30.0° to the horizontal. 

30.0°
28.0 m s–1

ground level

6  Calculate the horizontal component of the velocity of 
the ball:
a  initially
b  after 1.0 s
c  after 2.0 s.

7  Calculate the vertical component of the velocity of 
the ball:
a  initially
b  after 1.0 s
c  after 2.0 s.

8  What is the speed of the cricket ball after 2.00 s?

9  What is the speed of the ball as it lands?

10  What horizontal distance does the ball travel before 
landing; that is, what is its range?

11  If the effects of air resistance were taken into 
account, which one of the following statements 
would be correct?
A  The ball would have travelled a greater horizontal 

distance before striking the ground.
B  The ball would have reached a greater maximum 

height.
C  The ball’s horizontal velocity would have been 

continually decreasing.
D  The ball’s vertical acceleration would have 

increased.



191CHAPTER 5   |   NEWTONIAN THEORIES  OF MOTION

5.7 Conservation of energy 
and momentum
Where there are moving objects, there are bound to be collisions. These can range 
from the interaction of sub-atomic particles, to events on a galactic scale. The 
Newton’s cradle depicted in Figure 5.7.1 provides another example of a collision. 
The law of conservation of momentum is a powerful tool with which to analyse this 
motion. The law of conservation of energy is another fundamental principle that 
can be applied to the interactions between objects, as will be seen in this section. 

CONSERVATION OF MOMENTUM 
The product of the mass and velocity of an object is called its momentum, and is 
given by:

p = mv

where p is momentum (kg m s–1)

 m is the mass of the object (kg)

 v is the velocity of the object (m s–1)

Given that velocity is a vector quantity and momentum is calculated from 
velocity, it follows that momentum is also a vector quantity. 

The law of conservation of momentum states that in any collision 
or interaction between two or more objects in an isolated system, the total 
momentum of the system will be conserved (i.e. it will remain constant).  
That is, the total initial momentum is equal to the total final momentum:

Σpi = Σpf

Another way of putting this is that the total change in momentum of the system 
is zero. This is often found by adding up the change in momentum of all the parts 
of the system:

ΣΔp = 0

In Physics, a collision refers to a situation when two objects interact and exert 
action-reaction forces on one another. They do not necessarily have to make physical 
contact. For instance, two identical charged particles could approach and repel one 
another, moving off in opposite directions without ever making physical contact. 

For the system to be ‘isolated’, there should only be internal forces acting 
between the objects, and no interaction with objects outside the system. In reality, 
perfectly isolated systems cannot exist on Earth because of friction and gravity. 
There are, however, many situations when treating a system as isolated is a useful 
approximation.

In the rear-end collision between the car and bus examined in Worked 
example 5.7.1, friction is relatively small compared to the forces exerted by the 
vehicles on one another. Therefore the vehicles can be treated as an isolated system.

FIGURE 5.7.1 Newton’s cradle is a popular 
illustration of almost perfect conservation of 
energy and momentum. As the raised sphere 
loses gravitational potential energy and collides 
with the other spheres, the sphere at the other 
end gains kinetic energy. In the collision, the 
moving sphere transfers its momentum, ejecting 
a sphere with the same momentum from the 
end of the row.

PHYSICSFILE

Discovering the neutrino
Conservation of momentum helped 
scientists discover the neutrino. In the 
1920s it was observed that in a beta 
decay, a nucleus emitted a beta particle 
(an electron emitted from a radioactive 
nucleus). However, when the nucleus 
recoiled, it was not in the opposite 
direction to the emitted electron. Thus 
the momentum of these particles did 
not comply with the law of conservation 
of momentum. In 1930 Wolfgang Pauli 
determined that another particle must 
also have been emitted in order to 
conserve the total momentum of the 
system. This particle, the neutrino, was 
not detected experimentally until 1956. 
As you read this, billions of neutrinos 
are passing through your body and the 
Earth!



AREA OF STUDY 3   |   HOW FAST CAN THINGS GO?192

Worked example 5.7.1

CONSERVATION OF MOMENTUM 

In a rear-end collision on a freeway, a car of mass 1.0 x 103 kg travelling east 
at 20 m s–1 crashes into the back of a bus of mass 5 x 103 kg travelling east at 
8.0 m s–1. Answer the following questions, assuming the car and bus lock together 
on impact, and ignoring friction. 

a  Calculate the final common velocity of the vehicles.

Thinking Working

First assign a direction that will be 
considered positive.

In this case we will consider vectors 
directed eastwards to be positive.

Use the law of conservation of 
momentum.

Σpi = Σpf

mcuc + mbub = (mc + mb)v

1.0 × 103 × 20.0 + 5.0 × 103 × 8.0 = 

(1.0 × 103 + 5.0 × 103) × v

60 × 103 = 6.0 × 103 × v

v = 10 m s–1 east

b  Calculate the change in momentum of the car.

Thinking Working

The change in momentum of the car 
is its final momentum minus its initial 
momentum.

∆pc = pc(final) – pc(initial)

= mc (v – uc)

= 1.0 × 103 (10 – 20)

= –1.0 × 104 kg m s–1

That is, ∆pc = 1.0 × 104 kg m s–1 west

c  Calculate the change in momentum of the bus.

Thinking Working

The change in momentum of the bus 
is its final momentum minus its initial 
momentum.

∆pb = pb(final) – pb(initial)

= mb (v – ub)

= 5.0 × 103 (10 – 8.0)

= 1.0 × 104 kg m s–1

That is, ∆pb = 1.0 × 104 kg m s–1 east

d  Verify that the momentum of the system is constant.

Thinking Working

The total change in momentum is 
the vector sum of the momentum 
changes of the parts. This is expected 
to be zero from the conservation of 
momentum.

∆pc + ∆pb = –1.0 × 104 + 1.0 × 104 = 0

Therefore the momentum of the 
system is constant (i.e. conserved) 
as expected.

Worked example: Try yourself 5.7.1

CONSERVATION OF MOMENTUM 

In a head-on collision on a freeway, a car of mass 1.0 × 103 kg travelling east 
at 20 m s–1 crashes into a bus of mass 5.0 × 103 kg travelling west at 8.0 m s–1. 
Assume the car and bus lock together on impact, and ignore friction. 

a  Calculate the final common velocity of the vehicles. 

b  Calculate the change in momentum of the car.
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c  Calculate the change in momentum of the bus.

d  Verify that the momentum of the system is constant.

CONSERVATION OF MOMENTUM FROM NEWTON’S LAWS 
The principle of conservation of momentum follows directly from Newton’s second 
and third laws, as illustrated in the tenpin bowling example that follows. 

A bowling ball has mass mb and initial velocity ub. It collides with the stationary 
pin of mass mp.

The ball and pin exert action–reaction forces on one another. In doing so, 
the velocity of the ball changes and the pin gains a final velocity vp as shown in 
Figure 5.7.2.

When the ball and pin collide as shown in the middle diagram of Figure 5.7.2, 
they exert action–reaction forces on one another, and according to Newton’s 
third law:

Fon b by p = −Fon p by b

The forces cause the ball to decelerate and the pin to accelerate, so from 
Newton’s second law, F = ma:

mb ab = −mp ap

The ball and pin are in contact for time Δt, and so rewriting acceleration in 
terms of velocity gives:

mb 
(vb – ub)

∆t
 = −mp 

(vp – up)
∆t

The times are the same and so they cancel, hence:
mb (vb − ub ) = −mp (vp − up)
Expanding and rearranging gives:
mb vb + mp vp = mb ub + mp up

Swap sides as the convention is to write the initial momenta on the left and the 
final momenta on the right. This gives:

mb ub + mp up = mb vb + mp vp

The left-hand side of the equation above describes the initial momentum of the 
system while the right-hand side represents the final momentum of the system.

Thus the application of Newton’s second and third laws has produced the 
conservation of momentum equation:

Σpi = Σpf

PHYSICSFILE

Not so strongman
Traditionally, circus strongmen would often perform a feat where they place a large 
rock on their chest, then allow another person to smash the rock with a sledgehammer. 
This might seem at first to be an act of extreme strength and daring. However, a 
quick analysis using the principle of conservation of momentum will show otherwise. 
Assume that the rock has a mass of 12 kg and that the sledgehammer of mass 3 kg 
strikes it at 5 m s–1. Using conservation of momentum, we can show that the rock and 
sledgehammer will move together at just 1 m s–1 after the impact: 

m1 u1 + m2 u2 = (m1 + m2)v

3 × 5 + 12 × 0 = (3 + 12) × v

15 = 15v

v = 1 m s–1

The large mass of the rock has dictated that the final common speed is too low to 
hurt the strongman. A more daring feat would be to use the sledgehammer to smash 
a pebble!

Fb Fp

vpvbub

up = 0

Fb Fp

vpvbub

up = 0

Fb Fp

vpvbub

up = 0

FIGURE 5.7.2 When a bowling ball collides with 
a pin, they exert equal but opposite forces on 
each other. These forces cause the ball to lose 
some momentum and the pin to gain an equal 
amount of momentum.
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CONSERVATION OF ENERGY 
Energy comes in many forms, such as heat, light, sound, chemical energy and 
electrical energy. It is a scalar quantity and is measured in joules (J). Energy is also 
associated with the motion and position of an object, and this energy is called the 
mechanical energy of the object. In the motion problems of this chapter, moving 
objects have been described as having kinetic energy. An object can also have 
stored or gravitational potential energy because of its position. For instance, a 
building crane lifting a steel beam several stories has given the beam gravitational 
potential energy that could be disastrously converted to kinetic energy if the lifting 
chain were to break and the beam were to accelerate under gravity. 

The changing of gravitational potential energy to kinetic energy is an illustration 
of the law of conservation of energy, a fundamental principle of nature. The 
law of conservation of energy states that energy is not created or destroyed, but 
can only change from one form to another, or in other words, transform. As the 
gravitational potential energy of the beam decreases, its kinetic energy increases. 
The total amount of mechanical energy remains constant.

While energy is not ever destroyed, it may be dissipated in forms that are 
not easily recoverable. For instance, the kinetic energy of a vehicle is reduced as 
it encounters friction, causing heating of the tyres, or in the deformation of the 
bodywork should it collide with another object. The mechanical energy before and 
after a collision is only the same under ideal conditions, but in many cases it is a 
useful approximation.

Gravitational potential energy 
The energy that an object gains due to its position in a gravitational field is called 
the gravitational potential energy. Close to the surface of the Earth this is given by:

Eg = mg∆h

where Eg is the gravitational potential energy gained or lost (J)

 m is the mass of the object (kg)

 g is the gravitational field strength (N kg–1)

 ∆h is the change in height of the object (m)

Kinetic energy 
The energy of motion depends on the mass of the object and its speed: 

Ek = 
1
2 mv2

where Ek is the kinetic energy of the object in motion (J)

 m is the mass of the object (kg)

 v is the speed of the object (m s–1)

Problems combining gravitational potential and 
kinetic energy 
Energy is a scalar quantity; hence it can be easier to work with compared with vector 
quantities. Therefore it is worth analysing a problem to see if calculations involving 
energy are possible before using techniques involving forces and other vectors.

The speed of an object can be determined from its kinetic energy, even if its 
mass is unknown. This is best demonstrated by an example.
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Worked example 5.7.2

CONSERVATION OF ENERGY 

Consider a rollercoaster with a lift hill of height 25.0 m and a loop height of 
18.0 m as shown in the figure below. At the top of the lift hill, the rollercoaster 
car has zero velocity; then it begins to roll down the hill. Calculate the speed of 
the car at point P on the loop, when the car is 6 m above the ground. Assume 
friction is negligible.

6 m

18 m
25 m

v = ?

P

Thinking Working

Find the total mechanical energy, 
Em , of the cart from the gravitational 
potential energy at the lift hill at the 
start of the ride.

Eg = mg∆h

= (m × 9.8 × 25)

= 245m J

Ek = 0

so Em = 245m J 

At point P, Em consists of gravitational 
potential energy and kinetic energy. 
Write a statement for Em at point P.

Em = (m × 9.8 × 6) + 
1
2 mv2

= 58.8m + 
1
2 mv2

Equate the two statements for Em .
245m = 58.8m + 

1
2 mv2

Cancel m from both sides and 
rearrange.

245 = 58.8 + 
1
2 v2

(245 – 58.8) × 2 = v2

Solve for the speed. v = 19 m s–1

Worked example: Try yourself 5.7.2

CONSERVATION OF ENERGY 

Use the law of conservation of energy to determine the height of the lift hill 
required to ensure that the speed of the car at the top of the 18.0 m loop is 
25.0 m s–1. Assume that the velocity of the car at the top of the lift hill is zero; 
then it begins to roll down the hill.

18 m
h = ?
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5.7 Review
SUMMARY

• The momentum of an object is the product of 
its mass and its velocity: p = mv. Momentum is 
measured in kg m s–1 or N s.

• The total momentum of an isolated system is 
conserved. Therefore, the vector sum of momentum 
of the parts of a system before a collision is equal 
to the total momentum after the collision: Σpi = Σpf .

• In a simple collision between two objects of mass 
m1 and m2 this becomes:

m1u1 + m2u2 = m1v1 + m2v2

• Energy is not created or destroyed, but merely 
transformed. This is called the law of conservation 
of energy.

• Energy is a scalar quantity and is measured in 
joules (J).

• The energy an object has because of its position in 
a gravitational field is called gravitational potential 
energy. Close to the surface of the Earth this may 
be found from:

Eg = mg∆h

• The energy of movement is called kinetic energy 
and is calculated using:

Ek = 
1
2 mv2

• Because it is simpler to work with scalars, it is 
often helpful to solve motion problems using 
energy considerations.

KEY QUESTIONS

1  Two billiard balls are rolled very carefully from 
opposite ends of a pool table. They collide in the 
middle and both balls come to rest. Has momentum 
been conserved in this system? Explain your answer.

2  A 175 kg sumo wrestler running east with a speed of 
3.5 m s–1 crashes into an opponent of mass 100 kg 
running in the opposite direction at 5.0 m s–1. The 
two wrestlers collide while in mid-air, and remain 
locked together after the collision. Calculate their 
final velocity.

3  A 110 kg ice hockey player travelling at 15 m s–1 
collides with a player of mass 90 kg who is travelling 
at 5.0 m s–1 towards him. The two players remain 
locked together after the collision as they slide across 
the ice. Ignoring friction, find their joint speed.

The following information applies to questions 4 and 5.
A sports car of mass 1.0 × 103 kg travelling east 
at 36 km h–1 approaches a station wagon of mass 
2.0 × 103 kg moving west at 18 km h–1.

4 a  Calculate the momentum of the sports car.
b  Calculate the momentum of the station wagon.
c  Determine the total momentum of these vehicles.

5  These two vehicles now collide head-on on an icy 
stretch of road where there is negligible friction. 
The vehicles remain locked together after the collision.
a  Calculate the common velocity of the two vehicles 

after the collision.
b  Where has the initial momentum of the 

vehicles gone?
c  Determine the change in momentum of the 

sports car.
d  Determine the change in momentum of the 

station wagon.

6  A 200 g snooker ball travelling with initial velocity 
9.0 m s–1 to the right collides with a stationary ball 
of mass 100 g. If the final velocity of the 200 g ball 
is 3.0 m s–1 to the right, calculate the velocity of the 
100 g ball after the collision.

7  A 1000 kg cannon mounted on wheels fires a 10.0 kg 
shell with a horizontal speed of 500 m s–1. Assuming 
that friction is negligible, calculate the recoil velocity 
of the cannon.

8  An arrow of mass 100 g is fired with an initial 
horizontal velocity of 40 m s–1 to the right at an apple 
of mass 80 g that is initially at rest on a horizontal 
surface. When the arrow strikes the apple, the two 
objects stick together. What is the common velocity 
of the arrow and apple after the impact?

9  A 40.0 g bullet is fired into the air with a muzzle 
velocity of 370 m s–1. Calculate the kinetic energy 
of the bullet as it leaves the firearm.

10  Calculate the gravitational potential energy that a 
40.0 g bullet has when it has travelled 1000 m up 
into the air after having been fired from a gun. 

11  A boy throws a 157 g cricket ball up into the air. 
It leaves his hand at a speed of 20.5 m s–1.
a  Calculate the kinetic energy of the ball as it leaves 

the boy’s hand.
b  What is the gravitational potential energy at the 

top of its flight, if air resistance is ignored?
c  Calculate the maximum height reached, if air 

resistance is ignored.
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Chapter review

KEY TERMS

air resistance
banked track
centripetal acceleration
centripetal force
conserved
design speed
free fall
frequency
gravitational potential 

energy

inclined plane
isolated system
kinetic energy
law of conservation 

of energy
law of conservation 

of momentum 
magnitude
mechanical energy
momentum

normal reaction force
period
projectile
tangential
transform

1  Diana rolls a bowling ball down a smooth straight 
ramp. Choose the option below that best describes 
the way the ball will travel.
A  with constant speed
B  with constant acceleration
C  with decreasing speed
D  with increasing acceleration

2  Two blocks are joined by a string that passes over a 
frictionless pulley. One of the blocks is placed on a 
frictionless table and the other is free to fall. The block 
on the table has a mass of 5 kg and the falling block 
has a mass of 10 kg.
a  At what rate do the blocks accelerate?
b  What is the magnitude of the tension in the string?

3  A 1000 kg car tows a 200 kg trailer along a level 
surface with an acceleration of 2.5 m s–2. The frictional 
drag on the car is 800 N and the drag on the trailer is 
700 N. Calculate the thrust provided by the car engine 
to give this acceleration.

4 A bowling ball is rolling down a smooth track that is 
inclined at 30° to the horizontal. 
a  What is the magnitude of the acceleration of 

the ball? 
b  How does the magnitude of the normal force that 

acts on the ball compare to its weight?

5  A marble is rolled from rest down a smooth slide that 
is 2.5 m long. The slide is inclined at an angle of 30° 
to the horizontal.
a  Calculate the acceleration of the marble.
b  What is the speed of the marble as it reaches the 

end of the slide?

6  Marshall has a mass of 57 kg and he is riding his 
3.0 kg skateboard down a 5.0 m long ramp that is 
inclined at an angle of 65° to the horizontal. Ignore 
friction when answering questions a to d.
a Calculate the magnitude of the normal force acting 

on Marshall and his skateboard.

b What is the acceleration of Marshall as he travels 
down the ramp?

c What is the net force acting on Marshall and his 
board when no friction acts?

d If Marshall’s initial speed is zero at the top of the 
ramp, calculate his final speed as he reaches the 
bottom of the ramp.

e Marshall now stands halfway up the incline while 
holding his board in his hands. Friction now acts 
on Marshall. Calculate the frictional force acting 
on Marshall while he is standing stationary on 
the ramp.

7  The highest waterslide in the world is in the United 
States of America. It is 50.0 m tall and is inclined 
at an angle of 70° to the horizontal. It is known that 
riders reach a speed of 100 km h–1 on this slide. 
Do not assume friction is negligible.
a For a 70.0 kg teenager using the slide, calculate the 

net force on the teenager as he slides. 
b For the same teenager, calculate the magnitude of 

the average frictional force opposing the motion.
c If the friction acts on the teenager to slow him 

down, what is the reaction force to this?
d What is the reaction force to the teenager’s 

weight force?
The following information applies to questions 8 and 9.
During a high-school physics experiment, a copper ball 
of mass 25.0 g was attached to a very light piece of steel 
wire 0.920 m long and whirled in a circle at 30.0˚ to the 
horizontal, as shown in diagram (a). The ball moves in a 
circular path of radius 0.800 m with a period of 1.36 s. 
The top view of the resulting motion of the ball is shown 
in diagram (b).
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8 a  Calculate the orbital speed of the ball.
b  What is the centripetal acceleration of the ball?
c  What is the magnitude of the centripetal force 

acting on the ball?

9  a   Draw a diagram similar to diagram (a) that shows 
all the forces acting on the ball at this time.

b  What is the magnitude of the tension in the wire?

10  A radio-controlled car is travelling in a circular path 
of radius 10 m at a constant speed of 5.0 m s–1. 
a  What is the acceleration of the toy car?
b  What force is creating the circular motion of 

the car? 

11  The Moon orbits the Earth once in 27.3 days in a 
circular orbit of radius 3.84 × 108 m. 
a  Calculate the orbital speed of the Moon.
b  Calculate the net force keeping the Moon in orbit 

if the mass of the Moon is 7.36 x 1022 kg.

12  A geostationary communications satellite is at an 
altitude of 3.60 × 104 m. The Earth has an average 
radius 6.37 × 106 m and a period of rotation of 
23 hours, 56 minutes and 5 seconds. Calculate the 
centripetal acceleration of the satellite. 

13  A car of mass 1500 kg is driven at constant speed 
of 10 m s–1 around a level, circular roundabout. 
The centre of mass of the car is always 20 m from 
the centre of the track. 

Y

20 m XZ

N

W E

S

a  What is the velocity of the car at point X?
b  What is the speed of the car at point Y?
c  What is the period of revolution for this car?
d  What is the acceleration of the car at point X?
e  Determine the size and direction of the unbalanced 

frictional force acting on the tyres at point X.

14  A proton moves into a region of uniform magnetic 
field 0.250 T directed perpendicular to the velocity 
vector. If it travels into the field at 3.50 × 106 m s–1, 
calculate the radius of curvature of its path. Note that: 
mp = 1.67 × 10–27 kg and q = 1.60 × 10–19 C.

15  A track cyclist is riding at high speed on the steeply 
banked section of a velodrome (θ = 37°). Which 
statement describes the size of the normal force 
acting on the cyclist at this point? 
A  greater than the weight of the cyclist
B  zero
C  less than the weight of the cyclist
D  equal to the weight of the cyclist

16  A cycling track has a turn that is banked at 40° to 
the horizontal. The radius of the track at this point is 
30 m. Determine the speed at which a cyclist of mass 
60 kg would experience no sideways force on their 
bike as they ride this section of track.

17  The Ferris wheel at an amusement park has an arm 
radius of 10 m and its compartments move with a 
constant speed of 5.0 m s–1.
a  Calculate the normal force that a 50 kg boy would 

experience from the seat when at the:
i  top of the ride
ii  bottom of the ride.

b  After getting off the ride, the boy remarks to a 
friend that he felt lighter than usual at the top of 
the ride. Which option explains why he might feel 
lighter at the top of the ride?
A  He lost weight during the ride.
B  The strength of the gravitational field was weaker 

at the top of the ride.
C  The normal force there was larger than the 

gravitational force.
D  The normal force there was smaller than the 

gravitational force.

18  As part of a demonstration, a teacher swings a bucket 
half-filled with water in a vertical circle at high speed. 
No water spills from the bucket even when it passes 
the overhead position. Discuss the forces acting on 
the water when the bucket is directly overhead and 
indicate their directions. Indicate the direction and 
relative size of the water’s acceleration as it passes 
this position.

Chapter review continued
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19  A toy car is moving at 2.5 m s–1 as it rolls off a 
horizontal table. The car takes 1.0 s to reach the floor. 
a  How far does the car land from the foot of 

the table? 
b  What are the magnitude and direction of 

acceleration when the car is halfway to the floor? 

20  A bowling ball of mass 7.5 kg travelling at 10 m s–1 
rolls off a horizontal table that is 0.97 m high. 
Answer the questions below about the motion of the 
bowling ball.
a What is the horizontal speed of the ball as it strikes 

the floor?
b What is the vertical speed of the ball as it strikes 

the floor?
c Calculate the speed of the ball as it reaches 

the floor.

21  In a tennis match, a tennis ball is hit from a height of 
1.2 m  with an initial velocity of 16 m s–1 at an angle 
of 50° to the horizontal. Ignore drag forces for the 
following questions.
a  What is the initial horizontal speed of the ball? 
b  What is the initial vertical speed of the ball?
c  What is the maximum height that the ball reaches 

above the court surface? 

22  An orange of mass 100 g is tossed horizontally at 
6.0 m s–1 from a height of 2.0 m. Ignore air resistance 
and use g = 9.8 m s–2 when answering these 
questions.
a What is the initial kinetic energy of the orange?
b Calculate the initial potential energy of the orange.
c What is the speed of the orange as it lands?

The following information applies to questions 23–26.
A 50 kg boy stands on a 200 kg sled that is at rest on a 
frozen pond. The boy jumps off the sled with a velocity 
of 4.0 m s–1 east. 
After the boy has jumped off, he turns around and skates 
after the sled, jumping on with a horizontal velocity of 
4.4 m s–1 west.

23 a   What is the total momentum of the boy and the 
sled before he jumps off?

b  What is the momentum of the boy after he jumps?
c  What is the momentum of the sled after he has 

jumped?

24  Assuming the pond surface is frictionless, calculate 
the velocity of the sled just before he jumps on?

25  What is the speed of the boy once he is on the sled?

26  As the boy jumps on the sled, what change in 
momentum is experienced by the:
a  sled
b  boy?





CHAPTER

Galileo and Newton laid the foundations of the ‘clockwork universe’, a mechanical 
picture of the world which has underpinned most modern world views. Einstein, 
along with others such as Bohr and Heisenberg, presented a much richer and more 
mysterious universe, one that challenges people to think beyond the mechanical 
picture they so often take for granted.

In this chapter, you will explore the concepts of classical physics, as described by 
Galileo and Newton, and the evidence that pointed towards the need for some 
different thinking. Einstein’s special relativity is presented as a solution to the 
problem of classical physics at speeds approaching the speed of light.

Key knowledge 
By the end of this chapter, you will have covered material from the study of relativity 
and will be able to:

• describe Einstein’s two postulates for his theory of special relativity that:
 - the laws of physics are the same in all inertial (non-accelerated) frames of 
reference

 - the speed of light has a constant value for all observers regardless of their 
motion or the motion of the source

• compare Einstein’s theory of special relativity with the principles of classical physics
• describe proper time (t0) as the time interval between two events in a reference 

frame where the two events occur at the same point in space
• describe proper length (L0) as the length that is measured in the frame of 

reference in which objects are at rest
• model mathematically time dilation and length contraction at speeds approaching 

c using the equations: t = t0γ  and L = L0
γ  

 
where γ  = (1− v

2

c2)− 1
2

• explain why muons can reach Earth even though their half-lives would suggest 
that they should decay in the outer atmosphere.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Special relativity 
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6.1 Einstein’s theory of  
special relativity
Galileo and Newton developed theories of motion. These theories allowed the 
relative motion of low-speed objects to be modelled mathematically. This section 
presents the observations that challenged Galilean relativity and Newtonian physics, 
and explains the key principles that led to the new physics described by Albert 
Einstein (see Figure 6.1.1), known as the theory of special relativity.

FIGURE 6.1.1 Albert Einstein statue in Washington, D.C.

EINSTEIN’S BRILLIANT THEORY 
When Albert Einstein was just 5 years old, his father gave him a compass. He was 
fascinated by the fact that it was responding to some invisible field that enveloped 
the Earth. His curiosity was aroused and, fortunately for physics, he never lost it. In 
his teens he turned his attention to the question of light (see Figure 6.1.2). 

Perhaps it was lucky that in his early twenties Einstein was not part of the physics 
‘establishment’. He was working as a patent clerk in the Swiss Patent Office. It was 
an interesting enough job, but it left him time to think about electromagnetic waves 
(light) and their relationship to the Galilean principle of relativity. 

Galileo was particularly interested in relative motion. One of his famous 
experiments involved the dropping of a cannon ball from the top of the mast of 
a moving ship. Galileo found that the motion of the cannon ball was not affected 
by the motion of the ship; the cannon ball landed next to the base of the mast. His 
principle of relativity was that you cannot tell if you are moving or not without 
looking outside of your own frame of reference. 

Based on the work of Galileo, Isaac Newton established detailed models for 
the motion of objects such as planets, moons and comets, even falling oranges. 
According to his equations, the velocity of objects can be calculated relative to any 
frame of reference as long as the velocity of the frame of reference is known. The 
Newtonian principle that the velocities of objects and frames of reference can be 
added together to determine the velocity of the object in another frame of reference 
is common throughout his equations and laws. 

Consider an object moving in a frame of reference, A. This frame of reference is 
moving in another frame of reference, B. The velocity of the object in B is given by: 

vobject in B = vobject in A + vA in B

What would it 
be like to ride 
a light wave?

FIGURE 6.1.2 Einstein as a teenager.
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A practical example of this could be when a person runs forward on a train. 
Here, the train is frame of reference A and the track along which the train moves is 
frame B. Imagine that the person runs at 5 m s-1 forwards, while the train travels at 
a velocity of 20 m s-1 forwards. The velocity of the person relative to B, the track, is:

 vperson along track = vperson in train + vtrain along track

 = 5 + 20
 = 25 m s–1

That is, the person is moving with a velocity of 25 m s−1 forwards when measured 
against the track.

Einstein was a typical theoretician; the only significant experiments he ever 
did were thought experiments, or Gedanken experiments, as they are called in 
German. Many of his Gedanken experiments involved thinking of situations that 
involved two frames of reference moving with a steady relative velocity, in which the 
principles of Galilean relativity applied. Newton had referred to these as inertial 
frames of reference, as the law of inertia applied within them.

Einstein and Galilean relativity
Einstein decided that the elegance of the principle of Galilean relativity was such 
that it simply had to be true. Nature did not appear to have a special frame of 
reference, and Einstein could see no reason to believe that there was one waiting to 
be discovered. In other words, there is no such thing as an absolute velocity. It is not 
possible to have a velocity relative to space itself, only to other objects within space. 
So the velocity of any object can always be stated as relative to some other object. 
In the case of the person running on the train, their velocity can be stated as either 
5 m s−1 relative to the train or 25 m s−1 relative to the track. 

Einstein expanded the Galilean principle to state that all inertial frames of 
reference must be equally valid, and that the laws of physics must apply equally in 
any frame of reference that is moving at a constant velocity. So there is no physics 
experiment you can do that is entirely within a frame of reference that will tell you 
that you are moving. In other words, as you speed along in your Gedanken train with 
the blinds down, you cannot measure your speed. You can tell if you are accelerating 
easily enough: just hang a pendulum from the ceiling. However, the pendulum will 
hang straight down whether you are travelling steadily at 100 km h−1 or are stopped at 
the station. Consider Figure 6.1.3(a) and (b). There is no way of telling which of the 
trains is stationary relative to the ground, or which is moving at a constant velocity.

(a) (b)

(c) (d)

FIGURE 6.1.3 There is no observation or experiment that shows the difference between two inertial 
frames of reference (a) and (b). In one of the situations illustrated, the train is stationary, and in the 
other it is moving smoothly at 100 km h–1. There is no observation that will tell which one is which. 
In (c) and (d), the motion of the handles hanging from the ceiling of the train indicate that these 
trains are not moving at a constant speed.
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Einstein decided that the relativity principle could not be abandoned. Recall 
that Einstein was, at the time, thinking about the relationship between light and 
relativity. Whatever the explanation for the strange behaviour of light, it could not 
be based on a flaw in the principle of Galilean relativity.

Einstein’s fascination with the nature of light had led him to a deep understanding 
of Maxwell’s work on the electromagnetic nature of light waves. He was convinced 
of the elegance of Maxwell’s equations and their prediction of a constant speed 
of light. Most physicists believed that the constant speed predicted by Maxwell’s 
equations referred to the speed of light relative to a medium (a substance it 
travelled through). It was thought that the speed predicted would be the speed 
in the medium in which light travelled, and the measured speed would have to be 
adjusted for one’s own speed through that medium. 

As light travelled through the vacuum of space between the Sun and Earth, 
clearly the medium was no ordinary material. Physicists gave it the name aether, 
as it was an ‘ethereal’ substance. It was thought, following Maxwell’s work, that 
the aether must be some sort of massless, rigid medium that ‘carried’ electric and 
magnetic fields.

This was a real problem for Einstein. A speed of light that is fixed in the aether 
and which depended on the velocity of an inertial frame in the aether would be in 
direct conflict with the principle of Galilean relativity, which Einstein was reluctant 
to abandon.

Resolving the problem of the aether
As in any conflict, the resolution is usually found by people who are prepared 
to look  at it in new ways. This was the essence of Einstein’s genius. Instead of 
looking  for  faults in what appeared to be two perfectly good principles of 
physics, he decided to see what happened if they were both accepted, despite the 
apparent contradiction.

So Einstein swept away the problem of the aether, saying that it was simply 
unnecessary. It had been invented only to be a medium for light waves, and no 
one had found any evidence for its existence (refer to the Extension box on 
page 205). Electromagnetic waves, he said, could apparently travel through empty 
space without a medium. Doing away with the aether, however, did not solve the 
basic conflict between the absolute speed of light and the principle of relativity. 

EINSTEIN’S THEORY OF SPECIAL RELATIVITY 
Though Einstein accepted both Galileo’s and Maxwell’s theories despite the 
apparent contradiction, this still left the question: How could two observers 
travelling at different speeds see the same light beam travelling at the same speed? 
The answer, Einstein said, was in the very nature of space and time. 

In 1905 he sent a paper to the respected physics journal Annalen der Physik 
entitled ‘On the electrodynamics of moving bodies’. In this paper he put forward 
two simple postulates (statements assumed to be true) and followed them to their 
logical conclusion. It was this conclusion that was so astounding.

Einstein’s two postulates:

• The laws of physics are the same in all inertial (non-accelerated) frames 
of reference.

• The speed of light has a constant value for all observers regardless of their 
motion or the motion of the source.

(The first postulate means that there is no preferred frame of reference and so is 
sometimes stated as: no law of physics can identify a state of absolute rest.)
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EXTENSION

The Michelson–Morley experiment
The existence of an aether appeared to be a serious blow 
for the principle of relativity. It seemed that there may be 
after all, a frame of reference attached to space itself. If 
this was the case, there was the possibility of an absolute 
zero velocity. 

Scientists needed to test the idea of electromagnetic 
waves moving through the aether. Since the Earth is in 
orbit around the Sun, an aether wind should be blowing 
past the Earth. This suggested to American physicist 
Albert Michelson that it should be possible to measure the 
speed at which the Earth was moving through the aether 
by measuring the small changes in the speed of light as 
the Earth changed its direction of travel. For example, if 
the light was travelling in the same direction as the Earth, 
through the aether, the apparent speed should be slower 
than usual at c − v (see Figure 6.1.4). It would be as if the 
light was travelling against an aether ‘wind’ created by the 
motion of the Earth through it. If the light was travelling 
against the Earth’s motion, the apparent speed should 
be faster as it would be travelling with the ‘wind’ at c + v 
(see Figure 6.1.4). The differences would be tiny, less 
than 0.01%, but Michelson was confident that he could 
measure them. 

In the 1880s Michelson, and his collaborator Edward 
Morley, set up a device known as an interferometer. The 
device cannot measure the speed of light but it can detect 

changes in the speed of light that might have been due to 
the aether wind. In fact, it was used to attempt to measure 
the very small differences in the time taken for light to 
travel in two mutually perpendicular directions. They were 
able to rotate the whole apparatus and hoped to detect the 
small difference that should result from the fact that one 
of the directions was to be the same as that in which the 
Earth was travelling and the other at right angles. However, 
they found no difference. Perhaps, then, the Earth at that 
time was stationary with respect to the aether? Six months 
later, however, when the Earth would have to be travelling 
in the opposite direction relative to the aether, there was 
still no difference in the measured speeds! Other people 
performed similar experiments, virtually always with the 
same null result. Whatever direction the Earth was moving 
it seemed to be at rest in the aether. Or perhaps there was 
no aether at all.

While Michelson and Morley’s results were consistent with 
Maxwell’s prediction that the speed of light would always 
appear to be the same for any observer, the apparent 
absurdity of such a situation led most physicists to believe 
that some flaw in the theory behind the experiment, or in 
its implementation, would soon be discovered. Einstein, 
however, wondered about the consequences of actually 
accepting their prediction about the speed of light but at 
the same time holding on to the relativity principle. 

Earth

Sun

c + v
c – v

v

FIGURE 6.1.4 The basic principle of the Michelson–Morley experiment. If the aether is fixed relative to the Sun, and the light is travelling at c 
relative to the aether and in the same direction as the Earth, the apparent speed should be less than c, i.e. c – v. If the light was travelling in the 
opposite direction to Earth it should appear faster than c, i.e. c + v. 
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Einstein’s postulates 
The first postulate is basically that of Newton, but Einstein extended it to include 
the laws of electromagnetism, so elegantly expressed by Maxwell. The second 
postulate simply takes Maxwell’s prediction about the speed of electromagnetic 
waves in a vacuum at face value. 

These two postulates sound simple enough; the only problem was that, according 
to early Newtonian physics, they were contradictory. 

Consider the example illustrated in Figure 6.1.5. Binh is in his spaceship 
travelling away from Clare at a speed v, and Clare turns on a laser beam to signal 
Binh. The first postulate seems to imply that the speed of the laser light, as measured 
by Binh, should be c − v, where c is the speed of light in Binh’s frame of reference. 
This is what you would expect if, for example, you were to measure the speed of 
sound as you travel away from its source; as your velocity gets closer to the speed of 
sound, the slower the sound waves appear to be travelling. 

C

Still c

FIGURE 6.1.5 Einstein’s two postulates are seemingly contradictory. His first postulate indicates that 
the speed of the laser light, as measured by Binh, should be c – v, whereas his second postulate 
indicates it should be c. Einstein revisited Newton’s assumptions to resolve this problem.

The second postulate, however, tells you that when Binh measures the speed of 
Clare’s laser light, he will find it to be c; that is, 3.00 × 108 m s-1. So at first glance, 
these two postulates appear to be mutually exclusive. To resolve this problem, 
Einstein went back to the assumptions on which Newton based his theories.

Newton’s assumptions
In 1687, Isaac Newton published his famous Principia. At the start of this incredible 
work, which was the basis for all physics in the following two centuries and beyond, 
he notes the following assumptions.

The following two statements are assumed to be evident and true:
• Absolute, true, and mathematical time, of itself, and from its own nature, flows equably 

without relation to anything external.
• Absolute space, in its own nature, without relation to anything external, remains 

always similar and immovable.



207CHAPTER 6   |   SPECIAL RELATIVITY 

Newton based all of his laws on these two assumptions: that space and time are 
constant, uniform and straight. So according to Newton, space is like a big set of 
xyz axes that always have the same scale, and in which distances can be calculated 
exactly according to Pythagoras’ theorem. You expect a metre rule to be the same 
length whether it is held vertically or horizontally, north–south or east–west, in your 
classroom or in the International Space Station.

In this space, time flows on at a constant rate, which is the same everywhere. 
One second in Perth is the same as one second in Melbourne, and one second on 
the ground is the same as one second up in the air. 

Einstein realised that the assumptions that Newton made may not be valid, at 
least not on scales involving huge distances and speeds approaching the speed of 
light. The only way in which Einstein’s two postulates can both be true is if both 
space and time are not fixed and unchangeable.

Einstein’s Gedanken train
To illustrate the consequences of accepting the two postulates he put forward, 
Einstein discussed a simple thought experiment. It involves a train, moving at a 
constant velocity. 

Amaya and Binh have boarded Einstein’s Gedanken train and Clare is outside 
on the platform (refer to Figure 6.1.6). This train has a flashing light bulb set right 
in the centre of the carriage. Amaya and Binh are watching the flashes of light as 
they reach the front and back walls of the carriage. They find that the flashes reach 
the front and back walls at the same time, which is not surprising. Outside, Clare 
is watching the same flashes of light. Einstein was interested in when Clare saw the 
flashes reach the end walls.

To appreciate Einstein’s ideas, you need to contrast them with what you would 
normally expect. Consider a situation in which Amaya and Binh are rolling balls 
towards opposite ends of a train carriage. It is important to appreciate that, while 
Clare, the outside observer, sees the ball’s velocity differently from Amaya and 
Binh, the times at which various events (balls hitting the ends of the carriage) occur 
must be the same.

If you had discussed a pulse of sound waves travelling from the centre of the 
train, you would find exactly the same result: Clare always agrees with Amaya and 
Binh that the time taken for balls, or sound waves, to reach the end walls is the same. 
But what about light?

Einstein’s second postulate tells you that all observers see light travel at the same 
speed. Amaya, Binh and Clare will all see the light travelling at 3.00 × 108 m s–1; 
they do not add or subtract the speed of the train.

If Clare sees the light travelling at the same speed in the forward and backward 
directions, she will see the light reach the back wall first (refer to Figure 6.1.7). 
This is because that wall is moving towards the light, whereas the front wall is 
moving away from the light, and so the light will take longer to catch up to it. This is 
against the principles of Newtonian physics. Amaya and Binh saw the light flashes 
reach the ends of the carriage at the same time; Clare saw them reach the walls at 
different times. 

The idea that two events that are simultaneous (occur at the same time) for 
one set of observers but are not simultaneous for another is outrageous.

Simultaneity and spacetime
The big difference between the situation for light, and that for balls or sound, 
is  the  strange notion that both sets of observers see the speed of light as 
exactly the same. The velocity of a thrown ball or the velocity of sound in Amaya 
and Binh’s frame of reference will always be different from that in Clare’s frame 
of reference by exactly the velocity of the train. For light, however, there is no 
difference. As a result, events that are simultaneous for one set of observers are not 
simultaneous for the others. This is a very strange situation that is referred to as a 
lack of simultaneity.

A
c

l l

c 
vtrain

FIGURE 6.1.6 Amaya and Binh see the light take 
the same time, l

c
 seconds, to reach the front 

and back walls.

vtrain

FIGURE 6.1.7 Clare sees the light reach the back 
wall first, and then the front wall.
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While Einstein’s Gedanken experiments are purely hypothetical, other 
experiments based on these ideas are well within the capacity of modern experimental 
physics. In all cases they confirm Einstein’s ideas to a high degree of accuracy.

Einstein said that the only reasonable explanation for how two events that were 
simultaneous to one set of observers were not simultaneous to another, is that time 
itself is behaving strangely. The amount of time that has elapsed in one frame of 
reference is not the same as that which has elapsed in another (see Figure 6.1.8). 

In the example shown in Figure 6.1.7, Amaya and Binh saw the light flashes 
that went forward and backward take the same time to reach the walls. In Clare’s 
frame of reference the times were different. Time, which has one dimension, 
seems to depend on the frame of reference in which it is measured, and a frame of 
reference is just a way of defining three-dimensional space. Clearly time and space 
are somehow interrelated.  This four-dimensional relationship, which includes the 
three dimensions of space and the one dimension of time, is called spacetime. 
Special relativity is all about spacetime.

This was a profound shock to the physicists of Einstein’s time. Many of them 
refused to believe that time was not the constant and unchanging quantity that it 
was assumed always to have been. And to think that it might ‘flow’ at a different rate 
in a moving frame of reference was too mind-boggling for words. That could mean 
that if you went for a train trip, your clock would go slower, and you would come 
back having aged slightly less than those who stayed behind. 

Einstein’s idea was that time and distance are relative. They can have different 
values when measured by different observers. Simultaneous events in one frame of 
reference are not necessarily simultaneous when observed from another frame of 
reference. This is difficult to comprehend at first and will take some time to fully 
appreciate. Our basic understanding of time and distance (and perhaps mass too) 
need adjustment when objects travel close to the speed of light. A certain observer 
might see light travelling through a distance d in a time t at a speed c. A different 
observer might see light travelling through a different distance, d ', in a different 
time, t', but still at the same speed, c.

Probably because of the tiny differences involved and the highly abstract nature 
of the work, many physicists simply disregarded the concepts and got on with their 
work. They thought it could never have any practical results.

OBSERVATIONS THAT NEWTON’S LAWS CAN’T EXPLAIN 
With the invention of more accurate measuring devices for time and distance, it 
became evident that some of the measurements of events didn’t agree with the 
predicted values. These predicted values were based on Newton’s laws acting in a 
framework of Galilean relativity.

Atomic clocks
Measuring time is an exercise in precision, replicating an interval of one second 
over and over again, until 86 400 of them equals the time for one rotation of the 
Earth, or one day. There have been many mechanical solutions to this problem in 
the past using cogs and levers, weights and dials. The accuracies of these devices 
varied, with some of them gaining or losing seconds or minutes per day. 

To correct your clock you would need to frequently adjust it against a standard 
clock. To help in this recalibration, radio stations would broadcast a time signal, so 
you could set your clock each day. Typically they would broadcast a series of five 
beeps counting down to each hour. You could also phone a number that would tell 
you ‘at the tone it will be six o’clock … beep’. 

For scientists, clocks with this level of inaccuracy could only be reliable for 
measuring events to one or two decimal places, which is fine for verifying relatively 
slow motion. Such clocks could not differentiate between two events occurring over 
a much smaller time interval.

Before 1967, the standard of one second was based on a fraction of the time it 
took for the Earth to orbit the Sun, a far-from-ideal standard. From 1967 onwards, 
the basis for the unit of time was changed to be a certain number of transitions 

FIGURE 6.1.8 The famous clock tower in Bern, 
Switzerland, near Einstein’s apartment. Its 
hands move at one minute per minute, but only 
in the same frame of reference as the clock.

PHYSICSFILE

Measurement in a thought 
experiment 
The people in the Gedanken train 
would need extremely good measuring 
devices, such as an atomic clock, and 
amazingly quick reflexes to take their 
measurements. 

Under normal circumstances, there 
is no chance of detecting the lack of 
simultaneity of light beams hitting the 
front and back walls of a train. This is 
because the differences in time are 
about a millionth of a microsecond, 
well beyond the capacity of even 
the best stopwatches. The reflexes 
required to see the light reach the 
back wall, then see the light encounter 
the front wall, would also be beyond 
human ability. 
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of the outermost electron of a caesium-133 isotope. In fact, one second is now 
defined as: 9 192 631 770 oscillations of the 6s electron of the Cs-133 isotope. 
The remarkable precision of this oscillation resulted in atomic clocks (the first of 
which is shown in Figure 6.1.9) with an accuracy of 1 second in 1.4 million years, 
and the ability to measure time to an incredible number of decimal places. It is at 
these levels of measurement that the predictions of Newton’s laws of motion vary 
from the measured values.

FIGURE 6.1.9 The first atomic clock, developed in 1955, and used to set the standard of one second 
from 1967.

LONG-LIVED MUONS 
When certain unstable particles (like pions, which have a precisely known decay 
rate) are accelerated to almost the speed of light, their life spans are measured to be 
longer than when the particles are stationary. For example, the mean lifetime of the 
positive pion, π+, is 0.000 000 026 033 s (26.033 ns) when it is stationary relative to 
the atomic clock that is measuring it. However, when it is moving at 99% of the speed 
of light, its mean lifetime as measured by the stationary atomic clock is 184.54 ns. 
This means that the moving pion exists seven times longer than a stationary pion.

In the Earth’s atmosphere, high-energy cosmic rays interact with the nuclei of 
oxygen atoms 15 km above the surface of the Earth to create a cascade of high-
velocity sub-atomic particles. One of these particles is a muon, which is unstable. 
The mean lifetime of a stationary muon, as measured by an atomic clock, is 
0.000 002 196 s (2.196 µs). The muons created by cosmic radiation typically travel 
at 99.97% of the speed of light, so at this speed Newtonian physics would predict 
that a muon would travel about 659 m:

 s = vΔt
 = 0.9997 × 3 × 108 × 2.196 × 10–6

 = 658.6 m (or roughly 659 m)
After 10 lifetimes, you can expect there to be essentially no muons remaining. 

So after beginning at a height of 15 km and travelling through a distance of 6.58 km, 
to a height of about 8.42 km above the surface of the Earth, you would expect that 
no muons would be detected. 

However, muons created by cosmic radiation are actually detected at the surface 
of the Earth. This means that the fast-moving muons have existed for a much 
longer period of time than they should have. A muon that strikes the surface would 
have existed at least 22.8 times its predicted lifespan as a stationary muon, based 
on Newtonian physics. Once again, Newtonian physics and Galilean relativity 
cannot explain this observation. The next section, Time dilation, will explain why 
this happens.
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SUMMARY

• Einstein decided that Galileo’s principle of relativity 
was so elegant it simply had to be true, and he 
was also convinced that Maxwell’s electromagnetic 
equations, and their predictions, were sound.

• Einstein’s two postulates of special relativity can be 
abbreviated to: 

 - I   The laws of physics are the same in all 
inertial frames of reference.

 - II   The speed of light is the same to all 
observers.

• Einstein realised that accepting both of these 
postulates implied that space and time were not 
absolute and independent, but were related in 
some way.

• Two events that are simultaneous in one frame 
of reference are not necessarily simultaneous 
in another.

• This implies that time measured in different 
frames of reference might not be the same. 
Time and space are related in a four-dimensional 
universe of spacetime.

• Observations of the lifetimes of sub-atomic particles 
that are accelerated to high speeds indicate that 
they exist for longer than when they are stationary.

• High-speed muons created in Earth's upper 
atmosphere should not last long enough to reach 
Earth's surface, but they do. The moving muons 
have longer lifetimes than stationary muons.

6.1 Review

PHYSICS IN ACTION

Particles gaining mass 
When an object moves in a circular path, it does so 
as a result of a centripetal force that acts towards the 
centre of the circular path. Centripetal force therefore 
acts continuously at a right angle to the velocity of the 
object. There are a number of actions that could cause 
the centripetal force on an object, such as the tension 
in a string tied to a rubber stopper or the gravitational 
force of the Earth on the Moon. 

Another action that causes circular motion is the force 
on a charged particle that is moving at right angles 
to a magnetic field. The equation that represents the 
relationship between the magnetic force (FB) and the 
centripetal force (FC) is:

FB = FC

qvB = 
mv2

r

r = 
mv
qB

r = 
m
qB  × v

The final relationship shows that, if the mass m, charge 
q and magnetic field B are all constant, then the radius 
of the circular path is directly proportional to the velocity 
of the charged particle. So, theoretically, if the velocity 
increases by a factor of 2, then the radius will also 
increase by a factor of 2. However, this is not the case. 

In circular accelerating devices, such as cyclotrons 
and the Australian Synchrotron, it is evident that, as the 
velocity of a charged particle increases, the radius of its 
path also increases, but to a much greater degree than 
that expected. According to the relationship shown above, 
if the charge q and the magnetic field B don’t change, 
then the only explanation for the extra increase in radius 
is that the mass of the particle m must increase. 

In fact, the mass of an electron travelling at 99.999 99% 
of the speed of light seems to increase to 6000 times 
the mass of an electron at rest. There is no explanation 
for this phenomenon in Galileo’s relativity or Newtonian 
physics. This will all be explained later in the chapter, 
using Einstein’s theories.
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KEY QUESTIONS

1  Why did the physicists of the late 19th century feel 
the need to invent the idea of the aether?
A  It was required to satisfy the principle of relativity.
B  It was required to satisfy Maxwell’s equations.
C  They thought that it would be impossible that 

totally empty space could occur in nature.
D  They thought that there should be a medium that 

carries light waves just as air carries sound waves.

2  Which of the following are reasonably good inertial 
frames of reference? More than one answer is possible.
A  an aircraft in steady flight
B  an aircraft taking off
C  a car turning a corner
D  a car driving up a hill of constant slope at a 

steady velocity 

3  Two spaceships are travelling for a while with 
a constant relative velocity. Then one begins to 
accelerate. A passenger with a laser-based velocity 
measurer sees the relative velocity increase. How 
could this passenger tell whether it was his own or 
the other ship that began to accelerate?

4  Tom, who is in the centre of a train carriage moving at 
constant velocity, rolls a ball towards the front of the 
train, while at the same time he blows a whistle and 
shines a laser towards the front of the train. What will 
Jana, who is on the ground outside the train, observe 
compared with Tom regarding the speed of the ball, 
the sound and the light?

5  If the speed of sound in air is 340 m s–1, at what 
speed would the sound from a fire truck siren appear 
to be travelling in the following situations?
a  You are driving towards the stationary fire truck at 

30 m s–1.
b  You are driving away from the stationary truck at 

40 m s–1.
c  You are stationary and the fire truck is heading 

towards you at 20 m s–1.
d  You are driving at 30 m s–1 and about to overtake 

the fire truck, which is travelling at 20 m s–1 in the 
same direction.

6  In order to resolve the apparent conflict resulting from 
his two postulates, Einstein rejected some of Newton’s 
assumptions. Which of the following statements is a 
consequence of this?
A  Time is not constant in all frames of reference.
B  Absolute, true, and mathematical time, of itself, and 

from its own nature, flows equably without relation 
to anything external.

C  One second in any inertial frame of reference 
is the same as one second in any other inertial 
frame of reference.

D  Space and time are independent of each other.

7  Anna is at the front end of a train carriage moving at 
10 m s–1. She throws a ball back to Ben, who is 5 m 
away at the other end of the carriage. Ben catches 
it 0.2 s after it was thrown. Chloe is watching all this 
from the side of the track.
a  At what velocity does Chloe see the thrown ball 

travelling?
b  How far, in Chloe’s frame of reference, did the ball 

move while in flight?
c  How long was it in flight in Chloe’s frame of 

reference?

8  Imagine that the speed of light has suddenly slowed 
down to only 50 m s–1 and this time Anna (still at 
the front of the 5 m train moving at 10 m s–1 in 
Question 7) sends a flash of light towards Ben. 
a  From Anna’s point of view, how long does it take 

the light flash to reach Ben?
b  How fast was the light travelling in Ben’s frame of 

reference?
c  In Chloe’s frame of reference, how far did the train 

travel in 0.1 s?
d  How fast was the light travelling in Chloe’s frame 

of reference?
e  Approximately, when did Chloe see the light 

reach Ben? 

9  Why was the development of atomic clocks important 
to the advancement of Einstein’s special theory of 
relativity?

10  Complete the following sentences by selecting the 
correct term in bold.
Muons have very short/prolonged lives. On average, 
muons live for approximately 2.2 s/μs. Their speeds 
are measured as they travel through the atmosphere. 
A muon’s speed is about a tenth of/very similar to the 
speed of light. According to Newtonian laws, muons 
should/should not reach the Earth’s surface. However, 
many do/do not.
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6.2 Time dilation 
Extremely precise atomic clocks like that shown in Figure 6.2.1 enabled very  
short-lived events to be measured to a large number of decimal places. At this 
level of precision, some unusual observations were made regarding the life spans 
of some high-speed sub-atomic particles when compared to the life spans of those 
same particles at rest. This section explores the concept of time dilation as an 
explanation for these observations.

TIME IN DIFFERENT FRAMES OF REFERENCE 
The consequences of Einstein’s two postulates have been discussed, in general 
terms, when they are applied to a simple Gedanken situation, such as a moving 
train. Observers inside the train see two simultaneous events while those outside 
see the same two events occurring at different times. Certainly the differences are 
extremely small and would not be noticeable by an observer in any actual train, 
unless they had an atomic clock. For aircraft flying at supersonic speeds, the 
differences, while very small, become measurable by the most precise clocks. For 
sub-atomic particles, such as pions in accelerators like the Australian Synchrotron, 
the differences in time become more significant, and so in situations like this, where 
speeds approach the speed of light, it is important to use calculations that take 
Einstein’s theory into account.

The light clock
If you want to observe time dilation in the moving train or among moving  
sub-atomic particles, you need to watch a clock in a moving reference frame to 
see if it is actually going slower. The term ‘dilation’ in this context means slower. 

Consider Amaya and Binh riding in a Gedanken spaceship that can travel at 
speeds close to the speed of light. Clare is going to watch from a space station, 
which according to Clare is a stationary frame of reference. Amaya and Binh 
have taken along a clock, which (it is assumed) Clare can read, even from a large 
distance away.

Like any clock, this clock is governed by a regular oscillation that defines a 
period of time. 

Amaya’s Gedanken clock has a light pulse that bounces back and forth between 
two mirrors. One mirror is on the floor and the other on the ceiling, as shown in 
Figure 6.2.2. When a light pulse oscillates from one mirror to the other and back, 
you can consider that period of time to be ‘one unit’. Clare has an identical clock in 
her own space station, which she can compare to Amaya’s clock.

The advantage of this clock is that it can be used to predict how motion will 
affect it by using Pythagoras’ theorem and some algebra. The clock has been set up 
in the spaceship so that the light pulses oscillate up and down a distance d that is 
at right angles to the direction of travel. The distance d is shown by a black arrow 
in the centre position of the moving spacecraft in Figure 6.2.3. As the spaceship 
speeds along, the light will trace out a zigzag path, as shown by the red dotted line 
in Figure 6.2.3. 

Only one of the oscillations of the light pulse needs to be considered, as all 
the other oscillations will have the same geometry. One ‘unit of time’ will be the 
time taken for the light pulse to oscillate once. In the frame of reference of the 
spaceship, Amaya and Binh see a unit of time equal to ta . Clare, from her frame of 
reference, will see a different time, tc . The relationship between these two times will 
now be determined.

Amaya and Binh see the light pulse travel at the speed of light, c, along the 
distance 2d, from the bottom mirror to the top and back again, in time ta . So the 
distance that the light pulse travels is given by:

2d = c × ta

On the other hand, Clare sees the light travel a longer path that is shown as the 
red dotted line in Figure 6.2.3.

FIGURE 6.2.1 The duration of one second can be 
measured very precisely using a caesium atomic 
clock like this one.

τφ,ρδ6,ηι6,ρτη

FIGURE 6.2.2 The Gedanken light clock ‘ticks’ 
each time the light pulse reflects off the 
bottom mirror.
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FIGURE 6.2.3 Clare can see that in one unit of time the Gedanken light clock ‘ticks’ each time the 
light pulse reflects off the bottom mirror. She also sees that the light pulses travel a zigzag path 
between the mirrors.

The ship moves with a speed v, and so in one unit of time as seen by Clare, tc , 
the spaceship will travel a distance 2 × ds , equal to the velocity multiplied by the 
time taken for her to see one oscillation:

2ds = v × tc

Consider only half of the light oscillation for now.  The light pulse not only travels 
the vertical distance d in the clock, but also travels forward as the spaceship moves 
through the distance ds , making the combined distance dc . Therefore, according to 
Pythagoras’s theorem:

dc
2 = d2 + ds

2

dc
2 = d2 + (vtc

2 )2

dc = √(d2 + (vtc
2 )2)

Clare sees this light pulse travelling twice this combined distance at the speed of 
light c, in a period of time tc measured on her clock. So:

2dc = c × tc

Equating and rearranging the two expressions for dc gives:
c × tc

2  = √(d2 + (vtc
2 )2)

c × tc = 2 × √(d2 + (vtc
2 )2)

c × tc = √(4d2 + 4 × (vtc
2 )2)

tc = 
√4d2 + (vtc)2

c
From Amaya and Binh’s frame of reference, where they see the light pulse 

travelling a distance 2d at speed c in a time ta , the previously given equation can be 
rewritten in terms of d as:

d = c × ta
2

Note that you have used the same value for c in both of these equations, 
something you would never do in classical physics, but something Einstein insists 
you must.

Substituting this expression for d into the previous equation gives:

tc = √4 × (cta
2 )2

 + (vtc)2

c



AREA OF STUDY 3   |   HOW FAST CAN THINGS GO?214

Now square both sides and simplify to make tc
2 the subject:

tc
2 = 

4(cta)2

4
 + (vtc)2

c2

tc
2 = 

c2ta2 + v2tc2

c2

tc
2 = 

c2ta2

c2  + 
v2tc2

c2

tc
2 = ta

2 + 
v2tc2

c2

Group the terms with tc
2 together and factorise:

tc
2 – 

v2tc2

c2  = ta
2

tc
2 (1 – 

v2

c2 ) = ta
2

Take the square root of both sides and make tc the subject:

tc √(1 – 
v2

c2 ) = ta

tc = 
ta

√(1 – 
v2

c2 )
As v can never be larger than c, the denominator in the equation above must be 

less than one. Any number divided by a number less than one must result in a larger 
number, so tc > ta

This final equation shows that the time that Clare measures, tc , is greater than 
the time that Amaya and Binh measure, ta , for the same event. 

PHYSICSFILE

The zigzag path of light 
Mathematically, you can see that time dilation results from the strange behaviour 
of light. As light travels on the diagonal zigzag path, it does so at speed c, not at a 
faster speed resulting from the additional component of the spaceship’s motion as, 
for example, would be true for a boat zigzagging across a river as it is carried along 
by the current.

TIME DILATION 
In Einstein’s equation for time dilation, the symbol t is used to represent the time that 
a stationary observer (Clare) measures using a stationary clock, for an event that 
the observer sees occurring in a moving frame of reference. The symbol t0 is then 
the time that passes on the moving clock, which is also known as the proper time. 

The factor that the proper time is multiplied by is given the symbol gamma, γ , 
so that:

t = t0γ

where γ  = 
1

√(1 – v2

c2 )
 v is the speed of the moving frame of reference

 c is the speed of light in a vacuum (3 × 108 m s–1)

 t is the time observed in the stationary frame

 t0 is the time observed in the moving frame (proper time)
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The physicist H. A. Lorentz first introduced the factor γ in an attempt to 
explain the results of the Michelson–Morley experiment, so it is often known as the 
Lorentz factor.

Table 6.2.1 and Figure 6.2.4 show the effect of varying the value of v on the 
value for γ .

10
9
8
7
6
5
4
3
2
1

v—c

γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

FIGURE 6.2.4 The graph of the Lorentz factor versus v
c .

v (m s–1) v
c γ

3.00 × 102 0.000001 1.000000000

3.00 × 105 0.00100 1.0000005

3.00 × 107 0.100 1.005

1.50 × 108 0.500 1.155

2.60 × 108 0.866 2.00

2.70 × 108 0.900 2.29

2.97 × 108 0.990 7.09

2.997 × 108 0.999 22.4

TABLE 6.2.1 The value of the Lorentz factor at various speeds.

EXTENSION

The Lorentz factor 
The Lorentz factor becomes so close to 1 for values of v less than about 0.0001c that the expression can’t be used 
with a normal calculator. Fortunately, there is a simple way to find the value of γ  for speeds less than about 1% of c. 
The binomial expansion of the term (1 − x)n tells you that:

(1 − x)n ≈ (1 − nx) provided that: x << 1

For the Lorentz factor this means that:

x = (v
c)2

 and n = − 
1
2

and so:

γ  = 1 + 
1
2 (v

c)2

Thus the part of the factor that is greater than 1 can simply be found from the term:
1
2 (v

c)2

Sometimes it is useful to make v the subject in the equation for the Lorentz factor. This produces:

v = c √(1 − 1
γ 2)

From the data in Table 6.2.1, a velocity of 300 m s–1 results in a Lorentz factor of 
essentially 1. So for relatively low-speed spaceships, a stationary observer measures 
the oscillation of light in the light clock on the spaceship to be the same as in her 
own stationary light clock. This implies that time is passing at essentially the same 
rate in both frames of reference. 

When the spaceship is travelling at 0.990c, a stationary observer like Clare 
will measure that a single oscillation of light in the spaceship’s light clock will take 
seven oscillations of her own stationary light clock. According to Clare, time for 
the objects and people in the moving frame of reference has slowed down to one-
seventh of ‘normal’ time.

As the speed approaches the speed of light, time in the moving frame, as viewed 
from the stationary frame, slows down more and more. So, if you were able to see 
the clock travelling on a light wave, the clock would not be ‘ticking’ at all. In other 
words, time would be seen to stand still.
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It is important to realise that Amaya and Binh do not perceive their time slowing 
down at all. To them, their clock keeps ticking away at the usual rate and events in 
their frame of reference take the same time as they normally would. It is the series of 
events that Clare sees and measures in Amaya and Binh’s frame that go slowly. Binh 
and Amaya are moving in slow motion because, according to Clare’s observations, 
time for them has slowed down (see Figure 6.2.5).

FIGURE 6.2.5 As Clare watches Amaya and Binh play space squash, the ball seems to be moving 
much more slowly than in her own game.

Worked example 6.2.1

TIME DILATION 

Assume Gedanken conditions exist in this example. A stationary observer on 
Earth sees a very fast car passing by, travelling at 2.50 × 108 m s−1. In the car is 
a clock on which the stationary observer sees 3.00 s pass. Calculate how many 
seconds pass by on the stationary observer’s clock during this observation. 
Use c = 3.00 × 108 m s−1.

Thinking Working

Identify the variables: the time for the 
stationary observer is t, the proper 
time for the moving clock is t0 and the 
velocities are v and the constant c.

t = ?

t0 = 3.00 s

v = 2.50 × 108 m s−1

c = 3.00 × 108 m s−1

Use Einstein’s time dilation formula 
and the Lorentz factor.

t = t0γ

= 
t0

√1 – v
2

c2

Substitute the values for t0, v and c 
into the equation and calculate the 
answer, t.

t = 
3.00

√1 – 
(2.50 × 108)2

(3.00 × 108)2

= 
3.00

0.55277

= 5.43 s

Worked example: Try yourself 6.2.1

TIME DILATION 

Assume Gedanken conditions exist in this example. A stationary observer on 
Earth sees a very fast scooter passing by, travelling at 2.98 × 108 m s–1. On the 
wrist of the rider is a watch on which the stationary observer sees 60.0 s pass. 
Calculate how many seconds pass by on the stationary observer’s clock during 
this observation. Use c = 3.00 × 108 m s–1.
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LOOKING BACK TO THE STATIONARY OBSERVER 
So far you have been looking at the situation from Clare’s point of view, not Amaya’s 
and Binh’s. Galileo had said that all inertial frames of reference are equivalent. It 
follows then that, according to Amaya and Binh, as they look out their window at 
Clare in her space station receding from them, they can consider that it is they who 
are at rest and it is Clare and her space station that are moving away at a velocity 
near the speed of light. This is what Galileo’s principle of relativity and Einstein’s 
first postulate are all about. 

If Amaya and Binh watch the light clock in Clare’s space station, they see that 
time has slowed down for Clare, as they would observe Clare’s moving light clock 
oscillation taking longer than their stationary light clock oscillation. This raises the 
question: Whose time actually runs slowly?

The answer is that they are both right. The whole point of relativity is that you 
can only measure quantities relative to some particular frame of reference, not in 
any absolute sense. Certainly Amaya and Binh see Clare as though in slow motion 
and Clare sees them in slow motion. Remember that there is no absolute frame of 
reference and so there is no absolute clock ticking away the absolute ‘right’ time. All 
that you can be sure of is that time in your own inertial frame of reference is ticking 
away at a rate of one second per second.

THE TWIN PARADOX 
If Clare sees time for Amaya and Binh running slowly, then Amaya and Binh will 
age slowly. But if Amaya and Binh see that time for Clare has slowed down, then 
Clare will age more slowly. So what happens when Amaya and Binh decide to turn 
their spaceship around and come home? Who will have aged more? 

To solve this paradox, or contradiction, Einstein described a thought experiment 
in which one of a set of twins heads off on a long space journey, while the other twin 
stays on Earth. 

The travelling twin finds that when she returns, her remaining twin has become 
quite elderly (refer to Figure 6.2.6). While each twin is in constant motion relative 
to the other, they both see the other twin ageing more slowly. So why did the twin 
on the spaceship age more slowly than the twin on Earth?

The key to this apparent paradox is that only one twin has spent the entire time 
in an inertial (non-accelerating) frame of reference. The other twin spent some time 
in non-inertial frames of reference. The twin that got on the spaceship accelerated 
away from Earth, decelerated as she slowed down, then accelerated back towards 
Earth, and finally decelerated as she slowed down to land back on Earth. It is the 
acceleration that makes all the difference.

It is important to point out that Einstein’s 1905 theory of relativity deals only 
with frames of reference that are in constant motion, that is, inertial frames of 
reference. For this reason, it is called the theory of special relativity. Special relativity 
does not deal with accelerated frames of reference. Ten years later, Einstein put 
forward the theory of general relativity, which does deal with situations in which 
acceleration occurs; that is, non-inertial frames of reference. As part of this theory, 
he showed that in an accelerated frame of reference, time also slows down.

If you apply the twin paradox situation to Amaya, Binh and Clare, as Clare 
watched from her inertial frame of reference, the general theory of relativity tells 
you that her view of Amaya and Binh in the non-inertial frame shows them ageing 
slowly. During this time, Amaya and Binh see Clare’s time passing quickly. As a 
result, they will see Clare age more rapidly while they are accelerating, and more 
slowly when they are travelling at constant velocity. Clare sees Amaya and Binh 
aging slower and slower as they gain speed, then aging constantly but slowly as they 
travel at a constant speed. Amaya and Binh never age rapidly. 

But how do you know that it is Amaya and Binh that have accelerated and not 
Clare, because that is what it would look like for Amaya and Binh looking out of 
their window at Clare? For the answer to this you need to ask Amaya and Binh 
if they noticed anything unusual in their frame of reference, for example did the 

FIGURE 6.2.6 The Twin Paradox describes 
the phenomenon where one twin ages less 
quickly than the other after travelling in a  
non-inertial frame.
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surface of the water in their bottles tilt at an angle to the horizontal, or did the 
handles hanging down from the ceiling lean forwards or backwards. If you asked 
Clare these questions she would say no, while Amaya and Binh would say yes. So it 
was Amaya and Binh that accelerated and not Clare. 

Although it is often called a paradox, there is actually nothing impossible or 
illogical about this story. Einstein himself pointed out that, due to the Earth’s 
rotation, and therefore centripetal acceleration, a clock on the Earth’s equator 
would run a little more slowly than one at the poles. This has now actually been 
found to be the case. In fact, in 1971 accurate atomic clocks were flown around the 
world on commercial flights. When compared with those left behind, the difference 
of about a quarter of a microsecond was just what Einstein’s theory predicted. Now 
there are many satellites in orbit around the Earth, so the theory has been well and 
truly tested many times. Indeed, global positioning systems (GPS) must take the 
relativistic corrections into account to ensure their accuracy.

PHYSICSFILE

Is light slowing down? 
Recently there has been publicity given to research that has suggested that the speed 
of light is slowing down. Some have even suggested that Einstein’s theory of relativity 
itself is under threat. The research, based on analysis of light from very distant quasars, 
actually suggests that there have been very small changes in what is called the fine 
structure constant, which is made up of three more basic constants: the speed of light, 
the charge on an electron and Planck’s constant. 

Prominent theoretical physicist Professor Paul Davies and others have suggested 
that if the evidence is correct, then it is probably the speed of light that is changing. 
If proved correct, no doubt this new data will modify some aspects of relativity, but to 
suggest that it will overturn relativity is a wild exaggeration.

EXPLAINING HIGH-ALTITUDE MUONS 
In Section 6.1 ‘Einstein’s theory of special relativity’, the surprising observation of 
high-speed muons originating 15 km up in the atmosphere and yet reaching the 
surface of the Earth was discussed. It could only be explained if the mean lifetime 
of the short-lived particles were extended far beyond their normal mean lifetime. 

Time dilation provides the explanation to this unusual observation.
The ‘normal’ mean lifetime of a muon is about 2.2 μs. However, this is the mean 

lifetime when measured in a stationary frame of reference. Muons travel very fast; 
in fact a speed as great as 0.999c is very possible. At this speed, an observer on 
Earth will see the lifetime of a muon as far greater than 2.2 μs:

 t = t0γ

 = ta

√1 − v
2

c2

 = 2.2 × 10–6

√1 − (0.999c)2

c2

 = 2.2 × 10–6

√1 − 0.9992

 = 49.21 μs (which is more than 22 times as long as in the stationary frame!)
An observer on Earth would see the muon’s time run much slower. The slower 

time means that many muons live long enough to reach the Earth’s surface.
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6.2 Review

KEY QUESTIONS

For the following questions, assume Gedanken conditions 
exist and let c = 3 × 108 m s–1 unless stated otherwise.

1  Complete the following sentences by selecting the 
correct term from those in bold.
In a device called a light/mechanical/digital clock, 
the speed/oscillation/wavelength of light is used as a 
means of measuring time/mass, as the speed of light 
is unknown/variable/constant no matter from which 
inertial frame of reference it is viewed. 

2  To what does the term ‘proper time’, t0, refer?

3  An observer is standing on a train platform as a very 
fast train passes by at a speed of 1.75 × 108 m s–1. 
The observer notices the time on a passenger’s 
phone as the passenger drops the phone to the floor. 
According to the clock on the phone, it takes 1.05 s to 
hit the floor. Calculate how much time has passed on 
the platform’s clock during this time. 

4  An observer standing on a comet is watching as a 
satellite approaches at a speed of 2.30 × 108 m s–1. 
The observer times on her watch that the solar panels 
on the satellite unfold in 75.0 s. Calculate how much 
time the observer sees as having passed on the 
satellite’s clock.

5  A student standing by the side of a road sees a very 
fast MG sports car driving past. The driver times on 
his car’s clock that it takes 5.50 s for the student to 
pick up her bag. If the MG is moving at a speed of 
2.75 × 108 m s–1, calculate how much time the driver 
sees has passed on the student’s watch as she picks 
up the bag.

6  If Anna saw Ben fly by at 0.5c, how long, in her frame, 
would it take Ben’s clock to tick 1 second?

7  Anna’s Gedanken light clock has a height of 1 m 
between the mirrors, and relative to Chloe her 
spaceship is travelling at 90% of the speed of light 
(c = 3.0 × 108 m s–1). One tick is the time for light 
to go from one mirror to the other.
a  How far does the light flash travel in Anna’s frame 

of reference in one tick, tA?
b  What is the tick time, tA, for the clock in Anna’s frame?
As the light takes a zigzag path in her frame, Chloe 
sees the clock ticking at a slower rate, tc. 
c  In terms of c and tc what is the length of the zigzag 

path that the flash travels in one tick in Chloe’s frame?
d  What is the tick time of the clock in Chloe’s frame?
e  What is the ratio of Chloe’s tick to Anna’s tick?

8  A muon created at an altitude of 15.0 km above 
the Earth is moving at a speed of 0.992 times the 
speed of light. The mean lifetime of a muon at rest 
is 2.20 × 10–6 s. 
a  Calculate the lifetime of the moving muon as timed 

by a stationary observer. 
b  Using classical physics equations and the results 

from part a, calculate the non-relativistic distance 
and the relativistic distance travelled by the moving 
muon during one lifetime.

9  A high-speed, sub-atomic particle is accelerated by 
a linear accelerator to a speed of 2.83 × 108 m s–1. 
A researcher measures that it only leaves, on average, 
a track that is 2.50 cm long in the bubble chamber. 
Calculate the mean lifetime of the same particle if it 
were at rest relative to the researcher and her timer.

10  Briefly explain why Einstein said that a clock at Earth’s 
equator should run slightly slower than one at the 
Earth’s poles. Why do we not find this to be a problem?

SUMMARY

• The pulses in a light clock in a moving frame of 
reference have to travel further when observed 
from a stationary frame.

• Because of the constancy of the speed of light, 
this effectively means that time appears to have 
slowed in a moving frame.

• Time in a moving frame seems to flow more 
slowly according to the equation: t = t0γ

• where t0 is the time in the moving frame (proper 
time), t is the time observed from the stationary 
frame and γ is the Lorentz factor: 

γ  = 
1

√1 – v
2

c2

• Observers in relative motion both see time slowing 
in the other frame of reference; that is, each sees 
the other ageing more slowly.

• If one observer accelerates in order to return to 
meet the other, then that accelerated observer 
will have aged less than the other.

• Time dilation provides the explanation for the 
occurrence of muons reaching the Earth’s 
surface after originating 15 km up in the 
upper atmosphere, when they should all decay 
within 7 km of their journey according to 
classical physics.
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6.3 Length contraction 
The previous section described how time can only be measured relative to some 
particular frame of reference, but not in any absolute sense. Because of the constancy 
of the speed of light, this effectively means that time appears to have slowed in a 
moving frame relative to the frame of an observer. Einstein describes how space 
and time are interrelated, so it follows then that space, and therefore length, is not 
absolute (Figure 6.3.1). This section explores the effect on the length of an object 
based on the motion of the object in an inertial frame of reference.

FIGURE 6.3.1 Length is relative to the frame of reference and the direction of motion.

LENGTH IN DIFFERENT INERTIAL FRAMES 
You already have a clue to the fact that lengths depend on who is doing the 
measuring and the frame of reference in which they make their measurement. 

The light clock analysis is appropriate to compare the proper time on the clock 
in the moving frame of reference (observed by Clare in the examples provided 
in Section 6.2) and the time measured on a clock in the stationary frame (with 
Clare). The light clock was used as it only depends on light, not some complicated 
mechanical arrangement that may well include other factors that are altered by 
relative motion. There was, however, one other condition in this clock analysis—that 
both Amaya and Clare would agree on the distance, d, between the mirrors. This 
enabled the two expressions for d to be equated in order to find the relationship 
between proper time, t0 , and time, t.

The clock was deliberately set up in the spaceship so that this light path, of 
distance d, was perpendicular (at right angles to) the velocity. Distances in this 
perpendicular direction are unaffected by motion. Indeed, Einstein showed that 
while perpendicular distances are unaffected, relative motion affects length only in 
the direction of travel (refer to Figure 6.3.2).

Length contraction
Consider the Gedanken situation in which Clare is standing on a train platform 
while Amaya and Binh pass by at a speed v. Both Clare and Binh want to measure 
the length of the train platform on which Clare is standing. Using a measuring tape, 
Clare measures the length of the platform (which is at rest according to her) as L0, 
and says that Binh and Amaya cover this distance in a time equal to:

t = 
L0

v

Binh observes the platform passing in a time t0, as he and Amaya move past the 
station. The relationship between the time in Binh’s frame of reference and the time 
that Clare measures is:

t0 = 
t
γ

t0 = t √1 – v
2

c2

Substituting the first equation into the equation above gives us:

t0 = 
L0

v  √1 – v
2

c2

L

L
γ

FIGURE 6.3.2 Einstein showed that the length of 
a moving object is foreshortened by the Lorentz 
factor, γ. The height and width of the carriage 
though remain unchanged.
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Binh sees the platform moving at a velocity of v relative to him, so he can say 
that the distance from the start to the end of the platform is:

L = vt0

Substituting the previous equation for t0 into the equation above gives us:

L = v × 
L0

v  √1 – v
2

c2
 

This simplifies to:

L = L0 √1 – v
2

c2
 

This is Einstein’s length contraction equation that incorporates the Lorentz 
factor. This equation shows that an object with a proper length of L0, when 
measured at rest, will have a shorter length L, parallel to the motion of its moving 
frame of reference when measured by an observer that is in a stationary frame of 
reference. The proper length is contracted by a factor of 1γ  . Length contraction can 
be represented as:

L = 
L0

γ

where γ  = 
1

√1 – v2

c2

  L0 is the proper length i.e. the length measured at rest, in the stationary 
frame of reference

 L is the length in the moving frame, measured by an observer

Worked example 6.3.1

LENGTH CONTRACTION 

Assume Gedanken conditions exist in this example. A stationary observer on 
Earth sees a very fast car travelling by at 2.50 × 108 m s–1. When stationary, 
the car is 3.00 m long. Calculate the length of the car as seen by the stationary 
observer. Use c = 3.00 × 108 m s–1.

Thinking Working 

Identify the variables: the length 
measured by the stationary observer 
is L, the proper length of the car is 
L0 and the velocities are v and the 
constant c.

L = ?

L0 = 3.00 m

v = 2.50 × 108 m s–1

c = 3.00 × 108 m s–1

Use Einstein’s length contraction 
formula and the Lorentz factor. L = 

L0

γ

= L0 √1 – v
2

c2

Substitute the values for L0, v and c 
into the equation and calculate the 
answer, L.

L = 3.00 × √1 – 
(2.50 × 108)2

(3.00 × 108)2  

= 3.00 × 0.553

= 1.66 m

Worked example: Try yourself 6.3.1

LENGTH CONTRACTION 

Assume Gedanken conditions exist in this example. A stationary observer on 
Earth sees a very fast scooter travelling by at 2.98 × 108 m s–1. The stationary 
observer measures the scooter’s length as 45.0 cm. Calculate the proper length 
of the scooter, measured when the scooter is at rest.
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LOOKING OUT OF THE WINDOW 
So far you have been looking at situations in which objects that are in a moving 
frame of reference are seen as being shorter in the direction of the motion 
according to an observer that is in a stationary frame of reference. You can also 
apply length contraction to the distance that a moving object covers as it travels at 
very high speed. 

Recall that no inertial frame of reference is special. Consider Amaya and Binh 
in their spacecraft. According to them, they are stationary and it is space itself that 
rushes by at high speed. As space zooms by Amaya and Binh, they are travelling 
a proper distance of 384 400 km from the Earth to the Moon. This is the proper 
length as it is measured by a device that is in the same frame of reference as the 
Earth and the Moon. As Binh looks out of the window, he sees a much shorter 
distance to travel.

Worked example 6.3.2

LENGTH CONTRACTION FOR DISTANCE TRAVELLED 

Assume Gedanken conditions exist in this example. A pilot of a spaceship 
travelling at 0.997c is travelling from Earth to the Moon. The proper distance 
from the Earth to the Moon is 384 400 km. When the pilot looks out of the 
window, the distance between the Earth and the Moon looks much less than 
that. Calculate the distance that the pilot sees.

Thinking Working 

Identify the variables: the length seen 
by the pilot is L, the proper length of 
the distance is L0 and the velocity is v.

L = ?

L0 = 384 400 km

v = 0.997c m s–1

Use Einstein’s length contraction 
formula and the Lorentz factor. L = 

L0

γ

= L0 √1 – v
2

c2

Substitute the values for L0 and v into 
the equation. Cancel c and calculate 
the answer, L.

L = 384 400 × √1 – (0.997c)2

c2  

= 384 400 × √1 – (0.997)2

= 384 400 × 0.0774

= 29 800 km

Worked example: Try yourself 6.3.2

LENGTH CONTRACTION FOR DISTANCE TRAVELLED 

Assume Gedanken conditions exist in this example. A stationary observer 
on Earth sees a very fast train approaching a tunnel at a speed of 0.986c. 
The stationary observer measures the tunnel’s length as 123 m long. 
Calculate the length of the tunnel as seen by the train’s driver.

The result from Worked example: Try yourself 6.3.2 leads to an interesting 
phenomenon. If the proper length of the train is 100 m, then the driver could park 
the train in the 123 m tunnel with 11.5 m of tunnel extending beyond each end 
of the train. But when the train is moving at 0.986c, then according to the train 
driver the train will not fit in the tunnel. There will be approximately 39.8 m of 
train extending past each end of the tunnel. This phenomenon is illustrated in 
Figure 6.3.3.

Similarly, a train that is longer than the tunnel will fit completely inside the 
tunnel if its length was measured by a stationary observer as it was moving past very 
quickly. In this scenario, the length of the train would be contracted according to the 
stationary observer (refer to Figure 6.3.4).

Both train and tunnel are stationary

The tunnel is moving towards the observer 
in the train

(a) 

(b) 

FIGURE 6.3.3 The train both fits in the tunnel 
and doesn’t fit in the tunnel, depending on your 
frame of reference.

The stationary train does not �t in the tunnel

The train is contracted

(a) 

(b) 

FIGURE 6.3.4 The train both doesn’t fit in the 
tunnel and does fit in the tunnel, also depending 
on your frame of reference.
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PROPER TIME AND PROPER LENGTH 
The time t0 and the length L0 are referred to as the proper time and proper length. 
They are the quantities measured by the observer, who is in the same frame of 
reference as the event or the object being measured. 

Proper time 
The proper time is the time between two events that occur at the same point in 
space. For example, when a light bulb in the train flashes and Amaya measures the 
time for the flash to reflect off a mirror and return to her, then she has measured the 
proper time. This is because the stopwatch remained at the point in space inside the 
frame of reference where the light originated and where it ended up. Proper time is 
illustrated in Figure 6.3.5.

It is important that a clock isn’t moved from one place to another if you want to 
measure proper time. This is because, as soon as the clock is in motion, the time for 
that clock slows slightly. 

Proper length
The proper length is the distance between two points whose positions are measured 
by an observer at rest with respect to the two points. 

Recall the example of Amaya on a train and Clare on the platform observing 
the passing train. As Amaya reads her measuring tape at either end of the carriage 
and is at rest with respect to the train, her measurement of the carriage is the proper 
length. Clare’s measurement of the carriage will be of the contracted length. 

Clare, on the other hand, measures the length of the platform as the 
proper length, while Amaya and Binh see the platform as contracted in length. 
Remember that length contraction occurs only in the direction of travel, not in any 
perpendicular direction. To Clare, the carriage will appear shortened, but its width 
and height (the dimensions of the train perpendicular to the direction of travel) 
will remain unaltered. 

An example of length contraction is shown with a tennis ball in Figure 6.3.6. 
The length in the direction of the motion is contracted, but the height is not.

v = 0

L = L0 L = 0.5L0 L = 0.25L0 L = 0.045L0 L → 0

v = 0.87c v = 0.995c v = 0.999c v → c

FIGURE 6.3.6 As the tennis ball moves faster to the right, its length in this dimension is contracted, 
but its height and depth remain the same.

FINAL THOUGHTS 
Length contraction and time dilation are easy to confuse. One way to remember 
how it works is to think that stationary clocks tick faster and an object is longest 
when viewed from its own frame of reference. When viewed from a frame of 
reference where objects are seen to be moving, they appear shorter and their clocks 
tick slower. All lengths and all clocks seem normal when viewed from within their 
own frame of reference. 
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FIGURE 6.3.5 A clock measuring proper time. 
The clock is positioned at the place where the 
event started (the light starting out) and is at 
the same place when the event ends (the light 
returning).
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6.3 Review
SUMMARY

• The theory of special relativity states that time 
and space are related. Motion affects space in the 
direction of travel.

• A moving object will appear shorter, or appear to 
travel less distance, by the inverse of the Lorentz 
factor, γ . Einstein’s length contraction equation is 
given by:

L = 
L0

γ , where L0 is the proper length in the 
stationary frame, L is the contracted length as seen 
in the moving frame and γ  is the Lorentz factor: 

γ  = 
1

√1 – 
v2

c2

• The proper time, t0, is the time measured by an 
observer at the same point in an inertial frame 
of reference. 

• The proper length, L0, is the length measured 
by an observer at rest with respect to the object 
being measured.

KEY QUESTIONS

For the following questions, assume Gedanken conditions 
exist and let c = 3 × 108 m s–1 unless stated otherwise.

1  To what does the term ‘proper length’, L0, refer?

2  If you are standing on Earth and observe a speeding 
rocket ship, what do you notice about its dimensions? 
Select from the following:
A  its length (in the direction of travel) is shorter 

than normal
B  its length (in the direction of travel) is longer than 

normal
C  its height (at right angles to the direction of travel) 

is shorter than normal
D  its width (at right angles to the direction of travel) 

is shorter than normal

3  An observer is standing on a train platform as a very 
fast train passes by at a speed of 1.75 × 108 m s–1. 
The observer notices that a passenger is holding a 
metre rule in line with the direction that the train is 
moving. Calculate the length of the metre rule that 
the stationary observer sees.

4  An observer standing on a comet is watching as a 
satellite approaches at a speed of 2.30 × 108 m s–1. 
The observer knows that the proper length of the 
satellite in the direction of its motion is 5.25 m. 
Calculate the length of the satellite that the observer 
sees as it passes. 

5  A builder makes a mistake and builds a garage too 
short for the owner’s car to fit in. The proper length 
of the garage is 1.50 m and the proper length of the 
car is 3.50 m. The builder suggests that if the owner 
drives fast enough, the builder could stand by the 
garage and the car would fit. 
a  Calculate the speed that the car would need to 

travel to just fit in the garage when observed by 
the builder. 

b  Explain why the car owner would not be happy 
about the builder’s suggestion by calculating the 
length of the garage as seen by the driver.

6  An observer on a platform measures the time for 
a train carriage, moving at 0.99c, to pass her by. 
What time has she measured, t or t0? Explain.

7  According to a speed (v) versus distance travelled (L) 
graph, which of the following is true?
A  At the maximum speed, the distance travelled is 

the largest.
B  Velocity and distance travelled are directly 

proportional variables.
C  At values close to the speed of light, the distance 

travelled is near to zero.
D  None of the above.

8  Emily is standing by the side of the track, watching 
Dan run in an 800 m race. 
a  At what speed must Dan run in order for the race 

to be only 400 m long in his frame of reference?
b  Emily notices that Dan is thinner than he normally 

is, but just as wide and just as tall. Calculate the 
fraction of Dan's thickness while he is running to 
his normal thickness while standing still. 

9  A jet plane zooms past an observer standing on the 
ground at a speed of 660 m s–1. If the length of the jet 
is 23.5 m when parked on the tarmac, calculate the 
length that the observer sees the jet. 

10  An astronaut in her spaceship is speeding at 0.900c 
to the Moon. She is holding, in the direction that the 
spaceship is moving, a fishing rod that is 2.75 m long. 
a  Determine the length of the rod as observed by an 

astronaut in the International Space Station. 
b  What is the length of the fishing rod as observed 

by the astronaut in the spaceship?
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1  Prove that for an object travelling at any possible 
velocity, the value of the term below must be less 
than 1.

√1 – 
v2

c2

2  One of the fastest objects ever made on Earth was 
the Galileo Probe which, as a result of Jupiter’s huge 
gravity, entered its atmosphere in 1995 at a speed of 
nearly 50 000 m s–1. Give an estimate of the Lorentz 
factor for the probe to nine decimal places. (You may 
use the expression γ  ≈ 1 + v2

2c2.)

3  In 1905 Einstein put forward two postulates. Which 
two of the following best summarise them?
A  All observers will find the speed of light to be 

the same.
B  In the absence of a force, motion continues with 

constant velocity.
C  There is no way to detect an absolute zero of velocity.
D  Absolute velocity can only be measured relative 

to the aether.

4  Whereabouts on the Earth’s surface are we closest to 
an inertial frame of reference?

5  Which of the following is closest to Einstein’s first 
postulate?
A Light always travels at 3 × 108 m s–1.
B  There is no way to tell how fast you are going 

unless you can see what’s around you.
C  Velocities can only be measured relative to 

something else.
D Absolute velocity is that measured with respect 

to the Sun.

6  Very briefly explain why Einstein said that we must 
use four-dimensional spacetime to describe events 
that occur in situations where high speeds and large 
distances are involved.

7  Imagine that Amaya is at the front end of a train 
carriage moving forward at 10.0 m s–1. She shines 
a laser towards Binh, who is at the other end of the 
carriage. Clare is watching all this from the side of 
the track. At what velocity does Clare see the light 
travelling?

8  Which one or more of the following conditions is 
sufficient to ensure that we will measure the proper 
time between two events? We must:

A  be in the same frame of reference
B  be in a frame of reference which is travelling at the 

same velocity
C  be stationary
D  not be accelerating with respect to the frame of the 

two events

9  Spaceships A and B leave the Earth and travel towards 
Vega, both at a speed of 0.9c. Observer C back on 
Earth sees the crews of A and B moving in ‘slow 
motion’. Describe how the crew of A see the crew of B, 
and how they see C and the Earthlings moving.
A  B will appear normal, C will be sped up.
B  B will appear normal, C will be slowed down.
C  B will appear slowed down, C will be normal.
D  B will appear sped up, C will be slowed down.
E  None of these.

10  If you were riding in a very smooth, quiet train with 
the blinds drawn, how could you tell the difference 
between the train (i) being stopped in the station, (ii) 
accelerating away from the station, (iii) travelling at a 
constant speed?

11  You are in a spaceship travelling at very high speed 
past a new colony on Mars. Do you notice time going 
slowly for you; for example, do you find your heart 
rate is slower than normal? Do the people on Mars 
appear to be moving normally? Explain your answers.

12  An observer sitting in a very fast jet plane is looking 
out of the window at a clock placed on top of a 
mountain. The passenger, using the mountain’s 
clock, notes that it takes a goat 20.0 s to run along 
a rocky slope. If the plane is flying at a speed of 
2.00 × 108 m s–1, calculate how much time has 
passed on the passenger’s clock.

13  A spectator is standing next to the pool clock 
and watching as a swimmer races at a speed of 
2.25 × 108 m s–1. The spectator times on the pool 
clock that the swimmer completes one stroke in 
1.50 s. 
a  Calculate how much time the spectator sees pass 

on the swimmer’s wristwatch. 
b  Calculate how much time the swimmer sees has 

passed on the pool clock, during which time her 
own wristwatch shows that 1.50 s have passed. 

Chapter review

KEY TERMS

aether
classical physics
frame of reference
Gedanken 
inertial frame of reference

length contraction
Lorentz factor
medium 
paradox
postulate

proper length
proper time
simultaneous 
spacetime
time dilation
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14  In the twin paradox explanation, when can you say the 
twin that stays at home ages faster than the twin that 
goes on the journey?
A  during the acceleration phase
B  during the deceleration phase
C  during both the acceleration and deceleration 

phases
D  during the constant velocity portion of the journey

15 a   At what speed would a rocket ship be going if it is 
observed it to be half its normal length?

b  The rocket ship is then observed to accelerate to 
a certain speed so that its length halved again. 
Did that mean that it doubled its speed? To what 
speed did it accelerate?

16  Binh and Amaya are playing table tennis in their 
spaceship. They rush past Clare in her space station 
at a relative speed of 240 000 km s–1. Binh says that 
after he hits the ball it returns to his bat after 1.00 s. 
Their table is 3.00 m long in the direction of their 
spaceship’s motion and is 1.00 m high.
a  Calculate the time between hits, as measured 

by Clare.
b  Calculate the length and height of the table, as 

measured by Clare.

17  Star Xquar is at a distance of 5 light-years from Earth. 
Space adventurer Raqu heads from Earth towards 
Xquar at a speed of 0.9c.
a  For those watching from Earth, how long will it take 

for Raqu to reach Xquar?
b  From Raqu’s point of view how long will it take her 

to reach Xquar?
c  Explain why it is that, although Raqu knew that 

Xquar was 5 light-years from Earth, and that she 
was to travel at 0.9c, it took much less time than 
might be expected from these figures. 

18  The space shuttle travelled at close to 8000 m s–1. 
Imagine that as it travels east–west it is to take a 
photograph of Australia, which is close to 4000 km 
wide. Because of its speed, the space camera will see 
everything on Earth slightly contracted.
a  About how much less than 4000 km wide will 

Australia appear to be in this photograph?
b  Will the north–south dimension of Australia be 

smaller as well?

19  Imagine that as we watch a traveller from Earth to 
the star Vega travelling at 99.5% of the speed of light, 
we will see that their clocks slow down by a factor of 
about 10 times.
a  Explain how this factor of 10 was arrived at.
b  Does this mean that they experience this slowing 

down of time?
c  Vega is about 25 light-years from Earth, so in our 

frame of reference it takes light from Vega 25 years 
to reach us. How long will it take our space traveller 
to reach Vega?

d  How long will the traveller find that it takes to travel 
to Vega?

e  Does your answer to part d imply that they were 
able to get to Vega in less time than light? Explain 
your answer.

20  Muons are high-speed particles that are created some 
15 km above the Earth’s surface. Classical physics 
dictates that due to their short lifespans, muons 
should not ever reach the Earth’s surface even though 
they travel at incredible speeds (approx. 0.992c). 
However, they do. Explain how this is possible, 
referring to each of the frames of reference of an 
observer on Earth and the muon itself.

Chapter review continued



CHAPTER

In 1687 Isaac Newton published Principia, in which he outlined the connection 
between force and motion of bodies with mass. In 1905 Albert Einstein produced an 
important refinement. While Newton viewed mass, space and time all as absolutes, 
Einstein postulated that they only appear to be so in the limited contexts covered by 
classical physics. 

As shown in Chapter 6, distance and time are relative concepts. In this chapter it 
will be revealed that mass, too, is not the absolute that Newton believed it to be. 
While chemists had long believed that mass was conserved, and in the 19th century 
physicists had come to believe that energy was conserved, Einstein showed that it 
was in fact ‘mass–energy’ that was conserved. Energy can be converted to mass and 
mass to energy.

Key knowledge 
By the end of this chapter, you will have covered material from the study of forces, 
energy and mass, and you will be able to:

• investigate and analyse theoretically and practically impulse in an isolated system 
for collisions between objects moving in a straight line: F∆t = m∆v

• investigate and apply theoretically and practically the concept of work done by a 
constant force using: 
 - work done = constant force × distance moved in direction of net force 
 - work done = area under force–distance graph

• analyse transformations of energy between kinetic energy, strain potential 
energy, gravitational potential energy and energy dissipated to the environment 
(considered as a combination of heat, sound and deformation of material): 
 - kinetic energy at low speeds: Ek = 12 mv2; elastic and inelastic collisions with 
reference to conservation of kinetic energy 

 - strain potential energy: area under force–distance graph including ideal springs 
obeying Hooke’s Law: Es = 12 k∆x2

 - gravitational potential energy: Eg = mg∆h or from area under a force–distance 
graph and area under a field–distance graph multiplied by mass 

• interpret Einstein’s prediction by showing that the total ‘mass–energy’ of an object 
is given by: Etot = Ek + E0 = γ mc2 where E0 = mc2, and where kinetic energy can be 
calculated by: Ek = (γ  – 1)mc2

• describe how matter is converted to energy by nuclear fusion in the Sun, which 
leads to its mass decreasing and the emission of electromagnetic radiation. 

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

The relationship between  
force, energy and mass 
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7.1 Impulse 
When you crash your Ferrari, it is not only how fast you are going that counts, but 
how quickly you stop!  

This is a direct consequence of Newton’s second law. If the velocity decreases 
over a long time, the deceleration is small. Using the mathematical formula F = ma, 
if a is small, you can conclude that the force required to bring the Ferrari to a stop 
will also be relatively small. If on the other hand, the Ferrari is brought to a halt 
very rapidly as in Figure 7.1.1, there will be a large deceleration requiring a large 
force. The force determines the damage. Despite the likelihood of injury caused by 
a large force that acts for a short time such as in a car crash, a small force acting 
for a longer time has the same effect on the motion of an object. That is, gradually 
applying the brakes will also bring the car to rest. One way to quantify the similarity 
between these situations is to describe the impulse in a collision, which considers 
both the force and the time over which it acts.

FIGURE 7.1.1 Rapid deceleration requires a large force and often results in damage and injury.

CHANGE IN MOMENTUM 
Newton’s original formulation of his second law was not expressed in terms of 
acceleration. Rather, he spoke of the ‘motion’ of an object that would be altered when 
a force acted on the body over a time interval. You would say that the momentum 
of the object changes when a resultant force acts on it. This is completely equivalent 
to the more familiar F = ma formulation of Newton’s second law, as shown below.

Consider a body of mass m, with a resultant force F acting on it for a time, ∆t. 
The mass will accelerate as described by Newton’s second law:

F = ma
∴ F = m∆v

∆t
, using the definition of acceleration.

Rearranging, we can write F∆t = m∆v = ∆p.
The term m∆v is the change in momentum of the object. The force involved 

in a collision can change in value during the collision, so the average force, Fave , is 
used. The average force acting on the object for a time ∆t causes a change in the 
momentum. 

The Ferrari coming to a rapid stop in Figure 7.1.1 loses all of its initial 
momentum,  and a considerable force acts over a very short time interval. 
The  same  momentum loss could be achieved much more sedately using the 
brakes  over a longer time interval. The force required would be a lot less, and 
there would be no damage.

The term Fave∆t is called the 
impulse of the resultant force 
and is equal to the change in 
momentum of the object. 
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It is important to note that impulse is a vector quantity, where the direction is 
the same as that of the average force or of the change in momentum/velocity.

PHYSICSFILE

Momentum units
Since impulse can be expressed in terms of a momentum change, the units for 
momentum (kg m s–1) and impulse (N s) must be equivalent. This can be shown by 
using Newton’s second law.

Given that 1 N = 1 kg m s–2 (from F = ma), it follows that 1 N s = 1 kg m s–2 × s

i.e. 1 N s = 1 kg m s–1

Even though the units are equivalent, they should be used with the appropriate 
quantities as a reminder of the quantity that is being dealt with.

The newton second (N s) is the product of a force and a time interval and so should 
be used with impulse.

The kilogram metre per second (kg m s–1) is the product of a mass and a velocity and 
so should be used with momentum. 

Even so, it is not uncommon to see newton seconds used as the unit of momentum, 
nor is this incorrect.

Worked example 7.1.1

CALCULATING THE IMPULSE AND AVERAGE FORCE 

Calculate the impulse of a tree on a 1485 kg sports car if the vehicle is travelling 
at 93.0 km h–1 in a northerly direction when the driver loses control of the 
vehicle on an icy road and the car comes to rest against the tree. 

If the car crumples in 40.0 ms, find the average force exerted by the tree on 
the car.

Thinking Working 

Convert the speed to m s–1. 93.0 km h–1 = 
93.0
3.6  m s–1 = 25.8 m s–1

Calculate the change in momentum.

The negative sign indicates that the 
change in momentum, and therefore 
the impulse, is in the direction opposite 
to the initial momentum (north is 
positive), as would be expected.

∆p = m (v – u)

= 1485 (0 – 25.8)

= –3.84 × 104 kg m s–1

The impulse is equal to the change in 
momentum.

Impulse = 3.84 × 104 kg m s–1 south

Transpose ∆p = Fave ∆t to find the force. Fave = 
∆p
∆t

= 
–3.84 × 104

40.0 × 10-3

= –9.60 × 105 N

= 9.60 × 105 N south

Worked example: Try yourself 7.1.1

CALCULATING THE IMPULSE AND AVERAGE FORCE

Prior to the accident, the driver had stopped to refuel. Calculate the impulse 
of the braking system on the 1485 kg car if the vehicle was travelling at 
95.5 km h–1 in a north-easterly direction and the driver took 12.5 s to come 
to a halt. Also find the average braking force.
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FORCE VERSUS TIME GRAPHS 
In many practical applications the force applied to an object is not constant. 
For example, when a tennis player hits a ball, the initial force exerted by the racquet 
is relatively small. As the strings stretch and the ball deforms, this force builds 
up to a maximum value before decreasing again as the ball rebounds from the 
racquet. If the force is measured over time, this data is often represented graphically 
(see Figure 7.1.2).

The impulse of the ball, or the change in momentum, may be found from the 
product Fave∆t. This is simply the area under the force–time graph.

Worked example 7.1.2

RUNNING SHOES 

A running-shoe company plots the following force–time graph for a running 
shoe. Use the data to calculate the magnitude of the impulse. 
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Thinking Working 

Recall that impulse = Fave∆t.

When the force is not constant, this is 
the area under the force–time graph.

impulse = 
1
2 base × height 

= 
1
2 × 160 × 10–3 × 2 × 103 

= 160 N s

Worked example: Try yourself 7.1.2

RUNNING SHOES 

A running-shoe company plots the following force–time graph for an alternative 
design intended to reduce the peak force on the heel. Calculate the magnitude 
of the impulse.
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Note that in the worked examples above, the impulse is almost the same but 
the momentum has been transferred over a longer time, resulting in a lower 
maximum force.

APPLICATIONS 
The connection between impulse, force and collision duration is useful for the 
analysis of collisions. When a vehicle collides with another object and comes to rest, 
the vehicle and occupants undergo a rapid deceleration. The impulse depends on 
the initial speed of the vehicle, and on its mass as well.

Since impulse = ∆p = Fave∆t, a large force is exerted to bring the vehicle to 
rest over a very short time. Extending the time taken for a vehicle to stop reduces 
the force exerted. Examples of increased stopping times in different activities are 
shown in Figure 7.1.3. 

t (s)
0 0.150.120.090.060.03

Impulse = Fave × ∆t
 = area under graph

F 
(N

)

FIGURE 7.1.2 The force changes with time as the 
racquet strikes the ball.
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Worked example 7.1.3

BRAKING FORCE 

Calculate the magnitude of the average force exerted by the brakes of a 2500 kg 
truck to bring the vehicle to rest in 12.0 s, if it were travelling at 30.0 m s–1 
before the brakes were applied.

Thinking Working 

The change in momentum, ∆p = Fave∆t.

Calculate the change in momentum.

The negative sign indicates that the 
change in momentum, and therefore 
the braking force, is in the direction 
opposite to the initial momentum, as 
would be expected.

∆p = m (v – u)

= 2500 (0 – 30.0)

= –7.5 × 104 kg m s–1

Transpose ∆p = Fave ∆t to find the 
force. The sign of the momentum can 
be ignored since you are finding the 
magnitude of the force.

Fave = 
∆p
∆t

= 
7.5 × 104

12 

= 6.25 × 103 N

Worked example: Try yourself 7.1.3

BRAKING FORCE 

The same 2500 kg truck travelling at 30.0 m s–1 needs to stop in 1.5 s because 

a vehicle up ahead stops suddenly. Calculate the magnitude of the braking force 
required to stop the truck. 

FIGURE 7.1.3 (a) The landing mat extends the time over which the athlete comes to 
rest, reducing the size of the stopping force. If the high jumper missed the mat and 
landed on the ground, the force would be larger, but their momentum change would 
be the same. (b) Thick padding around the goal post extends the time over which a 
player comes to rest in a collision, thereby reducing the size of the stopping force. 
(c) Wicketkeepers allow their hands to ‘give’ when keeping to a bowler. This extends 
the ball’s stopping time and reduces the stopping force.

(a) (b) (c)
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Safety features such as crumple zones and airbags (see Figure 7.1.4) are aimed 
at extending ∆t, which reduces the force on the occupants of the vehicle, potentially 
saving lives and preventing injuries.

FIGURE 7.1.4 Airbags reduce the force on passengers by extending the time that it takes for them 
to stop.

Figure 7.1.5 shows a force–time graph for a collision when an airbag is inflated 
compared with one where there is no airbag. The change in momentum, or impulse, 
of the passenger is the same in each case. Thus the area under each curve should be 
equal. Note, however, that both the peak force and the average force are significantly 
higher where there is no airbag. The broader peak for the airbag indicates that the 
passenger is losing their momentum over a longer time, requiring a lower force.
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FIGURE 7.1.5 Graph illustrating the difference in the force on a passenger over time when an airbag is inflated in a collision (solid line), and when no 
airbag is present (dotted line).
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PHYSICS IN ACTION

Car safety and crumple zones
Worldwide, car accidents are responsible for over 2 million 
deaths each decade. Many times this number of people 
are injured. One way of reducing the road toll is to design 
safer vehicles. Modern cars employ a variety of safety 
features that help to improve the occupants’ survival 
chances in an accident. Some of these safety features 
are the antilock braking system (ABS), electronic stability 
control (ESC), inertia reel seatbelts, variable-ratio-response 
steering systems, collapsible steering columns, head rests, 
shatterproof windscreen glass, padded dashboards, front 
and side air bags, front and rear crumple zones and a 
rigid passenger compartment.

Some prototype cars today are equipped with collision 
avoidance systems. These have laser or infrared sensors 
that advise the driver of hazardous situations, and even 
take over the driving of the car in order to avoid accidents! 
Consider the example of the driver of a car that crashes 
into a tree at 60 km h−1 (16.7 m s−1). If the driver has a 
mass of 90 kg, then the momentum of the driver is:

p = m × v = 90 × 16.7 = 1500 kg m s−1

As a result of this collision, the driver will lose all of this 
momentum as the car comes suddenly to a stop. The 
impulse experienced by the driver is the same whether the 
stop is sudden or gradual. In either a sudden or gradual 
stop, the impulse is –1500 N s. So the idea of safety 
features such as inertia reel seatbelts, collapsible steering 
columns, padded dashboards, air bags and crumple zones 
is not to reduce the size of the impulse, but to reduce the 
size of the forces that act to bring the driver to a stop. 
Automotive engineers strive to achieve this by extending 
the time over which the driver loses momentum.

Crumple zones 
A popular misconception among motorists is that cars 
would be much safer if they were sturdier and more rigid. 
Drivers often complain that cars seem to collapse too easily 
during collisions, and that it would be better if cars were 
structurally stronger—more like an army tank. In fact, cars 
are specifically designed to crumple to some extent (see 
Figure 7.1.6). This makes them safer and actually reduces 
the seriousness of injuries suffered in car accidents.

Army tanks are designed to be extremely sturdy and 
rigid vehicles. They are able to withstand the effect of 
collisions without suffering serious structural damage. If a 
tank travelling at 50 km h–1 crashed into a solid obstacle, 
the tank would be relatively undamaged. However, its 
occupants would very likely be killed. This is because the 
tank has no ‘give’ in its structure and so the tank and its 
occupants would stop in an extremely short time interval. 

The occupants would lose all of their momentum in an 
instant, which means that the forces acting on them would 
necessarily be extremely large. These large forces would 
cause the occupants of the tank to sustain very serious 
injuries, even if they were wearing seatbelts. 

FIGURE 7.1.6  Cars are designed with weak points in their chassis 
at the front and rear that enable them to crumple in the event of a 
collision. This extends the time over which the cars come to rest and 
so reduces the size of the forces acting on the occupants.

Cars today have strong and rigid passenger 
compartments; however, they are also designed with non-
rigid sections such as bonnets and boots that crumple if 
the cars are struck from the front or rear (see Figure 7.1.7). 
The chassis contains parts that have grooves or beads cast 
into them. In a collision, these beads act as weak points, 
causing them to crumple in a concertina shape. 

FIGURE 7.1.7  The Australian New Car Assessment Program (ANCAP) 
assesses the crashworthiness of new cars. This car has just crashed 
at 50 km h−1 into a 5-tonne concrete block. The crumpling effect can 
clearly be seen.

This ‘concertina’ effect allows the front or rear of the 
car to crumple, extending the time interval over which 
the car and its occupants come to a stop. This stopping 
time is typically longer than 0.1 s in a 50 km h−1 crash. 
Because the occupants’ momentum is lost more gradually, 
the peak forces that act on them are smaller and so the 
chances of injury are reduced.
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7.1 Review
SUMMARY

• When a force is exerted on an object for a time 
interval ∆t, it brings about a change of momentum 
∆p by changing the velocity of the object:

Fave ∆t = m∆v = ∆p

• The impulse is the change of momentum of an object.

• Impulse can be calculated from the area under a 
force–time graph.

• In many practical applications measures are taken 
to increase the time of the interaction in order to 
reduce the maximum force.

KEY QUESTIONS

1  Three balls of identical mass are thrown against a 
surface at the same speed. 
Ball A stops on impact.
Ball B rebounds with 75% of its initial speed.
Ball C rebounds with 50% of its initial speed.
Order the balls in terms of their change in 
momentum, from least to greatest.

2  When a tennis player serves, she hits the 57 g 
tennis ball at the top if its flight so that the ball is 
momentarily stationary, and leaves the racquet at 
144 km h–1. If the ball and racquet are in contact 
for 0.060 s, calculate the magnitude of the average 
force exerted by the racquet on the ball.

3  A 160 g cricket ball flies past the wicket at 155 km h–1 
and is stopped by the wicket keeper. Calculate the 
magnitude of the impulse delivered by the ball to 
the wicket keeper.

4  A child wearing a backpack jumps from a tree, 
landing on her feet on the ground. Select the correct 
statements about factors that will influence the force 
on her knees and ankles when she lands. More than 
one correct answer is possible.
A  Wearing good runners will reduce the force, while 

being barefoot will increase the force.
B  Bending her knees as she lands will increase 

the force.
C Landing on concrete will increase the force 

compared to landing on grass.
D  Jumping from a lower branch will decrease 

the force.
E  Leaving the backpack in the tree will make no 

difference to the force.

5  A basketball of mass 0.625 kg is bounced against 
the court at a speed of 32.0 m s–1 and it rebounds at 
24.5 m s–1. Calculate the average force exerted by the 
court on the ball if the interaction lasts 16.5 ms.

6 a  Calculate the momentum of a 100 tonne train 
travelling at 50.0 km h–1. 

b  Calculate the magnitude of the impulse if the 
train were to collide with a 5.00 tonne truck at a 
level crossing, and push the truck for 15 m before 
coming to rest. 

7  Jacinta does a physics experiment in which she inflates 
two basketballs to different pressures, and on dropping 
them from the same height, finds that the ball with the 
highest pressure bounces higher. She argues that if 
each of the two balls were thrown with the same speed 
at a player, the ball with higher pressure would hurt 
more. Her practical partner Sarah disagrees. She says 
the balls have essentially the same mass, the same 
speed, and so they will not be any different when they 
hit the player. Who is correct? Use the concepts from 
this chapter to justify your answer.

The following information relates to questions 8 and 9.
The figure below shows a schematic representation of the 
force exerted by an athlete’s foot over the 200 ms that his 
foot is in contact with the ground.
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8  Calculate the magnitude of the impulse of the athlete 
on the ground. 

9  Calculate the magnitude of the average force exerted 
by his foot over the duration of the contact.

10  A tennis ball of mass 57.5 g is tested for compliance 
with tennis regulations by being dropped from a 
height of 251 cm onto concrete. A bounce height of 
146 cm is deemed acceptable. Find the magnitude of 
the average force on the ball if it is in contact with the 
floor for 0.0550 s.
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7.2 Work done 
In everyday language, the concept of work is associated with effort and putting 
energy into something, whether it be in your studies, sports, or even an important 
relationship. Although the word ‘work’ has a much more specific meaning in Physics, 
it is still connected with energy.

As you saw in the previous section, when a force acts on an object over a time 
interval, the object accelerates and its momentum changes. When the force causes 
a displacement in the direction of the object, the energy of the object changes, and 
we say that work has been done. The weightlifter in Figure 7.2.1 does work by 
exerting a force, causing the barbell she is lifting to undergo a displacement. The 
gravitational potential energy of the barbell is increased, and the store of chemical 
energy in the muscles of the weightlifter is decreased.

FIGURE 7.2.1 If this weightlifter lifts a 100 kg barbell, she has to exert a force of 980 N to oppose the 
force of gravity. When she lifts the barbell through a height of 0.5 m, she does 490 J of work on the 
barbell, and increases the gravitational potential energy of the barbell by the same amount.

CALCULATING WORK 
Work is the transfer of energy from one object to another and/or the transformation 
of energy from one form to another. A force does work on an object when it acts 
on a body causing a displacement in the direction of the force. Where the force is 
constant, the work done by the force is: W = Fs.

If the force is applied at an angle to the displacement, only the component of 
the force in the direction of the displacement contributes to the work done. That is, 
if the force and displacement vectors are at an angle θ  with respect to each other, 
then F cos θ  is the component of force that does work: 

W = Fs cos θ

where W is the work done by the force (J) 

 F is the magnitude of the constant force (N)

 s is the displacement (m)

 θ  is the angle between the force vector and the displacement vector
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While both force and displacement are vectors, work and energy are scalar 
quantities that are measured in joules (J).

PHYSICSFILE

The joule
The unit for work is the newton metre (N m), which is called a joule (J) in honour 
of James Joule, an English physicist who did pioneering work on energy in the 
19th century. All forms of energy are measured in joules. The units for gravitational 
potential energy, for example, can be shown to be equivalent to joules.

Eg = mgΔh

 Units for Eg = kg m s–2 m

 = N m

 = J

You might like to try this for kinetic energy.

From Unit 2 Physics, you will remember that the unit for torque is also the newton 
metre; however in that case it is not the same as a joule. The reason for this is that, for 
torque, the force and the lever arm are perpendicular to each other whereas for work, 
the force and the displacement are parallel to each other.

When you want to find the work done on an object, it is the net force that needs 
to be used. For instance, if a man pushes a heavy couch across a carpeted floor, the 
work done on the couch depends on the force applied by the man, less the frictional 
force which opposes the motion:

W = ∆E = Fnet s
The energy, ∆E, gained by the couch depends on the net force acting on it.

Worked example 7.2.1

WHEN THE FORCE APPLIED IS AT AN ANGLE TO THE DISPLACEMENT 

A rope that is at 30.0° to the horizontal is used to pull a 10.0 kg crate across a 
rough floor. The crate is initially at rest and is dragged for a distance of 4.00 m. 
The tension, Ft , in the rope is 50.0 N and the frictional force, Ff , opposing the 
motion is 20.0 N.

Ft = 50 N

Ff = 20 N

30º

a  Determine the work done on the crate by the person pulling the rope.

Thinking Working 

Draw a diagram of the forces in action. Ft

Fth

Fth = Ft cos 30º = 43.3 N       Ff = 20 N 

Find the component of the tension in 
the rope, Ft , that is in the direction of 
the displacement, i.e. Fth.

Fth = 50 × cos 30° = 43.3 N

Find the work done by the person (this 
includes work done on the crate, and 
work done against friction).

W = Fths

= 43.3 × 4.00

= 173.2 J
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b  Calculate the work done on the crate.

Thinking Working 

The work done on the crate is the net force 
multiplied by the displacement. (This is the 
increase in the kinetic energy of the crate.)

W = Fnets = (Fth − Ff)s

= (43.3 − 20) × 4.00

= 93.2 J

c   Calculate the energy transformed to heat and sound due to the frictional force.

Thinking Working 

Energy transformed to heat and sound 
due to the frictional force is the difference 
between the work done by the person and 
the energy gained by the crate.

Energy = 173.2 − 93.2 = 80.0 J

This is equal to the work done against 
friction, which could also be calculated 
from the frictional force.

Wf = Ff s

= 20.0 × 4.00

= 80.0 J

Worked example: Try yourself 7.2.1

WHEN THE FORCE APPLIED IS AT AN ANGLE TO THE DISPLACEMENT 

A boy drives a toy car by pulling on a cord that is attached to the cart at 45° to the 
horizontal. The boy applies a force of 15.0 N and pulls the car for 10.0 m down a 
pathway against a frictional force of 6.0 N. 

Ft = 15 N

Ff = 6.0 N

45º

a  Determine the work done on the car by the boy pulling on the cord.

b  Calculate the work done on the toy car.

c   Calculate the energy transformed to heat and sound due to the 
frictional force.

When a force performs no work 
It is important to remember that work is only done when a force, or a component 
of force, is applied in the direction of displacement. Hence it is possible to exert a 
force and feel very tired without doing work. This would mean no energy has been 
transferred. For example, if you hold a heavy object with your arms out in front of 
you, you will get tired very quickly but you are not doing any work on the object.

Similarly, an object moving in a circular path in a horizontal plane is constantly 
accelerated by the centripetal force. Because this force is perpendicular to the 
displacement at each instant, the force does no work, and no energy is transferred 
to the object. It does not get faster or slower, it only changes direction as shown in 
Figure 7.2.2.

Force–distance graphs 
When the force is constant the work done is easily calculated, but in many practical 
applications the net force is not constant. Where the force–distance relationship is 
represented graphically, the work done is the area under the force–distance graph. 
This principle is very similar to the way in which the impulse can be calculated from 
the area under a force–time graph, as described in the previous section. However, 
it is important not to confuse these two quantities.
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FIGURE 7.2.2 A body moving in a circular 
path has a force directed towards the centre. 
The displacement is in the direction of the 
velocity. There is therefore no force in the 
direction of the displacement.
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Worked example 7.2.2

CALCULATING WORK FROM A FORCE–DISTANCE GRAPH 

The force required to stretch a piece of bungee cord was recorded in the graph 
below. Calculate the work done when a 60 N force is applied to the cord.
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Thinking Working 

The work done is the area under the 
force–distance curve. This may be found 
by calculation, or by counting squares. 
In this case it is best to divide the area 
into triangles and rectangles.

40

0

80

100

20

60

1.5 2 2.510.50

Force (N)
Force vs extension of bungee cord

Extension (m)

Area =  
1
2 × 0.50 × 30 + 

1
2 × 0.90 ×

30 + 30 × 0.90

Work done = 48 J

Worked example: Try yourself 7.2.2

CALCULATING WORK FROM A FORCE–DISTANCE GRAPH

The force required to elongate a piece of rubber tubing was recorded in the 
graph below. Calculate the work done when the rubber was stretched by 2.0 m.
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If the force–distance curve is not linear, the area can be estimated by counting 
squares under the curve. It is important to take careful note of the units in order to 
calculate the work represented by each square.
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7.2 Review
SUMMARY

• When a force does work on an object, there is a 
change in the displacement and the energy of 
the object.

• Work, W, is a scalar and is measured in joules (J).

• The work done on an object is the net force on 
the object multiplied by the distance moved in 
the direction of the force: W = Fnets.

• When the force is applied to an object at an angle 
to the displacement, work is only done by the 
component of the force in the direction of the 
force: W = Fs cos θ.

• A centripetal force does no work on an orbiting 
object, as the force and displacement are 
perpendicular.

• The work done by a varying force is the area 
under the force–distance graph.

KEY QUESTIONS

1  Select the scenario in which no work is done. 
A  Janet stands on a horizontal travelator holding a 

suitcase above the ground.
B  James walks across the airport lounge with his 

backpack on his back, and climbs a flight of stairs 
to the boarding gate.

C  Jeremy lifts his suitcase and stands holding it for 
a few minutes.

D  Jason wheels his suitcase across the floor.
The following information applies to questions 2–4.
A child uses a leash to drag a reluctant 2.0 kg puppy across 
a floor. The leash is held at an angle of 60° to the horizontal 
and the child applies a force of 30 N on the puppy, which 
is initially at rest. A constant frictional force of 10 N acts on 
the dog as it is dragged for a distance of 2.4 m.

2  Calculate the work done by the horizontal component 
of the 30 N force.

3  Calculate the work that the child does in overcoming 
friction.

4  Calculate the kinetic energy gained by the puppy.

5  The graph below shows the force–distance curve as 
a sports shoe is compressed during the stride of an 
athlete. Estimate the work done in compressing the 
shoe by 7 mm.
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6  Earth orbits the Sun and experiences a constant 
gravitational force. Select the correct statement.
A  The work done by the gravitational force in one 

orbit is the magnitude of the gravitational force 
multiplied by the circumference of the orbit.

B  The gravitational force does not do work on Earth 
because it is not a contact force.

C  The work done by the gravitational force is equal 
to the kinetic energy of Earth.

D  The gravitational force does not do work on 
Earth because the force and displacement are 
perpendicular.

7  A weightlifter raises a 150 kg barbell to a height of 
1.20 m at constant speed. Calculate the work done 
by the weightlifter. 

8  A proton moving with a velocity of 4.0 × 106 m s–1 in 
a magnetic field of strength 1.7 T experiences a force 
F = qvB which causes the charge to travel in a circular 
path of radius 2.5 cm. Calculate the work done by the 
force in one revolution.

9  In the javelin event the javelin is released at an angle 
in order to achieve maximum flight distance. An 
800 g javelin is released at an angle of 45° at a height 
of 1.9 m, and at a speed of 108 km h–1. Calculate 
the work done by the gravitational force on the 
javelin from its release to the point where it lands on 
the ground.

10  Krisha pushes a lawnmower at constant speed across 
15 m of lawn. She applies a force of 68 N at an angle 
of 60° to the horizontal. Calculate the work that she 
does against friction.
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7.3 Strain potential energy 
In everyday life, you frequently encounter situations in which work is done to 
stretch or compress materials. Think of sports like bungee jumping, pole vaulting 
(Figure 7.3.1), trampolining and tennis, where the elastic properties of materials are 
harnessed to generate thrills for spectators and participants. Computer keyboards 
have tiny springs in the keys, while windup toys, old-fashioned watches, door-closing 
mechanisms and car suspensions are some of the other devices that use springs.

HOOKE’S LAW 
Initially, it is relatively easy to start stretching a spring, but more and more force is 
required for each incremental amount of extension. This is expressed in Hooke’s law:

Fs = –k∆x

where Fs is the force exerted by the spring (N)

 k is the spring constant (N m–1)

	 ∆x is the displacement (the extension or compression) of the spring (m)

The force exerted by a spring is directly proportional to, but opposite in direction 
to, the spring’s extension or compression. The spring constant k is a measure of the 
stiffness of the spring. The behaviour of a spring under force is often illustrated 
graphically by plotting the force applied versus the extension achieved, as shown in 
Figure 7.3.2. Notice that a stiffer spring has a larger spring constant, and the spring 
constant is represented by the gradient (slope) of the graph.

PHYSICSFILE

Climbing ropes
The ropes used by rock climbers have elastic properties that can save lives during 
climbing accidents. Ropes that were used in the 19th century were made of hemp, 
which is strong but does not stretch a lot. When climbers using these ropes fell, they 
stopped very abruptly. The resulting large forces acting on the climbers caused many 
serious injuries. Modern ropes are made of a continuous-drawn nylon fibre core and 
a protective textile covering. They have a slightly lower spring constant and stretch 
significantly (up to several metres) when stopping a falling climber. This reduces the 
stopping force acting on the climber. Ropes with even lower spring constants are 
suitable for bungee jumping. Rock climbers tend to avoid these ropes—bouncing up 
and down the rock face is not advisable!

When considering the work done in deforming a spring, the force applied is in 
the direction of the displacement and hence the negative sign in F = –k∆x falls away. 
The applied force is a linear function of distance and, as discussed in the previous 
section, when force is not constant the work done by the force may be calculated 
from the area under the force–distance curve. Hence this technique can be used to 
determine the work required to extend or compress a spring.
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FIGURE 7.3.3 The strain potential energy is calculated by the area under the force–distance curve.
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FIGURE 7.3.2 Both springs represented in this 
graph are ideal. The springs obey Hooke’s law 
because they both have linear graphs, but they 
have different degrees of stiffness. The stiff 
spring has a spring constant of 200 N m–1. 
The spring constant of the other spring is just 
50 N m–1. The stiffer spring has the higher 
gradient (steeper line) on the F–x graph.

FIGURE 7.3.1 The strain potential energy stored 
in the pole is what allows the pole vaulter to 
propel herself over the bar.
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This leads us to an expression for the work done in deforming a spring, and the 
strain potential energy which is then stored in the spring:

 Es = 12 height × base of the shaded triangle in Figure 7.3.3, thus:

 = 12 F × ∆x

 = 12 k∆x × ∆x

The strain potential energy, Es, is calculated using:

Es = 
1
2
 k∆x2

where k is the spring constant (N m–1)

	 ∆x is the spring extension (m)

We call the directly proportional relationship between force and extension 
elastic behaviour. Ideal springs obey Hooke’s law, and will return all of the strain 
potential energy when the applied force is removed.

It is possible to exceed the elastic limit of a spring or other elastic material. 
At this point permanent deformation occurs. If the force is increased further, the 
breaking point is reached, at which the material fails. These points are shown in 
Figure 7.3.4.

While the work done in deforming the spring can still be calculated from the 
area under the force–distance curve, the energy stored may not all be recoverable 
as work has been done to permanently change the material.

Worked example 7.3.1

CALCULATING THE SPRING CONSTANT, STRAIN POTENTIAL ENERGY 
AND WORK

A fine steel wire has the force–extension properties shown in the figure below. 
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a   Calculate the spring constant k for the wire.

Thinking Working 

The spring constant is the gradient 
of the linear section of the force–
extension curve in units N m–1.

k = 
∆F
∆x

= 
40

20 × 10–3

= 2.0 × 103 N m–1
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FIGURE 7.3.4 The point at which the force–
distance curve deviates from linear behaviour 
is the elastic limit, where permanent damage 
is done to the spring.
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b   Calculate the strain potential energy that the wire can store before permanent 
deformation begins.

Thinking Working 

The strain potential energy is the area 
under the curve up to the elastic limit. Es = 

1
2 height × base of triangle

= 
1
2 × 4.0 × 2.0 × 10–3

= 4.0 × 10–3 J

This value can also be obtained using 
the formula for strain potential energy. Es = 

1
2 k∆x2

= 
1
2 × 2.0 × 103 × (2.0 × 10–3)2

= 4.0 × 10–3 J

c  Calculate the work done to break the wire.

Thinking Working 

Estimate the number of squares under 
the curve up to the breaking point. 

Number of squares = 33 (approx.)

Calculate the energy per square. 
The energy per square is given by 
the area of each square.

Energy for one square = 10 × 5 × 10–3 

= 5.0 × 10–2 J

Multiply the number of squares by 
the energy per square.

Work =  energy per square ×  
number of squares

= 5.0 × 10–2 × 33 

= 1.7 J

Worked example: Try yourself 7.3.1

CALCULATING THE SPRING CONSTANT, STRAIN POTENTIAL ENERGY 
AND WORK

An alloy sample is tested under tension, giving the graph shown below where X 
indicates the elastic limit, and Y the breaking point.

X
Y

0 1.0 2.0
Extension (cm)

3.0 4.0 5.0

Fo
rc

e 
(N

)

300

100

200

400

a   Calculate the spring constant k for the sample. 

b   Calculate the strain potential energy that the alloy can store before permanent 
deformation begins.

c   Calculate the work done to break the sample.
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7.3 Review
SUMMARY

• Hooke’s law states that the force exerted by a 
spring is Fs = –k∆x. The negative sign indicates 
that the force opposes the displacement.

• k is the spring constant and is measured in N m–1. 
This may be calculated from the gradient of the 
linear section of a force–displacement graph.

• The work done to deform an ideal spring is equal 
to the strain potential energy stored in the spring: 

Es = 
1
2 k∆x2

• When a material displays elastic behaviour 
it obeys Hooke’s law, and the strain potential 
energy stored is returned when the force 
is removed.

• When a material exceeds its elastic limit, 
permanent deformation occurs and not all of the 
strain potential energy is returned when the force 
is removed.

KEY QUESTIONS

1  Rank the springs below in order of increasing stiffness.

1.0 2.0 3.0 4.00
Compression (cm)

300

200

100

Fo
rc

e 
(N

)

A B

C

The following information relates to questions 2–3.
The graph of stretching force versus extension for two 
different springs is shown below. 
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2  Calculate the spring constant for both springs.

3  Find the difference between the strain potential energy 
stored when each of the springs in the graph above is 
extended by 20 cm.

4  A 1.0 m piece of rubber has a spring constant of 
50 N m–1. Calculate how much the rubber will stretch 
if a force of 4.0 N is exerted on it.

The following information relates to questions 5–6.
A toy plane is launched by using a stretched rubber band 
to fire the plane into the air. The rubber band is stretched 
by 25 cm and has a spring constant of 120 N m–1. 
The mass of the plane is 160 g. Assume that the rubber 
band follows Hooke’s law and ignore its mass.

5  Calculate the magnitude of the force applied to the 
stretched rubber band to stretch it by 25 cm.

6  Calculate the strain potential energy stored in the 
stretched rubber band.

The following information relates to questions 7–10.
An Australian archer purchased a new bow for the Rio 
Olympics. Image (c) in the figure below shows the force 
required to pull back the 26 g arrow prior to launch. 
When no force is applied XY is 10 cm, as shown in 
image (a). Answer the following questions assuming the 
archer draws back the bow so that XY is 30 cm.
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7  Calculate the strain potential energy stored in the 
stretched bow.

8  Calculate the work done by the archer.

9  Does the bow obey Hooke’s law? Justify your answer.

10  Where on the graph is the elastic limit of the bow?
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7.4 Kinetic and potential energy 
A bungee jumper stakes their life on the physics principle of conservation of 
energy. The gravitational potential energy they lose as they jump off the bridge is 
transformed rapidly to kinetic energy, soon to be stored as strain potential energy 
in the bungee cord as the bungee jumper approaches the ground, and jerks back 
upwards relishing the adrenalin rush (see Figure 7.4.1). The calculations that 
predict that they will live to make another jump are the subject of this section.

KINETIC ENERGY 
Kinetic energy (Ek) is the energy of motion of a body as you will recall from 
Chapter 5. For low speeds, it is calculated using:

Ek = 12 mv2

In perfectly elastic collisions, kinetic energy is transferred between objects, and 
no energy is transformed into heat or sound or deformation. In cases such as these, 
the relationship is stated as:

Ek (before) = Ek (after)
In Chapter 5 you saw how momentum is always conserved in a collision. The 

total energy is also always conserved in a closed system; however in general, kinetic 
energy is not conserved, and such collisions are called inelastic collisions. 

Perfectly elastic collisions do not exist in everyday situations, but they do 
exist in  the interactions between atoms and subatomic particles. A collision 
between two billiard balls or the spheres in a Newton’s cradle is almost perfectly 
elastic  because  very little of their kinetic energy is transformed into heat and 
sound energy.

Collisions such as a bouncing basketball, a gymnast on a trampoline and 
a tennis  ball being hit are moderately elastic, with about half the kinetic energy 
of the  system being retained. Perfectly inelastic collisions are those in which the 
colliding bodies stick together after impact with no kinetic energy. Some car 
crashes, a collision between a meteorite and the Moon, and a collision involving 
two balls of plasticine, could all be perfectly inelastic. In these collisions, most—and 
sometimes all—of the initial kinetic energy of the system is transformed into other 
forms of energy.

Worked example 7.4.1

ELASTIC OR INELASTIC COLLISION?

A car of mass 1.0 × 103 kg travelling west at 20 m s–1 crashes into the rear of a 
stationary bus of mass 5.0 × 103 kg. The vehicles lock together on impact. Show 
calculations to test whether or not the collision is inelastic.

Thinking Working 

Use conservation of momentum to 
find the final velocity of the wreck.

pi (car) + pi (bus) = pf (car and bus)

1000 × 20 + 0 = (1000 + 5000) vf

vf = 3.33 m s–1

Calculate the initial kinetic energy, 
before the collision for the bus and 
the car.

Eki = 
1
2 mvci

2

= 
1
2 × 1.0 × 103 × 202

Eki = 2.0 × 105 J

Calculate the final kinetic energy of 
the joined vehicles.

Ekf = 
1
2 mcbvf

2

= 
1
2 × (1.0 × 103 + 5.0 × 103) × 3.332

Ekf = 3.3 × 104 J

FIGURE 7.4.1 The bungee jumper is in free 
fall until the cord starts to take up some of 
the kinetic energy and convert it to potential 
energy. The jumper is ultimately lowered safely 
to the ground.
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Compare the kinetic energy before 
and after the collision to determine 
whether or not the collision is elastic.

The kinetic energy after the collision is 
significantly less than the kinetic energy 
before.

The missing energy has been 
transformed to heat, sound and 
deformation of the vehicles. Therefore, 
this collision is inelastic. 

Worked example: Try yourself 7.4.1

ELASTIC OR INELASTIC COLLISION?

A 200 g snooker ball with initial velocity 9.0 m s–1 to the right collides with a 
stationary snooker ball of mass 100 g. After the collision, both balls are moving 
to the right and the 200 g ball has a speed of 3.0 m s–1. Show calculations to 
test whether or not the collision is inelastic.

POTENTIAL ENERGY 
According the equation Eg = mg∆h, the gravitational potential energy of an 
object, Eg , is directly proportional to the mass of the object, m, its height above a 
reference point, ∆h, and the strength of the gravitational field, g. This equation is 
derived from the fact that in order to lift an object of mass m through a distance ∆h, 
work would be done against the force of gravity. Close to the surface of the Earth, 
this force is simply F = mg and the distance travelled is s = ∆h, so the work done is 
W = Fs, which is equal to the potential energy gained.

PHYSICSFILE

Energy equations
All equations for energy originate from the definition of work. If a force F acts on a body 
of mass m, causing a horizontal displacement s, the work done is:

W = Fs = mas

Now v2 = u2 + 2as can be rearranged as:

s = 
v2 – u2

2a

 W = ma(v2 – u2

2a )
 = 

1
2 mv2 – 

1
2 mu2 = ΔEk (from the definition of work)

In general, Ek = 
1
2 mv2.

Similarly, when a body is lifted at a uniform rate, the lifting force is simply equal to the 
gravitational force, i.e. mg. If the mass m is lifted through a vertical displacement s, the 
work done on the body is:

W = Fs = mgs

This vertical displacement is the change in height, Δh, in the gravitational field.

Thus:

W = mgΔh = ΔEg

In general, Eg = mgΔh.

When the gravitational force acting on an object can no longer be assumed to 
be constant, the gravitational potential energy can be calculated using a graph, in 
the same way that you calculated the work done by a varying force in sections 7.2 
and 7.3. If the force is plotted as a function of distance, a graph like the one shown 
in Figure 7.4.2 is obtained (see page 246).
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FIGURE 7.4.2 Plot of the gravitational force acting on a 10 kg body as a function of distance from the 
Earth. The shaded area represents the work done in moving the body a distance of 1.0 × 107 m.

Worked example 7.4.2

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A FORCE GRAPH 

Using the graph in Figure 7.4.2, calculate the work done against the gravitational 
force in moving the 10 kg object from a radius of 1.0 × 107 m to 2.0 × 107 m, 
and hence find the gravitational potential energy gained.

Thinking Working 

Find the energy represented per 
square in the graph.

One square represents

10 × 0.25 × 107 = 2.5 × 107 J

Identify the two values of distance 
which are relevant to the question.

The object starts at 1.0 × 107 m and 
finishes at 2.0 × 107 m.

Count the squares under the curve 
between the two distance values 
identified above, and multiply by the 
energy per square.

Work done = potential energy gained 

8.5 squares (approx) × 2.5 × 107 

= 2.1 × 108 J

Worked example: Try yourself 7.4.2

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A FORCE GRAPH 

Use the graph in Figure 7.4.2 to estimate the gravitational potential energy 
of the 10 kg object relative to the surface of the Earth, for the 10 kg object at 
2.0 × 107 m.

The disadvantage of the graph in Figure 7.4.2 is that it is specific to the mass of 
the object under consideration.

Recalling Newton’s law of universal gravitation, the magnitude of the force 
between any two masses is given by 

Fg = GMm
r 2
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If the mass M is the object setting up the gravitational field (Earth in this 
example) then the graph above is found by calculating the force on the 10 kg object 
for each distance.

Sometimes it is more useful to create a graph of the force exerted per unit mass:
Fg

m  = g = 
GM
r2

This is often called the gravitational field strength, and it is dependent only on 
the body generating the field. Such a graph can be used to calculate the work done 
on any body in the field, as illustrated in Worked example 7.4.3.

Worked example 7.4.3

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A GRAVITATIONAL 
FIELD STRENGTH VS DISTANCE GRAPH 

A wayward satellite of mass 1500 kg has developed a highly elliptical orbit around 
the Earth. At its closest approach (perigee), it is just 500 km above the Earth’s 
surface. Its furthest point (apogee) is 3000 km from the Earth’s surface. The Earth 
has a mass of 6.0 × 1024 kg and a radius of 6.4 × 106 m. The gravitational field 
strength of the Earth is shown in the graph.
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a   Calculate the change in potential energy of the satellite as it moves from the 
closest to the furthest point from the Earth.

Thinking Working 

Convert distances given as altitudes to 
distances from the centre of Earth.

Perigee = 6.4 × 106 + 500 × 103 

= 6.9 × 106 m

Apogee = 6.4 × 106 + 3000 × 103 

= 9.4 × 106 m

Find the energy represented by each 
square.

One square represents

1.0 × 0.20 × 106 = 2.0 × 105 J kg–1

Count the squares under the curve for 
the relevant area, and multiply by the 
energy per kg represented by each 
square.

Work done per kg = potential energy 
gained per kg of mass 

76 squares (approx) × 2.0 × 105 

= 1.52 × 107 J kg–1

Calculate the potential energy gained 
for the satellite by multiplying by the 
mass of the satellite.

Energy gained

Eg = 1.52 × 107 × 1500 

= 2.3 × 1010 J
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b   The satellite was moving with a speed of 15 km s–1 at its closest point to 
Earth. How fast was it travelling at its furthest point?

Thinking Working 

First calculate the kinetic energy at the 
closest point (perigee). Ekp = 

1
2 mvp

2

= 
1
2 × 1500 × (15 × 103)2

= 1.69 × 1011 J

The gain in gravitational potential 
energy at the furthest point (apogee) 
is at the expense of kinetic energy. 

Calculate the kinetic energy at the 
apogee.

Eka = Ekp – Eg

= 1.69 × 1011 – 2.3 × 1010

= 1.46 × 1011 J

Calculate the speed of the satellite at 
the apogee. Eka = 

1
2 mva

2

va = √2Eka

m

= √2 × 1.46 × 1011

1500

= 14 km s–1

Worked example: Try yourself 7.4.3

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A GRAVITATIONAL 
FIELD STRENGTH VS DISTANCE GRAPH

A satellite of mass 1100 kg is in an elliptical orbit around Earth. At its closest 
approach (perigee), it is just 600 km above Earth’s surface. Its furthest point 
(apogee) is 2600 km from Earth’s surface. The Earth has a mass of 6.0 × 1024 kg 
and a radius of 6.4 × 106 m. The gravitational field strength of Earth is shown in 
the graph.
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a   Calculate the change in potential energy of the satellite as it moves from the 
closest to the furthest point from Earth.

b   The satellite was moving with a speed of 8.0 km s–1 at its closest point to 
Earth. How fast was it travelling at its furthest point?
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WORK AND ENERGY 
Both work and energy are scalar quantities, and as such have only magnitude. It is 
important, however, that you keep account of whether energy is being gained or 
lost by an object. If work is being done by a body, it loses kinetic or potential energy. 
If work is done on the body by an external force, the body would gain energy. 

A weightlifter loses chemical potential energy as he exerts a force on a barbell to 
lift the bar. If he lifts the bar at constant speed, the bar does not gain kinetic energy, 
but gains gravitational potential energy. In drawing back an arrow, an archer does 
work on the bow and string, and this strain potential energy is transformed to the 
kinetic energy of the arrow when the string does work on the arrow as it is released 
(see Figure 7.4.3). 

FIGURE 7.4.3 The archer does work on the bow, and strain potential energy is stored. This is later transformed into the kinetic energy of the arrow.

For a change in gravitational potential energy, the reference point from which 
the change in height ∆h is measured is arbitrary. A reference position on the surface 
of the Earth is frequently used for gravitational potential energy close to the surface 
of the Earth. It is possible, in this sense, to get a ‘negative potential energy’. For 
instance, if you were to take the surface of a table as the zero for potential energy, 
raising an object above the surface would require work to be done and it would 
increase in energy. Positioning the object on the floor below the table would amount 
to its having less potential energy than on the table, effectively giving it a negative 
potential energy. Therefore it is only changes in gravitational potential energy that 
are meaningful for your purposes, and the sign merely indicates whether energy has 
been gained or lost relative to the zero point.
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SUMMARY

• Kinetic energy is the energy of motion of a body:

Ek = 
1
2mv2

• The sum of the kinetic and potential energy (total 
mechanical energy) of an isolated system is always 
conserved.

• For perfectly elastic collisions, the kinetic energy 
before the collision is equal to the kinetic energy 
after the collision.

• Close to the surface of the Earth, where the force of 
gravity can be assumed to be constant, the change in 
gravitational potential energy for an object of mass m 
is Eg = mg∆h, where the height changes by ∆h. 

• For a non-constant gravitational force, the 
gravitational potential energy can be calculated 
from the area under a graph of force vs distance.

• For convenience, force–distance graphs are often 
plotted as force per unit mass vs distance, so that 
the same graph can be used for any mass. In this 
case the area is energy per unit mass.

• When work is done on a body it gains mechanical 
energy.

• When the body does work, energy is dissipated to 
the environment, for example as heat, sound or 
deformation, and the body loses mechanical energy.

7.4 Review

Worked example 7.4.3 implicitly assumed zero gravitational potential energy to 
be on the surface of Earth. Putting a satellite into circular orbit requires doing work 
to increase its gravitational potential energy, because a force has to be applied to 
oppose gravity. The higher the orbit, the greater the gravitational potential energy 
relative to the surface. This was calculated in Worked example 7.4.3 from the area 
under the gravitational force vs distance curve. 

The kinetic energy of a given satellite in a circular orbit decreases with increasing 
altitude. This is shown by considering the gravitational force on a satellite of mass m 
from a central body of mass M to be equal to the centripetal force:

F = mv2

r
 = GMm

r2

From which can be found that v = √GM
r  and Ek = 12 GMm

r .

ENERGY TRANSFORMATIONS 
The sum of the potential and kinetic energy of an object is its mechanical energy, 
and this is constant unless work is done by an external force. There is frequently 
transformation of energy between potential and kinetic energy. A child dropping 
from the branch of a tree onto a trampoline loses gravitational potential energy, 
but gains kinetic energy. On striking the trampoline, kinetic energy is transformed 
to strain potential energy in the springs, and in an ideal case, would be returned as 
kinetic energy on the rebound. 

Sometimes energy is dissipated, or transformed into heat, light and/or sound, 
and thus the energy remaining in the system is reduced. Spacecraft have to 
dissipate huge amounts of kinetic and gravitational potential energy as they re-enter 
the Earth’s atmosphere and slow down to make a landing. Meteors, or so-called 
shooting stars, burn up in the upper atmosphere because of the heat generated 
by friction.
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KEY QUESTIONS

1  Calculate the gravitational potential energy of a 115 kg 
climber standing at the top of Mount Kosciuszko when 
he is at an altitude of 2228 m above sea level.

2  The figure below shows a meteor plunging towards 
Earth, partially burning up in the atmosphere as it 
does so.
Choose which statements are correct. More than one 
correct answer is possible.

A

B C

D

A  The kinetic energy of the meteor increases as it 
travels from A to D.

B  The gravitational potential energy of the meteor 
relative to the surface of the Earth increases as it 
travels from A to D.

C  The total energy of the meteor increases as it 
travels from A to D.  

D  The total mechanical energy of the meteor 
remains constant.

E  The gravitational potential energy of the meteor 
relative to the surface of the Earth decreases as it 
travels from A to D.

The following information relates to questions 3–5.
A 500 kg lump of space junk is plummeting towards the 
Moon. Its speed when it is 2.7 × 106 m from the centre of 
the Moon is 250 m s–1. 
The Moon has a radius of 1.7 × 106 m.
The gravitational force–distance graph is shown below:
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3  Calculate the kinetic energy of the junk when it is 
travelling at 250 m s–1.

4  Calculate the increase in kinetic energy of the junk as 
it falls to the Moon’s surface.

5  Calculate the speed of the junk as it crashes into 
the Moon.

6  A 20 tonne satellite is in orbit at an altitude of 600 km. 
A booster rocket is fired putting the satellite into an 
orbit at an altitude of 2600 km. Calculate the work 
done by the booster rocket to increase the potential 
energy of the satellite using the graph below.
Assume the radius of Earth is 6.4 × 106 m.

Distance from centre of the Earth (× 106 m)
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7  A cable car system is set up so that the cars of the 
same mass are attached to a moving cable that is 
powered by a motor at one end. As car A is pulled 
upwards, car B descends, both at the same speed. 
Select the statements that are correct. More than one 
correct answer is possible.
A  Car A and car B each have constant kinetic energy.
B  Car A and car B each have constant gravitational 

potential energy.
C  As the gravitational potential energy of car A 

increases, that of car B decreases. 
D  The motor does work on the cable.

8  The 11-tonne Hubble telescope is in a circular orbit 
at an altitude of approximately 600 km above the 
surface of Earth. A geosynchronous weather satellite 
of the same mass is in an orbit at an altitude of 
approximately 3600 km. Select the statements that 
are correct. More than one correct answer is possible.
A  The gravitational potential energy of the 

geosynchronous satellite is 6 times that of the 
Hubble telescope, relative to the surface of the Earth.

B  The Hubble telescope’s orbital speed is greater 
than that of the weather satellite.

C  The kinetic energy of the weather satellite is greater 
than that of the Hubble telescope.

D  The weather satellite has more gravitational 
potential energy than the Hubble telescope, relative 
to the surface of Earth.

9   If a high-jumper with a mass of 63 kg just clears a 
height of 2.1 m, what was the high jumper’s speed 
as he left the ground?
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7.5 Einstein’s mass–energy 
relationship 
This chapter refers to both energy and momentum being conserved. In classical 
physics and chemistry the conservation of mass is assumed: the particles that start 
out in a chemical reaction are still there at the end, and applying a force to an object 
classically does not change its mass. Now it is time to look at the implications of 
Einstein’s relativistic principles, and to show the development of Einstein’s most 
famous equation relating energy, mass and the speed of light, E = mc2. In order to 
do this, this section will first look at what happens to the momentum of an object as 
its speed approaches the speed of light. 

APPROACHING THE SPEED OF LIGHT 
Recall the Lorentz factor that was introduced in Chapter 6:

γ = 1

√1 – v
2

c2

At low speeds, γ  is so close to 1 that the effects of special relativity can be 
ignored, but γ  rapidly increases as the speed, v, comes closer to the speed of light, c. 
At 99.9% of the speed of light, γ  has a value of approximately 22, and so anything 
moving at that speed, relative to a stationary observer, will appear to have shrunk 
to 1

22
 of its normal length. As you watch the action inside a spaceship travelling at 

that speed, events would appear to be going 22 times more slowly than they would 
if they occurred in a stationary observer’s frame of reference. 

The closer that the speed of the spaceship gets to the speed of light, the more the 
Lorentz factor increases towards infinity. It is reasonable to wonder what happens 
at the speed of light. According to Einstein’s equations, the length of the spaceship 
shrinks to zero and time inside it appears to stop altogether. Einstein took this 
to mean that it is not possible to reach the speed of light in any real spaceship. 
However, the difficulties with time and length for the spaceship were not the only 
reasons Einstein came to this conclusion.

Relativistic momentum 
If a rocket ship like the one in Figure 7.5.2 is travelling at 0.99c, why can’t it simply 
turn on its rocket motor and accelerate up to c, or more? A full answer to this 
question was not given in Einstein’s original 1905 paper on relativity. Some years 
later he showed that as the speed of a spaceship approaches c, its momentum 
increases, but this is not reflected in a corresponding increase in speed. 

Although his analysis is beyond the scope of this course, you can get a feel for 
his approach if you take some short cuts.

The acceleration a, of any object is inversely proportional to its mass m, the 
mass that appears in Newton’s second law:

F = ma
Newton originally stated this law as: a force, F, is equal to the rate of change in 

momentum p. That is:

F = 
∆p
∆t

A change in momentum is classically defined as the change in the product of the 
mass, m, and the velocity, v. If you rearrange the above equation and substitute the 
relationship ∆p = m∆v, you get:

F∆t = m∆v
Now you see that time is involved, but at relativistic speeds you know that time 

is not the constant entity it was once believed to be.

FIGURE 7.5.1 Mass is relative to the frame of 
reference in which it is measured.

PHYSICSFILE

Travel at the speed of light
Einstein said that at the speed of light 
distances shrink to zero and time 
stops. No ordinary matter can reach c, 
but light always travels at c. Strange 
though it may seem, for light there 
is no time. It appears in one place 
and disappears in another, having got 
there in no time (in its own frame of 
reference, not ours!). When you stay 
still, you travel through spacetime in 
the time dimension only. Light does 
the opposite: all its spacetime travel is 
through space and none through time.



253CHAPTER 7   |   THE RELATIONSHIP BETWEEN  FORCE, ENERGY AND MASS 

FIGURE 7.5.2 This rocket ship is moving at 0.99c and accelerating, and yet it can never reach a 
speed of c.

Imagine that you have a rocket ship accelerating from rest to a high speed as 
viewed by an observer in a stationary frame of reference. You can say that the 
change in momentum of the ship will be given by:

F∆t0 = m∆v
where t0 is the time in the ship’s frame of reference, and m∆v is just the classical 

Newtonian change in momentum. 
In the stationary observer’s frame, the time is dilated:
∆t = γ∆t0

∆t0 = 
∆t
γ

Substituting ∆t0 into the change of momentum equation above:

F 
∆t
γ  = m∆v

F∆t = γ m∆v
That is, the impulse as seen by the stationary observer is equal to the product 

of the Lorentz factor, γ , and the change in Newtonian momentum. This means 
that as the spaceship approaches the speed of light, the impulse is multiplied by a 
factor that grows very rapidly. You can interpret this as meaning that the change in 
momentum in the stationary observer’s frame of reference is equal to: 

∆p = γ m∆v
∆p = γ ∆p0

If we assume an object starts at zero velocity, the final relativistic momentum 
becomes:

p = γ mv

p = γ p0

where p0 is the momentum mv,	as	you	would	define	it	in	classical	mechanics,	
and p is the relativistic momentum. 

If velocity, v, is needed when the mass and relativistic increase in momentum is 
known, the formula p = γ mv can be rearranged to give the following:

v = 
p

m√(1 + 
p2

m2c2 )

EXTENSION

Rearranging 
relativistic 
momentum 
to determine 
velocity
p = γ mv

p = 
1

√(1 – v2

c2 )
 mv

 √(1 – v
2

c2) = mv
p

 1 – v
2

c2 = (mv
p )2

 1 = (mv
p )2 + v

2

c2

 (m
2

p2  + 1
c2)v2 = 1

 
m2

p2  (1 + 
p2

m2c2)v2 = 1

 v2 = 
p2

m2√(1 + 
p2

m2c2)
 v = 

p

m√(1 + 
p2

m2c2)
While there are some short cuts 

taken to reach this result, the 
result itself is perfectly valid.
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The momentum increases very rapidly as a spaceship approaches the speed 
of light. You might argue that this is expected—after all, momentum is a function 
of velocity. If you graph the relativistic momentum, p, against the velocity, v, and 
on the same graph show the classical momentum, you can see that the relativistic 
momentum increases at a rate far greater than it would if it were due to the increase 
in velocity alone (see Figure 7.5.3). 

This result can be interpreted by thinking of the mass as a quantity that also 
increases at high speeds. Thus there is a relationship between the rest mass, m, 
which is the mass measured while the object is at rest in the frame of reference, and 
the relativistic mass, γ m, which is the mass measured as the object is moving relative 
to the observer.

As the Lorentz factor increases with the increase in the velocity, then the 
relativistic mass also increases. Einstein was never happy with the term ‘relativistic 
mass’, and preferred that people only spoke of the relativistic momentum of 
an object.

Notice too how the classical treatment allows the object to have a speed greater 
than the speed of light, but the relativistic treatment causes the mass to become very 
large so that the speed of light is never actually reached.

Now return to the example of the rocket ship that is attempting to increase 
its velocity to the speed of light. With the increase in the relativistic mass of the 
rocket ship, it becomes harder for the force of the engines to cause a change in 
velocity. The closer the rocket ship approaches c, the greater the amount of impulse 
that is required to accelerate the ship to the speed of light. In fact, as the velocity 
approaches c, the relativistic mass, γ m, approaches infinity. You can now see why 
your rocket ship cannot reach the speed of light. 

Worked example 7.5.1 illustrates this point. Notice that the result in part (b) 
shows that if you double the impulse required to get the rocket ship to 0.99c, 
then you will only add 0.007c to your top speed. When you’ve completed Worked 
example: Try yourself 7.5.1, consider the change in velocity achieved by tripling 
the impulse.

Worked example 7.5.1

RELATIVISTIC MOMENTUM 

a   Calculate the momentum, as seen by a stationary observer, provided to a 
rocket ship with a rest mass of 1000 kg, as it goes from rest up to a speed 
of 0.990c. Assume Gedanken conditions exist in this example.

Thinking Working 

Identify the variables: the rest 
mass is m, and the velocity of 
the rocket ship is v.

∆p = ?

m = 1000 kg

v = 0.990 × 3.00 × 108

Use the relativistic 
momentum formula.

p = γ mv

Substitute the values for m 
and v into the equation and 
calculate the answer p.

p = 
1

√1 – v
2

c2

 mv

= 
1

√1 – 0.9902c2

c2

 × 1000 × 0.990 × 3.00 × 108

= 2.11 × 1012 kg m s–1
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FIGURE 7.5.3 The relationship between classical 
momentum and velocity, and the relationship 
between relativistic momentum and velocity, 
for a 1 kg mass.

PHYSICSFILE

Getting beyond c
As you watch a rocket ship travelling 
at 0.99c (speed U), it fires a small ship 
at 0.02c relative to it (speed v). Isn’t 
the small ship moving at 1.01c? No! 
First you need to be careful to specify 
in which frame of reference you are 
measuring the speeds. The rocket ship 
has speed U in your frame while the 
small ship has speed v in the frame 
of the rocket ship. (Capital letters for 
your frame, small for the rocket frame.) 
Because of length contraction you see 
the small ship fired at much less than 
0.02c. Einstein showed that in these 
cases the speed (V) of the small ship 
in your frame is given by:

v = U + v

1 + Uv
c2

You can use this expression to show 
that we see the small ship travelling 
at 0.9904c.
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b   If twice the relativistic momentum from part a is applied to the stationary 
rocket ship, calculate the new final speed of the rocket ship in terms of c.

Thinking Working 

Identify the variables: the rest mass is 
m, and the relativistic momentum of 
the rocket ship is p.

p = 2 × 2.11 × 1012

= 4.21 × 1012 kg m s–1

m = 1000 kg

v = ?

Use the relativistic momentum 
formula, rearranged.

p = γ mv

p = 
1

√1 – v
2

c2

 mv

v = 
p

m√(1 + 
p2

m2c2)
Substitute the values for m and p into 
the rearranged equation and calculate 
the answer v.

v = 
p

m√(1 + 
p2

m2c2)
= 

4.21 × 1012

(1000)√1 + 
(4.21 × 1012)2

10002(3.00 × 108)2

= 
4.21 × 1012

1000 × 14.07

= 2.99 × 108 m s–1 

= 0.997c

Worked example: Try yourself 7.5.1

RELATIVISTIC MOMENTUM 

a   Calculate the momentum, as seen by a stationary observer, provided to an 
electron with a rest mass of 9.11 × 10–31 kg, as it goes from rest to a speed of 
0.985c. Assume Gedanken conditions exist in this example.

b   If three times the relativistic momentum from part (a) is applied to the 
electron, calculate the new final speed of the electron in terms of c.

EINSTEIN’S FAMOUS EQUATION 
As the momentum of an object increases, so does its kinetic energy. The classical 
relationship between the two can be written as:

 Ek = 1
2
mv2

 = 1
2
(mv) × v

 = 1
2
pv

This form of the equation shows that the kinetic energy of an object is related to 
an object’s momentum as well as its velocity.

Einstein showed, however, that the classical expression for kinetic energy was 
not correct at high speeds. The mathematics involved is beyond the scope of this 
course, but Einstein, working from the expression for relativistic momentum and 
the usual assumptions about work, forces and energy, was able to show that the 
kinetic energy of an object was given by the expression:

Ek = (γ  – 1)mc2

Although it is not very obvious from this expression, if the velocity (which 
is hidden in the γ  term) is small, this expression actually reduces to the classical 
equation for Ek of 12mv2. A small velocity in this context means small in comparison 
to c. But even for speeds up to 0.10c, the classical expression is accurate to better 
than ±1% .
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Einstein’s expression can be expanded to:
Ek = γ mc2 – mc2

This kinetic energy equation, in turn, can be rearranged as:
γ mc2 = Ek + mc2

Einstein interpreted the left-hand side of this expression as being an expression 
for the total energy of the object:

Etot = γ mc2

The right-hand side appeared to imply that there were two parts to the total 
energy: the kinetic energy, Ek , and another term that only depended on the rest mass, 
m. The second term, mc2, he referred to as the rest energy of the object, as it does 
not depend on the speed of the object. This appeared to imply that somehow there 
was energy associated with mass (see Figure 7.5.4). An astounding proposition to 
a classical physicist, but as you have seen, in relativity, mass increases as you add 
kinetic energy to an object. The conservation of energy relationship is therefore:

Etot = Ek + Erest

Etot = γ mc2

where γ m is the relativistic mass (kg)

 c is the speed of light (m s–1) and

 Etotal is the total energy (J)

You will have seen part of this equation before:

FIGURE 7.5.4 Einstein’s famous equation.

This equation tells you that mass and energy are totally interrelated. In a sense, 
you can say that mass has energy, and energy has mass.

CONVERTING MASS TO ENERGY OR ENERGY TO MASS 
Nuclear reactions involve vastly more energy per atom than chemical ones (see 
Figure 7.5.5). When a uranium atom splits into two fission fragments, about 
200 million electron volts of energy are released. By comparison, most chemical 
reactions involve just a few electron volts. 

In the fission of uranium, it is possible to find the original mass of the uranium 
nucleus and the fission fragments accurately enough to determine the mass defect 
(change in mass). This difference in mass agrees exactly with the prediction of 
Einstein’s famous equation. 

Likewise, nuclear fusion reactions deep inside the Sun release the huge amounts 
of energy that stream from the Sun, resulting in a conversion of about 4 million 
tonnes of mass into energy every second (see Figure 7.5.6).
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NUCLEAR FUSION 
Nuclear fusion occurs when two light nuclei are combined to form a larger 
nucleus (see Figure 7.5.7).

He + energy 2p, 2n

(a) (b)

He: energy
released

FIGURE 7.5.7 (a) When two isotopes of hydrogen fuse to form a helium nucleus, energy is released. 
(b) The binding energy of the nucleus appears as a loss in mass, ∆m, which can be calculated using 
∆E = ∆mc2.

As in the cases of radioactive decay and nuclear fission, the mass of the 
reactants is slightly greater than the mass of the products when the nuclei combine 
during fusion.

The energy created by this missing mass can again be determined from:
∆E = ∆mc2

where ∆E is the energy (J)
 ∆m is the mass defect (kg)
 c is the speed of light (3.0 × 108 m s–1).
Nuclear fusion is a very difficult process to recreate in a laboratory. The main 

problem is that nuclei are positively charged, and thus repel one another. 
Slow-moving nuclei with relatively small amounts of kinetic energy will not be 

able to get close enough for the strong nuclear force to come into effect, and so 
fusion will not happen. Only if nuclei have enough kinetic energy to overcome the 
repulsive force can they come close enough for the strong nuclear force to start 
acting. If this happens, fusion will occur (see Figure 7.5.8).

Typically, temperatures of the order of hundreds of millions of degrees are 
required. These are exactly the conditions that are present inside the Sun.

FIGURE 7.5.5 In a nuclear bomb, a few grams of mass are converted into energy. 
As the uranium undergoes fission, it releases the equivalent of hundreds of 
gigajoules (1012 J) of energy. Millions of tonnes of a chemical explosive (TNT) 
would be required to produce this much explosive energy.

FIGURE 7.5.6 Nuclear fusion in the Sun results in about 4 million 
tonnes of mass being converted into energy every second, which 
is radiated from the Sun.

fusion!

(a)

(b)

FIGURE 7.5.8 (a) Slow-moving nuclei do not 
have enough energy to fuse together. The 
electrostatic forces cause them to be repelled 
from each other. (b) If the nuclei have sufficient 
kinetic energy, then they will overcome the 
repulsive forces and move close enough 
together for the strong nuclear force to come 
into effect. At this point, fusion will occur and 
energy will be released.
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FUSION IN THE SUN AND SIMILAR STARS 
In the Sun, many different fusion reactions are taking place. The main reaction 
is the fusion of hydrogen nuclei to form helium. Each second, about 657 million 
tonnes of hydrogen and hydrogen isotopes fuse to form about 653 million tonnes 
of helium. Each second, a mass defect of 4 million tonnes results from these fusion 
reactions. The amount of energy released is enormous and can be found by using 
the equation ∆E = ∆mc2. A tiny proportion of this energy reaches Earth and sustains 
life as we know it.

The sequence of fusion reactions shown in Figure 7.5.9 has been occurring 
inside the Sun for the past 5 billion years and is expected to last for another 5 billion 
years or so. Hydrogen nuclei are fused together and, after several steps, a helium 
nucleus is formed. This process releases about 25 MeV of energy.

neutrino

positron

gamma
ray

H +  H  H +    e +   ν1
1

1
1

2
1

  0
+1 

0
0 He +  He  He +  H +  H3

2
3
2

4
2

1
1

1
1H +  H  He +  γ1

1
2
1

3
2

0
0 

(a) (b) (c)

FIGURE 7.5.9 The three main fusion reactions taking place inside the Sun

The Sun is a second- or third-generation star. It was formed from the remnants 
of other stars that exploded much earlier in the history of the galaxy. As this giant gas 
cloud contracted under the effect of its own gravity, the pressure and temperature 
at the core reached extreme values, sufficient to sustain these fusion reactions. 

Worked example 7.5.2

FUSION 

Consider the fusion reaction shown below. A proton fuses with a deuterium 
nucleus (a hydrogen nucleus with one neutron) in the Sun. A helium nuclide is 
formed and a γ -ray released. 20 MeV of energy is released during this process.
1
1p + 2

1H  →  x
2He + γ

a  What is the value of the unknown mass number x?

Thinking Working  

Analyse the mass numbers. The 
gamma ray has atomic and mass 
numbers of zero. 

1 + 2 = x + 0

x = 3

A helium-3 nucleus is formed.

b  How much energy is released in joules?

Thinking Working  

1 eV = 1.6 × 10–19 J 20 MeV = 20 × 106 × 1.6 × 10–19

= 3.2 × 10–12 J

c  Calculate the mass defect for this reaction.

Thinking Working 

Use ∆E = ∆mc2.
∆m = 

∆E
c2

= 
3.2 × 10–12

(3.0 × 108)2

= 3.6 × 10–29 kg
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Worked example: Try yourself 7.5.2

FUSION 

A further fusion reaction in the Sun fuses two helium nuclides. A helium nucleus 
and two protons are formed and 30 MeV of energy is released.
3
2He + 3

2He  →  x
2He + 21

1H

a  What is the value of the unknown mass number x?

b  How much energy is released in joules?

c  Calculate the mass defect for this reaction.

PHYSICS IN ACTION

Magnetism and relativity
Magnetism is a relativistic phenomenon! You may 
think that relativity only applies to ultrafast rocket ships 
or exotic particles in accelerators, but, in fact, before 
relativity there was no good explanation of the magnetic 
forces between electric currents moving at speeds of 
only millimetres per second. The 19th-century physicists 
knew that there was a problem with the theory of 
magnetism. It was well known that a moving charge 
(and hence a current) in a magnetic field experiences a 
force that is directly proportional to the velocity of the 
charge (F = BIl = qvB, see Chapter 3, page 96). Indeed, 
this is the force that drives all the electric motors of the 
world. But how could there be a velocity-dependent force 
without contravening the Galilean principle of relativity?

The problem was that in the frame of reference of 
the moving charge, the velocity of the charge, and 
hence the magnetic force on it, should be zero. This 
was clearly not the case, however. Physicists pondered 
whether there was something special about the frame 
of reference after all, despite the Galilean principle of 
relativity. At the beginning of the 20th century this was 
one of the unsolved mysteries of physics.

Consider two electric currents moving in the same 
direction in two similar parallel wires. In this situation 
there is a magnetic force of attraction between the 
two wires; a simple experiment can confirm this. Now, 
imagine a moving electron in one of the wires. It ‘sees’ 
the magnetic field created by the current in the other 
wire and ‘feels’ a magnetic force towards it. If this 
situation was observed from a frame of reference moving 
at the same velocity as the electrons, (which is literally 
only a snail’s pace) the electrons would all be at rest and 
so there should be no force!

Now, the force between two objects cannot depend 
on the frame of reference. Either they will get closer or 
they won’t, and that doesn’t depend on how you look at 
them. Wires with parallel currents do get closer, so there 
would be a fault in the physics if it said there is no force 
between them. This type of situation is not uncommon 
in science. In fact, it is one of the ways in which science 
progresses. Einstein was very aware of the problem of 
electromagnetism and indeed his famous 1905 paper 
starts with a discussion of just this problem. 

Normally, when discussing electric currents you simply 
think of the moving electrons and ignore the huge 
numbers of positive and negative charges that are at rest 
in the wire. The very good reason for this assumption is 
that the total negative charge of the conduction electrons 
is almost equal in magnitude to the total positive charge 
of the positive ions (the atoms with the remaining 
electrons); so the wire as a whole is neutral. (Any small 
overall charge because of a positive or negative voltage 
on the wire is negligible.) As in any problem, however, 
you need to look at your assumptions very carefully.

Our hypothetical moving electron actually ‘sees’ 
a huge electrostatic (Coulomb) force towards all the 
positive charges in the other wire, but this is balanced 
by the equally huge repulsive force from all the negative 
charges in that wire—or is it? Classical theory certainly 
says that these forces should balance. However, relativity 
tells the physicist to be careful where there is relative 
motion. The moving electron actually sees all the moving 
electrons in the other wire at rest, relative to itself, but 
it sees all the positive charges moving in the opposite 
direction. Now that means that the positive charges will 
appear—to our moving electron—contracted or, more 
particularly, the space that they occupy will appear to 
be shortened in the direction of their motion.  
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And so their density—the number of positive charges in 
a metre of wire—appears greater than the density of the 
negative charges (see Figure 7.5.10(c)). There is, therefore, 
an imbalance in the Coulomb force between our electron 
and the negative and positive charges in the other wire. 
The electron sees more positive charges than negative 
charges and so is attracted to the other wire! 

(a)

(b)

(c)

FIGURE 7.5.10  These three diagrams represent two similar electric 
currents. (a) This is the conventional view; the stream of electrons and 
the current are attracted because the moving electrons in each create 
a magnetic field and experience a force from the field created by the 
other. (b) This is the view from the frame of reference of the electrons. 
(c) This is the relativistic version.

The obvious comment to be made here, however, is 
that the speed involved—a few millimetres per second—is 
so small that the Lorentz contraction should be totally 
negligible. However, it is important to remember that you 
are dealing with huge numbers of charges. It is worth 
doing a simple calculation as an illustration of the forces 
you are dealing with:

If you could take all the conduction electrons out of 
a piece of wire and separate them by 1 cm from all 
the positive ions remaining, what would be the force 
between them? A piece of copper wire 10 cm long and 

with a cross-sectional area of 1 mm2 has a mass of 
about 1 g. As its atomic mass is 64 atomic mass units, 
there are about 1022 atoms. Assume that one electron 
from each atom is taken out and placed 1 cm away 
from the remaining positive ions. The total charge of the 
electrons is then 1022 × 1.6 × 10–19 ≈ –2000 C, and there 
will be a charge of +2000 C on the positive ions. The 
force between the electrons and the rest of the wire is 
approximately given by the Coulomb force:

 F = 
kq1q2

r2

 = 
9 × 109 × 20002

(10–2)2

 ≈ 4 × 1020 N

This force is about the same as the gravitational force 
that holds the Moon to the Earth. Or put another way, it is 
the weight of over one hundred billion supertankers! The 
electrical force between the particles in a piece of wire is 
absolutely huge!

From this it can be seen that the electrical force on 
a moving electron in the wire in the magnetic field of 
another wire is a very delicate balance between two 
enormous forces—that from the positive protons in the 
wire and that from the negative electrons in the wire. 
Clearly any slight imbalance in those two forces will 
have an enormous effect. (You might like to calculate the 
force on just one electron from the positive charges in 
the wire in the previous example.) Although the Lorentz 
contraction is very slight, it is enough to produce a very 
small imbalance in the force on our electron. You can 
confirm that the Lorentz factor differs from 1 only in about 
the 23rd decimal place, but if that figure is multiplied 
by something like 1025 N, you end up with a normal 
sort of force; in fact, you end up with what is call the 
magnetic force.

So the magnetic force is actually a normal Coulomb 
force that results from a slight imbalance in the huge 
forces between all the protons and all the electrons in a 
wire in which many of the electrons are moving. Again you 
can see that relativity is actually a simplifying principle. 
What were thought to be two different, but related, forces 
are actually different aspects of the one electromagnetic 
force. The fact that all the electric motors used every day 
work so easily and efficiently, whether you are at home 
listening to a CD or flying around the world in an aircraft, 
is excellent evidence of the validity and relevance of 
Einstein’s great theory.
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7.5 Review
SUMMARY

• Relativistic momentum includes the Lorentz factor, 
γ , and hence, as more impulse is added, the mass 
seems to increase towards infinity as the speed 
gets closer, but never equal, to c. The relativistic 
momentum equation is:

p = γ mv = γ p0

• A term called relativistic mass, γ m, may be used 
to indicate the mass of an object which is moving.

• Einstein found that the total energy of an object 
was given by:

Etotal = Ek + Erest = γ mc2

• The kinetic energy is given by:

Ek = (γ  – 1)mc2

• The rest energy, which is the energy associated 
with the rest mass of an object, is given by:

Erest = mc2

• Mass and energy are seen as different forms of 
the same thing. This means that mass, m, can 
be converted into energy, and energy can be 
converted into mass.

• Nuclear fission and fusion reactions result in a 
mass defect (change). It is this difference in mass 
that is converted to the energy released in nuclear 
reactions. This mass is related to the energy 
produced according to: ∆E = ∆mc2.

• Nuclear fusion is the combining of light nuclei to 
form heavier nuclei. Extremely high temperatures 
are required for fusion to occur. This is the 
process occurring in stars.

• Hydrogen nuclei fuse to form deuterium. 
Further fusions result in the formation of 
isotopes of helium. 

KEY QUESTIONS

1  Calculate the relativistic momentum of the Rosetta 
spacecraft as observed by the scientists at the 
European Space Agency. Rosetta’s rest mass is 
1230 kg and its speed was 775 m s–1.

2  Calculate the relativistic momentum of a carbon-12 
nucleus in a linear accelerator if its rest mass is 
1.99264824 × 10–26 kg and it is travelling at 0.850c.

3  Calculate the relativistic momentum of another 
carbon-12 nucleus in the solar wind if its rest mass is 
1.99264824 × 10–26 kg and it is travelling at a speed 
of 800 m s–1.

The following information relates to questions 4–6.
A very fast arrow has a rest mass of 12.3 g and a speed 
of 0.750c.

4  Calculate the relativistic kinetic energy of the arrow.

5  Calculate the kinetic energy of the arrow according to 
the classical equation.

6  What accounts for the difference between the kinetic 
energy of the arrow in the relativistic calculation and 
the kinetic energy in the classical calculation?
A  the difference in the arrow’s velocity in the two 

calculations
B  the difference in the arrow’s momentum in the two 

calculations
C  the difference in the arrow’s rest mass in the two 

calculations
D  the presence of the Lorentz factor in the relativistic 

calculation

7  Calculate the total energy of a very fast, vintage Vespa 
scooter if its rest mass is 210 kg and it is travelling at 
a speed of 2.55 × 108 m s–1.

8  Calculate the energy produced by the Sun in one day 
if 4.00 million tonnes of matter are converted into 
energy every second.

9  The equation for the fusion of two isotopes of 
hydrogen (deuterium and tritium) is shown below.
2
1H + 3

1H  →  4
2He + 1

0H
Which one of the following best explains why energy 
is released during this process?
A  Nucleons are created.
B  Nucleons are lost.
C  The nucleons lose mass.
D  The nucleons gain mass.

10  What is the result of a large increase in the impulse 
provided to an object moving at a speed near that 
of light? 
A  a large change in the velocity of the object
B  a proportional increase in the velocity of the object
C  a very small increase in the velocity of the object
D  no change in the velocity of the object at all
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1  Which of the following statements correctly describe 
impulse? More than one correct answer is possible.
A  Impulse is the rate of change of momentum.
B  Impulse is the final momentum minus the initial 

momentum.
C  Impulse is a scalar.
D  Impulse can be calculated from the force and the 

time for which it acts.

2  A batsman blocks a 160 g cricket ball travelling 
towards him at 100 km h–1. The ball leaves his bat 
at 20 km h–1. Calculate the magnitude of the change 
in momentum of the ball.

3 A squash ball that is repeatedly hit against a wall 
during a game becomes hot. This is because:
A  The racquet gives the ball kinetic energy.
B  The impulse is positive.
C  The collisions are perfectly elastic.
D  Kinetic energy is not conserved in the collision.

4 Two identical bowling balls, each of mass 4.0 kg, 
move towards each other across a frictionless 
horizontal surface with equal speeds of 3.0 m s–1. 
During the collision, 20 J of the initial kinetic energy 
is transformed into heat and sound. After the collision, 
the balls move in opposite directions away from 
each other.
a  Is momentum conserved in this collision?
b  Is this an elastic or inelastic collision? Explain 

your answer.
c  Calculate the speed of each ball after the collision.

5  Calculate the magnitude of the average force required 
to be applied by the brakes of a 15 kg bicycle with 
a 65 kg rider if the bike and rider are travelling at 
12 m s–1 and come to rest in 2.0 s. 

6  An arctic research worker uses a tractor to drag a sled 
with supplies across a glacier. The harness is held at 
an angle of 60° to the horizontal and applies a force of 
300 N on the sled, which is initially at rest. A constant 
frictional force of 105 N acts on the sled as it is 
dragged for a distance of 240 m. 
a  For this distance, calculate the work done by the 

tractor on the 150 kg sled. 
b  Find the speed of the sled at the end of the 240 m 

stretch.

7  An 11 tonne satellite is in orbit at an altitude of 
1100 km. A booster rocket is fired putting the satellite 
into an orbit at an altitude of 2100 km. 
a  Calculate the work done by the booster rocket to 

increase the potential energy of the satellite using 
the graph below. Assume the radius of Earth is 
6.4 × 106 m. 
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b  Find the kinetic energy of the satellite in its 
final orbit. 

8  Matthew decides that to increase his upper body 
strength he is going to stretch a piece of bungee cord 
150 times each morning before school, grasping one 
end in each hand. If the force–distance curve is given 
below, and he stretches the cord out from 0.5 m 
to 1 m, estimate how much energy is expended in 
his workout.
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Chapter review

KEY TERMS

breaking point
collision
deformation
elastic 
elastic collision

elastic limit
gravitational potential energy
impulse
inelastic collision
mechanical energy

momentum
nuclear fusion
strain potential energy
work
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9  A steel cable of length 1.50 m is stretched by fixing 
it at one end, and applying a force to the other end. 
The graph of the force applied and the extension is 
shown below:

4.0

6.0

2.0

10.0

8.0

5.0 6.0 7.0 8.04.03.02.01.0

Force (N)

Distance (mm)

0
0

Calculate the strain energy stored in the cable when 
stretched by a distance of 6.0 mm.

10  Two children are standing on a bridge throwing stones 
into a river below. Susan throws a stone upwards, and 
Peter throws his downwards at the same speed. Select 
the correct answer. 
A  Both stones will hit the water at the same speed.
B  The stone that is thrown downwards by Peter will 

hit the water at a greater speed than Susan’s stone 
which was thrown upwards.

C  Susan’s stone will hit the water at a greater speed 
than Peter’s stone.

D  More information is required to determine which 
stone hits the water at the greatest speed.

The following information relates to questions 11–14.
A 200 g toy truck with a springy bumper travelling at 
0.300 m s–1 collides with a 100 g toy car travelling in 
the same direction at 0.200 m s–1. 
The car moves forward travelling at an increased speed 
of 0.300 s–1.

11  Calculate the speed of the truck after the collision.

12  Calculate the total kinetic energy of the system before 
the collision. 

13  Calculate the total kinetic energy of the system after 
the collision. 

14  Complete the following statements by selecting the 
appropriate option from those in bold.
a  The total kinetic energy before the collision is more 

than/less than/equal to the total kinetic energy 
after the collision.

b  The kinetic energy of the system of toys is/is not 
conserved.

c  The total energy of the system of toys is/is not 
conserved.

d  The total momentum of the system of toys is/is not 
conserved.

e  The collision is/is not perfectly elastic because 
kinetic energy/total energy/momentum is not 
conserved.

15  An 80 kg student jumps from a bridge on a bungee 
rope. If the 100 m rope stretches by 10%, calculate 
the spring constant of the rope.

16  A new space telescope is 500 km above the surface 
of Earth in a circular orbit. Use the graph below to 
calculate its gravitational potential energy relative to 
the surface of Earth if the mass of the telescope is 
11 × 106 kg. 
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17  If a spaceship is travelling at 99% of the speed of 
light, which of the following best explains why it can’t 
simply turn on its engine and accelerate through 
and beyond the speed of light, c, as the increase in 
momentum should be equal to the impulse applied?
A  The law of impulse equals change in momentum 

does not apply at speeds close to c.
B  While the momentum increases with the impulse, 

it is the mass rather than the speed that is getting 
greater.

C  The spaceship does actually exceed c, but it doesn’t 
appear to from another frame of reference because 
of length contraction of the distance it covers.

D  Given enough impulse the spaceship could exceed 
c, but no real spaceship could carry enough fuel.

18  Find the speed of a proton if it has kinetic energy 
equal to its rest mass energy. 

19  Find the relativistic mass of the proton described in 
the question above, if mp = 1.67 × 10–27 kg. 

20  Calculate the relativistic kinetic energy of a bus with 
a rest mass of 5.30 tonnes and travelling at a speed 
of 0.960c.
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How fast can things go?
The following information relates to questions 1–2.
A netball is dropped vertically from a height of 1.5 m onto 
a horizontal floor. The diagrams below relate to the instant 
that the ball reaches the floor and is stationary for a short 
period of time before rebounding.

1 On a copy of the diagram below, draw and identify the 
forces that are acting on the ball at this instant, being 
careful to show the relative sizes of the forces.

 
2 Which of the following correctly represents the action/

reaction forces acting between the ball and the floor at 
this instant? (More than one answer may be correct.).

 

FN

Fg Fg

FN

Fb,f

Ff,b

Fb,f

Ff,b

A B

C D

The following information relates to questions 3–7.
In the Gravitron ride, the patrons enter a cylindrical 
chamber which rotates rapidly, causing them to be pinned 
to the vertical walls as the floor drops away. A particular 
Gravitron ride has a radius of 5.00 m and rotates with a 
period of 2.50 s. Jodie, of mass 60.0 kg, is on the ride.

3 Choose the correct responses in the following 
statement from the options given in bold: 
As the Gravitron spins at a uniform rate and Jodie is 
pinned to the wall, the horizontal forces acting on her 
are balanced/unbalanced and the vertical forces are 
balanced/unbalanced.

4 Calculate the speed of Jodie as she revolves on 
the ride.

5 What is the magnitude of her centripetal acceleration?

6 Calculate the magnitude of the normal force that acts 
on Jodie from the wall of the Gravitron.

7 The rate of rotation of the ride is increased so that 
Jodie completes six revolutions every 10.0 s. What is 
the frequency of Jodie’s motion now?

The following information relates to questions 8–9.
A car racing track is banked so that when the cars corner 
at 40 m s−1, they experience no sideways frictional forces. 
The track is circular with a radius of 150 m.

8 In the diagram below, the car is travelling at 40 m s−1. 
Draw and identify the forces that are acting on the car 
in the vertical plane at this instant.

 
150 m X

C

9 Calculate the angle to the horizontal at which the track 
is banked.

The following information relates to questions 10–12.
A skateboarder of mass 55 kg is practising on a half-pipe 
of radius 2.0 m. At the lowest point of the half-pipe, the 
speed of the skater is 6.0 m s−1.

10 What is the acceleration of the skater at this point?

11 Calculate the size of the normal force acting on the 
skater at this point.

12 Describe the apparent weight of the skater as they 
travel through the lowest point in the pipe.

The following information relates to questions 13–16.
Two friends, Elvis and Kurt, are having a game of catch. 
Elvis throws a baseball to Kurt, who is standing 8.0 m 
away. Kurt catches the ball at the same height, 2.0 s after 
it is thrown. The mass of the baseball is 250 g. Ignore the 
effects of air resistance.

13 Determine the value of the maximum height gained 
by the ball during its flight.

14 What was the acceleration of the ball at its maximum 
height?

15 Calculate the speed at which the ball was thrown.

16 Which of the following diagrams best shows the forces 
acting on the ball just after it has left Elvis’s hand?

 

A B

C D
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The following information relates to questions 17–20.
A tennis ball is thrown at a stationary bowling ball of mass 
5.0 kg. The tennis ball rebounds and the bowling ball 
rolls forward very slowly. The collision is considered to be 
inelastic. Use the graphs to answer questions 17 and 18.

A B

C D

t t

t t

17 Which graph best shows the total kinetic energy of 
the system before, during and after the collision? 
Explain your answer.

18 Which graph best shows the total momentum of 
the system before, during and after the collision? 
Explain your answer.

19 How does the change in momentum of the tennis 
ball compare with the change in momentum of the 
bowling ball?
A They are equal.
B The tennis ball experiences a greater change 

of momentum.
C The bowling ball experiences a greater change 

of momentum.
D They are equal in magnitude and opposite in 

direction.

20 How do the forces that the two balls exert on each 
other during the collision compare?
A The forces are equal.
B The tennis ball exerts the greater force.
C The bowling ball exerts the greater force.
D The forces are equal in magnitude and opposite 

in direction.

The following information relates to questions 21–24.
A ball bearing of mass 25 g is rolled along a smooth track 
in the shape of a loop-the-loop. The ball bearing is given a 
launch speed at A so that it just maintains contact with the 
track as it passes through point C. Ignore drag forces when 
answering these questions.

A

C

B

0.50 m

21 Determine the magnitude of the acceleration of the 
ball bearing as it passes point C.

22 How fast is the ball bearing travelling at point C?

23 What is the apparent weight of the ball bearing at 
point C?

24 How fast is the ball bearing travelling at point B?
The following information relates to questions 25–29.
A small-time gold prospector sets up a cable-pulley 
system that allows him to move a container full of 
ore of total mass 200 kg from rest a distance of 20 m 
along a level section of rail track, as shown in the 
following diagram.

20 m

100 N

bumper

200 kg

When the load reaches the end of the track, it is 
momentarily brought to rest by a powerful spring-bumper 
system, which is assumed to have negligible mass. 
A constant frictional force of 30 N acts on the wheels 
of the container along the track. Assume that there is 
negligible friction between the pulley and the cable. 
The prospector applies a constant force of 100 N to the 
rope as the trolley moves along the track.
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25 How much work is done on the container as it moves 
along the track?

26 Calculate the change in kinetic energy of the load as it 
moves along the track.

27 What is the speed of the load when it reaches the end 
of the track?

28 What is the power output of the prospector as he 
moves one 200 kg load over the track during a 
10 s interval?

29 The spring bumper has a force constant of 
1500 N m−1. How much kinetic energy does the 
container lose as the spring compresses by 18 cm?

The following information relates to questions 30–33.
At football training, some of the players are throwing 
themselves at a large tackle bag of mass 45 kg. During 
one exercise, a ruckman of mass 120 kg running at 
6.0 m s–1 crashes into the stationary bag and carries 
it forward.

30 What is the combined speed of the bag and ruckman?

31 How much momentum does the ruckman lose?

32 How much momentum does the tackle bag gain?

33 Is the collision of the ruckman and the tackle 
bag elastic or inelastic? Use calculations to justify 
your answer.

The following information relates to questions 34–38.
A physics student decides to study the properties of a 
bungee rope by recording the extension produced by 
various masses attached to the end of a section of the 
rope. The results of the experiment are shown in the 
following table.

Mass (kg) Extension (m)

0.5 0.24

1.0 0.52

1.5 0.73

2.0 0.95

2.5 1.20

3.0 1.48

3.5 1.70

34 Draw the force versus extension graph for this 
bungee rope.

35 Estimate the value of the spring constant for this rope.
During an investigation, the student stretched the rope 
horizontally by 15 m.

36 Assuming that the rope behaves ideally, determine 
the potential energy stored in the bungee rope at 
this point.

Finally, the student stands on a skateboard and allows 
the rope, stretched by 15 m, to drag her across the 
smooth floor of the school gymnasium.

37 Which statement best describes the motion of 
the student?
A She moves with a constant velocity.
B She moves with a constant acceleration.
C She moves with increasing velocity and 

decreasing acceleration.
D She moves with increasing velocity and 

increasing acceleration.

38 The combined mass of the student and her board is 
60 kg. Calculate the maximum speed that she attains 
as she is pulled by the bungee cord.

39 In 1905 Einstein put forward two postulates. 
Which two of the following best summarise them?
A All observers will find the speed of light to be 

the same.
B In the absence of a force, motion continues with 

constant velocity.
C There is no way to detect an absolute zero of 

velocity.
D Absolute velocity can only be measured relative 

to the aether. 

40 You are in interstellar space and know that your 
velocity relative to Earth is 4 × 106 m s–1 away from 
it. You then notice another spacecraft with a velocity, 
towards you, of 4 × 105 m s–1. Which one or more 
of the following best describes the velocity of the 
other craft?
A Away from Earth at 3.6 × 106 m s–1

B Towards Earth at 3.6 × 106 m s–1

C Away from Earth at 4.4 × 106 m s–1

D Towards Earth at 4.4 × 106 m s–1

41 One of the fastest objects made on Earth was the 
Galileo probe which, as a result of Jupiter’s huge 
gravity, entered its atmosphere in 1995 at a speed of 
nearly 50 000 m s−1. Which of the following is the best 
estimate of the Lorentz factor for the probe?
A Less than 1
B 1.000 000 00
C 1.000 000 01
D 1.1

42 Which one of the following best represents the basis 
of Einstein’s considerations, which eventually led to 
the theory of special relativity?
A The results of numerous experiments to determine 

the speed of light.
B The work of Isaac Newton and Michael Faraday.
C His consideration of the consequences of accepting 

the implications of Maxwell’s equations.
D His own experiments in electromagnetism.
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UNIT 3 • Area of Study 3 

43 Aristotle suggested that the ‘natural’ state of motion 
for any object is rest. Galileo introduced the principle 
of inertia, which suggested that the natural state of 
motion is constant velocity (zero velocity being just 
one example). Explain why Aristotle’s view was so 
hard to shake, and why, if we had spent time as an 
astronaut in a space station, Galileo’s principle would 
be much easier to accept.

44 You are in a spaceship travelling at very high speed 
past a new colony on Mars. Do you notice time going 
slowly for you; for example, do you find your heart 
rate is slower than normal? Do the people on Mars 
appear to be moving normally? Explain your answers.

The following information relates to questions 45–47.
The star Xquar is at a distance of 5 light-years from Earth. 
Space adventurer Raqu heads from Earth towards Xquar 
at a speed of 0.9c.

45 For those watching from Earth, how long will it take for 
Raqu to reach Xquar?

46 From Raqu’s point of view how long will it take her to 
reach Xquar?

47 Explain why it is that, although Raqu knew that Xquar 
was 5 light-years from Earth, and that she was to 
travel at 0.9c, it took much less time than might be 
expected from these figures.

The following information relates to questions 48–50.
The fusion reaction that powers the Sun effectively 
combines four protons (rest mass 1.673 × 10−27 kg) to 
form a helium nucleus of two protons and two neutrons 
(total rest mass 6.645 × 10−27 kg). The total power output 
of the Sun is a huge 3.9 × 1026 W.

48 How much energy is released by each fusion of a 
helium nucleus?

49 How many helium nuclei are being formed every 
second in the Sun? 

50 How much mass is the Sun losing every day?
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AREA OF STUDY 1

How can waves explain the behaviour of light? 
Outcome 1: On completion of this unit the student should be able to apply wave 
concepts to analyse, interpret and explain the behaviour of light.

AREA OF STUDY 2  

How are light and matter similar? 
Outcome 2: On completion of this unit the student should be able to provide 
evidence for the nature of light and matter, and analyse the data from experiments 
that supports this evidence.

AREA OF STUDY 3  

Practical investigation
Outcome 3: On completion of this unit the student should be able to design and 
undertake a practical investigation related to waves or fields or motion, and present 
methodologies, findings and conclusions in a scientific poster.

To achieve this outcome the student will draw on key knowledge outlined in Area of 
Study 3 and the related key science skills.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

How can two contradictory models 
explain both light and matter?UNIT



CHAPTER

Have you ever watched ocean waves heading toward the shore? For many people 
their first thought when encountering a topic called ‘waves’ is to picture a water 
wave moving across the surface of an ocean. The wave may be created by some 
kind of disturbance like the action of wind on water or a boat as it moves through 
the water.

Waves are, in fact, everywhere. Sound, visible light, radio waves, waves in the string 
of an instrument, the wave of a hand, the ‘Mexican wave’ at a stadium and the 
recently discovered gravitational waves—all are waves or wave-like phenomena. 
Understanding the physics of waves provides a broad base upon which to build your 
understanding of the physical world. A knowledge of waves gives an introduction to 
the concepts that describe the nature of light.

Key knowledge 
By the end of this chapter you will have studied the properties of mechanical waves, 
and will be able to:

• explain a wave as the transmission of energy through a medium without the net 
transfer of matter  

• distinguish between transverse and longitudinal waves  
• identify the amplitude, wavelength, period and frequency of waves  
• calculate the wavelength, frequency, period and speed of travel of waves using: 

v = fλ, and λ
T

• explain qualitatively the Doppler effect  
• explain resonance as the superposition of a travelling wave and its reflection, and 

with reference to a forced oscillation matching the natural frequency of vibration 
• analyse the formation of standing waves in strings fixed at one or both ends.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Properties of  
mechanical waves 
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8.1 Longitudinal and  
transverse waves
Throw a stone into a pool or lake, and you will see circular waves form and move 
outwards from the source as ripples, as shown in Figure 8.1.1. Stretch a cord out on 
a table and wriggle one end back and forth across the table surface and another type 
of wave can be observed. Sound waves, water waves and waves in strings are all 
examples of mechanical waves. Mechanical waves, as opposed to electromagnetic 
waves, cannot transmit energy through a vacuum. Mechanical waves are the focus 
of this chapter.

FIGURE 8.1.1 The ripples in a pond indicate a transfer of energy. 

MECHANICAL WAVES
Watch a piece of driftwood, a leaf, or even a surfer, resting in the water as a smooth 
wave goes past. The object moves up and down but doesn’t move forward with 
the wave. The movement of the object on the water reveals how the particles in the 
water move as the wave passes; that is, the particles in the water move up and down 
from an average position. 

Any wave that needs a medium (such as water) through which to travel is 
called a mechanical wave. Mechanical waves can move over very large distances but 
the particles of the medium only have very limited movement.

Mechanical waves transfer energy from one place to another through a medium. 
The particles of the matter vibrate back and forth or up and down about an average 
position, which transfers the energy from one place to another. For example, energy 
is given to an ocean wave by the action of the wind far out at sea. The energy is 
transported by waves to the shore but (except in the case of a tsunami event) most 
of the ocean water itself does not travel onto the shore.

A wave involves the transfer of energy without the net transfer of matter.

PULSES VERSUS PERIODIC WAVES
A single wave pulse can be formed by giving a slinky spring or rope a single up and 
down motion as shown in Figure 8.1.2(a). As the hand pulls upwards, the adjacent 
parts of the slinky will also feel an upward force and begin to move upward. The 
source of the wave energy is the movement of the hand.



273CHAPTER 8   |   PROPERTIES OF  MECHANICAL WAVES 

If the up and down motion is repeated, each successive section of the slinky 
will move up and down, moving the wave forward along the slinky as shown in 
Figure 8.1.2(b). Connections between each loop of the slinky cause the wave to 
travel away from the source, carrying with it the energy from the source.

wave pulseone initial disturbance

continuous vibration at source

(a)

(b)

FIGURE 8.1.2 (a) A single wave pulse can be sent along a slinky by a single up and down motion. 
(b) A continuous or periodic wave is created by a regular, repeated movement of the hand.

In a continuous wave or periodic wave, continuous vibration of the source, such 
as that shown in Figure 8.1.2(b), will cause the particles within the medium to 
oscillate about their average position in a regular, repetitive or periodic pattern. The 
source of any mechanical wave is this repeated motion or vibration. The energy 
from the vibration moves through the medium and constitutes a mechanical wave.

Transverse waves
When waves travel on water, or through a rope, spring or string, the particles within 
the medium vibrate up and down in a direction perpendicular, or transverse, 
to the direction of motion of the wave energy (see Figure 8.1.3). Such a wave is 
called a transverse wave. When the particles are displaced upwards from the average 
position, or resting position, they reach a maximum positive displacement called 
a crest. Particles below the average position fall to a maximum negative position 
called a trough.

wave source

cork now lower

wave travels right original
water
level

crest

trough

(b)

(c)

(a)

FIGURE 8.1.3 A continuous water wave moves to the right. As it does so the up and down 
displacement of the particles transverse to the wave motion can be monitored using a cork.  
The cork simply moves up and down as the wave passes through it. 
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Longitudinal waves
In a longitudinal mechanical wave, the vibration of the particles within the medium 
are in the same direction, or parallel to, the direction of energy flow of the wave. You 
can demonstrate this type of wave with a slinky by moving your hand backwards 
and forwards in a line parallel to the length of the slinky, as shown in Figure 8.1.4. 

compressions

rarefactions

movement of hand
backwards and forwards wave movement particle movement

FIGURE 8.1.4  When the direction of the vibrations of the medium and the direction of travel of the 
wave energy are parallel, a longitudinal wave is created. This can be demonstrated with a slinky. 

As you move your hand, a series of compressed and expanded areas form along the 
slinky. Compressions are those areas where the coils of the slinky come together. 
Expansions are regions where the coils are spread apart. Areas of expansion are 
termed rarefactions. The compressions and rarefactions in a longitudinal wave 
correspond to the crests and troughs of a transverse wave.

An important example of a longitudinal wave is a sound wave. As the cone of a 
loudspeaker vibrates, the layer of air next to it is alternately pushed away and drawn 
back creating a series of compressions and rarefactions in the air (see Figure 8.1.5). 
This vibration is transmitted through the air as a sound wave. Like transverse waves, 
the individual molecules vibrate over a very small distance while the wave itself can 
carry energy over very long distances. If the vibration was from a single point then 
the waves would tend to spread out spherically.

PHYSICSFILE

Water waves 
Water waves are often classified as transverse waves, but this is an approximation. 
In practical situations, transverse and longitudinal waves don’t always occur in 
isolation. The breaking of waves on a beach produces complex wave forms which 
are a combination of transverse and longitudinal waves (see Figure 8.1.6).

If you looked carefully at a cork bobbing about in gentle water waves you would 
notice that it doesn’t move straight up and down but that it has a more elliptical motion. 
It moves up and down, and very slightly forwards and backwards as each wave passes. 
However, since this second aspect of the motion is so subtle, in most circumstances it 
is adequate to treat water waves as if they were purely transverse waves.

FIGURE 8.1.6 Even though this surfer rides forward on the wave, the water itself only moves in 
an elliptical motion as the wave passes.

FIGURE 8.1.5 The motion of a flame in front of a 
loudspeaker is clear evidence of the continuous 
movement of air backwards and forwards as the 
loudspeaker creates a sound wave.
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8.1 Review
SUMMARY

• Vibrating objects transfer energy through waves, 
travelling outwards from the source. Waves on 
water, on a string and sound waves in air are 
examples of waves.

• A wave may be a single pulse or it may be 
continuous or periodic (successive crests and 
troughs or compressions and rarefactions).

• A wave only transfers energy from one point to 
another. There is no net transfer of matter or material.

• Mechanical waves can be either transverse or 
longitudinal. 

• In a transverse wave, the oscillations are 
perpendicular to the direction in which the wave 
energy is travelling. A wave in a string is an 
example of a transverse wave. 

• In a longitudinal wave, the oscillations are parallel to 
(along) the direction the wave energy is travelling. 
Sound is an example of a longitudinal wave.

KEY QUESTIONS

1  Describe the motion of particles within a medium as 
a mechanical wave passes through the medium. 

2  Which of the following statements are true and 
which are false? For the false statements, rewrite 
them so they become true. 
a  Longitudinal waves occur when particles of the 

medium vibrate in the opposite direction to the 
direction of the wave.

b  Transverse waves are created when the direction 
of vibration of the particles is at right angles to 
the direction of the wave. 

c  A longitudinal wave is able to travel through air.
d  The vibrating string of a guitar is an example of 

a transverse wave.

3  The diagram below represents a slinky spring held 
at point A by a student.

B
A

Draw an image of the pulse a short time after that 
shown in the diagram and determine the motion of 
point B. Is point B moving upwards, downwards or is 
it stationary? 

4  Which of the following are examples of mechanical 
waves?
light, sound, ripples on a pond, vibrations in a rope

5  The diagram below shows dots representing the 
average displacement of air particles at one moment 
in time as a sound wave travels to the right.

A

compression rarefaction

B

Describe how particles A and B have moved from 
their equally-spaced undisturbed positions to form 
the compression.

6  A sound wave is emitted from a speaker and heard 
by Lee who is 50 m from the speaker. He made 
several statements once he heard the sound. Which 
one or more of the following statements made by 
Lee would be correct? Explain your answers.
A  Hearing a sound wave tells me that air particles 

have travelled from the speaker to me.
B Air particles carried energy with them as they 

travelled from the speaker to me.
C Energy has been transferred from the speaker to me.
D Energy has been transferred from the speaker to me 

by the oscillation of air particles.

7  A mechanical wave may be described as transverse or 
longitudinal. In a transverse wave, how does the motion 
of the particles compare with the direction of travel of 
the wave?

8  Classify the waves described below as either 
longitudinal or transverse:
a  sound waves 
b  a vibrating guitar string
c  slinky moved with an upward pulse
d  slinky pushed forwards and backwards.

9  Mechanical waves generally travel faster in solids than 
in gases. Provide an explanation for this.

10  For the wave shown below, describe the direction of 
energy transfer of the sound between the tuning fork 
and point X. Justify your answer.

X
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8.2 Measuring mechanical waves
The features of a mechanical wave can be represented using a graph. In this 
section you will explore how the displacement of particles within the wave can be 
represented using graphs. From these graphs several key features of a wave can 
be identified:
• amplitude
• wavelength
• frequency
• period
• speed.

Waves of different amplitudes and wavelengths can be seen in Figure 8.2.1.

FIGURE 8.2.1 Waves can have different wavelengths, amplitudes, frequencies, periods and velocities, 
which can all be represented on a graph.

DISPLACEMENT–DISTANCE GRAPHS
The displacement–distance graph in Figure 8.2.2 shows the displacement of all 
particles along the length of a transverse wave at a particular point in time.

Distance from source
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FIGURE 8.2.2 A sine wave representing the particle displacements along a wave.

Have a look back at Figure 8.1.2(b) on page 275 of a continuous wave in a slinky. 
This ‘snapshot’ in time shows the particles moving up and down sinusoidally 
about a central rest position. As a wave passes a given point, the particle at that 
point will go through a complete cycle before returning to its starting point. The 
wave spread along the length of the slinky has the shape of a sine or cosine function, 
which you will recognise from mathematics. A displacement–distance graph shows 
the position (displacement) of the particles at any moment in time along the slinky 
about a central position.
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From a displacement–distance graph, the amplitude and wavelength of a wave 
are easily recognisable. 
• The amplitude of a wave is the maximum displacement of a particle from the 

average or rest position. That is, the amplitude is distance from the middle of 
a wave to the top of a crest or to the bottom of a trough. The total distance a 
particle will move through in one cycle is twice the amplitude. 

• The wavelength of a wave is the distance between any two successive points 
in phase (e.g. points A and B or X and Y in Figure 8.2.2). It is denoted by the 
Greek letter λ (lambda), and is measured in metres. Two particles on the wave 
are said to be in phase if they have the same displacements from the average 
position and are moving in the same direction. Points P and R in Figure 8.2.2 
are two such particles that are in phase, as are points A and B and X and Y but 
not P and Q. 
The frequency, f, is the number of complete cycles that pass a given point 

per second and is measured in hertz (Hz). By drawing a series of displacement–
distance graphs at various times, you can see the motion of the wave. By comparing 
the changes in these graphs, the travelling speed and direction of the wave can be 
found, as well as the direction of motion of the vibrating particles.

Worked example 8.2.1

DISPLACEMENT–DISTANCE GRAPH 

The displacement–distance graph below shows a snapshot of a transverse wave 
as it travels along a spring towards the right. Use the graph to determine the 
amplitude and the wavelength of this wave.

−20

−10

0

10

20

0.4 0.6 0.8 1.0 1.2 1.4 1.60.2

P
ar

ti
cl

e 
d
is

p
la

ce
m

en
t 

(c
m

)

Distance (m)

P

Q

R

Thinking Working 

Amplitude on a displacement–distance 
graph is the distance from the average 
position to a crest (P) or a trough (R).

Read the displacement of a crest or a 
trough from the vertical axis. Convert 
to SI units where necessary.

Amplitude = 20 cm = 0.2 m

Wavelength is the distance for one 
complete cycle. Any two consecutive 
points in phase and at the same 
position on the wave could be used.

The first cycle runs from the 
origin through P, Q, R to intersect 
the horizontal axis at 0.8 m. This 
intersection is the wavelength.

Wavelength λ = 0.8 m



AREAS OF STUDY 1 & 2   |   WAVES AND LIGHT BEHAVIOUR & LIGHT AND MATTER278

Worked example: Try yourself 8.2.1

DISPLACEMENT–DISTANCE GRAPH 

The displacement–distance graph below shows a snapshot of a transverse wave 
as it travels along a spring towards the right. Use the graph to determine the 
wavelength and the amplitude of this wave.
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DISPLACEMENT–TIME GRAPHS
A displacement–time graph such as the one shown in Figure 8.2.3 tracks the 
position of one point over time as the wave moves through that point.
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FIGURE 8.2.3 The graph of displacement versus time from the source of a transverse wave shows the 
movement of a single point on a wave over time as the wave passes through that point.

The displacement–time graph looks very similar to a displacement–distance 
graph of a transverse wave, so be careful to check the horizontal axis label. 

Crests and troughs are shown the same way in both graphs. The amplitude is still 
the maximum displacement from the average or rest position of either a crest or a 
trough. But the distance between two successive points in phase in a displacement–
time graph represents the period of the wave, T, measured in seconds. 

The period is the time it takes for any point on the wave to go through one 
complete cycle (e.g. from crest to successive crest). The period of a wave is inversely 
related to its frequency:

T = 1
f

where T is the period of the wave (s)

 f is the frequency of the wave (Hz)

The amplitude and period of a wave, and the direction of motion of a particular 
particle, can be determined from a displacement–time graph.
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Worked example 8.2.2

DISPLACEMENT–TIME GRAPHS 

The displacement–time graph below shows the motion of a single part of a rope 
(point P) as a wave passes by travelling to the right. Use the graph to find the 
amplitude, period and frequency of the wave.
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Thinking Working

The amplitude on a displacement–time 
graph is the displacement from the average 
position to a crest or trough. 

Note the displacement of successive crests 
and/or troughs on the wave and carefully 
note units on the vertical axis.

Maximum displacement is 0.5 m

Therefore amplitude = 0.5 m

Period is the time it takes to complete 
one cycle and can be identified on a 
displacement–time graph as the time 
between two successive points that are 
in phase.

Identify two points on the graph at the 
same position in the wave cycle, e.g. the 
origin and t = 2 s. Confirm by checking two 
other points, e.g. two crests or two troughs.

Period T = 2 s

Frequency can be calculated using f = 
1
T, 

measured in hertz (Hz).
f  = 

1
T = 

1
2 = 0.5 Hz

Worked example: Try yourself 8.2.2

DISPLACEMENT–TIME GRAPHS 

The displacement–time graph below shows the motion of a single part of a rope 
as a wave passes travelling to the right. Use the graph to find the amplitude, 
period and frequency of the wave.
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THE WAVE EQUATION
Although the speed of a wave can vary, there is a relationship between the speed of 
a wave and other significant wave characteristics.

Think back to the study of motion. Speed is given by:

v = distance travelled
time taken

 = d
Δt

This can be rewritten in terms of the distance of one wavelength (λ) in one 
period (T ), which will be:

v = λ
T

and since

f = 1
T

the relationship becomes:

v = fλ

where v is the speed (m s–1)

 f is the frequency (Hz)

	 λ is the wavelength (m)

This is known as the wave equation and applies to both longitudinal and 
transverse mechanical waves.

Worked example 8.2.3

THE WAVE EQUATION 

A longitudinal wave has a wavelength of 2.0 m and a speed of 340 m s–1.  
What is the frequency, f, of the wave?

Thinking Working 

The wave equation states that v = fλ. 
Knowing both v and λ, the frequency, f, 
can be found.

Rewrite the wave equation in terms of f.

v = fλ

f  = 
v
λ

Substitute the known values and solve. f  = 
v
λ

= 
340
2.0

= 170 Hz

Worked example: Try yourself 8.2.3

THE WAVE EQUATION 

A longitudinal wave has a wavelength of 4.0 × 10–7 m and a speed of 
3.0 × 108 m s–1. What is the frequency, f, of the wave?
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Worked example 8.2.4

THE WAVE EQUATION 

A longitudinal wave has a wavelength of 2.0 m and a speed of 340 m s–1.  
What is the period, T, of the wave?

Thinking Working 

Rewrite the wave equation in terms of T. v = fλ, and f = 1
T

v = 1
T

 × λ

= λ
T

T = λ
v

 

Substitute the known values and solve. T = λ
v

= 
2.0
340

= 5.9 × 10–3 s

Worked example: Try yourself 8.2.4

THE WAVE EQUATION 

A longitudinal wave has a wavelength of 4.0 × 10–7 m and a speed of  
3.0 × 108 m s–1. What is the period, T, of the wave?

THE DOPPLER EFFECT
The Doppler effect is a phenomenon of waves that is observed whenever there is 
relative movement between the source of the waves and an observer. It causes an 
apparent increase in frequency when the relative movement is towards the observer 
(i.e. the distance between observer and wave source is decreasing) and an apparent 
decrease in frequency when the relative movement is away from the observer (i.e. 
the distance between observer and wave source is increasing). It can be observed for 
any type of wave and has been particularly useful in astronomy for understanding 
the expanding universe.

Named after Austrian physicist Christian Doppler, who proposed it in 1842, the 
Doppler effect only affects the apparent frequency of the wave. The actual frequency 
of the wave does not change. A common experience of the Doppler effect is in 
listening to the sound of a siren from an emergency vehicle as it approaches and 
passes by.

Suppose a wave source, such as an ambulance siren, is stationary relative to 
an observer. The observer will receive and hear the disturbances (rarefactions and 
compressions in this example) at the same rate as the source creates them. If the 
wave source were to travel towards the observer, then each consecutive disturbance 
will originate from a position a little closer than the previous one. Hence each 
disturbance will have a little less distance to travel before reaching the observer 
than the one immediately before it. The effect is that the frequency of arrival of the 
disturbances is higher than the originating frequency (see the person on the right 
in Figure 8.2.4).

Alternatively, if the source is moving away from the observer, each consecutive 
disturbance will originate from a distance a little further away than the one 
immediately before and so has a greater distance to travel. The disturbances will 
arrive at the observer with a frequency that is less than the originating frequency 
(see the person on the left in Figure 8.2.4).

AMBULANCE

AMBULANCE

FIGURE 8.2.4 The Doppler effect. An object 
emitting a sound moving towards an observer 
(on the right) will emit sound waves closer 
together in its direction of travel and hence 
a higher frequency is heard by the observer. 
When the object is moving away from the 
observer (on the left), the sound waves are 
emitted further apart and hence a lower 
frequency is heard by the observer.
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EXTENSION

Doppler calculations
This study only requires a qualitative understanding of 
the Doppler effect as a wave phenomenon. However, as 
the relative motion between the observer and source 
is the cause of the change in apparent frequency, then 
by knowing what the relative motion is, the apparent 
frequency can be calculated.

In classical physics (which does not take into account 
relativistic effects), where the speed of the source and that 
of the observer are lower than the speed of the waves in 
the medium and the source and observer are approaching 
each other directly:

f  = (v + v0

v − vs
)f0

where f is the apparent or observed frequency (Hz) 

f0 is the original frequency (Hz) 

v is the speed of the waves in the medium (m s–1) 

v0 is the speed of the observer relative to the medium 
(m s–1). v0 is positive if the observer is moving towards 
the source and negative if moving away.

vs is the speed of the source relative to the medium 
(m s–1). vs is positive if the source is moving towards the 
observer and negative if moving away.

As an approximation, if the speeds of the source and 
observer are small relative to the speed of the wave, then 
the approximate observed frequency is:

f  = (1 + 
∆v
v )f0, where ∆v = v0 – vs

and the approximate apparent change in frequency is

∆f  = (∆v
v )f0, where ∆f = f – f0

An interesting additional effect was predicted by Lord 
Rayleigh. He predicted that if the source is moving at 
double the speed of sound, a musical piece emitted by 
the source would be heard in correct time and frequency, 
but backwards. Try to establish whether his prediction is 
true mathematically using the formulas above.

The net effect is that when the wave is moving towards an observer, the 
frequency of arrival of the wave will be higher than the frequency of the original 
source. When the wave is moving away from the observer, the frequency of arrival 
will be lower than the frequency of the original source. Therefore, as a result of the 
Doppler effect, a siren will appear to rise in frequency as the vehicle travels towards 
you and fall as it moves away.

For a mechanical wave, the total Doppler effect may result from the motion 
of the source, the motion of the observer, or the motion of the medium the wave 
travels through. For waves that don’t require a medium, such as light, only the 
relative difference in speed between the observer and the source will contribute to 
the effect.

PHYSICSFILE

The sound of the Doppler effect
This Doppler effect behaviour can be  
easily modelled. You should be able to 
mimic the sound of a high-powered 
racing car like that in Figure 8.2.5 by 
making the sound ‘neee…owwwww’ 
with your voice. The ‘neee’ is the 
sound the racing car would make as it 
approached you—hence the high 
frequency. The ‘owwwww’ is the sound 
the racing car would make is it passed 
you and travelled away—hence the 
low frequency. 

FIGURE 8.2.5 Daniel Ricciardo  
of Australia racing in Spain.
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8.2 Review

KEY QUESTIONS

1  Using the displacement–distance graph below, give the 
correct word or letters for the following:

A C F

E G

B

D

a  two points on the wave that are in phase
b  the name for the distance between these two points
c  the two particles with maximum displacement from 

their rest position 
d  the term for this maximum displacement.

2  Use the graph below to determine the wavelength and 
the amplitude of this wave.
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3  This is the displacement–time graph for a particle P. 
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What is the:
a  period of the wave
b  frequency of the wave?

4  Five wavelengths of a wave pass a point each second. 
The amplitude is 0.3 m and the distance between 
successive crests of the waves is 1.3 m. What is the 
speed of the wave?

5  Which of the following is true and which is false? For 
the false statements rewrite them to make them true.
a  The frequency of a wave is inversely proportional to 

its wavelength.
b  The period of a wave is inversely proportional to 

its wavelength.
c  The amplitude of a wave is not related to its speed.
d  Only the wavelength of a wave determines its 

speed.

6  Consider the displacement–distance graph below.
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a  State the wavelength and amplitude of the wave.
b  If the wave moves through one wavelength in 2 s, 

what is the speed of the wave?
c  If the wave is moving to the right, which of the 

coloured particles is moving down? 

7  Calculate the period of a wave with frequency 
2 × 105 Hz.

8  A police car, travelling at 100 km h–1 along a straight 
road, has its siren sounding. The police car is pursuing 
another car travelling in the same direction, also at 
100 km h–1. There is no wind at the time. Would an 
observer in the car being pursued hear the siren from 
the police car at a higher, lower or the same frequency 
as it emits? Explain your answer.

9  An ambulance sounding its siren in still air moves 
towards you, then passes you and continues to move 
away in a straight path. How would the siren sound 
to you?

SUMMARY

• Waves can be represented by displacement–
distance graphs and displacement–time graphs.

• From a displacement–time graph, you can 
determine: amplitude, frequency and period.

• The period of a wave has an inverse relationship 
to the frequency, according to the relationship:

T = 
1
f  

• The speed of a wave can be calculated using the 
wave equation:

v = fλ = λ
T

• The Doppler effect is a phenomenon that is 
observed whenever there is relative movement 
between the source of waves and an observer. 
It causes an apparent increase in frequency when 
the relative movement is towards the observer 
and an apparent decrease in frequency when the 
relative movement is away from the observer.

• For a mechanical wave, the total Doppler effect 
may result from the motion of the source, the 
motion of the observer, or the motion of the 
medium.
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8.3 Wave interactions
Mechanical waves transfer energy through a medium. A medium is necessary, but 
there will be times when that medium physically ends, such as when a water wave 
meets the edge of a pool or air meets a wall. A change in the physical characteristics 
in the same medium, such as density and temperature, can act like a change in 
medium. When the medium ends, or changes, the wave doesn’t just stop. Instead, 
the energy that the wave is carrying will undergo three processes:
• some energy will be reflected (see Figure 8.3.1)
• some energy will be absorbed by the new medium
• some energy will be transmitted.

Rarely in the real world does one mechanical wave occur in isolation. From the 
ripples that form on a pond hit by raindrops to the complex interactions of multiple 
reflected sound waves, the world is full of mechanical waves. The sounds produced 
by acoustic musical instruments and the human voice come from the interaction 
between sound waves and their reflections. The interaction of mechanical waves 
results in superposition and creates, among many other things, the characteristic 
sounds of musical instruments and of the human voice.

REFLECTION
When a transverse wave pulse reaches a hard surface, such as the fixed end of a 
rope, the wave is bounced back or reflected. 

When the end of the rope is fixed, the reflected pulse is inverted (see Figure 8.3.2). 
So, for example, a wave crest would be reflected as a trough. 

(a)

 

(b)

 

(c)

FIGURE 8.3.2 (a) A wave pulse moves along a string to the right and approaches a fixed post.  
(b) On reaching the end, the string exerts an upwards force on the fixed post. Due to Newton’s third 
law, the fixed post exerts an equal and opposite force on the string which (c) inverts the wave pulse 
and sends its reflection back to the left on the bottom side of the string. There is a phase reversal 
on reflection from a fixed end.

This inversion can also be referred to as a 180° change of phase or, expressed in 
terms of the wavelength, λ , a shift in phase of λ

2
.

When a wave pulse hits the end of the rope that is free to move (known as a free 
boundary), the pulse returns with no change of phase (see Figure 8.3.3). That is, 
the reflected pulse is the same as the incident pulse. A crest is reflected as a crest 
and a trough is reflected as a trough. 

(a)

 

(b)

 

(c)

FIGURE 8.3.3 (a) A wave pulse moves along a string to the right and approaches a free end at the 
post. (b) On reaching the post the free end of the string is free to slide up the post. (c) No inversion 
happens and the wave pulse is reflected back to the left on the same side of the string, i.e. there is 
no phase reversal on reflection from a free end.

When the transverse wave pulse is reflected, the amplitude of the reflected wave 
isn’t quite the same as the original. Part of the energy of the wave is absorbed by 
the post, where some will be transformed into heat energy and some will continue 
to travel through the post. You can see this more clearly by connecting a heavier 
rope to a lighter rope. The change in density has the same effect as a change in 
medium (see Figure 8.3.4).

light
section

(a)

(b)

heavy
section

transmitted
pulse

re�ected

FIGURE 8.3.4 (a) A wave pulse travels along 
a light rope towards a heavier rope. (b) On 
reaching a change in density the wave pulse 
will be partly reflected and partly transmitted. 
This is analogous to a change in medium.

FIGURE 8.3.1 The reflection of waves in a ripple 
tank when meeting a solid surface, in this case 
a barrier positioned below the source of the 
circular waves.
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When a transverse wave pulse is sent down the rope from the light rope to 
the  heavier rope, part of the wave pulse will be reflected and part of it will be 
transmitted to the heavier rope. As the second rope is heavier, a smaller 
proportion of the wave is transmitted into it and a larger proportion of the wave is 
reflected back. 

This is just the same as a wave pulse striking a wall. The more rigid and/or dense 
the wall, the more the wave energy will be reflected and the less it will be absorbed 
– but there will always be some energy that is absorbed by or transferred to the 
second medium. This explains why sound can travel through walls.

Reflected wave fronts
Two- and three-dimensional waves, such as water waves, travel as wave fronts. 
When drawing wave fronts (see Figure 8.3.5), it is common to show the crests of 
the waves. When close to the source, wave fronts can show considerable curvature 
or may even be spherical when generated in three dimensions. Where a wave has 
travelled a long distance from its source, the wave front is nearly straight and is 
called a plane wave. A plane wave is shown in Figure 8.3.5(b). Plane waves can 
also be generated by a long, flat source such as those often used in a ripple tank. 

The direction of motion of any wave front can be represented by a line drawn 
perpendicular to the wave front and in the direction the wave is moving (see 
Figure 8.3.5(a). This is called a ray. Rays can be used to study or illustrate the 
properties of two- and three-dimensional waves without the need to draw individual 
wave fronts.

By using rays to illustrate the path of a wave front reflecting from a surface, 
it  can be shown that for a two- or three-dimensional wave, the angle from the 
normal at which the wave strikes a surface will equal the angle from the normal 
to the reflected wave. The normal is an imaginary line at 90°, i.e. perpendicular, to 
the surface. 

These angles of the incident and reflected waves from the normal are labelled θ i 
and θ r , respectively, in Figure 8.3.6.

θi

θi θr

θr

incident ray

normal

incident
wave front

re�ected
wave front

re�ected ray

FIGURE 8.3.6 The law of reflection. The angle between the incident ray and the normal (θ i ) is the 
same as the angle between the normal and the reflected ray (θ r ).

This is referred to as the law of reflection. The law of reflection states that the 
angle of reflection, measured from the normal, equals the angle of incidence 
measured from the normal; that is θ i = θ r .

The law of reflection is true for any surface whether it is straight, curved or 
irregular. For all surfaces, including curved or irregular surfaces, the normal 
is drawn perpendicular to the surface at the point of contact of the incident ray 
or rays. 

ray

ray

(a) (b)

ray ray

w
ave   fron

ts

w
ave    fronts

FIGURE 8.3.5 Rays can be used to illustrate the 
direction of motion of a wave. They are drawn 
perpendicular to the wave front of a two- or 
three-dimensional wave and in the direction of 
travel of the wave; (a) illustrates rays for circular 
waves near a point source while (b) shows a ray 
for plane waves.
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When wave fronts meet an irregular, rough surface, the resulting reflection 
can be spread over a broad area. This is because each point on the surface may 
reflect the portion of the wave front reaching it in a different direction, as seen in 
Figure 8.3.7. This is referred to as diffuse reflection.

Echoes provide the most obvious evidence that sound waves are reflected. Like 
all waves, sound can be reflected when it strikes an obstacle. 

PHYSICS IN ACTION

Sonic Depth Finder
The phenomenon of an echo is  
sometimes put to good use—an 
echo-sounding device makes it 
possible to measure the depth 
of the sea (Figure 8.3.8). This 
equipment works by measuring the 
time taken for the echo, generated 
when a sound wave is reflected by 
the sea bed, to return to the ship.

FIGURE 8.3.8 The ship sends a sound 
wave into the water below the ship. 
By measuring the time between the 
emitted sound (red waves) and its 
reflection (dashed lines), the ship’s 
sonar can determine the depth of 
the water under the ship. 

SUPERPOSITION
Imagine two transverse mechanical waves travelling towards each other along a 
string, as shown in Figure 8.3.9(a). When the crest of one wave coincides with the 
crest of the other, the resulting displacement of the string is the vector sum of the 
two individual displacements (see Figure 8.3.9(b)). The amplitude at this point is 
increased and the shape of the string resembles a combination of the two pulses. 
After they interact, the two pulses continue unaltered (see Figure 8.3.9(c)). The 
resulting pattern is a consequence of the principle of superposition. In this case, as 
the two waves added together, constructive superposition occurred.

When a pulse with a positive displacement meets one with a negative displacement 
as shown in Figure 8.3.10, the resulting wave will have a smaller amplitude (see 
Figure 8.3.10(b)). Once again the resulting displacement of the string is the vector 
sum of the two individual displacements; in this case a negative displacement adds 
to a positive displacement to produce a wave of smaller magnitude. This is called 
destructive superposition. Once again, the pulses emerge from the interaction 
unaltered (see Figure 8.3.10(c)).

When two waves meet and combine, there will be places where constructive 
superposition occurs and places where destructive superposition occurs. Although 
the wave pulses interact when they meet, passing through each other does not 
permanently alter the shape, amplitude or speed of either pulse. Just like transverse 
waves, longitudinal waves will also be superimposed as they interact.

The effects of superposition can be seen in many everyday examples. The ripples 
in the pond in Figure 8.3.11 were caused by raindrops hitting a pond. Where two 
ripples meet, a complex wave results from the superposition of the two waves, after 
which the ripples continue unaltered. Similarly in a crowded room, all the sounds 
reaching your ear are superimposed, so that one complex sound wave arrives at 
the eardrum. 

FIGURE 8.3.7 Reflection from an irregular 
surface. Each incident ray may be reflected 
in a different direction, depending upon how 
rough or irregular the reflecting surface is. 
The resulting wave will be diffuse (spread out).

direction
of travel

direction of travel(a)

(b)

(c)

FIGURE 8.3.9 (a) As two wave pulses approach 
each other superposition occurs. (b) Shows 
the occurrence of constructive superposition. 
(c) After the interaction, the pulses continue 
unaltered; they do not permanently affect 
each other.

direction of travel

direction of travel

(a)

(b)

(c)

FIGURE 8.3.10 (a) As two wave pulses 
approach each other superposition occurs. 
(b) Superposition of waves in a string showing 
destructive superposition. (c) As in constructive 
superposition, the waves do not permanently 
affect each other.
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Superposition is important both theoretically and practically in the formation 
of complex sounds. Imagine two single-frequency sound waves, or pure tones, 
one of which is twice the frequency of the other. The two individual waves are 
added together to give a more complicated resultant sound wave, as shown in 
Figure 8.3.12. Where one sound wave has a greater amplitude, as in the example 
illustrated, it will be the predominant sound heard. The quieter, higher frequency 
sound will combine with the louder one to create the sound that we hear. Note 
that for Figure  8.3.12, a transverse wave is used to depict the sound wave. The 
crests represent compressions (areas of high pressure) and the troughs represent 
rarefactions (areas of low pressure). Showing longitudinal waves in this way makes 
features, such as period and therefore frequency, easier to see. 

PHYSICSFILE

The cocktail party effect  
In a crowded room, individual sound waves will interfere with each other repeatedly, 
but it is still possible to distinguish which person is speaking. If you know the person’s 
voice, then you know that their voice will sound the same. To discern one person’s 
speech amid all the sounds in the room, your brain uses an innate ability to ‘undo’ the 
superposition of waves by selecting one person’s voice and suppressing all the other 
noise. The ‘cocktail party effect’ also highlights the ability to hear your own name over 
the noise of a group of people talking.

RESONANCE
You may have heard about singers who supposedly can break glass by singing 
particularly high notes. Figure 8.3.13 shows a glass being broken in much the 
same way. All objects that can vibrate tend to do so at a specific frequency known 
as their natural or resonant frequency. Resonance is when an object is exposed 
to vibrations at a frequency equal to their resonant frequency. Resonance occurs 
when a weak vibration from one object causes a strong vibration in another. If the 
amplitude of the vibrations becomes too great, the object can be destroyed.

FIGURE 8.3.13 A glass can be destroyed by the vibrations caused by a singer emitting a sound of the 
same frequency as the resonant frequency of the glass.

A swing pushed once and left to swing or oscillate freely is an example of an 
object vibrating at its natural frequency. The frequency at which it moves backwards 
and forwards depends entirely on the design of the swing, mostly on the length of its 
supporting ropes. In time, the oscillations will fade away as the energy is transferred 
to the supporting frame and the air. 

1
2

frequency = 2f
amplitude =   a

frequency = f
amplitude = a

resultant sound 
wave when 
superimposed

frequency = f

FIGURE 8.3.12 Two sound waves, one twice 
the frequency of the other, produce a complex 
wave of varying amplitude when they are 
superimposed.

FIGURE 8.3.11 The ripples from raindrops 
striking the surface of a pond behave 
independently regardless of whether they 
cross each other or not. Where the ripples 
meet, a complex wave will be seen as the 
result of the superposition of the component 
waves. After interacting, the component 
waves continue unaltered.
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If you watch a swing in motion, it is possible to determine its natural oscillating 
frequency. It is then possible to push the swing at exactly the right time so that you 
match its natural oscillation. The additional energy you add by pushing will increase 
the amplitude of the swing rather than work against it. Over time, the amplitude will 
increase and the swing will go higher and higher; this is resonance. The swing can 
only be pushed at one particular rate to get this increase in amplitude (i.e. to get the 
swing to resonate). If the rate is faster or slower, the forcing frequency that you are 
providing will not match the natural frequency of the swing and you will be fighting 
against the swing rather than assisting it. 

Other examples of resonant frequency that you may have encountered are 
blowing air across the mouthpiece of a flute or drawing a bow across a string of a 
violin in just the right place (Figure 8.3.14). In each case, a clearly amplified sound 
is heard when the frequency of the forcing vibration matches a natural resonant 
frequency of the instrument.

Two very significant effects occur when the natural resonant frequency of an 
object is matched by the forcing frequency.
• The amplitude of the oscillations within the resonating object will increase 

dramatically.
• The maximum possible energy from the source creating the forced vibration is 

transferred to the resonating object.

PHYSICSFILE

Tacoma Narrows Gorge suspension bridge 
Resonance was responsible for destroying a suspension bridge over the Tacoma 
Narrows Gorge in the US State of Washington in 1940. Wind gusts of 70 km h–1 caused 
vibrations with a forcing frequency that caused the bridge to oscillate with ever-increasing 
amplitude, until the whole bridge shook itself apart. That is, the gusts of wind provided a 
forcing frequency that perfectly matched the natural oscillating frequency of the bridge. 
This caused the bridge to vibrate more and more until eventually it was destroyed. 
You can find video clips of the bridge falling if you search for it online.

In musical instruments and loudspeakers, resonance is a desired effect. The 
sounding boards of pianos and the enclosures of loudspeakers are designed to 
enhance and amplify particular frequencies. In other systems, such as car exhaust 
systems and suspension bridges, resonance is not always desirable, and care is taken 
to design a system that prevents resonance.

FIGURE 8.3.14 The sound box of a stringed 
instrument is tuned to resonate for the range 
of frequencies of the vibrations being produced 
by the strings. When a string is plucked or 
bowed, the airspace inside the box vibrates in 
resonance with the natural frequency and the 
sound is amplified.

SUMMARY

• A wave reaching the boundary between two 
materials in which it can travel will always be partly 
reflected, partly transmitted and partly absorbed.

• A wave has been reflected if it bounces back after 
reaching a boundary or surface.

• Waves reflect with a 180° phase change from fixed 
boundaries. That is, crests reflect as troughs and 
troughs reflect as crests.

• Waves reflect with no phase change from free 
boundaries. That is, crests reflect as crests and 
troughs as troughs.

• When a wave is reflected from a surface, the angle 
of reflection will equal the angle of incidence. 

• The principle of superposition states that when two 
or more waves interact, the resultant displacement 
or pressure at each point along the wave will be the 
vector sum of the displacements or pressures of the 
component waves. 

• Resonance occurs when the frequency of a forcing 
vibration equals the natural frequency of an object. 

• Two special effects occur with resonance: 

 - the amplitude of vibration increases

 - the maximum possible energy from the source 
is transferred to the resonating object. 

8.3 Review
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KEY QUESTIONS

1  A wave travels along a rope and reaches the fixed 
end of the rope. What occurs next?

2  Which of the following properties of a wave can 
change when the wave is reflected: frequency, 
amplitude, wavelength or speed?

3  Which of the following about wave pulses are true and 
which are false? For the false statements, rewrite them 
so they are true. 
a  The displacement of the resultant pulse is equal 

to the sum of the displacements of the individual 
pulses. 

b  As the pulses pass through each other, the 
interaction permanently alters the characteristics 
of each pulse.

c  After the pulses have passed through each other, 
they will have the same characteristics as before 
the interaction.

4 Two triangular wave pulses head towards each other 
at 1 m s–1. Each pulse is 2 m wide.

What will the superposition of these two pulses look 
like in 3 s?

A       B  

C       D  

5 Explain why resonance can result in damage to  
man-made structures.

6 A light ray strikes a flat surface at an angle of 38° 
measured from the surface. What is the angle of 
reflection of the ray?

7 Resonance occurs when the frequency of a forcing 
vibration exactly equals the natural frequency of 
vibration of an object. Two special effects occur. 
Which one of the following responses relating to the 
effects of resonance is true? Explain your answer.
A The amplitude of vibration will decrease.
B The amplitude of vibration will increase.
C The frequency of vibration will increase.
D The frequency of vibration will decrease.

8 A footbridge over a river has a natural frequency of 
oscillation from side to side of approximately 1 Hz. 
When pedestrians walk at a pace that will produce an 
oscillation in the bridge close to the natural frequency 
of the footbridge, resonance will occur. The graph 
below displays relevant data about pedestrians 
walking or running. A pedestrian completes 1 cycle 
of their motion every 2 steps. Which activity of the 
pedestrians is most likely to cause damage to the 
footbridge over time? Explain your answer.
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9  The following diagram shows a wave before and after 
being reflected from an object. 

incident
wavefronts

re�ected
wavefronts

What is the shape of the object?
A flat
B concave
C convex
D parabolic



AREAS OF STUDY 1 & 2   |   WAVES AND LIGHT BEHAVIOUR & LIGHT AND MATTER290

8.4 Standing waves in strings
Drawing a bow across a violin string causes the string to vibrate between the 
fixed  bridge of the violin and the finger of the violinist (see Figure 8.4.1). The 
simplest vibration will have maximum amplitude at the centre of the string, 
halfway between bridge and finger. This is a very simple example of a transverse 
standing wave.

Standing waves are formed from the superposition of waves. They occur when 
two waves of the same amplitude and frequency are travelling in opposite directions 
towards each other in the same string. Usually, one wave is the reflection of the 
other. Standing waves are responsible for the wide variety of sounds associated with 
speech and music.

STANDING WAVES IN A STRING
In Section 8.3 it was shown that when a wave pulse reaches a fixed end, it is reflected 
back 180° out of phase. That is, crests are reflected as troughs and troughs are 
reflected as crests.

Imagine creating a series of waves in a rope by shaking it vigorously. As the 
rope continues to be shaken, waves will travel in both directions. The new waves 
travelling down the rope will interfere with those being reflected back along the 
rope. This kind of motion will usually create quite a random pattern with the waves 
quickly dying away. Shaking the rope at just the right frequency, however, will 
create a new wave that interferes with the reflection in such a way that the two 
superimposed waves create a single, larger amplitude standing wave. 

It is called a standing wave because the wave doesn’t appear to be travelling 
along the rope. The rope simply seems to oscillate up and down with a fixed 
pattern. That is, is seems to be just ‘flipping’ up and down in a fixed pattern. This 
situation contrasts with a standard transverse wave where every point on the rope 
would have a maximum displacement at some time as the wave travels along 
the rope.

In Figure 8.4.2(a)–(d), two waves (drawn in blue) are shown travelling in 
opposite directions towards each other along a rope. One of the waves is a string of 
pulses (shown as a solid line) and the other is its reflection (shown as a dashed line). 
The two waves superimpose when they meet. Since the amplitude and frequency of 
each is the same, the end result, shown in part (e), is a standing wave. At the points 
where destructive interference occurs, the two waves totally cancel each other out 
and the rope will remain still. These are called nodes. Where the rope oscillates with 
maximum amplitude, constructive interference is occurring. These points on the 
standing wave are called antinodes.

Nodes and antinodes in a standing wave remain in a fixed position for a particular 
frequency of vibration. Figure 8.4.3 illustrates a series of possible standing waves 
in a rope, with both ends fixed, corresponding to three different frequencies. The 
lowest frequency of vibration (a) produces a standing wave with one antinode in the 
centre of the rope. The ends are fixed so they will always be nodal points. Assuming 
the tension in the rope is kept the same, patterns (b) and (c) are produced at twice 
and three times the original frequency respectively. 

The rope could also vibrate at a frequency four times that of the original and so 
on. The frequencies at which standing waves are produced are called the resonant 
frequencies of the rope.

It is important to note that the formation of a standing wave does not mean that 
the string or rope itself is stationary. It will continue to oscillate as further wave 
pulses travel up and down the rope. It is the relative position of the nodes and 
antinodes that remain unchanged.

It is also important to note that standing waves are not a natural consequence 
of every wave reflection.

Standing waves are only produced by the superposition of two waves of equal 
amplitude and frequency, travelling in opposite directions.

FIGURE 8.4.1 Transverse standing waves can 
form along a violin string when the string is 
bowed by the violinist.
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T = the period of each wave (i.e. the time to go through one cycle or to travel one wavelength)

(a)

(b)

(c)

(d)

(e)
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FIGURE 8.4.2 A standing wave created in a rope from two waves travelling 
in opposite directions, each with the same amplitude and frequency.  
(a) At a particular point in time, the two waves are completely 
superimposed, resulting in a wave twice the original amplitude. (b) After a 
time equal to  T

4
 (one-quarter of the period), the waves will each have moved 

λ
4 , which means that they have moved λ2  in relation to each other. The 
waves are completely out of phase and the resulting displacement is zero. 

(c) and (d) As more time goes by, the waves will continue to move past 
each other and completely superimpose again before cancelling again. 
(e) The cycles shown in (a) to (d) form a standing wave. A standing wave 
swings between maximum displacements, creating antinodes (A) which 
lie halfway between the stationary nodes (N). Regardless of the position 
of the component waves, these nodes stay in the same place. Successive 
nodal points lie λ2  apart, as do successive antinodal points.

antinode

(a)

node

(b)

antinode

node

antinode

node

(c)

FIGURE 8.4.3 A rope vibrated at three different resonant frequencies, illustrating the standing waves produced at each frequency.
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Standing waves are a result of resonance and occur only at the natural frequencies 
of vibration, or resonant frequencies, of the particular medium.

Standing waves don’t only exist in the everyday world but also occur at the  
sub-atomic level. This concept is covered in detail in Chapter 10.

HARMONICS
From the strings of a musical instrument, a large variety of waves are created. 
They travel along the string in both directions and reflect from the fixed ends. 
Most of these vibrations will interfere in a random fashion and die away. However, 
those corresponding to resonant frequencies of the string will form standing waves 
and remain. 

The resonant frequencies produced in this complex vibration of multiple 
standing waves are termed harmonics. The lowest and simplest form of vibration, 
with one antinode (see Figure 8.4.3(a)), is called the fundamental frequency. 
Higher-level harmonics (see Figure 8.4.3(b) and (c)) are referred to by musicians 
as overtones. 

The fundamental frequency usually has the greatest amplitude, so it has the 
greatest influence on the sound. The amplitude generally decreases for each 
subsequent harmonic. Usually all possible harmonics are produced in a string 
simultaneously, and the instrument and the air around it also vibrate to create the 
complex mixture of frequencies heard as an instrumental note.

The resonant frequencies or harmonics in a string of length l can be calculated 
from the relationship between the length of the string and the wavelength, λ , of the 
corresponding standing wave.

For a string fixed at both ends:
The first harmonic, or fundamental frequency, has one antinode in the centre 

of the string and 
λ = 2 × l
The second harmonic will have two antinodes and 

λ = l = 2l
2

The third harmonic will have three antinodes 

λ = 2l
3

And so in general, for any harmonic:

λ = 2l
n

where λ is the wavelength (m)

 l is the length of the string (m)

  n is the number of the harmonic, which is also the number of antinodes 
(i.e. 1, 2, 3, 4...)

The relationship between wavelength, λ , and string length, l, is shown in 
Figure 8.4.4.

�rst harmonic
(fundamental
frequency)

second harmonic
(�rst overtone)

third harmonic
(second overtone)

fourth harmonic
(third overtone)

l
2λ4 =2l

3λ3 =

λ1 = 2l
λ2 = l

FIGURE 8.4.4 The first four resonant frequencies, or harmonics, in a stretched string fixed at both 
ends. The ends are fixed so they will always be nodal points.
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Using the wave equation v = f λ gives the relationship between frequency, 
velocity and string length.

For the first harmonic, or fundamental frequency:

v = f λ and so f = v
λ  = v

2l

For the second harmonic:

f = vλ = v
l

For the third harmonic:

f = vλ = 3v
2l

And so in general:

f = nv
2l

where n is the number of the harmonic 

 f is the frequency of the wave (Hz)

 v is the velocity of the wave (m s–1)

 l is the length of the string (m)

For a string fixed at one end and free at the other, the standing waves that form 
are shown in Figure 8.4.5.
�rst harmonic (fundamental frequency)

third harmonic (�rst overtone)

�fth harmonic (second overtone)

N A

N
N

A

N A
N

A
N

A

A

f5 = = 5f1

λ5 =

f3 = = 3f1

λ3 =

f1 =

λ1 = 4l

ratio of frequencies f1 : f3 : f5  =  1 : 3 : 5

3v
4l

5v
4l

4l
3

4l
5

v
4l

FIGURE 8.4.5 The lower harmonics for a string that is fixed at one end (the left-hand side of the 
diagram) and free to move at the other (the right-hand side of the diagram). Only odd-numbered 
harmonics are possible, since only these satisfy the condition of having a node at the fixed end and 
an antinode at the free end.

A node will always form at the fixed end (the left-hand side of Figure 8.4.5) and 
an antinode will always form at the free end (the right-hand side of Figure 8.4.5) 
of the string. The first harmonic, or fundamental frequency, will have a wavelength 
four times the length of the string:

λ = 4 × l

The next simplest harmonic that can form will have a wavelength: 

λ = 4 × l
3

The next harmonic that can form will have a wavelength: 

λ = 4 × l
5
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In general:

λ = 4l
n

where λ is the wavelength (m)

 l is the length of the string (m)

 n is the number of the harmonic, odd-number integers only (i.e. 1, 3, 5…)

And in general, for frequency in terms of velocity:

f = nv
4l

where n is the number of the harmonic (i.e. 1, 3, 5…)

Notice that only odd-numbered harmonics will form since the conditions 
necessary for a standing wave to form are only met under the circumstances where 
there is an antinode at the free end and a node at the fixed end. The ratio of the 
wavelengths of the harmonics will be 1:3:5… That means the wavelength of the 
third harmonic is 1

3 the length of the fundamental frequency (the first harmonic), 
the fifth harmonic is 15 the length of the fundamental frequency, and so on.

Even numbered harmonics (i.e. 2, 4, 6…) will not form. The equations 
introduced above can be modified to incorporate this. The modified formula is:

λ = 4l
(2n – 1)

where λ is the wavelength in metres (m)

 l is the length of the string in metres (m)

 n is an integer (i.e. 1, 2, 3, 4...)

Note that for this equation, n is defined slightly differently than that for strings 
fixed at both ends. For this equation, n is the next harmonic in the sequence, 
not the harmonic number. 

While it won’t be considered in this unit, it should also be noted that the resonant 
frequencies of a string correspond to a particular tension and mass per unit length. 
Tightening or loosening the string will change the wavelengths and resonant 
frequencies for that string (i.e. the instrument will need tuning by adjusting the 
tension of the string). Heavier strings of a particular length will have different 
resonant frequencies than lighter strings of the same length and tension.

Worked example 8.4.1

FUNDAMENTAL FREQUENCY 

A violin string, fixed at both ends, has a length of 22 cm. It is vibrating at its 
fundamental mode of vibration at a frequency of 880 Hz.

a  What is the wavelength of the fundamental frequency?

Thinking Working 

Identify the length of the string (l ) in 
metres and the harmonic number (n).

l  = 22 cm = 0.22 m

n = 1

Recall that for any frequency, λ = 
2l
n . 

Substitute the values from the 
question and solve for λ.

λ = 
2l
n

= 
2 × 0.22

1

= 0.44 m

PHYSICSFILE

Surface waves 
Seismic surface waves travel along the 
boundary between materials, such as 
the Earth’s crust and upper mantle. 
One type of surface wave is called the 
Rayleigh wave, or ground roll. They 
are surface waves that travel as ripples 
with a motion like that of waves on the 
surface of water, although the restoring 
force is elastic rather than gravitational 
as it is for water waves. A phenomenon 
known as free oscillation of the Earth is 
the result of the superposition between 
two such surface waves travelling in 
opposite directions creating a surface 
standing wave.

The first observations of free 
oscillations of the Earth were made 
during the 1960 Chile earthquake. 
Since then thousands of harmonics 
have been identified.
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b  What is the wavelength of the second harmonic?

Thinking Working

Identify the length of the string (l ) in 
metres and the harmonic number (n).

l = 22 cm = 0.22 m

n = 2

Recall that for any frequency λ = 
2l
n . 

Substitute the values from the 
question and solve for λ.

λ = 
2l
n

= 
2 × 0.22

2

= 0.22 m

Worked example: Try yourself 8.4.1

FUNDAMENTAL FREQUENCY

A standing wave in a string is found to have a wavelength of 0.50 m for the 
fundamental frequency of vibration. Assume that the tension of the string is 
not changed and that the string is fixed at both ends. 

a  What is the length of the string?

b  What is the wavelength of the third harmonic?

PHYSICS IN ACTION

Wind instruments, air columns and other standing waves 
Longitudinal stationary waves are also possible in air columns. These create the sounds associated with wind 
instruments. Blowing over the hole of a flute (see Figure 8.4.6) or the reed of a saxophone produces vibrations that 
correspond to a range of frequencies that create sound waves in the tube.

The compressions and 
rarefactions of the sound 
waves, confined within the 
tube, reflect from both open 
and closed ends. This creates 
the right conditions for 
resonance and the formation 
of standing waves. The length 
of the pipe will determine the 
frequency of the sounds that 
will resonate.

The open end of a pipe 
corresponds to the fixed end 
of a string in that the reflected 
wave is fully inverted (i.e. it 
undergoes a 180° change of 
phase). At a closed end there 
is no change of phase. The 
reflected wave is in phase 
with the original wave.

FIGURE 8.4.6 Blowing over the mouthpiece of a flute and controlling the length of the flute with the 
keys enables a particular note to be produced. 

While the discussion in this section has been of two-dimensional standing waves, 
standing waves may also form in three dimensions, such as in a section of Earth’s 
crust. Standing waves will form as a result of resonance in any wave form.
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8.4 Review
SUMMARY

• Standing or stationary waves occur as a result of 
resonance at the natural frequency of vibration. 

• Points on a standing wave that remain still are 
called nodes.

• Points of maximum amplitude on a standing wave 
are called antinodes.

• The standing wave frequencies are referred to as 
harmonics. The simplest mode is referred to as 
the fundamental frequency.

• Within a string fixed at both ends, the wavelength 
of the standing waves corresponding to the 
various harmonics is: 

λ = 
2l
n

and the frequency is:

f = 
nv
2l

All harmonics may be present.

• Within a string fixed at one end, the wavelength of 
the standing waves corresponding to the various 
harmonics is: 

λ = 
4l
n

and the frequency is:

f = 
nv
4l

Only odd numbered harmonics may be present.

KEY QUESTIONS

1  A transverse standing wave is produced using a rope. 
Is the standing wave actually standing still? Explain 
your answer.

2  Describe how superposition and interference are 
related to the formation of standing waves in a 
stretched slinky spring.

3  What is the wavelength of the fundamental mode of 
a standing wave on a string 0.4 m long and fixed at 
both ends?

4  Calculate the length of a string fixed at both ends when 
the wavelength of the fourth harmonic is 0.75 m.

5  A standing wave is produced in a rope fixed at 
both ends by vibrating the rope with four times 
the frequency that produces the fundamental or 
first harmonic. How much larger or smaller is the 
wavelength of this standing wave compared to that 
of the fundamental or first harmonic?

6  A standing wave pattern in a string is shown over a 
distance of 10 m.

D
is

p
la

ce
m

en
t

Distance (m)

10

What is the length of the rope that would generate 
the first harmonic if a standing wave of the same 
wavelength shown in the diagram above was produced?

7  The fundamental frequency of a violin string is 350 Hz 
and the velocity of the waves along it is 387 m s–1. 
What is the wavelength of the new fundamental 
when a finger is pressed to shorten the string to 23 its 
original length?

The following information relates to questions 8–10.
A metal string (at constant tension) of length 50 cm 
is plucked, creating a wave pulse. The speed of the 
transverse wave created is 300 m s–1. Both ends of the 
string are fixed. 

8  Calculate the frequency of the fundamental frequency.

9  Calculate the frequency of the second harmonic.

10  Calculate the frequency of the third harmonic.



297CHAPTER 8   |   PROPERTIES OF  MECHANICAL WAVES 

1  Imagine that you watch from above as a stone is 
dropped into water. Describe the movement of the 
particles on the surface of the water.

2  Describe the similarities and differences between 
transverse and longitudinal waves.

3  At the moment in time shown on the graph, in what 
directions are the particles U and V moving?
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)

V

U

Distance (m)

4  The source of waves in a ripple tank vibrates at a 
frequency of 10.0 Hz. If the wave crests formed 
are 30.0 mm apart, what is the speed of the waves 
(in m s–1) in the tank?

5  A submarine’s sonar sends out a signal with a 
frequency of 32 kHz. If the wave travels at 1400 m s–1 
in seawater, what is the wavelength of the signal?

6  Assuming the speed of sound in water is 1500 m s–1, 
what would be the wavelength of a sound of frequency 
300 Hz?

7 The same sound wave from Question 6 is now 
produced in air where the speed of sound is 
340 m s–1. What is the wavelength now?

8  Two vehicles are driving in the same direction down a 
road at 60 km h–1. The driver in the lead car sounds 
the horn, which is set at a frequency of 256 Hz. 
At what apparent frequency will the driver in the 
following car hear the sound?

9  A motor bike is able to produce a long, steady sound. 
You are unable to see the motor bike, but can hear the 
sound from it rise in frequency and then fall. Which 
one or more of the following options best explains the 
motion of the motor bike relative to you?
A  The bike travelled towards you.
B  The bike travelled away from you.
C  The bike travelled past you.
D  The bike travelled towards you, then away from you.

10  If you decreased the wavelength of the sound made 
by a loudspeaker, what effect would this have on the 
frequency and the velocity of the sound waves?

11  A pulse is sent along a rope that is fixed at one end. 
What property of the pulse changes when it is 
reflected at the fixed end of the rope?

12  When sunlight shines through a window in a house, 
its energy can be transmitted, reflected or absorbed.
Which of these processes is responsible for the 
fact that:
a  the interior of the house is illuminated
b when light falls on a window, you can see some 

of it from outside the house 
c the glass gets warm? 

13  The following graph shows three wave forms. Two 
of the wave forms superimpose to form the third 
wave form:

–2

–1

2

1

1 2 3 4 5 6

Which wave is the result of the superposition of the 
other two?

Chapter review

KEY TERMS

absorb
amplitude
angle of incidence
angle of reflection
antinode
compression 
crest
diffuse
Doppler effect
frequency
fundamental
harmonic

longitudinal
mechanical wave
medium
node
normal
overtone
period
phase
plane wave
pulse
rarefaction
ray

reflect
resonance
sinusoidal
standing wave
superposition
transmit
transverse
trough
wave front
wavelength
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Chapter review continued

14  Using ideas about the movement of particles in air, 
explain how you know sound waves only carry energy 
and not matter from one place to another.

15  Describe the concept of resonance and why it would 
need to be considered when designing structures like 
buildings or bridges.

The following information relates to questions 16–18.
A signal generator is attached to a string vibrator 
producing vibrations down a string fixed at one end and 
free to move at the other. The string is kept at constant 
tension. The effective length of the string is 85 cm. The 
speed of the vibrations along the string is 340 m s–1.

16  What is the lowest frequency of vibration that will 
produce a standing wave in the string?

17  What is the frequency of vibration of the third 
harmonic?

18  An earthquake causes a footbridge to oscillate up and 
down with a fundamental frequency once every 4.0 s. 
The motion of the footbridge can be considered to 
be like that of a string fixed at both ends. What is the 
frequency of the second harmonic for this footbridge? 

19  The velocity of waves in a particular string at constant 
tension is 78 m s–1. The string is fixed at both ends. 
If a particular frequency of a standing wave formed in 
the string is 428 Hz, how far apart would two adjacent 
antinodes be?

20  Reflection is possible from which of the following 
shaped surfaces if each surface is reflective? (More 
than one answer may be correct.)
A flat surface
B concave (curved in) surface
C uneven surface
D convex (curved out) surface

21  In a medium where a mechanical wave can be 
propagated, when is the Doppler effect observable?



CHAPTER

Discovering the nature of light has been one of the scientific community’s greatest 
challenges. Over the course of history, light has been compared to a geometric ray, a 
stream of particles or even a series of waves. However, these relatively simple models 
have been found to be limited in their ability to explain all of the properties of light.

The search for a more adequate model has pushed scientists to develop new types 
of equipment and more-sophisticated experiments. Over time, it has also led to a 
reshaping of the understanding of the nature of matter and energy.

This chapter will follow the historical changes in the understanding of the nature of light, 
and will give a general overview of the properties of waves, Young’s experiment and the 
other evidence that caused 19th-century scientists to develop a wave model for light. 

Key knowledge 
By the end of this chapter you will have studied the physics of the nature of light, and 
will be able to:

• describe light as an electromagnetic wave which is produced by the acceleration of 
charges, which in turn produces changing electric fields and associated changing 
magnetic fields

• identify that all electromagnetic waves travel at the same speed, c, in a vacuum 
• compare the wavelength and frequencies of different regions of the electromagnetic 

spectrum, including radio, microwave, infrared, visible, ultraviolet, X-ray and gamma, 
and identify the distinct uses each has in society 

• explain polarisation of visible light and its relation to a transverse wave model 
• investigate and analyse theoretically and practically the behaviour of waves including:

 - refraction using Snell’s law: n1 sin θ1 = n2 sin θ2 and n1v1 = n2v2 
 - total internal reflection and critical angle including applications: n1 sin θc = n2 sin 90°

• investigate and explain theoretically and practically colour dispersion in prisms and 
lenses with reference to refraction of the components of white light as they pass from 
one medium to another 

• explain the results of Young’s double-slit experiment with reference to: 
 - evidence for the wave-like nature of light 
 - constructive and destructive interference of coherent waves in terms of path 
differences: nλ and (n – 1

2)λ respectively 
 - effect of wavelength, distance of screen and slit separation on interference patterns: 
∆x = λL

d
 - investigate and analyse theoretically and practically constructive and destructive 
interference from two sources with reference to coherent waves and path 
difference: nλ and (n – 1

2)λ respectively
 - investigate and explain theoretically and practically diffraction as the directional 
spread of various frequencies with reference to different gap width or obstacle size, 
including the qualitative effect of changing the λ

w  ratio.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

The nature of light 
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9.1 Light as a wave 
One of the great scientific achievements of the 19th century was the development 
of a comprehensive wave model for light. This model was able to explain a large 
number of wave properties including reflection, refraction, dispersion (as shown in 
Figure 9.1.1), diffraction, interference and polarisation. This also led to a deeper 
understanding of phenomena such as heat and radio transmissions.

FIGURE 9.1.1 The wave model of light can explain the phenomenon of the dispersion of light into its 
component colours.

WAVE MODEL VERSUS PARTICLE MODEL 
In the late 17th century a debate raged among scientists about the nature of light. 

The famous English scientist Sir Isaac Newton explained light in terms of 
particles or ‘corpuscles’, with each different colour of the spectrum representing 
a different type of particle. Scientists Robert Hooke (from England, and who you 
might recall from Chapter 7 ‘The relationship between force, energy and mass’) and 
Christiaan Huygens (from Holland) proposed an alternative model that described 
light as a type of wave, similar to the water waves observed in the ocean.

A key point of difference between the two theories was that Newton’s 
‘corpuscular’ theory suggested that light would speed up as it travelled through 
a solid material such as glass. In comparison, the wave theory predicted that light 
would be slower in glass than in air.

Unfortunately, at that time it was impossible to measure the speed of light 
accurately, so the question could not be resolved scientifically. Newton’s esteemed 
reputation meant that for many years his corpuscular theory was considered correct. 

It was not until the early 19th century that experiments first convincingly 
demonstrated the wave properties of light.

Today, a modern understanding of light draws on aspects of both theories and 
is, perhaps, more complex than either Newton, Hooke or Huygens could ever have 
imagined. 

HUYGENS’ PRINCIPLE 
The theoretical basis for wave propagation in two dimensions was first explained 
by the Dutch scientist Christiaan Huygens. Huygens’ principle states that each 
point on a wavefront can be considered as a source of secondary wavelets (i.e. 
small waves).

Consider the plane wave shown in Figure 9.1.2. Each point on the initial 
wavefront can be treated as if it is a point source producing circular waves, some of 
which are shown in green. After one period, these circular waves will have advanced 
by a distance equal to one wavelength. Huygens proved mathematically that when 
the amplitudes of each of the individual circular waves are added, the result is 
another plane wave as shown by the new wavefront.

new wavefrontinitial wavefront

rays giving
direction of
propagation

FIGURE 9.1.2 Each point on the wavefront of a 
plane wave can be considered as a source of 
secondary wavelets. These wavelets combine 
to produce a new plane wavefront.
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This process is repeated at the new wavefront, causing the wave to propagate in 
the direction shown.

Circular waves are propagated in a similar way, as shown in Figure 9.1.3.

Worked example 9.1.1

APPLYING HUYGENS’ PRINCIPLE 

On the plane wave shown moving from left to right below, sketch some of the 
secondary wavelets on the wavefront and draw the appearance of the new wave 
formed after one period.

Thinking Working

Sketch a number of secondary 
wavelets on the advancing wavefront.

Sketch the new wavefront.

Worked example: Try yourself 9.1.1

APPLYING HUYGENS’ PRINCIPLE 

On the circular waves shown below, sketch some of the secondary wavelets on 
the outer wavefront and draw the appearance of the new wave formed after 
one period.

A wave model can be used to explain a number of important properties of light 
including:
• refraction
• dispersion
• diffraction
• polarisation.

ray

ray

ray

new 
wavefront

initial 
wavefront

source

FIGURE 9.1.3 Each point on the wavefront of a 
circular wave can be considered as a source of 
secondary wavelets. These wavelets combine to 
produce a new circular wavefront.
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REFRACTION 
Refraction is a change in the direction of light caused by changes in its speed. 
Changes in the speed of light occur when light passes from one medium (substance) 
into another. In Figure 9.1.4, the light changes direction as it leaves the glass prism 
and re-enters the air.

FIGURE 9.1.4 Light refracts as it moves from one medium (i.e. the semicircular glass prism) into 
another (i.e. air) causing a change in direction.

Consider Figure 9.1.5, where light waves are moving from an incident medium 
where they have high speed, v1 , into a transmitting medium where they have a 
lower speed, v2 . At the same time that the wave travels a distance v1∆t (B–D) in 
the incident medium, it travels a shorter distance v2∆t (A–C) in the transmitting 
medium. In order to do this, the wavefronts must change direction or ‘refract’ 
as shown.

Light waves behave in a similar way when they move from a medium like air into 
water. The direction of the refraction depends on whether the waves speed up or 
slow down when they move into the new medium. In Figure 9.1.6, the light waves 
slow down as they move from air into glass so the direction of propagation of the 
wave is refracted towards the normal. The angle of incidence, i, which is defined as 
the angle between the direction of propagation and the normal, is greater than the 
angle of refraction, r.

λ1

v1 v2

λ2

i

rnormal to the surface

original 
direction 
of light

light waves

glassairv1 > v2
λ1 > λ2
f1 = f2
i > r

FIGURE 9.1.6 Light waves refract towards the normal when they slow down.

incident medium

transmitting medium

B

DA

C

v1Δt

v2 Δt
�r

θi

FIGURE 9.1.5 Wave refraction occurs because 
the distance A–C travelled by the wave in 
the transmitting medium is shorter than the 
distance B–D that it travels at the same time 
in the incident medium.
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Conversely, when a light wave moves from glass where it has low speed into 
air where it travels more quickly, it is refracted away from the normal, as shown 
in Figure 9.1.7. In other words, the angle of incidence, i, is less than the angle of 
refraction, r.

λ2

λ1

v1 < v2

λ1 < λ2

f1 = f2

i < r

v2v1

i
rnormal to the surface

direction of 
refracted light

original
direction
of light

lightwaves

glass air

FIGURE 9.1.7 Light waves refract away from the normal when they speed up.

Note that when a wave changes its speed, its wavelength also changes 
correspondingly, but its frequency does not change as there are still the same 
number of waves; waves cannot be gained or lost.

Refractive index 
The amount of refraction that occurs depends on how much the speed of light 
changes as light moves from one medium to another—when light slows down 
greatly, it will undergo significant refraction.

The speed of light in a number of different materials is shown in Table 9.1.1.

Material Speed of light (× 108 m s–1)

vacuum 3.00

air 3.00

ice 2.29

water 2.25

quartz 2.05

crown glass 1.97

flint glass 1.85

diamond 1.24

TABLE 9.1.1 The speed of light in various materials correct to three significant figures.

Scientists find it convenient to describe the change in speed of a wave using 
a property called the refractive index. The refractive index of a material, n, is 
defined as the ratio of the speed of light in a vacuum, c, to the speed of light in the 
medium, v:

n = c
v

Note that n is dimensionless, i.e. it has no units, it is just a number.
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The refractive index for various materials is given in Table 9.1.2.

Material Refractive index, n

vacuum 1.00

air 1.00

ice 1.31

water 1.33

quartz 1.46

crown glass 1.52

flint glass 1.62

diamond 2.42

TABLE 9.1.2 Refractive indices of various materials.

This quantity is also sometimes referred to as the ‘absolute’ refractive index of 
the material, to distinguish it from the ‘relative’ refractive index that might be used 
when a light ray moves from one medium to another, e.g. from water to glass.

Worked example 9.1.2

CALCULATING REFRACTIVE INDEX 

The speed of light in water is 2.25 × 108 m s–1. Given that the speed of light in 
a vacuum is 3.00 × 108 m s–1, calculate the refractive index of water.

Thinking Working

Recall the definition of refractive index. n = 
c
v

Substitute the appropriate values into 
the formula and solve.

n = 
3.00 × 108

2.25 × 108 = 
3.00
2.25 = 1.33

Worked example: Try yourself 9.1.2 

CALCULATING REFRACTIVE INDEX 

The speed of light in crown glass (a type of glass used in optics) is  
1.97 × 108 m s–1. Given that the speed of light in a vacuum is 3.00 × 108 m s–1, 
calculate the refractive index of crown glass. 

By definition, the refractive index of a vacuum is exactly 1, since n = c
c  = 1. 

Similarly, the refractive index of air is effectively equal to 1 because the speed of 
light in air is practically the same as its speed in a vacuum.

The definition of refractive index allows you to determine changes in the speed 
of light as it moves from one medium to another.

Since n = c
v , therefore c = nv. This applies for any material, therefore:

n1v1 = n2v2

where n1 is the refractive index of the first material

 v1 is the speed of light in the first material 

 n2 is the refractive index of the second material 

 v2 is the speed of light in the second material 
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Worked example 9.1.3

SPEED OF LIGHT CHANGES 

A ray of light travels from crown glass (n = 1.52), where it has a speed of  
1.97 × 108 m s–1 into water (n = 1.33). Calculate the speed of light in water.

Thinking Working

Recall the formula. n1v1 = n2v2

Substitute the appropriate values into 
the formula and solve.

1.52 × 1.97 × 108 = 1.33 × v2

1.52 × 1.97 × 108

1.33  = v2

v2 = 2.25 × 108 m s–1

Worked example: Try yourself 9.1.3

SPEED OF LIGHT CHANGES 

A ray of light travels from water (n = 1.33), where it has a speed of  
2.25 × 108 m s–1, into glass (n = 1.85). Calculate the speed of light in glass. 

Snell’s law 
Refractive indexes can also be used to determine how much a light ray will 
refract as it moves from one medium to another. Consider the situation shown in 
Figure 9.1.8, where light refracts as it moves from air into water. 

In 1621, the Dutch mathematician Willebrord Snell described the geometry of 
this situation with a formula now known as Snell’s law:

n1 sin θ1 = n2 sin θ2

Worked example 9.1.4

USING SNELL’S LAW 

A ray of light in air strikes the surface of a pool of water (n = 1.33) at angle of 
30° to the normal. Calculate the angle of refraction of the light in water. 

Thinking Working

Recall Snell’s law. n1 sin θ1 = n2 sin θ2

Recall the refractive index of air. n1 = 1.00

Substitute the appropriate values into 
the formula to find a value for sin θ2.

1.00 × sin 30° = 1.33 × sin θ2

sin θ2 = 
1.00 × sin 30°

1.33  = 0.3759

Calculate the angle of refraction. θ2 = sin–1 0.3759 = 22.1°

Worked example: Try yourself 9.1.4

USING SNELL’S LAW 

A ray of light in air strikes a piece of flint glass (n = 1.62) at angle of incidence 
of 50° to the normal. Calculate the angle of refraction of the light in the glass. 

air

normal

water

n2

n1

θ2

θ1

FIGURE 9.1.8 Light refracts as it moves from air 
into water.
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Total internal reflection 
When light passes from a medium with low refractive index to one with higher 
refractive index, it is refracted towards the normal. Conversely, as shown in 
Figure 9.1.9, when light passes from a medium with a high refractive index to one with 
a lower refractive index, it is refracted away from the normal (see Figure 9.1.9(a)). 
In this case, as the angle of incidence increases, the angle of refraction gets closer 
to 90° (see Figure 9.1.9(b)). Eventually, at an angle of incidence known as the 
critical angle, the angle of refraction becomes 90° and the light is refracted along 
the interface between the two mediums (Figure 9.1.9(c)). If the angle of incidence 
is increased above this value, the light ray does not undergo refraction; instead it is 
reflected back into the original medium, as if it was striking a perfect mirror (see 
Figure 9.1.9(d)). This phenomenon is known as total internal reflection and is 
seen in action in Figure 9.1.10.

Since the angle of refraction for the critical angle is 90°, the critical angle is 
defined by the formula: 

n1 sin θc = n2 sin 90°

Since sin 90° = 1, then n1 sin θc = n2 , or sin θc = n2
n1

.

FIGURE 9.1.10 Optical fibres transmit light using total internal reflection.

Worked example 9.1.5

CALCULATING CRITICAL ANGLE 

Calculate the critical angle for light passing from water into air.

Thinking Working

Recall the equation for critical angle. 
sin θc = 

n2

n1

Substitute the refractive indices of 
water and air into the formula. (Unless 
otherwise stated, assume that the 
second medium is air with n2 = 1.)

sin θc = 
1.00
1.33 = 0.7519

Solve for θc . θc = sin–1 0.7519 = 48.8°

air

water

air

water

air

water

air

water

normal

normal

normal

normal

n2

n1

n2

n1

n2

n1

n2

n1

θ 1

θ 2

θ 1

θ 2

90°

θ 1 = θ c

θ 2 = θ 1θ 1 > θ c

(a)

(b)

(c)

(d)

FIGURE 9.1.9 Light refracts as it moves from 
air into water as shown in diagrams (a) and (b). 
In diagram (d) the light is undergoing total 
internal reflection.
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Worked example: Try yourself 9.1.5

CALCULATING CRITICAL ANGLE 

Calculate the critical angle for light passing from diamond into air.

DISPERSION 
When white light passes through a triangular glass prism (as shown in Figure 9.1.12) 
it undergoes dispersion. This is a result of refraction. 

FIGURE 9.1.12 The wave model of light can explain the phenomenon of dispersion of light; the 
splitting of white light into its component colours.

According to the wave model of light, each different colour represents a wave of 
a different wavelength (see Table 9.1.3). White light is a mixture of light waves with 
many different wavelengths.

Colour Wavelength (nm)

red 780–622

orange 622–597

yellow 597–577

green 577–492

blue 492–455

violet 455–390

TABLE 9.1.3 Approximate wavelength ranges for the colours in the visible spectrum. 1 nm = 10–9 m

When white light passes from one material to another and the light waves slow 
down, the wavelength shortens as the waves bunch up and the wavelengths of each 
colour change by different amounts. This means that each colour travels at a slightly 
different speed in the new medium and therefore each colour is refracted by a 
slightly different amount. 

Longer wavelengths, such as those in red light, travel the fastest in the new 
material so they are refracted the least. Shorter wavelengths, such as those in violet 
light, are slower so they are refracted the most.

So in effect, each colour of light has a different refractive index in a material.

PHYSICSFILE

Refractive index of diamonds
Since diamond has a very high 
refractive index, it has a small critical 
angle. This means that a light ray that 
enters a diamond will often bounce 
around inside the diamond many times 
before leaving the diamond. A jeweller 
can cut a diamond to take advantage of 
this property; this causes the diamond 
to ‘sparkle’ (see Figure 9.1.11) as it 
appears to reflect more light than is 
falling on it.

FIGURE 9.1.11 The refractive properties of 
diamonds mean they appear to sparkle.
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PHYSICSFILE

Where does colour come from? 
In the 17th century, many people believed that white light was ‘stained’ by its 
interaction with earthly materials. Newton very neatly disproved this with a simple 
experiment using two prisms (as seen in Figure 9.1.13)—one to split light into its 
component colours and the other to turn it back into white light. This showed that the 
various colours were intrinsic components of white light since, if colour was a result 
of ‘staining’, the second prism should have added more colour rather than less.

FIGURE 9.1.13 Newton’s double prism experiment showed that white light is made up of its 
component colours.

Newton was the first to identify the colours of the spectrum—red, orange, yellow, 
green, blue, indigo and violet. He chose seven colours by inventing the colour ‘indigo’ 
because seven was considered a sacred number.

Colour dispersion in lenses 
Since each colour of light effectively has a different refractive index in glass, 
light passing through a glass lens always undergoes some dispersion. This means 
that coloured images formed by optical instruments such as microscopes and 
telescopes can suffer from a type of distortion known as chromatic aberration  
(see Figure 9.1.14). 

FIGURE 9.1.14 Chromatic aberration causes the coloured fringes that can be seen in the circled 
regions in this image.
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Scientists have developed a number of techniques to deal with this problem, 
including:
• using lenses with very long focal lengths
• using ‘achromatic’ lenses. These are compound lenses which are made of 

different types of glass with different refractive properties
• taking separate images using coloured filters and then combining these images 

to form a single multi-coloured image. 

DIFFRACTION 
When a plane (straight) wave passes through a narrow opening, it bends. Waves 
will  also bend as they travel around obstacles (see Figure 9.1.15). This kind of 
‘bending’ phenomenon is known as diffraction. 

Diffraction is significant when the size of the opening or obstacle is similar to or 
smaller than the wavelength of the wave. This means that the diffraction of light is 
difficult to observe because the wavelength of light is very small. 

Light waves range in wavelength from around 700 nm for red light to about 
400 nm for violet light. 1 nm is equal to 10–9 m or a one millionth of a millimetre. 
This means that light waves are all less than one thousandth of a millimetre in length.

Since there are not many situations where light encounters naturally occurring 
structures of this size, diffraction of light waves is not easily observed. 

Usually diffraction occurs with artificially constructed materials like CDs or 
commercially produced diffraction gratings (see Figure 9.1.16).

Diffraction and slit width 
In the diffraction of waves, if the wavelength is much smaller than the gap or 
obstacle, the degree of diffraction is less. For example, Figure 9.1.17 shows the 
diffraction of water waves in a ripple tank. In Figure 9.1.17(a), the gap is similar in 
size to the wavelength, so there is significant diffraction and the waves emerge as 
circular waves. In Figure 9.1.17(b), the gap is much bigger than the wavelength, so 
diffraction only occurs at the edges. 

(a)

 

(b)

FIGURE 9.1.17 The diffraction of water waves in a ripple tank. (a) Significant diffraction occurs when 
the wavelength approximates the slit width, i.e. λ ≈ w. (b) As the gap increases, diffraction becomes 
less obvious, since λ << w, but is still present.

Wavelengths comparable to or larger than the diameter of the obstacle or gap 
will produce significant diffraction. This can be expressed as the ratio λ

w
 ≥ 1, where 

λ is the wavelength of the wave and w is the width of the gap.

Diffraction and imaging 
Diffraction can be a problem for scientists using microscopes and telescopes 
because it can result in blurred images. For example, a significant problem is that 
the light from two tiny objects or two distant objects very close together can be 
diffracted so much that the two objects appear as one blurred object. When this 
happens, we say that the objects are unresolved. Essentially, the ratio λw dictates how 
small an object can be clearly imaged by a particular instrument. 

FIGURE 9.1.15 Water waves will bend around an 
obstacle. Sound waves diffract as well, allowing 
you to hear around corners.

FIGURE 9.1.16 The way information is printed 
on a CD or DVD means that it creates structures 
small enough to cause light to diffract.
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This means that, as a general rule, optical microscopes cannot create images 
of objects that are smaller than the wavelength of the light they use; otherwise, 
diffraction effects are too significant. 

Diffraction also places a theoretical limit on the resolution of optical telescopes. 
However, atmospheric distortion usually has a much larger effect on telescope 
images than diffraction. The Hubble Space Telescope, which sits above Earth’s 
atmosphere, is not affected by atmospheric distortion. It can resolve images right 
down to its diffraction limit, i.e. where the separation of the stars is approximately 
equal to the wavelength of the light. 

Diffraction gratings 
As you have already seen, light diffracts as it passes through a very small gap. As 
the light passes through the gap, some of the wavelets making up the wavefront will 
diffract at the barriers that form the edges of the gap and some will pass through 
the centre of the gap. As a result of this the light waves that emerge from the gap 
will interact. In some places the interactions will be constructive and in others the 
interactions will be destructive. When these light waves are made to shine on a 
screen, the areas of constructive interference will appear as bright bands and 
areas of destructive interference will appear as dark bands. The pattern of dark 
and light bands that is seen when light passes through a single small gap is called a 
diffraction pattern.

As stated earlier, the extent of diffraction of light waves is proportional to the 
ratio λ

w. This ratio also describes the spacing of dark and light bands in a diffraction 
pattern, and therefore the width of the overall diffraction pattern. According to this 
relationship, if the wavelength is held constant and the gap made smaller, greater 
diffraction is seen. If different wavelengths enter the same gap, those with a smaller 
wavelength will undergo less diffraction than those with a longer wavelength. 
This is shown in the Figure 9.1.18. Note that Figure 9.1.18 shows intensity. High 
intensity is where bright bands will appear on a screen; zero intensity corresponds 
to dark bands.

Although some diffraction patterns can be observed using natural materials, 
in practice, much clearer diffraction patterns can be generated by passing light 
through a diffraction grating. A diffraction grating is a piece of material that contains 
a large number of very closely spaced parallel gaps or slits. 

A diffraction grating can be thought of as a series of parallel slits all placed side 
by side. The diffraction pattern from one slit is superimposed on the pattern from 
the adjacent slit, producing a strong, clear image on the screen.

Diffraction experiments usually use only monochromatic light (i.e. light of 
only one colour). When white light, which contains a number of different colours, 
shines through a diffraction grating, each different colour is diffracted by a different 
amount and forms its own set of coloured fringes. This results in the light being 
dispersed into its component colours, as seen in Figure 9.1.19. 

FIGURE 9.1.19 A diffraction grating disperses white light into a series of coloured spectra.

blue light

red light

Intensity

Intensity

narrower fringe spacing

(a)

(b)

FIGURE 9.1.18 Red light (a) is diffracted to a 
greater extent than blue light (b). Red’s longer 
wavelength results in more-widely spaced 
fringes and a wider overall pattern.
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POLARISATION 
One of the most convincing pieces of evidence for the wave nature of light is the 
phenomenon of polarisation. Polarisation occurs when a transverse wave (which 
you will recall from the previous chapter ‘Properties of mechanical waves’) is only 
allowed to vibrate in one direction. For example, the light wave in Figure 9.1.20 
is vertically polarised—the wave oscillations occur in the vertical plane only. This 
also means this wave is unaffected by a polarising filter that is oriented in the 
vertical plane.

�lter

FIGURE 9.1.20 A vertically polarised wave can pass through a vertically oriented polarising filter.

The wave in the Figure 9.1.21 is horizontally polarised. It is completely blocked 
by the vertical polarising filter.

wave is blocked

�lter

FIGURE 9.1.21 A horizontally polarised wave cannot pass through a vertically oriented polarising filter.

In Figure 9.1.22, the incoming wave is polarised at 45° to the horizontal and 
vertical planes. The horizontal component of this wave is blocked by the vertical 
filter, so the ongoing wave is vertically polarised and has a smaller amplitude than 
the original wave.

amplitude
is reduced

�lter

FIGURE 9.1.22 A diagonally polarised wave has its horizontal component suppressed by the vertically 
oriented polarising filter. A vertically polarised wave of reduced amplitude passes through it.
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Light produced by sources such as a light globe or the Sun is unpolarised, which 
means that it can be thought of as a collection of waves, each with a different plane 
of polarisation, as shown in Figure 9.1.23.

direction
of travel

FIGURE 9.1.23 Unpolarised light consists of a collection of waves that are each polarised in a 
different direction.

Certain materials can act as polarising filters for light. These only transmit 
the waves or components of waves that are polarised in a particular direction and 
absorb the rest. Polarising sunglasses work by absorbing the light polarised in a 
particular direction, thus reducing glare. Photographers also use polarised filters 
to reduce the glare in photographs or achieve specific effects (see Figure 9.1.24).

FIGURE 9.1.24 These are photos taken of the same tree, one without a polarising filter (left) and one 
with a polarising filter (right).

PHYSICSFILE

Polarised sunglasses 
Light that is reflected from the surface of water or snow is partially polarised (see 
Figure 9.1.25). The polarising plane of polarised sunglasses is selected to absorb 
this reflected light. This makes polarised sunglasses particularly effective for people 
involved in outdoor activities such as boating, fishing or skiing.

FIGURE 9.1.25 The polarising filter in a pair of sunglasses is designed to block the polarised light 
reflected from the surface of the water and transmit the unpolarised light from under the water.

polarised light
re�ected from
water surface

polarising �lter

water surface

unpolarised 
light vibrating 
in all directions
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9.1 Review
SUMMARY

• A wave model explains a wide range of light-related 
phenomena, including refraction, dispersion, 
diffraction and interference.

• Refraction is the change in the direction of light 
that occurs when light moves from one medium 
to another.

• Refraction is caused by changes in the speed of 
light waves.

• The refractive index, n, of a material is given by 
the formula n = 

c
v where c is the speed of light in a 

vacuum and v is the speed of light in the material.

• When light moves from one material to another, 
the changes in speed can be calculated using: 

n1v1 = n2v2

• The amount of refraction of a ray of light can be 
calculated using Snell’s law: n1 sin θ1 = n2 sin θ2

• Total internal reflection occurs when the angle of 
refraction exceeds a right angle. 

• The critical angle of a material can be calculated 
using n1 sin θc = n2 sin 90° or sin θc = 

n2

n1

• Different colours of light have different 
wavelengths. 

• Dispersion occurs because different colours of 
light travel at different speeds.

• When a plane (straight) wave passes through 
a narrow opening or meets a sharp object, it 
experiences diffraction.

• Significant diffraction occurs when the wavelength 
of the wave is similar to, or larger than, the size 
of the diffracting object.

• A transverse wave model is required to explain 
polarisation.

KEY QUESTIONS

1  Name the model of light each of the following 
scientists supported.
a  Hooke
b  Huygens
c  Newton

2  In the 18th century, why did most scientists support 
Newton’s particle model?
A  Newton had better evidence to support his theory.
B  The speed of light in glass had been shown to be 

faster than in air.
C  Newton had a better reputation as a scientist than 

either Hooke or Huygens.
D  Newton was English and Hooke and Huygens were 

from other parts of Europe.

3  Draw the wavefront of the plane wave after one period.

wave direction

4  Choose the correct response from those given in bold 
to complete the sentences about the refractive indicies 
of types of water.
Although pure water has a refractive index of 1.33, the 
salt content of seawater means its refractive index is 
a little higher at 1.38. Therefore, the speed of light in 
seawater will be faster than/slower than/the same as 
in pure water.

5  Calculate the speed of light in seawater that has a 
refractive index of 1.38. 

6  Light travels at of 2.25 × 108 m s–1 in water and 
2.29 × 108 m s–1 in ice. If water has a refractive 
index of 1.33, use this information to calculate the 
refractive index of ice. 

7  Light travels from water (n = 1.33) into glass  
(n = 1.60). The incident angle is 44°. Calculate 
the angle of refraction.

8  For which of the following situations can total internal 
reflection occur?

Incident medium Refracting medium

a air (n = 1.00) glass (n = 1.55)

b glass (n = 1.55) air (n = 1.00)

c glass (n = 1.55) water (n = 1.33)

d glass (n = 1.55) glass (n = 1.58)

9  In order to produce significant diffraction of red light 
(wavelength of approximately 700 nm), a diffraction 
experiment would need to use an opening with a 
width of approximately:
A  1 mm
B  0.1 mm
C  0.01 mm
D  0.001 mm

10  Explain how polarisation supports a wave model 
for light.
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9.2 Interference: Further evidence 
for the wave model of light 
Thomas Young’s observation of interference patterns in light (see Figure 9.2.1) 
was a pivotal moment in the history of science. It tipped the scales in a long-
running dispute between scientists about the nature of light and paved the way for 
a series of discoveries and inventions that would fundamentally change scientists’ 
understanding of energy and matter.

FIGURE 9.2.1 Optical interference can produce spectacular patterns.

YOUNG’S DOUBLE-SLIT EXPERIMENT 
Between the 17th and 19th centuries, most scientists considered light to be a 
stream of particles. This idea was based on the ‘corpuscular’ theory proposed by 
Sir Isaac Newton.

In 1803, an English scientist called Thomas Young performed a now-famous 
experiment in which he shone monochromatic light on a screen containing two 
very tiny slits. On the far side of the double slits he placed another screen, on 
which he observed the pattern produced by the light passing through the slits (see 
Figure 9.2.2).

double slit screen

light
source

double slit screen

light
source

(a) (b)

FIGURE 9.2.2 The particle theory of light predicted that Young’s experiment should produce two 
bright bands (a). But his actual experiment (b) produced a series of bright and dark bands or ‘fringes’.

According to the particle theory, light should have passed directly through the 
slits to produce two bright lines or bands on the screen (see Figure 9.2.2(a)). Instead, 
Young observed a series of bright and dark bands or ‘fringes’ (see Figure 9.2.2(b)). 
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Young was able to explain this bright and dark pattern by treating light as a 
wave. He assumed that the monochromatic light was like plane waves and that, 
as they passed through the narrow slits, these plane waves were diffracted into 
coherent (in phase) circular waves as shown in Figure 9.2.3. The circular waves 
would interact causing interference. The interference pattern produced by these 
two waves would result in lines of constructive (antinodal) and destructive (nodal) 
interference that would match the bright and dark fringes respectively.

double slit

nodal line (dark)

antinodal line (bright)

antinodal line (bright)

antinodal line (bright)

nodal line (dark)

nodal line (dark)

nodal line (dark)

screen

S1

S2

plane waves 
from a distant 
light source

FIGURE 9.2.3 The interaction of two circular waves can produce a pattern of antinodal 
(constructive interference) and nodal (destructive interference) lines.

Earlier in his scientific career, Young had observed similar interference patterns 
in water waves (see Figure 9.2.4). This gave greater credibility to the wave model 
for light proposed by Christiaan Huygens and Robert Hooke many years earlier.

When Young used his data to calculate the wavelength of light, it became clear 
why no one had ever noticed the wave properties of light before—light waves are 
tiny, with typical wavelengths of less than 1 micrometre (1 μm = 0.001 mm).

Path difference 
To understand Young’s experiment more fully, you have to consider how the waves 
produced by the two slits interact with each other when they hit the screen. At a 
particular point, P, on the screen, the wave train from slit 1 (S1) will have travelled 
a different distance compared with the wave train from slit 2 (S2), i.e. the distance 
S1P Is different to S2P. The difference in the distance travelled by each wave train to 
a point P on the screen is called the path difference for the waves (pd).

The path difference to point P from wave source S1 and from wave source S2 is 
given by:

pd = |S1P – S2P|

Path difference can be measured in metres, but it is far more useful to measure 
it in wavelengths in order to determine the light intensity on the screen.

FIGURE 9.2.4 Interference patterns can be 
observed in water waves (lit here in yellow).
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As shown in Figure 9.2.5, at a point, M, at the centre of the screen, equidistant 
from each slit, each wave train will have travelled through the same distance and 
so there is no path difference (i.e. S1M = S2M). The light waves arrive in phase 
with each other. These light waves reinforce to produce an antinode. A fringe of 
bright light is seen, known as the ‘central maximum’. This phenomenon is called 
constructive interference.

Constructive interference will occur whenever the path difference between 
the two wave trains is zero or differs by a whole number of wavelengths, i.e. 
pd = 0λ, 2λ, 3λ… For example, in Figure 9.2.5, the path difference S1R – S2R is 
equal to λ.

S1

S2

R

N

M

+

+

+

=

=

=

screen

INTERFERENCE

constructive

constructive

destructive

pd = λ 

FIGURE 9.2.5 Waves meeting from each slit at R, where the path difference is λ. A bright fringe will 
be seen as the wave trains arrive at this point in phase again. 

There will be points on the screen at which the path difference is λ
2 ; for example 

point N in Figure 9.2.5. The two wave trains that meet at this point are completely 
out of phase and cancel each other to produce a nodal point. Destructive interference 
occurs at this point, and no light is seen. This creates the dark lines or fringes that 
appear in between the bright antinodal fringes. Destructive interference occurs 
when the path difference between the waves is λ

2, 3λ
2 , 5λ

2 , 7λ
2 , etc.

In summary: 

•  constructive interference of coherent waves occurs when the path 
difference pd = nλ, where n = 0, 1, 2, 3...

• destructive interference of coherent waves occurs when the path 
difference equals an odd number of half wavelengths; that is, pd = (n – 12)λ, 
where n = 1, 2, 3...

The sequence of constructive and destructive interference effects produces an 
interference pattern of regularly spaced vertical bands or fringes on the screen that 
can be represented graphically as shown in Figure 9.2.6.

Intensity

constructive
interference
(bright)

destructive
interference (dark)

Distance from 
central fringe

FIGURE 9.2.6 The double-slit interference pattern can be considered in terms of an intensity 
distribution graph. The horizontal axis represents a line drawn across the screen. The centre of the 
distribution pattern corresponds to the centre of the brightest central fringe, the central maximum.
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Calculating fringe separation for Young’s experiment 
In Young’s experiment, the distance between adjacent bright bands on the screen 
is known as the fringe spacing (∆x). This distance depends on the wavelength of 
light (λ), the separation between the two slits (d) and the distance to the screen (L), 
as shown in Figure 9.2.7.

S1 pd

Δx
S2

d
θ

P

screen

θ

L

FIGURE 9.2.7 The geometry of two-point source interference.

• If the viewing screen is moved further from the two slits, the fringes will appear 
further apart from each other, i.e. Δx ∝L.

• Conversely, reducing the separation of the slits increases the spacing of the 
fringes, i.e. Δx ∝ 1d  .

• Using light of a longer wavelength will result in increased fringe spacing,  
i.e. Δx ∝ λ (see Figure 9.2.8). 

Fringe separation parameters
These relationships can be combined to develop an overall equation for the 

fringe separation:

Δx = λL
d

where Δx is the fringe separation

 λ is the wavelength of the light waves

 L is the distance from the slits to the screen 

 d is the slit separation

Worked example 9.2.1

CALCULATING WAVELENGTH FROM FRINGE SEPARATION  

Light of an unknown wavelength emitted by a laser is directed through a pair of 
thin slits separated by 50 μm. The slits are 2.0 m from a screen on which bright 
fringes are 2.5 cm apart. Calculate the wavelength of the laser light in nm. 

Thinking Working

Recall the equation for fringe 
separation.

∆x = 
λL
d

Transpose the equation to make λ 
the subject.

λ = 
∆xd
L

Substitute values into the equation 
and solve. (Note: 1 µm = 1 × 10–6 m)

λ = 
0.025 × 50 × 10–6

2.0  = 6.25 × 10–7 m

Express your answer using 
convenient units—in this case nm, 
where 1 nm = 1 × 10–9 m

The wavelength of the laser light is 
625 nm.

FIGURE 9.2.8 If the separation of the slits and 
the distance to the screen are kept the same, 
then the fringes produced by longer wavelength 
red light are further apart than for shorter 
wavelength green light.
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Worked example: Try yourself 9.2.1

CALCULATING WAVELENGTH FROM FRINGE SEPARATION  

Green laser is directed through a pair of thin slits that are 25 μm apart.  
The slits are 1.5 m from a screen on which bright fringes are 3.3 cm apart. 
Use this information to calculate the wavelength of green light in nm. 

RESISTANCE TO THE WAVE MODEL 
Young’s wave explanation for his experiment was not immediately accepted by the 
scientific community. Many scientists were reluctant to abandon the corpuscular 
theory that had been accepted for over a century.

In 1818, the French scientist Augustin-Jean Fresnel was able to provide a 
mathematical explanation for Young’s double-slit experiment based on Huygens’ 
principle. 

Another French scientist, Simeon Poisson, who was a passionate supporter 
of Newton’s particle theory, argued that if the same mathematics was applied to 
the light shining around a round disk, then there should be a bright spot in the 
middle of the shadow created by the disk (see Figure 9.2.9). Since nobody had ever 
observed a bright spot in the middle of a shadow, Poisson believed this proved that 
the wave model was incorrect.

However, one of Poisson’s colleagues decided to test these ideas by performing 
an experiment with a very small bright light source and a round disk, and observed 
the bright spot predicted by Poisson’s calculations (see Figure 9.2.10). As a 
consequence, for the remainder of the 19th century, the wave theory became the 
almost universally accepted model for light.

FIGURE 9.2.10 The bright spot inside the shadow region of this image is caused by the diffraction 
and interference of light waves. The image also shows diffraction and interference patterns 
surrounding the shadow.

This now famous diffraction pattern has come to be known as the ‘Poisson 
bright spot’, which means it is named after the person who predicted that it would 
not exist!

incoming light waves

screen

‘shadow region’

bright spot at
centre of shadow

FIGURE 9.2.9 Waves of light incident on a solid 
disk diffract to give a point of light in the centre 
of the shadow zone. This is convincing evidence 
for the wave nature of light.
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9.2 Review
SUMMARY

• Young’s double-slit interference experiment provided 
evidence to support the wave model of light.

• Path difference (pd) is the difference in the 
distance travelled by each wave train from a pair 
of slits to the same point on the screen.

• Constructive interference of coherent waves 
occurs when the path difference pd = nλ, 
where n = 0, 1, 2, 3…

• Destructive interference of coherent waves occurs 
when the path difference equals an odd number 
of half wavelengths or pd = (n – 1

2
)λ  

where n = 1, 2, 3…

• The distance between the interference fringes 
produced in Young’s experiment is given by: 

∆x = 
λL
d

KEY QUESTIONS

1  According to the particle model of light, Young’s 
double-slit experiment should have produced 
two bright lines on the screen. Instead, what was 
observed on the screen?
A  It was completely dark.
B  It was completely light.
C  It contained three bright lines.
D  It contained a pattern of alternating bright and 

dark lines.

2  Two students are trying to replicate Young’s double-slit 
experiment. One uses torch light and the other uses 
light from a laser. The student using the laser light is 
more likely to obtain the expected interference pattern 
because of which of the following statements (note 
that more than one correct answer is possible):
A  torch light is monochromatic
B  torch light is coherent 
C  laser light is monochromatic
D  laser light is coherent

3  If Thomas Young’s double-slit experiment was modelled 
using circular water waves in a ripple tank, which of 
the following events would correspond to nodal lines? 
(Note that more than one correct answer is possible.)
A  crests meet troughs
B  troughs meet troughs
C  crests meet crests
D  troughs meet crests

4  The following diagram shows the resulting (simplified) 
intensity pattern after light from two slits reaches the 
screen in a Young’s interference experiment. Copy the 
diagram into your workbook and circle the points at 
which the path difference is equal to 1λ.

Intensity

M

5  Explain why Young’s double-slit experiment led to a 
significant change in scientists’ understanding of the 
nature of light.

6  A version of Young’s double-slit experiment is set up 
by directing the light from a red laser through a pair 
of thin slits. An interference pattern appears on the 
screen behind the slits. The following changes are 
made to the apparatus. Identify whether the distance 
between the interference fringes seen on the screen 
would increase, decrease or stay the same.
a  the screen is moved further away from the slits
b  a green (i.e. shorter wavelength) laser is used
c  the slits are moved closer together

7  A 580 nm yellow light is directed through a pair of 
thin slits to produce an interference pattern on a 
screen. Determine the path difference of the fifth 
dark fringe.

8  Identify the type of interference (constructive or 
destructive) that corresponds to the following path 
differences:

a  λ
2

b  λ

c  3λ
2

9  A 700 nm red light is directed through a pair of 
thin slits to produce an interference pattern on a 
screen. Determine the path difference of the second 
bright fringe.

10  A blue laser is directed through a pair of thin slits that 
are 40 μm apart. The slits are 3.25 m from a screen 
on which bright fringes are 3.7 cm apart. Use this 
information to calculate the wavelength of green light 
in nm. 
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9.3 Electromagnetic waves 
The establishment of the wave model for light raised an important question. 
Scientists now wanted to know what type of waves light waves were.

Experiments on polarisation provided the important information that light must 
be a type of transverse wave, since polarisation does not occur for longitudinal 
waves. However, light is obviously different from other types of mechanical waves 
because it can pass through the vacuum of space between the Earth and Sun 
(see Figure 9.3.1).

FIGURE 9.3.1 Light cannot be a simple mechanical wave because it can travel through empty space.

ELECTROMAGNETIC WAVES 
In the middle of the 19th century, the Scottish physicist James Clerk Maxwell 
gained a key insight into the nature of light waves. In his mathematical study of 
electric and magnetic effects, he realised that some of the constants in his equations 
closely matched the current estimates of the speed of light. Maxwell went on to 
develop a comprehensive theory of electromagnetism in which light is a form of 
electromagnetic radiation (EMR).

The electromagnetic nature of light 
As shown in earlier chapters, electric current can be used to produce a magnetic 
field, and a changing magnetic field can be used to generate an electromotive 
force (EMF) or voltage. Maxwell put these two ideas together. He proposed that 
if a changing electric field is produced, for example by a charged particle moving 
backwards and forwards, then this changing electric field will produce a changing 
magnetic field at right angles to it, as shown in Figure 9.3.2. 

B

E electric �eld

magnetic �eld

direction 
of wave

FIGURE 9.3.2 The electric and magnetic fields in electromagnetic radiation are perpendicular to each 
other and are both perpendicular to the direction of propagation of the radiation.
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The changing magnetic field would, in turn, produce a changing electric 
field and the cycle would be repeated. In effect, this would produce two mutually 
propagating fields and the electromagnetic radiation would be self-propagating, i.e. 
it could extend outwards into space. Both the electric and magnetic fields would 
oscillate at the same frequency: the frequency of the light wave.

Maxwell’s theoretical calculations provided a value for the speed at which 
electromagnetic radiation should propagate through empty space. This matched 
the experimental value for the speed of light measured by the French physicist 
Hippolyte Fizeau in 1849. The accepted value for the speed of light today is 
299 792 458  m  s–1. This is such an important constant that it is designated its 
own symbol, c. In calculations, the speed of light is usually approximated as 
c = 3.00 × 108 m s–1.

For light and other forms of EMR, the familiar wave equation v = f λ is usually 
written as: 

c = fλ 

where f is the frequency of the wave (Hz)

 λ is the wavelength of the wave (m)

Maxwell’s work represents a pivotal moment in the history of physics. Not only 
did he provide an explanation of the nature of light, he also brought together a 
number of formerly distinct areas of study—optics (the study of light), electricity 
and magnetism. As shown in the next section, Maxwell’s work also encompasses 
other areas of physics.

Worked example 9.3.1

USING THE WAVE EQUATION FOR LIGHT 

Calculate the frequency of violet light with a wavelength of 400 nm  
(i.e. 400 × 10–9 m).

Thinking Working

Recall the wave equation for light. c = fλ

Transpose the equation to make 
frequency the subject.

f = 
c
λ

Substitute in values to determine the 
frequency of this wavelength of light. 

f = 
3.0 × 108

400 × 10–9

= 7.5 × 1014 Hz

Worked example: Try yourself 9.3.1

USING THE WAVE EQUATION FOR LIGHT 

A particular colour of red light has a wavelength of 600 nm. Calculate the 
frequency of this colour. 

Searching for the aether 
One of the characteristics of mechanical waves is that they require a physical 
medium through which to propagate. For example, sound waves usually propagate 
through air and water waves propagate through water. For many years, scientists 
searched for the physical medium through which electromagnetic waves propagate. 
They even went so far as to give this medium a name: the ‘luminiferous ether’ 
or ‘aether’.

However, all attempts to measure the presence or properties of the aether were 
unsuccessful. Eventually, scientists were forced to conclude that electromagnetic 
waves are able to propagate through a vacuum. 
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The electromagnetic spectrum 
The wavelengths of all the different colours of visible light fall between 390 nm 
and 780 nm. Naturally, physicists were bound to inquire about other wavelengths 
of electromagnetic radiation. It is now understood that the visible spectrum is 
just one small part of a much broader set of possible wavelengths known as the 
electromagnetic spectrum (see Figure 9.3.3).

FMTV

3 × 104 3 × 10–4 3 × 10–8 3 × 10–123

102010181016101410121010108106104102

50 Hz (AC)

radio waves

microwaves (e.g. radar)
infrared ultraviolet

X-rays

TV mobile phones

gamma rays

Frequency (Hz)
visible light

Wavelength (m)

FIGURE 9.3.3 The electromagnetic spectrum.

Changing the frequency and wavelength of the waves changes the properties 
of the electromagnetic radiation, and so the electromagnetic spectrum is divided 
into ‘bands’ according to how the particular types of EMR are used. The shorter 
the wavelength of the EM wave, the greater its penetrating power. This means that 
waves with extremely short wavelength, such as X-rays, can pass through some 
materials (e.g. skin), revealing the structures inside (e.g. bone). 

On the other hand, long wavelength waves such as AM radio waves have such 
low penetrating power that they cannot even escape Earth’s atmosphere, and can 
be used to ‘bounce’ radio signals around to the other side of the world. Table 9.3.1 
compares the characteristics of different waves in the electromagnetic spectrum.

Type of wave Typical wavelength 
(m)

Typical frequency 
(Hz)

Comparable object

AM radio wave 100 3 × 106 sports oval

FM radio or TV wave 3 1 × 108 small car

microwaves 0.03 1 × 1010 50c coin

infrared 10–5 3 × 1013 white blood cell

visible light 10–7 3 × 1015 small cell

ultraviolet 10–8 3 × 1016 large molecule

X-ray 10–10 3 × 1018 atom

gamma ray 10–15 3 × 1023 atomic nucleus

TABLE 9.3.1 Comparison of the different waves in the electromagnetic spectrum.

Radio waves 
One of the most revolutionary applications of EMR is the use of radio waves to 
transmit information from one point to another over long distances. Radio waves 
are the longest type of electromagnetic radiation, with wavelengths ranging from 
1 mm to hundreds of kilometres. The principle of radio transmission is relatively 
simple and neatly illustrates the nature of electromagnetic waves.

The radio transmitter converts the signal (e.g. radio announcer’s voice, music 
or stream of data) into an alternating current. When this alternating current flows 
in the transmission antenna, the electrons in the antenna oscillate backwards and 
forwards. This oscillation of charges in the antenna produces a corresponding 
electromagnetic wave that radiates outwards in all directions from the antenna. 

When the radio wave hits the antenna of a radio receiver, the electrons in the 
receiver’s antenna start to oscillate in exactly the same way as in the transmitting 
antenna. The radio receiver then reverses the process of the transmitter, converting 
the alternating current from the reception antenna back into the original signal as 
seen in Figure 9.3.4.
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FIGURE 9.3.4 A typical radio transmission system.

PHYSICSFILE

AM and FM 
A radio wave pattern is produced using a ‘carrier wave’ of fixed frequency. This 
frequency is the ‘channel’ that the radio ‘tunes into’. Many radio stations use the 
carrier wave frequency as part of their name, e.g. Nova 100.3 transmits using a 
100.3 MHz carrier wave. 

The carrier wave is altered or ‘modulated’ by the signal containing the information 
to be transmitted. An AM radio system uses ‘amplitude modulation’, which means that 
the amplitude of the carrier wave is modulated to match the signal. In comparison, 
FM stands for ‘frequency modulation’, in which the frequency of the carrier wave is 
changed to represent the signal. In terms of circuitry, AM systems are much simpler 
than FM systems, although FM radio waves tend to transmit signals more clearly. 

EXTENSION

Microwaves 
Microwaves have shorter wavelengths and therefore greater 
penetrating power than radio waves. They can be produced 
by devices with short antennas and hence are useful in 
personal communication applications like mobile phones 
and wireless internet transmission. They also particularly 
useful in heating and cooking food (see Figure 9.3.5).

A microwave oven is ‘tuned’ to produce a particular 
frequency of electromagnetic radiation: 2.45 GHz 
(i.e. 2.45 × 109 Hz). This is the resonant frequency of 
water molecules. 

All solid objects have a frequency at which they will 
naturally vibrate. Musical instruments such as guitars or 
violins make use of the resonant frequencies of strings 
under tension, which you might recall from Chapter 8 
‘Properties of mechanical waves’.

When water molecules are bombarded with radiation 
with a frequency of 2.45 GHz, they start to vibrate quickly. 
Since this increases the average kinetic energy of the water 
molecules, the temperature of the water in the substance 
increases. Effectively, the microwaves cause the water to 
heat up.

This heat then transfers by conduction and convection 
to the rest of the food. This is why food sometimes 
becomes soggy when heated in the microwave: the water 
molecules heat up faster than the food molecules around 
them. It also explains why recipes that do not contain 
much water cannot be cooked well in a microwave oven.

FIGURE 9.3.5 Microwave ovens produce electromagnetic radiation 
with a frequency of 2.45 GHz, which is the resonant frequency of 
water molecules.
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Infrared 
The infrared section of the electromagnetic spectrum lies between microwaves and 
visible light. Infrared waves are longer than the red waves of the visible spectrum, 
hence their name.

Infrared light waves become useful because they are emitted by objects, to 
varying degrees, due to their temperature (see the Physics file ‘Night vision’). The 
warmth that you feel standing next an electric bar heater or fire is due to infrared 
radiation (see Figure 9.3.6). The radiant heat the Earth receives from the Sun 
is transmitted in the form of infrared waves; life on Earth would not be possible 
without this important form of electromagnetic radiation. 

FIGURE 9.3.6 The coals of a fire appear red because they release red light along with infrared 
radiation, which you experience as heat.

PHYSICSFILE

Night vision 
Night-vision goggles enhance  
visibility in low light conditions 
by greatly amplifying the 
visible light available and also 
by detecting a small part of 
the infrared radiation that is 
emitted by objects due to 
their temperature. 

FIGURE 9.3.7  
Night-vision goggles



325CHAPTER 9   |   THE NATURE OF LIGHT 

Ultraviolet light 
As their name suggests, ultraviolet (UV) waves have wavelengths that are shorter 
than those of violet light and therefore cannot be detected by the human eye. Their 
shorter wavelengths give UV rays stronger penetrating power than visible light. In 
fact, UV rays can actually penetrate human skin and damage the DNA of skin cells, 
producing harmful skin cancers.

Scientists can make use of UV light to take images. Figure 9.3.8 is a UV image 
of the surface of the Sun taken after a solar flare has occurred. The image has been 
re-coloured so that it highlights areas of different temperature. Here, areas that are 
coloured white are the hottest. Images like this help scientists to learn about the 
temperatures of very hot objects. Taking an image of the Sun using visible light 
would not allow this same distinction.

FIGURE 9.3.9 This X-ray image of a child’s hips 
can be formed because X-rays can pass through 
human tissue.

FIGURE 9.3.8 Re-coloured UV image of the surface of the Sun. The white areas reveal the hottest parts.

X-rays and gamma rays 
Both X-rays and gamma rays have much shorter wavelengths than visible 
light. This  means that these forms of electromagnetic radiation have very high 
penetrating powers. For example, some X-rays can pass through different types 
of human tissues which means that they are very useful in medical imaging (see 
Figure 9.3.9).

Unfortunately, this useful penetrating property of X-rays comes with inherent 
dangers. As X-rays pass through a human cell, they can do damage to the tissue, 
sometimes killing the cells or damaging the DNA in the cell nucleus, leading to 
harmful cancers. For this reason, a person’s exposure to X-rays has to be carefully 
monitored to avoid harmful side effects.

Similarly, exposure to gamma rays can be very dangerous to human beings. 
The  main natural sources of gamma radiation exposure are the Sun and 
radioactive  isotopes. Fortunately, Earth’s atmosphere protects people from most 
of  the Sun’s harmful gamma rays, and radioactive isotopes are not commonly 
found in sufficient quantities to produce harmful doses of radiation.
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9.3 Review
SUMMARY

• Although light exhibits many wave properties, it 
cannot solely be modelled as a mechanical wave 
because it can travel through a vacuum.

• Light is a form of electromagnetic radiation.

• Electromagnetic waves are transverse waves made 
up of mutually perpendicular, oscillating electric 
and magnetic fields.

• Electromagnetic radiation can be used for a variety 
of purposes depending on the properties of the 
waves, which are determined by their frequency.

• Oscillating charges produce electromagnetic 
waves of the same frequency as the oscillation. 
Electromagnetic waves cause charges to oscillate 
at the frequency of the wave.

• Light (that is, all electromagnetic radiation) 
travels through a vacuum at approximately  
c = 3.0 × 108 m s–1.

• The wave equation c = fλ can be used to 
calculate the frequency and wavelength of 
electromagnetic waves.

KEY QUESTIONS

1  What is a key difference between light waves and 
mechanical waves?
A  Light waves do not have a measurable wavelength.
B  Light waves can travel through a vacuum.
C  The speed of light is too fast to be accurately 

measured.
D  Light waves do not undergo diffraction.

2  In an electromagnetic wave, what is the orientation 
of the changing electric and magnetic fields?
A  at 45˚ to each other
B  parallel to each other
C  parallel but in opposite directions
D  perpendicular to each other

3  What type of electromagnetic radiation would have 
a wavelength of 200 nm?
A  radio waves
B  microwaves
C  visible light
D  ultraviolet light

4  Arrange the types of electromagnetic radiation below 
in order of increasing wavelength.
FM radio waves / visible light / infrared radiation / 
X-rays 

5  Calculate the frequencies of the following wavelengths 
of light. 
a  red of wavelength 656 nm
b  yellow of wavelength 589 nm
c  blue of wavelength 486 nm
d  violet of wavelength 397 nm

6  Although the currently accepted value for the speed of 
light is 299 792 458 m s−1, this is often approximated 
as c = 3.00 × 108 m s−1. Calculate the percentage 
error introduced by this approximation.

7  Calculate the wavelength (in nm) of light with a 
frequency of 6.0 × 1014 Hz.

8  Calculate the wavelength of a UHF (ultra-high 
frequency) television signal with a frequency of  
7.0 × 107 Hz.

9  Calculate the frequency of an X-ray with a wavelength 
of 200 pm.

10 Calculate the wavelength of the electromagnetic waves 
produced by a microwave oven.
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1  What phenomenon does the diagram below 
demonstrate?
A  diffraction
B  interference
C  reflection
D  refraction

2  Explain how the width of a double-slit interference 
pattern would change if all the variables were constant 
but a blue laser was replaced with a green laser.

3  Polarisation is an important phenomenon. What does 
it show about light?
A  It can travel instantaneously at an infinite speed.
B  It travels faster in materials like water and air than 

in a vacuum.
C  It is a longitudinal wave.
D It is a transverse wave.

4  Explain briefly why snowboarders and sailors are likely 
to wear polarising sunglasses.

5  Red light (4.5 × 1014 Hz) has a wavelength of 500 nm 
in water. Calculate the speed of red light in water. 

6  Choose the correct answers from those given in bold 
to complete the following sentence about refraction. 
As light travels from quartz (n = 1.46) to water 
(n = 1.33), its speed increases/decreases which 
causes it to refract away from/towards the normal.

7  The figure represents a situation involving the 
refraction of light. Identify the correct label for each 
of the lines from the choices provided: boundary 
between media, reflected ray, incident ray, normal, 
refracted ray.

medium 1 

medium 2 

A B

E

C

D

8  The speed of light in air is 3.00 × 108 m s−1.  
As light strikes an air–perspex boundary, the angle of 
incidence is 43.0° and the angle of refraction is 28.5°. 
Calculate the speed of light in perspex.

9  A ray of light travels from air, through a layer of glass 
and then into water as shown. Calculate angles a, b 
and c. 

air
(n = 1.00)

glass
(n = 1.50)

40°

water
(n = 1.33)

a

b
c

Chapter review

KEY TERMS

coherent
constructive interference
critical angle
destructive interference
diffraction
diffraction pattern

dispersion
electromagnetic radiation
electromagnetic spectrum
interference
monochromatic 
path difference

polarisation
refraction
refractive index
Snell’s law
total internal reflection
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10  A ray of light exits a glass block. On striking the inside 
wall of the glass block, the ray makes an angle of 58.0° 
with the glass-air boundary. The index of refraction of 
the glass is 1.52. Calculate the:
a  angle of incidence 
b  angle of refraction of the transmitted ray 

(assuming nair = 1.00)
c  angle of deviation 
d  speed of light in the glass.

11  A narrow beam of white light enters a crown glass 
prism with an angle of incidence of 30.0°. In the 
prism, the different colours of light are slowed to 
varying degrees. The refractive index for red light in 
crown glass is 1.50 and for violet light the refractive 
index is 1.53. Calculate the:
a  angle of refraction for the red light
b  angle of refraction for the violet light
c  angle through which the spectrum is dispersed
d  speed of the violet light in the crown glass.

12  Calculate the critical angle for light travelling between 
the following media.

Incident medium Refracting medium

a ice (n = 1.31) air (n = 1.00)

b salt (n = 1.54) air (n = 1.00)

c cubic zirconia (n = 2.16) air (n = 1.00)

13  When a light ray refracts, the difference between the 
angle of incidence and angle of refraction is known 
as the angle of deviation. Sort the following boundaries 
between media in order of increasing angle of 
deviation.
A  water (n = 1.33) to diamond (n = 2.42)
B  water (n = 1.33) to air (n = 1.00)
C  air (n = 1.00) to diamond (n = 2.42)
D  glass (n = 1.50) to air (n = 1.00)

14  Light of an unknown wavelength emitted by a laser 
is directed through a pair of thin slits separated by 
75 μm. The slits are 4.0 m from a screen on which 
bright fringes are 3.1 cm apart.
a  Calculate the wavelength of the laser light in nm.
b  Identify the unknown colour emitted by the laser.

15  The following diagram shows the resulting intensity 
pattern (simplified) after light from two slits reaches 
the screen in a double-slit experiment. Copy the 
diagram into your workbook and circle the points at 
which the path difference is equal to 11

2 λ.

Intensity

M

16 Arrange the types of electromagnetic radiation below 
in order of decreasing wavelength.
gamma rays, visible, microwaves, radio waves, X-rays, 
infrared, ultraviolet

17  What form of electromagnetic radiation is used in the 
following applications? 
a  mobile phone communication
b  night-vision goggles
c  medical imaging

18  An AM radio station has a frequency of 612 kHz. 
If the speed of light is 3 × 108 m s–1, calculate the 
wavelength of these waves to the nearest metre.

19  Describe Young’s experiment and explain why it is 
considered evidence for the wave theory of light.

20  Explain briefly why a microwave oven is tuned to 
produce electromagnetic waves of a particular 
frequency.

Chapter review continued



CHAPTER

How incredible it would be, if it were possible, to put the giants of physics from throughout 
history—Galileo, Newton, Maxwell, Heisenberg, Bohr, de Broglie, Einstein and others—together 
in one room for an hour. The most likely outcome is that the hour would be spent in heated 
debate and discussion. Let’s imagine that just one question is posed to them: ‘What is light?’ 
None of them would give the same answer as another. Each would have understandings linked 
to their era. And if another seemingly simple question could be posed—‘What is matter?’—the 
debate could be just as heated!

This chapter will develop your understanding of light and the models used to describe it. It will 
also introduce the idea that light and matter have more in common than you may have thought. 

Key knowledge 
By the end of this chapter you will have studied the physics of light and matter, and will be able to:

• analyse the photoelectric effect with reference to:
 - evidence for the particle-like nature of light
 - experimental data in the form of graphs of photocurrent versus electrode potential, and of 
kinetic energy of electrons versus frequency

 - kinetic energy of emitted photoelectrons: Ek max = hf – ϕ, using energy units of joule and 
electron-volt

 - effects of intensity of incident irradiation on the emission of photoelectrons
• describe the limitation of the wave model of light in explaining experimental results related to 

the photoelectric effect.
• interpret electron diffraction patterns as evidence for the wave-like nature of matter
• distinguish between the diffraction patterns produced by photons and electrons
• calculate the de Broglie wavelength of matter: λ = hp
• compare the momentum of photons and of matter of the same wavelength including 

calculations using: p = hλ
• explain the production of atomic absorption and emission line spectra, including those from 

metal vapour lamps
• interpret spectra and calculate the energy of absorbed or emitted photons: ΔE = hf
• analyse the absorption of photons by atoms, with reference to:

 - the change in energy levels of the atom due to electrons changing state
 - the frequency and wavelength of emitted photons: E = hf = hc

λ
• describe the quantised states of the atom with reference to electrons forming standing waves, 

and explain this as evidence for the dual nature of matter
• interpret the single photon/electron double slit experiment as evidence for the dual nature of 

light/matter
• explain how diffraction from a single slit experiment can be used to illustrate Heisenberg’s 

uncertainty principle
• explain why classical laws of physics are not appropriate to model motion at very small scales
• compare the production of light in lasers, synchrotrons, LEDs and incandescent lights.

VCE Physics Study Design extracts © VCAA (2015); reproduced by permission.

Light and matter 
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10.1 The photoelectric effect 
and the dual nature of light
At the turn of the 20th century, a number of scientists turned their attention to light 
phenomena that could not be readily explained using Maxwell’s electromagnetic 
wave model. The study of these phenomena required the development of much 
more sophisticated models for light, and eventually led to a revolution in the 
scientific understanding of the nature of energy and matter. One of the scientists 
who made a significant contribution to this new way of understanding light was 
Albert Einstein, shown in Figure 10.1.1.

PLANCK’S EQUATION
In 1900, the German physicist Max Planck (see Figure 10.1.2) was studying the 
spectrum for light emitted by hot objects. Planck and other scientists had discovered 
that certain features of this spectrum could not be explained using a wave model 
for light. 

Planck proposed a controversial solution to this problem by assuming that light 
was emitted as discrete packets. He called the discrete packets of energy quanta, 
and developed an equation for the energy, E, of each quantum:

E = hf

where E is the energy of a quantum of light (J)

 f is the frequency of the electromagnetic radiation (Hz) 

 h is the constant 6.63 × 10–34 J s, now known as Planck’s constant

Since electromagnetic radiation is more commonly described according to its 
wavelength, scientists often combine Planck’s equation with the wave equation for 
light c = f λ as follows:

E = hf and f = c
λ

So

E = hc
λ

At the time, most scientists disregarded Planck’s work because the particle 
model it suggested was so much at odds with the wave model that had become 
widely accepted as the correct explanation for light.

PHYSICSFILE

Max Karl Ernst Ludwig Planck
Max Planck was a German physicist. At the age of 21 he 
obtained a PhD in physics, and in 1889 was appointed 
professor at the university in Berlin. Planck was an author 
of numerous works about physics—about quantum theory 
in particular. On 14 December 1900 he presented the 
correct version of the Wien formula and introduced a new 
constant—Planck’s constant. This date is now recognised 
as the beginning of the era of quantum mechanics. In 
1918, Planck was awarded the Nobel Prize in Physics for 
the discovery of quantum energy.

FIGURE 10.1.2 Max Planck (1858–1947).

FIGURE 10.1.1 Albert Einstein helped 
revolutionise our understanding of the 
nature of light.
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Worked example 10.1.1

USING PLANCK’S EQUATION 

Calculate the energy in joules of a quantum of ultraviolet light that has a 
frequency of 2.00 × 1015 Hz. 

Thinking Working

Recall Planck’s equation. E = hf

Substitute in the appropriate values 
to solve.

E = 6.63 × 10–34 × 2.00 × 1015

= 1.33 × 10–18 J

Worked example: Try yourself 10.1.1

USING PLANCK’S EQUATION 

Calculate the energy in joules of a quantum of infrared radiation that has a 
frequency of 3.6 × 1014 Hz.

THE ELECTRON-VOLT
When studying light, the quantities of energy considered are usually very small. 
These are often so small that the joule is no longer a convenient unit to use. 
Scientists have therefore adopted a unit called an electron-volt (eV). You may 
have come across it in some optional material in Unit 2. An electron-volt is the 
amount of energy an electron gains when it moves through a potential difference of 
1 V. Since the charge on an electron is –1.6 × 10–19 C, then:
 1 eV = 1e × 1 V
 = 1.6 × 10–19 C × 1 J C–1

 = 1.6 × 10–19 J
Here is a simple way to convert between the units for energy:

To convert a value expressed in J into eV, divide it by 1.6 × 10–19 J eV–1

To convert a value expressed in eV into J, multiply it by 1.6 × 10–19 J eV–1

Worked example 10.1.2

CONVERTING TO ELECTRON-VOLTS 

A quantum of light has 1.33 × 10–18 J of energy. Convert this energy to  
electron-volts.

Thinking Working

Recall the conversion rate for joules to 
electron-volts.

1 eV = 1.6 × 10–19 J

Divide the value expressed in joules 
by 1.6 × 10–19 J eV–1 to convert to 
electron-volts.

1.33 × 10–18 ÷ (1.6 × 10–19) 

= 8.3 eV

Worked example: Try yourself 10.1.2

CONVERTING TO ELECTRON-VOLTS 

A quantum of light has 2.4 × 10–19 J of energy. Convert this energy to  
electron-volts.
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As seen from worked examples 10.1.1. and 10.1.2, it is easier to compare the 
relative energies of quanta when they are expressed in eV.

For convenience, Planck’s constant can also be given in terms of electron-volts, 
i.e. h = 6.63 × 10–34 J s

 = 6.63 × 10–34

1.6 × 10–19

 = 4.14 × 10–15 eV s

Worked example 10.1.3

CALCULATING QUANTUM ENERGIES IN ELECTRON-VOLTS 

Calculate the energy (in eV) of a quantum of ultraviolet light that has a 
frequency of 2.0 × 1015 Hz. Use h = 4.14 × 10–15 eV s.

Thinking Working

Recall Planck’s equation. E = hf

Substitute in the appropriate values 
and solve for E.

E = 4.14 × 10–15 × 2.0 × 1015

= 8.3 eV

Worked example: Try yourself 10.1.3

CALCULATING QUANTUM ENERGIES IN ELECTRON-VOLTS 

Calculate the energy (in eV) of a quantum of infrared radiation that has a 
frequency of 3.6 × 1014 Hz. Use h = 4.14 × 10–15 eV s. 

THE PHOTOELECTRIC EFFECT
At the start of the 20th century, another phenomenon that could not be explained 
using the wave model for light was being observed.

Scientists noticed that when some types of electromagnetic radiation are 
incident on a piece of metal, the metal becomes positively charged. This positive 
charge is due to electrons being ejected from the surface of the metal. The 
electrons became known as photoelectrons because they were released due to 
light or other forms of electromagnetic radiation. The phenomenon is known as the 
photoelectric effect.

A common apparatus used to observe the photoelectric effect consists of a clean 
metal surface (the cathode), illuminated with light from an external source. If the 
light causes photoelectrons to be emitted, they are detected at the anode. The flow 
of electrons is called the photocurrent and is registered by a sensitive ammeter. 

A typical circuit used to investigate the photoelectric effect (see Figure 10.1.3) 
includes a variable voltage supply, which can be used to make the cathode negative 
(and the anode positive). When this is done, the photoelectrons will be helped by 
the resulting electric field across the gap to the anode. This happens because the 
electrons will be repelled by the negative potential at the cathode and attracted 
to the positive potential at the anode. As a result, a maximum possible current 
will be measured. Alternatively, the voltage may be adjusted to make the cathode 
positive and the anode negative. This repels the photoelectrons and slows them 
down. As the anode voltage is increased, the photoelectrons are repelled more and 
more until the photocurrent drops to zero. 

Using the apparatus shown in Figure 10.1.3, the German physicist Philipp 
Lenard made a number of surprising discoveries about the photoelectric effect. 
He won the Nobel Prize in Physics in 1905 for his discoveries.

Lenard used a filter to vary the frequency of the incident light. He discovered 
that, for a particular cathode metal, there is a certain frequency below which no 
photoelectrons are observed. This is called the threshold frequency, f0. For 
frequencies of light greater than the threshold frequency (i.e. f > f0), photoelectrons 
will be collected at the anode and registered as a photocurrent. For frequencies 
below the threshold frequency (i.e. f < f0), no photoelectrons will be detected.

evacuated
tube

light

caesium metal
cathode

anode

μA

V

variable voltage source

FIGURE 10.1.3 Circuit diagram of 
an experimental investigation of the 
photoelectric effect. 
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Lenard also discovered that, for light that has a frequency greater than the 
threshold frequency, i.e. f > f0 , the rate at which the photoelectrons are produced 
varies in proportion with the intensity (brightness) of the incident light as shown in 
Figure 10.1.4. 

This graph shows a number of important properties of the photoelectric effect.
• When the light intensity increases, the photocurrent increases. 
• When the applied voltage is positive, photoelectrons are attracted to the collector 

electrode (anode). A small positive voltage is enough to ensure that every available 
photoelectron is collected. The current therefore reaches a maximum value and 
remains there even if the voltage is increased.

• When the applied voltage is negative, photoelectrons are attracted back towards 
the illuminated cathode and repelled by the collector electrode (anode) and the 
photocurrent is reduced. The photocurrent is reduced because fewer and fewer 
photoelectrons have the energy to overcome the opposing electric potential. There 
is a voltage, V0 , for which no photoelectrons reach the collector. This is known as 
the stopping voltage. For a particular frequency of light on a particular metal, 
this stopping voltage is a constant.
Recall from earlier studies of electricity that the work done on a charge (by an 

applied voltage) is given by W = qV. In this case, the voltage used is designated the 
stopping voltage, V0 , and the charge value is equal to the magnitude of the charge on an 
electron, qe , 1.6 × 10–19 C. Hence the work done on the electron is given by W = qeV0. 
Since the stopping voltage is large enough to stop even the fastest-moving electrons 
from reaching the anode, this expression gives the value of the maximum possible 
kinetic energy of the emitted photoelectrons. For example, should the stopping voltage 
be 2.5 V, then the maximum kinetic energy of any photoelectron is 2.5 eV.

When light sources of the same intensity but different frequencies are used, they 
produce the same maximum current. However, the higher frequency light has a 
higher stopping voltage (see Figure 10.1.5).

Finally, as long as the incident light has a frequency above the threshold frequency 
of the cathode material, photoelectrons are found to be emitted without any appreciable 
time delay. This fact holds true regardless of the intensity of the light. 

When illuminated with light above the threshold frequency, some photoelectrons 
are emitted from the first layer of atoms at the surface of the metal and have the 
maximum kinetic energy possible. Other photoelectrons come from deeper inside 
the metal and lose some of their kinetic energy due to collisions on their way to the 
surface. Hence, the emitted photoelectrons have a range of kinetic energies from the 
maximum value downwards.

EXPLAINING THE PHOTOELECTRIC EFFECT
The characteristics of the photoelectric effect could not be explained using a 
wave model of light. According to the wave model, the frequency of light should 
be irrelevant to whether or not photoelectrons are ejected. Since a wave is a form 
of continuous energy transfer, it would be expected that even low-frequency light 
should transfer enough energy to emit photoelectrons if left incident on the metal 
for long enough. Similarly, the wave model predicts that there should be a time delay 
between the light striking the metal and photoelectrons being emitted, as the energy 
from the wave builds up in the metal over time.

The dual nature of light
In 1905, Albert Einstein proposed a solution to this problem. Einstein drew on 
Planck’s earlier work by assuming that light exists as particles, or photons (like 
Planck’s ‘quanta’), each with an energy of E = hf. This assumption made the 
properties of the photoelectric effect relatively easy to explain.

Einstein’s work was actually a significant extension of Planck’s ideas. Although 
Planck had assumed that light was being emitted in quantised packets, he never 
questioned the assumption that light was fundamentally a wave phenomenon. 

Einstein’s work went further, challenging scientists’ understanding of the nature 
of light itself. 

V0–V0

I1

I

I2 > I1

(f1 = f2)

FIGURE 10.1.4 Photocurrent (I) plotted as a 
function of the voltage (V) applied between 
the cathode and the anode for different 
light intensities. For brighter light (I2 > I1) 
of the same frequency (f1 = f2), there is a 
higher photocurrent, but the same stopping 
voltage, V0.

V0–V01
–V02

I

I1 = I2

f1 > f2

FIGURE 10.1.5 Photocurrent (I) plotted as a 
function of the voltage (V) applied between 
the cathode and the anode for different 
frequencies (f1 > f2) of incident light with the 
same intensity (I1 = I2). Both frequencies 
produce the same maximum photocurrent; 
however, light with the higher frequency 
requires a larger stopping voltage.
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Einstein and the photoelectric effect
Einstein identified that, for a particular metal, the amount of energy required 
to eject a photoelectron is a constant value that depends on the strength of the 
bonding within the metal. This energy was called the work function, ϕ, of the 
metal. For example, the work function of lead is 4.14 eV, which means that 4.14 eV 
of energy is needed to just release one electron from the surface of a piece of lead.

According to Einstein’s model, shining light on the surface of a piece of metal is 
equivalent to bombarding it with photons. When a photon strikes the metal, it can 
transfer its energy to an electron. That is, a single photon can interact with a single 
electron, transferring all of its energy at once to the electron. What happens next 
depends on whether or not the photon contains enough energy to overcome the 
work function.

If the energy of the photon is less than the work function, then photoelectrons 
will not be released as the electrons will not gain enough energy to let them break 
free of the lead atoms. For example, the photons of violet light ( f = 7.50 × 1014 Hz) 
each contain 3.11 eV of energy.

 E = hf
 = 4.14 × 10–15 × 7.50 × 1014 
 = 3.11 eV
This means that violet light shining on lead would not release photoelectrons 

since the energy of each photon, 3.11 eV, is less than the work function of lead, 
4.14 eV.

However, ultraviolet photons of frequency 1.20 × 1015 Hz each contain 4.97 eV 
of energy. 

 E = hf
 = 4.14 × 10–15 × 1.20 × 1015 
 = 4.97 eV
Therefore ultraviolet light of this frequency would release photoelectrons from 

the lead since the energy of each photon, 4.97 eV, is greater than the work function 
of lead, 4.14 eV. 

Each metal has a threshold frequency—this is the frequency at which the 
photons have an energy equal to the work function of the metal:

ϕ = hf0

where ϕ is the work function (J or eV)

 h is Planck’s constant

 f0 is the threshold frequency for that metal (Hz)

Worked example 10.1.4

CALCULATING THE WORK FUNCTION OF A METAL 

Calculate the work function (in J and eV) for aluminium, which has a threshold 
frequency of 9.8 × 1014 Hz.

Thinking Working

Recall the formula for work function. ϕ = hf0

Substitute the threshold frequency 
of the metal into this equation.

ϕ = 6.63 × 10–34 × 9.8 × 1014

= 6.5 × 10–19 J

Convert this energy from J to eV. ϕ = 6.5 × 10–19

1.6 × 10–19

= 4.1 eV
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Worked example: Try yourself 10.1.4

CALCULATING THE WORK FUNCTION OF A METAL 

Calculate the work function (in J and eV) for gold, which has a threshold 
frequency of 1.2 × 1015 Hz.

THE KINETIC ENERGY OF PHOTOELECTRONS
If the energy of the photon is greater than the work function of the metal, then 
a photoelectron is released. The remainder of the energy in excess of the work 
function is transformed into the kinetic energy of the photoelectron. 

Einstein described this relationship with his photoelectric equation: 

Ek max = hf – ϕ

where Ek max is the maximum kinetic energy of an emitted photoelectron (J or eV)

 ϕ is the work function of the metal (J or eV)

 h is Planck’s constant

 f is the frequency of the incident photon (Hz)

Graphing Einstein’s equation results in a linear (straight line) graph like the 
one shown in Figure 10.1.6. Such a graph is useful because it clearly shows 
key  information such as the work function and threshold frequency for a 
particular metal.

Einstein’s equation, Ek max = hf – ϕ can be compared with the equation of a 
straight line, y = mx + c. In making this comparison, it can be seen that extrapolating 
(extending) the graph back to the vertical axis will give the magnitude of the work 
function, ϕ (see Figure 10.1.6). The gradient of the graph is Planck’s constant, 
h. From the graph it is also apparent how, as soon as the threshold frequency is 
exceeded, an electron is able to be ejected and escape with some kinetic energy. The 
greater the frequency of the light, the greater the kinetic energy of the photoelectron. 
At the threshold frequency, electrons are no longer bound to the metal, but they 
have no kinetic energy.

Worked example 10.1.5

CALCULATING THE KINETIC ENERGY OF PHOTOELECTRONS 

Calculate the kinetic energy (in eV) of the photoelectrons emitted from lead by 
ultraviolet light with a frequency of 1.2 × 1015 Hz. The work function of lead is 
4.14 eV. Use h = 4.14 × 10–15 eV s.

Thinking Working

Recall Einstein’s photoelectric 
equation.

Ek max = hf – ϕ

Substitute values into this equation. Ek max = 4.14 × 10–15 × 1.2 × 1015 – 4.14

= 4.97 – 4.14

= 0.83 eV

Worked example: Try yourself 10.1.5

CALCULATING THE KINETIC ENERGY OF PHOTOELECTRONS 

Calculate the kinetic energy (in eV) of the photoelectrons emitted from lead by 
ultraviolet light with a frequency of 1.5 × 1015 Hz. The work function of lead is 
4.14 eV. Use h = 4.14 × 10–15 eV s.
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FIGURE 10.1.6 Magnesium has a high threshold 
frequency, which is in the ultraviolet region. 
The threshold frequency for potassium is in 
the visible region. The gradient of the graph 
for each metal is Planck’s constant, h. The 
x-intercept gives the threshold frequency, f0. 
The magnitude of the y-intercept gives the 
work function, ϕ.



336 AREAS OF STUDY 1 & 2   |   WAVES AND LIGHT BEHAVIOUR & LIGHT AND MATTER

Resistance to the quantum model of light
This new particle or ‘quantum’ model of light was not initially well received by the 
scientific community. It had already been well established that a discrete, particle 
model for light could not explain many of light’s properties such as polarisation and 
the interference patterns produced in Young’s experiment. 

Most scientists believed instead that wave explanations for the photoelectric 
effect would eventually be found. However, eventually the quantum model of light 
was accepted and the Nobel Prize in Physics was awarded to both Planck (1918) 
and Einstein (1921) for their ground-breaking work in this field.

PHYSICS IN ACTION

Photovoltaic cells 
The photovoltaic cells that are used in many solar panels work on the 
principle of the photoelectric effect (see Figure 10.1.7). Sunlight falling on 
the solar panel provides energy that causes photoelectrons to be emitted 
as a current that can be used to drive electrical appliances.

However, whereas many photoelectric-effect experiments use high-energy 
photons of ultraviolet light, photovoltaic cells use materials that will produce 
photoelectrons when exposed to visible light. Most commonly, these are 
semi-conducting materials based on silicon ‘doped’ with small amounts of 
other elements.

Although solar cells are designed to produce the highest current possible 
from sunlight, most commercially available solar cells have an energy 
efficiency of less than 20%. Scientists hope to improve this in order to 
make solar cells an economic alternative to fossil fuels for large-scale 
energy generation.

FIGURE 10.1.7 Solar panels are used to convert sunlight into electrical energy using the 
photoelectric effect.

PHYSICSFILE

Albert Einstein 
Although Albert Einstein is most 
famous for his work on relativity (and 
its related equation E = mc2), he gained 
his Nobel Prize ‘for his services to 
Theoretical Physics, and especially 
for his discovery of the law of the 
photoelectric effect’. His work on 
relativity was never formally recognised 
with a Nobel Prize.
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10.1 Review
SUMMARY

• On the atomic level, electromagnetic radiation is 
emitted or absorbed in discrete packets or quanta 
called photons.

• A number of phenomena related to the behaviour 
of light, such as the photoelectric effect, can only 
be explained using the concept of photons, or 
light quanta.

• The energy of a photon is proportional to its 
frequency: E = hf = hc

λ
• The constant of proportionality, Planck’s constant, 

can be determined experimentally using the 
photoelectric effect.

• The electron-volt is an alternative (non-SI) unit of 
energy: 1 eV = 1.6 × 10–19 J.

• The photoelectric effect is the emission of 
photoelectrons from a clean metal surface due to 
incident light whose frequency is greater than a 
threshold frequency, f0.

 - If f < f0, no electrons are released.

 - If f > f0, the rate of electron release (the 
photocurrent) is proportional to the intensity 
of the light and occurs without any time delay.

• Increasing the forward voltage does not alter the 
rate of electron release (i.e. the photocurrent).

• By experiment, the maximum kinetic energy for 
the electrons Ek max (i.e. that of the fastest electron) 
can be found by using a reverse voltage called the 
stopping voltage, V0.

• Ek max = qeV0, where qe is the charge on an electron.

• The work function, ϕ, for the metal is given by 
ϕ = hf0, and is different for each metal. If the 
frequency of the incident light is greater than 
the threshold frequency, then a photoelectron 
will be ejected with some kinetic energy up to 
a maximum value.

• A graph of Ek max versus frequency will have a 
gradient equal to Planck’s constant, h, and a 
‘y intercept’ equal to the work function, ϕ.

• The maximum kinetic energy of the photoelectrons 
emitted from a metal is the energy of the photons 
minus the work function, ϕ, of the metal:  
Ek max = hf – ϕ. 

• The wave approach to light could not explain 
various features of the photoelectric effect: the 
existence of a threshold frequency, the absence 
of a time delay when using very weak light 
sources, and increased intensity of light resulting 
in a greater rate of electron release rather than 
increased electron energy.

• Einstein used Planck’s concept of a photon to 
explain the photoelectric effect, stating that each 
electron release was due to an interaction with 
only one photon.

• The photon model of light explained the existence 
of a threshold frequency for each metal, the 
absence of a time delay for the photocurrent 
even for weak light sources and why brighter 
light resulted in a higher photocurrent.

KEY QUESTIONS

1  Calculate the energies (in joules) of the following 
wavelengths of light: 

Colour Wavelength (nm)

a red 656

b yellow 589

c blue 486

d violet 397

2  When light shines on a metal surface, why might the 
metal become positively charged?

3  Which of the following statements about the 
photoelectric effect are true and which are false? 
For those that are false, rewrite them to make 
them correct.

a  When the intensity of light shining on the surface 
of the metal increases, the photocurrent increases. 

b  When light sources of the same intensity but 
different frequencies are used, the higher frequency 
light has a higher stopping voltage and produces a 
higher maximum current than the lower frequency.

c  When the applied voltage is positive, photoelectrons 
are attracted to the collector electrode. 

4  Calculate the work functions (in electron-volts) of the 
following metals:

Metal Threshold frequency (× 1015 Hz)

a lead 1.0

b iron 1.1

c platinum 1.5



338 AREAS OF STUDY 1 & 2   |   WAVES AND LIGHT BEHAVIOUR & LIGHT AND MATTER

10.1 Review continued
5  In an experiment on the photoelectric effect, different 

frequencies of light were shone on a piece of 
magnesium with a work function of 3.66 eV. Identify 
which of the frequencies listed would be expected to 
produce photoelectrons.
A  3.0 × 1014 Hz
B  5.0 × 1014 Hz
C  7.0 × 1014 Hz
D  9.0 × 1014 Hz

6  Light with a frequency of 9.0 × 1014 Hz is shone 
onto a piece of magnesium with a work function of 
3.66 eV. Calculate the maximum kinetic energy, in 
electron-volts, of the emitted photoelectrons.

7  Blue light with a wavelength of 475 nm is shone on 
a piece of sodium with a work function of 2.36 eV. 
Calculate the maximum kinetic energy, in electron-
volts, of the emitted photoelectrons.

8  The metal sodium has a work function of 1.81 eV. 
Which of the following types of electromagnetic 
radiation would cause photoelectrons to be emitted?
A  infrared radiation, λ = 800 nm
B  red light, λ = 700 nm
C  violet light, λ = 400 nm
D  ultraviolet radiation, λ = 300 nm 

9  Which of the following statements are true and which 
are false with respect to the value of the stopping 
voltage obtained when light is incident on a metal 
cathode? For those that are false, rewrite them to 
make them true.
a  The stopping voltage indicates how much 

work must be done to stop the most energetic 
photoelectrons.  

b  The stopping voltage is reached when the 
photocurrent is reduced almost to zero. 

c  If only the intensity of the incident light is 
increased, the stopping voltage will not alter.  

d  For a given metal, the value of the stopping 
voltage is affected only by the frequency of the 
incident light.

10  Yellow–green light of wavelength 500 nm shines on 
a metal whose stopping voltage is found to be 0.80 V. 
Calculate the work function of the metal in  
electron-volts.
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10.2 The quantum nature of light 
and matter
In order to explain the photoelectric effect, Einstein used the photon concept 
that Planck had developed. However, like many great discoveries in science, the 
development of the quantum model of light raised almost as many questions 
as it answered. It has already been well established that a wave model was 
needed  to explain phenomena such as diffraction and interference. How could 
these  two  contradictory models be reconciled to form a comprehensive theory 
of light?

Answering this question was one of the great scientific achievements of the 
20th century and led to the extension of the quantum model to matter as well as 
energy. It led to a fundamental shift in the way the universe is viewed. Some of the 
great scientists of that time are shown in the historic photograph in Figure 10.2.1.

FIGURE 10.2.1 This photo shows the 5th Solvay conference in Brussels in 1927, which was attended 
by great scientists including Albert Einstein, Max Planck, Niels Bohr, Marie Curie, Paul Dirac, Erwin 
Schrödinger and Louis de Broglie. All of these scientists contributed to the current knowledge of the 
universe, the atom and quantum mechanics.

WAVE–PARTICLE DUALITY
In many ways, the wave and particle models for light seem fundamentally 
incompatible. Waves are continuous and are described in terms of wavelength and 
frequency. Particles are discrete and are described by physical dimensions such as 
their mass and radius.

In order to understand how these two sets of ideas can be used together, it is 
important to remember that scientists describe the universe using models. Models 
are analogies that are used to illustrate certain aspects of reality that might not be 
immediately apparent. 

Physicists have come to accept that light is not easily compared to any other 
physical phenomenon. In some situations, light has similar properties to a wave; 
in other situations, light behaves more like a particle. This understanding is called 
wave–particle duality (Figure 10.2.2). Although this may seem somewhat 
paradoxical and counter-intuitive, in the century since Einstein did his work 
establishing quantum theory, many experiments have supported this duality and 
no scientist has (yet) come up with a better explanation.

FIGURE 10.2.2 An artist’s attempt to represent 
wave–particle duality.
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Experimental evidence for the dual nature of light
In the early years of quantum theory, some scientists believed that the wave 
properties of light observed in Young’s double-slit experiment may have been due to 
some sort of interaction between photons as they passed through the slits together. 

To test this, experiments were done with light sources that were so dim that 
scientists were confident that only one photon was passing through the apparatus 
at a time. In this way, any interactions between photons could be eliminated. Over 
time, these experiments produced identical interference patterns to those done with 
bright sources (see Figure 10.2.3) thus demonstrating the dual nature of light.

Interestingly, when a detector is used to measure which slit the photon passes 
through, the wave pattern disappears and the photon acts like a particle.

De Broglie’s wave–particle theory
In 1924, the French physicist Louis de Broglie proposed a ground-breaking 
theory.  He suggested that since light (which had long been considered to be a 
wave) sometimes demonstrated particle-like properties, then perhaps matter 
(which was considered to be made up of particles) might sometimes demonstrate 
wave-like properties. 

He quantified this theory by predicting that the wavelength of a particle would 
be given by the equation:

λ = h
p

where λ is the wavelength of the particle (m)

 p is the momentum of the particle (kg m s–1)

 h is Planck’s constant 

This is also commonly written as: 

λ = h
mv

where m is the mass of the particle (kg)

 v is the velocity of the particle (m s–1)

The wavelength that de Broglie described, λ¸ is referred to as the de Broglie 
wavelength of matter.

PHYSICSFILE

Louis Victor Pierre Raymond de Broglie (1892–1987)
Louis de Broglie (Figure 10.2.4) was a French  
physicist. In 1924 he wrote a doctoral thesis 
entitled Recherches sur la théorie des quanta 
(Research on quantum theory), in which he 
presented his theory of the wave properties 
of particles—the de Broglie wave theory, based 
on the works of Einstein and Planck on wave–
particle duality. Later, de Broglie developed his 
thesis and formulated the final de Broglie 
hypothesis. In 1929 he was awarded the Nobel 
Prize for his research. By applying de Broglie’s 
theory it was possible, for example, to construct 
an electron microscope.

FIGURE 10.2.4 Louis de Broglie

FIGURE 10.2.3 An interference pattern can be 
built up over time by a series of single photons 
passing through an apparatus like that used in 
Young’s experiment, demonstrating the wave–
particle duality of light.
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Worked example 10.2.1

CALCULATING THE DE BROGLIE WAVELENGTH

Electrons in a famous experiment known as the Davisson–Germer experiment 
travelled at about 4.0 × 106 m s–1.

Calculate the de Broglie wavelength of these electrons if the mass of an electron 
is 9.11 × 10–31 kg. 

Thinking Working

Recall de Broglie’s equation. λ = 
h

mv

Substitute the appropriate values into 
the equation and solve it. λ = 

h
mv

= 
6.63 × 10–34

9.11 × 10–31 × 4 × 106

= 1.8 × 10–10 m or 0.18 nm

Worked example: Try yourself 10.2.1

CALCULATING THE DE BROGLIE WAVELENGTH 

Calculate the de Broglie wavelength of a proton travelling at 7.0 × 105 m s–1. 
The mass of a proton is 1.67 × 10–27 kg. 

Worked example 10.2.2

CALCULATING THE DE BROGLIE WAVELENGTH OF A MACROSCOPIC OBJECT 

Calculate the wavelength of a cricket ball of mass m = 160 g travelling at 
150 km h–1.

Thinking Working

Convert mass and velocity to SI units. m = 160 g = 0.16 kg

v = 150 ÷ 3.6 = 42 m s–1

Recall de Broglie’s equation. λ = 
h

mv

Substitute the appropriate values into 
the equation and solve it. λ = 

h
mv

= 
6.63 × 10–34

0.16 × 42

= 9.9 × 10–35 m

Worked example: Try yourself 10.2.2

CALCULATING THE DE BROGLIE WAVELENGTH OF A MACROSCOPIC OBJECT 

Calculate the de Broglie wavelength of a person with m = 66 kg running at 
36 km h–1.

It can be seen from worked examples 10.2.1 and 10.2.2 that the 
wavelength  of  an  electron is smaller than that of visible light, but is still large 
enough to be measurable. However, the wavelength of an everyday object such 
as a cricket ball is extremely small (9.9 × 10–35 m). Hence, you will never notice 
the wave properties of everyday objects. To illustrate this, consider the observable 
wave behaviour of diffraction. Recall that for diffraction to be noticeable, the 
size of the wavelength needs to be comparable to the size of the gap or obstacle. 
Therefore for an everyday object, with its tiny wavelength, to produce a noticeable 
diffraction, it would need to pass through a gap much smaller than a fraction of a 
proton diameter!
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ELECTRON DIFFRACTION PATTERNS
De Broglie’s prediction that matter could exhibit wave-like behaviour was 
controversial. However, it was experimentally confirmed by the Americans Davisson 
and Germer in 1927 when they observed diffraction patterns being produced when 
they bombarded the surface of a piece of nickel with electrons (see Figure 10.2.5).

vacuum

target

scattered
electrons

electron beam

�lamentplate

accelerating 
potential (V)

movable electron detector

+ –

FIGURE 10.2.5 The Davisson and Germer apparatus to show electron scattering.

They used an electron ‘gun’ which provided a beam of electrons. The speed 
of the electrons was known because they had been accelerated through a known 
voltage. The detector could be swung around on an axis so that it could intercept 
electrons scattered from the nickel target in any direction in the plane shown. 

Davisson and Germer found that as they moved their detector through the 
different scattering angles, they encountered a sequence of maximum and minimum 
intensities (see Figure 10.2.6). 

Clearly, the electrons were being scattered by the different layers within the 
crystal lattice (see Figure 10.2.7) and were undergoing interference. When Davisson 
and Germer analysed the diffraction pattern to determine the wavelength of the 
‘electron waves’, they calculated a value of 0.14 nm, which was consistent with de 
Broglie’s hypothesis.

Worked example 10.2.3

WAVELENGTH OF ELECTRONS FROM AN ELECTRON GUN 

Find the de Broglie wavelength of an electron that has been accelerated from rest 
through a potential difference of 75 V. The mass of an electron is 9.11 × 10–31 kg 
and the magnitude of the charge on an electron is 1.6 × 10–19 C. 

Thinking Working

Calculate the kinetic energy of the electron from 
the work done on it by the electric potential. 
Recall from earlier chapters that W = qV.

W = qV

= 1.6 × 10–19 × 75

= 1.2 × 10–17 J

Calculate the velocity of the electron.
Ek = 

1
2 mv2

v = √2Ek

m

= √2 × 1.2 × 10–17

9.11 × 10–31

= 5.1 × 106 m s–1

Use de Broglie’s equation to calculate the 
wavelength of the electron. λ = 

h
mv

= 
6.63 × 10–34

9.11 × 10–31 × 5.1 × 106

= 1.4 × 10–10 m

= 0.14 nm

FIGURE 10.2.6 An electron diffraction pattern 
like the one observed by Davisson and Germer 
can be built up over time from repeated 
observations.

incident
electrons

re�ected electrons
produce interference
pattern

atoms are regularly spaced

FIGURE 10.2.7 Electrons reflecting from different 
layers within the crystal structure create an 
interference pattern like those produced by a 
diffraction grating.
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Worked example: Try yourself 10.2.3

WAVELENGTH OF ELECTRONS FROM AN ELECTRON GUN 

Find the de Broglie wavelength of an electron that has been accelerated from rest 
through a potential difference of 50 V. The mass of an electron is 9.11 × 10–31 kg 
and the magnitude of the charge on an electron is 1.6 x 10–19 C. 

Comparing the wavelengths of photons and electrons
In the same year that Davisson and Germer conducted their experiment, other 
supporting evidence came from G. P. Thomson (son of J. J. Thomson, discoverer 
of the electron). Rather than scatter an electron beam from a crystal, Thomson 
produced a diffraction pattern by passing a beam of electrons through a tiny crystal. 
Thomson then repeated his experiment, using X-rays of the same wavelength in 
place of the electrons. The X-ray diffraction pattern was almost identical to the one 
made with electrons, as shown in Figure 10.2.8. 

As the diffraction patterns obtained for the X-ray photons and electrons 
were the same, and as both were passed through the same ‘gaps’ to obtain this 
diffraction pattern, then an important conclusion could be made. The electrons 
must have a similar wavelength to the X-rays. Since their wavelengths are similar, 
the momenta of the electrons and the X-ray photons must also be comparable (but 
not their speeds).

EXTENSION

Electron microscopes 
The discovery of the wave properties of electrons had an important practical 
application in the invention of the electron microscope. Just as an optical 
microscope makes use of the wave properties of photons to magnify tiny 
objects, so too can the wave properties of electrons be used to create 
magnified images (See Figure 10.2.9).

One of the limitations of an optical microscope is that it can only create a 
clear image of structures that are similar in size to the wavelength of the light 
being used. This is because the light diffracts around these structures. So a 
light microscope is only useful for seeing things down to about 390 nm, the 
lower wavelength end of the visible light spectrum.

However, the wavelength of a beam of electrons is often smaller than the 
wavelength of a beam of visible light. This means that electron microscopes 
can create images with much finer detail than optical microscopes. 

  
FIGURE 10.2.9 Images formed by an electron microscope: rod-shaped bacteria (orange) 
clustered on the point of a syringe used to administer injections. The magnifications are 
(a) ×9, (b) ×36 and (c) ×560 at 35 mm size.

(a)

(b)

FIGURE 10.2.8 These diffraction patterns were 
taken by using (a) X-rays and (b) a beam of 
electrons with the same target crystal. Their 
similarity suggests a wave-like behaviour for 
the electrons and a similar electron de Broglie 
wavelength to that of X-rays.
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PHOTON MOMENTUM
An interesting corollary of de Broglie’s hypothesis, λ = h

p, is that if a particle like 
an electron has a wavelength, λ , then a photon must have a momentum, p. This is 
quite counter-intuitive, since photons do not have any mass and all photons travel 
at the speed of light, c. Nevertheless, de Broglie’s equation allows the momentum 
of a photon to be calculated.

Worked example 10.2.4

CALCULATING PHOTON MOMENTUM 

Calculate the momentum of a photon of red light with a wavelength of 650 nm.

Thinking Working

Convert 650 nm to m. 650 nm = 650 × 10–9 m

Transpose de Broglie’s equation to 
make momentum the subject. λ = 

h
p

p = 
h
λ

Substitute in the appropriate values 
and solve for p.

p = 
h
λ

= 
6.63 × 10–34

650 × 10–9

= 1.02 × 10–27 kg m s–1

Worked example: Try yourself 10.2.4

CALCULATING PHOTON MOMENTUM 

Calculate the momentum of a photon of blue light with a wavelength of 450 nm.

Clearly, the momentum of a single photon is tiny, which is why you will not feel 
any physical ‘pressure’ when light falls on you. However, it is possible to measure 
‘light pressure’ using very sensitive equipment.

PHYSICS IN ACTION

Solar sailing 
In interplanetary space, where other forces like friction are negligible,  
light pressure can actually be used as a form of propulsion. Spacecraft 
such as the Mariner 10 and MESSENGER spacecraft, which both flew 
past Mercury and Venus, used deceleration caused by solar pressure 
to conserve fuel. 

More recently, the Japanese Aerospace Exploration Agency launched 
IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). 
IKAROS (see Figure 10.2.10) is the first spacecraft to draw its primary 
propulsion from a solar sail. A traditional sail propels a ship using 
the change of momentum that occurs when air molecules bounce 
off it. Similarly, a solar sail gains propulsion from changes in photon 
momentum as light is reflected from it. The IKAROS spacecraft has 
a 196 m2 reflective sail which produces a thrust of 1.12 mN. 

FIGURE 10.2.10 The IKAROS spacecraft is the first interplanetary  
spacecraft to use solar-sail technology.
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10.2 Review
SUMMARY

• On the atomic level, energy and matter exhibit 
the characteristics of both waves and particles.

• The wavelength of a particle is given by the 
de Broglie equation: 

λ = 
h
p

i.e. λ = 
h

mv

• Young’s double-slit experiment is explained with 
a wave model but produces the same interference 
and diffraction patterns when one photon at a 
time or one electron at a time is passed through 
the slits.

• In particle-scattering experiments, beams of 
particles (electrons usually) are made to travel 
with a speed so that their matter wavelength 
approximates the interatomic spacing in a crystal. 
Consequently, a diffraction pattern is produced 
which can only be explained if matter has a  
wave-like nature.

• If photons and matter particles being scattered 
by the same crystal sample produce the same 
fringe spacing, then they must have the same 
wavelength and momentum.

• All matter, like light, has a dual nature. Through 
everyday experience matter is particle-like, but 
under some situations it has a wave-like nature. 
This symmetry in nature—the dual nature of light 
and matter—is referred to as wave–particle duality.

KEY QUESTIONS

1  What is the de Broglie wavelength of an electron 
travelling at 1.0 × 106 m s–1?

2  Calculate the speed of an electron that has a 
de Broglie wavelength of 4.0 × 10–9 m.

3  Which of the following conclusions can be drawn 
from Louis de Broglie’s investigation into the 
existence of matter waves? 
A  all particles exhibit wave behaviour
B  only moving particles exhibit wave behaviour
C  only charged particles exhibit wave behaviour
D  only moving, charged particles exhibit wave 

behaviour

4  In an experiment to determine the structure of a 
crystal, identical diffraction patterns were formed 
by a beam of electrons and a beam of X-rays with 
a frequency of 8.6 × 1018 Hz.
a  Calculate the wavelength of the electrons.
b  Calculate the speed of the electrons. 

5  Explain why a cricket player does not have to consider 
the wave properties of a cricket ball while batting.

6  Explain why it is impossible for individual atoms to be 
observed by an electron microscope.

7  At what speed would a proton be travelling if it were to 
have the same wavelength as a gamma ray of energy 
6.63 × 10–14 J? (Mass of a proton = 1.67 × 10–27 kg.)

8  A charge q of mass m is accelerated from rest through 
a potential difference of V. Derive an expression that 
defines the de Broglie wavelength of the mass, λ, in 
terms of q, m and V.

9  A corollary of de Broglie’s work on matter waves is 
that photons can be considered to have momentum. 
The momentum of photons, although small, has 
been measured under laboratory conditions. Use 
de Broglie’s equation to find an equation for the 
momentum of a photon of wavelength λ.

10  Why can an electron microscope resolve images in 
finer detail than an optical microscope?
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10.3 Light and matter
The idea of wave–particle duality is counter-intuitive and was not immediately 
accepted by most scientists, even after the ground-breaking work of Einstein, de 
Broglie and others.

It was the work of Danish physicist Niels Bohr that finally convinced scientists 
that the particle model was required as part of a complete understanding of the 
nature of light. Bohr built on the work of Planck and Einstein to explain the emission 
and absorption spectra of hydrogen (see Figure 10.3.1). This led to important 
discoveries in astronomy and, eventually, a reformulation of the understanding of 
the nature of energy and matter.

(a)

(b)

FIGURE 10.3.1 The spectral lines for hydrogen (a) and helium (b). An element’s spectral lines 
are unique to each element and are produced as electrons transition between different energy 
levels within the atom. Bohr’s explanation of emission and absorption spectra was instrumental in 
furthering the understanding of the nature of energy and matter.

ABSORPTION SPECTRA
In 1814, the German physicist Joseph von Fraunhofer reported a number of dark 
lines appearing in the spectrum of sunlight, as shown in Figure 10.3.2. 

You may recall that a spectrum showing all the colour components of white light 
can be obtained by passing sunlight through a prism. When Fraunhofer did this, he 
observed the spectrum (as expected) but also noticed that there were some colours 
‘missing’ from the spectrum. The missing colours appeared as black lines at various 
points along the spectrum. These apparently missing colours came to be known as 
Fraunhofer lines.

FIGURE 10.3.2 The spectrum of sunlight contains some missing colours known as Fraunhofer lines.



347CHAPTER 10   |   LIGHT AND MATTER 

About 50 years later, scientists including Kirchhoff and Bunsen (of Bunsen 
burner fame) recognised that some of these lines corresponded to the colours emitted 
when certain gases were heated to high temperatures. They deduced that the dark 
lines were due to these colours (wavelengths or frequencies) being absorbed by gases 
as light made its way through the outer atmosphere of the Sun. This absorption 
spectrum allowed astronomers to determine that the Sun is largely composed of 
hydrogen with small quantities of helium and some other heavier elements.

Absorption spectra are valuable for scientists who wish to know what elements 
are present in a sample of gas or in a solution, so their use is not limited to just 
astronomy. First, light is directed through a cool sample of a gas or through a solution 
containing an element or compound. Only certain wavelengths (or frequencies) of 
light will be absorbed by the elements present in the sample, which means that on 
viewing the spectrum, this particular wavelength will be ‘missing’. The wavelengths 
that are absorbed are unique to each type of atom. For this reason, by analysing 
which wavelengths are missing, scientists can determine exactly what elements are 
present in the sample. 

EMISSION SPECTRA
When elements are heated to high temperatures or have an electrical current passed 
through them, they produce light. Atoms within the material absorb energy and 
become ‘excited’ (more on what this means later in this section). This makes the 
atom unstable and eventually it will return to the ‘unexcited’ or ground state. When 
this happens, the energy that had been absorbed is released as a single photon. The 
colour of this photon will depend on the amount of energy it has.

Since atoms can usually have a number of different excited states, they can 
produce a number of different colours. The combination of colours produced by a 
particular element are distinctive to that element (See Figure 10.3.3) and are known 
as its emission spectrum (shown in Figure 10.3.1 for hydrogen and helium).

FIGURE 10.3.3 The different metals used in fireworks are responsible for the colours in this display. For example, strontium gives red, sodium gives yellow 
and copper gives green.
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SPECTRAL ANALYSIS
In atomic emission spectroscopy, the chemical composition of a material can be 
determined by analysing the light that is emitted from a material when it is burned 
or when an electrical current is passed through a gas. The light can be separated 
into its component wavelengths using a spectroscope, and the specific wavelengths 
found are characteristic of each particular element, very much like how a fingerprint 
or DNA is used to identify an individual person.

Recall that an emission spectrum is the result of electrons absorbing energy (the 
electrons become ‘excited’) and then releasing energy in the form of a photon. An 
emission spectrum can be analysed in terms of the energy of the photons produced. 
In his work on the photoelectric effect, Einstein used Planck’s equation for the 
energy of a photon:

ΔE = hf = hc
λ

where ΔE is the energy of the photon produced (J)

 h is Planck’s constant (6.63 × 10–34 J s or 4.14 × 10–15 eV s)

 f is the frequency of the photon (Hz)

 c is the speed of light (3.00 × 108 m s–1)

	 λ is the wavelength of the photon (m)

Notice that ΔE has been used in this equation instead of E. ΔE corresponds to the 
difference in energy between the excited state and the ground state of the electron 
that released the photon, and so it is used to represent the energy of the photon.

Worked example 10.3.1 relates to the emission spectra of metal vapour 
lamps. Metal vapour lamps produce light as atoms are excited and then emit a 
photon as they return to their ground state. The emitted photons have wavelengths 
characteristic of the metals whose atoms are being excited in the lamp. A common 
type of metal vapour lamp is the sodium lamp. These are often used in street lighting 
and emit a distinctive yellow colour (see Figure 10.3.4). 

Worked example 10.3.1

SPECTRAL ANALYSIS

The emission spectrum of a sodium vapour lamp is analysed and shows that 
most of the light is emitted with a frequency of around 5.1 × 1014 Hz. Calculate 
the energy of these photons in joules. 

Thinking Working

Recall Planck’s equation. ΔE = hf

Substitute in the appropriate 
values and solve for ΔE.

ΔE = 6.63 × 10–34 × 5.1 × 1014 

= 3.4 × 10–19 J 

Worked example: Try yourself 10.3.1

SPECTRAL ANALYSIS  

In the Sun’s absorption spectrum, one of the dark Fraunhofer lines corresponds 
to a frequency of 6.9 × 1014 Hz. Calculate the energy (in joules) of the photon 
that corresponds to this line. 

The energy of the photon emitted or absorbed can also be expressed in electron-
volts (eV) as was explained in Section 10.1. That is, E (in eV) = E (in J) divided by 
the charge on an electron (1.6 × 10–19 C). To simplify calculations, Plank’s constant 
can be restated in terms of electron-volts, and this figure can be used to calculate 
the energy directly in electron-volts; i.e. use h = 4.14 × 10–15 eV s.

FIGURE 10.3.4 Sodium vapour lamps are 
commonly used as street lights and have a 
distinctive yellow colour due to the yellow 
wavelengths of the sodium emission spectrum. 
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HYDROGEN’S ABSORPTION SPECTRUM
In the late 19th century, the emission and absorption spectra of hydrogen were of 
particular interest to scientists as it had been recognised that lines in the absorption 
spectrum of hydrogen matched lines in the solar spectrum (see Figure 10.3.5).

(a)

(b)

FIGURE 10.3.5 In the absorption spectrum of hydrogen (a) there is a background of continuous white 
light (broken into a spectrum of colours), with black lines that correspond to wavelengths of the 
radiation absorbed by the hydrogen atoms. In the emission spectrum of hydrogen (b) there is a black 
background against which lines corresponding to the wavelengths emitted by the hydrogen atoms 
can be observed.

Although some scientists were able to come up with an empirical (based 
on experimental data) formula that predicted the wavelength of the lines in the 
hydrogen spectra, no one was able to provide a theoretical explanation for the 
production of these lines using a wave model for light.

EXTENSION

Balmer and Rydberg—empirical equations 
In 1885, the Swiss mathematician Johann Balmer found an empirical equation that predicted the wavelength of 
the visible lines of the hydrogen emission spectrum:

λ = 
hm2

m2 – n2

where λ is the wavelength of light (nm)

 h is a constant with a value of 365 nm

 n = 2

 m could take values of 3, 4, 5 or 6.

When Balmer put m = 7 into the equation, it gave an answer  
of 397 nm, which corresponded to a spectral line that had been 
independently observed by Anders Angstrom. Consequently, this 
set of spectral lines in the visible part of the electromagnetic 
spectrum came to be known as the Balmer series.

In 1888, Johannes Rydberg (see Figure 10.3.6) realised that 
Balmer’s formula was a special case of the more general formula:

1
λ  = RH 

1
n2 – 

1
m2

where RH is the Rydberg constant for hydrogen (1.097 × 107 m–1)

 n and m are any two integers where m > n.

This equation predicted that there should be spectral lines in 
other parts of the electromagnetic spectrum. The ultraviolet series 
was later observed by Theodore Lyman and two different infrared 
series were observed by Friedrich Paschen and Frederick Brackett.

FIGURE 10.3.6 Johannes Rydberg developed a general  
formula predicting the wavelengths of the lines  

of the emission spectrum of hydrogen.
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BOHR MODEL OF THE ATOM
In 1913, the Danish physicist Niels Bohr proposed an explanation for the emission 
spectrum of hydrogen that drew on the quantum ideas proposed by Planck and 
Einstein, including Plank’s quantum relation equation, ΔE = hf. Bohr realised that:
• The absorption spectrum of hydrogen showed that the hydrogen atom was 

only capable of absorbing a small number of different frequencies of light 
and therefore energies of very specific values. That is, the absorbed energy 
was quantised.

• The emission spectrum of hydrogen showed that hydrogen atoms were also 
capable of emitting quanta of the exact energy value that it was able to absorb.

• If the frequency, and hence energy, of the incident light was below a certain 
value the light would pass straight through hydrogen gas without any 
absorption occurring.

• Hydrogen atoms have an ionisation energy of 13.6 eV. Light of this energy or 
greater can remove an electron from a hydrogen atom, creating a positive ion.

• Photons of light with all energies above the ionisation value for hydrogen are 
continuously absorbed.
Bohr’s explanation relied on a significant refinement of Rutherford’s planetary 

model of the atom. He devised a sophisticated model of electron energy levels 
for atoms, a development for which he later won the Nobel Prize in Physics (see 
Figure 10.3.7).

FIGURE 10.3.7 A diagram showing hydrogen spectrum emission levels based on the Bohr model 
of the atom. Electrons may only orbit in specific energy orbits, shown by the concentric circles. 
Electrons absorb energy to move to higher levels in their excited states and emit light in specific 
wavelengths characteristic of the element when returning to the ground state.

Bohr’s model of the atom contained the following ideas:
• Electrons move in circular orbits around the nucleus of the hydrogen atom.
• The centripetal force keeping an electron in a circular orbit is the electrostatic 

force of attraction between the positive nucleus and the negative electron.
• A number of allowable orbits of different radii exist for each atom (labelled 

n = 1, 2, 3… and known as the principal quantum number). Electrons may only 
occupy these orbits.

• An electron ordinarily occupies the lowest-energy orbit available (i.e. the 
ground state).

• An electron does not radiate energy while it is in a stable orbit.
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• Electromagnetic radiation (in the form of photons) can be absorbed by an atom 
when the photon energy is exactly equal to the difference in energies between an 
occupied orbit and a higher orbit.

• Electromagnetic radiation is emitted by an excited atom when an electron returns 
from a higher energy to a lower energy orbit. The photon energy will be exactly 
equal to the energy difference between the electron’s initial and final levels.
Bohr labelled the possible electron orbits for the hydrogen atom with a quantum 

number (n), and he was able to calculate the energy associated with each quantum 
number. Using these energy levels, he could theoretically predict the wavelengths of 
all of the lines of the hydrogen emission spectrum using Planck’s equation:

∆E = hc
λ

Figure 10.3.8 shows the energy levels for the hydrogen atom. These energies are 
expressed in terms of how strongly the electron is bound to the nucleus. The ground 
level (n = 1) represents the orbit that is closest to the nucleus, i.e. the unexcited 
state. An electron in this orbit has an energy of (–)13.6 eV, which means that it 
would need to gain 13.6 eV of energy for it to escape the atom. Higher energy levels 
represent orbits that are further from the nucleus.
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FIGURE 10.3.8 An energy level diagram for hydrogen. An electron in the ground state (n = 1) has an 
energy of (−)13.6 eV. For higher energy levels (n > 1), the energy levels can be seen to crowd together.

When a hydrogen atom gains energy, either by heating or from an electrical 
current, its electron moves from the ground state to one of the higher energy levels. 
This type of atom is described as ‘excited’. Eventually, the electron will drop from 
the higher energy level to one of the lower levels and will emit a photon with an 
energy equal to the difference in energy between the levels.

You can see in Figure 10.3.8 that energy levels within the atom are negative in 
value. A free electron (at n = ∞) must have zero potential energy as it has escaped 
the electrostatic attraction of the proton in the nucleus. To raise an electron from 
one energy level to another, the appropriate amount of energy must be delivered. 
As an electron then falls back to its previous energy level, its energy value decreases. 
That is, it becomes a larger negative number. 
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Figure 10.3.8 also shows that the spectral lines of hydrogen can be explained in 
terms of electron transitions. The different series shown on the diagram (Lyman, 
Balmer, Paschen) represent specific transitions. The Balmer series, for example, 
shows transitions back to n = 2 from various excited energy levels. These transitions 
represent wavelengths of the visible lines of the hydrogen emission spectrum.

Worked example 10.3.2

USING THE BOHR MODEL OF THE HYDROGEN ATOM 

Calculate the wavelength (in nm) of the photon produced when an electron 
drops from the n = 4 energy level of the hydrogen atom to the n = 2 energy 
level. Identify the spectral series to which this line belongs.

Use Figure 10.3.8 to calculate your answer.

Thinking Working

Identify the energy of the relevant 
energy levels of the hydrogen atom. 

E4 = –0.85 eV

E2 = –3.4 eV

Calculate the change in energy. ΔE = E4 – E2

= –0.85 – (–3.4)

= 2.55 eV

Calculate the wavelength of the photon 
with this amount of energy.

E = 
hc
λ

∴ λ = 
hc
E

= 
4.14 × 10–15 × 3 × 108

2.55

= 4.87 × 10–7 m

= 487 nm

Identify the spectral series. The electron drops down to the n = 2 
energy level. Therefore, the photon 
must be in the Balmer series.

Worked example: Try yourself 10.3.2

USING THE BOHR MODEL OF THE HYDROGEN ATOM 

Calculate the wavelength (in nm) of the photon produced when an electron 
drops from the n = 3 energy level of the hydrogen atom to the n = 1 energy 
level. Identify the spectral series to which this line belongs.

Use Figure 10.3.8 to calculate your answer.

ABSORPTION OF PHOTONS
The Bohr model also explains the absorption spectrum of hydrogen (Figure 
10.3.5(a) on page 349).

You have already seen that the missing lines in absorption spectra correspond 
to the energies of light that a given atom is capable of absorbing. This is due to 
the energy differences between the atom’s electron orbits. Only incident light 
carrying just the right amount of energy to raise an electron to an allowed level can 
be absorbed.

An electron ordinarily occupies the lowest energy orbit. Incident light that does 
not carry enough energy to raise an electron from this lowest energy level to the 
next level cannot be absorbed by the atom. Incident light below a certain energy 
value would simply pass straight through. If light with greater energy than the 
ionisation energy of an atom is incident, then the excess energy provided by the 
photon will simply translate to extra kinetic energy for the released electron (recall 
the photoelectric effect from Section 10.1 of this chapter).
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For hydrogen, then, if a hydrogen atom absorbs a photon with 13.6 eV or more, 
as this is the energy required for the electron to escape the atom completely, the 
hydrogen atom is said to be ‘ionised’.

Worked example 10.3.3

ABSORPTION OF PHOTONS

Some of the energy levels for atomic mercury are shown in the diagram below.

0

–1.6

–3.7

–5.5

–10.4

n = ∞

n = 4

n = 3

n = 2

n = 1

E (eV)

Ultraviolet light with photon energies 4.9 eV, 5.0 eV and 10.50 eV is incident on 
some mercury gas. What could happen as a result of the incident light?

Thinking Working

Check whether the energy of 
each photon corresponds to 
any differences between energy 
levels by determining the 
difference in energy between 
each level.

n = ∞

E (eV)

n = 4

n = 3

n = 2

n = 1

0
–1.6

–3.7

–5.5

–10.4 4.9 eV
6.7 eV
8.8 eV
10.4 eV

1.8 eV
3.9 eV
5.5 eV

2.1 eV
3.7 eV

1.6 eV

Compare the energy of the 
photons with the energies 
determined in the previous 
step. Comment on the 
possible outcomes.

A photon of 4.9 eV corresponds to the 
energy required to promote an electron 
from the ground state to the first excited 
state (n = 1 to n = 2). The photon may 
be absorbed.

A photon of 5.0 eV cannot be absorbed since 
there is no energy level above the ground 
state that corresponds exactly to 5.0 eV.

A photon of 10.5 eV may ionise the mercury 
atom. The ejected electron will leave the 
atom with 0.1 eV of kinetic energy.

PHYSICSFILE

The special case 
of hydrogen 
The hydrogen atom was a relatively 
simple place to begin the development 
of the field that would come to be 
known as ‘quantum mechanics’. 
The hydrogen atom contains two 
charged particles—the positively 
charged nucleus (which usually 
contains a single proton) and 
the electron (see Figure 10.3.9). 
This means that only one electrical 
interaction (i.e. between the 
electron and the nucleus) needs 
to be considered.

In more complex atoms, such 
as helium, electrical interactions 
between the electrons are also 
significant. This makes the construction 
of mathematical models for these 
atoms vastly more complicated than 
for hydrogen.

FIGURE 10.3.9 The hydrogen atom 
contains only two particles: the proton 
in the nucleus and the electron.
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Worked example: Try yourself 10.3.3

ABSORPTION OF PHOTONS

Some of the energy levels for atomic mercury are shown in the diagram below.

0

–1.6

–3.7

–5.5

–10.4

n = ∞

n = 4

n = 3

n = 2

n = 1

E (eV)

Light with photon energies 6.7 eV, 9.0 eV and 11.0 eV is incident on some 
mercury gas. What could happen to as a result of the incident light?

Problems with Bohr’s model
Bohr’s model of the hydrogen atom applied a quantum approach to the energy 
levels of atoms to explain a set of important, previously unexplained phenomena—
the emission and absorption spectra of hydrogen. In principle, Bohr’s work on 
the hydrogen atom could be extended to other atoms and, in 1914, the German 
scientists James Franck and Gustav Hertz demonstrated that mercury atoms 
contained energy levels similar to hydrogen atoms. Bohr’s model signified an 
important conceptual breakthrough.

However, Bohr’s model was limited in its application. It could only really 
be accurately applied to single-electron atoms—hydrogen and ionised helium. 
It  modelled inner-shell electrons well but could not predict the higher-energy 
orbits of multi-electron atoms. Nor could it explain the discovery of the 
continuous  spectrum emitted by solids. Further studies even showed problems 
with  the emission spectrum of hydrogen. Some of the observed emission lines 
could be resolved into two very close spectral lines, and Bohr’s model could not 
explain this. A more complex quantum approach was required.

STANDING WAVES AND THE DUAL NATURE OF MATTER
In the previous section, it was shown that small particles moving at very high 
speeds can be thought of as matter waves. Wave behaviour can be used to indicate 
the probability of the path of a particle. If particles can be thought of as matter 
waves, then these matter waves must be able to maintain steady energy values if the 
particles are to be considered stable.

De Broglie, the scientist who proposed the idea of matter having wavelengths, 
applied his approach to the discussion of Bohr’s model for the hydrogen atom. He 
viewed the electrons orbiting the hydrogen nucleus as matter waves. He suggested 
that the electron could only maintain a steady energy level if it established a 
standing wave.

De Broglie reasoned that if an electron of mass m were moving with speed v in 
an orbit with radius r, this orbit would be stable if it matched the condition

mvr = n h
2π

where n is an integer.
This can be rearranged to 

2πr = n h
mv
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Since 2πr is the circumference, C, of a circle, and using the de Broglie equation,  
λ = h

mv, this equation can be rewritten as C = nλ.
In other words:

The stable orbits of the hydrogen atom are those where the circumference is 
exactly equal to a whole number of electron wavelengths. 

This can be visualised by imagining a conventional standing-wave pattern, like 
that of a vibrating string discussed in the previous chapter, being looped around on 
itself in three dimensions as shown in Figure 10.3.10. 

(a)

(b)

FIGURE 10.3.10 A standing wave pattern (a) can be looped around on itself to form (b) if the 
circumference of the circle is equal to a whole number of wavelengths.

If the circumference of the circle is not equal to a whole number of wavelengths, 
then destructive interference occurs, a standing wave pattern cannot be established 
and the orbit cannot represent an energy level (see Figure 10.3.11).

FIGURE 10.3.11 A circular standing wave pattern cannot be established if the circumference of the 
circle is not equal to a whole number of wavelengths.
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COMPARING DIFFERENT LIGHT SOURCES
So far in this section, you have learnt how photons of light are emitted when 
electrons move from an excited state to ground state. But this is not the only way 
to produce light. An incandescent light bulb produces light by heating a filament 
to a very high temperature (see Figure 10.3.12). This produces electromagnetic 
radiation at a range of wavelengths; that is, the light from the incandescent globe is 
a continuous spectrum. Some of the light produced is actually in the infrared part 
of the spectrum that is invisible to human beings (see Figure 10.3.13). 
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FIGURE 10.3.13 The spectrum of a 230 V, 60 W incandescent light globe. Since the visible spectrum 
is between about 400 nm and 750 nm, some of the radiation produced is not visible to humans.

PHYSICSFILE

Inefficiency
Incandescent light bulbs are widely seen as one of the most inefficient forms of 
lighting available. Traditional incandescent bulbs convert less than 10% of the electrical 
energy into light, with the remainder being released as heat and other forms of long 
wavelength electromagnetic radiation. As a consequence, these types of light bulbs are 
being phased out and replaced with compact fluorescent lights (CFLs), which are much 
more efficient and longer lasting.

Other light sources emit light with different properties due to the different 
methods employed to produce them. 

Coloured LEDs
A light-emitting diode (LED) is a semi-conducting device that uses the excitation 
of electrons to produce light (see Figure 10.3.14). Most LEDs are made primarily 
from silicon. Pure silicon is a relatively poor conductor. However, the addition of a 
small amount of another material, in a process known as ‘doping’, can change the 
conductive properties of silicon dramatically. 

A semi-conductor diode is designed so that most electrons sit in an energy 
level known as the valence band. At a slightly higher energy is another energy level 
known as the conduction band. If a small amount of electrical energy is provided as 
a potential difference, electrons can jump from the valence band to the conduction 
band and then move through the silicon as an electric current. When the electrons 
eventually drop back into the valence band, their energy is released as photons.

The colour of the light produced is determined by the energy gap between 
the valence and conduction bands. This in turn depends on the amount and type 
of doping of the silicon. This means that scientists can effectively ‘tune’ LEDs 
to produce photons of a particular wavelength, and hence to produce light of a 
particular colour. 

FIGURE 10.3.12 In an incandescent light globe, 
electricity is passed through a tungsten filament. 
As the filament heats up, the free electrons in 
the tungsten atoms collide, accelerate and emit 
photons. A wide range of photon wavelengths 
are emitted due to a wide range of different 
collisions (some weak, some strong). 

FIGURE 10.3.14 LEDs can be produced in 
virtually every visible and near-visible colour.
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Lasers
To produce light from gas, the atoms in the gas need to be raised to an ‘excited state’ 
by heating the gas or passing an electric current through it. In a normal sample of 
gas, most of the gas atoms are in the ground (unexcited) state and the relatively 
small number of excited atoms emit their photons of energy spontaneously and in 
no fixed pattern.

However, it is possible to create a system known as a ‘population inversion’, in 
which most of the gas atoms are in an excited state. If a photon of the appropriate 
energy is then introduced to this gas, it can stimulate these atoms to release their 
photons in a systematic way. This is the basis of the laser (see Figure 10.3.15).

The term laser is an acronym that stands for Light Amplification by Stimulated 
Emission of Radiation (LASER). Laser light has a number of unique properties. It 
is usually polarised and either monochromatic or limited to a very narrow band of 
wavelengths. Laser light is also coherent, which means that all of the waves are in 
phase, i.e. their crests and troughs occur in time with each other. 

Although lasers were first developed as a product of theoretical research, they 
now have a wide variety of applications in areas as diverse as communications, 
medicine and weaponry.

Synchrotron light
A synchrotron is a machine that uses powerful magnets to accelerate charged 
particles, usually electrons, to velocities close to the speed of light (see Figure 10.3.16). 
You may have already come across this idea in the optional material in Unit 2 or be 
aware of the Australian Synchrotron based near Monash University in Melbourne.

FIGURE 10.3.15 Laser light is coherent, 
polarised and monochromatic.
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FIGURE 10.3.16 A synchrotron accelerates electrons to near light speed.
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Most synchrotrons are very large so that the electrons can be accelerated to the 
very high speeds required. For example, the Australian Synchrotron in Clayton, 
Victoria has a circumference of over 200 m.

When electrons are accelerated, they produce electromagnetic radiation (light) 
known as synchrotron light. Because of the extremely high energies involved, the 
electromagnetic radiation produced by a synchrotron has a number of special 
properties. It is: 
• extremely bright
• highly polarised
• emitted in very short pulses
• produced across a broad range of wavelengths from microwaves to gamma rays. 

Synchrotron light has a wide range of scientific uses across medicine, bioscience, 
materials science and engineering. For example, synchrotron light is useful for 
exploring the structure of very small objects, smaller than those that can be seen 
with visible light. An ordinary light microscope is incapable of resolving many small 
structures due to the long wavelength of visible light. On the other hand, the short-
wavelength X-rays in synchrotron light are ideal for examining structures at the 
cellular or atomic level as they can resolve images down to the size of individual 
atoms (see Figures 10.3.17).

(a)

 

(b)

FIGURE 10.3.17 (a) Colour-enhanced image of the Bluetongue virus obtained from the diffraction 
pattern of high-energy X-rays from synchrotron radiation. The virus gets its name for the blue tongue 
it causes in sheep. (b) Synchrotron light was used to map the internal structure of this fossilised alga 
without having to cut or break it open.
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10.3 Review
SUMMARY

• The production of spectra suggests an internal 
structure to the atom. A line emission spectrum 
is produced by energised atoms, an absorption 
spectrum is created when white light passes 
through a cold gas. 

• The spectrum for any particular element is unique 
to that element. 

• Bohr suggested that electrons in atoms orbit 
the nucleus in specially defined energy levels. 
No radiation is emitted or absorbed unless the 
electron can jump from one energy level to 
another. Electron energies are said to be quantised, 
since only certain values are allowed.

• The frequency of a photon emitted or absorbed 
by a hydrogen atom can be calculated from the 
difference between the energy levels involved, 

i.e. E2 – E1 = hf or = 
hc
λ .

• The Bohr model of the atom is limited in its 
application, but was a significant development 
at the time as it took a quantum approach to 
the energy levels of atoms and incorporated the 
quantum nature of electromagnetic radiation.

• de Broglie viewed electrons as matter waves. His 
standing-wave model for electron orbits provided 
a physical explanation for electrons only being 
able to occupy particular energy levels in atoms. 
He suggested that the only way that the electron 
could maintain a steady energy level was if it 
established a standing wave.

• The quantised states of the atom are analogous to 
the quantised standing waves that are known to 
occur in physical objects such as strings.

• In an incandescent lamp, the thermal motion 
of free electrons produces a continuous 
spectrum. Lasers, LEDs, metal vapour lamps 
and synchrotrons are light sources that produce 
light at discrete frequencies via the emission of 
photons when excited electrons release energy. 
The means of excitation varies by source.

KEY QUESTIONS

1  When does an element such as sodium produce an 
emission spectrum?

2  An emission line of frequency 6.0 × 1014 Hz is 
observed when looking at the emission spectrum of a 
particular elemental gas. What is the energy, in joules, 
of photons corresponding to this frequency?

3  Photons of energy 0.42 eV are emitted by a 
particular atom as it returns from the excited to the 
ground state. What is the corresponding wavelength 
of these photons?

4  What do the following acronyms stand for? 
a  LED 
b  LASER 

5  At what wavelength (in nm) will an LED radiate if it 
is made from a material with an energy band gap 
of 1.84 eV?

6  Calculate the energy of the photon required to move 
an electron in a hydrogen atom from its ground 
state (n = 1) to the n = 4 energy level. Refer to 
Figure 10.3.8.

7  Calculate the wavelength of the photons released in 
the transition described in Question 6.

8  What do de Broglie’s matter-wave concept and a 
bowed violin string have in common?

9  Bohr’s quantised model of the atom was a significant 
development. However, it was limited in application. 
What was the Bohr model unable to explain?

10  When an electron drops from the n = 5 energy level of 
the hydrogen atom to the n = 2 energy level, a 434 nm 
photon is released. If the n = 2 orbit has an energy of 
–3.4 eV, what is the energy of the n = 5 orbit?
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10.4 Heisenberg’s uncertainty 
principle
In the early 20th century, scientists struggled to interpret the evidence of the dual 
wave–particle nature of energy and matter. Waves and particles are fundamentally 
different—waves are extended and continuous whereas particles are discrete. 
How two such different models could be combined to describe the fundamental 
building blocks of nature was a serious puzzle. As scientists delved into this 
mystery, they discovered fundamental limitations to their ability to explore the 
‘quantum’ universe.

A QUANTUM INTERPRETATION OF THE ELECTRON
In 1925, the Austrian physicist Erwin Schrödinger built on the work of Niels Bohr 
by developing a mathematical equation that could describe the wave behaviour of 
electrons in situations other than the simple hydrogen atom.

In Schrödinger’s model, the wave properties of electrons are interpreted as 
representing the probability of finding an electron in a certain location. 

ˆih Ht
∂ Ψ = Ψ∂

FIGURE 10.4.1 Schrödinger’s wave equation. While outside the scope of this course, it is interesting 
to see what Schrödinger’s equation looks like. The Greek symbol Ψ (psi) represents the wave 
function of the electron.

Quantum mechanics is the name now given to the area of physics in which the 
wave properties of electrons are studied. Schrödinger’s equation (see Figure 10.4.1) 
has been used to calculate the regions of space in which an electron can be found in 
a hydrogen atom. These are now known as ‘orbitals’ rather than orbits because they 
are complex three-dimensional shapes, as shown in Figure 10.4.2, rather than the 
simple circular paths once imagined by Rutherford and Bohr.

FIGURE 10.4.2 The shapes of the first five electron orbitals of a hydrogen atom.

LIMITS TO MODELS AT VERY SMALL SCALES
It was becoming clear to scientists that the nature of the universe at the very 
smallest scale is fundamentally different to the way the universe is perceived at the 
macroscopic scale.

In everyday life, each object has a clearly definable position and motion. The 
classical laws of physics, developed by scientists from Newton through to Maxwell, 
are all based on this assumption, which is so fundamental to human experience that 
it is hard to imagine a universe where this is not the case.

However, this is exactly what is needed in order to explore the quantum 
universe. There is no particular reason why tiny particles such as electrons and 
photons should be similar to larger objects like balls or planets; scientists initially 
just extrapolated from their experience until the evidence showed that their 
assumptions were wrong. 

PHYSICSFILE

Schrödinger’s cat 
Schrödinger described the strange, 
counter-intuitive nature of quantum 
mechanical systems using a 
now-famous analogy known as 
Schrödinger’s cat. 

This is a thought experiment (i.e. 
Schrödinger did not actually perform 
the experiment) in which a cat is placed 
in a closed box with a flask of poison. 
A quantum mechanical system is set up 
such that there is a 50% chance of the 
flask being broken and the cat killed. 

Schrödinger argued that until the box 
is opened to reveal the outcome of the 
experiment, the cat is considered as 
simultaneously alive and dead.

In a manner similar to the dual 
nature of light, the outcome (for the 
cat being alive or dead; for light being 
a wave or a particle) does not exist 
until an observation or measurement 
is made.
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HEISENBERG’S UNCERTAINTY PRINCIPLE
Whenever a measurement is taken a degree of error or uncertainty is involved. The 
certainty of the measurement is limited by the measuring resolution of the device 
used to make the measurement. For example, a ruler with markings one millimetre 
apart will have an uncertainty in any measurement of about half a millimetre. This 
is taken into account when commenting on the errors in a practical experiment 
or calculating the final uncertainty in a result. If more precision is needed in a 
final result, then a more precisely marked measuring device such as a micrometer 
or vernier calliper is needed to make the initial measurements. The smaller the 
divisions, the smaller the final uncertainty in the result.

However, according to quantum mechanics there is a physical limit to the 
absolute accuracy of particular measurements. This limit is inherent in nature and 
is a result of both wave–particle duality and the interactions between the object 
being observed and the effect of the observation on that object (as Schrödinger 
tried to explain). The first scientist to clearly identify this limit was the German 
physicist Werner Heisenberg (see Figure 10.4.3). The Heisenberg uncertainty 
principle describes a limit to which some quantities can be measured.

FIGURE 10.4.3 Werner Heisenberg won the Nobel Prize in 1932 for his work on the uncertainty principle. Heisenberg is regarded as a founder of 
quantum physics.

Imagine trying to find a ball in a pitch-black room. The only way to do so, 
assuming there is no light, is to feel around. The more you search and feel around, 
the more confident you can be that the object remains in the area of the room yet 
to be searched—until you actually touch it. Then there is every chance that it will 
roll away, the ball having been given momentum by your touch. You’ll no longer 
know its future position. The very act of determining the position of the ball made 
knowing its future position less certain.
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Similarly, at the quantum level, to measure the exact location of an electron 
it would be necessary to hit the electron with another particle such as a photon 
of light. However, as soon as the photon strikes the electron, it would cause 
the electron to move as the photon transfers some or all of its energy to the 
electron. The act of measurement causes a change in the value being measured. 
This is a general problem when trying to measure the location or motion of all  
sub-atomic particles.

According to Heisenberg’s uncertainty principle, the more exactly the position 
of a sub-atomic particle is known, the less is known about its momentum. 
Similarly, the more precisely the momentum of a particle is measured, the less 
certain is its exact position. 

Heisenberg went on to explain his uncertainty principle with a formula that 
states that the product of the uncertainties in the position (Δx) and momentum 
(Δp) of a particle must always be greater than a certain minimum value related to 
Planck’s constant. That is:

ΔxΔp ≥ h
4π

or alternatively in terms of energy (since the photon may transfer some or all of 
its energy to the electron):

ΔEΔt ≥ h
4π

where ΔE is the uncertainty in the energy of an object
 Δt is the uncertainty in the time taken for the energy transfer to occur.
You may see this equation stated differently in some references. The difference 

is due to the way in which the variables are defined. The important part of the 
relationship is the fact that Δx and Δp are inversely proportional. When either Δx or 
Δp increase, the other must decrease.

This equation is sometimes called the ‘indeterminacy principle’. It states that it 
is not possible to know both the position and the momentum of an object at exactly 
the same time (see Table 10.4.1). The more accurately the position is measured, 
the greater the uncertainly in the momentum and vice-versa. Note that this doesn’t 
infer that an absolute measure of position cannot be made. Just that, in doing so, 
its momentum at that same time wouldn’t be known and hence there is no way of 
knowing what the position would be a second later. 

Position Momentum

Scenario 1 known unknown

Scenario 2 unknown known

TABLE 10.4.1 It is not possible to accurately know both the position and the momentum of an object 
at exactly the same time.

While, in the examples above, the position of an object or actual particle has 
been considered, Heisenberg’s uncertainty principle applies particularly at the 
quantum level precisely because electrons aren’t particles. The whole dual nature 
of matter idea means that electrons, and in fact all matter, behave both as a wave 
and as a particle. The uncertainty principle applies a limit to the simplified idea 
of electrons as particles. i.e. that the position and the velocity of an electron 
cannot both be known at exactly the same time, and that the amount of energy at 
a particular time, t, is also uncertain. For the normal-sized world around us, the 
inclusion of Planck’s constant, h, in the measure of uncertainty means that the 
level of uncertainty in determining the position of everyday objects is extremely 
small—in fact, virtually insignificant.

However, at an atomic scale, this level of uncertainty is substantial. And since 
everyday objects are made up of atoms containing sub-atomic particles such as 
electrons, the basic understanding of matter comes down to this fundamental 
property of all quantum mechanical systems.
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EXTENSION

Examples
It is not necessary in this course to be able to calculate the uncertainty in the position of an electron. However, some 
simple examples illustrate the difference in proportions of uncertainty at the quantum and everyday world levels.

Assuming an electron is moving with a speed of 1.0 × 106 m s−1, its momentum would be:

p = mv = 9.11 × 10−31 × 1.0 × 106 = 9.11 × 10−25 kg m s−1

If the momentum is known with an uncertainty of 1% then Δp = 9.11 × 10−27 kg m s−1.

Using the uncertainty principle, the uncertainty in position would be:

ΔxΔp ≥ 
h
4π

Δx ≥ 
h

4πΔp = 
6.63 × 10–34

4π × 9.11 × 10–27 = 5.8 × 10−9 = 5.8 nm

Since the diameter of an atom is between 0.1 nm and 0.5 nm, the uncertainty in knowing the position of the electron 
is many times the diameter of an atom!

Applying the same process to determining the uncertainty in position of a 600 g basketball travelling at 10 m s−1:

p = mv = 0.6 × 10 = 6 kg m s−1

If the momentum is known with an uncertainty of 1% then Δp = 0.06 kg m s−1.

Using the uncertainty principle, the uncertainty in position would be:

ΔxΔp ≥ 
h
4π

Δx ≥ 
h

4πΔp = 
6.63 × 10–34

4π × 0.06  = 8.8 × 10−34

This is a barely measureable uncertainty and means that the position of the basketball is very easily predicted. 
The uncertainty principle sets no real limit to the measurement of everyday objects.

PHYSICS IN ACTION

Viewing an electron 
Imagine trying to view an electron with an optical 
microscope like that shown in Figure 10.4.4 (the situation 
would be similar with an electron microscope). For the 
electron to be seen, a photon would have to strike the 
electron and be reflected back to the observer. As noted 
earlier in this chapter when looking at X-ray diffraction, 
objects can be seen at their best when the wavelength 
of the electromagnetic radiation used is at least as small 
as the object. Since a short wavelength corresponds to 
a high frequency and high energy (i.e. E = hf = hc

λ ), the 
photons needed to observe the electron would have high 
energy and thus would impart more momentum to the 
object being observed. The higher the energy, the shorter 
the wavelength and the better the potential resolution, but 
the more likely it would be that the photon would knock 
the electron off course and hence the object’s position 
would be subject to greater uncertainty. Just attempting to 
observe the electron introduces significant uncertainty in 
either the position or the momentum of the electron.

How then can an electron be viewed?

new path
and velocity

expected
path

original path

incident
photon

microscope

electron

re�ected
photon

–

FIGURE 10.4.4 A thought experiment considering how an electron 
could be observed. The reflection of the photon needed to observe the 
electron introduces uncertainty in the position of the electron, making 
it unobservable.
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PHYSICSFILE

Interpretation
Scientists have long argued about how we should interpret Heisenberg’s uncertainty 
principle. In the early 20th century, many were unhappy with the implication of 
Schrödinger’s work that the motion of an electron could only be described in terms 
of probabilities. Even Einstein famously argued against this interpretation, saying 
‘God does not play dice with the universe’ (see Figure 10.2.9).

However, experiments over the last century have confirmed that uncertainty is a 
fundamental property of the quantum mechanical universe.

FIGURE 10.4.5 Einstein’s claim that ‘God does not play dice’ is challenged by modern 
understandings of quantum physics.

SINGLE-SLIT DIFFRACTION AND THE UNCERTAINTY 
PRINCIPLE
An experiment that can be used to illustrate Heisenberg’s uncertainty principle is 
the single-slit diffraction of light.

If light from a laser is shone through a narrow adjustable slit, a diffraction 
pattern will form on the screen behind the slit (see Figure 10.4.6). This idea was 
covered in an earlier section.

This diffraction pattern can be explained by treating the laser light as a wave 
and considering the interference of different sections of the wavefront that passes 
through the slit. However, explaining this pattern in terms of the motion of individual 
photons is much more challenging.

The experiment has been conducted using a light so dim that it can be 
reasonably inferred that one photon passes through the slit at a time. This rules out 
the possibility that the diffraction pattern could be caused by photons interacting 
with each other. 

laser

intensity pattern

adjustable
single slit

Δx

FIGURE 10.4.6 Demonstrating Heisenberg’s uncertainty principle with diffraction through a single slit.
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Consider now a single photon on its journey from the laser to the screen. As the 
photon passes through the slit, its position is known to some degree of certainty 
(∆x). According to Heisenberg, this means that there must therefore be some 
uncertainty about the photon’s momentum (∆p), which is why the photon can end 
up at a variety of different places on the screen. Schrödinger’s wave equation could 
be used to explain why some paths for the photon are much more likely than others.

Since the slit is adjustable, it could be made narrower. This would decrease the 
uncertainty about the photon’s position (i.e. ∆x would decrease) so the uncertainty 
about the photon’s momentum would increase (i.e. ∆p would increase). This is why 
narrowing the slit causes the diffraction pattern to spread out.

Compare this with the same experiment with the slit removed, as shown in 
Figure 10.4.7. 

laser

FIGURE 10.4.7 Without a slit, there is no uncertainty about the momentum of the photon and 
therefore no diffraction occurs.

Since there are no constraints on the path of the light, the uncertainty about the 
position of each individual photon is large. Correspondingly, the uncertainty about 
the momentum of the photon becomes is very small and no diffraction occurs—all 
the photons end up very close together in a small spot in the middle of the screen.

A QUANTUM VIEW OF THE WORLD
Bohr’s model of the atom, explained in Section 10.3, was a mixture of classical 
and quantum theories, partially recognising the wave–particle duality of light and 
matter. However, it allowed for the development of new, more-radical theories to 
be developed by physicists such as Schrödinger and Heisenberg. And intriguingly, 
quantum mechanics has confirmed certain aspects of the Bohr model, such as atoms 
existing only in discrete states of definite energy and the emission or absorption of 
photons of light when electrons make transitions from one energy state to another 
within an atom.

However, quantum mechanics goes much further—very much further than the 
brief introduction in this section. According to quantum mechanics, electrons don’t 
exist in well-defined circular paths as we so regularly depict them in books. Because 
electrons are not particles, they don’t follow particular paths in space and time at 
all. Rather, because of the wave nature of an electron, the paths can be thought of 
more as clouds, where the particular location of an electron at any point in time is 
based on probability since to measure a precise point, according to Heisenberg, 
only introduces uncertainty preventing you from knowing where the electron would 
be at the next moment in time (see Figure 10.4.8).

The classical view of the world is a Newtonian one, where once the position and 
speed of an object is known, its future position can be predicted. This is termed 
a ‘deterministic’ model and works particularly well in predicting the positions of 
ordinary objects. This model suggests that the future of the universe, made of 
up of particle-like objects, is completely knowable. Quantum mechanics proposes 
something very different where the dual nature of particles, particularly fundamental 
particles such as the electron, prevents knowing the position and speed of an object 
at the same time. We can only calculate the probability that an electron will be 
observed at a particular place around an atom. In this view of the world there 
is some inherent unpredictability. In fact, it becomes meaningless to ask how an 
electron gets from one state to another when an atom emits or absorbs a photon of 
light—it just does.

nucleus

electron cloud

FIGURE 10.4.8 An atom as quantum mechanics 
views it. This conceptual image depicts the 
position of an electron around an atomic 
nucleus as an electron cloud or probability 
distribution of the location of the electron at 
any point in time.
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10.4 Review

KEY QUESTIONS

1  In a particular experiment, if the uncertainty about 
the position of a particle were decreased, then what 
will happen to the uncertainty about the speed of 
the particle?

2  Heisenberg’s uncertainty principle was a contributing 
factor in showing Bohr’s model of the atom to be 
inaccurate. How does the uncertainty principle 
contribute to the inaccuracy of Bohr’s model?

3  Explain why Newtonian (classical) laws of physics are 
not appropriate when describing what occurs at the 
sub-atomic level.

4  Consider the situation of using an optical telescope 
to view an electron. In order to see the electron, a 
photon is reflected from it back to the observer. 
Describe what would happen when the photon 
collides with a moving electron.

5  The position of an everyday object can be readily 
predicted yet that of an electron cannot. Why is this?

6  Single-slit diffraction provides evidence of the dual 
nature of light and so can be explained by the 
uncertainty principle. What happens when the slit 
is removed?

7  The single-slit diffraction experiment produces 
the same results if it is performed using electrons 
instead of photons. What happens when the slit 
width is increased in this experiment?

8  When is it appropriate to apply the Heisenberg 
uncertainty principle?

9  Which of the following statements is not consistent 
with Heisenberg’s uncertainty principle?
A  The position and momentum of a particle can 

never be exactly known at the same time.
B  The more exactly the position of particle is 

measured, the more uncertainty there is about 
its momentum.

C  If the momentum of a particle is precisely 
measured, its position will be unknown.

D  It is possible to precisely measure the momentum 
and position of a particle simultaneously.

SUMMARY

• The nature of the universe at the very smallest of 
scales is fundamentally different to the way the 
universe is perceived at the macroscopic scale.

• Quantum mechanics is the study of the wave 
properties of electrons. These wave properties are 
interpreted as describing the probability of finding 
an electron at a particular point in space.

• Heisenberg’s uncertainty principle results 
from wave–particle duality and states that it 
is not possible to know the exact position and 
momentum of a particle simultaneously. The 
more exactly the position of a sub-atomic particle 
is known, the less is known about its momentum. 
Similarly, the more precisely the momentum 
of a particle is measured, the less certain is its 
exact position.

• The single-slit diffraction experiment provides 
an example of the application of the uncertainty 
principle. The diffraction pattern is not produced 
by photon interactions but rather the probability 
of where a single photon may end up. Some 
positions are more likely than others, hence 
there is a larger central maximum intensity.

• In the quantum mechanical view of the atom, 
electrons are not particles and do not have 
clearly defined orbits. Their paths, due to their 
wave nature, can be explained as a probability 
distribution of their positions as particles or an 
electron cloud.
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Chapter review

KEY TERMS

absorption spectrum
de Broglie wavelength
electron-volt
emission spectrum
excited state
ground state
Heisenberg’s uncertainty 

principle

incandescent
laser
light-emitting diode
metal vapour lamp
photocurrent
photoelectric effect
photoelectron 
photon

quantum
quantum mechanics
standing wave
stopping voltage
synchrotron
threshold frequency
wave–particle duality
work function

1 What is the energy, in electron-volts, of light with a 
frequency of 6.0 × 1014 Hz?

2 What is the approximate value of the energy in J of a 
quantum of light with energy of 5.0 eV?

3 What name is given to the electrons released from a 
metal surface due to the photoelectric effect?

4 If the work function for nickel is 5.0 eV, what is the 
threshold frequency for nickel?

5 Platinum has a threshold frequency of 1.5 × 1015 Hz. 
Calculate the maximum kinetic energy, in electron-
volts, of the emitted photoelectrons when ultraviolet 
light with a frequency of 2.2 × 1015 Hz shines on it.

6 The stopping voltage obtained using a particular 
photocell is 1.95 V. Determine the maximum kinetic 
energy of the photoelectrons in electron-volts.

7 From the graph, determine the value of the work 
function for each of the metals.

4

3

2

1

0

Rb Sr Mg W

f

Ek max (eV)

8 The cathode of a particular photocell, shown 
below, is coated with rubidium. Incident light of 
varying frequencies is directed onto the cathode 
of the cell and the maximum kinetic energy of 
the photoelectrons is logged. The results are 
summarised in the following table.

V

A

collector

cathode

0 V

Frequency (Hz) × 1014 Ek max (eV)

5.20 0.080

5.40 0.163

5.60 0.246

5.80 0.328

6.00 0.411

6.20 0.494

a  Plot the points from the table on a graph.
b  Calculate the gradient of the graph.
c  Based on the graph of the experimental results, 

what is the threshold frequency for rubidium?
d  Will red light of wavelength 680 nm cause 

photoelectrons to be emitted from the rubidium 
surface? Justify your answer.
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9 In an X-ray diffraction experiment, a beam of X-rays 
from a synchrotron is directed on to a sheet of thin 
aluminium foil. The X-rays are scattered by the foil 
and detected via a CCD (charge coupled device) 
behind the foil which forms a digital image of the 
resulting pattern.

CCD
detector

X-rays

aluminium
foil

a  If the wavelength of the X-rays is 260 pm 
(260 × 10–12 m), what is the energy of the X-rays?

b  The CCD displays an image on a computer screen 
of the diffraction pattern formed once the X-rays 
have passed through the foil. A beam of accelerated 
electrons is then substituted for the X-rays. A very 
similar diffraction pattern is observed. Why do 
the electrons produce a diffraction pattern with a 
similar spacing to that of the original X-rays?

c  Based on the assumption that the two diffraction 
patterns have the same radius, what is the 
momentum of the electrons?

10 Davisson and Germer conducted an experiment where 
electrons were scattered after being fired at a target. 
a  What was observed by a detector moving through 

the scattering angles? 
b  What was the implication of this?

11 Which of the following would have the longest 
wavelength?
A  electron, m = 9.1 × 10–31 kg, v = 7.5 × 106 m s–1

B  blue light, λ = 470 nm
C  X-ray, f = 5 × 1017 Hz
D  proton, momentum = 1.7 × 10–21 kg m s–1

12  What is the de Broglie wavelength of a 40 g bullet 
travelling at 1.0 × 103 m s–1?

13  Would wave behaviours such as diffraction be 
noticeable for the bullet described in Question 12?

14 A particular atom has four energy levels. In this 
context, what does it mean to say that the levels 
are quantised?

15 Calculate the frequency of the photon produced 
when an electron in a hydrogen atom drops from  
the n = 3 energy level to its ground state, n = 1. 
Refer to Figure 10.3.8.

16  Explain why the development of the Bohr model of the 
hydrogen atom was significant in the development of 
a comprehensive understanding of the nature of light.

17 Describe the relationship between the colours seen in 
the emission and absorption spectra of hydrogen.

18 By referring to the behaviour of electrons, explain 
how light is produced in an incandescent (filament) 
light globe.

19  According to Heisenberg’s uncertainty principle, if the 
uncertainty in position is decreased what will happen 
to the uncertainty in momentum?

20 If a photon of a very short wavelength were to collide 
with an electron, what would be the effect on the 
position of the electron?

Chapter review continued
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How can waves explain the behaviour of light?
The following information relates to questions 1–6.
A microphone is placed in front of a sound source. The 
output is fed into a digitiser connected to a computer. X 
and Y are the traces from two different sounds shown on 
the screen of the computer. The sampling settings are 
identical for each trace.

X Y

1  Which of the following do the traces represent?
A Pressure variation versus time of a transverse wave.
B Displacement of molecules versus time of a 

transverse wave.
C Pressure variation versus time for a longitudinal 

wave.
D Movement of individual molecules in the air up and 

down directly representing the sound wave.

2  What is the ratio of the amplitudes AX : AY?

3  What is the ratio of the frequencies fX : fY?

4  How many rarefactions of wave X are represented in 
trace X?

5  How many compressions of wave Y are represented in 
trace Y?

6  Which one (or more) of the following statements 
about the air pressure in a sound wave as it relates 
to compressions and rarefactions is true?
A  Pressure is at a maximum halfway between a 

compression and a rarefaction.
B  Pressure is at a minimum halfway between a 

compression and a rarefaction.
C  Pressure is at a minimum at a compression and it 

is at a maximum at a rarefaction.
D  Pressure is at a minimum at a rarefaction and it is 

at a maximum at a compression.

7  A student moves a slinky spring down and then up 
before returning it to the original position. A pulse 
moves to the right, away from the student’s hand. 
Draw a diagram that represents the pulse formed in 
the spring by this action.

8  Define what is meant by a mechanical wave.

9  Explain the difference between a transverse wave and 
a longitudinal wave.

10  This is the displacement–time graph for a particle P. 
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Draw a graph that shows the displacement–time graph 
for a particle, Q, positioned 3

4
 of a wavelength ahead of 

particle P.
The following information relates to questions 11 and 12.
The diagram shows the displacement of the air molecules 
in a sound wave from their mean positions as a function of 
distance from the source, at a particular time. The wave is 
travelling to the right at 340 m s–1.
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11  What is the wavelength of the sound wave?

12  Which arrow below describes the direction of transfer 
of acoustic energy by this wave?
A →
B ←
C ↑
D ↓
E no energy is transferred

13  Which of the following properties of sound is 
independent of the source producing the sound?
A frequency
B amplitude
C speed

14  If a sound wave has a period of 3.9 × 10−3 s and the 
speed of sound is 340 m s−1, calculate the wavelength 
of this sound wave.
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15  Determine the wavelength and amplitude of the wave 
depicted in the following graph.
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16  A wave travels along a rope until it reaches the fixed 
end of the rope. Describe fully what would occur after 
this point in time.

17  Describe what happens when two or more waves meet 
while travelling through the same medium.

18  Two identical wave pulses moving in opposite 
directions towards each other, meet as shown in the 
diagram below. Once each wave has moved along by 
another half a wavelength, describe the amplitude 
and wavelength of the wave that results due to 
superposition.

 

wave 1

wave 2

19  Two wave pulses along a string interact. As the two 
pulses pass through each other, is there any permanent 
alteration to either pulse? Explain your answer.

The following information relates to questions 20–22.
A string is attached to a ring around a pole so that it is 
free to move. The other end of the string is fixed. The 
tension in the string is constant. The effective length of 
the string is 75 cm and the speed of a wave created in the 
string is 330 m s–1.

20  Calculate the fundamental frequency (also known as 
the first harmonic).

21  Calculate the frequency of the third harmonic.

22  Calculate the frequency of the next harmonic after the 
third that the string can produce.

The following information relates to questions 23–25.
The following diagram shows the standing wave pattern 
made by a rope when it is oscillated back and forth.

B

A

23  What are the names given to points A and B?

24  Why does the image show two ropes?

25  Which harmonic is shown in the image?

26  The diagram below shows the wave form from a 
microwave source, when the source is stationary with 
respect to the detector.
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What will happen to the wave form when the 
microwave source is moving towards the stationary 
detector?

27  How does resonance apply in the case of pushing 
someone on a swing?

The following information relates to questions 28–32.

TV
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microwaves (e.g. radar)

cellular phones

Frequency (Hz)
visible light

infrared ultraviolet

Wavelength (m)
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gamma rays
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radio waves

102

50 Hz (AC)

104 106 108 1010 1012 1018 102010161014

28  At what speed do the waves shown in the diagram 
travel in air?

29  What is the wavelength of waves with a frequency of 
1016 Hz?

30  What specific type of waves are those described in 
Question 29?

31  Explain one helpful use of the waves described in 
Question 29.
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32  A 60 W lamp emits radiation of wavelength 
3.0 × 10−5 m. What type of light is the lamp emitting?

33  Sound waves of frequency f are diffracted as they 
pass through a narrow slit of width w. The amount of 
diffraction can be increased by (choose one or more 
answers):
A increasing f
B increasing w
C decreasing f
D decreasing w

The following information relates to questions 34 and 35.
Light travelling in air enters a second medium of refractive 
index 2.42 at an angle of incidence of 30.0°. 

34  What is the angle of refraction?

35  Calculate the speed of light in medium 2.

36  How do the different colours of visible light differ from 
each other? 

The following information relates to questions 37 and 38.
Two students were given the task by their teacher to 
demonstrate the dispersion of white light in the school 
science laboratory. 

37  What equipment would they need and how would they 
demonstrate dispersion? 

38  What result will the students achieve if they perform 
the experiment correctly?

39  What does it mean if light is ‘polarised’?

40  Explain why it is impossible to polarise sound waves. 
The following information relates to questions 41 and 42. 
Two polarising sheets are placed together, with their 
polarising axes parallel, and are held up to a light source. 
One of the polarising sheets is rotated through 360° while 
the other is held still. The transmitted light alternates 
between maximum and zero intensities for different 
alignments of the polarising sheets. 

41  What alignments of the two polarising sheets produce 
the maximum light intensities?

42  Why are there two maximums and two zeros of 
intensity during the rotations? 

The following information refers to questions 43–46.
A Young’s double-slit experiment is performed using red 
light and the resulting interference pattern is observed.

43  What is the effect on the observed interference pattern 
of halving the separation of the slits? 

44  What is the effect on the observed interference 
pattern of doubling the distance between the slits 
and the screen? 

45  What is the effect on the observed interference pattern 
of halving the frequency of the light used? 

46  What is the effect on the observed interference pattern 
of covering one of the slits? 

The following information refers to questions 47 and 48.
At the time when Thomas Young carried out his famous 
double-slit experiment, there were two competing models 
claiming to explain the nature of light.

47  What were the names of the two competing models?

48  Explain how Young’s experiment supported one of 
these models and not the other.

49  The image below shows the wave fronts from two 
sources of waves. The red lines represent wave crests.

 

D
A

B
C

Identify the positions where maximum constructive 
interference occurs. Explain your answer.

50  Physicists replicating Young’s famous double-slit 
experiment determine that particular adjacent dark 
bands on the interference pattern (e.g. the third dark 
fringe and the fourth dark fringe) are different in 
their distance from one of the slits by only 500 nm. 
Determine the wavelength of the monochromatic 
light being used.
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How are light and matter similar?
The following information relates to questions 1–4.
Light passing through a yellow filter is incident on the 
cathode in a photoelectric effect experiment as shown 
in diagram (a). The reverse current in the circuit can be 
altered using a variable voltage. At the stopping voltage, 
V0 , the photocurrent is zero. The current in the circuit is 
plotted as a function of the applied voltage in diagram (b).

µAV

V0

0

Y

Current (µA)

(a)

(b)

Potential di�erence between
emitter and collector (V)

X

emitter

yellow �lter light beam

collector

1  Which of the following changes would result in an 
increase in the size of V0?
A replacing the yellow filter with a red filter
B replacing the yellow filter with a blue filter
C increasing the intensity of the yellow light

2  Which one of the following options best describes why 
there is zero current in the circuit when the applied 
voltage equals the stopping voltage?
A  The threshold frequency of the emitter increases to 

a value higher than the frequency of yellow light.
B  The work function of the emitter is increased to 

a value higher than the energy of a photon of 
yellow light.

C  The emitted photoelectrons do not have enough 
kinetic energy to reach the collector.

3  Which of the following descriptions of the graphs X 
and Y in diagram (b) are correct?
A Both graphs are produced by yellow light of 

different intensities.
B Graph X is produced by yellow light while graph Y 

is produced by blue light.
C Each graph is produced by light of a different 

colour and different intensity.

4  The emitter of the photocell is coated with nickel. 
The filter is removed and a 200 nm light is directed 
onto the cathode. The minimum value of V0 that will 
result in zero current in the circuit is 1.21 V. What is 
the work function of nickel?

5  Describe three experimental results associated with 
the photoelectric effect that cannot be explained by 
the wave model of light.

The following information relates to questions 6–9.
In a double-slit interference experiment, an electron 
beam travels through two narrow slits, 20 mm apart, in 
a piece of copper foil. The resulting pattern is detected 
photographically at a distance of 2.0 m. The speed of the 
electrons is 0.1% of the speed of light.

6  Calculate the de Broglie wavelength of the electrons 
used in the experiment.

7  What do you expect to see on the photographic plate?

8  Given that electrons are particles, how do you interpret 
the behaviour of the electrons in this experiment?

9  If the experiment were to be repeated using neutrons, 
at what speed would a neutron need to travel to have 
the same de Broglie wavelength as the electrons in 
Question 8?

The following information relates to questions 10–12.
The energy levels for atomic mercury are as follows.
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n = 4
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n = 2

n = 1

E (eV)

Determine the frequency and wavelength of the light 
emitted when the atom makes the following transitions:

10  n = 4 to n = 1

11  n = 2 to n = 1

12  n = 4 to n = 3
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The following information relates to questions 13–15.
An electron is accelerated across a potential difference 
of 65 V.

13  What kinetic energy will the electron gain?

14  What speed will the electron reach?

15  What is the de Broglie wavelength of the electron?

16  How did Niels Bohr explain the observation that for 
the hydrogen atom, when the frequency of incident 
light was below a certain value, the light would simply 
pass straight through a sample of hydrogen gas 
without any absorption occurring?

The following information relates to questions 17–19.
Physicists can investigate the spacing of atoms in a 
powdered crystal sample using electron diffraction. This 
involves accelerating electrons to known speeds using an 
accelerating voltage. In a particular experiment, electrons 
of mass 9.11 × 10–31 kg are accelerated to a speed of 
1.75 × 107 m s–1. The electrons pass through a powdered 
crystal sample, and the diffraction pattern is observed on 
a fluorescent screen.

17  Calculate the De Broglie wavelength (in nm) of the 
accelerated electrons.

18  Describe the main features of the expected diffraction 
pattern.

19  If the accelerating voltage is increased, what difference 
would you expect to see in the diffraction pattern 
produced? Explain your answer.

20  How would de Broglie explain the light and dark rings 
produced when a beam of electrons is fired through a 
sodium chloride crystal?

21  Describe how the wave–particle duality of electrons 
can be used to explain the quantised energy levels of 
the atoms.

22  Which one or more of the following phenomena can 
be modelled by a pure wave model of light?
A  the photoelectric effect
B  refraction
C  the double-slit interference of light
D  reflection
E  diffraction

23  Define the electron-volt.

24  Why are all of the frequencies of light above the 
ionisation energy value for hydrogen continuously 
absorbed?

25  How do our wave and particle models of light parallel 
the ideas related to electrons and matter waves?

26 For an electron and a proton to have the same 
wavelength:
A the electron must have the same energy as the 

proton.
B the electron must have the same speed as the 

proton.
C the electron must have the same momentum as 

the proton.
D It is impossible for an electron and a proton to have 

the same wavelength.
The following information relates to questions 27 and 28.
When conducting a photoelectric effect experiment, a 
student correctly observes that the energy of emitted 
electrons depended only on the frequency of the incident 
light and was independent of the intensity.

27  Explain how the particle model accounts for this 
observation.

28  Explain why the wave model cannot account for 
this observation.

The following information relates to questions 29–33.
Consider the energy-level diagram for the hydrogen atom 
shown below. A photon of energy 14.0 eV collided with a 
hydrogen atom in the ground state.

n = ∞ E  = 0

E  = –0.88 eV

E  = –1.51 eV

E = –3.39 eV

E  = –13.6 eV

n = 4

n = 3

n = 2

n = 1

29  Explain why this collision will eject an electron from 
the atom.

30  Calculate the energy of the ejected electron in 
electronvolts and in joules.

31  What is the momentum of the ejected electron?

32  Determine the wavelength of the ejected electron.

33  A hydrogen atom in the ground state collides with a 
10.0 eV photon. Describe the result of such a collision.
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The following information relates to questions 34–36.
An electron beam of energy 7.0 eV passes through some 
mercury vapour in the ground state and excites the 
electrons to the n = 3 energy level.

0
–1.6

–3.7

–5.5

–10.4

n = ∞
n = 4

n = 3

n = 2

n = 1

E (eV)

34  List all the possible photon energies that would be 
present in the emission spectrum when the electrons 
return from the n = 3 energy level to the ground state. 

35  What is the shortest wavelength of light present in the 
emission spectrum?

36  A photon collides with a mercury atom in the ground 
state. As a result, a 30.4 eV electron is ejected from 
the atom. What was the wavelength of the incident 
photon?

The following information relates to questions 37–39.
When investigating the photoelectric effect, the 
relationship between the maximum kinetic energy of 
emitted photoelectrons and the frequency of the light 
incident on the metal plate is:
Ek max = hf − ϕ
37  Explain the meaning of the terms Ek max, f and ϕ in this 

equation.

38  If the intensity of the light striking the metal is 
increased, but the frequency is unaltered, what effect 
does this have on the value of Ek max? 

39  If the intensity of the light striking the metal is 
increased, but the frequency is unaltered, what effect 
does this have on the value of the current flowing in 
the apparatus?

40  The diagram below represents the ‘standing-wave 
state’ of an electron in an atom of hydrogen. Which 
value of n would de Broglie allocate to this pattern?

 
41  What is the momentum of a gamma ray with a 

wavelength of 3.0 pm?

The following information relates to questions 42–46.
The image below shows diffraction images that have been 
obtained by scattering (a) X-rays and (b) electrons off the 
same sample, which is made up of many tiny crystals 
with random orientation. The X-rays have a frequency of 
8.3 × 1018 Hz.

42  Provide an explanation for the fact that the electrons 
and the X-rays have produced the same diffraction 
pattern.

43  Determine the wavelength of the X-ray photons.

44 Determine the de Broglie wavelength of the electrons.

45  Calculate the momentum of the electrons.

46  Do the X-rays and the electrons have the same 
energy? Explain your answer.

47  Make three statements about how the particle 
(photon) model of light is supported by features of the 
photoelectric effect and discuss the implications for 
the wave model of light in each case.

48  The light of which of the options A–D is:
a  generated by the electrons in individual atoms as 

they drop one or more energy levels?
b  generated by random thermal motion of atoms in 

the material?
c  generated as electrons fall from the conduction 

band to the valence band in a semiconductor?
d coherent
A  incandescent light bulb
B  sodium vapour lamp
C  light-emitting diode
D  laser

49  Explain how the single-slit diffraction experiment 
relates to the Heisenberg uncertainty principle.

50  The Heisenberg uncertainty principle states:

∆p∆x ≥ 
h

4π
What does it mean if the value of ∆p in the relation 
gets smaller? Explain your answer.
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THE STANDARD UNITS OF MEASUREMENT
The accurate and easy measurement of quantities is essential in both everyday 
life and for scientific investigation. Over the centuries, many different systems of 
measuring physical quantities have been developed. For example, length can be 
measured in chains, fathoms, furlongs, yards, feet, rods and microns. Some units 
were based on parts of the body. The cubit was defined as the distance from the 
elbow to the fingertip, and so the amount of cloth that you obtained from a tailor 
depended on the physical size of the person selling it to you. 

The metric system was established by the French Academy of Science at the 
time of the French Revolution (1789–1815) and is now used in most countries. 
This system includes units such as the metre, litre and kilogram. Countries of the 
British Empire adopted the British Imperial system of the mile, gallon and pound. 
These two systems developed independently and their dual existence created 
problems in areas such as trade and scientific research. In 1960, an international 
committee set standard units for fundamental physical quantities. This system 
was an adaptation of the metric system and is known as the Système Internationale 
d’Unités (International System of Units) or SI system of units.

Fundamental quantity SI unit SI unit symbol

mass kilogram kg

length metre m

time second s

electric current ampere A

temperature kelvin K

luminous intensity candela cd

amount of substance mole mol

TABLE A.1  The SI units identify the seven fundamental quantities whose basic value is defined to a 
high degree of accuracy.

Mass
The kilogram was originally defined as the mass of 1 L of water at 4°C. This is 
still approximately correct, but a far more precise definition is now used. Since 
1897 the measurement standard for the kilogram has been a cylindrical block of 
platinum–iridium alloy kept at the International Bureau of Weights and Measures 
in France. Australia has a copy of this standard mass at the CSIRO Division of 
Applied Physics in Sydney. At times it is returned to France to ensure that the mass 
remains accurate.

Length
The metre was originally defined in 1792 as one ten-millionth of the distance from the 
equator to the North Pole (approximately 10 000 km). This definition has changed 
a number of times since. In 1983, to give a more accurate value, the metre was 
redefined as the distance that light in a vacuum travels in 1

299 792 458  second. This 
standard can be reproduced all over the world, as light travels at a constant speed 
in a vacuum.

APPENDIX A 
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Metric system
The metric system was originally 
developed in France and is known 
as the Système Internationale (SI). 
It was adopted in France in 1840 as 
the official system of units, although 
it had been developing in that country 
since 1545. It has remained in use 
ever since and has gradually been 
adopted by most other countries. It has 
been modified a little over the years 
and now, in Australia, we use SI units 
that have been standardised by the 
International Standards Organisation 
(IS0) since the 1960s. Some countries 
such as France, Italy and Spain use 
an earlier form of the metric system 
that is slightly different. The USA still 
measures almost everything in the 
old imperial units such as pounds for 
mass and feet for distance but, even 
there, scientists use the SI system of 
units. There are two major advantages 
of using the metric system. It is easier 
to use than other systems in that 
derived units are straightforward and 
various sizes of units are created using 
multiples of ten. The other very big 
advantage is the international nature 
of the standards and units. All units 
are standardised, making comparisons 
straightforward.
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Time
Up to 1967, time had always been based on the apparent motion of the heavens. 
The second was once defined in terms of the motion of the Sun. Until 1960, one 
second was defined as 1

60  of 1
60  of 1

24  of an average day in 1900. This reflected the 
rate of the Earth’s rotation on its axis; however, its rotation is not quite uniform. 
In 1967, a more accurate definition was adopted—one not based on the motion of 
the Earth. One second is now defined as the time required for a caesium-133 atom 
to undergo 9 162 631 770 vibrations. These vibrations are stimulated by an electric 
current and are extremely stable, allowing this standard to be reproduced all over 
the world.

DERIVED UNITS
As well as the seven fundamental quantities, a wide variety of other physical 
quantities can be measured. You may have encountered some of these, such as 
frequency, velocity, energy and density, already. A derived quantity is defined in 
terms of the fundamental quantities. For example, the SI unit for area is square 
metres (m2).

Quantity SI unit SI unit symbol Equivalent unit

velocity metres per second m s–1 —

acceleration metres per second 
per second

m s–2 —

frequency hertz Hz s–1

force newton N kg m s–2

energy/work joule J kg m2 s–2

TABLE A.2  Some derived SI quantities and their units.

MEASUREMENT AND UNITS
In every area of physics we have attempted to quantify the phenomena we study. 
In practical demonstrations and investigations we generally make measurements 
and process those measurements in order to come to some conclusions. Scientists 
have a number of conventional ways of interpreting and analysing data from their 
investigations. There are also conventional ways of writing numerical measurements 
and their units.

Correct use of unit symbols
The correct use of unit symbols removes ambiguity, as symbols are recognised 
internationally. The symbols for units are not abbreviations and should not be 
followed by a full stop unless they are at the end of a sentence.

Upper-case letters are not used for the names of any physical quantities of 
units. For example, we write newton for the unit of force, while we write Newton 
if referring to someone with that name. Upper-case letters are only used for the 
symbols of the units that are named after people. For example, the unit of energy is 
joule and the symbol is J. The joule was named after James Joule who was famous 
for studies into energy conversions. The exception to this rule is ‘L’ for litre. We do 
this because a lower-case ‘l’ looks like the numeral ‘1’. The unit of distance is metre 
and the symbol is m. The metre is not named after a person.

APPENDIX A  •  SI UNITS
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Understanding measurementAPPENDIX B 

The product of a number of units is shown by separating the symbol for each 
unit with a dot or a space. Most teachers prefer a space but a dot is perfectly correct. 
The division or ratio of two or more units can be shown in fraction form, using 
a slash, or using negative indices. Most teachers prefer negative indices. Prefixes 
should not be separated by a space.

Preferred Correct also Wrong

m s–2 m.s–2 m/s2 ms–2

kW h kW.h kWh k Wh

kg m–3 kg.m–3 kg/m3 kgm–3

μm μ m

N m N.m Nm

TABLE B.1  Some examples of the use of symbols for derived units.

Units named after people can take the plural form by adding an ‘s’ when used 
with numbers greater than one. Never do this with the unit symbols. It is acceptable 
to say ‘two newtons’ but wrong to write 2 Ns. It is also acceptable to say ‘two newton’.

Numbers and symbols should not be mixed with words for units and numbers. 
For example, twenty metres and 20 m are correct while 20 metres and twenty m 
are incorrect.

Scientific notation
To overcome confusion or ambiguity, measurements are often written in scientific 
notation. Quantities are written as a number between one and ten and then 
multiplied by an appropriate power of ten. Note that ‘scientific notation’, ‘standard 
notation’ and ‘standard form’ all have the same meaning.

Examples of some measurements written in scientific notation are:
0.054 m = 5.4 × 10−2 m
245.7 J = 2.457 × 102 J
2080 N = 2.080 × 103 N or 2.08 × 103 N

You should be routinely using scientific notation to express numbers. This 
also involves learning to use your calculator intelligently. Scientific and graphics 
calculators can be put into a mode whereby all numbers are displayed in scientific 
notation. It is useful when doing calculations to use this mode rather than frequently 
attempting to convert to scientific notation by counting digits on the calculator 
display. It is quite acceptable to write all numbers in scientific notation, although 
most people prefer not to use scientific notation when writing numbers between 
0.1 and 1000.

An important reason for using scientific notation is that it removes ambiguity 
about the precision of some measurements. For example, a measurement recorded 
as 240 m could be a measurement to the nearest metre; that is, somewhere between 
239.5 m and 240.5 m. It could also be a measurement to the nearest ten metres, 
that is, somewhere between 235 m and 245 m. Writing the measurement as 240 m 
does not indicate either case. If the measurement was taken to the nearest metre, it 
would be written in scientific notation as 2.40 × 102 m. If it was taken to the nearest 
ten metres only, it would be written as 2.4 × 102 m.

FIGURE B.1 A scientific calculator.
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PREFIXES AND CONVERSION FACTORS
Conversion factors should be used carefully. You should be familiar with the 
prefixes and conversion factors in Table B.2. The most common mistake made with 
conversion factors is multiplying rather than dividing. Some simple strategies can 
save you this problem. Note that the table gives all conversions as a multiplying factor.

Multiplying factor Prefix Symbol

1 000 000 000 000 1012 tera T

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

0.01 10–2 centi c

0.001 10–3 milli m

0.000 001 10–6 micro μ

0.000 000 001 10–9 nano n

0.000 000 000 001 10–12 pico p

Do not put spaces between prefixes and unit symbols. It is important to give the symbol the 
correct case (upper or lower case). There is a big difference between 1 mm and 1 Mm.

TABLE B.2  Prefixes and conversion factors.

There is no space between prefixes and unit symbols. For example, one-
thousandth of an ampere is given the symbol mA. Writing it as m A is incorrect. 
The space would mean that the symbol is for a derived unit—a metre ampere.

Worked example B1
The diameter of a cylindrical piece of copper rod was measured at 24.8 mm with a 
vernier caliper. Its length was measured at 35 cm with a tape measure.

a Find the area of cross-section in m2.

b Find the volume of the copper rod in m3.

Solution 

a   The area of cross-section is πr 2. The radius is calculated by dividing the 
diameter by two. Hence the radius is 12.4 mm. To calculate the area 
in m2, first halve the diameter and convert it to metres. The radius is 
24.8

2  = 12.4 mm = 12.4 × 10−3 m. The radius is not written in scientific 
notation. This is not necessary. All you need to do is multiply by the 
appropriate factor. The conversion factor for mm to m is 10−3. Just multiply 
by the conversion factor and don’t bother to rewrite the result in scientific 
notation. This is because it is only going to be used in a calculation and is 
not a final result. 

 The area of cross-section is πr 2 = π(12.4 × 10−3)2 = 4.8 × 10−4 m2.

b  The volume is πr 2h, where h is the length of the cylinder.  
The length is 35 cm = 35 × 10−2 m.

 Hence the volume is π(12.4 × 10−3)2(35 × 10−2) = 1.7 × 10−4 m2.
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Worked example B2 

a  A car is traveling at 110 km h−1. How fast is this in m s−1?

b  Convert 35 miles per hour to metres per second. A mile is approximately 
1600 m.

Solution 

a  110 km h−1 is 110 × 103 metres per 3600 s.

 110 × 103

3600
 = 30.6

 Hence 110 km h−1 = 30.6 m s−1.

b  35 miles per hour is 35 × 1600 metres per 3600 s.

 35 × 1600
3600

 = 15.6

 Hence 35 mph = 16 m s−1.

DATA
Physicists and physics students collect, analyse and interpret experimental data. 
In fact, you will do this when you conduct your Practical Investigation in Unit 2 
(Area of Study 3). Working with data requires a good understanding of the meaning 
and limitations of measurement.

Accuracy and precision
Two very important aspects of any measurement are accuracy and precision. 
Accuracy and precision are not the same thing. The distinction between the two 
ideas is only hard to grasp because the two words are defined in a similar way in the 
dictionary. We often hear the words used together and in general conversation they 
tend to be used interchangeably.

Instruments are said to be accurate if they truly reflect the quantity being 
measured. For example, if a tape measure is correctly manufactured it can be used 
to measure lengths accurately to the nearest centimetre.

Imagine that the tape measure is accidentally stretched during the manufacturing 
process, as shown in Figure B.2. It would still be used to measure length to the 
nearest centimetre but all measurements would be wrong. It would be inaccurate.

Suppose an accurate ruler had 3 cm snapped off the end, as shown in Figure 
B.3. It would now give readings all too large by 3 cm if no allowance were made for 
the missing piece. This ruler measure would be inaccurate.

In these two examples, the tape measure or ruler is used to measure to the 
nearest centimetre but is inaccurate. Inaccurate means just plain wrong. Instruments 
are said to be precise if they can differentiate between slightly different quantities. 
Precision refers to the fineness of the scale being used.

Consider the metre rule, the tape measure and the measuring wheel used to 
mark out sports fields. All three measure distance. All three can be accurate. The 
metre rule is more precise because it measures to the nearest millimetre, the tape 
measure has less precision due to measuring only to the nearest centimetre, while 
the wheel measures only to the nearest metre (Figure B.4).

FIGURE B.2 The diagram shows that a 
correctly manufactured tape measure correctly 
measures the cylinder to be 16 cm long while 
the stretched tape measure gives a wrong 
measurement of 15 cm. The stretched tape 
measure is inaccurate.

FIGURE B.3 The diagram shows that an 
undamaged ruler correctly measures the 
cylinder to be 16 cm long while the broken 
ruler gives a wrong measurement of 19 cm. 
The broken ruler is inaccurate but equally as 
precise as the unbroken ruler.

good ruler

broken ruler

5 10 15 20

5 10 15 20

good tape measure

stretched tape measure

5 10 15 20

5 10 15 20

FIGURE B.4 The measuring wheel has low 
precision and only measures to the nearest 
metre. It has an uncertainty of 0.5 m. The 
tape measure has more precision and has an 
uncertainty of 0.5 cm or 0.005 m. The metre 
rule has an uncertainty of 0.5 mm or 0.0005 m.

5

16 17
20

5
16 17

tape measure
±0.5 cm

measuring wheel
±0.5 m

metre rule
±0.5 mm
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The tape measure is a more precise instrument than the measuring wheel. 
Suppose two distances of 2673 mm and 2691 mm are being measured with these 
two instruments. Each distance would be measured as 3 m, to the nearest metre, by 
the wheel. They would be measured differently as 2.67 m and 2.69 m, to the nearest 
centimetre, by the tape measure. The tape measure is more precise because it has 
a finer scale. You might also say that it has greater resolution. The measuring wheel 
has such low precision that it can’t be used to measure which of the two distances 
is greater or smaller. Measuring instruments with less precision give measurements 
that are less certain. The uncertainty in the measurement is due to a coarser scale. 
The measuring wheel gives less certain measurements than the tape measure even 
though both instruments may be equally accurate.

All measurements have some amount of uncertainty, due to the precision of 
the instrument which does the measuring. The uncertainty is generally one half 
of the finest scale division on the measuring instrument. The measuring wheel has 
an uncertainty of 0.5 m. The metre rule has an uncertainty of 0.5 mm. The tape 
measure has an uncertainty of 0.5 cm. An electronic balance set to measure grams 
to two decimal places has an uncertainty of 0.005 g.

Sometimes this uncertainty is referred to as error. It is not error, in that it is not a 
mistake or something wrong. All measuring instruments have limited precision and, 
in general, the uncertainty is half of the smallest scale division on the instrument.

The uncertainty is, indeed, the measure of the precision of an instrument. It 
is not related to accuracy. A micrometer screw gauge, which measures length to 
the nearest one-hundredth of a millimetre and hence is very precise, may not be 
accurate. Usually they are, but if one has been badly manufactured or bent by being 
over-tightened repeatedly it most likely will be inaccurate. But its precision will still 
be ±0.000 005 m, or half of one-hundredth of a millimetre.

The uncertainty gives the range in which a measurement falls. If you measured 
the length of a stick with a metre rule then you would get a measurement ‘plus or 
minus’ half a millimetre.

Any stick between 127.5 mm and 128.5 mm long would be measured as 128 mm 
to the nearest millimetre (refer to Figure B.5). We would record this as 128 ± 0.5 mm.

When using an analogue scale, you might think that you can ‘judge by eye’ 
fractions of a scale division and hence get greater precision than half a scale division. 
You should be able to judge to the nearest half a scale division. You might think you 
can judge to the nearest tenth of a division. You can’t. Research shows that despite 
the fact that people try to judge the spaces between scale divisions to better than 
half a division, as soon as this is done, inconsistent measurements are obtained. 
That is, different people get different measurements of the same thing.

The best judgement you can definitely claim is one half of a scale division. The 
uncertainty we will still assume, however, is a full half-scale division. Hence, you 
might measure another stick, one that has a length somewhere between 154 mm 
and 155 mm, as 154.5 ± 0.5 mm.

Of course, you don’t have the option of adding an extra decimal place containing 
a 0 or a 5 if you are using a digital instrument.

The uncertainty can be recorded as the absolute uncertainty as we have done 
above. The absolute uncertainty is the actual uncertainty in the measurement. In 
this case it is 0.5 mm. Alternatively, it is often useful to write the uncertainty as a 
percentage: 0.5 mm is 0.32% of 154.5. Hence, the above length would be recorded 
as 154.5 mm ± 0.32%.

Percentage uncertainty is also called relative uncertainty. It is the size of the 
uncertainty relative to the size of the measured quantity.

APPENDIX B  •  UNDERSTANDING MEASUREMENT

FIGURE B.5 A stick anywhere between 
127.5 mm and 128.5 mm would be recorded 
as having a length of 128 mm if measured by 
a metre rule with a scale division of 1 mm. 
Conversely, a measurement recorded as 
128 mm could be of an object of length 
anywhere between 127.5 mm and 128.5 mm.

stick

ruler

12 13
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Estimating the uncertainty in a result
An experiment or a measurement exercise is not complete until the uncertainties 
have been analysed. It is also important to explain how uncertainty due to the 
precision of instruments affects results.

The following three processes are used for estimating uncertainty in calculations 
due to the precision of instruments. They are demonstrated in Worked example B3.
• When adding or subtracting data, add the absolute uncertainties.
• When multiplying or dividing data, add the percentage uncertainties.
•  When raising data to power n, multiply the percentage uncertainty by n.

In Worked example B3, the analysis of uncertainty reveals the precision of an 
experimental result.

Worked example B3
In Area of Study 1 in Unit 1, you might have measured the specific heat capacity of 
a metal. You could have calculated your result using:

cmetal = 
cwatermwaterΔTwater

mmetalΔTmetal

Suppose you had the following data included in your table.

Quantity Absolute uncertainty % uncertainty

cwater 4180 J kg–1 K–1 5 J kg–1 K–1 0.120

mwater 72.5 × 10–3 kg 0.05 × 10–3 kg 0.069

ΔTwater 5ºC 1ºC* 20

mmetal 87.3 × 10–3 kg 0.05 × 10–3 kg 0.057

ΔTmetal 72ºC 1ºC* 1.389

*Note that the ΔT values have an absolute uncertainty of 1ºC because they are calculated by 
subtracting one temperature measurement from another.

PHYSICSFILE
Many people use the term ‘error’ to refer to uncertainty and many other things. The 
problem with referring to uncertainty as error is that it is not actually error. Things that 
are a normal consequence of the limitations of measuring instruments must happen, 
and are not mistakes. If they are not mistakes or ‘something gone wrong’ then it makes 
no sense to call them errors.

Errors are the factors that limit the accuracy of your results. For example, if you 
perform a calorimetry experiment and do not use a good enough insulator, you will 
get inaccurate results due to heat losses to the environment. This will contribute to the 
error in your measurement. Suppose you measured the refraction of light in glass but 
did not place the protractor in the correct place when measuring angles. This would 
also cause error.

Many different things can contribute to experimental error. Some are unavoidable. 
Some are factors in the design of experiments. Good experimental design seeks to 
eliminate or at least minimise potential sources of error.

Never quote ‘human error’ as a source of error. Your data should be examined 
carefully and mistakes eliminated or at least ignored. So-called human errors, or lack of 
care, have no place in your experimental work. If you make mistakes then you should 
repeat the measurements.
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You would calculate as follows:

 cmetal  =  241 J kg−1 K−1

 Uncertainty (%)  =  0.120 + 0.069 + 20 + 0.057 + 1.389

 =  21.6%

Hence, you would obtain the following result:

 cmetal  =  241 J kg–1 K−1 ± 21.6%

 cmetal  =  241 ± 52 J kg−1 K–1

Once you have done all of this you can consider the relative success of your 
measurement exercise.

Your result is:

189 J kg−1 K−1 ≤ cmetal ≤ 293 J kg−1 K−1

If measurements by other people, such as the constants published in data books, 
fall within this range then you can conclude that your experiment is consistent 
with established values. That is, within the precision of your technique, there 
are probably no significant errors although the final measurement is rather 
imprecise in this case. We might say that it is accurate within the limitations of 
the equipment.

You are also now in a position to refine the experiment by reducing the larger 
uncertainties. In this case, the largest uncertainty was in the temperature change 
for the water. Hence, it would not be very helpful to measure the masses to greater 
precision because the limit to precision in this activity would be the temperature 
differences. Getting greater precision in the temperature changes would be a 
useful refinement.

You could consider ways of getting larger temperature changes in the water 
and hence obtain a smaller percentage uncertainty in the temperature change. 
Alternatively, you might consider ways of measuring the temperatures to greater 
precision.

If your measurement range does not include the result you expect, you should 
think about the origin of the errors. In other words, if you are sure that cmetal is less 
than 189 J kg−1 K−1 or more than 293 J kg−1 K−1 then there must be some error in 
your experimental technique or more uncertainty than you realised.

When reviewing an experiment or a measurement exercise, it is a good idea to 
consider both errors and uncertainties.

Significant figures
The number of significant figures in a measurement is simply the number of digits 
used when the number is written in scientific notation. Once you have done a 
calculation, your calculator usually has eight or ten digits in the display but most of 
them are meaningless. You must round off your answer appropriately.

Consider the result of the experiment described in Worked example B3. It would 
make no sense to quote the result to two decimal places (or five significant figures) 
when clearly the precision of the experiment gives less than three significant figures.

Calculated results never have more significant figures than the original data 
and might have fewer than the original data. If you are not doing a full analysis 
of the uncertainties, it is customary to give your answers to the same number 
of significant figures as the least precise piece of data. For example, in Worked 
example B3, the least precise data is the change in temperature of the water with 
only a single digit. The value for the specific heat might then be quoted simply as  
2 × 102 J kg−1 K−1, but doing the full calculation of the uncertainty in the result is 
much more informative.
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PHYSICSFILE
In some classes, students are 
instructed to quote all results to two 
decimal places or to three significant 
figures. You should be able to see from 
Worked example B3 that these rules 
are not absolutely correct when applied 
to real data. For ordinary calculations in 
assignments, tests and examinations, 
you might just give your answers to 
three figures. 

If a calculation is done in several 
stages then you should not round off 
any intermediate results. This will add 
rounding error to your calculations. 
Use the memory on your calculator so 
that there is no rounding until the end 
of your calculation.
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GRAPHICAL ANALYSIS OF DATA
A major problem with doing a calculation from just one set of measure ments is 
that a single incorrect measurement can significantly affect the result. Scientists 
like to take a large amount of data and observe the trends in that data. This gives 
more precise measurements and allows scientists to recognise and eliminate 
problematic data.

Physicists commonly use graphical techniques to analyse a set of data. In this 
section, the basic techniques that they use will be outlined and a general method for 
using a set of data that fits a known mathematical relationship will be developed.

Linear relationships
Some relationships studied in physics are linear, that is a straight line, while others 
are not. It is possible to manipulate non-linear data so that a linear graph reveals a 
measurement. Linear relationships and their graphs are fully specified with just two 
numbers: gradient, m, and vertical axis intercept, c. In general, linear relationships 
are written:

 y = mx + c

The gradient, m, can be calculated from the coordinates of two points on the line:

 m = 
rise
run

 = 
y2 – y1
x2 – x1

where (x1, y1) and (x2, y2) are any two points on the line. Don’t forget that m and c 
have units. Omitting these is a common error.

PHYSICSFILE

Graphs
When analysing data from a linear relationship, it is first necessary to obtain a graph of the data and an equation for the line that best 
fits the data. This line of best fit is often called the regression line. The entire process can be done on paper but most people will use a 
computer spreadsheet, the capabilities of a scientific or a graphics calculator, or some other computer-based process. In what follows, 
it is not assumed that you are using any particular technology.

If you are plotting your graph manually on paper then proceed as follows:

1 Plot each data point on clearly labelled, unbroken axes.

2  Identify and label but otherwise ignore any suspect data points.

3  Draw, by eye, the ‘line of best fit’ for the points. The points should be evenly scattered either side of the line.

4  Locate the vertical axis intercept and record its value as ‘c ’.

5  Choose two points on the line of best fit to calculate the gradient. Do not use two of the original data points as this will not give you 
the gradient of the line of best fit.

6  Write y = mx + c, replacing x and y with appropriate symbols, and use this equation for any further analysis.

If you are using a computer or a graphics calculator then proceed as follows:

1  Plot each data point on clearly labelled, unbroken axes.

2  Identify suspect data points and create another data table without the suspect data.

3  Plot a new graph without the suspect data. Keep both graphs as you don’t actually discard the suspect data but do eliminate it from 
the analysis.

4  Plot the line of best fit—the regression line. The manner in which you do this depends on the model of calculator or the software 
being used.

5  Compute the equation of the line of best fit that will give you values for m and c.

6  Write y = mx + c, replacing x and y with appropriate symbols, and use this equation for any further analysis.
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Worked example B4 
Some students used a computer with an ultrasonic detector to obtain the speed–
time data for a falling tennis ball. They wished to measure the acceleration of the 
ball as it fell. They assumed that the acceleration was nearly constant and that the 
relevant relationship was v = u + at, where v is the speed of the ball at any given 
time, u was the speed when the measurements began, a is the acceleration of the 
ball and t is the time since the measurement began.

Their computer returned the following data:

Time (s) Speed (m s–1)

0.0 1.25

0.1 2.30

0.2 3.15

0.3 4.10

0.4 5.25

0.5 6.10

0.6 6.95

Find their experimental value for acceleration.

Solution 
The data is assumed linear, with the relationship v = u + at, which can be thought 
of as being v = at + u, which makes it clear that putting v on the vertical axis and t 
on the horizontal axis gives a linear graph with gradient a and vertical intercept u. 
A graph of the data is shown in Figure B.6.
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FIGURE B.6  Speed–time profile for a falling tennis ball.

This graph of the data was created on a computer spreadsheet. The line of best fit 
was created mathematically and plotted. The computer calculated the equation of 
the line. Graphics calculators can also do this. 

A scientific calculator or graphics calculator or spreadsheet gives the regression 
line as y = 9.5714x + 1.2857. If this is rearranged and the constants are suitably 
rounded, the equation is v = 1.3 + 9.6t. This indicates that the ball was moving at 
1.3 m s–1 at the commencement of data collection and the ball was accelerating at 
9.6 m s–2.

APPENDIX B  •  UNDERSTANDING MEASUREMENT
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Manipulating non-linear data
Suppose you were examining the relationship between two quantities B and d and 
had good reason to believe that the relationship between them is

B = k
d

where k is some constant value. Clearly, this relationship is non-linear and a graph 
of B against d will not be a straight line. By thinking about the relationship it can be 
seen that in ‘linear form’:

 B = k  1
d

 ↑  ↑ ↑
 y = m x + c

A graph of B (on the vertical axis) against 1
d (on the horizontal axis) will be 

linear. The gradient of the line will be k and the vertical intercept, c, will be zero. 
The line of best fit would be expected to go through the origin because, in this case, 
there is no constant added and so c is zero.

In the above example, a graph of the raw data would just show that B is larger as 
d is smaller. It would be impossible to determine the mathematical relationship just 
by looking at a graph of the raw data.

A graph of raw data will not give the mathematical relationship between the 
variables but can give some clues. The shape of the graph of raw data may suggest a 
possible relationship. Several relationships may be tried and then the best is chosen. 
Once this is done, it is not proof of the relationship but, possibly, strong evidence.

When an experiment involves a non-linear relationship, the following procedure 
is followed:
1 Plot a graph of the original raw data.
2 Choose a possible relationship based on the shape of the initial graph and your 

knowledge of various mathematical and graphical forms.
3 Work out how the data must be manipulated to give a linear graph.
4 Create a new data table.

Then follow the steps given in the Physics file on page 384. It may be necessary 
to try several mathematical forms to find one that seems to fit the data.

Worked example B5 
Some students were investigating the relationship between current and resistance 
for a new solid-state electronic device. They obtained the data shown in the table.

According to the theory they had researched on relevant Internet sites, the 
students believed that the relationship between I and R is R = dI 3 + g, where d and 
g are constants.

By appropriate manipulation and graphical techniques, find their experimental 
values for d and g. The following steps should be used:

a Plot a graph of the raw data.

b Work out what you would have to graph to get a straight line.

c Make a new table of the manipulated data.

d Plot the graph of manipulated data.

e Find the equation relating I and R.

Current, I (A) Resistance, R (Ω)

1.5  22

1.7  39

2.2  46

2.6  70

3.1 110

3.4 145

3.9 212

4.2 236
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Solution 
a Figure B.7 shows the graph obtained using a spreadsheet.

     It might be argued that the second piece of data is suspect. The rest of this 
solution supposes the students chose to ignore this piece of data.

b You can see what to graph if you think of the equation like this:

 R = d I 3 + g

 ↑  ↑ ↑  ↑
 y = m x + c

A graph of R on the vertical axis and I 3 on the horizontal axis would have a 
gradient equal to d and a vertical axis intercept equal to g.

c The data is manipulated by finding the cube of each of the values for current.

Current cubed, I3 
(A3)

Resistance, R 
(Ω)

 3.38  22

10.65  46

17.58  70

29.79 110

39.30 145

59.32 212

74.09 236

d  The graph in Figure B.8 was obtained from the spreadsheet.
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FIGURE B.8  Current–resistance characteristic (manipulated data).

e  The regression line has the equation y = 3.1x + 15.1, so the equation relating I 
and R is R = 3.1I 3 + 15.1. Hence, the value of d is 3.1 Ω A–3 and the value of g is 
15.1 Ω.

APPENDIX B  •  UNDERSTANDING MEASUREMENT
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FIGURE B.7 Current–resistance graph of device.
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Answers

Chapter 1 Gravity
1.1 Newton’s law of universal gravitation
WE 1.1.1  7.1 × 10–9 N    WE 1.1.2  2.0 × 1020 N
WE 1.1.3  The acceleration of the Earth is 3.3 × 105 times greater 
than the acceleration of the Sun.
WE 1.1.4  Both equations give the same result to two significant 
figures.
WE 1.1.5  Apparent weight = 810 N

1.1 review
1 The force of attraction between any two bodies in the universe is 

directly proportional to the product of their masses and inversely 
proportional to the square of the distance between them.

2 the distance between the centres of the two objects
3 1.8 × 1021 N           4     2.8 × 10–3 m s–2

5 a 3.0 × 1016 N    b   3.4 × 1022 N    c   0.000088%
6 The Moon has a smaller mass than the Earth.
7 3.5 m s–2           8     240 N
9 Near the Earth’s surface, weight is the gravitational force acting 

on an object whereas apparent weight is the contact force 
between the object and a surface. In an elevator accelerating 
upwards, a person’s apparent weight would be greater than their 
weight.

10 a 550 N    b   490 N

1.2 Gravitational fields
WE 1.2.1  a  See Productlink    b  From strongest to weakest: B, C, A.
WE 1.2.2  9.6 N kg–1     WE 1.2.3  9.75 N kg–1     WE 1.2.4  3.7 N kg–1

1.2 review
1 N kg–1           2     9.3 N kg–1           3     19of the original
4 a 5.67 N kg–1    b   1.48 N kg–1

c 0.56 N kg–1    d   0.22 N kg–1

5 0.0008 N kg–1 or 8 × 10–4 N kg–1

6 Mercury: 3.7 N kg–1,    Saturn: 10.4 N kg–1    Jupiter: 24.8 N kg–1

7 2 × 1012 N kg–1

8  The gravitational field strength at the poles is 1.4 times that at 
the equator.

9 3.4 × 108 m           10     10 Earth radii.

1.3 Work in a gravitational field
WE 1.3.1  3.1 × 103 MJ    WE 1.3.2  5.2 m s–1

WE 1.3.3  5.2 × 108 J    WE 1.3.4  5.4 × 109 J

1.3 review
1 C, hence its gravitational potential energy does not change. Its 

speed will also remain the same in a stable orbit.
2 It increases.           3     It will accelerate at an increasing rate.
4 A, B and C           5     2.0 × 1012 J           6     292 m s–1

7  a between 9 N and 9.2 N    b   2.6 × 106 m or 2 600 km
8  a 8 × 106 J    b   1.9 × 107 J    c   2.7 × 107 J

d 7348 m s–1 or 7.3 km s–1

9 1.7 × 109 J           10     2.6 × 1011 J

Chapter review
1 730 N           2     3.78 × 108 m           3     2.1 × 10–7 m s–2

4  a They are equal.
b The acceleration of Jupiter caused by the Sun is greater than 

the acceleration of the Sun caused by Jupiter.
5  3.7 m s–2           6      a   460 N    b   490 N
7  a 2.48 × 104 N    b   2.48 × 104 N    c   24.8 m s–2 

d 1.31 × 10–23 m s–2 
8 D           9      a   D    b   B    c   C    d   A    e   D

10 The direction of the arrowhead indicates the direction of the 
gravitational force and the space between the arrows indicates 
the magnitude of the field. The field lines always point towards 
the sources of the field.

11  9.76 N kg–1           12     a   9.79 N kg–1    b   100.61%
13  a 11.1 N kg–1    b   C           14     16
15  a 3 × 107 J    b   4 × 107 J

c 2000 m s–1 or 2 km s–1    d   3.5 N kg–1

16 9 N kg–1           17     D           18     C           19     3.5 × 109 J
20 No. Air resistance will play a major part as the satellite re-enters 

the Earth’s atmosphere.

Chapter 2 Electric and magnetic fields
2.1 Electric fields
WE 2.1.1  5.62 × 10–4 N C–1     WE 2.1.2  2.16 × 10–18 J on the field

2.1 review
1 C           2     B
3 a True.    b   False.    c   False.    d   True.    e   True. 

f False.    g   False. 
4  1.25 × 10–2 N           5     1.39 mC           6     5.72 × 1011 m s–2

7  1200 V           8     20 electrons
9 a work done by the field    b   no work is done

c work done on the field    d   no work is done
e work done on the field    f   work done by the field

10  a 1.09 × 10–19 J    b   Work was done on the field. 

2.2 Coulomb’s law
WE 2.2.1  6.32 × 10–4 N repulsion
WE 2.2.2  q1 = +6.35 × 10–10 C   q2 = –6.35 × 10–10 C
WE 2.2.3  8.0 × 105 N C–1 away from the charge Q or to the right

2.2 review
1 a positive, repulsion    b   negative, attraction

c negative, repulsion    d   positive, attraction
2 D           3     –8.22 × 10–8 N           4     1.1 × 107 N C–1

5  9000 N           6     1.435 m
7 a double, repel    b   quadruple, repel

c double, attract    d   quadruple, repel
8 37 N            9     1.97 × 1013 electrons

2.3 The magnetic field
WE 2.3.1  The magnetic field direction is perpendicular to the 
wire. As the current travels along the wire, the magnetic field runs 
anticlockwise around the wire.

2.3 review
1 B           2     A           3     C           4     C
5 

S
N

I

6 A
7 east–away from the north pole of the left hand magnet
8 west–away from the north pole of the right-hand magnet
9 zero
10  a A = east, B = south, C = west, D = north

b A = west, B = north, C = east D = south
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2.4 Forces on charged objects due to 
magnetic fields
WE 2.4.1  4.8 × 10–22 N
WE 2.4.2  out of the screen (towards you)
WE 2.4.3  2.5 × 10–3 N per metre of power line
WE 2.4.4  vertically downwards
WE 2.4.5  a   0 N    b   1.0 × 10–3 N out from Santa’s house.

2.4 review
1 D
2  a South (S)    b   C    c   remains constant

d A    e   Particles with no charge, e.g. neutrons
3 D           4     0 N           5     no force will apply
6  0.4 N upwards         7     4.8 × 10–24 N south         8     2F north
9 2.0 × 10–4 N north
10  a  0.18 N downwards    b   Same as (a).

2.5 Comparing fields—a summary
2.5 review
1 C           2     B           3     8.3 × 10–18 m
4  a monopoles    b   monopoles and dipoles    c   dipoles 
5 radial, static, non-uniform           6     negative           7     D
8 resultant, individual           9     8.2 × 10–8 N
10  3.6 × 10–47 N

Chapter review
1  0.0225 N           2     D
3 The electrical potential is the work done per unit charge to move 

a charge from infinity (where the potential is zero) to a point in 
the electric field. The potential difference, V, is the change in the 
electrical potential between these two points.

4  25 V           5     C           6     field, charged particle
7 4.17 × 10–18 J           8     2 × 10–14 N
9  a quarter, repel    b   quadruple, repel    c   halve, attract
10 5.42 × 104 m s–1           11     0.045 N           12     45.8 m
13 +1.63 × 10–4 C           14     B into the page
15 3B into the page           16     zero           17     D
18 a palm    b   fingers    c   thumb
19 equal to, into           20     2.78 A
21 a  5.0 × 10–9 N into the page    b   2.0 × 10–3 N into the page
22 9.6 × 10–15 N           23     downwards
24 east–west, as it runs perpendicular to the Earth’s magnetic field
25 C           26     7.9 × 10–6 N           27     1.9 × 10–48 N

Chapter 3 Applications of fields
3.1 Satellite motion
WE 3.1.1  a   589 N    b   774 N    c   1150 N
WE 3.1.2  3.08 × 103 m s–1

WE 3.1.3  a   6.70 × 105 km    b   1.90 × 1027 kg
c 8.20 km s–1

3.1 review
1 63.7 N           2     150 N           3     532 N           4     441 N
5 B           6     C           7     B           8     D
9 a 0.22 m s–2    b   506 N (or 510 N to 2 significant figures)
10  15.6 days

3.2 DC motors
WE 3.2.1  clockwise as viewed from side 3

3.2 review
1 A           2     1.0 × 10–2 N into the page
3  1.0 × 10–2 N out of the page           4     0 N
5 anticlockwise           6     D           7     2.0 × 10–4 N m
8 0.1 N
9 Current flows into brush P and around the coil from V to X to 

Y to W. So force on side VX is down, force on side YW is up, 
so rotation is anticlockwise.

10 D

3.3 Particle accelerators
WE 3.3.1  2.1 × 107 m s–1

WE 3.3.2  a   1.3 × 105 V m–1    b   9.4 × 107 m s–1    c   1.8 × 10–3 m

3.3 review
1 B           2     2.4 × 10–24 N south.           3     3.0 × 107 m s–1

4 a 9.6 × 10–15 N    b   4.6 × 10–3 m           5     9.4 × 10–4 T
6  1.6 × 106 m s–1

7 A charged particle in a magnetic field will experience a force  
(F = qvB).

 As force ∝ velocity, the force will increase as the velocity 
increases. This will continue while the charge remains in the 
magnetic field, continuously accelerating the charge.

8  5.8 × 10–2 m or 5.8 cm

Chapter review
1  299 N           2     D           3     D           4     A           5     11.2T
6  a 0.0540 m s–2    b   4.38 × 103 m s−1    c   5.89 days
7  a  0.315 N kg–1    b   344 m s–1

8  a down the page    b   up the page           9     anticlockwise
10  a down the page    b   up the page 

c zero, because the force is parallel to the coil, rather than 
perpendicular to it

11 C
12 to reverse the current direction in the coil every half turn to keep 

the coil rotating in the same direction
13 Electrons are released from a negative terminal (cathode) of the 

evacuated tube and accelerate under a high potential difference 
towards a positively charged anode. They hit a fluorescent screen 
at the rear of the tube. 

14  5.9 × 107 m s–1           15     2.2 × 10–4 m
16 a  The electron will curve in an upwards arc from its starting 

position. 
b its velocity and the magnitude of the magnetic field that 

is acting
17  a 1.4 × 104 V m–1    b   9.3 × 106 m s–1

18  4.0 × 107 m s–1           19     5.8 ×10–4 T
20 a 9.3 × 10–15 N    b   4.0 × 10–3 m

Unit 3 Area of Study 1 review
1 

+–

2 2.0 N attraction
3 6.9 × 109 N C−1 to the left (away from the charge)
4 1.05 × 104 V m−1           5     1.68 × 10−15 N
6 6.4 × 10−17 J           7     1.2 × 107 m s−1           8     36 V
9 1.5 × 105 N C−1 (or V m−1) downwards         10     1.28 × 10−18 C
11 8 electrons           12     A           13     2 × 10−14 N
14 9.9 × 107 m s−1           15     1.4 × 105 V m−1

16 a A    b   B    c   G
17 a to the left    b   more strongly to the left    c   to the right
18 1 × 10−3 N          19     from west to east          20     4.9 × 104 A
21 2 × 10−3 N down           22     B           23     0.05 N
24 to the right           25     0.01 N           26     to the left
27 a no force    b   no force
28 a 0.5 N out of the page    b   0.5 N into the page
29 The coil will rotate through 90° until the plane of the loop is 

perpendicular to the field (and the page). It may swing back and 
forth until it settles in this position.

30 A, B and C
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31 a The field force on side AB is upwards and that on side CD is 
downwards.

b When the coil is horizontal.
c When the coil is vertical its momentum will carry it past the 

true vertical position and then the commutator reverses the 
direction of the current through the coil and so the forces 
reverses.

32 a 4.0 A    b   F = 20 N    c   64 N           33     2 × 10−5 m
34 

electrons

35 5.8 × 10−2 m           36     2.5 × 10−7 N           37     C
38 D           39     A           40     B           41     4.25 × 1010 J
42 3.3 × 103 m s–1           43     a   4.0 × 104 N    b   8.1 × 104 N
44 The acceleration increases from 8.1 m s–2 to 9.2 m s–2.
45 1.06 × 105 N           46     5.5 × 103 s
47 The mass of the satellite has no effect on its orbital period.
48 60 N           49     3.6 × 107 J
50 Determine the energy associated with each grid square by 

multiplying each area by the mass of 20 kg. Calculate the 
altitude at which the total area starting from zero height is equal 
to 40 MJ.

Chapter 4 Electromagnetic induction 
and transmission of electricity
4.1 Inducing an emf in a magnetic field
WE 4.1.1  8.0 × 10–5 Wb
WE 4.1.2  No, ε = 0.695 V

This is a very small emf and would not be dangerous.
WE 4.1.3  0.50 m s–1

4.1 review
1 A           2     0 Wb           3     3.2 × 10–6 Wb
4 The magnetic flux decreases from 3.2 × 10–6 Wb to 0 after 

one-quarter of a turn. Then it increases again to 3.2 × 10–6 Wb 
through the opposite side of the loop after half a turn. Then it 
decreases to 0 again after three-quarters of a turn. After a full 
turn it is back to 3.2 × 10–6 Wb again.

5 1.3 × 10–5 Wb           6     0.0144 V or 1.44 × 10–2 V
7 0.84 m s–1           8     0.10 m           9     0 V           10     0.50 V

4.2 Induced emf from a changing 
magnetic flux
WE 4.2.1  a   5.0 × 10–4 Wb    b   5.0 × 10–3 V
WE 4.2.2  1000 turns

4.2 review
1 1.2 × 10–6 Wb           2     zero           3     3.0 × 10–5 V
4 C           5     4 × 10–3 V           6     2 V           7     6.0 × 10–3 V
8 The student must induce an emf of 1.0 V in the wire by changing 

the magnetic flux through the coil. To do this she could change 
the area of the coil. Required rate of change of flux to produce 
1.0 V = 0.01 Wb s–1 This would correspond to a change in area 
from 0.01 m2 to 0.02 m2 in a time of 0.1 s. See ProductLink for 
fully worked solution.

9 0.010 m2           10     0.125 s

4.3 Lenz's law and its applications
WE 4.3.1  clockwise when viewed from above
WE 4.3.2
 (i)  through the solenoid from Y to X (through the meter from 

X to Y)
 (ii) no induced emf or current
 (iii)  through the solenoid from X to Y (through the meter from 

Y to X)
WE 4.3.3  anticlockwise     WE 4.3.4  2000 W

4.3 review
1 C           2     a   A    b   A
3 a Anticlockwise

b Any combination of:
1) strength of the magnet
2) speed of the magnet
3) area/diameter of the ring
4) orientation of the ring
5) type of copper making up the ring
6) resistance of the circuit containing the coil.

4 B           5     B
6  Vp = 8.0 V

 Vp–p = 16 V

 Vrms = 5.66 V

7 

8 V

0
0.01 0.02

t (s)

8 

I (
A

)

1.4

-1.4

0.02
t (s)

0

9 29.98 W or 30 W           10     3.54 A

4.4 Supplying electricity—transformers and 
large-scale power distribution
WE 4.4.1  4000 turns     WE 4.4.2  0.0125 A
WE 4.4.3  3 W     WE 4.4.4  3.6 × 105 W or 0.36 MW
WE 4.4.5  500.6 kV

4.4 review
1 B           2     D           3     40 turns
4 a P1 = P2

b I2
I1

 = 
N1

N2

 

5 a 80 V
b 16 W
c 0.20 A

6 a 40 turns    b   0.14 A    c   24 W    d   A
7 400 W           8     4 × 107 W or 40 MW
9 a 5000 A    b   90 kV           10     B

Chapter review
1 a 3.2 × 10–3 V or 3.2 mV    b   Clockwise
2 a 0.04 V    b   From Y to X.
3 a 4 × 10–3 V or 4.0 mV    b   From X to Y. 
4 1.6 × 10–3  V or 1.6 mV
5 I

t (s)
0

1 2 3 4 5 6 7

 Either the graph shown or its inversion is correct.
6 1.0 A           7     10 turns           8     A



HEINEMANN PHYSICS 12390

9 a 18 V    b   375 W           10     C
11 In a quarter of a turn ∆ϕB = 80 × 10–3 × 10 × 10–4 = 8 × 10–5 Wb

 Frequency is 50 Hz so quarter of a turn takes 14 × 0.02 = 0.005 s

 ε = N B

t
 = 500 × 

8 10 5

0.005

    = 8 V
12 The average emf will double to 16 V.
13 Any two of: 
 1.  Using a DC power supply means that the voltage cannot be 

stepped up or down with transformers. 
 2.  Hence there will be significant power loss along the 8 Ω 

power lines. 
 3.  Damage to any appliances operated in the shed that are 

designed to operate on 240 V AC and not on 240 V DC.
14 clockwise           15     AB and CD           16     15 A
17 9970 V           18     450 W           19     See Productlink.
20 anticlockwise

Unit 3 Area of Study 2 review
1 zero
2 Rotate the loop or the magnetic field so they are no longer 

parallel.
3 When the plane of the loop and the magnetic field direction 

are perpendicular.
4 0.01 Wb or 10−2 Wb
5 As the loop enters the magnetic field there is a flux increasing 

down through the loop—from Y to X.
6 The loop moves at a speed of 5 cm s−1, and with side length 

20 cm, it is halfway into the field, 4 × 10−3 V.
7 8 × 10−3 A           8     3.2 × 10–5 W
9 The external force that is moving the loop into the magnetic field.
10 Zero, since the loop is totally within the magnetic field and there 

is no flux change.
11 From X to Y, using the right-hand grip rule, to oppose the 

decreasing flux down through the loop.
12 5 × 10−6 Wb           13     zero           14     2.5 × 10−3 V
15 1.25 × 10−3 A
16 No, because there will be no change in flux and therefore no emf 

generated.
17 200 μA           18     0.21 T
19 The graph is a sine wave with peak amplitude of 0.9 V and a 

period of 0.01 s (10 ms).
20 0.64 V
21 The output graph would have half the period and twice the 

amplitude. The rms voltage would be 1.3 V.
22 50 Hz           23     200 V           24     B           25     D
26 C           27     500 Hz           28     20 V           29     7.1 V
30 0.71 A           31     5 W
32 An alternator has a pair of slip rings instead of a split ring 

commutator.
33 AC is generated in the coils of an alternator. Each slip ring 

connects to each end of the coil.
The slip rings maintain the AC generated in the coil at the output.

34 0.4 A           35     6000 V           36     200 turns
37 849 W           38     1697 W           39     C           40     C
41 There was a higher current in the power line and hence a voltage 

drop along the line, leaving a low voltage at the house.
42 218 V, 3488 W
43 At the generator end a 1:20 step-up transformer is required 

(5000 ÷ 250 = 20). There will be 20 times as many turns in the 
secondary as in the primary. At the house end a 20:1 step-down 
transformer is required.

44 0.8 A           45     1.6 V           46     1.28 W
47 249.92 V           48     3998.72 W
49 Losses are about 0.03% of the power generated.
50 The power loss in the power line depends on the square of the 

current (P = I2R). A higher voltage means a lower current (for the 
same resistance).

Chapter 5 Newtonian theories 
of motion
5.1 Newton’s laws of motion
WE 5.1.1  a   0 N    b   6.0 N

c 6.0 N at an angle of 30° below the horizontal.
WE 5.1.2  a   1.1 × 104 N in the direction of motion    b   2.2 × 103 N
WE 5.1.3  a   F⊥ = 783 N, F|| = 285 N    b   783 N

c 3.4 m s–2 down the slope

5.1 review
1 No. Phil’s inertia made him stay where he was (stationary) as the 

tram moved forwards. This is an example of Newton’s first law. 
Objects will remain at rest unless a net unbalanced force acts to 
change the motion.

2 0.098 N upwards           3     a    45 N    b   165 N
4 a 1.5 m s–2    b   120 N    c   60 N
5 a zero    b   66 N    c   66 N           6     See Productlink.
7 4.3 N
8 a 5.0 × 103 N

b The rope will not break as the tension is less than the 
breaking strength.

9 a A    b   C    c   490 N up the hill    d   4.9 m s–2

e Acceleration is not affected by mass if there is no friction.
10 A, B and D           11     A

5.2 Circular motion in a horizontal plane
WE 5.2.1  7.5 km h–1

WE 5.2.2  a   521 m s–2    b   3.6 × 103 N
WE 5.2.3  a   1.53 m

b 

Ft

Fg

c 2.34 N towards the left    d   3.05 N

5.2 review
1 B           2     0.2 s           3     A and D
4 a 8.0 m s–1    b   8.0 m s–1 south

c 7.0 m s–2 towards the centre, i.e. west
5 8.4 × 103 N west
6 a 8.0 m s–1 north    b   towards the centre, i.e. east
7 The force needed to give the car a larger centripetal acceleration 

will eventually exceed the maximum frictional force that could 
act between the tyres and the road surface. At this time, the car 
would skid out of its circular path.

8 a 2.67 m s–2    b   unbalanced as the skater has an acceleration
c 135 N

9 a 28 s    b   5.0 N
10 a 0.5 s    b   10 m s–1    c   125 m s–2    d   310 N 
11 a 1.2 m

b The forces are her weight acting vertically and the tension 
in the rope acting along the rope towards the top of the 
maypole.

c towards point B, the centre of her circular path.
d 170 N towards B    e   2.6 m s–1

5.3 Circular motion on banked tracks
WE 5.3.1  a   590 N towards the centre of the circle

b 17 m s−1

5.3 review
1 towards the centre of the circle
2 The architect could make the banking angle larger or increase 

the radius of the track.
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3 Higher up the banked track as the greater speed means that a 
greater radius is required in the circular path.

4 friction, normal, weight, balanced, normal, weight
5 

FN

Fg

Fnet

42˚

C

6 48 km h−1

7 a 640 N
b On a horizontal track, FN is equal and opposite to the weight 

force, so FN = mg = 539 N. This is less than the normal force 
on the banked track (643 N).

8 47°           9    a   4.9 kN    b   22°
10 A greater radius will make the car travel higher up the banked 

track. The driver would have to turn the front wheels slightly 
towards the bottom of the bank. 

5.4 Circular motion in a vertical plane
WE 5.4.1  a   4.85 m s–1    b   15.6 N up

c 3.70 m s–1    d   6.73 N down

5.4 review
1 a It is constant in magnitude.    b   At the bottom of its path.

c At the top of its path.    d   At the bottom of its circular path.
2 3.8 m s–1

3 a The weight force from gravity and the normal force from 
the road.

b 1280 N (or 1.3 × 103 N)
c Yes. When the driver is moving over a hump, the normal force 

is less than her weight mg. Her apparent weight is given by 
the normal force that is acting and so the driver feels lighter 
at this point.

d 36 km h–1

4 a 31.4 m s–1    b   19.9 m s–1    c   8300 N down
5 12.1 m s–1           6     196 N down           7     31.3 m s–1 
8 188 m s–1           9     a    18 m s–2 up    b   1530 N up
10 a 9.8 m s–2 down.    b   2.2 m s−1

11 a 3.6 × 103 N down    b   1.3 × 103 N up    c   7.0 m s–1

5.5 Projectiles launched horizontally
WE 5.5.1  a   2.47 s    b   49.4 m

c 31.4 m s–1 at 50.4° below the horizontal.

5.5 review
1 A and D           2     a   1.5 m    b   7.35 m s–1    c   7.6 m s–1

3 a 0.49 s    b   2.0 m    c   9.8 m s–2 down
4 a 1.0 s    b   20 m    c   9.8 m s–2 down 

d 21.5 m s–1    e   22.3 m s–1

5 a 47 m s–1    b   58°           6     B and C
7 The hockey ball travels further. A polystyrene ball is much lighter 

and is therefore more strongly affected by air resistance than the 
hockey ball.

8 a 0.64 s    b   0.64 s    c   3.2 m
9 a 54 m s–1    b   22°
10 a 10 m s–1 forwards    b   4.4 m s–1 down

c 10.9 m s–1 at 24° below the horizontal
d 0.45 s    e   4.5 m
f 

Fg

5.6 Projectiles launched obliquely
WE 5.6.1  a   6.11 m s–1 horizontally to the right.

b 0.25 m    c   0.45 s

5.6 review
1 B           2     45°           3     17.3 m s–1

4 a 13.6 m s–1    b   6.34 m s–1

c 9.8 m s–2 down    d   13.6 m s–1

5 a 4.0 m s–1    b   6.9 m s–1    c   0.70 s
d 3.9 m    e   4.0 m s–1

6 a 24.2 m s–1    b   24.2 m s–1    c   24.2 m s–1

7 a 14.0 m s–1    b   4.20 m s–1    c   5.60 m s–1 down
8 24.8 m s–1          9     28 m s–1          10     69.2 m          11     C

5.7 Conservation of energy and momentum
WE 5.7.1  a   3.3 m s–1 west    b   2.3 × 104 kg m s–1 west
c 2.3 × 104 kg m s–1 east
d Σpc + Σpb = –2.3 × 104 + 2.3 × 104 = 0 Therefore the momentum 

of the system is constant, as expected.
WE 5.7.2  49.9 m

5.7 review
1 The billiard balls form an isolated system. Momentum is 

conserved, so if the momentum is zero after the collision, it was 
initially zero as well. This is possible because the two balls were 
initially travelling in opposite directions and their momentum 
vectors cancelled out to give zero.

2 0.41 m s–1 east           3     6.0 m s–1

4 a 1.0 × 104 kg m s–1 east    b   1.0 × 104 kg m s–1 west    c   0
5 a 0 

b It hasn’t gone anywhere. The vehicles had a total of zero 
momentum before the collision and so there still is zero 
momentum after the collision.

c 1.0 × 104 kg m s–1 west 
d The change in momentum of the station wagon is  

∆pw = p w (final) – p w (initial) = 0 – 1.0 × 104 kg m s–1 west 
 = 1.0 × 104 kg m s–1 east

6 12 m s–1 to the right
7 v = 5.0 m s–1 in the opposite direction to the shell
8 22 m s–1 to the right           9     2740 J           10     392 J
11 a 33.0 J    b   33.0 J    c   21.4 m

Chapter 5 review
1 B           2     a   6.5 m s–2    b   32.5 N
3 4.5 × 103 N           4     a   4.9 m s–2    b   FN = 0.87 Fg
5 a 4.9 m s–2    b   24.5 m s–1

6 a 236 N    b   8.88 m s–2 down the ramp
c 506 N down the ramp    d  9.4 m s–1    e  506 N up the ramp

7 a 508 N    b   137 N    c   the force of the teenager on the slide
d the force of gravitational attraction from the teenager on 

the Earth
8 a 3.70 m s–1    b   17.1 m s–2 towards the centre of the circle

c 0.430 N

9 a 

Ft

Fg

b 0.49 N
10 a 2.5 m s–2 towards the centre of the circle

b friction between the tyres and the ground
11 a 1.02 × 103 m s–1    b   1.99 × 1020 N 
12 3.40 × 10–2 m s–2

13 a 10 m s–1 south    b   10 m s–1    c   13 s    d   5.0 m s–2 west
e 7.5 × 103 N west

14 0.146 m           15     A           16     15.7 m s–1

17 a (i)  365 N up    (ii)  615 N up    b   D
18 Forces acting are: gravity (weight) and the normal force from the 

base of the bucket on the water.
 Both act downwards. Acceleration is towards the centre of the 

circle, i.e. downwards, and is greater than the acceleration due 
to gravity. 
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19 a 2.5 m    b   9.8 m s–2 downwards (due to gravity)
20 a 10 m s–1    b   4.4 m s–1    c   11 m s–1

21 a 10.3 m s–1    b   12.3 m s–1    c   8.9 m
22 a 1.8 J    b   1.96 J    c   8.7 m s–1

23 a 0    b   200 kg m s–1 east    c   200 kg m s–1 west
24 1.0 m s–1 west           25     1.68 m s–1

26 a 136 kg m s–1 west    b   −136 west or 136 kg m s–1 east

Chapter 6 Special relativity 
6.1 Einstein’s theory of special relativity
6.1 review
1 D           2     A and D
3 A hanging pendulum in the spaceship will move from its normal 

vertical position when the spaceship accelerates. 
4 The speed of the ball is greater for Jana than it is for Tom.
 The speed of the sound is greater forwards than it is backwards 

for Jana, while for Tom it is the same forwards and backwards.
 The speed of light is the same for Jana and Tom.
5 a 370 m s–1    b   300 m s–1    c   360 m s–1    d   340 m s–1 
6 A
7 a 10 – 25 = 15 m s–1 backwards    b   3 m backwards    c   0.2 s
8 a 0.1 s    b   50 m s–1 in all frames    c   1 m 

d 50 m s–1 as always    e   0.08 s (approx.)
9 Atomic clocks are precise enough to measure the tiny relativistic 

differences in time needed to support Einstein’s special theory 
of relativity.

10 very short, μs, very similar, should not, do

6.2 Time dilation
WE 6.2.1  520 s

6.2 review
1 light, oscillation, time, constant 
2 ‘Proper time’ is the time measured at rest with respect to the 

event. Proper times are always less than any other times.
3 1.29 s           4     48.15 s           5     2.20 s           6     1.15 s
7 a Simply the height of the clock, 1 m    b   3.33 × 10–9 s 

c ctc    d   7.6 × 10–9 s    e   2.3
8 a 1.74 × 10–5 s or 17.4 μs

b Non-relativistic: 655 m
 Relativistic: 5178 m

9 t0 = 2.93 × 10–11 s
10 The equator clock is moving faster relative to the poles. It is also 

accelerating and hence will run slower. The effect is well below 
what we can detect as the speed of the equator is ‘only’ about 
460 m s–1, which is about 1.5 millionths of c.

6.3 Length contraction
WE 6.3.1  3.90 m     WE 6.3.2  20.5 m

6.3 review
1 The length that a stationary observer measures in their own 

frame of reference. That is, the object (or distance) that is being 
measured is at rest with respect to the observer.

2 A           3     0.812 m           4     3.37 m
5 a 0.9c or 2.71 × 108 m s–1.

b The fast-moving garage appears even shorter (0.643 m) than 
its proper length to the car driver.

6 Proper time, t0, because the observer can hold a stopwatch in 
one location and start it when the front of the carriage is in line 
with the watch and stop it when the back of the carriage is in 
line with it.

7 C
8 a 0.866c or 2.60 × 108 m s–1    b   Dan appears half his 

thickness.
9 23.5 m (At this speed, there is no difference in length.)
10 a 1.20 m    b   the proper length, 2.75 m

Chapter 6 review
1 No object can travel at or beyond the speed of light, so the value 

of v2

c2  will always be less than 1.

 The number under the square root sign will also, therefore, be a 
positive number less than one.

 The square root of a positive number less than one will always be 
less than one as well.

2 0.000000014 or 1.4 × 10–8

3 A (postulate 2) and C (postulate 1)           4     At the poles.
5 C
6 Space and time are interdependent—motion in space reduces 

motion in time.
7 3 × 108 m s–1           8     A and B           9     B
10 You could not tell the difference between (i) and (iii), but in 

(ii) you could see whether an object like a pendulum hangs 
straight down. 

11 In your frame of reference time proceeds normally. Your heart 
rate would appear normal. As Mars is moving at a high speed 
relative to you, people on Mars appear to be in slow motion as 
time for them, as seen by you, will be dilated.

12 26.8 s           13     a   0.992 s    b   0.992 s           14     C
15 a 0.866c or 2.598 × 108 m s–1

b No, it can’t have doubled to over c!  
v = 0.968c or 2.90 × 108 m s–1

16 a 1.67 s    b   Length: 1.80 m  Height: 1.0 m
17 a 5.6 years    b   2.45 years

c Raqu sees the distance as only 2.183 ly
18 a 1.4 mm

b No, as the motion is perpendicular to the north–south direction.

19 a γ = 
1

1
v2

c2

 = 
1

1
0.995c( )2

c2

 = 
1

1 (0.995)2
 = 10.01

b No, they don’t experience any difference in their own 
time frame.

c About 25.1 years from our frame of reference.
d 2.51 years
e No! They see the distance between Earth and Vega 

foreshortened because of the high relative speed, so to them 
the distance is only about 2.5 ly.

20 In the frame of reference of the observer, the muon’s time slows 
so it lives much longer and therefore makes it to the Earth. In the 
muon’s frame of reference, the distance to Earth is contracted so 
it has a much shorter distance to travel.

Chapter 7 The relationship between 
force, energy and mass 
7.1 Impulse
WE 7.1.1  impulse = 3.94 × 104 kg m s–1 south-west
 Fave = 3.15 × 103 N south-west
WE 7.1.2  101 N s     WE 7.1.3  5.0 × 104 N

7.1 review
1 Ball A, ball C, ball B.           2     38 N           3     6.89 N s
4 A, C and D           5     2.14 × 103 N
6 a 1.39 × 106 kg m s–1    b   1.39 × 106 kg m s–1

7 Jacinta is correct. The higher pressure ball would have a greater 
change in momentum over a shorter time so would exert a 
greater force. 

8 200 N s           9     1.0 × 103 N           10     12.9 N

7.2 Work done
WE 7.2.1  a   106 J    b   46 J    c   60.0 J     WE 7.2.2 90 J

7.2 review
1 A           2     36 J           3     24 J           4     12 J 
5 0.27 J           6     D           7     1.8 × 103 J
8 The magnetic force does no work on the particle.
9 374 J           10     510 J
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7.3 Strain potential energy
WE 7.3.1  a   2.0 × 104 N m–1    b   2.25 J    c   14.5 J

7.3 review
1 C, B, A
2 Stiff spring constant = 200 N m–1

 Weak spring constant = 50 N m–1

3 3.0 J           4     0.08 m or 8.0 cm           5     30 N
6 3.75 J           7     7 J           8     7 J
9 No. Hooke’s law is not obeyed as the force vs distance graph is 

not a straight line (not linear). 
 OR
 Yes. Hooke’s law is obeyed up to a stretch of 0.05 m (i.e. a 

distance of 0.15 m) on the graph where the line changes from 
being linear. 

10 at the point where the distance = 0.15 m and the force is 30 N

7.4 Kinetic and potential energy
WE 7.4.1  The kinetic energy after the collision is the same as the 
kinetic energy before the collision. The collision is perfectly elastic. 
(See Productlink for the fullly worked calculations.)
WE 7.4.2  4.5 × 108 J
WE 7.4.3  a   1.4 × 1010 J    b   6.2 km s–1

7.4 review
1 2.51 × 106 J           2     A and E           3     1.6 × 107 J
4 5.3 × 108 J           5     1.5 × 103 m s–1           6     2.5 × 1011 J
7 A, C and D           8     B and D           9     6.4 m s–1

7.5 Einstein’s mass–energy relationship
WE 7.5.1  a   1.56 × 10–21 kg m s–1    b   0.998c
WE 7.5.2  a   4    b   4.8 × 10–12 J    c   5.3 × 10–29 kg

7.5 review
1 9.53 × 105 kg m s–1           2     9.65 × 10–18 kg m s–1

3 1.59 × 10–23 kg m s–1           4     1.67 × 1015 J
5 3.11 × 1014 J           6     B           7     3.59 × 1019 J
8 3.11 × 1031 J           9     C           10     C

Chapter 7 review
1 B and D           2     5.3 kg m s–1           3     D
4 a Yes, momentum is conserved in all collisions.

b Inelastic; 20 J of kinetic energy has been transformed into 
heat and sound energy.

c 2 m s–1

5  480 N           6     a   3.6 × 104 J    b   12 m s–1

7 a 6.9 × 1010 J    b   2.6 × 1011 J           8     3 × 103 J
9 3.20 × 10–2 J           10     A           11     0.25 m s–1

12 1.10 × 10–2 J           13     1.1 × 10–2 J
14 a more than    b   is not    c   is    d   is

e is not, kinetic energy 
15 1.7 × 103 N m–1           16     5.1 × 1013 J           17     B
18 2.60 × 108 m s–1           19     3.34 × 10–27 kg
20 1.23 × 1021 J

Unit 3 Area of Study 3 review
1 FN

Fg

2 C           3     unbalanced, balanced           4     12.6 m s−1

5 31.6 m s−2           6     1.9 × 103 N           7     0.6 Hz

8 

X
C

Fg

FN

9 47°           10     18 m s−2 up           11     1.5 × 103 N
12 1.5 × 103, almost three times larger than the weight force
13 4.9 m           14     9.8 m s–2 down           15     10.6 m s–1

16 C
17 A. Graph A shows an inelastic collision (Ek after < Ek before) in which 

some kinetic energy is transformed into potential energy (the 
dip) and then back into kinetic energy.

18 D. Momentum is conserved (i.e. is constant) in all collisions.
19 D           20     D           21     9.8 m s–2

22 2.2 m s−1          23     0          24     5.0 m s−1          25     1400 J
26 1400 J           27     3.7 m s–1           28     200 W
29 24.3 J           30     4.4 m s−1

31 192 kg m s–1           32     192 kg m s–1

33 Ek before = 2160 J, Ek after 1597 J, the collision is inelastic.
34 
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35 20 N m−1           36     2.25 × 103 J           37     C
38 8.7 m s–1           39     A (postulate 2) and C (postulate 1)
40 A and C           41     C           42     C
43 Aristotle’s ideas agreed with our everyday observations. In a 

space station we would often experience objects moving with 
constant velocity with no external force, as objects ‘floated’ 
around the ship.

44 In your frame of reference time proceeds normally. As Mars is 
moving at a high speed relative to you, people on Mars appear 
to be in slow motion as time for them, as seen by you, will be 
dilated.

45 5.6 years           46     2.4 years
47 Relative to her, the distance appeared to be foreshortened by the 

factor γ, thus the distance she travelled was much less than 5 
light years.

48 4.23 × 10–12 J           49     9.3 × 1037 every second
50 3.8 × 1014 kg

Chapter 8 Properties of 
mechanical waves 
8.1 review
1 The particles oscillate back and forth or up and down around a 

central or average position and pass on the energy carried by the 
wave. They do not move along with the wave.

2 a False: Longitudinal waves occur when particles of the 
medium vibrate in the same direction or parallel to the 
direction of the wave.

b True.    c   True.    d   True.
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3 downwards
4 sound, ripples on a pond, vibrations in a rope
5 A has moved right and B has moved left. As the sound wave 

moves to the right, particles ahead of the compression must 
move to the left initially to meet the compression and then move 
forward to carry the compression to the right. Therefore, particle 
B has moved to the left of its undisturbed position and particle A 
has now moved to the right of its undisturbed position.

6 C and D
7 The motion of the particles is at right angles (perpendicular) to 

the direction of travel of the wave itself
8 Longitudinal: a and d    Transverse: b and c
9 Mechanical waves move energy via the interaction of particles. 

The molecules in a solid are closer together than those in a gas. 
A smaller movement is needed to transfer energy and, hence, the 
energy of the wave is usually transferred more quickly in a solid 
when compared with other states of matter.

10 Towards the right, from the tuning fork towards X

8.2 Measuring mechanical waves
WE 8.2.1  0.4 m
WE 8.2.2  amplitude = 0.1 m, period = 0.5 s, frequency = 2 Hz
WE 8.2.3  7.5 × 1014 Hz     WE 8.2.4  1.3 × 10–15 s

8.2 review
1 a C and F    b   wavelength    c   B and D    d   amplitude
2 Wavelength λ = 1.6 m, amplitude = 20 cm
3 a 0.4 s    b   2.5 Hz           4     6.5 m s–1

5 a True.
b False: The period of a wave is proportional to its wavelength.
c True.
d False: The wavelength and frequency of a wave determine its 

speed.
6 a wavelength = 4 cm; amplitude = 0.5 cm

b 2 cm s–1 or 0.02 m s–1    c   red
7 5 × 10–6 s 
8 As the speed of each vehicle is the same and there is no relative 

motion of the medium, the frequency observed would be the 
same as that at the source.

9 The apparent frequency increases when travelling towards you 
and decreases when travelling away from you.

8.3 Wave interactions
8.3 review
1 The wave is reflected and there is a 180° change in phase.
2 amplitude
3 a True.

b False: As the pulses pass through each other, the interaction 
does not permanently alter the characteristics of each pulse.

c True.
4 B
5 An object subjected to forces varying with its natural oscillating 

frequency will oscillate with increasing amplitude. This could 
continue until the structure can no longer withstand the internal 
forces and fails.

6  52°           7     B
8 Normal walking results in a frequency of 1 Hz or 1 cycle per 

second i.e. two steps per second. This frequency may result in an 
increase in the amplitude of oscillation of the bridge over time, 
which could damage the structure.

9 C

8.4 Standing waves in strings
WE 8.4.1  a   0.25 m    b   0.17 m

8.4 review
1 No, it is a common misconception that standing waves somehow 

remain stationary. It is only the pattern made by the amplitude 
along the rope that stays still at the nodes. The rope is still 
moving, especially at the antinodes.

2 A transverse wave moving along a slinky spring is reflected from 
a fixed end. The reflected and original waves superimpose, and 
the resulting pattern of constructive and destructive interference 
creates a standing wave.

3 0.8 m           4     1.5 m

5 1
4 of the fundamental wavelength           6     2.5 m

7 0.74 m          8     300 Hz          9     600 Hz          10     900 Hz

Chapter 8 review
1 The particles on the surface of the water move up and down as 

the waves radiate outwards carrying energy away from the point 
on the surface of the water where the stone entered the water.

2 Similarities: both are waves, both carry energy away from the 
source, both are caused by vibrations.

 Differences: transverse waves involve particle displacement at 
right angles to the direction of travel of the wave; longitudinal 
waves involve particle displacement parallel to the direction of 
travel of the wave.

3 U is moving down and V is momentarily stationary (and will then 
move downwards).

4  0.300 m s–1           5     0.044 m           6     5 m
7 1.1 m           8     256 Hz           9     C and D
10 The frequency would increase and the velocity would remain 

unchanged.
11 It undergoes a phase change. 
12 a transmission    b   reflection    c   absorption
13 The green wave
14 Sound waves are longitudinal mechanical waves where the 

particles only move back and forth around an equilibrium 
position, parallel to the direction of travel of the wave. When 
these particles move in the direction of the wave, they collide 
with adjacent particles and transfer energy to the particles in 
front of them, losing kinetic energy in the process. 

15 If an object is made to vibrate at its resonant frequency, the 
amplitude of its vibrations will increase with time. If a building 
or bridge is made to resonate by, e.g., wind matching its natural 
frequency, the resulting vibrations could damage the structure.

16 100 Hz           17     300 Hz           18     0.50 Hz
19 0.091 m or 9.1 cm           20     All of the options are correct.
21 When there is relative motion between the source, observer 

and medium

Chapter 9 The nature of light 
9.1 Light as a wave
WE 9.1.1  

WE 9.1.2  1.52     WE 9.1.3  1.62 × 108 m s–1

WE 9.1.4  28.2°     WE 9.1.5  24.4°

9.1 review
1 a wave model    b   wave model    c   particle model
2 C
3 

new wavefront

initial 
wavefront

rays giving
direction of
propagation
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4 slower than           5     2.17 × 108 m s–1           6     1.31
7 35.3°           8     b and c           9     D
10 Polarisation is a phenomenon in which transverse waves are 

restricted in their direction of vibration. Polarisation can only 
occur in transverse waves and cannot occur in longitudinal 
waves. Since light can be polarised, it must be a transverse wave.

9.2 Interference: Further evidence for the 
wave behaviour of light
WE 9.2.1  550 nm

9.2 review
1 D           2     C and D           3     A and D
4 Intensity

M

5 Up until Young’s experiment, most scientists supported a 
particle or ’corpuscular’ model of light. Young’s experiment 
demonstrated interference patterns, which are characteristic of 
waves. This led to scientists abandoning the particle theory and 
supporting a wave model of light.

6 a increase    b   decrease    c   increase
7 2610 nm or 2.61 × 10–6 m  
8 a destructive    b   constructive    c   destructive
9 1400 nm           10     455 nm

Section 9.3 Electromagnetic waves
WE 9.3.1  5.0 × 1014 Hz

9.3 review
1 B           2     D           3     D
4 X-rays, visible light, infrared radiation, FM radio waves
5 a 4.57 × 1014 Hz    b   5.09 × 1014 Hz

c 6.17 × 1014 Hz    d   7.56 × 1014 Hz
6 0.07%           7     500 nm           8     4.3 m
9 1.5 × 1018 Hz           10     0.122 m

Chapter 9 review
1 A
2 The diffraction pattern would spread out more from blue to 

green. 
3 D
4 Both snow and water reflect light. This reflected light is known 

as glare. The light reflected from water and snow is partially 
polarised. Both snowboarders and sailors are likely to wear 
polarising sunglasses as these will absorb the polarised glare 
from the snow or water respectively.

5 2.25 × 108 m s–1

6 increases, away from
7 A: incident ray    B:   normal    C:   reflected ray 
 D: boundary between media    E:   refracted ray
8 2.1 × 108 m s–1           9     28.9°
10 a 32.0°    b   53.7°    c   21.7°    d   1.97 × 108 m s–1

11 a 19.5°    b   19.1°    c   0.4°    d   1.96 × 108 m s–1

12 a 49.8°    b   40.5°    c   27.6°
13 B, D, A, C           14    a   581 nm    b   yellow
15 Intensity

M

16 radio waves, microwaves, infrared, visible, ultraviolet, X-rays, 
gamma rays

17 a microwaves    b   infrared waves    c   X-rays         18    490 m
19 Young shone monochromatic light on a pair of narrow slits. 

He identified that the resulting pattern of bright and dark 
fringes corresponded to regions of constructive and destructive 
interference, which could only be explained by a wave model 
of light.

20 A microwave oven produces electromagnetic waves with the 
same frequency as the resonant frequency of water molecules. 
This makes the water molecules in food vibrate, and the energy 
is transferred to the rest of the food, heating it up.

Chapter 10 Light and matter 
10.1 The photoelectric effect and the dual 
nature of light
WE 10.1.1  2.4 × 10–19 J     WE 10.1.2  1.5 eV
WE 10.1.3  1.5 eV     WE 10.1.4  5.0 eV     WE 10.1.5  2.07 eV

10.1 review
1 a 3.03 × 10–19 J    b   3.38 × 10–19 J

c 4.09 × 10–19 J    d   5.01 × 10–19 J
2 If light shining on it causes electrons to be released.
3 a True.

b False: When light sources of the same intensity but different 
frequencies are used, the higher frequency light has a higher 
stopping voltage, but it produces the same maximum current 
as the lower frequency.

c True.
4 a 4.1 eV    b   4.6 eV    c   6.2 eV           5     D
6 0.066 eV           7     0.25 eV           8     C and D
9 a True.

b False: The stopping voltage is reached when the photocurrent 
is reduced completely to zero.

c True.    d   True.
10 1.68 eV

10.2 The quantum nature of light and matter
WE 10.2.1  5.7 × 10–13 m     WE 10.2.2  1.0 × 10–36 m
WE 10.2.3  0.17 nm     WE 10.2.4  1.47 × 10–27 kg m s–1

10.2 review
1 7.3 × 10–10 m           2     1.8 × 105 m s–1           3     B
4 a 3.5 × 10–11 m    b   2.1 × 107 m s–1

5 The wavelength of a cricket ball is so small that its wave-like 
behaviour could not be seen by a cricket player.

6 Because the radius of an atom is smaller than the wavelength 
of an electron.

7 1.32 × 105 m s–1

8 W = qV = 
1

2
mv2

 v = 
2qV

m

 λ = 
h

mv

  = 
h

m
2qV

m

  = 
h

2qVm

9 λ = 
h

mv

 λmv = h

 mv = 
h

 p = 
h

10 Because a high-speed electron has a shorter wavelength than a 
light wave.
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10.3 Light and matter
WE 10.3.1  4.6 × 10–19 J     WE 10.3.2  Lyman
WE 10.3.3
A photon of 6.7 eV corresponds to the energy required to promote 
an electron from the ground state to the second excited state  
(n = 1 to n = 3). The photon may be absorbed.
A photon of 5.0 eV cannot be absorbed.
A photon of 11.0 eV may ionise the mercury atom. The ejected 
electron will leave the atom with 0.6 eV of kinetic energy.

10.3 review
1 The electrons in a sample become excited when the substance 

is heated or an electric current flows through it. As the electrons 
return to their ground state, a photon is emitted.

2 4.0 × 10–19 J           3     3.0 × 10–6 m
4 a Light Emitting Diode

b Light Amplification by Stimulated Emission of Radiation
5 675 nm           6     12.75 eV
7 9.74 × 10–8 m or 97.4 nm
8 de Broglie proposed a model where electrons were viewed as 

matter waves with wavelengths that formed standing waves 
within an atomic orbit circumference. A bowed violin string 
forms standing waves between the bridge of the violin and the 
violinist’s finger.  

9 High-energy orbits of multi-electron atoms, the continuous 
emission spectrum of solids and the two close spectral lines in 
hydrogen that are revealed at high resolution.

10 −0.54 eV

10.4 Heisenberg’s uncertainty principle
10.4 review
1 It would increase.
2 The location of electrons can’t be restricted to specific orbital 

paths. While electrons exist at particular energy levels, it is 
impossible to know the precise location of the electron. 

3 The predictions of Newtonian physics do not fit with 
Heisenberg’s uncertainty principle and hence the wave–particle 
duality observed at the sub-atomic scale.

4 The photon would transfer energy to the electron, changing its 
momentum and hence changing its path.

5 For the normal-sized world around us, the inclusion of Planck’s 
constant, h, in the measure of uncertainty means that the level 
of uncertainty in determining the position of everyday objects is 
extremely small.

6 There are no constraints on the path of the light. The uncertainty 
in the position of a photon becomes large and hence the 
uncertainty in momentum becomes small.

7 The uncertainty in the position of the electron is increased. As a 
consequence, the uncertainty of the momentum of the electron 
will decrease. Fringes on the diffraction pattern will move 
closer together.

8 While an uncertainty can always be calculated, when applied 
to large objects the uncertainty is insignificant. The uncertainty 
principle is applied to sub-atomic particles in the study of 
quantum mechanics.

9 D

Chapter 10 review
1 2.5 eV           2     8.0 × 10–19 J           3     photoelectrons
4 1.2 × 1015 Hz           5     2.9 eV           6     1.95 eV
7 Rb = 2.1 eV, Sr = 2.5 eV, Mg = 3.4 eV, W = 4.5 eV
8 a See Productlink for the plotted graph.

b 4.1 × 10–15 eV s    c   5.0 × 1014 Hz
d No. The frequency of red light is below the threshold 

frequency for rubidium.
9 a 4.78 keV

b The electrons have a de Broglie wavelength which is similar 
to the wavelength of the X-rays. This is evidence for the dual 
nature of light and matter.

c 2.6 × 10–24 kg m s–1

10 a a sequence of maximum and minimum intensities
b The electrons are exhibiting wave-like behaviour. Electrons are 

not light but, like light, a beam of electrons can be diffracted.
11 B           12     1.7 × 10–35 m           13     No
14 Energy levels in an atom cannot assume a continuous range of 

values but are restricted to certain discrete values, i.e. the levels 
are quantised.

15 2.9 × 1015 Hz
16 Bohr’s work on the hydrogen atom convinced many scientists 

that a particle model was needed to explain the way light 
behaves in certain situations.

17 The colours that are missing in the absorption spectrum match 
the colours that are visible in the emission spectrum.

18 As the filament heats up, the free electrons in the tungsten atoms 
collide, accelerate and emit photons. 

19 It will increase.
20 The uncertainty in the electron’s position would increase.

Unit 4 Area of Study 1 review
1 C           2     Ax:Ay = 2:1           3     fx:fy = 1:2
4 one           5     three           6     D
7 one initial

disturbance
wave pulse

8 A mechanical wave involves energy being transferred from one 
location to another, without any net transfer of matter. 

9 Displacement of the medium perpendicular to the direction of 
travel of the wave produces a transverse wave.
Displacement of the medium parallel to the direction of travel of 
the wave produces a longitudinal wave.

10 y

x

11 4.0 m           12     A           13     C
14 1.3 m           15     2 cm
16 The wave is reflected with a decrease in amplitude and a phase 

change. Energy is transformed into heat by the fixed end.
17 The resulting waveform will be the vector addition of the 

individual waves due to the principle of superposition. The shape, 
amplitude or speed of the individual waves is not altered.

18 Amplitude—twice the original; wavelength—same as the original.
19 No, they will have the same characteristics as before the interaction.
20 110 Hz           21     330 Hz           22     550 Hz
23 A = node, B = antinode
24 They show the maximum and minimum positions of the rope as 

it oscillates.
25 Three; the third.
26 The apparent frequency will increase when the source is moving
27 Being pushed in the direction of motion once, at the correct 

moment each oscillation, will drive the swing at its resonant 
frequency and will result in a gain in amplitude.

28 3 × 108 m s–1           29     3 × 10–8 m           30     ultraviolet
31 For example:

• UV lamps are used to sterilise surgical equipment in hospitals
• UV lamps are used to sterilise food and drugs
• UV rays help the body to produce vitamin D.

32 infrared           33     C and D           34     11.9°
35 1.24 × 108 m s–1

36 They have different wavelengths (or frequencies).
37 They would need to pass white light through a triangular 

glass prism.
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38 The white light will separate into the component colours which, 
from top to bottom, will be red, orange, yellow, green, blue, 
indigo, violet.

39 The electromagnetic variations occur in only one direction at 
right angles to the direction of propagation.

40 Sound is a longitudinal wave.
41 When the polarising axes are parallel.
42 Maximums when the polarising axes are parallel: 0° and 180°; 

zeros when the polarising axes are perpendicular: 90° and 270°.
43 ∆x will be doubled.           44     ∆x will be doubled.
45 ∆x will be doubled.
46 There will be a wider central band.
47 The wave model and the particle (or corpuscular) model.
48 Young’s experiment resulted in bright and dark bands or fringes 

being seen on a screen. These can only be due to interference 
effects and a wave model.

49 A and B. At A, two crests add to give maximum constructive 
interference. At B, two troughs add to give maximum constructive 
interference. 

50 500 nm

Unit 4 Area of Study 2 review
1 B           2     C           3     A           4     5 eV
5 • Only certain frequencies of light will emit photoelectrons.

•  There is no time difference between the emission of 
photoelectrons by light of different intensities.

•  The maximum kinetic energy of the ejected photoelectrons is 
the same for different light intensities of the same frequency.

6 2.42 × 10–8 m           7     A series of bright and dark fringes.
8 They are exhibiting wave-like behaviour.           9     164 m s–1

10 f = 2.13 × 1015 Hz    λ = 1.41 × 10–7 m
11 f = 1.18 × 1015 Hz    λ = 2.53 × 10–7 m
12 f = 5.07 × 1014 Hz    λ = 5.91 × 10–7 m
13 1.04 × 10–17 J           14     4.78 × 106 m s–1

15 1.52 × 10–10 m
16 If incident light had an energy value less than the minimum 

energy difference between the lowest and next orbital levels 
within the hydrogen atom, the light would not result in any 
orbital changes. Therefore the light would not be absorbed by 
the atom.

17 0.0416 nm
18 There would be circular bands or fringes of specific spacing 

around a common central point.
19 Greater momentum –> lower wavelength (using λ = 

h
p), so the 

circular bands would be more closely spaced.
20 de Broglie would say that the electrons were diffracted as they 

passed through the gaps between the atoms in the crystal, 
creating a diffraction pattern.

21 Electrons have a de Broglie wavelength. Their orbit must fit 
an integral number of wavelengths so that a standing wave is 
formed (2πr = nλ). Only energy levels corresponding to these 
wavelengths exist.

22 B, C, D, E
23 The energy that an electron gains when moved through a 

potential of 1 V.
24 Any excess energy results in extra kinetic energy of the electron.
25 The discovery that light can display both particle and wave 

properties was mirrored when electrons were found to have wave 
properties, when moving very fast, as well as particle properties.

26 C
27 Each incident photon interacts with only one electron; therefore, 

the energy of the emitted electrons will depend only on the 
frequency of the incident light (according to E – hf) and not on 
the intensity (the number of incident photons).

28 Altering the intensity of the light corresponds to waves of greater 
amplitude, which should deliver more energy to the electrons 
and, therefore, the emerging electrons should have higher 
energy. (This is not observed.)

29 Photon energy > ionisation energy
30 6.4 × 10–20 J           31     3.41 × 10–25 kg m s–1

32 1.94 × 10–9 m
33 Since there is no energy level 10.0 eV above the ground state, 

the photon cannot be absorbed.
34 1.8 eV, 4.9 eV and 6.7 eV           35     1.85 × 10–7 M
36 3.04 × 10–8 m
37 Ek max is the maximum kinetic energy of the emitted electrons.  

f is the frequency of the light incident on the metal plate.  
ϕ is the work function i.e. the minimum energy required to 
eject an electron.

38 Ek max is not altered.           39     More current will flow.
40 3           41     2.21 × 10–22 kg m s–1

42 They must have equivalent wavelengths.
43 3.6 × 10–11 m           44     3.6 × 10–11 m
45 1.8 × 10–23 kg m s–1

46 No. The energy of the X-rays is given by E = hc
λ  and the energy 

of the electrons is given by ∆Ek = 12 mv2.
47 1 It predicts a minimum frequency (threshold frequency and 

energy) before electrons are emitted. (The wave model 
predicts that any frequency should work.)

2 The energy of the emitted electrons depends only on the 
frequency of the incident light. (The wave model predicts that 
increasing the intensity of light would increase the energy of 
the emitted electrons.)

3 It also explains an absence of any time delay before electrons 
are emitted when weak light sources are used. (This time 
delay is suggested by the wave model.)

48 a B    b   A    c   C    d   D
49 Narrowing the slit makes the diffraction pattern become wider, as 

Heisenberg's uncertainty principle predicts (less uncertainty in 
position means more uncertainty in momentum).

50 The uncertainty in a particle’s position, ∆x, becomes greater, as 
the right-hand side of the relation is constant.
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Glossary

A
absorb To take in (energy).
absorption spectrum Spectrum containing 
dark lines in the positions of the wavelengths 
that are absorbed by a gas as light passes 
through it. This is related to the emission 
spectrum of the gas.
acceleration due to gravity Rate at which 
a falling object will accelerate in a gravitational 
field. Equivalent to the gravitational field 
strength. Measured in m s–2.
aether An invisible, massless, rigid substance 
that was proposed as the medium in which light 
waves propagate. There is no experimental 
evidence for the existence of the aether.
air resistance A retarding force that acts in the 
opposite direction to the motion of an object or 
projectile.
alternator An electric generator that produces 
alternating current (AC).
altitude Height above a planet’s surface.
amplitude The absolute value of the maximum 
displacement from a zero value during one 
period of an oscillation.
angle of incidence The angle that a ray of light 
or wave, meeting a surface, makes with a normal 
to the surface at the point of meeting.
angle of reflection The angle that a ray of light 
or wave, reflected from a surface, makes with a 
normal to the surface at the point of reflection.
antinode The region of maximum amplitude 
between two adjacent nodes in a standing wave 
or interference pattern. See also node.
apparent weight The weight felt by a person 
when their body is stationary or in motion. 
Sometimes it is higher or lower than their usual 
weight. Equivalent to the size of the normal 
reaction force acting on the person.
apparent weightlessness When an object is 
in free fall and there is no force between it and 
its surroundings. It appears to be weightless 
although it is still under the influence of gravity. 
When there is no normal reaction force acting 
between an object and a surface.
armature A revolving structure in an electric 
motor or generator, wound with the coils that 
carry the current. It rotates within a magnetic 
field to induce an emf.
artificial satellite Body such as Sputnik, the 
Hubble Space Telescope, or NOAA-19, made 
by humans and placed in orbit around a planet 
or the Moon.

B
banked track A track inclined at some angle 
to the horizontal enabling vehicles to travel at 
higher speeds when cornering compared with 
around a horizontal curved path.
breaking point The point indicating the force 
and extension at which a material fails on a force 
vs extension curve.
brushes Devices that transfer the current in the 
rotating coil to a stationary external circuit by 
pressing against the split ring commutator or the 
slip rings. 

C
cathode ray tube A vacuum tube in which a 
hot cathode emits a beam of electrons that pass 
through a high voltage anode and are focused or 
deflected before hitting a fluorescent screen.
centripetal acceleration Acceleration directed 
towards the centre of a circle when an object 
moves with constant speed in a circular path. 
centripetal force The force that causes an 
object to travel in a circular path; can include 
gravity, tension, normal force and friction.
classical physics The physics of Galileo and 
Newton, in which the addition of velocities has 
no limit, and length and time are constant.
coherent Waves that are in phase i.e. at the 
same stage at the same time.
collision An interaction in which two or more 
objects exert forces on one another, causing an 
exchange of energy between them. It is not an 
absolute requirement for the objects or particles 
to physically make contact. Therefore, the 
interaction of two charged particles, which repel 
one another without ever physically touching, is 
also a collision.
compression To press or squeeze, as in the area 
of increased pressure within a longitudinal wave.
conserved Not created or destroyed, but 
remaining constant. 
constructive interference The process in 
which two or more waves of the same frequency 
combine to reinforce each other. The amplitude 
of the resulting wave is equal to the sum of the 
amplitudes of the superimposed waves.
crest The highest part or top of a 
transverse wave.
critical angle The angle of incidence that 
produces an angle of refraction of 90°. The 
largest angle for which refraction will occur; 
at angles larger than the critical angle, light 
undergoes total internal reflection.

D
de Broglie wavelength Wavelength associated 
with a particle due to its motion.
deformation Change in shape of an object as a 
result of the application of a force. This is often 
used to describe a permanent change, when work 
is done to change the structure of the material.
design speed Relating to a banked track, the 
speed at which a vehicle experiences no sideways 
force as it travels around track. It is dependent 
on angle.
destructive interference The process 
in which two or more waves of the same 
frequency combine to cancel each other out. 
The amplitude of the resulting wave is equal 
to the difference between the amplitudes of 
the superimposed waves.
diffraction The bending of waves around 
obstacles or through gaps in their path.
diffraction pattern The pattern of dark 
and light bands that is seen when light passes 
through a single small gap. Areas of constructive 
interference appear as bright bands and areas of 
destructive interference appear as dark bands.
diffuse Spread out, scattered widely or thinly.

dipole Two electric charges or magnetic poles 
that have equal magnitudes but opposite signs, 
usually separated by a small distance.
direct current A continuous electric current 
that flows in one direction only, without 
substantial variation in magnitude. Batteries are 
a source of direct current. Abbreviated to DC.
dispersion The process of splitting light into its 
component colours to create a spectrum.
Doppler effect The apparent change in 
frequency of a wave for an observer due to 
the relative motion between the observer and 
the source.

E
elastic Describes a material that returns to its 
original shape after being deformed. 
elastic collision Collision in which kinetic 
energy is conserved.
elastic limit The limit of force applied and 
deformation that can occur for which the 
material will behave elastically. Further force will 
result in permanent deformation.
electric field A region of space where charged 
objects experience a force due to the field created 
by another charged object.
electric field strength A measure of the 
force per unit charge on a charged object within 
an electric field, with the units N C–1. Field 
strength can also be a measure of the difference 
in electrical potential per unit distance, with the 
units V m–1.
electrical potential The work required per 
unit charge to move a charged object from 
infinity to a point in the electric field, with the 
units J C–1.
electromagnet A magnet consisting of an 
iron or steel core wound with a coil of wire, 
through which a current is passed. The core only 
becomes magnetised when current is flowing.
electromagnetic induction The creation 
of an electric current, or an emf, in a loop of 
wire as the result of changing the magnetic flux 
through the loop.
electromagnetic radiation Energy emitted in 
continuous waves with two transverse, mutually 
perpendicular components: a varying magnetic 
field and a varying electric field.
electromagnetic spectrum The range of all 
possible frequencies of electromagnetic radiation. 
The visible spectrum is just one small part of the 
electromagnetic spectrum.
electron gun Uses a heated cathode to produce 
an electron beam and a series of charged plates 
to accelerate the beam.
electron-volt Amount of energy equal to 
the charge of an electron multiplied by 1 volt, 
i.e. 1 eV = 1.6 × 10–19 × 1 = 1.6 × 10–19 J. 
An alternative to the joule as a unit in which 
to measure energy.
emission spectrum Spectrum of coloured 
lines in the positions of the wavelengths of light 
emitted when a gas is heated or has an electric 
current passed through it. This is related to the 
absorption spectrum of the gas.
excited state Higher energy state of an atom 
above the ground state (n > 1).
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F
Faraday’s law Law stating that the average emf 
generated in a coil is proportional to the rate of 
change of magnetic flux and the number of turns 
in the coil.
field A region of space around an object where 
a force can be felt by other objects.
field lines A two-dimensional graphic 
representation of a field, using arrows to indicate 
the direction of the field. The closer the field 
lines, the stronger the field.
frame of reference A coordinate system 
that is usually fixed to a physical system that 
contains an object and/or an observer. There 
can be a frame of reference within another 
frame of reference.
free fall A motion whereby gravity is the only 
force acting on a body.
frequency The number of waves passing a 
given point in one second or number of repeats 
of a cycle each second. Measured in hertz (Hz).
fundamental The harmonic with the lowest 
frequency and simplest form of vibration, which 
has only one antinode.

G
Gedanken German word for ‘thought’. 
Einstein used this term to describe his theoretical 
‘experiments’ on relativity.
generator An electrical device that converts 
kinetic energy into direct current (DC) 
electricity. Usually, a coil is rotated causing it to 
cut across a magnetic field. 
geostationary satellite Satellite that remains 
in orbit above the same place on the Earth’s 
surface. It has the same period as the Earth’s 
rotation, i.e. 24 hours. Only occurs at an altitude 
of 36 000 km above the Earth.
gravimeter Sensitive instrument used 
by geologists to detect small variations in 
gravitational field strength.
gravitational constant, G Universal constant 
of value 6.67 × 10–11 N m2 kg–2.
gravitational field The region around an 
object where other objects will experience a 
gravitational force.
gravitational field strength The strength 
of gravity, usually measured at the surface of 
a planet. Equivalent to the acceleration due to 
gravity, g. Measured in newtons per kilogram 
(N kg–1).
gravitational force The force of attraction 
acting between two objects that have mass.
gravitational potential energy The energy 
that a body possesses due to its position in 
a gravitational field. A scalar quantity that is 
measured in joules (J).
ground state Lowest energy state of an atom 
(n = 1).

H
harmonic A frequency that is a whole number 
multiple of the same basic frequency.
Heisenberg's uncertainty principle  
Concept that any measurement of a system 
creates a disturbance of the system with a 
resulting uncertainty in the measurement.

I
ideal transformer Where the input power and 
the output power are equal and the transformer 
is 100% efficient. Real transformers obtain close 
to this value.
impulse The change in the momentum of 
an object. Can be calculated as the difference 
between the final and initial momentum. It can 
also be calculated for collisions by multiplying 
the average force by the duration of the 
interaction, or by finding the area under a  
force–time graph.
incandescent Emission of light due to very 
high temperature.
inclined plane Sloping surface or ramp.
induced current Electric current produced 
by changing a magnetic flux in the region of 
a conductor or by moving the conductor in a 
magnetic field.
inelastic collision Describes a collision in 
which kinetic energy is not conserved. 
inertial frame of reference A frame of 
reference that is either moving with a constant 
velocity or is stationary. It is not accelerating.
interference The process in which two or 
more waves of the same frequency combine 
to reinforce or cancel each other out. The 
amplitude of the resulting wave is equal to the 
sum of the amplitudes of the superimposed 
waves. See also constructive interference and 
destructive interference.
inverse square law Relationship between 
two variables where one is proportional to the 
reciprocal of the square of the other.
isolated system Situation where there should 
only be internal forces acting between the objects 
and no interaction with objects outside the 
system.  

K
kinetic energy The energy of a moving body, 
measured in joules (J). Kinetic energy is a scalar 
quantity.

L
laser Source of a narrow beam of intense, 
monochromatic, polarised, coherent radiation.
law of conservation of energy Energy cannot 
be created or destroyed, but can only be changed 
or transformed from one form to another. 
law of conservation of momentum In 
any collision or interaction between two or 
more objects in an isolated system, the total 
momentum of the system will remain constant. 
That is, the total initial momentum is equal to 
the total final momentum.
length contraction Length in a moving frame 
of reference appears shorter when viewed by a 
stationary observer.
Lenz’s law A law stating that the direction of 
the induced current in a conductor is such that 
its associated magnetic field opposes the change 
in flux that caused it.
light-emitting diode (LED) Semiconductor 
diode that uses the excitation of electrons to 
emit light.
longitudinal Extending in the direction of 
the length rather than across something. The 
vibrations of a longitudinal wave are in the same 
direction as, or parallel to, the direction of travel 
of the wave.

Lorentz factor γ  = 1

√1 − v
2

c2

Lorentz force The force experienced by a 
point charge moving along a wire that is in a 
magnetic field; the force is at right angles to both 
the current and the magnetic field. Named for 
the Dutch physicist who shared a 1902 Nobel 
Prize for researching the influence of magnetism 
on radiation.

M
magnetic Of or relating to magnetism or 
magnets. Having the properties of a magnet. 
Capable of being magnetised or attracted by 
a magnet.
magnetic field A magnetic field is a region 
influenced by a magnet or something with the 
properties of a magnet.
magnetic flux The strength of a field in a given 
area expressed as the product of the area and the 
component of the field strength at right angles to 
the area (i.e. Φ = B⊥A
magnetic flux density Amount of magnetic 
flux per unit area. In other words, it describes 
‘the closeness of magnetic field lines’. Same as 
magnetic field strength.
magnetic pole Magnetic poles are two limited 
regions in a magnet at which the field of the 
magnet is most intense.
magnitude The size of a quantity without 
regard for its direction.
mechanical energy The energy that a body 
possesses due to its position or motion. Kinetic 
energy, gravitational energy and elastic potential 
energy are all forms of mechanical energy.
mechanical wave A mechanical wave is a wave 
that propagates as an oscillation of matter, and 
therefore transfers energy through a medium.
medium A physical substance, such as air 
or water, through which a mechanical wave is 
propagated.
metal vapour lamp Lamp that contains a 
low-pressure gas that becomes excited and emits 
photons with the colour characteristic of the 
element in the gas, e.g. sodium vapour lamp.
mnemonic A mnemonic device is any learning 
technique that aids information retention. 
Mnemonics aim to translate information into 
a form that the brain can retain better than its 
original form. Even the process of learning 
this conversion might aid in the transfer of 
information to long-term memory.
momentum The product of the mass and the 
velocity of an object. Momentum is a vector.  
It is measured in kg m s–1.
monochromatic Light of a single colour, 
e.g. red light.
monopole A single mass or point electric 
charge. A mass is considered to be a monopole 
at its centre of mass. Magnetic poles only exist, 
as far as we currently know, as dipoles.

N
natural satellite A body such as the Moon or 
a planet (not made by humans) that is in orbit 
around another body. 
Newton’s law of universal gravitation  
Law that states that the attractive gravitational 
force between two masses is directly proportional 
to the product of their masses and inversely 
proportional to the square of the distance 
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between them. 
node A point at which the amplitude of two 
or more superimposed waves has a zero or 
minimum value. See also antinode.
normal A line constructed at 90o 
(i.e. perpendicular) to a surface at the point 
that a wave strikes the surface.
normal reaction force Force with which a 
surface pushes back on an object, at right angles 
to the surface. Same as the apparent weight of an 
object. Symbol FN or N, measured in newtons.
nuclear fusion Reaction in which nucleons are 
joined to form a new species of nucleus, with a 
release of energy.

O
overtone Any of the higher-level harmonics, 
except for the fundamental frequency.

P
paradox A situation that appears to have 
contradictory elements.
particle accelerator A machine that can 
accelerate a charged particle (proton, electron) 
or an atomic nucleus to very high speeds, 
including speeds that approach the speed 
of light.
path difference The difference in the lengths 
of the paths from each slit to the screen in a 
double-slit experiment.
period The time interval taken to complete one 
cycle of a regularly repeating phenomenon, such 
as a rotating object or in a sound wave. The SI 
unit for period is seconds (s).
phase The fraction of a cycle of a wave that 
has been completed at a specific point in time, 
usually expressed as an angle. A particular stage 
in a periodic process such as a wave.
photocurrent Current caused by the flow of 
photoelectrons during the photoelectric effect.
photoelectric effect Spontaneous emission 
of electrons from a metal surface when it is 
illuminated by light of particular frequencies 
and energies.
photoelectron An electron released from an 
atom due to the photoelectric effect.
photon Packet or bundle of electromagnetic 
radiation (light).
plane wave A constant-frequency wave whose 
wavefronts are infinite parallel lines or planes. 
A straight wave.
point charge An ideal situation in which all 
of the charge on an object is considered to be 
concentrated at a single point. The point size is 
negligible in relation to the distance between it 
and another point charge.
polarisation The phenomenon in which 
transverse waves are restricted in their direction 
of vibration.
pole The north pole of a freely suspended 
magnet is attracted to the Earth’s magnetic 
North Pole (a magnetic south). The south pole 
is attracted to the Earth’s magnetic South Pole 
(a magnetic north). See magnetic pole.
postulate A suggestion that is put forward as a 
fact as a basis for further discussion or reasoning.
potential difference The work required per 
unit charge to move a charged object between 
two points in the electric field, with the units 
J C–1 or volts (V).
projectile Object moving freely through the air 

without an engine or power source driving it.
proper length A measurement of length made 
from the frame of reference in which the object 
being measured is stationary.
proper time A measurement of time made with 
a clock that doesn’t move relative to the point at 
which the start and end of the event occurs.
pulse A short section of a wave that is not 
continuous or repetitive.

Q
quantum Plural quanta. According to the 
quantum model, electromagnetic radiation 
is emitted from objects as discrete packets 
called quanta. Each quantum has an energy 
proportional to its frequency according to the 
equation E = hf. 
quantum mechanics Area of modern particle 
physics where the wave properties of electrons 
are studied. 

R
rarefaction An area of decreased pressure 
within a longitudinal wave.
ray The straight line path of a wave drawn 
perpendicular to a wave front. (Also a narrow 
beam of light.)
reflect To cause light, other electromagnetic 
radiation, sound, particles or waves, to bounce 
back after reaching a boundary or surface.
refraction The bending of light, sound, or other 
type of wave, in passing at an angle to the surface 
from one medium into another in which its wave 
speed is different.
refractive index An index or number that is 
allocated to a medium indicating its refracting 
properties; ratio of the speed of light in a 
vacuum, c, to the speed of light in the medium, v, 
i.e. n = cv. 
resonance The state of a system in which 
an abnormally large vibration is produced in 
response to an external vibration. Resonance 
occurs when the frequency of the vibration is 
the same, or nearly the same, as the natural 
vibration frequency of the system.
right-hand rules 1. The right-hand grip 
rule tells us the direction of the magnetic field 
(curled fingers) around a current (thumb). 
2. The right-hand force rule tells us the force 
(palm) on a current (thumb) in a magnetic 
field (straight fingers).
root mean square The square root of the 
arithmetic mean of the squares of the numbers 
in a given set of numbers. In terms of alternating 
power, the root mean square value, Prms = 

Ppeak

2
 . 

Similarly, for voltage and current. Alternatively, 
it is the effective mean (average) value of an 
AC supply.

S
satellite Object in a stable orbit around a 
central body. Could be natural, like a planet, 
or artificial, like a communications satellite.
simultaneous When two events occur at 
exactly the same time.
sinusoidal Having a magnitude that varies as a 
sine curve.
slip rings Components of alternators (AC 
generators) that allow a constant electrical 
connection to be made between the rotating 
armature and the static external circuit through 

which the generated alternating current flows.
Snell’s law Describes the relationship between 
incident light and refracted light in two media. 
The ratio of the refractive indices of the two 
materials is equal to the ratio of the sines of the 
angle of incidence and the angle of refraction.
solar wind A continuous stream of charged 
particles ejected by the Sun. It consists mostly 
of protons and electrons and has enough energy 
to escape the Sun's gravitational field, at speeds 
ranging from about 300 to 800 km s–1, which 
allows it to reach the Earth in about 3.9 days. 
The speed and intensity of the charged particles 
depend on magnetic activity at different regions 
of the Sun.
solenoid A coil of wire that acts as an 
electromagnet when electric current is passed 
through it due to the magnetic field that is set up 
by the current passing through it. Solenoids are 
often used to control the motion of metal objects, 
such as the switch of a relay.
spacetime A term used to describe the 
situation in which the 3-dimensional space 
coordinate system is linked to the 1-dimensional 
time system.
split ring commutator a component of DC 
generators and motors that typically resembles 
a ring that has been cut into two equal pieces 
or shells. Each part of the ring has a fixed 
connection to the ends of the coil, while also 
making contact with the stationary brushes. 
This means the connection between the rotating 
coil and the static circuit is reversed every half 
turn, which ensures the direction of current 
in the circuit is constant (in the case of the 
generator) or the direction of rotation is constant 
(in the case of the motor).
standing wave Also called a stationary wave, 
the periodic disturbance in a medium resulting 
from the combination of two waves of equal 
frequency and intensity travelling in opposite 
directions.
stator A portion of a machine that remains 
stationary with respect to rotating parts, 
especially the collection of stationary parts in the 
magnetic circuits of a motor or generator.
step-down transformer Device that 
decreases the secondary voltage compared to 
the primary voltage.
step-up transformer Device that increases 
the secondary voltage compared to the primary 
voltage. 
stopping voltage The applied voltage required 
to stop all photoelectrons from reaching the 
collector electrode. For a particular frequency of 
incident light on a particular metal, the stopping 
voltage is a constant.
strain potential energy The energy stored in 
a material when it is stretched or compressed. 
If the material is elastic, this energy can be 
returned to the system, but in inelastic materials 
permanent change occurs.
superposition When two or more waves travel 
in a medium, the resulting wave at any moment 
is the sum of the displacements associated with 
the individual waves.
synchrotron Large particle accelerator in a 
circular shape producing a very intense, very 
narrow beam of electromagnetic radiation called 
synchrotron light. 
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T
tangential Describes a direction forming a 
tangent to a curve.
threshold frequency The minimum 
frequency of electromagnetic radiation for 
which the photoelectric effect can occur for 
a given material. 
time dilation When one observer watches 
events in a frame of reference that is moving 
(very fast) relative to him/her, time in that frame 
of reference will appear to go more slowly. 
People in the moving frame do not experience 
any difference in the rate at which time passes. 
This effect is one of the strange consequences 
of Einstein’s theory of special relativity.
torque Any force or system of forces that 
causes or tends to cause rotation. A turning 
or twisting force effect.
torsion balance Device used to measure very 
small twisting forces. Cavendish used this device 
to measure the force of attraction between lead 
balls held a small distance apart.
total internal reflection Occurs when the 
angle of incidence exceeds the critical angle for 
refraction. Light or waves are reflected back into 
the medium; there is no transmission of light.

transform To change form, as in energy 
changing form from stored energy in a spring 
to kinetic energy as the spring is released.
transformer A device that transfers an 
alternating current from one circuit to one or 
more other circuits, usually with an increase 
(step-up transformer) or decrease (step-
down transformer) in voltage. The input goes 
to a primary coil; the output is taken from a 
secondary coil or windings linked by induction 
to the primary coil.
transmit To cause light, heat, or sound, etc. to 
pass through into a medium.
transverse Lying or extending across 
something. The vibrations of a transverse wave 
are at right angles to the direction of travel of the 
wave.
trough The lowest part or bottom of a 
transverse wave.

U
uniform Constant, unvarying.

V
voltaic pile An early form of battery consisting 
of a pile of paired plates of dissimilar metals, 
such as zinc and copper, each pair being 
separated from the next by a pad moistened with 
an electrolyte (mild acid). Also called galvanic 
pile or Volta's pile.

W
wave front The set of points reached by a wave 
or vibration at the same instant. Wave fronts 
generally form a continuous line or surface.
wavelength The distance, measured in the 
direction of travel of a wave, between two 
successive points at the same phase.
wave–particle duality The theory that, in 
some experiments, light and matter behave like 
waves and, in other experiments, they behave like 
particles.
weight Force due to gravity that acts on any 
mass in a gravitational field. Symbol Fg or W, 
measured in newtons.
work Transfer or transformation of energy. 
Work is done when a force causes a displacement 
in the direction of the force.
work function The energy required to remove 
an electron from its state of being bound to an 
atom; measured in joules or electron-volts.
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horizontal circular motion 156–63
horizontally polarised wave 311
horseshoe magnets 48
Hubble Space Telescope (HST) 72, 79, 80
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300, 315
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incandescent light globes 356
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indeterminacy principle 362
induced current 110, 118

in a coil from an electromagnet 120–1
in a coil from a permanent magnet 119
direction 118–21
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induced emf
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field 121–2
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respect to the direction of the magnetic 
field 121

by changing the strength of the magnetic 
field 121
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factors affecting 114
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in a magnetic field 108–10
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inelastic collisions 244–5
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interference 315
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International Space Station (ISS) 77, 81, 150
inverse square law 2, 14, 40
irregular surface, reflection from 286
isolated systems 191
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first law 82
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of photoelectrons 335
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and work done 249
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large-scale AC supply 135–7
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laser light 357
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law of conservation of energy 20, 194–5
law of conservation of momentum 191–3
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Le Verrier, Urbain 11
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Lenard, Philipp 332
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lenses, colour dispersion 308–9
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dual nature of 333, 339–41
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interference patterns 314–18
particle model 300, 314
photon model 333–5
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quantum model 330–6
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wave model 300, 301, 307, 311, 314–18, 333
wave–particle duality 339–41, 346
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quantum nature of 339–44
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longitudinal stationary waves 295
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Lorentz factor 215, 252, 253
Lorentz force 54
low-orbit satellites 79, 80

magnetic 45
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direction and shape 64–5
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radiation 320–1
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to 56
induced emf in 108–12
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vector field model 47–8
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AC and DC supply 132–3
and induced emf 114–17

magnetic flux density 109
magnetic force on charged particles 54

direction of the force 55, 96
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57, 88
direction of the force 59
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magnetic poles 45
magnetism 45

and relativity 259–60
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mass to energy conversions 256, 257
matter waves 354
Maxwell, James Clerk, electromagnetism theory 
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Maxwell’s electromagnetic equations 204, 206
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scientific notation 378
significant figures 383
uncertainty 380–1, 382–3
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mechanical waves 272–4

characteristics 272, 321
displacement–distance graphs 276–8
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Doppler effect 282
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measuring 276–83
medium for 272, 321

medium 204, 272, 282, 284
in refraction 302, 306

medium-orbit satellites 79
metal vapour lamps 348
metals, work function of 334–5
metric system 375
Michelson–Morley experiment 205, 215
microphones 115
microscopes, diffraction 309–10
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monochromatic light 310, 314, 315, 357
monopoles 63, 66
Moon 79

gravitational field strength 17
muons 209, 218
musical instruments 288, 290–5

National Oceanic and Atmospheric 
Administration Satellite (NOAA-19) 80

natural frequency 287, 288
natural satellites 79, 81
Neptune, discovery 11
neutrino 191
Newton, Sir Isaac 2, 5, 148–9

assumptions about space and time 206–7
‘corpuscular’ (particle) theory of light 

300, 314
derives Kepler’s third law using algebra 84–6
double prism experiment 308
observations that his laws can’t explain 

208–10
thought experiment on satellite motion 72–3

Newton’s cradle 191
Newton’s first law of motion 148, 150, 152, 

159, 186
applications 151

Newton’s law of universal gravitation 2–5, 10, 
72, 82, 84

Newton’s second law of motion 6, 35, 149, 159, 
193, 228
applications 151

Newton’s third law of motion 6, 73, 149, 150, 
193

night-vision goggles 324
nodal lines 315
nodes 290, 291
non-constant gravitational field, work done 21–4
non-linear data 386–7
normal 285
normal force 73–4, 152
normal reaction force 8, 74, 75, 152
nuclear fission 256, 257
nuclear fusion 256, 257

in the Sun and stars 258

object on the end of a string 162–3
Oersted, Hans Christian 45, 51
Ohm’s law 115, 136
Onnes, Kamerlingh 124
optical telescopes, diffraction 309, 310
orbitals 360
overload (transformers) 134
overtones 292

paradox 217
particle accelerators 93, 94–5, 99

effect on a charged particle in a magnetic 
field 96–8

speed of accelerated charged particles 95
particle model of light 300, 314

and Young’s observations of interference 314
particles gaining mass 210
path difference 315–16
peak power 129

percentage uncertainty 381
period 156, 278, 291
periodic waves versus pulses 272–3
permanent magnet, induced current in a coil 

from 119
permittivity of free space 40
phase 277, 284
photocurrent 332, 333
photoelectric effect 332–3

and dual nature of light 333
Einstein’s explanation 333, 334–5
explaining the 333–5
important properties 333

photoelectrons 332–3, 334
kinetic energy 335

photons 333, 334, 335, 351, 363
absorption of 352–4
energy 333, 334, 348
from coloured LEDs 356
from lasers 357
momentum 344
and single-slit diffraction 365–6
wavelength 343
see also electrons

photovoltaic cells 336
pions 209
Planck, Max 330, 346
Planck’s equation 330–1, 350, 351
plane waves 285, 300, 301, 315
planets 79

gravitational field strength 17
Kepler’s laws 82

point charges 33, 40
forces between 40

‘Poisson bright spot’ 318
Poisson, Simeon 318
polarisation 311–12, 320, 357
polarised sunglasses 312
poles 46, 51
postulates (Einstein) 204, 206–7, 217

and Einstein’s Gedanken train 207
and Newton’s assumptions about space and 

time 206–7
potential difference 35–7, 94, 108–11
potential energy 244–8, 250
power for cities 135–6
power loss 135–6

transmission lines 136–7
power output 134–5
practical DC motors 91
precision 380–1
prefixes and conversion factors 378–9
primary coil 132, 133
prisms 307, 308, 346
projectile motion 178–9

effects of air resistance 183–4
problem-solving tips 180, 186
projectiles launched at an angle 186–9
projectiles launched horizontally 180–2

projectiles 178
proper length 221, 223
proper time 214, 220, 223
pulses 272

versus periodic waves 272–3

quadrupoles 64
quantum 330

calculating in electron-volts 332
converting to electron-volts 331–2
and Planck’s equation 330–1

quantum mechanics 360, 365
and Heisenberg’s uncertainty principle 361–4

quantum model of light 330–5
resistance to 336

quantum nature of light and matter 339
absorption and emission spectra 346–9
and absorption of photons 352–4
Bohr’s model of the hydrogen atom 346, 

350–4
wave–particle duality 339–44

quantum universe, limits to models in 360

radial field 64
radio transmission system 323
radio waves 322–3
radius of path of an electron travelling at right 

angles to a uniform magnetic field 97, 98
rarefactions 274, 281, 287, 295
rays 285
red light, diffraction 310
reflected 284
reflected wave fronts 284–5
reflection 284–6
refraction 302–9
refractive index 303–4, 306, 307

and Snell’s law 305
‘relative’ refractive index 304
relative uncertainty 381
relativistic momentum 252–5
resonance 287–8
resonant frequencies 288, 290, 292–3
right-hand grip rule

and induced current direction 119
magnetic field and current-carrying wire 

48–9
right-hand rule 55, 56, 96

see also right-hand grip rule
rms values 128

peak and RMS AC current values 129
rollercoasters 170

circular motion
travelling over humps 171
travelling through dips 171

how the normal force varies during the ride 
172

travelling upside down without falling out 
176

uniform horizontal motion 171
root mean square 128
root mean square voltage formulae, deriving 128
running shoes 230
Rutherford’s planetary model of the atom 350
Rydberg, Johannes 349

satellite motion 72, 83–4
centripetal acceleration (circular orbit) 83
gravitational force (circular orbit) 83
Kepler’s laws 82, 84–6
Newton’s thought experiment 72–3
speed (circular orbit) 83

satellites 72
artificial 72, 79–81
calculating orbital properties of 83–4
natural 79, 81
in orbit 85–6

Schrödinger, Erwin, wave behaviour of 
electrons 360

Schrödinger’s cat 360
Schrödinger’s wave equation 360, 365
scientific notation 378
secondary coil 132, 133
semi-conductor diodes 356
shot putting 189
SI units of measurement 375–6
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significant figures 383
simultaneity and spacetime 207–8
simultaneous 207
sine wave 276
single-slit diffraction, and Heisenberg’s 

uncertainty principle 364–5
sinusoidally 276
skateboarder in a ‘half-pipe’ 170
skydiving, forces involved in 78
slip rings 126
slit width, and diffraction 309
Snell’s law 305
solar sailing 344
solar wind 56
solenoid 50

magnetic fields around a 50
sonic depth finder 286
sound waves 272, 274, 281–2, 286–7, 290–5, 321
space junk 82
spacetime 208
special relativity 202–10, 212–18, 220–4
spectral analysis 348
spectrum

absorption 346–7
emission 346, 347, 348
visible 307, 346

speed
accelerated charged particle 95
circular motion 157–8
falling object 21

speed of light 204, 205, 208, 212, 213, 214, 218
accepted value 321
approaching the 212, 215, 217, 252–5
changes in 302, 303, 305
in different materials 303
travelling at 252

split ring commutators 127
spring constant 241
springs

deformation, and work done 240–2
elastic limit 241
and Hooke’s law 240, 241
and strain potential energy 241–2

standby power 134
standing waves 290

and the dual nature of matter 354–5
of electrons 354–5
in strings 290–2

and harmonics 292–5
three-dimensional 295

stars 258
static fields 64
stator 91
step-down transformers 133, 137
step-up transformers 133, 137
stopping voltage 333
strain potential energy 240–3, 244, 249, 250
string instruments

harmonics 292–5
resonant frequency 288
standing waves 290–2

strings, standing waves in 290–5
SuitSat1 81
Sun, nuclear fusion 258
sunlight, spectrum 346
superconducting magnets 124
superconductors 124
superposition 284, 286–7

and standing waves 290–1
synchrotron 93, 99, 357–8
synchrotron light 358

Tacoma Narrows Gorge suspension bridge 288
tangential 156
terminal velocity 78
tesla 55
theory of general relativity 217
theory of special relativity 202–10

length contraction 220–4
time dilation 212–18, 223

Thomson, G. P. 343
Thomson, J. J., e/m experiment 98
three-phase generators 126
threshold frequency 332, 335
time

in different frames of reference 212–18
SI unit 376

time dilation 212–16, 223, 253
light clock 212–14
looking back to the stationary observer 217
and Lorentz factor 215, 253
twin paradox 217–18

torque 89–90, 91
torsion balance 3
total internal reflection 306–7
transform (energy) 194
transformer equation

relating current and number of turns in each 
coil 135

relating voltage and number of turns in each 
coil 133–4

transformers 131–5
transmission-line power loss 136–7
transmission-line voltage drop 137
transmitted (wave pulse) 285
transverse 273
transverse standing waves 290–2
transverse waves 273, 290, 320

displacement–distance graphs 276
displacement–time graphs 278–9
polarisation 311
reflection 284–6
superposition 286–7

trough 273, 277, 284
true weightlessness 78
twin paradox 217–18

ultraviolet (UV) light 325
uncertainty (measurement) 380–1

estimating 382–3
uncertainty principle (Heisenberg) 361–5
uniform 11
uniform circular motion in a horizontal plane 

156–63
uniform electric field, work done 36–8, 95
uniform field 64
unit symbols, correct use of 377
universal gravitation 2–5, 10, 72, 82, 84
universe, structure of 5
unpolarised light 312

valence band 356
Van de Graaff accelerator 93
vertical circular motion 170–6
vertically polarised wave 311
visible spectrum 307, 346
voltage drop along a transmission line 137
voltaic pile 45

water waves 272, 273, 274, 285–6, 309
interference patterns 315

wave equation 280–1
for light 321–2

wave fronts 285
propagation 300–1
reflected 284–5

wave model of light 300, 301, 307, 311, 330
and electromagnetic radiation 330
and the photoelectric effect 332, 333
resistance to 317
and Young’s observations of interference 

315–17
wave–particle duality 339–41, 346

experimental evidence 340
wave–particle theory (De Broglie) 340–1
wave propagation, Huygens’ principle 300–1
wave pulses versus periodic waves 272–3
wavelength 277, 284, 291, 292, 293, 303, 315

calculating from fringe separation 317–18
colours in the visible spectrum 307, 309
and diffraction 309
of electrons from an electron gun 342–3
of photons and electrons 343
of visible lines of hydrogen emission 

spectrum 349
waves

Doppler effect 281–2
interactions 284–8
longitudinal 274, 280–1, 287
mechanical 272–4, 276–83, 321
reflected 284–6
refraction 302–9
resonance 287–8
superposition 284, 286–7
transverse 273, 276, 278–9, 284–5
types of, electromagnetic spectrum 322–5

weight 7
apparent 7–8, 74
and gravitational force 7–8
and mass 73

white light 307, 308, 310
wind generators 157
wind instruments 295
work 235

and energy 249
work done 235

by or on an electric field 37–8
calculating 235–7

from force–distance graphs 237–8, 240
for a change in gravitational potential energy 

19–20, 249–50
in deforming a spring 240–2
and kinetic energy 249
in a non-constant gravitational field 21–4
and strain potential energy 241–2
in uniform electric fields 36–8, 95
when the force applied is at an angle to the 

displacement 236–7
work function 334–5

X-ray diffraction patterns 343
X-rays 325

Young’s double-slit experiment 314–15
calculating fringe separation 317–18
and the particle model 314
path difference 315–16
and the wave model 315, 317
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