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Chapter 2 Newtonian theories of motion

2.1 Newton’s laws of motion

Worked example: Try yourself 2.1.1

APPLICATION OF NEWTON’S FIRST AND THIRD LAWS

The toddler adds extra blocks to the cart and drags it across the floor more slowly. The 5.5 kg cart travels at a constant 
speed of 0.65 m s−1. The force of friction between the cart and the floor is 5.2 N and the handle is now at an angle of 30° 
above the horizontal.

a Calculate the net force on the cart.

Thinking Working

The cart has constant velocity. According to Newton’s 
first law, the net force acting on an object with constant 
velocity is zero.

Fnet = 0 N

b Calculate the force that the toddler exerts on the cart.

Thinking Working

Draw a forces diagram.
FCT

FCTx
FCF

30°

If the net force is zero then the horizontal forces must 
be in balance. Therefore the horizontal component of 
the force on the cart by the toddler, FCTx

, is equal to the 
magnitude of the frictional force, FCF.

FCTx
= FCT cos30o = FCF

FCT cos30o = 5.2N

FCT = 5.2
cos30o = 6.0N30o  above the horizontal

c Determine the force that the cart exerts on the toddler.

Thinking Working

According to Newton’s third law, the force on the cart 
by the toddler is equal and opposite to the force on the 
toddler by the cart.

FCT = −FTC

Since the force on the cart is at an angle of 30° above the 
horizontal, the force of the cart on the toddler is 6.0 N at 
an angle of 30° below the horizontal.

Worked example: Try yourself 2.1.2

APPLICATION OF NEWTON’S LAWS

A vehicle towing a trailer accelerates at 2.8 m s−2 in order to overtake a car in front. The vehicle’s mass is 2700 kg and the 
trailer’s mass is 600 kg. The drag force on the vehicle is 1100 N and the drag force on the trailer is 500 N.

a Calculate the driving force of the engine. 

Thinking Working

Draw a sketch showing all the forces acting.

trailer
m = 600 kg

vehicle 
m = 2700 kg

FT drag FT tension

FV tension FV driving force

FV drag

500 N 1100 N

2.8 m s–2
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Since there is an acceleration, Newton’s 
second law can be applied to the whole 
system.

Note that the vehicle and the trailer are 
joined by the coupling and so the tension 
forces are not included at this stage. 
Consider the system as a whole.

Fsystem = msystema

FV driving force − FV drag − FT drag = (mV + mT )a

FV driving force −1100 −500 = (2700 + 600) × 2.8

FV driving force =1.1×104 N in the direction of motion

b Calculate the magnitude of the tension in the coupling.

Thinking Working

Consider only one part of the system, for 
example the trailer, and once again apply 
Newton’s second law.

FT net = mTa

FT tension − FT drag = mTa

FT tension = 600 × 2.8 +500

= 2.2 ×103N

Worked example: Try yourself 2.1.3

INCLINED PLANES

A skier of mass 85 kg travels down the same icy slope inclined at 20° to the horizontal. Assume that friction is negligible 
and that the acceleration due to gravity is 9.8 m s−2.

a Determine the components of the force due to gravity on the skier perpendicular to the slope and parallel to the 
slope. 

Thinking Working

Draw a sketch and include the values provided.

Fg 20˚

20˚

Resolve the force due to gravity into the component 
perpendicular to the slope.

The perpendicular component is:

F⊥ = Fg cos20o

= 833cos20o

= 7.8 ×102 N

Resolve the force due to gravity into the component 
parallel to the slope.

The parallel component is:

F! = Fg sin20o

= 833sin20o

= 2.9 ×102 N

b Determine the normal force that acts on the skier.

Thinking Working

The normal force is equal in magnitude to the 
perpendicular component of the force due to gravity.

FN = 7.8 × 102 N
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c Calculate the acceleration of the skier down the slope.

Thinking Working

Apply Newton’s second law, rearranged to make a the 
subject.

The net force along the slope is the component of the 
force due to gravity parallel to the slope.

a = Fnet

m

= 285
85

= 3.4ms−1 down the slope

KEY QUESTIONS

Knowledge and understanding
1 No. Phil’s inertia made him remain stationary as the tram moved forward. This made it look like Phil was thrown 

backwards relative to the tram. This is an example of Newton’s first law. Objects will remain at rest unless a net 
unbalanced force acts to change their motion.

2 Fnet = ma

= 5.3 × 2.2

=11.66

=12N

3 F

F

F

F

(c) (d)

(a) (b)

Force exerted on 
racquet by ball

Force exerted on 
ground by pig

Force exerted on 
ground by wardrobe

Gravitational 
force of attraction 
that seal exerts 
on Earth

4 The forces are balanced, so the force due to air resistance is equal in magnitude to the force due to gravity on the ball.

 Fa = Fg = mg = 0.01 × 9.8 = 0.098 N = 9.8 × 10−2 N upwards

5 a Constant speed, so the forces are balanced: Fd = 45.0 N, where Fd is the driving force.
b Fnet = ma

Fd − Ff = ma

Fd − 45.0 = 80.0 ×1.50

Fd =165N

6 a u = 0, v = 7.5, t = 5.0, a = ?

 

v = u + at

7.5 = 0 +5.0a

a =1.5ms−2

b Fnet = ma = 80 × 1.5 = 120 N (or 1.2 × 102 N) forwards
c Constant speed, so the forces are balanced, i.e. Fnet = 0. The frictional force will equal 60 N.
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7 a Constant speed, so the net force is zero.
b The horizontal component of the pulling force (tension) is in balance with the frictional force of 60 N.

Thorizontal = Ffriction

T cos25o = 60

T = 60
cos25o

= 66N

c The rope is exerting a force of 66 N on Matt.

Analysis
8 The net force on the whole system (taking down as positive) is:

Fnet = ma = Fg + Ff

4.5 × a = (3.5 × 9.8) − 2.0

a = 34.3 − 2.0
4.5

= 7.18

= 7.2ms−2

Fblock on table = ma = T − Ff

1×7.2 = T − 2.0

T = 9.2N

9 a The net force, Fnet, is the difference between the driving force, Fd, and the resistive forces, Fr.

  Fnet = Fd − Fr = ma

Fd −1000 = (950 +100) × 0.800

= 840 +1000

=1840N

b The tension, Ft, can be calculated by considering the forces on the trailer:

 

Ftrailer = Ft − Fr  =ma

Ft −500 =100 × 0.800

= 80.0 +500

= 580N

10 a A: the frictional force is opposite to the velocity
b C: perpendicular to the slope
c Fnet = 0, so Ff = Fg sin θ = 100 × 9.8 × sin 30° = 490 N up the hill
d acceleration a = g sin θ = 9.8 × sin 30° = 4.9 m s−2

e If there is no friction, acceleration is not affected by mass.

2.2 Circular motion in a horizontal plane

Worked example: Try yourself 2.2.1

CALCULATING SPEED

A water wheel has blades 2.0 m in length that rotate at a frequency of 10 revolutions per minute. At what speed do the 
tips of the blades travel? Express your answer in km h−1.

Thinking Working

Calculate the period, T. Remember to express frequency 
in the correct units. Alternatively, recognise that 10 
revolutions in 60 seconds means that each revolution 
takes 6 seconds.

10 revolutions per minute = 
10
60

= 0.167Hz

T = 1
f
= 1

0.167
= 6.0s
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Substitute r and T into the appropriate formula for speed 
and solve for v. v = 2π r

T

= 2 × π × 2.0
6

= 2.09

= 2.1ms−1

Convert m s−1 into km h−1 by multiplying by 3.6. 2.09 × 3.6 = 7.5 km h−1

Worked example: Try yourself 2.2.2

CENTRIPETAL FORCES

An athlete in a hammer-throw event is swinging a ball of mass 7.0 kg in a horizontal circular path of radius 1.20 m. The 
ball is moving at 25.0 m s−1.

a Calculate the magnitude of the acceleration of the ball.

Thinking Working

As the object is moving in a circular path, the centripetal 
acceleration is towards the centre of the circle. To find the 
magnitude of this acceleration, consider the variables that 
are given.

v = 25.0 m s−1

r = 1.20 m

a = ?

Select the equation for centripetal acceleration that fits 
the values you have, substitute the values and solve the 
equation.

a = v2

r

= 25.02

1.20
= 521ms−2

State the magnitude only, as no direction is required. The acceleration of the ball is 521 m s−2.

b Calculate the magnitude of the tensile force (tension) acting in the wire.

Thinking Working

Identify the unbalanced force that is causing the object 
to move in a circular path. Note the information that you 
have.

m = 7.0 kg

a = 521 m s−2

Fnet = ?

Select the appropriate equation for centripetal force, 
substitute the variables and solve the equation.

Fnet = ma

= 7.0 ×521

= 3.6 ×103 N

State the magnitude only, as no direction is required. The force of tension in the wire is the unbalanced force 
that is causing the ball to accelerate.

Tensile force FT = 3.6 × 103 N
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Worked example: Try yourself 2.2.3

OBJECT ROTATING ON THE END OF A STRING

During a game of totem tennis, a ball of mass 200 g is swinging freely in a horizontal circular path. The cord is 2.00 m 
long and at an angle of 50.0° to the vertical.

2.00 m

50.0˚

a Calculate the radius of the ball’s circular path.

Thinking Working

The radius of the circular path and the pole form a right 
angle. Use trigonometry to find the radius.

r = 2.00 sin 50.0° = 1.53 m

b Draw and label the forces that are acting on the ball at the instant shown in the diagram.

Thinking Working

There are two forces acting: the tension in the cord, Ft, 
and gravity, Fg. These forces are unbalanced.

Ft

Fg

c Determine the net force that is acting on the ball at this time.

Thinking Working

First calculate the force due to gravity, Fg. Fg = mg

= 0.200 × 9.8

=1.96N

The ball has an acceleration towards the centre of its 
circular path. This is horizontal and towards the left at 
this instant. The net force will also act in this direction 
at this instant. A force triangle and trigonometry can be 
used to determine the net force.

50.0°
Ft = ?

F = ?

Fg = 1.96 N

Fnet = 1.96 tan 50.0° = 2.34 N towards the centre of the 
circular path

d Calculate the size of the tensile force in the cord.

Thinking Working

Use trigonometry to find Ft.
Ft =

1.96
cos50.0o

= 3.05N



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

KEY QUESTIONS

Knowledge and understanding
1 a A and D. The speed is constant but the velocity is changing (as the direction is constantly changing). The 

acceleration is directed towards the centre of the circle.

2 a 8.0 m s−1

b 8.0 m s−1 south

c a = v2

r
= 8.02

9.2
= 7.0ms−2 towards the centre, i.e. west

3 Fnet = ma = 1200 × 7.0 = 8.4 × 103 N west

4 a 8.0 m s−1 north
b towards the centre, i.e. east

5 The force needed to give the car a larger centripetal acceleration could eventually exceed the maximum frictional 
force acting between the tyres and the road surface. At this time, the car would skid out of its circular path.

6 a a = v2

r

= 1.52

2.5
= 0.90ms−2

b The skater has an acceleration, so forces are unbalanced.

c Fnet = ma

= 75 × 0.90

= 67.5N

7 a T = 1
f
= 1

2.5
= 0.40s

b v = 2π r
T

= 2 × π ×1.2
0.40

=18.8 =19ms−1

c a = v2

r
= 192

1.2
= 3.0 ×102 ms−2

d Fnet = ma =1.5 × 3.0 ×102 = 4.5 ×102 N

8 a r = 2.40 cos 60° = 1.20 m
b There are two forces: the force due to gravity acting vertically downwards and the tension in the rope acting along 

the rope towards the top of the maypole.
c She has an acceleration directed towards point B, the centre of her circular path.
d Use a force triangle for the girl showing the net force towards B.

  

Fnet =
mg

tan60o

= 294
1.73

=170N towards B

e Fnet =
mv2

r

170 = 30.0 × v2

1.20
v = 2.61ms−1

Analysis

9 a Fnet =
mv2

r

= 1500 × 252

30
= 3.1×104 N



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

b The friction between the road surface and the car’s tyres provides the centripetal force.
c The inertia of the passengers causes them to continue to move in a straight path while the car makes the turn. The 

passengers exert a force outwards on the side of the car as it moves around the turn.
d If there is any ice or oil on the road, the friction between the road and the car’s tyres will be reduced. This will 

reduce the centripetal force on the car. As a result, the car’s inertia will cause the car to continue to move in a 
straight line at a tangent to the circle from the point where the car hits the oil or ice on the road.

2.3 Circular motion on banked tracks

Worked example: Try yourself 2.3.1

BANKED TRACKS

A curved section of track on an Olympic velodrome has radius of 40 m and is banked at an angle of 37° to the horizontal. 
A cyclist of mass 80 kg is riding on this section of track at the design speed. Assume that g is 9.8 m s−2.

a Calculate the net force acting on the cyclist at this instant.

Thinking Working

Draw a force diagram and include all forces acting on the 
cyclist.

The forces acting are the force due to gravity and the 
normal force from the track, and these are unbalanced. 
The net force is horizontal and towards the centre of the 
circular track.

Fnet

FN
Fg

37°

Calculate the force due to gravity, Fg. Fg = mg

= 80 × 9.8

= 784N

Use the force triangle and trigonometry to calculate the 
net force, Fnet.

tanθ = Fnet

Fg

tan37o = Fnet

784
Fnet = tan37o ×784

= 591N

As force is a vector, a direction is needed in the answer. Net force is 5.9 × 102 N towards the centre of the circle.

b Calculate the design speed for this section of the track.

Thinking Working

Note the relevant values. g = 9.8 m s−2

r = 40 m

θ = 37°

v = ?

Use the design speed formula. v = rg tanθ

= 40 × 9.8 × tan37°

=17ms−1
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Worked example: Try yourself 2.3.2

FINDING THE BANKING ANGLE

The curved portion of a highway needs to be banked to prevent cars from skidding off it. Assume that the banked 
track of the highway is designed for a top vehicle speed of 110 km h−1. The banked track portion of the highway has a 
radius of 750 m.

What is the value of the banking angle, θ, such that the forces keep the car on the highway without the need for 
friction? Assume that g is 9.8 m s−2.

Thinking Working

Recall the formula for finding the banking angle.
θ = tan−1 v2

rg
⎛
⎝⎜

⎞
⎠⎟

Convert the design speed from km h−1 to m s−1.
v = 110kmh−1

3.6
= 30.6ms−1

Calculate the banking angle.
θ = tan−1 v2

rg
⎛
⎝⎜

⎞
⎠⎟

= tan−1 30.62

750 × 9.8
⎛
⎝⎜

⎞
⎠⎟

= 7.3°

KEY QUESTIONS

Knowledge and understanding
1 In all horizontal circular motion, the acceleration is directed horizontally towards the centre of the circle. 

2 
FN

Fg

Fnet

42˚

C

3 tanθ = Fnet

Fg

 
θ = tan−1 780

80 × 9.8
⎛
⎝⎜

⎞
⎠⎟
= 45°

4 a v = rg tanθ

= 35 × 9.8 × tan25°

=12.6ms−1

=12.6 × 3.6

= 46kmh−1

b  FN = mg
cos25°

= 735
cos25°

= 811

= 8.1×102 N

c On a horizontal track, FN is equal and opposite to the force due to gravity, so FN = mg = 735 N. This is less than the 
normal force on the banked track (8.1 × 102 N).
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5 θ = tan−1 v2

rg
⎛
⎝⎜

⎞
⎠⎟

= tan−1 552

275 × 9.8
⎛
⎝⎜

⎞
⎠⎟

= 48o

6 v = 90kmh−1 = 25ms−1

θ = tan−1 v2

rg
⎛
⎝⎜

⎞
⎠⎟

= tan−1 252

450 × 9.8
⎛
⎝⎜

⎞
⎠⎟

= 8.1o

Analysis
7 The design speed depends on tan θ and the radius of the curve. Therefore the architect could make the banking angle 

larger or increase the radius of the track.

2.4 Circular motion in a vertical plane

Worked example: Try yourself 2.4.1

VERTICAL CIRCULAR MOTION

A student arranges a toy car track with a vertical loop of radius 25.0 cm, as shown.

A toy car of mass 150 g is released from rest at a height of 1.20 m (point X). The car rolls down the track and travels 
around the loop. Assume that g is 9.8 m s−2 and ignore friction.

g = 9.8 m s–2 C
25.0 cm

mass = 150 g

1.20 m

X

Z

Y

a Calculate the speed of the car as it reaches point Y at the bottom of the loop.

Thinking Working

Note all the variables given in the question. At X:

m = 150 g = 0.150 kg

Δh = 1.20 m

v = 0

g = 9.8 m s−2

Approach the problem by considering that energy is 
conserved during the car’s motion. Calculate the total 
mechanical energy first. Note that the initial speed is 
zero, so Ek at X is zero.

Mechanical energy, Em, at X is:

Em = Ek + Eg

= 1
2

mv2 + mgΔh

= 0 + (0.150 × 9.8 ×1.20)

=1.76 J
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Use the conservation of energy (Em = Ek + Eg) to determine 
the velocity at point Y. 

As the car rolls down the track, it loses its gravitational 
potential energy and gains kinetic energy. At the bottom 
of the loop (Y) the car has zero potential energy.

At Y:

Em = 1.76 J

Δh = 0

Eg = 0

Em = Ek + Eg

= 1
2

mv2 + mgΔh

1.76 = 0.5 × 0.150v2 + 0

v2 = 23.5

v = 4.85

v = 4.9ms−1

b Calculate the normal force from the track at point Y.

Thinking Working

To solve for FN, start by working out the net, or centripetal, 
force. At Y the car has a centripetal acceleration towards C  
(i.e. upwards), so the net centripetal force must also be 
vertically upwards at this point.

Fnet =
mv2

r

= 0.150 × 4.852

0.250
=14.1N up

Calculate the force due to gravity, Fg, and add it to a force 
diagram.

Fg = mg

= 0.150 × 9.8

=1.47N down

At point Y:

FN = ?

Fweight = 1.47 N

F = 14.1 N

Work out the normal force using vectors. Note up as 
positive and down as negative in your calculations.

The forces acting are unbalanced, as the car has a 
centripetal acceleration upwards (towards C). The 
upwards (normal) force must be larger than the 
downwards force.

Fnet = Fg + FN

+14.1 = −1.47 + FN

FN =14.1+1.47

=16N up

Note that the force the track exerts on the car is much 
greater (by about ten times) than the force due to gravity. 
If the car were travelling horizontally on a flat surface, the 
normal force would be just 1.47 N up.
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c What is the speed of the car as it reaches point Z?

Thinking Working

Calculate the velocity from the values you have, using 
Em = Ek + Eg.

At Z:

m = 0.150 kg

Δh = 2 × 0.250 = 0.500 m

Mechanical energy is conserved, so use the value from 
part a: Em = 1.76 J.

Em = Ek + Eg

= 1
2

mv2 + mgΔh

1.76 = 1
2
× 0.15v2 + 0.150 × 9.8 × 0.500

= 0.075v2 + 0.735

0.075v2 =1.76 − 0.735

v = 13.67

= 3.7ms−1

d What is the normal force acting on the car at point Z?

Thinking Working

To find FN, start by working out the net, or centripetal, 
force.

At Z the car has a centripetal acceleration towards C  
(i.e., downwards), so the net centripetal force must also 
be vertically downwards at this point.

Fnet =
mv2

r

= 0.150 × 3.702

0.250
= 8.21N down

Work out the normal force using vectors. Note up as 
positive and down as negative in your calculations.

FN = ?

Fg = 1.47 N

Fnet = 8.21 N

At point Z:

Fnet = Fg + FN

−8.21 = −1.47 + FN

FN = −8.21+1.47

= −6.74

= 6.74N down

KEY QUESTIONS

Knowledge and understanding
1 a It has a constant speed, so its centripetal acceleration (a = v2

r ) is also constant in magnitude.
b At the bottom of its path, the yo-yo has an upwards acceleration and so the net force is up. This indicates that the 

tension force is greater than Fg.
c At the top of its path, the yo-yo has a downwards acceleration and so the net force is down. This indicates that the 

tension force is less than Fg.
d At the bottom of its circular path.
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e At this point, the acceleration is downwards and the net force is down and equal to Fg.

  

Fnet =
mv2

r
= Fg

Fg = mg = mv2

r
v = rg

= 1.25 × 9.8

= 3.5ms−1

2 a The force due to gravity and the normal force from the road.
b 14.4 km h−1 = 4 m s−1. Therefore:

  

Fnet =
mv2

r

= 800 × 42

10
=1280N (or 1.3 ×103 N)

c Yes. When the driver is driving over a hump, the normal force is less than their force due to gravity (mg). Their 
apparent force due to gravity is given by the normal force that is acting, and so the driver feels lighter at this point.

d At point of lift-off, net force is down and equal to Fg.

  

Fnet =
mv2

r
= Fg

Fg = mg = mv2

r
v2

r
= g

v = rg

= 10 × 9.8

= 9.9ms−1

= 36kmh−1

3 a At X, the mechanical energy is: 

  Em = Ek + Eg

= 1
2

mv2 + mgΔh

= 1
2
×700 ×1.752 +700 × 9.8 ×70

=1072 + 480200

= 481272J

 At Y, Eg is zero, so the cart’s kinetic energy is 481 272 J.

1
2

mv2 = 481272

1
2
×700 × v2 = 481272

v = 1375

= 37ms−1

b At Z, the mechanical energy is 481 272 J.

Em = Ek + Eg

481272 = Ek +700 × 9.8 × 34

481272 = Ek + 233240

Ek = 248032J

1
2
×700v2 = 248032

v = 27ms−1
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c At Z, Fg = mg = 700 × 9.8 = 6860 N down

Fnet =
mv2

r

= 700 × 272

17
= 30018N down

= FN + Fg

30018 = FN + 6860

FN = 2.3 ×104 N down

d For the cart to just lose contact at Z, Fnet = FN + Fg, and FN = 0.

Fnet =
mv2

r
= Fg

Fg = mg = mv2

r
v2

r
= g

v = 17 × 9.8

=13ms−1

4 Fnet = Fg + FN

mv2

r
= 80 × 9.8 + FN

80 × 352

100
= 784 + FN

FN = 980 −784

= 2.0 ×102 N down

5 a a = v2

r

= 7.02

3.0
=16ms−2 up

b Fnet =
mv2

r

= 72 ×7.02

3.0
=1200

=1.2 ×103 N up

 

Fg = mg

= 72 × 9.8

= 705.6

= 7.1×102 N down

 

Fnet = FN + Fg

1.2 ×103 = FN −7.1×102

FN =1.2 ×103 +7.1×102

=1.9 ×103 N up

Analysis

6 a = v2

r
 and a = 9g = 88.2 N kg−1. Therefore:

 

v = ra

= 400 × 88.2

=188ms−1
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7 a If the toy car is just losing contact with the track, FN = 0; thus Fnet = Fg and a = 9.8 m s−2 down.

b v = rg

= 0.40 × 9.8

= 2.0ms−1

8 a Fnet =
mv2

r

= 1500 × 8.02

10
= 9600

= 9.6 ×103 N down

b Fnet = FN + Fg  (and taking down as negative)

−9.6 ×103 = FN −1500 × 9.8

FN = −9.6 ×103 +1500 × 9.8

= 5100N

= 5.1×103 N up

c g = v2

r
v = rg

= 10 × 9.8

= 9.9ms−1

2.5 Projectiles launched horizontally

Worked example: Try yourself 2.5.1

PROJECTILE LAUNCHED HORIZONTALLY 

A golf ball of mass 100 g is hit horizontally with a speed of 20.0 m s−1 from the top of a 30.0 m high cliff. Assume that 
g = 9.8 m s−2 and ignore air resistance.

–

+

30.0 m

20.0 m s–1 g = 9.8 m s–2

a Calculate the time the ball takes to land.

Thinking Working

Let the downward direction be positive. Write down the 
information relevant to the vertical component of the 
motion. Note that the instant the ball is hit, it is travelling 
only horizontally, so its initial vertical velocity is zero.

Down is positive.

Vertically:

u = 0 m s−1

s = 30.0 m

a = 9.8 m s−2

t = ?

In the vertical direction, the ball has constant 
acceleration, so use an equation for uniform acceleration. 
Select the equation that best fits the information you 
have.

s = ut + 1
2

at2
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Substitute values in the equation, rearrange it and solve 
for t.

30.0 = 0 + 4.90t2

t = 30.0
4.90

= 2.5s

b Calculate the distance the ball travels from the base of the cliff, i.e. the range of the ball.

Thinking Working

Write down the information relevant to the horizontal 
component of the motion. As the ball is hit horizontally, 
the initial speed gives the horizontal component of the 
velocity throughout the flight.

Horizontally:

u = 20.0 m s−1

t = 2.47 s from part a

s = ?

Select the equation that best fits the information you 
have.

As the horizontal speed is constant (i.e. u = v), you can 
use: 

vav =
s
t

Substitute values in the equation, rearrange it and solve 
for s. 20.0 = s

2.47
s = 20.0 × 2.47

= 49.4m

c Calculate the velocity of the ball as it lands.

Thinking Working

Find the horizontal and vertical components of the ball’s 
speed as it lands. 

Write down the information relevant to both the vertical 
and horizontal components.

Horizontally: u = v = 20.0 m s−1

Vertically, with down as positive:

u = 0

a = 9.8 m s−2

s = 30.0 m

t = 2.47 s

v = ?

To find the final vertical speed, use the equation for 
uniform acceleration that best fits the information you 
have.

v = u + at

Substitute values in the equation and solve for the 
variable you are looking for, in this case v.

Vertically:

v = u + at

= 0 + 9.8 × 2.47

= 24.2ms−1 down
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Add the components as vectors. 20.0 m s–1

24.2 m s–1

v

θ

Use Pythagoras’s theorem to calculate the speed, v, of the 
ball.

v = vh
2 + vv

2

= 20.02 + 24.22

= 986

= 31.4ms−1

Use trigonometry to calculate the angle, θ.
θ = tan−1 24.2

20.0
⎛
⎝⎜

⎞
⎠⎟
°

= 50.4°

Specify the velocity with its magnitude and a direction 
relative to the horizontal. Express the answer to  
2 significant figures.

The final velocity of the ball is 31 m s−1 at 50° below the 
horizontal.

KEY QUESTIONS

Knowledge and understanding
1 a Vertically with down as positive: u = 0, a = 9.8, s = 1.7, t = ?

s = ut + 1
2

at2

1.7 = 0 + 1
2
× 9.8 × t2

t = 1.7
4.9

= 0.59s

b vav =
s
t

5.5 = s
0.59

s = 3.2m

c a = 9.8 m s−2 down

2 a Vertically with down as positive: u = 0, a = 9.8, s = 2.5, t = ?

s = ut + 1
2

at2

2.5 = 0 + 1
2
× 9.8 × t2

t = 2.5
4.9

= 0.71s

b There is no difference in the time to fall for either ball: 0.71 s.
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c Ball X:

vav = s
t

s = 7.5 × 0.71

= 5.325m

 Ball Y:

vav = s
t

s =12 × 0.71

= 8.52m

 The difference is 8.52 − 5.325 = 3.2 m

3 a 
v = ?

θ

vv

70

 Vertically with down as positive: u = 0, a = 9.8, s = 45, v = ?

v2 = u2 + 2as

= 0 + 2 × 9.8 × 45

v = 29.7ms−1

Horizontally: u = v = 70 m s−1

v = 29.72 +702

= 76ms−1

b 

θ = ?

29.7

70

tanθ = 29.7
70

θ = 23°

4 a The horizontal velocity of the ball remains constant and vh = 6.5 m s−1 forwards.
b Vertically with down as positive: u = 0, a = 9.8, s = 1.0, v = ?

v2 = u2 + 2as

= 02 + 2 × 9.8 ×1.0

v = 4.4ms−1 down

c v = 4.42 + 6.52

= 7.8ms−1

tanθ = 4.4
6.5

θ = 34°

v = 7.8ms−1 at 34° below the horizontal
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d Vertically with down as positive: u = 0, a = 9.8, s = 1.0, t = ?

s = ut + 1
2

at2

1.0 = 0 + 1
2
× 9.8 × t2

t = 1
4.9

= 0.45s

e Horizontally: v = u = 6.5, t = 0.45, s = ?

s = vav × t

= 6.5 × 0.45

= 2.9m

f The only force acting is the force due to gravity, Fg.

Fg

Analysis
5 Find the time it takes the golf ball to land and then work backwards to find the horizontal speed at which it was hit. 

Take down as positive.

 Vertically: u = 0 m s−1, s = 75.0 m, a = 9.8 m s−2, t = ?

 

s = ut + 1
2

at2

75 = 0 + 1
2
× 9.8 × t2

t = 15.3

= 3.91s

 Horizontally: v = ?, t = 3.91 s from above, s = 100 m

 

vav =
s
t

= 100
3.91

= 26ms−1

2.6 Projectiles launched obliquely

Worked example: Try yourself 2.6.1

LAUNCH A PROJECTILE AT AN ANGLE

A 50 kg athlete in a long-jump event leaps with a velocity of 6.50 m s−1 at 20.0° to the horizontal.

g = 9.8 m s–2

6.50 m s–1

20.0°

+

–
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In answering the following questions, treat the athlete as a point mass, ignore air resistance and assume that g = 9.8 m s−2.

a What is the athlete’s velocity at the highest point in the jump?

Thinking Working

First find the horizontal and vertical components of the 
initial speed.

20.0°

6.50 m s–1 uV

uH

Using trigonometry:

uH = 6.50 cos 20.0° = 6.11 m s−1

Taking up as positive:

uV = 6.50 sin 20.0° = 2.22 m s−1

Projectiles that are launched obliquely move only 
horizontally at their highest point. The vertical component 
of the velocity at this point is therefore zero. Thus the 
actual velocity is given by the horizontal component of 
the velocity throughout the motion. 

At maximum height: v = 6.11 m s−1 horizontally to the 
right.

b What is the maximum height gained by the athlete’s centre of mass during the jump?

Thinking Working

To find the maximum height you must work with the 
vertical component of the velocity. Recall that the vertical 
component of velocity at the highest point is zero.

Vertically, taking up as positive:

u = 2.22

a = −9.8

v = 0

s = ?

Substitute these values into an appropriate equation for 
uniform acceleration.

v2 = u2 + 2as

0 = 2.222 + 2 × 9.8 × s

Rearrange the equation and solve for s.
s = 2.222

19.6
= 0.25m

c Assuming a return to the original height, what is the total time the athlete is in the air?

Thinking Working

As the motion is symmetrical, the time required to 
complete it will be double that taken to reach the 
maximum height. First, the time it takes to reach the 
highest point must be found.

Vertically, taking up as positive:

u = 2.22 m s−1

a = −9.8 m s−2

v = 0

t = ?

Substitute the relevant values into an appropriate 
equation for uniform acceleration.

v = u + at

0 = 2.22 − 9.8t

Rearrange the formula and solve for t, the time needed to 
reach maximum height. t = 2.22

9.8
= 0.227s

The time to complete the jump is double the time it takes 
to reach the maximum height.

Total time = 2 × 0.227 = 0.45 s
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CASE STUDY: ANALYSIS

The physics of shot putting
1 The initial horizontal speed is calculated as follows:

 uh = u × cos 30° = 7.5 × 0.866 = 6.5 m s−1

2 The initial vertical speed is calculated as follows:

 uv = u × sin 30° = 7.5 × 0.5 = 3.8 m s−1

3 The initial vertical speed, u, is 3.8 m s−1. The acceleration (upwards) is −9.8 m s−2 (due to the force of gravity). The final 
vertical speed, v, is 0 m s−1 (as the object has reached its maximum height). The time to reach the maximum height is 
calculated as follows:

 

v = u + at

t = v − u
a

= 0 − 3.8
−9.8

= 0.38s

4 The initial vertical speed, u, is 3.8 m s−1. The acceleration (upwards) is −9.8 m s−2 (due to the force of gravity). The final 
vertical speed, v, is 0 m s−1 (as the object has reached its maximum height). The maximum height is calculated as 
follows:

 

v2 = u2 + 2as

s = v2 − u2

2 × a
= 3.82

2 × 9.8
= 0.74m

 The maximum height from the ground is the maximum height from the throw plus the height from where the shot put 
is launched (1.6 m). Therefore the maximum height is 2.3 m.

5 The speed at the maximum height is given only by the horizontal component of the velocity (the vertical component is 
zero, as it is the maximum height). This is 6.5 m s−1.

6 To calculate the total distance the shot put travels, first calculate the time it takes to reach the maximum height and 
the time it takes to fall back to the ground.

 Note that the motion is not symmetrical, as the object lands lower than the point from where it was launched.

 The time to reach the maximum height was calculated in question 3: t = 0.38 s. The height the object falls is 2.3 m 
(from question 4). To calculate the time for the object to fall:

 

s = ut + 1
2

at2

u = 0ms−1

s = 2.3m

t = 2s
a

= 2 × 2.3
9.8

= 0.69s

 The total time the object is in the air is 0.38 s (while rising) + 0.69 s (while falling) = 1.07 s.

 Ignoring air resistance, the horizontal speed is constant: 6.5 m s−1. Therefore the total distance the shot put travels is

 s = v × t = 6.5 × 1.07 = 7.0 m.

KEY QUESTIONS

Knowledge and understanding
1 The horizontal velocity remains constant throughout the javelin’s flight (ignoring the effect of air resistance).

2 The optimal launch angle to give the greatest range for any ideal projectile is 45° (if air resistance is ignored, and if 
the start and end points are at the same height). Therefore Ollie is correct. James is incorrect in thinking that all the 
velocity of the water will be in the horizontal direction as he is not taking into account the acceleration due to gravity. 
The purely horizontal stream will have a larger horizontal velocity than the 45° stream but will have a shorter flight 
time and a shorter range. 

3 At the highest point the ball has zero vertical velocity. The horizontal velocity is constant throughout the flight (when 
air resistance is ignored). So the overall velocity at the highest point is equal to its horizontal speed:

 vH = v cos θ = 25 cos 40° = 19 m s−1

4 a vH = v cos θ = 25 cos 30° = 22 m s−1

b vV = v sin θ = 25 sin 30° = 13 m s−1
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c The acceleration is constant and is due to the force of gravity. The acceleration is 9.8 m s−2 down.
d At the highest point the ball has zero vertical velocity. The horizontal velocity is constant throughout the flight when 

air resistance is ignored. So the overall velocity at the highest point is equal to the horizontal velocity: 22 m s−1.

Analysis
5 a vH = v cos θ = 12 cos 25° = 11 m s−1

b vV = v sin θ = 12 sin 25° = 5.1 m s−1

c Vertically, with up as positive: u = 5.1, a = −9.8, v = 0, t = ?

  

v = u + at

0 = 5.1− 9.8t

t = 0.52s

d Vertically with up as positive: u = 5.1, a = −9.8, v = 0, s = ?

v2 = u2 + 2as

0 = 5.12 + 2 × −9.8 × s

5.12 =19.6s

s =1.3m

 Total height = 1.3 + 1.8 = 3.1 m
e The speed is given by the horizontal component of the velocity (as the vertical velocity is zero at this point), that is, 

11 m s−1.
f To calculate the total distance the shot put travels, first calculate the time it takes to reach the maximum height and 

the time it takes to fall back to the ground.
 Note that the motion is not symmetrical, as the object lands lower than from the point where it was launched.
 The time to reach the maximum height was calculated in part c as 0.52 s. The height the object falls is 3.1 m (from 

part d). To calculate the time for the object to fall:

s = ut + 1
2

at2

u = 0ms−1

s = 3.1m

t = 2s
a

= 2 × 3.1
9.8

= 0.795s

 The total time the object is in the air is 0.52 s (while rising) + 0.795 s (while falling) = 1.315 s.
 The horizontal speed is constant (assuming no friction from air is considered) at 11 m s−1. Therefore the total 

distance the shot put travels is:
 s = vt = 11 × 1.315 = 14 m

6 a i vH = 22.0 cos 10.0° = 21.7 m s−1 (and remains constant throughout the flight)
ii 21.7 m s−1

iii 21.7 m s−1

b i Taking up as positive: vV = 22 sin 10.0° = 3.82 m s−1

ii Vertically: u = 3.82, a = −9.8, t = 0.25, v = ?

 

v = u + at

= 3.82 − 9.8 × 0.25

=1.37ms−1

iii Vertically: u = 3.82, a = −9.8, t = 0.50, v = ?

 

v = u + at

= 3.82 − 9.8 × 0.50

= −1.08

=1.08ms−1 down

c v = 21.72 + (−1.08)2

= 21.7ms−1
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d The flight of the ball is symmetrical. Therefore the ball will strike her racquet at the same speed with which it was 
launched (assuming that the machine is at the same height as her racquet): 21.7 m s−1 (and at an angle of 10.0° to 
the horizontal).

e Vertically, with up as positive: u = 3.82, a = −9.8, v = 0, t = ?

v = u + at

0 = 3.82 − 9.8t

t = 0.389s

 Therefore the total time is 2 × 0.389 = 0.780 s.

v = s
t

s = 21.7 × 0.780

=16.9m

f Air resistance is a force that acts in the opposite direction to the velocity of the ball, thereby producing a horizontal 
and vertical deceleration of the ball during its flight. This means the maximum height of the ball is less than it 
would be with no air resistance. This also gives a shortened range of flight.

Chapter 2  Review
Knowledge and understanding
1 The bowling ball is increasing in speed at a constant rate, that is, with constant acceleration.

2 B. From the force triangle shown below you can see that FN > Fg.

θ

Fg
FN

Fnet

3 a a = g sinθ
= 9.8sin45.0o

= 6.9ms−2

b As FN = Fg cos θ, the normal force must be less than the force due to gravity.

  

FN = Fg cosθ

= Fg cos45o

= 0.71Fg

4 The forces acting on the water when the bucket is directly overhead are the force of gravity and the normal force from 
the base of the bucket on the water. Both of these forces act downwards. There is no separate outwards or centrifugal 
force. Therefore Emma is correct.

 This is an example of how the net force in circular motion is directed towards the centre of the circle. The water stays 
in the bucket because of inertia, and it moves in a circular path because of the normal force from the bucket, which 
is directed towards the centre of the circle. If the bucket were instantly removed, the water would leave the circle in a 
tangential path.

5 a The only force acting on the block on the table is tension:
 FT = m1a = 5a
 The forces acting on the falling block are tension and the force due to gravity:
 Fg − FT = m2a
 Substitute the expression for FT into the equation for Fg:

  

10 × 9.8 −5a =10a

98 =15a

a = 6.5ms−2

b FT = 5a = 5 × 6.5 = 33 N
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6 a The perpendicular component is:

  

F⊥ = Fg cos15°

= (90 × 9.8) × cos15°

= 8.5 ×102 N

 The parallel component is 

  

F! = Fg sin15°

= (90 × 9.8) × sin15°

= 2.3 ×102 N

b The normal force is equal in magnitude to the perpendicular component: FN = 852 N.
c Apply Newton’s second law. The net force along the incline is the component of Fg parallel to the slope.

  

a = Fnet

90
= 228

90
= 2.5ms−2 down the slope

7 a 

Carriage B
m = 5000 kg

Fdrag car B = 1000 N

Fcar B tension

Fdrag car A = 2000 N Fdrag loco = 1500 N

Carriage A
m = 10 000 kg

Locomotive
m = 7500 kg 2 m s–2

  

Fsystem = msystema

Fthrust − Fdrag loco − Fdrag car A − Fdrag car B = (mloco + mcar A + mcar B ) × a

Fthrust −1500 − 2000 −1000 = (7500 +10000 +5000) × 2

Fthrust = 5.0 ×104 in the direction of motion

b Fnet car B = mcar Ba

Ftension car B − Fdrag car B = mcar Ba

Ftension car B = 5000 × 2 + 2000

=1.2 ×104 N

8 Fnet = thrust − drag forces = mtotala

thrust − (800 +700) = (1000 + 200) × 2.5

thrust = 3000 +1500 = 4500

= 4.5 ×103 N

9 a a = g sinθ
= 9.8sin40°

= 6.3ms−2

b u = 0 m s−1, s = 3.5 m, a = 6.3 m s−2, v = ?

 

v2 = u2 + 2as

v2 = 0 + 2 × 6.3 × 3.5

v = 6.6ms−1

10 a FN = mg cosθ
= 57 + 3( ) × 9.8 × cos65°
= 248

= 2.5 ×102 N

b a = g sinθ
= 9.8sin65°

= 8.9ms−2 down the ramp



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

c Fnet = ma

= 57 + 3( ) × 8.88

= 533

= 5.3 ×102 N down the ramp

d u = 0, s = 5.0, a = 8.88, v = ?

  

v2 = u2 + 2as

= 0 + 2 × 8.88 ×5.0

= 89

v = 9.4ms−1 (speed only)

e Fnet = 0 so forces parallel to the incline are balanced.
 Ff = mg sin θ = 5.3 × 102 N up the ramp

11 a v = 2π r
T

= 2π × 0.800
1.36

= 3.70ms−1

b a = v2

r
3.702

0.800
=17.1ms−2 towards the centre of the circle

c Fnet = ma

= 0.0250 ×17.1

= 0.428N (only magnitude is needed)

d 

FT

Fg

e Ft =
mg

sin30.0°

= 0.0250 × 9.80
0.50

= 0.49N

12 a a = v2

r

= 7.52

15
= 3.8ms−2 towards the centre of the circle

b The centripetal force is created by the friction between the tyres and the ground. Thus friction keeps the toy car 
moving in its circular path.

13 v = rg tanθ

= 30 × 9.8 × tan40°

=16ms−1
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14 a i At top:

  

Fnet =
mv2

r

= 50 ×5.02

10
=125N down

FN = Fg −125

= 490 −125

= 365N up

ii At bottom:

 

Fnet =
mv2

r

= 50 ×5.02

10
=125N up

FN = Fg +125

= 490 +125

= 615N up

b D. At the top of the ride, FN < Fg, so he would feel lighter than usual.

15 a vav =
s
t

s = vav × t

= 3.75 ×1.5

= 5.6m

b 9.8 m s−2 downwards (due to gravity)

16 a 15.0 m s−1. As there are no forces acting horizontally, the horizontal velocity is constant.
b Vertically, with down as positive: u = 0, s = 1.27, a = 9.80, v = ?

 

v2 = u2 + 2as

= 0 + 2 × 9.8 ×1.27

v = 4.99ms−1

c v = 152 + 4.992

=15.8ms−1 (only the speed is required)

Application and analysis

17 a uh =18.5cos46°

=12.9ms−1

b uv =18.5sin46°

=13.3ms−1

c Vertically, with up as positive: u = 13.3, a = −9.8, v = 0, s = ?

 

v2 = u2 + 2as

0 =13.32 + 2 × −9.8 × s

=177 −19.6s

s = 9.025m

 The total height from the ground is 1.7 + 9.03 = 10.7 m.
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18 a The object drops at a constant acceleration due to the force of gravity (with an acceleration downwards of 9.8 m s−2).
b Your plot should look like the following:
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c Predict the time to fall 15 m.
This could be done by examining the graph, or by using the equation s = ut + 1

2
at2.

We know that u(t) = 0, therefore the time taken to fall 15 m can be found using:

t = 2 ×15
9.8

=1.75s

19 a 
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b To obtain the horizontal velocity, determine the horizontal distance travelled in each 0.1 s time increment by taking 
the difference between successive data points. For example, in the first 0.1 s the object has travelled 0.1 m so the 
velocity is 1 m s−1. This data is shown below in the ‘Horizontal velocity’ column.

Horizontal distance 
travelled (m)

Time (s) Height (m) Horizontal distance 
travelled each 0.1 s (m)

Horizontal 
velocity (m s−1)

0.10 0.1 15.0 0.10 1.0

0.20 0.2 15.2 0.10 1.0

0.30 0.3 15.6 0.10 1.0

0.40 0.4 16.2 0.10 1.0

0.50 0.5 17.0 0.10 1.0

0.60 0.6 18.0 0.10 1.0

0.70 0.7 19.2 0.10 1.0

0.80 0.8 18.0 0.10 1.0

0.90 0.9 17.0 0.10 1.0

1.00 1.0 16.2 0.10 1.0

1.10 1.1 15.6 0.10 1.0

1.20 1.2 15.2 0.10 1.0

1.30 1.3 15.0 0.10 1.0

1.40 1.4 14.3 0.10 1.0

1.45 1.5 13.6 0.05 0.5

1.50 1.6 12.8 0.05 0.5

1.55 1.7 12.2 0.05 0.5

1.60 1.8 11.5 0.05 0.5

1.65 1.9 10.9 0.05 0.5

1.70 2.0 10.1 0.05 0.5

1.75 2.1 9.5 0.05 0.5

1.80 2.2 8.7 0.05 0.5

1.85 2.3 8.2 0.05 0.5

1.90 2.4 7.6 0.05 0.5

1.95 2.5 6.5 0.05 0.5

2.00 2.6 5.8 0.05 0.5

2.05 2.7 5.1 0.05 0.5

2.10 2.8 4.3 0.05 0.5

2.15 2.9 3.7 0.05 0.5

2.20 3.0 2.9 0.05 0.5

2.25 3.1 2.0 0.05 0.5
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Horizontal velocity (m s–1) by object as a function of time (s)

 Observations:

 The velocity is constant at 1 m s−1 from initial launch of the object to the point where the object reaches its 
maximum height.

 The velocity is constant at 0.5 m s−1 from the object’s maximum height to the point where it reaches the ground.
d To obtain the horizontal acceleration, take the difference between the data points of the horizontal velocity 

and divide by the time increment for each successive data point. This data is shown below in the ‘Horizontal 
acceleration’ column.

Horizontal distance 
travelled (m)

Time (s) Height (m) Horizontal 
velocity (m s−1)

Horizontal acceleration 
(m s−2)

0.10 0.1 15.0 1.0 0

0.20 0.2 15.2 1.0 0

0.30 0.3 15.6 1.0 0

0.40 0.4 16.2 1.0 0

0.50 0.5 17.0 1.0 0

0.60 0.6 18.0 1.0 0

0.70 0.7 19.2 1.0 0

0.80 0.8 18.0 1.0 0

0.90 0.9 17.0 1.0 0

1.00 1.0 16.2 1.0 0

1.10 1.1 15.6 1.0 0

1.20 1.2 15.2 1.0 0

1.30 1.3 15.0 1.0 0

1.40 1.4 14.3 1.0 0

1.45 1.5 13.6 0.5 	 −5

1.50 1.6 12.8 0.5 0

1.55 1.7 12.2 0.5 0

1.60 1.8 11.5 0.5 0

1.65 1.9 10.9 0.5 0

1.70 2.0 10.1 0.5 0

1.75 2.1 9.5 0.5 0

1.80 2.2 8.7 0.5 0

1.85 2.3 8.2 0.5 0

1.90 2.4 7.6 0.5 0

1.95 2.5 6.5 0.5 0

continued over page
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Horizontal distance 
travelled (m)

Time (s) Height (m) Horizontal 
velocity (m s−1)

Horizontal acceleration 
(m s−2)

2.00 2.6 5.8 0.5 0

2.05 2.7 5.1 0.5 0

2.10 2.8 4.3 0.5 0

2.15 2.9 3.7 0.5 0

2.20 3.0 2.9 0.5 0

2.25 3.1 2.0 0.5 0

e 
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Horizontal acceleration (m s–2) by object as a function of time (s)

 Observations:

 There is one outlier in the data which would need to be explained in the experiment report (i.e. whether it originates 
from an error or a mistake). 

 The effect of air resistance on the horizontal component is negligible as the acceleration is zero.
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Chapter 3 The relationship between force,  
energy and mass

3.1 Conservation of momentum

Worked example: Try yourself 3.1.1

CONSERVATION OF MOMENTUM

In a safety-rating test of head-on collisions, a car of mass 1200 kg travelling east at 22.0 m s−1 crashes into a bus of mass 
7000 kg travelling west at 15.0 m s−1. Assume that the car and bus lock together on impact. You can ignore the effect of 
friction.

a Calculate the final common velocity of the vehicles.

Thinking Working

First assign a direction that will be considered positive. In this case we will consider vectors directed eastwards to 
be positive.

mc =1200kg

uc = 22.0ms−1

mb = 7000kg

ub = −15.0ms−1

Apply the law of conservation of momentum. Σpinitial = Σpfinal

mcuc + mbub = (mc + mb)v

(1200 × 22.0) + (7000 × −15.0) = (1200 +7000)v

(−78600) = (8200)v

v = (−78600)
(8200)

= −9.58537

= 9.59ms−1 west

b Calculate the change in momentum of the car.

Thinking Working

The change in momentum of the car is its final 
momentum minus its initial momentum.

Δpc = pfinal − pinitial

= mc(v − u)

= (1200)(−9.58537 − 22.0)

= −37902.4

= 3.79 ×104 kgms−1 west

c Calculate the change in momentum of the bus.

Thinking Working

The change in momentum of the bus is its final 
momentum minus its initial momentum.

Δpb = pfinal − pinitial

= mb(v − u)

= (7000)(−9.58537 − (−15.0))

= 37902.4

= 3.79 ×104 kgms−1 east
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d Verify that the momentum of the system is constant.

Thinking Working

The total change in the momentum of a system is the 
vector sum of the change of momentum of its parts. This 
should be zero from the conservation of momentum.

Δpc + Δpb = (−3.79 ×104) + (3.79 ×104) = 0

Therefore the momentum of the system is constant  
(i.e. conserved) as expected.

Worked example: Try yourself 3.1.2

REBOUNDING

In a child’s toy, a blue marble rolls along a track and collides with a red marble rolling the other way. The blue marble 
has a mass of 0.003 20 kg and is travelling south at 0.800 m s−1 as it hits the red marble. The red marble has a mass of 
0.001 50 kg and is travelling north at 1.00 m s−1 when it hits the blue marble. After the collision the blue marble is now 
travelling towards the south at 0.450 m s−1. Assume that the two marbles bounce off each other on impact and ignore the 
effect of friction.

a Calculate the sum of the momentum of the two marbles before they hit.

Thinking Working

First assign a direction that will be considered positive. In this case we will consider vectors directed towards the 
north to be positive.

mb = 0.00320kg

ub = −0.800ms−1

vb = −0.450ms−1

mr = 0.00150kg

ub =1.00ms−1

Use the equation of momentum for each marble and 
substitute the values.

Σpinitial = pr + pb

= mbub + mrur

= (0.00320)(−0.800) + (0.00150)(1.00)

= (−0.00256) + (0.00150)

= −0.00106

=1.06 ×10−3 kgms−1 south

b Calculate the final velocity of the red marble.

Thinking Working

The sum of the momentum after the collision is equal to 
the sum of the momentum before the collision.

Σpfinal = Σpinitial

mbvb + mrvr = Σpinitial

(0.00320)(−0.450) + (0.00150)vr = (−0.00106)

vr =
(−0.00106) + (0.00144)

(0.00150)

= 0.253333

= 0.253ms−1 north

c Calculate the change in momentum of the blue marble.

Thinking Working

The change in momentum of the blue marble is its final 
momentum minus its initial momentum.

Δpb = pfinal − pinitial

= mb(vb − ub)

= (0.00320)(−0.450 − (−0.800))

= 0.00112kgms−1

=1.12 ×10−3 kgms−1 north



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

d Calculate the change in momentum of the red marble.

Thinking Working

The change in momentum of the red marble is its final 
momentum minus its initial momentum.

Δpr = pfinal − pinitial

= mr (vr − ur )

= (0.00150)(0.253333 −1.00)

= −0.00112

=1.12 ×10−3 kgms−1 south

Worked example: Try yourself 3.1.3

EXPLOSIVE MOMENTUM

Two ice dancers are standing still in the centre of an ice rink facing each other with their palms together. They then begin 
their routine by pushing with their hands. After pushing away, ice dancer A, of mass 62.0 kg, travels towards the north at 
2.20 m s−1. Ice dancer B, of mass 98.0 kg, travels towards the south. You can ignore the effect of friction.

a Calculate the sum of the momentum of the two ice dancers before they push away.

Thinking Working

Assign a direction that will be considered positive. In this case we will consider vectors directed towards the 
north to be positive.

mA = 62.0kg

uA = 0

vA = 2.20ms−1

mB = 98.0kg

uB = 0ms−1

Use the equation of momentum for the combined mass 
of the dancers.

Σpinitial = pA + pB

= (mA + mB)u

= (62.0 + 98.0)(0)

= (160)(0)

= 0kgms−1

b Calculate the final velocity of ice dancer B.

Thinking Working

The sum of the momentum after the dancers push away 
is equal to the sum of their momentum before the push.

Σpfinal = Σpinitial

mAvA + mBvB = Σpinitial

(62.0)(2.20) + (98.0)v2 = 0

(98.0)v2 = −(136.4)

v2 = −1.39184

=1.39ms−1 south

c Calculate the change in momentum of ice dancer A.

Thinking Working

The change in momentum of dancer A is their final 
momentum minus their initial momentum.

ΔpA = pfinal − pinitial

= mA(vA − uA )

= (62.0)(2.20 − 0)

=136.4

=136kgms−1 north
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d Calculate the change in momentum of ice dancer B.

Thinking Working

The change in momentum of dancer B is their final 
momentum minus their initial momentum.

ΔpB = pfinal − pinitial

= mB(vB − uB)

= (98.0)(−1.39184 − 0)

= −136.4

=136 kgms−1 south

KEY QUESTIONS

Knowledge and understanding
1 Before you step forward to get off the stand-up paddle board, the sum of the initial momentum of you and the board 

can be assumed to be zero. Therefore the total momentum after you step forward must also be zero. This means that 
your forward momentum must be matched by the board’s backward momentum. But as the board is likely to be less 
than your mass, the board will move rapidly backwards while you move much more slowly forward. You may end up 
quite wet. On the other hand, the mass of a river ferry is very large in comparison to you, so its backwards velocity will 
be extremely small in comparison to your forward velocity. In this case you are more likely to land on the dock without 
incident.

2 As the two toy cars are moving in opposite directions, one of the cars will have a positive momentum and the other 
car will have a negative momentum. Therefore the sum of their initial momenta adds to zero to match their overall 
final momentum of zero.

Analysis
3 Σpfinal = Σpinitial

(mg + mo )v = mgug + mouo

(25.0 +50.0)v = (25.0)(3.50) + (50.0)(−6.00)

(75.0)v = (−212.500)

v = −2.83333

= 2.83ms−1 west

4 Σpfinal = Σpinitial

(mp + md)v = mpup + mdud

(11000 +16000)v = (11000)(7.50) + (16000)(3.50)

(27000)v = (138500)

v = 5.12963

= 5.13ms−1 north

5 a i pc = mcuc

= (1000)
36.0
3.6

⎛
⎝⎜

⎞
⎠⎟

=10000

=1.00×104 kgms−1 east

ii pw = mwuw

= (2000)
−18.0
3.6

⎛
⎝⎜

⎞
⎠⎟

= −10000

=1.00 ×104 kgms−1 west

iii Σp = pc + pw

= (1.00 ×104) + (−1.00 ×104)

= 0kgms−1



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

b i Σpfinal = Σpinitial

(mc + mw )v = Σpinitial

(1000 + 2000)v = 0

(3000)v = 0

v = 0ms−1

ii The vector momentum of the two vehicles before the collision has combined and is conserved (as it is in any 
collision). The sum of the vector momentum of the system before the collision becomes the sum of the vector 
momentum of the system after the collision.

iii Δpc = pfinal = pinitial

= mc(vc − uc )

= (1000)(0 −10.0)

= −10000

=1.00 ×104 kgms−1 west

iv Δpw = pfinal = pinitial

= mw(vw − uw )

= (2000)(0 − (−5.00))

=10000

=1.00 ×104 kgms−1 east

6 Σpfinal = Σpinitial

mpvp + mgvg = mpup + mgug

(0.155)(−3.00) + (0.132)vg = (0.155)(5.00) + (0.132)(0)

(0.132)vg = (0.775) + (0) − (−0.465)

vg = (1.24)
(0.132)

= 9.39394

= 9.39ms−1 to the right

7 Σpfinal = Σpinitial

myvy + movo = myuy + mouo

(71.0)vy + (65.0)(1.40) = (71.0)(4.20) + (65.0)(−5.30)

(71.0)vy = (298.200) + (−344.500) − (91.0000)

vy = (−137.300)
(71.0)

= −1.93380

=1.93ms−1 west

8 Σpfinal = Σpinitial

mivi + msvs = miui + msus

(4.20 ×105)vi + (3.20 ×104)(5.00) = (4.20 ×105)(0) + (3.20 ×104)(−5.00)

(4.20 ×105)vi = (0) + (−1.60000 ×105) − (1.60000 ×105)

vi =
(−3.20000 ×105)

(4.20 ×105)

= −0.761905

= 0.762ms−1 south

9 Σpfinal = Σpinitial

mbvb + mcvc = (mb + mc )u

(10.0)(505) + (1000)vc = (1000 +10.0)(0)

(1000)vc = (0) − (5050)

vc = (−5.050)
(1000)

= −5.050

= 5.05ms−1 west
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10 Σpfinal = Σpinitial

mava + mtvt = (ma + mt )u

(235)(0.300) + (46.0)vt = (235 + 46.0)(−0.750)

(46.0)vt = (−210.750) − (70.5000)

vt =
(−281.250)

(46.0)

= −6.11413

= 6.11ms−1 away from the spaceship

3.2 Impulse

Worked example: Try yourself 3.2.1

CALCULATING THE IMPULSE

Calculate the impulse of the braking system on the 1480 kg sports car if the vehicle was travelling at 95.5 km h−1 in a 
north-easterly direction before coming to an abrupt halt.

Thinking Working 

Convert the speed to m s−1.
95.5kmh−1 = 95.5

3.6
ms−1 = 26.5278ms−1

Calculate the change in momentum.

The negative sign indicates that the change in 
momentum, and therefore the impulse, is in the direction 
opposite to the initial momentum, as would be expected. 

Δp = m(v − u)

= (1480)(0 − 26.5278)

= −3.92611×104

= 3.93 ×104 Ns south-west

The impulse is equal to the change in momentum. impulse = 3.93 ×104 Ns south-west

Worked example: Try yourself 3.2.2

IMPULSE OF RUNNING SHOES

A running-shoe company plots the following force vs time graph for an alternative design intended to reduce the peak 
force on the heel. Calculate the magnitude of the impulse.

1.00

0.00

2.00

90 1206030 75 10545150

Fo
rc

e 
(k

N
)

Time (ms)

115

1.75

Thinking Working

Recall that impulse = FΔt.

This is the area under the force vs time graph.
impulse = 1

2
×base × height

= 1
2
×115 ×10−3 ×1.75 ×103

=101Ns
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Worked example: Try yourself 3.2.3

BRAKING FORCE

The same 2520 kg truck travelling at 30.0 m s−1 needs to stop in 1.50 s because a vehicle in front has suddenly 
stopped. Calculate the magnitude of the average braking force required to stop the truck in that time.

Thinking Working

Calculate the change in momentum.

The negative sign indicates that the change in 
momentum, and therefore the braking force, is in the 
direction opposite to the initial momentum, as would be 
expected.

Δp = m(v − u)

= 2520(0 − 30)

= −75600kgms−1

Transpose Δp = FΔt to find the force.

The sign of the momentum can be ignored, since you are 
finding just the magnitude of the average force.

F = Δp
Δt

= 75600
1.50

= 50400

= 5.04 ×104 N

CASE STUDY: ANALYSIS

Car safety and crumple zones
1 pd = mdud

= (90.0)
60.0
3.6

⎛
⎝⎜

⎞
⎠⎟

=1.50 ×103 kgms−1 north

2 Δpd = pfinal − pinitial

= (0) − (1500)

= −1500

=1.50 ×103 kgms−1 south

3 The impulse of the car is the change in momentum of the car. The change in momentum does not change if the time 
over which the driver came to a stop were extended, as it is independent of time. The change in momentum is only 
dependent on the mass, initial velocity and final velocity.

4 The impulses experienced by the car driver and the tank driver will be the same, as they both have the same mass, 
the same initial velocity and the same final velocity.

5 Use the value for impulse found in question 2.

 

Ic = Δpc = FcΔtc

Fc = Ic
Δtc

= (−1500)
(985 ×10−3)

= −1522.84

=1.52 ×103 N south

6 It = Δpt = FtΔtt

Ft =
It
Δtt

= (−1500)
(81.5 ×10−3)

= −18404.9

=1.84 ×104 N south

7 There is an inverse relationship between the force acting and the time taken for the accident to occur. The longer the 
time, the smaller the force that acts.
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KEY QUESTIONS

Knowledge and understanding

1 Speed of the ball = 
155
3.6

 = 43.0556 m s−1

 impulse = Δp = m(v − u) = 0.165(0 − 43.0556) = −7.10 N s

 The magnitude of the impulse is 7.10 N s.

2 Final speed of ball is:

144
3.6

= 40.0ms−1

F = Δp
Δt

= (0.0570)(40.0 − 0)
(0.0600)

= 38.0N

Note: The force may also be determined by calculating the acceleration and then using the relationship F = ma.

3 Impulse = Δp
Taking up as positive:

Δp = (0.625)(24.5 − (−32.0))

= 35.3125kgms−1

= FΔt

F = 35.3125
0.0165

= 2140.15

= 2.14 ×103 N

Note: The force may also be determined by calculating the acceleration and then using the relationship F = ma.

4 a Speed = 
50.0
3.6

=13.8889ms−1

  

p = mv

=100000 ×13.8889

=1388890

=1.39 ×106 kgms−1

b 1.39 × 106 N s. Since the final momentum is zero, the magnitude of the impulse is equal to the magnitude of 
the initial momentum. The object with which the train collides, and the time it takes to stop, does not affect the 
impulse.

Analysis
5 From least to most: balls A, C and B

Remember to consider the initial and final momentum of each ball. The ball with the greatest change in momentum 
is the ball with the greatest final momentum in the opposite direction, since they all have the same initial momentum.

6 Wearing good runners will reduce the force, while being barefoot will increase the force. Runners have cushioned soles 
which compress, increasing the time over which the change in momentum occurs.

Landing on concrete will increase the force compared to landing on grass, as grass and soil compress much more than 
concrete, increasing the time over which the change in momentum occurs.

Jumping from a lower branch will decrease the force.

Dropping the backpack before jumping will decrease the force, as this will decrease her mass and thus her change in 
momentum/impulse.

Any factor that increases the time of deceleration will decrease the force. Similarly, any factor that decreases the 
impulse—by decreasing the change in velocity or the mass—will decrease the force.

7 IB = IA
FBtB = FAtA

FB(0.00400) = FA (0.0896)

FB = (0.0896)
(0.00400)

FA

= 22.4 × FA
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8 a impulse = area under force–time graph

= 1
2
×base × height

= 1
2
× 200 ×10−3 × 2000

= 200Ns

b Fav =
Δp
Δt

= 200
200 ×10−3

=1.00 ×103 N

9 First find the initial and final velocity by equating the initial potential with the final kinetic energy.

mgh = 1
2

mv2

vi = 2gh = 2 × 9.8 × 2.51 = 7.01ms−1

v f = 2gh = 2 × 9.8 ×1.46 = 5.35ms−1

Δp = mΔv

= 0.0575 × (−5.35 −7.01)

= −0.711kgms−1

= FΔt

F = Δp
Δt

= 0.711
0.055

=13N

3.3 Work done

Worked example: Try yourself 3.3.1

FORCE APPLIED AT AN ANGLE TO THE DISPLACEMENT

A boy moves a toy car by pulling on a cord that is attached to the car at 45.0° to the horizontal. The boy applies a force 
of 15.0 N and pulls the car for 10.0 m along a path against a frictional force of 6.00 N.

Ft = 15.0 N

Ff = 6.00 N

45.0º

a Determine the work done by the boy pulling on the cord.

Thinking Working

Draw the diagram of the forces in action. Ft

Ff
F = Ft cos 45º

45.0º

Find the component of the tension in the rope that is 
in the direction of the displacement (shown by the red 
arrow).

F = 15.0 × cos 45.0° = 10.6066 N
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Find the work done by the boy. W = Fs

=10.6066 ×10.0

=106.066

=106 J

b Calculate the work done on the toy car.

Thinking Working

The work done on the car is the net force acing on it 
multiplied by the displacement. (This is also the increase 
in the kinetic energy of the car.)

W = Fs

= (F − Ff )s

= (10.6066 − 6.00) ×10.0

= 46.0660

= 46.1J

c Calculate the energy transformed into heat and sound due to the frictional force.

Thinking Working

The energy transformed into heat and sound due to the 
frictional force is the difference between the work done 
by the boy and the energy gained by the toy car.

E =106.066 − 46.0660

= 60.0 J

This is equal to the work done against friction, which can 
also be calculated from the frictional force.

Wf = Ffs

= 6.00 ×10.0

= 60.0 J

Worked example: Try yourself 3.3.2

CALCULATING WORK DONE FROM A GRAPH

The force required to elongate a piece of rubber tubing is represented in the graph below. Calculate the work done 
when the tubing is stretched by 2.0 m.

Force vs distance stretched of rubber tubing
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Thinking Working

The work done is the area under the force vs distance 
graph. This may be found by calculation or by counting 
squares. In this case it is best to divide the area into 
triangles and rectangles and sum the individual areas.

Force vs distance stretched of rubber tubing
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Add the areas together to calculate the work done.
area = (

1
2

 × 0.50 × 30) + (
1
2

 × 1.5 × 50) + (30 × 1.5)

work done = 90 J

KEY QUESTIONS

Knowledge and understanding
1 Student answers will vary. An example is where someone standing on a horizontal travelator is holding a suitcase 

above the ground. No work is done on the suitcase while the case is being held.

2 Work is only done if the force, or any component of the force, is in the same direction as the displacement. The 
attractive force of gravity on the Earth is at right angles to the motion of the Earth. Therefore the force and any 
displacement are perpendicular. Hence no work is done on the Earth by the Sun.

3 a Fhorizontal = F cosθ
= 30.0cos60.0°
=15.0N

W = Fs

=15.0 × 2.40

= 36.0 J

b W = Ffs

=10.0 × 2.40

= 24.0 J

c W = Fs

= (15.0 −10.0) × 2.40

=12.0 J

4 The work represented by one square is 10 × 0.001 = 0.01 J.
There are 27 squares (approx.) under the curve up to 7 mm compression.

W = 27 × 0.01 = 0.27 J

5 Note that the work is being done against gravity, hence:

W = Fs = mgΔh

=155 × 9.8 ×1.20

=1822.8

=1.8 ×103 J

6 The net force on the mower must be zero, since it is travelling at constant speed.
The force required to oppose friction must be 68.0 cos 60.0° = 34.0 N.

W = Fs

= 34.0 ×15.0

= 510 J
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Analysis

7 a 
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A

D

E

B C

W = area under graph

= A + B + C + D + E

= (2.0 ×10−3)(11000) + (4.0 ×10−3)(6000) + 1
2

(2.3 ×10−3)(6000) + 1
2

(2.0 ×10−3)(5000) + 1
2

(4.0 ×10−3)(5000)

= 22.0 + 24.0 + 6.90 +5.0 +10.0

= 68 J

8 Vertically, taking up as positive:

u = 108
3.6

= 30.0ms−1

uv = 30.0sin45.0!

= 21.2ms−1

v = 0 (at the top), a = −9.8, s = ?

v2 = u2 + 2as

0 = 21.22 −19.60s

s = 22.9m up

stotal = 22.9 m up + 22.9 m down + 1.9 m down (to the ground) = 47.7 m

W = Fg × stotal

= 0.806 × 9.8 × 47.7

= 376.77

= 3.8 ×102 J
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3.4 Elastic potential energy
Worked example: Try yourself 3.4.1

CALCULATING THE SPRING CONSTANT, ELASTIC POTENTIAL ENERGY AND WORK
An alloy sample is tested under tension, giving the force vs extension graph shown below. X indicates the elastic limit and 
Y indicates the breaking point.

X
Y

0 1.0 2.0
Extension (cm)

3.0 4.0 5.0

Fo
rc

e 
(N

)

300

100

200

400

a Calculate the spring constant, k, for the sample.

Thinking Working

The spring constant is the gradient of the first linear 
section of the graph (in units N m−1).

k = ΔF
Δx

= 300
0.015

= 20000

= 2.0 ×104 Nm−1

b Calculate the elastic potential energy that the alloy can store before permanent deformation begins.

Thinking Working

The elastic potential energy is the area under the curve 
up to the elastic limit.

Es = 
1
2

 × height × base of triangle

 

= 1
2
× 300 × 0.015

= 2.3J

This value can also be obtained using the formula for 
elastic potential energy.

Es =
1
2

kx2

= 1
2
× 2.0 ×104 × (0.015)2

= 2.3J 

c Calculate the work done to break the sample.

Thinking Working

Add up the number of squares under the curve up to the 
breaking point.

number of squares = 29 (approx.)

Calculate the energy per square. This is given by the area 
of a single square. Remember to convert cm to m.

energy for one square = 50 × 0.01

= 0.5 J

Multiply the energy per square by the number of squares. work = energy per square × number of squares

= 0.5 × 29

=14.5 J (approx.)
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KEY QUESTIONS

Knowledge and understanding
1 From least to most stiff: C, B, A. Stiffness is indicated by the gradient of a force vs distance graph, where the distance 

is either compression or extension.

2 a A high spring constant value. This would reduce the oscillation of the panel as it is fixed in place.
b  A medium spring constant value. Allowing for a little give as the rope tightens reduces the chances that the rope 

will break.
c A low spring constant value. This enables the net to be stretched over a variety of items to keep them secure.

3 a spring constant: k = ΔF
Δx

 stiff spring constant: 
20
0.1

= 200Nm−1

 weak spring constant: 
10
0.2

= 50Nm−1

b stiff spring: Es =
1
2
× 200 × 0.202 = 4.0 J

 weak spring: Es =
1
2
×50 × 0.202 =1.0 J

 energy difference = 4.0 − 1.0 = 3.0 J

4 x = F
k
= 4.00

50.0
= 0.0800m or 8.00cm

5 a F = kx

   = 128 × 0.250
  = 32.0 N

b Es =
1
2

kx2

= 1
2
×128 × 0.2502

= 4.00 J

Analysis
6 a 

10.0

0.0

20.0

30.0

40.0

50.0

0.00 0.050 0.15 0.20 0.300.25
XY distance (m)

Fo
rc

e 
(N

)

Force vs distance pulled of a bow string

0.10

b Each square = 0.05 × 10 = 0.5 J. Therefore elastic potential energy = 14 squares × 0.5 = 7 J.
c The work done by the archer is what becomes the elastic potential energy. Therefore the work done is 7 J.
d No. Hooke’s law is not obeyed, as the force vs distance graph is not a straight line between 10.0 cm and 30.0 cm.
e The elastic limit is at the point where the distance is 0.15 m and the force is 30 N.
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3.5 Kinetic and potential energy

Worked example: Try yourself 3.5.1

ELASTIC OR INELASTIC COLLISION?

A 209 g softball with initial velocity 9.00 m s−1 to the right collides with a stationary baseball of mass 112 g. After the 
collision, both balls move to the right and the softball has a speed of 3.00 m s−1. Using appropriate calculations, show 
whether the collision is elastic or inelastic.

Thinking Working

Use conservation of momentum to find the final velocity 
of the 112 g baseball.

Taking to the right as positive and labelling the baseball 
‘ball 2’:

Σpinitial = Σpfinal

pinitial ball 1 + pinitial ball 2 = pfinal ball 1 + pfinal ball 2

(0.209 × 9.00) + 0 = (0.209 × 3.00) + (0.112 × vball 2 )

vv ball 2 =11.2ms−1

Calculate the total initial kinetic energy before the 
collision.

Before:

Ek = 1
2

mu2

= 1
2
× 0.209 × 9.002 + 0

= 8.46 J

Calculate the total final kinetic energy of the joined balls. After:

Ek = 1
2

mvball 1
2 + 1

2
mvball 2

2

= 1
2
× 0.209 × 3.002 + 1

2
× 0.112 ×11.22

= 0.90 +7.2

= 7.96 J

Compare the kinetic energy before and after the collision 
to determine whether the collision is elastic or inelastic.

The kinetic energy after the collision is less than the 
kinetic energy before the collision. Therefore the collision 
is inelastic.

Worked example: Try yourself 3.5.2

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A FORCE VS DISTANCE GRAPH

Using the graph in Figure 3.5.2, calculate the gravitational potential energy gained if the 10 kg object is moved from 
the surface of the Earth to 2.0 × 107 m above the centre of the Earth.

Thinking Working

Find the energy represented per square in the graph. One square represents 10.0 × 0.25 × 107 = 2.5 × 107 J.

Identify the two values of distance that are relevant to the 
question.

The relevant distances are the radius of the Earth, 
6.4 × 106 m, and the distance of the object, 2.0 × 107 m 
from the centre of the Earth.

Count the squares under the curve between the two 
distances and multiply the total by the energy per square.

18 squares (approx.) × 2.5 × 107 = 4.5 × 108 J

Potential energy gained = work done 4.5 × 108 J
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Worked example: Try yourself 3.5.3

CHANGES IN GRAVITATIONAL POTENTIAL ENERGY USING A GRAVITATIONAL FIELD STRENGTH GRAPH
A satellite of mass 1100 kg is in an elliptical orbit around the Earth. At its closest approach (perigee) it is just 600 km 
above the Earth’s surface. Its furthest point (apogee) is 2600 km from the Earth’s surface. The Earth has a radius of 
6.4 × 106 m. The gravitational field strength of the Earth is shown in the graph.

10
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Distance from the centre of the Earth (× 106 m)

Gravitational field strength as a function
of distance from the Earth

a Calculate the change in potential energy of the satellite as it moves from its perigee to its apogee.

Thinking Working

Convert the distances given as altitudes to distances from 
the centre of the Earth.

perigee = 6.4 × 106 + 600 × 103 = 7.0 × 106 m

apogee = 6.4 × 106 + 2600 × 103 = 9.0 × 106 m

Find the energy represented by each square in the graph. One square represents:

 1.0 × 0.20 × 106 = 2.0 × 105 J kg−1

Count the squares under the curve for the relevant area 
and multiply the total by the energy per kg represented 
by each square.

64 squares (approx.) × 2.0 × 105 = 1.3 × 107 J kg−1

Calculate the potential energy gained by the satellite by 
multiplying the work done by the mass of the satellite.

Enerygy gained:

Eg =1.3 ×107 ×1100

=1.4 ×1010 J (approx.)

b The satellite is moving with a speed of 8.0 km s−1 at its perigee. How fast will it be travelling at its apogee?

Thinking Working

First calculate the satellite’s kinetic energy at its perigee. Ek p = 1
2

mvp

= 1
2
×1100 × (8.0 ×103)2

= 3.5 ×1010 J

The gain in gravitational potential energy at the apogee is 
at the expense of kinetic energy.

Calculate the kinetic energy of the satellite at its apogee.

Ek a = Ek p − Eg

= 3.5 ×1010 −1.4 ×1010

= 2.1×1010 J
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Calculate the speed of the satellite at its apogee. Ek a = 1
2

mva
2

va = 2Ek a

m

= 2 × 2.1×1010

1100

= 6.2kms−1

KEY QUESTIONS

Knowledge and understanding
1 A and E. As potential energy decreases, kinetic energy increases. However, there are energy losses because the meteor 

is burning up.

2 A, C and D. The cars travel at constant speed and so have constant kinetic energy. As the descending car loses 
gravitational energy, the ascending car gains gravitational energy, and the motor applies a force over a distance to 
drag the cable, thus doing work.

3 Eg = mgΔh

=115 × 9.8 × 2228

= 2.5 ×106 J

4 Ek = 1
2

mv2

= 1
2
× 0.283 × (9.50)2

=12.8 J

5 Eg = mgΔh

= 3.00 × 9.8 × 45.0

=1.3 ×103 J

Analysis
6 B and D.

A is not correct. It would only be correct if the Earth’s gravitational force did not vary with distance from the centre 
of the Earth. You can only use the equation Eg  =  mgΔh in regions where the strength of the gravitational field is 
approximately constant.

B is correct because the velocity is proportional to 
1
r
, so a higher r means a lower speed.

C is not correct as kinetic energy is inversely proportional to the radius.

D is correct. The higher the altitude, the more work has to be done against the gravitational force, and hence the more 
gravitational potential energy relative to the surface of the Earth.

7 a Ek = 1
2

mv2

= 1
2
×500 × 2502

=1.6 ×107 J

b The shaded area = 53 squares (approx.).
 The energy represented by one square = 100 × 0.1 × 106 = 1.0 × 107 J
 The loss in potential energy = the gain in kinetic energy = 5.3 × 108 J
c The total kinetic energy on landing = 1.6 × 107 + 5.3 × 108 = 5.5 × 108 J

5.5 ×108 = 1
2
×500 × v2

v = 2 ×5.5 ×108

500

=1.5 ×103 ms−1
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8 First convert the altitudes to distances from the centre of the Earth:
6.4 × 106 + 6.0 × 105 = 7.0 × 106 m and 6.4 × 106 + 2.6 × 106 = 9.0 × 106 m

There are approximately 25 squares under the curve between these two distances.

The energy per kg for one square is 1.0 × 0.5 × 106 = 5 × 105 J kg−1.

Calculate the gain in potential energy using ΔEg = mgΔh:

ΔEg = mgΔh

= 25 ×5.0 ×105 × 20 ×103

= 2.5 ×1011 J

Therefore 2.5 × 1011 J of work is done to increase the orbital radius of the space junk.

3.6 Conservation of energy

Worked example: Try yourself 3.6.1

APPLYING THE LAW OF CONSERVATION OF ENERGY

Use the law of conservation of energy to determine the height of the lift hill required to ensure that the speed of a 
rollercoaster car at the top of the 18 m loop is 25 m s−1. Assume that the velocity of the car at the top of the hill is zero 
just before it begins to roll down the hill, friction is negligible and that g = 9.8 m s −2.

18 m
h = ?

Thinking Working

Equate the total mechanical energy, Em, of the car before 
rolling down the hill to the total mechanical energy at the 
top of the loop.

Em before = Em at top of loop

Expand the equation and then cancel m from both sides. 1
2

mu2 + mgΔh = 1
2

mv2 + mgΔh

1
2

u2 + gΔh = 1
2

v2 + gΔh

Substitute the given values into the equation. 1
2

(0)2 + (9.8)Δh = 1
2

(25)2 + (9.8)(18)

Rearrange the equation and solve for Δh.
(9.8)Δh = 1

2
(25)2 + (9.8)(18)

Δh = 312.5 +176.4
9.8

Δh = 488.9
9.8

Present your answer with the correct number of 
significant figures and the correct unit.

Δh = 50m
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Worked example: Try yourself 3.6.2

USING THE CONSERVATION OF ENERGY TO ANALYSE PROJECTILE MOTION

An arrow of mass 35 g is fired into the air at 80 m s−1 from a height of 1.4 m above the ground. Calculate the speed of 
the arrow when it is 30 m above the ground. Assume that g = 9.8 m s−2.

Thinking Working

Equate the total mechanical energy, Em, of the arrow as it is 
released to the total mechanical energy at a height of 30.0 m.

E m before = Em at 30m

Expand the equation and then cancel m from both sides. 1
2

mu2 + mgΔh = 1
2

mv2 + mgΔh

1
2

u2 + gΔh = 1
2

v2 + gΔh

Substitute the given values into the equation. 1
2

(80)2 + (9.8)(1.4) = 1
2

v2 + (9.8)(30)

Rearrange the equation and solve for v.
(3200) + (11.2) = 1

2
v2 + (294.0)

v = 2(3200 +11.2 − 294.0)

= 5834.4

Present your answer with the correct number of significant 
figures and the correct unit.

v = 76ms−1

KEY QUESTIONS

Knowledge and understanding
1 D is correct as, according to the law of conservation of energy, energy can neither be created nor destroyed. Thus no 

energy can be gained or lost from the system.

2 a Both sticks would land at the same time. Mass is not a factor in the rate at which objects fall.
b The brown stick. The heaviest stick would have the greatest gravitational potential energy according to the equation 

Eg = mgΔh.
c Both sticks would land with the same speed if dropped from the same height.

d The brown stick. The heaviest stick would have the greatest kinetic energy according to the equation Ek = 1
2

mv2.

3 Eg = Ek

mgΔh = 1
2

mv2

Δh = 1
2

v2

g

= 1
2

(45.5)2

9.8
=1.1×102 m

4 Eg = Ek

mgΔh = 1
2

mv2

v = 2gΔh

= 2(9.8)(10.0)

=14ms−1

5 Eg = Ek

mgΔh = 1
2

mv2

v = 2gΔh

= 2(9.8)(2.10)

= 6.4ms−1
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6 a Ek = 1
2

mv2

= 1
2

(0.1984)(21.7)2

Ek = 46.7J

b Eg = Ek = 46.7J

c Eg = mgΔh

h = (46.7)
(0.1984)(9.8)

h = 24m

Analysis
7 First, calculate the vertical height:

Δh =12.0sin35.0°
= 6.88292m

Eg = Ek

mgΔh = 1
2

mv2

v = 2gΔh

= 2(9.8)(6.88292)

=12ms−1

8 a The chain breaks when the ball is 85.0 cm above the ground and 17.0 cm below its starting position.

Eg = Ek

mgΔh = 1
2

mv2

v = 2gΔh

= 2(9.8)(0.170)

=1.8ms−1

b Eg = Ek

mgΔh = 1
2

mv2

Δh = 1
2

v2

g

= 1
2

(1.82538)2

(9.8)

= 0.170 m

h = (0.850) + (0.170)

=1.02

=1.0m

c Eg = Ek

mgΔh = 1
2

mv2

v = 2(9.8)(1.02)

= 4.47124

= 4.5ms−1

d Eg = Ek

mgΔh = 1
2

mv2

v = 2(9.8)(0.850 + 0.170)

= 4.47124

= 4.5ms−1



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

9 a Ek = 1
2

mv2

Ek = 1
2

(75.0)(6.27)2

=1.47423 ×103

=1.47 ×103 J

b Eg = Ek

=1.47 ×103 J
c Eg = mgΔh

Δh =
Eg

mg

= (1.47423 ×103)
(75.0)(9.8)

= 2.00576

= 2.0m

Chapter 3  Review
Knowledge and understanding
1 B, C, A, D is the correct order, from highest to lowest momentum.

2 C is correct. The unit kg m s−1 converts to (kg m s−2) × (s) = N s.

3 The other separated mass has a momentum of 345 kg m s−1 north.

4 B and D. A is incorrect, as force is the rate of change of momentum. C is incorrect, as impulse is a vector.

5 Impulse is the change in momentum of an object. In a car crash, the impulse of a driver impacting the dashboard will 
be constant regardless of the time over which the impulse occurs. Airbags are designed to increase the duration of the 
collision. Increasing the duration of the collision decreases the force, which is likely to reduce the severity of injury.

6 The person exerts a force on the wall but the wall undergoes no displacement (s = 0), so no work is done.

7 When an object has access to energy it has the capacity to do work, whereas work occurs when there is an energy 
transfer or energy is transformed. (It can be transferred from one object to another or transformed from one form to 
another.)

8 The gradient of an F vs x graph is 
ΔF
Δx

. The units of the gradient are 
N
m

 = N m−1 which is the unit for k, the spring 
constant.

The area under an F vs x graph is found by ΔF × Δx. The units of the area are N m = kg m s−2, which is equivalent to the 
unit for joule. Therefore the area represents the elastic potential energy.

9 D. The kinetic energy before each collision is more than after the collision, with some of the energy being transformed 
into heat. This would not be the case for a perfectly elastic collision. While it is true that the racquet gives the ball 
kinetic energy, and the impulse is positive, these do not explain the heat.

10 No work is done on the backpack as it did not rise up in the gravitational field to increase its gravitational potential 
energy along the horizontal path. Further, it did not increase its kinetic energy along the way as the speed was 
constant. Therefore, as no energy was transferred to the backpack, no work was done on it.

11 45.5 J. The apple will have the same gravitational potential energy at the beginning of its fall as it has kinetic energy at 
the end of its fall.

12 As the tennis ball goes higher, its kinetic energy is doing work on the gravitational field. At the top of its flight, when 
the speed is zero, the kinetic energy is also zero. At this point, all the ball’s kinetic energy is now stored in the 
gravitational field and becomes available to do work on the tennis ball on its way down to the ground.

13 Σpfinal = Σpinitial

mrvr + mbvb = (mr + mb)u

(70.0)(2.50) + (495)vb = (70.0 + 495)(0)

175 + 495vb = 0

vb = (−175)
(495)

= −0.353535

= 0.354ms−1 in the opposite direction to the rower
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14 Σpfinal = Σpinitial

msvs + mgvg = (ms + mg )u

(1.00 ×104)vs + (5.00)(6.00 ×103) = (1.00 ×104 +5.00)(0)

(1.00 ×104)vs + (3.00 ×104) = 0

vs =
(−3.00 ×104)
(1.00 ×104)

= −3.00

= 3.00ms−1 in the opposite direction to the gas

15 Take the direction away from the batter as positive:

vi =
−104
3.6

= −28.8889ms−1

v f =
20
3.6

= 5.55556ms−1

Δp = mΔv

= m(v − u)

= 0.165 × (5.55556 − (−28.8889))

= 5.68333

= 5.68kgms−1

16 Δp = m(v − u)

= (65.0 +15.0) × (0 − (−12.0))

= 960kgms−1

F = Δp
Δt

= 960
2.00

= 480N

17 a Fh = F cos60.0°
= 316cos60.0°
=158N

W = Fhs

=158 × 245

= 3.87100 ×104

= 3.87 ×104 J

b Fnet = F + Ff

=158 −105

= 53.0N

Ek =W

= 53.0 × 245

=1.29850 ×104 J

v = 2Ek

m

= 2 ×1.29850 ×104

152
=13.0712

=13.1ms−1

18 Area = 2 squares × 0.5 × 20.0 = 20 J
Work = 20 × 150 repetitions = 3 × 103 J

19 Energy per square = 2.0 × 1.0 × 10−3 = 2.0 × 10−3 J
Area = 16 squares

Elastic potential energy = 16 × 2.0 × 10−3 = 0.032 J



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

20 v = 80.0
3.6

= 22.2222ms−1

Ek = 1
2

mv2

= 1
2

(232)(22.2222)2

= 5.72840 ×104

= 5.73 ×104 J

21 W = Ek final − Ek initial

= 1
2

mv2 − 1
2

mu2

= 1
2

(1540)(28.0)2 − 1
2

(1540)(17.0)2

= (6.03680 ×105) − (2.22530 ×105)

= 3.81150 ×105

= 3.81×105 J

22 a Eg = mgΔh

= 0.0570 × 9.8 × 8.20

= 4.58052

= 4.6 J

b Eg = mgΔh

= 0.0570 × 9.8 × 4.10

= 2.29026

= 2.3J

 Alternatively, as Eg ∝ Δh, if h is halved, then Eg is also halved: 
4.6
2

= 2.3J.

23 Eg = mgΔh

= 65.0 × 9.8 × (8848 −5150)

= 2.35563 ×106

= 2.4 ×106 J

Application and analysis
24 a  Yes, momentum is conserved in all collisions.

b Inelastic. 20 J of kinetic energy has been transformed into heat and sound energy.

c Total initial Ek = 
1
2

 × 4.00 × 3.002 + 
1
2

 × 4.00 × 3.002 = 36.0 J

20.0 J is transformed into heat and sound, so the final Ek is 36.0 − 20.0 = 16.0 J.

From symmetry, the balls will have the same final speeds and the same kinetic energy: 8.00 J. For each ball:

Ek = 1
2

mv2

8.00 = 0.5 × 4.00 × v2

v2 = 4.00

v = 2.00ms−1

The balls will each travel with a speed of 2.00 m s−1 in opposite directions to their initial vectors.

25 Note: ∆x = 10.0% of 134 m = 134 × 0.100

mgΔh = 1
2

kx2

k = 2mgΔh
x2

= 2(80.0)(9.8)(134)
(134 × 0.100)2

=1.17015 ×103

=1.2 ×103 Nm−1
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26 4 × h. Equating the gravitational potential energy with the kinetic energy, mgΔh = 1
2

mv2, we can see that h is 
proportional to v2. Thus (2v)2 gives 4v2. Therefore the new height is 4 × h.

27 A. Both stones have the same gravitational potential energy, as both were thrown from the same height. They also 
have the same kinetic energy, as each has the same initial speed. They will thus have the same kinetic energy on 
landing and therefore land at the same speed.

28 a Determine the radii of the two orbits from the centre of the Earth:
R1 = 6.37 × 106 + 1.13 × 106 = 7.50 × 106 m

R2 = 6.37 × 106 + 2.13 × 106 = 8.50 × 106 m

There are 6.5 squares under the curve.

The energy per kg for one square is 2 × (0.5 × 106) = 1 × 106 J kg−1.

The gain in potential energy = 6.5 × (1 × 106) × (11.0 × 103) = 7.2 × 1010 J.

b v = GM
r

= 6.67 ×10−11 ×5.98 ×1024

8.50 ×106

= 6.850 ×103 ms−1

Ek = 1
2

mv2

= 1
2
×11.0 ×103 × (6.850 ×103)2

= 2.5807 ×1011

= 2.58 ×1011 J

29 An altitude of 631 km is 6.37 × 106 + 631 000 = 7.001 00 × 106 m. There are approximately 28 squares full or more 
than half full under the curve between 6.37 × 106 and 7.00 × 106.
The energy per kg for one square is 0.2 × 106 × 1 = 2 × 105 J kg−1.

The gain in potential energy is:

= 28 × (2 ×105) × (1.10 ×107)

= 6.16001×1013

= 6.2 ×1013 J

30 a Σpi = Σpf

pi truck + pi car = pf truck + pf car

(0.264 × 0.300) + (0.112 × 0.200) = 0.264v f + (0.112 × 0.300)

0.10160 = 0.264v f + 0.03360

0.264v f = 0.06800

v f =
0.06800

0.264
= 0.257576

= 0.258ms−1

b Ek i =
1
2

mtu t
2+ 1

2
mcu c

2

= 1
2
× 0.264 × 0.3002 + 1

2
× 0.112 × 0.2002

= 0.01188 + 0.002240

= 0.01412

= 0.0141J

c Ek f =
1
2

mtv t
2+ 1

2
mcv c

2

= 1
2
× 0.264 × 0.2575762 + 1

2
× 0.112 × 0.3002

= 0.0087576 + 0.0050400

= 0.0137976

= 0.0138 J
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d i The total kinetic energy before the collision is more than the total kinetic energy after the collision.
ii The kinetic energy of the system of toys is not conserved.
iii The total energy of the system of toys is conserved.
iv The total momentum of the system of toys is conserved.
v The collision is not perfectly elastic because kinetic energy is not conserved.
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Unit 3 Area of Study 1

How do physicists explain motion in two dimensions?
Multiple-choice questions

1 C. Action–reaction pairs always act on different objects. One force acts on the floor and the other force acts on the ball. 
These forces are equal in magnitude and opposite in direction, as described by Newton’s third law.

2 C. The only force acting is the gravitational force.

3 C. 18 m s−2 up

a = v2

r
= 6.02

2.0
=18ms−2 up (that is, towards the centre of the circle)

4 D. 1.5 × 103 N

Fnet = Fg + FN

FN = Fnet − Fg

= 55 ×18 − (55 × −9.8)

=1.5 ×103 N

5 B. The skater feels heavier than they do when stationary. This is because the normal force is 1.5 × 103 N, which is 
almost three times greater than the force due to gravity. Thus the skater would feel almost three times heavier than 
usual.

6 A. Since the collision is inelastic, kinetic energy is not conserved. Thus Ek after < Ek before. This is shown in graphs A and 
C. During the collision, some of the kinetic energy is converted into spring potential energy, and some of this is then 
restored to kinetic energy, that is, Ek dips slightly over the time of the collision. This is shown only in graph A.

7 D. Momentum is conserved (i.e. is constant) throughout the interaction, as represented by the flat line in graph D.

8 D. For momentum to be conserved, what is lost by the tennis ball is gained by the bowling ball. The tennis ball’s 
change in momentum will be back towards the thrower. The bowling ball’s change in momentum will be away from 
the thrower. So the changes in momentum are in opposite directions.

9 D. The forces exerted by each ball on the other make an action–reaction pair and must be equal and opposite 
according to Newton’s third law.

10 a C. Position C is when the spring has the greatest extension (x = maximum), which means that the greatest elastic 

potential energy is at this position (since Es =
1
2

kx2 ).

b A. Position A is when the mass has the greatest height (Δh = maximum), which means that the greatest gravitational 
potential energy is at this position (since Eg = mgΔh).

c B and D. The mass is momentarily at rest at positions A and C (v = 0 m s–1), which means that there is no kinetic 
energy at these positions. Positions B and D are at the midpoint where the mass will have the highest velocity 

 (v = maximum) and hence the greatest kinetic energy (since Ek = 1
2

mv2 ).

11 D. 39 cm

 From the conservation of energy:

EA = EC

mgΔh = 1
2

kx2

 Since the distance the mass falls and the distance the spring extends are the same, Δh = x .

mgx = 1
2

kx2

mg = 1
2

kx

x = 2mg
k

= 2 × 2.0 × 9.8
100

= 39cm
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12 D. 20 cm

 When the spring stops oscillating, the net force is 0 N, so:

mg = kx

x = mg
k

= 2.0 × 9.8
100

= 20cm

Short-answer questions

13 a unbalanced, balanced

b v = 2π r
T

= 2π ×5.00
2.50

=12.6ms−1

c a = v2

r
= 12.62

5.00
= 31.8ms−2

d FN = Fnet = ma

= 60.0 × 31.8

=1.91×103 N

14 a 

FN

Fg

b tanθ = v2

rg

θ = tan−1 v2

rg

= tan−1 402

150 × 9.8
= 47°

15 a Take up as positive. Then vertically: v = 0 (at the top), a = −9.8, t = 1.0, s = ?

 

s = vt − 1
2

at2

= 0 − 0.5 × 9.8 ×1.02

= 4.9m

b 9.8 m s−2 down
c horizontally: u = ?, t = 2.0, s = 8.0

 

vav =
s
t

= 8.0
2.0

= 4.0ms−1

 Take up as positive. Therefore vertically: v = 0 (at the top), a = −9.8, t = 1.0, u = ?

 

v = u + at

0 = u − 9.8 ×1.0

u = 9.8ms−1

 Use Pythagoras’s theorem to find the actual speed at launch: 

 
u = 4.02 + 9.82

=11ms−1 to 2 significant figures
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16 a The ball bearing just maintains contact with the track, so FN = 0, Fnet = Fg and a = 9.8 m s−2 down.
b At point C, FN = 0, so Fnet = Fg:

 

ma = mg

a = g

v2

r
= g

v = rg = 0.50 × 9.8

= 2.2ms−1

c Total energy at point C = Ek + Eg

 

Ek + Eg = 1
2

mv2 + mgΔh

= 1
2
× 0.025 × 2.22 + 0.025 × 9.8 ×1.0

= 0.3055J

 The total energy at point C is equal to the total energy at point B.

 Total energy at point B = Ek:

 

Ek = 1
2

mv2 = 0.3055J

0.3055 = 1
2

0.025v2

v = 2 × 0.3055
0.025

= 4.9ms−1

17 a Fnet = Fpull − Ff

=100 − 30

= 70N

 

Won trolley = F × s

= 70 × 20

=1400

=1.4 ×103 J

b Won load = ΔEk =1400 =1.4 ×103 J

c ΔEk =1.4 ×103 J and because the trolley starts from rest, Ek final =1.4 ×103 J

 

1
2

mv2 =1.4 ×103

v = 2 ×1.4 ×103

200

= 3.7ms−1

d Ek lost = Es gained

 

Es =
1
2

kx2

= 1
2
×1500 × 0.182

= 24 J

18 a m1u1 + m2u2 = (m1 + m2)v

120 × 6.0 + 45 × 0 = (120 + 45)v

720 =165v

v = 4.4ms−1
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b i Δp = pfinal − pinitial

= (120 × 4.4) − (120 × 6.0)

= −192kgms−1

 The ruckman loses 1.9 × 102 kg m s−1.
ii In this collision, the momentum gain of the bag is equal to the momentum loss of the ruckman, i.e. 

1.9 × 102 kg m s−1.

c F = Δp
Δt

= 192
120 ×10−3

=1.6 ×103 N

d Ek before = 1
2
×120 × 6.02 = 2160 J

Ek after =
1
2
× (120 + 45) × 4.42 =1597J

 Since kinetic energy is not conserved, the collision is inelastic.

19 a 

Extension (m)

Fo
rc

e 
(N

)

0.20

25

20

15

10

40

35

30

5

0
0.60.4 0.8 1.21.0 1.61.4 1.8

Extension vs force applied for bungee rope

b k = gradient

= rise
run

= 34.3
1.7

≈ 20Nm−1

c Es =
1
2

kx2

= 1
2
× 20 ×152

= 2.3 ×103 J

d Equating Es and Ek:

 Ek = 2.3 ×103 J

 

1
2
× 60 × v2 = 2.3 ×103

v = 2 × 2.3 ×103

60

= 8.7ms−1

20 Aristotle’s ideas agree with our everyday observations. We experience objects as slowing or stopping without an 
external force to keep them going, and we cannot see that there are actually forces (e.g. gravitational or frictional) 
acting to slow them down. In a space station we would often experience objects moving with constant velocity as they 
floated around the ship in freefall without friction from surfaces to slow their motion.
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Chapter 4 Gravity

4.1 Newton’s law of universal gravitation

CASE STUDY: ANALYSIS

Measuring the gravitational constant, G
1 Fg = G

m1m2

r2

= 6.67 ×10−11 × 158 × 0.730
0.2302

=1.45 ×10−7 N

2 
6.75 ×10−11 − 6.67 ×10−11

6.67 ×10−11 ×100 =1.20%

Worked example: Try yourself 4.1.1

GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS

Two bowling balls are sitting next to each other on a shelf. The centres of the balls are 60 cm apart. Ball 1 has a mass 
of 7.0 kg and ball 2 has a mass of 5.5 kg. Calculate the force of gravitational attraction between them.

Thinking Working 

Recall the equation for Newton’s law of universal 
gravitation.

Fg = G
m1m2

r2

Note the information provided and convert values into 
appropriate units where necessary. 

G = 6.67 × 10−11 N m2 kg−2

m1 = 7.0 kg

m2 = 5.5 kg

r = 0.60 m

Substitute the values into Newton’s equation. 
Fg = 6.67 ×10−11 × 7.0 ×5.5

0.602

Solve the equation. Fg = 7.1 × 10−9 N

Worked example: Try yourself 4.1.2

GRAVITATIONAL ATTRACTION BETWEEN MASSIVE OBJECTS

Calculate the force of gravitational attraction between the Sun and the Earth given the following data:

mSun = 1.99 × 1030 kg

mEarth = 5.98 × 1024 kg

rSun–Earth = 1.50 × 1011 m

Thinking Working 

Recall the equation for Newton’s law of universal 
gravitation.

Fg = G
m1m2

r2

Note the information provided. m1 = 1.99 × 1030 kg

m2 = 5.98 × 1024 kg

r = 1.50 × 1011 m

G = 6.67 × 10−11 N m2 kg−2

Substitute the values into Newton’s equation. 
Fg = 6.67 ×10−11 × 5.98 ×1024 ×1.99 ×1030

(1.50 ×1011)2

Solve the equation. Fg = 3.53 × 1022 N
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Worked example: Try yourself 4.1.3

ACCELERATION CAUSED BY A GRAVITATIONAL FORCE

The force of gravitational attraction between the Sun and the Earth is approximately 3.5 × 1022 N. Calculate the 

acceleration of the Earth and the Sun caused by this force. Compare these accelerations by calculating the ratio 
aEarth

aSun

.

Use the following data:

mEarth = 5.98 × 1024 kg

mSun = 1.99 × 1030 kg

Thinking Working 

Recall the equation for Newton’s second law of motion. Fnet = ma

Transpose the equation to make a the subject.
a = Fnet

m

Substitute values into this equation to find the 
accelerations of the Earth and the Sun. aEarth = 3.5 ×1022

5.98 ×1024 = 5.85 ×10−3 ms−2

aSun = 3.5 ×1022

1.99 ×1030 =1.76 ×10−8 ms−2

Compare the two accelerations. aEarth

aSun

= 5.85 ×10−3

1.76 ×10−8 = 3.33 ×105

The acceleration of the Earth is approximately 3.3 × 105 
times greater than the acceleration of the Sun.

CASE STUDY: ANALYSIS

Extrasolar planets 
1 A hot Jupiter is an exoplanet that is at least as large as Jupiter and which orbits its host star much closer than 

Mercury orbits the Sun. Because of their large mass and relatively close proximity to their host star, hot Jupiters 
exert a relatively large gravitational pull on their host star. The resultant wobble of the host star is detectable by 
astronomers.

2 a Fg = G
m1m2

r2

= 6.67 ×10−11 × 1.68 ×1028 × 3.62 ×1030

(1.95 ×1011)2

=1.07 ×1026 N

 

b a = F
m

= 1.07×1026

3.62 ×1030

= 2.96 ×10−5 ms−2
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Worked example: Try yourself 4.1.4

GRAVITATIONAL FORCE 

Compare the force due to gravity on a 1.0 kg mass on the Earth’s surface calculated using the equations Fg = mg and 

Fg = G
m1m2

r2 . 

Use the following data:

g = 9.8 m s−2

mEarth = 5.98 × 1024 kg

rEarth = 6.37 × 106 m

Thinking Working 

Apply the equation Fg = mg. Fg = mg

=1.0 × 9.8

= 9.8 N

Apply Newton’s law of universal gravitation. Fg = G
m1m2

r2

= 6.67 ×10−11 × 1.0 ×5.98 ×1024

(6.37 ×106)2

= 9.83

= 9.8 N

Compare the two values. Both equations give the same result to two significant 
figures.

Worked example: Try yourself 4.1.5

FORCES DURING VERTICAL ACCELERATION

Calculate the force due to gravity and the normal force acting on a 90 kg person in a lift that is accelerating 
downwards at 0.80 m s−2. Describe that person’s experience. Assume that g = 9.8 m s−2.

Thinking Working 

Calculate the force due to gravity on the person using 
Fg = mg.

Fg = mg = 90 × 9.8 = 882 N

Calculate the force required to accelerate the person 
downwards at 0.80 m s−2.

Fnet = ma = 90 × 0.80 = 72 N

The net force that causes the acceleration results from 
the normal force (upwards) and the force due to gravity 
(downwards). Since the lift is accelerating downwards,  
Fg > FN.

Note that as the person is partially falling in the direction 
of gravitational acceleration, there is less contact force 
and the person feels lighter than if standing still.

Fnet = 72

Fg − FN = 72

882 − FN = 72

FN = 882 −72

= 810

= 8.1×102 N

The person will feel lighter than when they are standing 
on the ground.
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KEY QUESTIONS

Knowledge and understanding
1 Newton’s law of universal gravitation contains a constant, G, which is a very small number: 6.67 × 10−11 N m2 kg−2. 

The effect of this constant is that when objects have a small mass, the gravitational force will be so small as to be 
insignificant. Only when at least one of the objects is massive is the gravitational force significant. 

 In addition, due to the inverse square relationship, as the distance between objects increases, the gravitational force 
between them decreases. When the value of r2 is close to (or exceeds) the magnitudes of the masses, the force will be 
very small.

2 r is the distance between the centres of the two objects, measured in metres.
3 a The gravitational force between the two masses is doubled.

b The gravitational force between the two masses is one quarter of the original force.
c The gravitational force between the two masses is decreased by a factor of 16 (42).

4 a Fg = G
m1m2

r2

= 6.67 ×10−11 × 2.0 ×1030 × 4.9 ×1024

1.1×1011( )2
= 5.4 ×1022 N

b Fg = mVenus × aVenus

5.4 ×1022 = 4.9 ×1024 × a Venus

a Venus=
5.4 ×1022  
4.9 ×1024

=1.1×10−2 ms−2

5 Deimos has a smaller mass than Mars and therefore experiences a larger acceleration from the same gravitational 
force.

6 a Fg = G
m1m2

r2

= 6.67 ×10−11 × 150 ×150
(1.00)2

=1.50 ×10−6 N

b F = ma

a = F
m

= 1.50 ×10−6

150

	 = 1.0 × 10−8 m s−2 towards each other
Note that the acceleration of each astronaut is the same because their masses are the same.

7 Fg = G
m1m2

r2

= 6.67 ×10−11 × 6.40 ×1023 × 80.0
(3.40 ×106)2

= 295 N

8 a Fg = mg = 60 × 9.8 = 588 N
When accelerating upwards at 1.40 m s–2, the net force is Fnet = ma = 60.0 × 1.40 = 84 N, and FN > Fg.

Fnet = FN − Fg = 84 N

FN = 84 + 588 = 6.7 × 102 N

b When the person is moving at a constant speed, the normal force is equal to the force due to gravity on them.
FN = Fg = mg = 60.0 × 9.8 = 5.9 × 102 N
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Analysis
9 a Note: 1 million km = 1 × 106 km = 1 × 109 m

Fg = G
m1m2

r2

= 6.67 ×10−11 × 1.90 ×1027 ×5.68 ×1026

(734 ×109)2

=1.34 ×1020 N

b Fg = G
m1m2

r2

= 6.67 ×10−11 × 1.99 ×1030 ×1.90 ×1027

(778 ×109)2

= 4.17 ×1023N

c The mass of the Sun is much greater than the mass of Jupiter. It is this difference that accounts for the difference 
in the forces calculated.

d Comparison of forces is: 
4.17 ×1023

1.34 ×1020 = 3112. The force between the Sun and Jupiter is 3112 times that between 
Jupiter and Saturn.

Comparison of masses: 
1.99 ×1030

5.68 ×1026 = 3504. The Sun’s mass is 3504 times the mass of Saturn.

The force between the Sun and Jupiter is approximately 3000 times more than the force between Jupiter and 
Saturn. The Sun–Saturn mass ratio is also approximately 3000. The discrepancy (3112 versus 3504) can be 
attributed to the difference in the two distances.

10 a Note: 1 million km = 1 × 106 km = 1 × 109 m

Fg = G
m1m2

r2

= 6.67 ×10−11 × 5.98 ×1024 × 6.39 ×1023

(5.6 ×1010)2

=  8.1×1016 N

b Fg = G
m1m2

r2

= 6.67 ×10−11 × 5.98 ×1024 × 6.39 ×1023

(2.25 ×1011)2

=  5.03 ×1015 N

c % comparison = 
5.03 ×1015( )

8.1×1016( ) ×100
= 6.2%. The average force between the Earth and Mars is about 6% of the force 

during the close approach in August 2003. 

11 a gMercury = G
mMercury

(rMercury )
2

b The smaller radius of Mercury has the effect of increasing the gravitational acceleration at the surface. (All other 
things being equal, a radius of one-third would increase the gravitational acceleration by a factor of nine.)

c The much smaller mass of the planet would have the effect of decreasing the gravitational acceleration at the 
surface.

d gMercury = G
mMercury

(rMercury )
2

= 6.67 ×10−11 × 3.29 ×1023

(2440 ×103)2

= 3.69ms−2 towards the surface of Mercury

e  Fg = m × gEarth

735 = m × 9.8

m =  75kg

Fg = m × gMercury

=  75 × 3.69

=  2.8 ×102 N towards the surface of Mercury
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4.2 Gravitational fields

Worked example: Try yourself 4.2.1

INTERPRETING GRAVITATIONAL FIELD DIAGRAMS

The diagram below represents the gravitational field of a planet.

A

B

C

a Draw arrows to indicate the direction of the gravitational force acting at points A, B and C.

Thinking Working 

The direction of the field arrows indicates the direction 
of the gravitational force, which is inwards towards the 
centre of the planet. 

A

B

C

b State the relative strength of the gravitational field at each point.

Thinking Working

The closer the field lines, the stronger the force. So the 
field is strongest at point B, next strongest at point C and 
weakest at point A. weakest

field
strongest

field

medium 
strength field

A

B

C
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Worked example: Try yourself 4.2.2

CALCULATING GRAVITATIONAL FIELD STRENGTH

A student uses a spring balance to measure the force due to gravity on a piece of wood as 2.5 N.

If the piece of wood has a mass of 260 g, calculate the gravitational field strength indicated by this experiment. 

Thinking Working 

Recall the equation for gravitational field strength.
g =

Fg

m

Substitute the appropriate values.
g = 2.5

0.26

Solve the equation. g = 9.6 N kg−1

Worked example: Try yourself 4.2.3

CALCULATING GRAVITATIONAL FIELD STRENGTH AT DIFFERENT ALTITUDES

Commercial airlines typically fly at an altitude of 12 000 m. Calculate the gravitational field strength of the Earth at this 
height using the following data:

rEarth = 6.37 × 106 m

mEarth = 5.98 × 1024 kg

Thinking Working 

Recall the equation for gravitational field strength.
g = G

M
r2

Add the altitude of the plane to the radius of the Earth. r = 6.37 ×106 +12000

= 6.382 ×106 m

Substitute values into the equation and solve it.
g = G

M
r2

= 6.67 ×10−11 × 5.98 ×1024

(6.382 ×106)2

= 9.79Nkg−1

Worked example: Try yourself 4.2.4

GRAVITATIONAL FIELD STRENGTH ON ANOTHER PLANET OR MOON

Calculate the strength of the gravitational field on the surface of Mars.

mMars = 6.42 × 1023 kg

rMars = 3390 km

Compare your answer with the Earth’s average gravitational field strength (9.8 N kg−1).

Thinking Working 

Recall the equation for gravitational field strength. g = G
M
r2

Convert the radius of Mars to metres. r = 3390 km = 3.39 × 106 m

Substitute values into the equation and solve it. g = G
M
r2

= 6.67 ×10−11 × 6.42 ×1023

3.39 ×106( )2
= 3.73Nkg−1
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Compare the field strength with the Earth’s average 

gravitational field strength by calculating the ratio 
gEarth

gMars
.

gEarth

gMars

= 9.8
3.73

 

 = 2.6

At their surfaces, the Earth’s gravitational field strength is 
approximately two-and-a-half times that of Mars.

KEY QUESTIONS

Knowledge and understanding
1 a  9.8 N kg−1. An average value for g is used in calculations because there is variation in the Earth’s gravitational 

field strength depending on location, so it makes sense to use an average. The Earth has a smaller radius at the 
poles than at the equator, so gravitational field strength at the poles is greater than that at the equator. As well, 
gravitational field strength varies due to differing densities of rocks at different locations and due to altitude.

b Gravitational field lines from a single body always point towards the centre of mass of that body. Because the Earth 
is so large, small distances can be considered to be flat. Therefore we can approximate these field arrows as being 
parallel at the surface over a small area.

2 g =
Fg

m
= 1.5

0.200
= 7.5Nkg−1

3 The distance has been increased four times from 300 km to 1200 km. Thus from the inverse square law:

 

F ∝ 1
r2

∝ 1
(4r)2

∝ 1
16r2

= 1
16

 of the original

4 g = G
M
r2

= 6.67 ×10−11 × 5.98 ×1024

((6370 + 400) ×103)2

= 8.70Nkg−1

5 g = G
M
r2

= 6.67 ×10−11 × 1.0 ×1013

900 +100( )2

= 6.7 ×10−4 Nkg−1

6 g = G
M
r2

a Titan: 6.67 ×10−11 × 1.35 ×1023

(2.57 ×106)2  = 1.36 N kg−1

b Dione: 6.67 ×10−11 × 1.10 ×1021

(5.61×105)2  = 0.233 N kg−1

c Tethys: 6.67 ×10−11 × 6.17 ×1020

(5.31×105)2  = 0.146 N kg−1

Analysis

7 a g = G
M
r2

= 6.67 ×10−11 × 3.0 ×1030  
(10 ×103)2

= 2.0 ×1012 Nkg−1

b 
gneutron star

gEarth

= 2.0 ×1012

9.8
 = 2.0 × 1011. The gravitational field strength of a neutron star is 200 billion times that at the 

surface of the Earth.
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c g = G
M
r2

9.8 = 6.67 ×10−11 × 3.0 ×1030

r2

r = 6.67 ×10−11 × 3.0 ×1030

9.8

= 4.5 ×109 m

8 a 
6000
5000

=1.2

g ∝ 1
(1.2)2

∝ 1
1.44

∝ 0.7

Thus g at the equator is approximately 0.7 that at the poles, i.e. 5.6 N kg−1.

b gpoles = G
M
r2

8 = 6.67 ×10−11 × M
50000002

M = 3.0 ×1024 kg

gequator = G
M
r2

= 6.67 ×10−11 × 3 ×1024

60000002

= 5.6Nkg−1

9 Let x be the distance from the centre of the Earth to where the Earth’s gravity equals the Moon’s gravity. Then:

 
gEarth = 6.67 ×10−11 ×5.98 ×1024

x2

 

gMoon = 6.67×10−11×7.3×1022

3.8 ×108 − x( )2

 Equating these two expressions gives:

 

5.98 ×1024

x2 = 7.3×1022

3.8 ×108 − x( )2
81.9
x2 = 1

3.8 ×108 − x( )2

 Taking the square root of both sides gives:

 

9.05
x

= 1
3.8 ×108 − x( )  

 Inverting both sides gives:

 

x
9.05

= 3.8 ×108 − x

x = 3.44 ×109 − 9.05x

10.05x = 3.44 ×109

x = 3.4 ×108 m

10  Since g is proportional to 
1
r2

, if g becomes 
1

100
th its value, r must become 10 times its value. 10 times r is a distance 

of 10 Earth radii.
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4.3 Work in a gravitational field

Worked example: Try yourself 4.3.1

WORK DONE FOR A CHANGE IN GRAVITATIONAL POTENTIAL ENERGY

Calculate the work done (in MJ) to lift a weather satellite of 3.2 tonnes from the Earth’s surface to the limit of 
the atmosphere, which ends at the Karman line (exactly 100 km up from the surface of the Earth). Assume that 
g = 9.8 N kg−1.

Thinking Working 

Convert the values into the appropriate units. m = 3.2 tonnes = 3200 kg

Δh = 100 km = 100 × 103 m

Substitute the appropriate values into Eg = mgΔh. 
Remember to give your answer in MJ to two significant 
figures.

 

Eg = mgΔh

= 3200 × 9.8 ×100 ×103

= 3.136 ×109 J

= 3.1×103 MJ

The work done is equal to the change in gravitational 
potential energy.

W = ΔE = 3.1 × 103 MJ

Worked example: Try yourself 4.3.2

SPEED OF A FALLING OBJECT

Calculate how fast a 450 g hammer is going as it hits the ground after being dropped from a height of 1.4 m on the 
Earth, where g = 9.8 N kg−1.

Thinking Working 

Calculate the gravitational potential energy of the 
hammer. Change the units of measurement where 
necessary.

Eg = mgΔh

= 0.45 × 9.8 ×1.4

= 6.17J

Assume that when the hammer hits the ground, all its 
gravitational potential energy has been converted into 
kinetic energy.

Ek = Eg = 6.17 J

Use the equation for kinetic energy to calculate the speed 
of the hammer as it hits the ground. Ek = 1

2
mv2

6.17 = 1
2
× 0.45 × v2

v2 = 6.17 × 2
0.45

v = 5.2ms−1
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Worked example: Try yourself 4.3.3

CHANGE IN GRAVITATIONAL POTENTIAL ENERGY USING A FORCE VS DISTANCE GRAPH

A 500 kg lump of space junk is plummeting towards the Moon. It falls a distance of 1.0 × 106 m and then strikes the 
surface of the Moon. Using the diagram and the force vs distance graph shown, determine the approximate decrease 
in gravitational potential energy of the space junk as it hits the Moon’s surface.

Distance from centre
of Moon (× 106 m)

G
ra

vi
ta

tio
na

l f
or

ce
on

 s
pa

ce
 ju

nk
 (N

)
2.01.5

1.7

900

600

300

2.5 3.0
2.7

m = 500 kg
v = 250 m s–1

1.7 × 106 m

2.7 × 106 m

Gravitational force vs distance 
from the centre of the Moon

Thinking Working 

Count the number of shaded squares. (Only count 
squares that are at least 50% shaded.) 

Number of shaded squares = 52

Calculate the area (energy value) of each square. Esquare = 0.1×106 ×100

=1×107 J

To calculate the change in energy, multiply the number of 
shaded squares by the energy value of each square.

ΔEg = 52 ×1×107

= 5.2 ×108 J

Worked example: Try yourself 4.3.4

CHANGE IN GRAVITATIONAL POTENTIAL ENERGY USING A GRAVITATIONAL FIELD STRENGTH VS DISTANCE GRAPH

A 3000 kg Soyuz rocket moves from an orbital height of 300 km above the Earth’s surface to dock with the 
International Space Station at a height of 500 km. Using the graph below, determine the approximate change in the 
gravitational potential energy of the rocket.

2.0
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Gravitational field strength vs altitude for the Earth
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Thinking Working 

Count the number of shaded squares. Only count squares 
that are at least 50% shaded. 

Number of shaded squares = 36

Calculate the energy value of each square. Esquare = 50 ×103 m×1Nkg−1

= 5 ×104 Jkg−1

To calculate the change in energy, multiply the number of 
shaded squares by the energy value of each square and 
the mass of the rocket.

ΔEg = 36 × (5 ×104) × 3000

= 5.4 ×109 J

KEY QUESTIONS

Knowledge and understanding

1 W = Eg = mgΔh

Eg = 75 × 9.8 × 285

= 2.1×105 J

2 W = Eg = mgΔh

Eg = 2000000 × 9.8 ×70000

=1.4 ×1012 J

3 W = Eg = mgΔh

=1.5 × 3.7 × 2.2

=12.21J

 

Ek = 1
2

mv2

12.21 = 1
2
×1.5 × v2

v2 = 2 ×12.21
1.5

v = 4.0ms−1

4 a The gravitational field strength, g, increases along the path from point A to point D. 
b The meteor is under the influence of the Earth’s gravitational field, which increases from point A to point D. This will 

cause the meteor to accelerate at an increasing rate as it approaches the Earth.
c i The kinetic energy of the meteor as it travels from A to D will increase.

ii The gravitational potential energy of the meteor as it travels from A to D will decrease.
iii The total energy of the meteor as it travels from A to D will stay the same.

Analysis

5 a  Eg = mgΔh

= 0.6 × 3.7 ×7000

=15540 J or 1.6 ×104 J

Ek = 1
2

mv2

15540 = 1
2

0.6v2

v = 2 ×15540
0.6

= 228ms−1

= 2.3 ×102 ms−1
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b Ek = 1
2

mv2

= 1
2
× 0.6 ×1892

=10716.3J

Eg = mgΔh

10716.3 = 0.6 × 9.8 × Δh

Δh =1822.5m or 1.8km approx.( )
6 a  100 km above the Earth’s surface is a distance of 6.4 × 106 m + 100 000 m = 6.5 × 106 m from the centre of the 

Earth. According to the graph, F is between 9 N and 9.2 N at this distance.
b According to the graph, 5 N occurs at approximately 9.0 × 106 m from the centre of the Earth. Thus the height 

above the Earth’s surface = 9.0 × 106 − 6.4 × 106 = 2.6 × 106 m or 2600 km.
c Convert km s−1 to m s−1 by multiplying by 1000, then apply the following equation: 

 

Ek = 1
2

mv2

= 1
2
×1× 40002

= 8.0×106 J

d Eg = mgΔh = area under the graph

=19 squares × 2 × 0.5 ×106

=1.9 ×107 J

e New Ek = starting Ek + ΔEk = 8 × 106 + 1.9 × 107 = 2.7 × 107 J

f Ek = 1
2

mv2

new speed = 2 × 2.7 ×107

1.0

= 7348ms−1 or 7.3kms−1

7 a 600 km above the Earth’s surface = 6.4 × 106 + 600 000 = 7.0 × 106 m from the Earth’s centre
8000 km from the Earth’s centre is 8.0 × 106 m on the graph.
The area under the graph between 7 × 106 m and 8.0 × 106 m is approximately 7 squares.
As the satellite comes to a stop, the change in kinetic energy over the distance is the same as the kinetic energy at 
its launch.
Note that the graph is drawn for a 1.0 kg object and the satellite has mass 240 kg. Therefore:
Ek = area under graph ×mass of the satellite

= 7 squares × 2 × 0.5 ×106 × 240

=1.7 ×109 J

b  Work done = area under the graph × mass of the satellite. Since 2.64 × 109 = 2 × 0.5 × 106 × 240 × number of 
squares, the number of squares = 11.
Referring to the graph and counting 11 squares from the Earth’s radius, the satellite reaches approximately 
8 × 106 m. This is equal to 1.6 × 106 m or 1600 km above the Earth’s surface.

8 100 km above the Earth’s surface = 6.4 × 106 + 100 000 = 6.5 × 106 m from the Earth’s centre.

 2600 km above the Earth’s surface = 6.4 × 106 + 2 600 000 = 9.0 × 106 m from the Earth’s centre.

 The area under the graph between 6500 km and 9000 km is approximately 35 squares.

 

ΔEg = area under graph ×mass of the satellite

=  35 squares ×1× 0.5 ×106 × 20000

= 3.5 ×1011 J
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Chapter 4 Review
Knowledge and understanding

1 Fg = G
m1m2

r2

= 6.67 ×10−11 × 5.98 ×1024 ×100

6.37 ×106( )2
= 983N

2 Fg = G
m1m2

r2

= 6.67 ×10−11 × 1.05 ×1021×5.69 ×1026

r2

r2 = 6.67×10−11×1.05 ×1021×5.69 ×1026

2.79 ×1020

r = 377930000

= 3.78 ×108 m

3 Fg = G
m1m2

r2

1.0 ×10−3 = 6.67 ×10−11 × 2.0 ×104 ×2.0 ×103

r2

r2 = 6.67×10−11×2.0 ×104 × 2.0 ×103

1.0 ×10−3

r =1.633

=1.6m between centres

4 a  The force exerted on Jupiter by the Sun is equal to the force exerted on the Sun by Jupiter. 
b As the Sun is larger than Jupiter, the acceleration of Jupiter caused by the Sun is greater than the acceleration of 

the Sun caused by Jupiter.

5 Fnet = mstar × astar

astar =
Fnet

mstar

= 2.1×1023

1.0 ×1030

= 2.1×10−7 ms−2

6 a  Fg = G
m1m2

r2

= (6.67×10−11×1.9 ×1027×1000)
(7.15 ×107)2

= 2.48 ×104 N

b The magnitude of the gravitational force that the comet exerts on Jupiter is equal to the magnitude of the 
gravitational force that Jupiter exerts on the comet: 2.48 × 104 N.

c a = Fnet

m

= 2.48 ×104

1000
= 24.8 ms−2

d a = Fnet

m

= 2.48 ×104

1.90 ×1027

=1.31×10−23 ms−2
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7 g = G
M
r2

= 6.67 ×10–11 × 6.4 ×1023

(3400000)2

= 3.7ms−2

8  a Fg = mg = 50 × 9.8 = 490 N
When accelerating downwards at 0.6 m s–2, the net force is Fnet = ma = 50 × 0.6 = 30 N.

  

Fnet = 30 and Fg > FN

Fg − FN = 30

490 − FN = 30

FN = 490 − 30

= 460N

= 4.6 ×102 N to 2 significant figures

b When the person is moving at a constant speed, the normal force is equal to the force due to gravity:
Fg = FN = 490 N or 4.9 × 102 N to 2 significant figures

9 a Fg = 80 × 9.8 = 784 N
Fnet = 80 × 30 = 2400 N
When accelerating upwards:
Fnet = FN − Fg = 2400
FN − 784 = 2400
FN = 3184 N or 3.2 × 103 N to 2 significant figures

b Since the astronaut is in free fall during orbit, the normal force acting on the astronaut is 0 N.
c Fg = mg = 80 × 8.2 = 656 N or 6.6 × 102 N

10 a In a gravitational field, the field lines always point towards the source of the field, hence:

  

A

B

b  The gravitational field strength is greater at B because the field lines are closer at B than at A.
11 a Fg = mg

m = F
g

= 1.86
3.72

= 0.500kg or 500g

b Mass does not change with location, so the object will have a mass of 500 g on the Earth.

12 g =
Fg

m
= 700

71.4
= 9.80Nkg−1
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13  a g = G
M
r2

= 6.67 ×10−11 × 4.00 ×1024

(4800 ×103)2

=11.58Nkg−1

b g = G
M
r2

= 6.67 ×10−11 × 4.00 ×1024

(4750 ×103)2

=11.82Nkg−1

% = 11.82
11.58

×100 = 102.07%

The field strength at the poles is 102.07% of that at the equator, or 2.07% more.

14 a g = G
M
r2

= 6.67 ×10−11 × 1.02 ×1026

(2.48 ×107)2

=11.1Nkg−1

b The ice will accelerate at a rate given by the gravitational field strength, g, therefore it will accelerate at 11.1 m s–2.

15 gSun = G
mSun

r2

 9.8 = 6.67 ×10−11 × 1.99 ×1030

r2

 r2 = 6.67 ×10−11 × 1.99 ×1030

9.8
 r = 3.7 × 109 m
 At almost 4 million kilometres from the Sun, the gravitational field strength is the same magnitude as at the Earth’s 

surface.
16 At a height of two Earth radii above the Earth’s surface, a person is a distance of three Earth radii from the centre of 

the Earth. Thus:

 
Fg = 900

32 = 900
9

=100N

17 a  The increase in kinetic energy is the area under the graph between 3 × 106 m and 
2.5 × 106 m = 6 squares × 10 × 0.5 × 106 = 3 × 107 J.

b Ek initial =
1
2

mv2 = 1
2
× 20 ×10002 =1×107 J

Ek new =1×107 + 3 ×107 = 4 ×107 J

c v = 2 × Ek

m
= 2 × 4.0 ×107

20

= 2000ms−1 or 2.0kms−1
 

d From the graph, Fg = 70 N = mg, thus:

g = 70
20

= 3.5Nkg−1
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Application and analysis
18 a Approximately 5 × 106 m or 5000 km

b The gravitational field strength at ground level is close to 10 N kg−1(or 9.8 N kg−1) and the gravitational field strength 
at an altitude of 6500 km is approximately 2.5 N kg−1.
As the Earth’s radius is close to 6500 km, the distance to the centre of the Earth at an altitude of 6500 km is about 
twice that from ground level. Using the inverse square law, we would expect the gravitational field strength at 
6500 km to be a quarter of that at ground level. This is confirmed by the graph.

19 As the spacecraft experiences no net gravitational force, the gravitational field strength of M must be equal to (and 
opposite) that of m at this point.

 
G

M
(0.8R)2 = G

m
(0.2R)2

 Both G and R cancel each other out. Therefore:

 

M
0.64

= m
0.04

M
m

= 0.64
0.04

=16

20 a  An altitude of r represents a distance of twice the Earth’s radius (from the centre of the Earth). An altitude of 2r is 
three times the Earth’s radius. 

Fg at r

Fg at 2r

=
1
4
1
9

= 9
4

The force due to gravity at r is 
9
4

 times that at 2r.

b The ratio of the value of g will be the same as the ratio for Fg, so the value of g at r is 
9
4

 times that of g at 2r.

21 a 500 km = 500 000 m or 5 × 105 m. From the graph, g is approximately 8.5 N kg–1 at this altitude.
b The shaded region represents the gain in kinetic energy per kilogram of the satellite as it drifts towards the Earth. 

The shaded region also represents the loss of gravitational potential energy per kilogram of the satellite as it drifts 
towards the Earth.

c The increase in kinetic energy is the area under the graph × the mass of the satellite =  
54 squares × 1 × 1 × 105 × 2000 = 1.08 × 1010 J.

d No. Air resistance will play a major part as the satellite re-enters the Earth’s atmosphere. 
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Chapter 5 Electric and magnetic fields

5.1 Electric fields

Worked example: Try yourself 5.1.1
USING F = qE

Calculate the magnitude of the uniform electric field that creates a force of 9.00 × 10−23 N on a proton. Assume that 
qp = +1.6 × 10−19 C.

Thinking Working

Rearrange the relevant equation to make electric field 
strength the subject.

F = qE

E = F
q

Substitute the values for F and q into the rearranged 
equation and solve for E. E = 9.00 ×10−23

1.6 ×10−19

= 5.6 ×10−4 NC−1

CASE STUDY: ANALYSIS

Gravitational force and electric force
1 F = qE

F = mg

mg = qE

m = qE
g

= 1.6 ×10−19 × 80 ×103

9.8
=1.3 ×10−15 g

Worked example: Try yourself 5.1.2
WORK DONE ON A CHARGE IN A UNIFORM ELECTRIC FIELD

A student sets up two parallel plates. One plate is at a potential of 36.0 V and the other plate, which is earthed, is 
positioned 2.00 m away. Calculate the work done to move an electron a distance of 75.0 cm towards the negative plate. 
Assume that qe = −1.6 × 10−19 C.

In your answer identify what does the work and what the work is done on.

Thinking Working

Identify the variables presented in the problem that are 
needed to calculate the electric field strength, E.

V2 = 36.0 V

V1 = 0 V

d = 2.00 m

Use the equation E = V
d

 to determine the electric 

field strength.

E = V
d

= 36.0 − 0
2.00

=18.0Vm−1

Use the equation W = qEd to determine the work done. 
Note that d here is the distance that the electron moves.

W = qEd

=1.6 ×10−19 ×18.0 × 0.750

= 2.2 ×10−18 J

Determine if work is done on the charge by the field or if 
work is done by the charge on the field.

Since the negatively charged electron would normally move 
away from the negative plate, work is done on the field. 



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

KEY QUESTIONS

Knowledge and understanding
1 A drawing similar to the one below:

 

+ –A positive and a
negative charge

2 A drawing similar to the one below:

 

– – – – – – –– – – – – –

+ ++++++++++++

3 a True. Electric field lines start and end at 90° to the surface, with no gap between the lines and the surface.
b False. Field lines can never cross. If they did it would indicate that the field is in two directions at that point, which 

can never happen.
c False. Electric fields go from positively charged objects to negatively charged objects.
d True. Around small charged spheres called point charges you should draw at least eight field lines: top, bottom, left, 

right and in between each of these lines.
e True. Around point charges the field lines radiate like spokes on a wheel.
f False. Between two point charges, the direction of the field at any point is the resultant field vector determined by 

adding the field vectors due to each of the two point charges.
g False. Between two oppositely charged parallel plates, the field between the plates is evenly spaced and is drawn 

straight from the positive plate to the negative plate.
4 a work is done by the field

b no work is done
c work is done on the field
d no work is done
e work is done by the field

5 F = qE

= 5.00 ×10−3 × 2.5

= 0.005 × 2.5

= 0.0125

=1.25 ×10−2 N

6 F = qE

q = F
E

= 0.025
18

= 0.00139C

=1.39mC

7 F = qE

=1.6 ×10−19 × 3.25

= 5.2 ×10−19 N

 and

 

F = ma

a = F
m

= 5.2 ×10−19

9.1×10−31

= 5.7 ×1011ms−2
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Analysis

8 E = V
d

4000 = V
0.3

V = 4000 × 0.3 =1200V

9 a W = qEd

= 3.204 ×10−19 × 34 × 0.01

=1.09 ×10−19 J

b Work is done on the field if the charge is forced to go in a direction it would not naturally go. Alpha particles 
carry a positive charge. So work is done on the field, since a positive particle is being moved towards a positive 
potential.

10 As the oil drop is stationary, the electric force must be equal to the gravitational force. Use the equations F = mg and 
F = qE to determine the force and the charge respectively. The number of electrons is found by dividing the total 
charge by the charge of one electron.

 

F = mg

=1.161×10−14 × 9.8

=1.138 ×10−13N

 

q = F
E

= 1.138 ×10−13

3.55 ×104

= 3.206 ×10−18 C

 The number of electrons is found by dividing this value by the charge on one electron:

 

= 3.206 ×10−18

1.6 ×10−19

= 20 electrons

5.2 Coulomb’s law
Worked example: Try yourself 5.2.1
USING COULOMB’S LAW TO CALCULATE CHARGE

Two small point charges (q1 and q2) are charged by transferring a number of electrons from q1 to q2. The point 
charges are separated by 12.7 mm in air and their charges are equal and opposite. Calculate the charge on q1 and q2 
if there is an attractive force of 22.5 µN between them. Assume that k = 8.99 × 109 N m2 C−2.

Thinking Working

Convert the variables to SI units. F = 22.5 × 10−6 = 2.25 × 10−5 N

r = 12.7 × 10−3 = 1.27 × 10−2 m

State Coulomb’s law. F = k
q1q2

r2

Substitute the values for F, r and k into the equation and 
calculate the answer.

(Remember to indicate which charge is positive and 
which is negative in your final answer.)

q1q2 = Fr2

k

= 2.25 ×10−5 × (1.27 ×10−2)2

8.99 ×109

= 4.04 ×10−19

Since q1 = q2:

q1q2 = 4.04 ×10−19

q1 = 4.04 ×10−19

q1 = +6.35 ×10−10 C

q2 = −6.35 ×10−10 C
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Worked example: Try yourself 5.2.2
ELECTRIC FIELD OF A SINGLE POINT CHARGE 

Calculate the magnitude and direction of the electric field at a point P that is 15 cm to the right of a positive point 
charge, Q, of 2.0 × 10−6 C.

Thinking Working 

Determine the known and unknown quantities and 
convert to SI units as required.

E = ?

Q = 2.0 × 10−6 C

r = 15 cm = 0.15 m

Substitute the known values to find the magnitude of E 

using the equation E = k
Q
r2 .

E = k
Q
r2

= 8.99 ×109 × 2.0 ×10−6

0.152

= 8.0 ×105 NC−1

The direction of the field is defined as that acting on a 
positive test charge. Point P is to the right of the charge.

Since the charge is positive, the direction will be away 
from the charge, i.e. to the right.

KEY QUESTIONS

Knowledge and understanding
1 The force is directly proportional to the product of the charges. The force is inversely proportional to the square of the 

distance between the point charges.
a If one of the charges is doubled to +2q, the force will double and the charges repel.
b If both charges are doubled to +2q, the force will quadruple and the charges repel.
c If one of the charges is changed to −2q, the force will double and the charges attract.
d If the distance between the charges is halved to 0.5r, the force will quadruple and the charges repel.

2 The question is regarding the electric field, E, between two charges. Using Coulomb’s law:

 
F = k

q1q2

r2

 We do not have information on the values of the charges q1 and q2. However, we do know that the distance between 
the two charges changed from 30 cm to 15 cm and therefore the value of r decreased by a factor of 2. If r decreases 
by a factor of 2, r2 decreases by a factor of 4. Therefore the electric field, E, would increase by a factor of 4, from 
6.0 × 103 N C−1 to 24 × 103 N C−1 (that is, 2.4 × 104 N C−1). Since the distance has been halved, by the inverse square law 
the field will be four times the original.

3 F = k
q1q2

r2

= 8.99 ×109 × 1.00 ×1.00
10002

= 8.99 ×103 N

4 There are two protons in the helium nucleus. Recall that a proton has a charge of +1.6 × 10−19 C. Use Coulomb’s law to 
calculate the force on the protons.

 

F = k
q1q2

r2

= 8.99 ×109 × 1.6 ×10−19 ×1.6 ×10−19

2.5 ×10−15( )2
= 36.8

= 37N
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Analysis
5 F = mg = 0.01 × 9.8 = 0.098 N

 

F = k
q1q2

r2

0.098 = 8.99 ×109 × 3.45 ×10−9 × 6.5 ×10−3

r2

r2 = 8.99 ×109 × 3.45 ×10−9 × 6.5 ×10−3

0.098
= 2.057

r = 2.057

=1.43m

6 Determine the charge on either point using Coulomb’s law:

 

F = k
q1q2

r2

1 = 8.99 ×109 × q2

0.302

q = 1× 0.302

8.99 ×109

= 3.2 ×10−6 C

 Note that if you are calculating the charges for q1 and q2, each point charge will be equal and opposite, as electrons are 
being transferred from one point to the other. Since each electron has a charge of 1.6 × 10−19 C, the number of electrons is:

 

3.2 ×10−6

1.6 ×10−19

= 2.0 ×1013 electrons

7 In a photocopier, electrostatic charge is applied to a cylindrical drum that is coated with a photoconductive material. 
This material starts conducting when exposed to light. When the light from the photocopier strikes the document being  
copied, the white areas reflect the light onto the surface of the photoconductive drum. The areas of the cylindrical 
drum that are exposed to light start conducting and the areas not exposed to light (black portions of the original 
document) remain negatively charged. The toner in the photocopier is positively charged, so when it is applied to the 
drum, the toner is attracted to and sticks to the areas that are negatively charged (black areas).

5.3 The magnetic field

Worked example: Try yourself 5.3.1
DIRECTION OF THE MAGNETIC FIELD

A current-carrying wire runs along the length of a table. The direction of the conventional current, I, is towards an 
observer. What is the direction of the magnetic field created by the current as seen by the observer?

Thinking Working 

Recall that the right-hand grip rule explains how to 
find the direction of the magnetic field.

Point your thumb towards yourself (as the observer) in the 
direction of the current flow.

Hold your hand with your fingers aligned as if gripping the wire.

thumb points in direction
of current flow

fingers point in direction
of magnetic field

current-carrying wire

Describe the direction of the field in relation to the 
wire in simple terms so that the description can be 
readily understood by a reasonable reader.

The magnetic field direction is perpendicular to the wire. As 
the current travels along the wire, the magnetic field runs 
anticlockwise around the wire.
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KEY QUESTIONS

Knowledge and understanding
1 No matter how many times you cut or break a magnet and how small the pieces are, each new piece will be a 

separate magnet with two poles. As magnets always have two poles, they are said to be dipolar.
2 A magnet suspended freely will behave like a compass. Its north end will point towards the magnetic North Pole as 

this is effectively the south pole of an imaginary bar magnet within the Earth.
3 With increasing distance, the force between the two magnets decreases. This is the case regardless of the type of force 

between them: attractive or repulsive.
4 The end labelled B is the south pole. Use the right-hand grip rule to find the direction of the field in the conductor.

Analysis
5 a Based on the directions provided, the magnetic field at point A would be directed to the east, i.e. away from the 

north pole of the magnet at the left. The magnetic field at point C would be directed to the west, i.e. away from the 
north pole of the magnet at the right.

b A magnetic field is a vector. If a point is equidistant from two magnets and the directions of the two fields are 
opposite, then the vector sum would be zero.

6 A = east, B = south, C = west, D = north

5.4 Forces on charged objects due to magnetic fields

Worked example: Try yourself 5.4.1
MAGNITUDE OF FORCE ON A POSITIVELY CHARGED PARTICLE

A single positively charged particle with a charge of +1.6 × 10−19 C travels at a velocity of 50 m s−1 perpendicular to a 
magnetic field of strength 6.0 × 10−5 T.

What is the magnitude of the force the particle will experience from the magnetic field?

Thinking Working 

Check the direction of the particle’s velocity and 
determine whether a force will apply.

Forces only apply on the component of the velocity 
perpendicular to the magnetic field.

The particle is moving perpendicular to the field and so a 
force will apply: F = qvB.

Establish which quantities are known and which are 
required.

F = ?

q = +1.6 × 10−19 C

v = 50 m s−1

B = 6.0 × 10−5 T

Substitute the values into the force equation. F = qvB

= 1.6 × 10−19 × 50 × 6.0 × 10−5

Express your final answer in an appropriate form with 
the correct number of significant figures. Note that 
only magnitude has been requested, so do not include 
direction.

F = 4.8 × 10−22 N
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Worked example: Try yourself 5.4.2
DIRECTION OF FORCE ON A NEGATIVELY CHARGED PARTICLE

A single negatively charged particle with a charge of −1.6 × 10−19 C is travelling horizontally from left to right across a 
computer screen and perpendicular to a magnetic field that runs vertically down the screen. In what direction will the 
force experienced by the charge act?

Thinking Working 

The right-hand force rule is used to determine the 
direction of the force on a positive charge.

(fingers)
field B

(palm)
force F

(thumb)
I  (positive charge)

Align your hand so that your fingers are pointing 
downwards in the direction of the magnetic field.

If the negatively charged particle is travelling from left 
to right, a positively charged particle is moving in the 
opposite direction, i.e. from right to left. Align your thumb 
so that it is pointing left, in the direction that a positive 
charge would travel.

Your palm is facing outwards from the screen, which is 
the direction of the force applied by the magnetic field on 
a negative charge.

Worked example: Try yourself 5.4.3
MAGNITUDE OF THE FORCE ON A CURRENT-CARRYING WIRE

Determine the magnitude of the force per metre due to the Earth’s magnetic field that acts on a single suspended 
power line running east−west at the moment it carries a current of 50 A. Assume that the strength of the Earth’s 
magnetic field at this point is 5.0 × 10−5 T.

B
F

N

S
E

W

I

Thinking Working 

Check the direction of the conductor and determine 
whether a force will apply.

Forces only apply to the component of the wire that is 
perpendicular to the magnetic field.

As the current is running east−west and the Earth’s 
magnetic field runs south−north, the current and the 
field are at right angles and a force will exist.

Establish the quantities that are known and what is 
required. Since the length of the power line hasn’t been 
supplied, consider the force per unit length (i.e. 1 m).

F = ?

n = 1

I = 50 A

l = 1.0 m

B = 5.0 × 10−5 T

Substitute the values into the force equation and simplify it. F = nIlB

=1×50 ×1.0 ×5.0 ×10−5

= 2.5 ×10−3 N

Express your final answer in an appropriate form with 
the correct number of significant figures. Note that only 
magnitude has been requested, so do not include direction.

F = 2.5 × 10−3 N per metre of power line
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Worked example: Try yourself 5.4.4
DIRECTION OF THE FORCE ON A CURRENT-CARRYING WIRE

A current balance is used to measure the force from a magnetic field on a wire of length 5.0 cm running perpendicular 
to the field. The conventional current direction in the wire is from left to right. The magnetic field can be considered to 
be running towards you (the observer). What is the direction of the force on the wire?

Thinking Working 

The right-hand force rule is used to determine the 
direction of the force.

(fingers)
field B

(palm)
force F

(thumb)
I  (positive charge)

Align your hand so that your fingers are pointing in the 
direction of the magnetic field, i.e. towards you.

Align your thumb so it is pointing to the right in the 
direction of the current.

Your palm is facing downwards.

State the direction in terms of the other directions given 
in the question. Make the answer as clear as possible to 
avoid any misunderstanding.

The force on the charge is acting vertically downwards.

Worked example: Try yourself 5.4.5
FORCE AND DIRECTION ON A CURRENT-CARRYING WIRE

Santa’s house sits at a point that can be considered the Earth’s magnetic North Pole (which behaves like the south pole 
of a magnet).

Assuming the strength of the Earth’s magnetic field at this point is 5.0 × 10−5 T, calculate the magnetic force and its 
direction on the following current-carrying wires. 

a a 2.0 m length of wire carrying a conventional current of 10.0 A vertically up the outside wall of Santa’s house

Thinking Working 

Forces only apply to the components of the wire running 
perpendicular to the magnetic field.

The direction of the magnetic field at the magnetic North 
Pole will be almost vertically downwards.

The section of the wire running up the wall of the building 
will be parallel to the magnetic field, B. Hence, no 
force will apply.

State your answer. A numeric value is required. No 
direction is required with a zero answer.

F = 0 N

b  a 2.0 m length of wire carrying a conventional current of 10.0 A running horizontally right to left across the back 
wall of Santa’s house

Thinking Working

Forces only apply to the components of the wire running 
perpendicular to the magnetic field.

The direction of the magnetic field at the magnetic north 
pole will be almost vertically downwards.

The section of the wire horizontally through the building 
will be perpendicular to the magnetic field, B. Hence a 
force will apply.

Identify the known quantities. F = ?

n = 1

I = 10.0 A

l = 2.0 m

B = 5.0 × 10−5 T
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Substitute the values into the appropriate equation and 
simplify.

F = nIlB

=1×10.0 × 2.0 ×5.0 ×10−5

=1.0 ×10−3 N

The direction of the magnetic force is also required to 
fully specify the vector quantity. Determine the direction 
of the magnetic force using the right-hand force rule.

(fingers)
field B

(palm)
force F

(thumb)
I  (positive charge)

Align your hand so that your fingers are pointing in the 
direction of the magnetic field, i.e. vertically down.

Align your thumb so that it is pointing left in the direction 
of the current.

Your palm should be facing outwards (out from the 
house). That is the direction of the force applied by the 
magnetic field on the wire.

State the magnetic force in an appropriate form with 
a suitable number of significant figures. Include the 
direction to fully specify the vector quantity.

F = 1.0 × 10−3 N out from the back wall of Santa’s house

KEY QUESTIONS

Knowledge and understanding
1 a South (S). The palm of the hand will be pointing downwards, indicating that the force will be south (based on the 

compass directions provided).
b The path followed is C.
c Since v is constant and energy is a scalar quantity, the kinetic energy remains constant.
d Path A. The palm of your hand will be pointing upwards, indicating that the force will be north (based on the 

compass directions provided). The particle will curve upwards as the force changes direction with the changing 
direction of the negative particle.

e Particles with no charge, e.g. neutrons, could follow path B.
2 Align your hand so that your fingers are pointing in the direction of the magnetic field, i.e. towards you. Align your 

thumb so that it is pointing left, in the direction of the current. Your palm should be facing upwards. That is the 
direction of the force applied by the magnetic field on the wire.

3 Recall that F = nIlB. Therefore the force is directly proportional to the number of individual wires (n). If the number of 
wires doubles, the force will double; if the number of wires quadruples, the force will quadruple.

4 0 N. The particle will experience a force of zero newtons because the particle is moving parallel to the magnetic field. 
In other words there is no component of the motion perpendicular to the field.

5 The section of the wire marked QR is perpendicular to the magnetic field, B, and the direction of the force is out of  
the page. You can confirm this using the right-hand force rule. Align your hand so that your fingers are pointing in  
the direction of the magnetic field, i.e. to the right, and your thumb is pointing down along the plane of the page.  
Your palm should be facing out of the page.

6 F = nIlB

=1×100 × 200 ×5.0 ×10−5

=1.0N

 Direction: thumb points left (east to west), fingers point north, palm will face down.

 Therefore the force is 1.0 N downwards.

7 F = qvB

=1.6 ×10−19 × 2 ×1.5 ×10−5

= 4.8 ×10−24 N south

8 The force would double when the velocity doubles. The magnitude of the force becomes 2F. The direction of the force 
is north.
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Analysis

9 F = nIlB

=1× 2 × 0.05 × 2 ×10−3

= 2.0 ×10−4 N

 With reference to the compass provided, the direction is north.
10 a F = nIlB

=1×50 × 80 × 4.5 ×10−5

= 0.18N downwards

b Same as for part a. The change in height has no effect on the perpendicular components of the magnetic field 
(south−north) and the wire’s direction.

5.5 Comparing fields—a summary

KEY QUESTIONS

Knowledge and understanding
1 B. The strength of a static field does not change with time. This is true of most gravitational and magnetic fields since 

the mass of the object, or the strength of the magnet, is unchanging.
2 a monopoles

b monopoles and dipoles
c dipoles 

3 The field around a monopole is radial, static and non-uniform.

 A monopole is a single point source associated with electrical and gravitational fields. The inverse square law applies 
to the radial fields around monopoles.

4 The charge on the right is negative. As the field lines run from one charge to the other, the force is one of attraction. 
Therefore the charge on the right must have the opposite sign to the charge on the left.

5 D. Magnetic fields are only associated with dipoles. The inverse square law only applies to a radial field around point-
source monopoles.

6 The direction of a field at any point is defined as the resultant field vector determined by adding the individual field 
vectors due to each mass, charge or magnetic pole within the field.

Analysis
7 The direction of a field line at any point is the resultant field vector. At either end the field outside the plates is less 

than between the plates. The horizontal component of the resultant field vector would point outwards.

8 Fg = G
m1m2

r2

8.0 ×10−37 = 6.67 ×10−11 × 9.1×10−31 × 9.1×10−31

r2

r = 6.67 ×10−11 × 9.1×10−31 × 9.1×10−31

8.0 ×10−37

r = 8.3 ×10−18 m

9 a F = k
q1q2

r2

= 8.99 ×109 × 1.6 ×10−19 ×1.6 ×10−19

(0.53 ×10−10 )2

= 8.2 ×10−8 N

b Fg = G
m1m2

r2

= 6.67 ×10−11 × 9.1×10−31 ×1.67 ×10−27

(0.53 ×10−10 )2

= 3.6 ×10−47N

c The gravitational force of attraction is significantly less than the electrical force of attraction between the two 
particles. The electrical force of attraction is approximately 2 × 1039 times greater than the gravitational force of 
attraction.
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Chapter 5 Review
Knowledge and understanding
1 Electrical potential is defined as the work done per unit charge to move a charge from infinity to a point in the electric 

field. The electrical potential at infinity is defined as zero. When you have two points in an electric field (E) separated 
by a distance (d) that is parallel to the field, the potential difference (V) is defined as the change in the electrical 
potential between these two points.

2 a Work is done by the field.
b Work is done on the charged particle.

3 Because the plates are parallel, a uniform electric field exists between them. Thus the electric field strength is the 
same at all points between the plates.

4 a With the current turned off, the loop is producing no field. The steady field in the region would be the only 
contributing field. It has a value of B into the page.

b With the current increased by a factor of four, the loop is producing four times the field (4B). The steady field in the 
region would be contributing to B, thus the total is 5B into the page.

5 a The distance between the charges is increased by a factor of 3 (to 3r). This will decrease the force by a factor of 9.
b The distance between the charges is reduced by a factor of 4 to 0.25r. This will increase the force by a factor of 16.

6 The magnitude of the magnetic force on a conductor aligned so that the current is running parallel to a magnetic field 
is zero. A component of the conductor’s length must be perpendicular to a magnetic field for a force to be created.

7 The palm is the direction of the force applied by the magnetic field, the fingers are pointing in the direction of the 
magnetic field and the thumb is pointing in the direction of the conventional current.

8 F = qE

= 3.00 ×10−3 ×7.5

= 0.003 ×7.5

= 0.0225N

9 D

 

E = k
Q
r2

= 8.99 ×109 × 3 ×10−5

0.302

= 3 ×106 NC−1 upwards

 Since the electric field is defined as that acting on a positive test charge, the field direction would be upwards (i.e. 
away from the charge, Q).

10 E = V
d

1000 = V
0.025

V =1000 × 0.025

= 25V

11 Use the equation for work done in a uniform electric, W = qEd, to determine the work done on the field.

 

W = qEd

= 5.00 ×10−18 × 650 ×5.00 ×10−3

=1.63 ×10−17 J

12 E = V
d
= 15 ×103

0.12
=125000Vm−1

F = qE

=1.6 ×10−19 ×125000

= 2.0 ×10−14 N

13 F = k
q1q2

r2

= 8.99 ×109 × 7.50 ×10−3 × 2.00 ×10−9

4.002

= 8.43mN
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14 F = nIlB
1.350 =1× I × 3.7 × 0.1100

I = 1.35
0.11× 3.7

= 3.3A

15 In each case the force is found from F = nIlB as the field is perpendicular to the current.
a F =1×10−3 ×5 ×10−3 ×1×10−3

= 5.0 ×10−9 N towards you (from the right-hand force rule)

b F = 1 × 2.0 × 1 × 10−2 × 0.1 = 2.0 × 10−3 N away from you

16 The magnetic force exerted on the electron is:

 

F = qvB

=1.6 ×10−19 ×7.0 ×106 × 8.6 ×10−3

= 9.6 ×10−15 N

Application and analysis
17 The east−west line would experience the greater magnetic force as it runs perpendicular to the Earth’s magnetic field.

18 Recall that the kinetic energy gained by the ion (Ek) is equal to work done (W). Therefore the velocity can be calculated 

using the equation Ek = 1
2

mv2 when the kinetic energy is known.

 

W = qV

= 5 ×1.6 ×10−19 ×1000

= 8.0 ×10−16 J

 

Ek = 1
2

mv2

v = 2Ek

m

= 2 × 8.0 ×10−16

3.27 ×10−25

= 7.0 ×104 ms−1

19 F = mg = k
q1q2

r2

r2 = k
q1q2

mg

= 8.99 ×109 × 3.50 ×10−3 ×5.01×10−3

4.5 × 9.8
= 3574.595

r = 3574.595

= 59.8m

20 Find the force due to gravity acting on the ball using F = mg. Then substitute the value obtained into the equation 
F = Eq to calculate the charge.

 

F = mg = 7.50 ×10−3 × 9.8

= 7.35 ×10−2 N

F = qE

q = F
E

= 7.35 ×10−2

450
= +1.63 ×10−4 C

 The charge must be positive to provide an upwards force in the vertically upwards field.
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21 a F = k
q1q2

r2

= 8.99 ×109 × −1.6 ×10−19 × −1.6 ×10−19

(5.4 ×10−12)2

= 7.9 ×10−6 N

b Fg = G
m1m2

r2

= 6.67 ×10−11 × 9.1×10−31 × 9.1×10−31

(5.4 ×10−12)2

=1.9 ×10−48 N

c The gravitational force of attraction is significantly less than the electrical force of attraction between the two 
particles. The electrical force of attraction is approximately 4 × 1042 times greater than the gravitational force of 
attraction.
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Chapter 6 Application of field concepts

6.1 Satellite motion

Worked example: Try yourself 6.1.1

CALCULATING NORMAL FORCE

A 68.0 kg student rides a lift down from the top floor of an office block to the ground floor. During the journey the lift 
accelerates downwards at 1.50 m s−2 before travelling at a constant velocity of 3.08 m s−1 and then finally decelerating at 
3.80 m s−2 until it reaches the ground floor. Assume that g = 9.8 m s−2.

a  Calculate the normal force acting on the student in the first part of the journey, i.e. while accelerating downwards 
at 1.50 m s−2.

Thinking Working

Ensure that the variables are in their standard units. m = 68.0 kg

a = 1.50 m s−2 down

g = 9.8 m s−2 down

Apply the sign and direction convention for motion in one 
dimension: up is positive and down is negative.

m = 68.0 kg

a = −1.50 m s−2

g = −9.8 m s−2 

Apply the appropriate equations to calculate the normal 
force.

Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= 68.0 × −1.50( ) − 68.0 × −9.8( )
= −102.0 + 666.4

= 564.4

= 5.6 ×102 N

b  Calculate the normal force acting on the student in the second part of the journey, i.e. while travelling at a constant 
speed of 3.08 m s−1.

Thinking Working

Ensure that the variables are in their standard units. m = 68.0 kg

a = 0 m s−2 down

g = 9.8 m s−2 down

Apply the sign and direction convention for motion in one 
dimension: up is positive and down is negative.

m = 68.0 kg

a = 0 m s−2 

g = −9.8 m s−2 

Apply the appropriate equations to calculate the normal 
force.

Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= 68.0 × 0( ) − 68.0 × −9.8( )
= 0 + 666.4

= 6.7 ×102 N to 2 significant figures
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c  Calculate the normal force of the student in the last part of the journey, i.e. while travelling downwards and 
decelerating at 3.80 m s−2.

Thinking Working

Ensure that the variables are in their standard units. 
Also consider that deceleration is acceleration that is 
opposite to the direction of motion.

m = 68.0 kg

a = 3.80 m s−2 up

g = 9.8 m s−2 down

Apply the sign and direction convention for motion in 
one dimension: up is positive and down is negative.

m = 68.0 kg

a = 3.80 m s−2

g = −9.8 m s−2

Apply the appropriate equations to calculate the normal 
force.

Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= 68.0 × 3.80( ) − 68.0 × −9.8( )
= 258.4 + 666.4

= 924.8

= 9.2 ×102 N

CASE STUDY: ANALYSIS

Four satellites
1 A geostationary orbit is where the satellite has an orbital period of 24 hours, so it will appear as though the satellite is 

stationary with respect to the Earth’s surface. This is ideal for weather satellites because it permits them to study the 
weather and climate of a single region in depth for an extended period. 

2 The formula for acceleration due to gravity is g = GM
r2

, where M is the mass of the Earth (5.98 × 1024 kg) and r is the 

distance of the satellites from the centre of the Earth. In each case, r will be the radius of the Earth (6.37 × 06 m) plus 
the altitude of the apogee. Thus we have:

 
g1 = GM

r1
2 =

6.67 ×10−11( ) × 5.98 ×1024( )
(3.58 ×107 + 6.37 ×106)2 = 0.224ms−2

 
g2 = GM

r2
2 =

6.67 ×10−11( ) × 5.98 ×1024( )
(5.99 ×105 + 6.37 ×106)2 = 8.21ms−2

 
g3 = GM

r3
2 =

6.67 ×10−11( ) × 5.98 ×1024( )
(8.33 ×105 + 6.37 ×106)2 = 7.69ms−2

3 First compute the average between the perigee and apogee for each satellite using rav =
perigee + apogee

2
 (taking care 

to include the Earth’s radius). Then use the formula for circumference (2π rav) to find the total distance covered by the 
satellite in one period.

 
circumference1 = 2π ×

3.5791×107 + 6.37 ×106( ) + 3.5795 ×107 + 6.37 ×106( )
2

= 2.65 ×108 m

 
circumference2 = 2π ×

5.91×105 + 6.37 ×106( ) + 5.99 ×105 + 6.37 ×106( )
2

= 4.38 ×107 m

 
circumference3 = 2π ×

8.24 ×105 + 6.37 ×106( ) + 8.33 ×105 + 6.37 ×106( )
2

= 4.52 ×107 m
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4 Converting the orbital periods in the table for each satellite into seconds gives T1 = 86 400 s, T2 = 96.6 × 60 = 5796 s, 
T3 = 101.4 × 60 = 6084 s.

5 speed1 = circumference1

period1

= 2.65 ×108

86400
= 3.07 ×103 ms−1

 
speed2 = circumference2

period2

= 4.38 ×107

5796
= 7.56 ×103 ms−1

 
speed3 = circumference3

period3

= 4.53 ×107

6084
= 7.45 ×103 ms−1

Worked example: Try yourself 6.1.2
WORKING WITH KEPLER’S LAWS

Determine the orbital speed of a satellite that is in a circular orbit of radius 42 100 km around the Earth. Assume that 
the mass of the Earth is 5.98 × 1024 kg and that G is 6.67 × 10−11 N m2 kg−2.

Thinking Working

Convert the radius to standard units. r = 42 100 km = 4.21 × 107 m

Choose the appropriate relationship between the orbital 
speed, v, and the data that has been provided. a = g = GM

r2 = v2

r

Make v the subject of the equation.
v = GM

r

Substitute the given values and solve for the orbital 
speed, v. v = GM

r

= 6.67 ×10−11 ×5.98 ×1024

4.21×107

= 3.08 ×103 ms−1

Worked example: Try yourself 6.1.3
SATELLITES IN ORBIT

Callisto is the second largest of Jupiter’s moons. It is about the same size as the planet Mercury. Callisto has a mass of 
1.08 × 1023 kg, an orbital radius of 1.88 × 106 km and an orbital period of 1.44 × 106 s (i.e. 16.7 days).

a  Use Kepler’s third law to calculate the orbital radius (in km) of Europa, another moon of Jupiter, which has an 
orbital period of 3.55 days.

Thinking Working

Note the values for the known satellite. You can work in 
days and km, as the question only requires a ratio.

Callisto:

r = 1.88 × 106 km

T = 16.7 days

For all satellites orbiting the same central mass, 
r3

T 2
 is 

constant. 

Calculate this ratio for the satellite whose radius and 
period is known.

Europa: 

r3

T 2 = (1.88 ×106)3

16.72

= 2.38 ×1016

Use this constant value as the ratio to apply to the 
satellite in question. Make sure that T is in days to match 
the value used in the previous step.

r3

T 2 = constant = 2.38 ×1016

r3

3.552 =  2.38 ×1016
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Make r3 the subject of the equation. r3 = 3.552 × 2.38 × 1016

= 3.00 × 1017

Solve for r. The unit for r is km as the original ratio was 
calculated using km.

r = 3.00 ×10173

= 6.70 ×105 km

Europa has a shorter period than Callisto, so Europa has 
a smaller orbit than Callisto.

b Use the orbital data for Callisto to calculate the mass of Jupiter.

Thinking Working

Note the values for the known satellite. You must work in 
SI units to find the mass in kg.

Callisto: 

r = 1.88 × 109 m 

T = 1.44 × 106 s 

m = 1.66 × 1023 kg 

G = 6.67 × 10−11 N m2 kg−2

Jupiter:

M = ?

Select the expressions from the equations for centripetal 
acceleration that best suit your data.

a = v2

r
= 4π 2r

T 2 = GM
r2 = g

Use the third and fourth expressions. These use the given 
variables, r and T, and the constant G, so that a solution 
can be found for M.

4π 2r
T 2 = GM

r2

Transpose the expressions to make M the subject.
M = 4π 2r3

GT 2

Substitute the values and solve for M.
M = 4π 2(1.88 ×109)3

6.67 ×10−11 × (1.44 ×106)2

=1.90 ×1027 kg

c Calculate the orbital speed of Callisto in km s−1.

Thinking Working

Note the values you will need to use in the equation 

v = 2π r
T

.

Callisto: 

r = 1.88 × 106 km

T = 1.44 × 106 s

v = ? 

Substitute the values and solve the equation. The answer 
will be in km s−1 if r is expressed in km. v = 2π r

T

= 2π ×1.88 ×106

1.44 ×106

= 8.20kms−1
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KEY QUESTIONS

Knowledge and understanding

1 Fg = mg

= 7.20 × 9.8

= 71N

2 Normal force = the force due to gravity for an object at rest: FN = 220 N

3 Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= (55.0 × 2.72) − (55.0 × −9.8)

=149.6 +539

= 6.9 ×102 N

4 Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= (55.0 × 0) − (55.0 × −9.8)

= 0 +539

= 5.4 ×102 N

5 B. It is the only object that is on a surface and so it can experience an upwards normal force from that surface.
6 D. Satellites orbit around a central mass. The Earth does not orbit Mars, the Moon does not orbit the Sun and the Sun 

does not orbit the Earth.

Analysis
7 a A geostationary satellite orbits at the same rate that the Earth turns, that is, its period is 24 hours.

For satellites in a circular orbit around a central body of mass M: 
r3

T 2 = GM
4π 2 .

First convert the period from hours into seconds: 24 hours = 24 × 60 × 60 = 86 400 seconds.

r3 = GMT 2

4π 2

r = GMT 2

4π 2
3

=
6.67 ×10−11( ) × 5.98 ×1024( ) × (86400)2

4π 2
3

= 4.23 ×107 m

b Let TN and rN denote the period and radius of the Navstar satellite, and TG and rG denote the period and radius of the 

geostationary satellite. Recall that r
3

T 2
 is a constant for all satellites that orbit a common central body and thus is the 

same for the Navstar satellite and the geostationary satellite.

rG
3

TG
2 = rN

3

TN
2

rN
rG

⎛
⎝⎜

⎞
⎠⎟

3

= TN

TG

⎛
⎝⎜

⎞
⎠⎟

2

rN
rG

= TN

TG

⎛
⎝⎜

⎞
⎠⎟

2
3

= 12
24

⎛
⎝⎜

⎞
⎠⎟

2
3

= 0.63

rN = 0.63 ×TG∴

= 0.63 × 4.23 ×107

= 2.66 ×107 m
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8 a  a = g = 0.22 m s−2

b Fg = mg

= 3.2 ×103 × 0.22

= 704N (or 7.0 ×102 N to 2 significant figures)

9 r3

T 2
 is constant for all the moons of Saturn, therefore the orbital period for each moon can be calculated from just one 

moon.

 For Atlas: 

 

r3

T 2 = (1.37 ×105)3

(0.60)2

= 7.14 ×1015

 For Titan: 

 

r3

T 2 = 7.14 ×1015

T 2 = r3

7.14 ×1015

= 242

T = 242

=15.6 days

6.2 DC motors

Worked example: Try yourself 6.2.1
FORCE ON A COIL

A single square of wire with 4.0 cm sides is free to rotate in a magnetic field, B, of strength 1.0 × 10−4 T. A 1.0 A current 
is flowing through the coil in the direction indicated by the blue arrows. What is the force acting on each side of  
the coil?

1

I

I

I I
2

3

4
B

Thinking Working

Confirm that the coil will experience a force based 
on the magnetic field and current directions 
supplied.

Using the right-hand force rule, confirm that a force applies on 
side 2 out of the page and a force applies to side 4 into the page. 
The coil will turn clockwise as viewed from in front of side 3.

Sides 1 and 3 lie parallel to the magnetic field and so no force 
will apply.

Calculate the magnitude of the magnetic force on 
the sides perpendicular to the field.

F = nIlB

 = 1 × 1.0 × 0.040 × 1.0 × 10−4

 = 4.0 × 10−6 N

State the magnitude and direction of the force on 
each side.

The force acting on side 2 will be equal to and opposite the 
force acting on side 4.

Hence F2 = 4.0 × 10−6 N out of the page and F4 = 4.0 × 10−6 N 
into the page.
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Worked example: Try yourself 6.2.2
A SIMPLE DC MOTOR

A DC motor is constructed using a square coil with 25 turns and sides of length 7.50 cm. It is placed in a magnetic field 
of strength 0.250 T. The coil carries a current of 200 mA in the direction of the blue arrows.

W

X Y

Z

IB

P

n = 25

a Viewed from point P, in which direction will the motor rotate: clockwise or anticlockwise?

Thinking Working

Apply the right-hand force rule to the sides perpendicular 
to B to determine the direction of the magnetic force.

Aligning your thumb with the current in direction YZ and 
fingers in the direction of the magnetic field indicates 
that a downwards force will apply on side YZ. Similarly, 
applying the right-hand force rule on side WX confirms 
that an upwards force applies to the side. Thus viewed 
from P the coil will rotate clockwise.

b Calculate the magnitude of the torque acting on side WX.

Thinking Working

Write down the formula for magnetic force and convert 
the relevant quantities in SI units.

F = nIlB

n = 25

I = 200 mA = 0.200 A

l = 7.50 cm = 0.075 m

B = 0.250 T

Substitute the values and calculate the total force. F = nIlB

 = 25 × 0.200 × 0.075 × 0.250

 = 0.09375 N

Using the side lengths given, calculate the torque. τ = r⊥F
= 0.075 × 0.09375

= 0.0070Nm

c  The number of turns in the coil is reduced to 10. What will be the new magnitude of the force acting on side WX?

Thinking Working

Note how magnetic force depends on the number of 
coils.

Since F = nIlB, if the number of coils, n, is reduced to 

10, the magnetic force will be reduced to 
10
25

= 0.4 of its 
original value, that is: 

0.4 × 0.093 75 = 0.0375 N.
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KEY QUESTIONS

Knowledge and understanding
1 A. The maximum torque occurs when the force is applied perpendicular to (i.e. at right angles to) the axis of rotation.
2 The force acting on each side of the coil will be equal in magnitude, but the resulting torques from each side will be 

opposite in direction. Since the total torque is the sum of the individual torques, the net torque will be zero and hence 
the coil will not turn.

3 a F = nIlB
=1× 3.5 × 0.060 × 0.25

= 5.3 ×10−2 N into the page

b F = nIlB
=1× 3.5 × 0.060 × 0.25

= 5.3 ×10−2 N out of the page

c The force will be 0 N. This is because side PQ is parallel to the magnetic field.
d Considering the direction of the forces acting on sides PS and QR, the coil will rotate anticlockwise.
e D. The direction of the current does not affect the magnitude of the torque. This is the only option that doesn’t 

affect the torque from the options available.

Analysis
4 a We can compute the force acting on each side separately. Using F = nIlB, we have:

Fleft =1× 2.75 × 0.25 × 0.75 = 0.52N

Fright =1× 2.75 × 0.25 ×1.25 = 0.86N

b Using τ = r⊥F, we can compare the quantities to see which is greater. Since both sides of the coil are the same 
radial distance from the axis of rotation, then the one with a greater force has the greater individual torque. Hence 
τ right contributes more to the total torque.

c Using τ = r⊥F, the force acting on the coils will be the same, but the radial distance of each side has doubled. Hence 
the total torque will double.

5 a F = nIlB
=15 ×1.0 × 0.50 × 0.20

=1.5N

b Current flows into brush P and around the coil from V to X to Y to W. The force on side VX is down and the force on 
side YW is up, so the rotation is anticlockwise.

c The commutator keeps the motor rotating in the same direction by reversing the polarity of the current after each 
half rotation. The net effect is that the left and right sides of the coil always have their direction of current pointing 
either upwards or downwards, regardless of whether the coil has turned. If the coil were directly connected to the 
battery, it would rotate half a revolution before experiencing a force in the other direction. It would continue to 
oscillate backwards and forwards rather than rotating smoothly.

d Since F = nIlB, if the number of turns in the coil is increased to 30, the force will double. However, by decreasing the 
side length from 0.50 m to 0.125 m, the force will decrease to one quarter. Overall the coil will experience half the 
amount of force.

6.3 Particle accelerators

Worked example: Try yourself 6.3.1
CALCULATING THE SPEED OF ACCELERATED CHARGED PARTICLES 

Determine the final speed of a single electron, with a charge of 1.6 × 10−19 C and a mass of 9.1 × 10−31 kg, when 
accelerating from rest across a potential difference of 1.2 kV.

Thinking Working

Ensure that the variables are in their standard units. 1.2 kV = 1.2 × 103 V

Establish what quantities are known and what is required. v = ?

q = 1.6 × 10−19 C

m = 9.1 × 10−31 kg

V = 1.2 × 103 V
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Substitute the values into the electron gun equation and 
rearrange it to solve for the speed. qV = 1

2
mv2

1.6 ×10−19 ×1.2 ×103 = 1
2
× 9.1×10−31 × v2

v = 2 ×1.6 ×10−19 ×1.2 ×103

9.1×10−31

= 2.1×107 ms−1

Worked example: Try yourself 6.3.2
CALCULATING SPEED AND PATH RADIUS OF ACCELERATED CHARGED PARTICLES

An electron gun releases a beam of electrons from its cathode. They are accelerated across a potential difference of 
2.5 kV between a pair of charged parallel plates 20 cm apart. Assume that the mass of an electron is 9.1 × 10−31 kg and 
the magnitude of its charge is 1.6 × 10−19 C.

a  Calculate the strength of the electric field acting on the electron beam.

Thinking Working

Ensure that the variables are in their standard units. 2.5 kV = 2.5 × 103 V

20 cm = 0.20 m

Apply the correct equation.
E = V

d

Solve for E.
E = 2.5 ×103

0.20
=1.3 ×104 Vm−1

b  Calculate the speed of the electrons as they leave the electron gun.

Thinking Working

Apply the correct equation. 1
2

mv2 = qV

Rearrange the equation to make v the subject.
v = 2qV

m

Solve for v.
v = 2 ×1.6 ×10−19 × 2.5 ×103

9.1×10−31

= 3.0 ×107 ms−1

c  The electrons then travel through a uniform magnetic field perpendicular to their motion. If this field is of strength 
0.3 T, calculate the expected radius of the path of the electron beam.

Thinking Working

Apply the correct equation. r = mv
qB

Solve for r.
r = 9.1×10−31 × 3.0 ×107

1.6 ×10−19 × 0.3
= 5.7 ×10−4 m
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KEY QUESTIONS

Knowledge and understanding
1 C. A charged particle moving in a magnetic field will experience a force.

2 F = qvB

=1.6 ×10−19 × 2.0 × 3.2 ×10−4

=1.0 ×10−22 N

 The electron will experience a force of 1.0 × 10−22 N south.

3 
1
2

mv2 = qV

v = 2qv
m

= 2 ×1.6 ×10−19 × 2.5 ×103

9.1×10−31

= 3.0 ×107 ms−1

4 a F = qvB

=1.6 ×10−19 × 4.1×106 × 9.8 ×10−3

= 6.4 ×10−15 N

b r = mv
qB

= (9.1×10−31) × (4.1×106)
(1.6 ×10−19) × (9.8 ×10−3)

= 2.4 ×10−3 m

5 r = mv
qB

B = mv
qr

= 9.1×10−31 ×7.6 ×106

1.6 ×10−19 × 4.6 ×10−2

= 9.4 ×10−4 T

 Note: The radius, r, is half the diameter: 0.5 × 9.2 × 10−2 = 4.6 × 10−2 m

6 r = mv
qB

v = rqB
m

= 0.1 ×  1.76 ×1011( ) × 4.0 ×10−4( )
= 7.0 ×106 ms−1

7 A charged particle in a magnetic field will experience a force (F = qvB). As force is proportional to velocity, the force 
will increase as the velocity increases. This will continue while the charge remains in the magnetic field, continuously 
accelerating the charge.

8 Ek = 1
2

mv2 = qV

v = 2qV
m

= 2 × (1.6 ×10−19) × (4.5 ×103)
9.1×10−31

= 3.98 ×107 ms−1
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 Because the forces acting on the electron due to the electric and magnetic fields are balanced, you can equate them:

 

FE = qE  and FB = qvB

qE = qvB

E = vB

= 3.98 ×107 × 2.3 ×10−3

= 9.15 ×104 J

= V
d

d = 4500
9.15 ×104

= 4.9 ×10−2 m or 4.9cm

Analysis

9 a W = qV = 1
2

mv2

v = 2qV
m

= 2 ×1.6 ×10−19 × 4.5 ×104

9.1×10−31

=1.3 ×108 ms−1

b Using the formula for bending radius:

r = mv
qB

= (9.1×10−31) × (1.26 ×108)
(1.6 ×10−19) × (1.0 ×10−3)

= 0.72m

 Since this is less than 5 m, the bending radius is too small for the particle accelerator. The electrons are curving  
inwards too soon. Because the radius of the path travelled by an electron in a uniform magnetic field is 
proportional to its velocity, if we wish to increase the radius we must increase the velocity of the electrons. To have 
a higher velocity the electrons must be given more kinetic energy, which means they must be accelerated across a 
larger potential difference. Hence Sally should increase the potential difference of the electron gun.

c Rearranging the formula for the bending radius:

 

v = qrB
m

= (1.6 ×10−19) ×5.0 × (1.0 ×10−3)
9.1×10−31

= 8.8 ×108 ms−1

   This is the velocity the electrons need to be accelerated to in order to maintain a bending radius of 5 m. Given  

that E = V
d

 and kinetic energy = 
1
2

mv2 = qV , it follows that:

qEd = 1
2

mv2

E = mv2

2qd

= (9.1×10−31) × (8.8 ×108)2

2 × (1.6 ×10−19) × 0.40

= 5.5 ×106 Vm−1
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Chapter 6 Review
Knowledge and understanding
1 Fnet = FN + Fg

FN = Fnet − Fg

= ma − mg

= (38.0 × −2.95) − (38.0 × −9.8)

= −112.1+ 372.4

= 2.6 ×102 N
2 D. Objects in orbit are in free fall. While in orbit around the Earth, gravity is reduced, but it is still significant.
3 D. At this altitude, gravity is reduced and so will be less than 9.8 N kg−1. Hence acceleration is less than 9.8 m s−2. Note: 

B is not correct because, while the speed of the satellite would be constant, its velocity is not.
4 A. No normal force is felt during free fall.

5 
r3

T 2  is constant for all satellites of Earth. Therefore the orbital period for each satellite can be calculated.

 For X: 

 

r3

TX
2 = constant = k

 For Y:

 

(5r)3

TY
2 = k

= r3

TX
2

125r3

TY
2 = r3

TX
2

TY
2 = 125r3

r3 TX
2

=125TX
2

TY =11.2TX

6 The commutator’s function is to reverse the direction of the current in the coil after every half turn. This keeps the coil 
rotating in the same direction. 

7 Electrons are released from a negative terminal (or hot cathode) of the evacuated tube and accelerate towards a 
positively charged anode. They can be detected as they hit a fluorescent screen at the rear of the tube. The electrons 
are accelerated by a large potential difference between the cathode and anode.

8 a The electron will experience a force at right angles to its motion. This acts upwards and causes the electron to 
curve in an upwards arc from its starting position. 

 

–

b The radius of the electron’s path is dependent on its velocity and the magnitude of the magnetic field that is acting 
on it.

9 r = mv
qB

B = mv
qr

(where r = half the diameter)

= 9.1×10−31 × 4.3 ×106

1.6 ×10−19 × 4.2 ×10−2

= 5.8 ×10−4 T
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10 a F = qvB

=1.6 ×10−19 × 6.4 ×106 × 9.1×10−3

= 9.3 ×10−15

b r = mv
qB

= 9.1×10−31 × 6.4 ×106

1.6 ×10−19 × 9.1×10−3

= 4.0 ×10−3 m

Application and analysis

11 a a = GM
r2

= 6.67 ×10−11 ×1.02 ×1026

(3.55 ×108)2

= 0.0540ms−2

b a = v2

r
v = ar

= 0.054 × 3.55 ×108

= 4.38 ×103 ms−1

c Fg = mv2

r
= 4π 2rm

T 2 = GMm
r2 = mg

4π 2rm
T 2 = GMm

r2

T 2 = 4π 2r3

GM

= 4π 2(3.55 ×108)3

6.67 ×10−11 ×1.02 ×1026

= 2.60 ×1011

T = 2.60 ×1011

= 5.09 ×105 s

1 day = 24 × 60 × 60 = 86400s

T = 5.09 ×105

86400

= 5.90 days

12 a a = GM
r2 = g

g = GM
r2

= 6.67 ×10−11 × 9.38 ×1020

(4.70 ×105)2

= 0.283Nkg−1

b mv2

r
= GMm

r2

v = GM
r

= 6.67 ×10−11 × 9.38 ×1020

4.80 ×105

= 361ms−1
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13 a down the page
b up the page

14 anticlockwise
15 a down the page

b up the page
c There is zero torque, as the forces are trying to pull the coil apart rather than turn it. The force is parallel to the coil 

rather than perpendicular to it.
16 C. Reversing the direction of the current in the loop will ensure that the loop keeps travelling in the same direction. 

Use the right-hand force rule to verify this.
17 Using F = nIlB, we have n = 8, I = 30 mA = 0.030 A, l = 15 cm = 0.15 m, B = 0.25 T.

 F = 8 × 0.030 × 0.15 × 0.25 = 9.0 × 10−3 N
18 Using τ = r⊥F for each side, we can see that each torque depends linearly on the perpendicular radius. So if we double 

the side lengths, then each torque will double as well. Since the total torque is equal to the sum of all the torques, the 
total torque is also linearly dependent on the length of the sides of the square coil.

19 a 
1
2

mv2 = qV

v = 2qV
m

= 2 × (1.6 ×10−19) × (10 ×103)
9.1×10−31

= 5.9 ×107 ms−1

b r = mv
qB

= 9.1×10−31 ×5.9 ×107

1.6 ×10−19 ×1.5
= 2.2 ×10−4 m

20 a The strength of the electric field between the charged plates is given by:

E = V
d

= 500
3.5 ×10−2

=1.4 ×104 Vm−1

b Because the strengths of the electric field and the magnetic field are balanced, it follows that: 

FB = FE

qvB = qE

v = E
B

= 1.4 ×104

1.5 ×10−3

= 9.3 ×106 ms−1

21 
1
2

mv2 = qV

v = 2qV
m

=
2 × 1.6 ×10−19( ) × 4.5 ×103( )

9.1×10−31

= 4.0 ×107 ms−1
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Unit 3 Area of Study 2

How do things move without contact?
Multiple-choice questions

1 A. During launch the normal force acting on the astronaut will be greater than usual. She will feel a force pushing her 
downwards, but the force due to gravity on her has not increased.

2 B. The gravitational force will be constant during the launch. 

3 B. In a stable orbit there is no normal force acting on the astronaut (FN = 0) so she will experience apparent 
weightlessness. However, the gravitational force is still acting to keep her and the spacecraft in orbit.

4 C. In deep space the astronaut would be far away from planets or other large masses that could exert a significant 
force of gravity on her, so she will experience very little force due to gravity.

5 D. 2.0 N

 

F = kq1q2

r2

= 8.99 ×109 ×5.0 ×10−6 ×7.0 ×10−6

0.402

= 2.0N

6 B. 6.9 × 109 N C−1 to the left, away from the charge

 

E = kq
r2

= 8.99 ×109 × 9.4 ×10−6

(3.5 ×10−3)2

= 6.9 ×109 NC−1 to the left

7 A. Both have fields in direction A.

8 B. There is a field in the BC direction from the left-hand current, and in the AB direction from the right-hand current. 
Vertically, the fields cancel out at point Q. (The field from the left-hand current is downwards, while the field from the 
right-hand current is upwards.)

9 G. The field in directions A and C cancel each other.

10 C and D. C will increase the area of the coils and D will increase the magnetic field through the coils, both of which will 
increase the torque in the motor. A will reduce the force on the coils and B will reduce the current through the coils, 
both of which will decrease torque.

11 B. 60 N

 At 300 km, g ≈ 3.0 N kg−1

 Fg = mg = 20 × 3.0 = 60 N

12 C. 36 MJ

 Area ≈ 9 squares = 9 × 1.0 × 2.0 × 105 = 1.8 × 106 J kg−1

 ΔEk = area × mass = 1.8 × 106 × 20 = 3.6 × 107 J

 ΔEk = 36 MJ

Short-answer questions

13 

+–

14 a Eg = area under graph between 7.0 × 106 m and 6.5 × 106 m. Counting squares below the graph gives 8.5 squares. 
The area of each square is 1.0 × 104 × 0.5 × 106 = 5 × 109 J. Therefore:

 

Eg = 8.5 ×5 ×109

= 4.25 ×1010

= 4.3 ×1010 J
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b At an altitude of 600 km (a height of 7000 km): 

 

Ek = 1
2

mv2

= 0.5 ×10000 ×15002

=1.125 ×1010 J

 At an altitude of 100 km altitude (height of 6500 km):

 
Ek =1.125 ×1010 + 4.25 ×1010

= 5.375 ×1010 J

 From this it follows that:

1
2

mv2 = 5.375 ×1010

0.5 ×10000v2 = 5.375 ×1010

v = 3.3 ×103 ms−1

c i r = 6400 + 3600 = 10 000 km = 10 × 106 m
 Fg = 4.0 × 104 N (from the graph)
ii r = 6.0 × 105 + 6.4 × 106 = 7.0 × 106 m
 Fg = 8.1 × 104 N (from the graph)

d At 600 km, Fg = 8.1 × 104 N, so a =
Fg

m
= 8.1ms−2

 At 100 km, Fg = 9.2 × 104 N, so a =
Fg

m
= 9.2ms−2

 The acceleration increases from 8.1 m s−2 to 9.2 m s−2.

15 a E = V
d

= 240
1.6 ×10−3

=1.5 ×105 NC−1(or Vm−1) downwards

b Fe = Fg

= −1.96 ×10−14 × 9.8

=1.92 ×10−13

=1.9 ×10−13N upwards acting against gravity to keep the drop stationary( )

c q = F
E

= 1.92 ×10−13

1.5 ×105

=1.3 ×10−18 C

16 a The force is to the left, due to magnetic attraction to the soft-iron core.
b The force is more strongly to the left, as the right end of the electromagnet is now a south pole.
c The force is to the right as the right end of the electromagnet is now a north pole.

17 a F = nIlB = 1 × 100 × 1.0 × 1.0 × 10−5 = 1.0 × 10−3 N
b The right-hand rule tells us that a current from west to east will experience an upwards force.
c The force due to gravity acting on 1 m of cable is mg = 0.05 × 9.8 = 0.49 N. For the magnetic force to equal this:

I = F
nlB

= 0.49
1×1.0 ×1.0 ×10−5 = 4.9 ×104 A

 So there is not much chance of magnetic levitation for power cables!

18 a The field is from N to S, so the right-hand rule shows that the force on side AB is upwards and the force on side CD 
is downwards. 

b In the position shown (with the coil horizontal), the direction of the forces on sides AB and CD are at right angles to 
the radius and the torque is at a maximum. 
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c The torque becomes zero when the coil is in the vertical position. It continues to rotate for two reasons: (i) its 
momentum will carry it past the true vertical position and (ii) at the vertical position, the commutator reverses the 
direction of the current through the coil. When the current reverses, the forces reverse, and thus the coil continues 
to rotate for another half turn, at which point the current reverses again and the rotation continues.

d I = F
nlB

= 40
100 × 0.2 × 0.5

= 4.0A

e τ = r⊥F

= 0.20 × 40

= 8.0Nm

19 a The increase in kinetic energy of the electron as it travels from one plate to another is:

 Ek = 1
2

mv2 = qV

 So:

 

v2 = 2qV
m

v = 2 ×1.6 ×10−19 × 3.0 ×103

9.1×10−31

= 3.2 ×107 ms−1

b 

electrons

c r = 
mv
qB

= 9.1×10−31 × 3.2 ×107

1.6 ×10−19 ×1.2
=1.5 ×10−4 m

 

20 a g = G
M
r2

= 6.67 ×10−11 × 1.90 ×1027

(1.07 ×109)2

=1.11×10−1Nkg−1

b Fg = mg

= 5.3 ×103 ×1.11×10−1

= 5.9 ×102 N

c T = 4π 2r3

GM

= 4π 2(1.07 ×109)3

6.67 ×10−11 ×1.90 ×1027

= 6.18 ×105 s

d The mass of the satellite has no effect on its orbital period.



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

Chapter 7 Electromagnetic induction and 
transmission of electricity

7.1  Inducing an EMF in a magnetic field

Worked example: Try yourself 7.1.1

MAGNETIC FLUX

A student places a horizontal square coil of wire with sides of length 4.0 cm into a uniform vertical magnetic field of 
0.050 T. How much magnetic flux passes through the coil?

Thinking Working

Calculate the area of the coil perpendicular to the 
magnetic field.

side length = 4.0 cm = 0.04 m

area of the square = (0.04)2 = 0.0016 m2

Calculate the magnetic flux. ΦB = B⊥A

= 0.050 × 0.0016

= 0.00008Wb

State the answer in an appropriate form. ΦB = 8.0 ×10−5 Wb

Worked example: Try yourself 7.1.2

MAGNETIC FLUX AT AN ANGLE

A student places a horizontal square coil of wire with sides of length 5.0 cm into a uniform vertical magnetic field of 
0.10 T. The plane of the coil is parallel to the magnetic field. How much magnetic flux passes through the coil?

Thinking Working 

All the magnetic field lines pass through the coil when 
the coil is perpendicular to the magnetic field.

None of the magnetic field lines pass through the coil 
when the coil is parallel to the magnetic field.

Since the plane of the coil is parallel to the magnetic 
field, none of the magnetic field lines pass through  
the coil.

Therefore there is no magnetic flux through the coil.

Worked example: Try yourself 7.1.3

ELECTROMOTIVE FORCE ACROSS AN AIRCRAFT’S WINGS

Consider a fighter jet with a wing span of 25 m, flying at a speed of 2000 km h−1 at right angles to the Earth’s 
magnetic field (5.0 × 10−5 T). Will the jet develop a dangerous EMF between its wing tips solely from the Earth’s 
magnetic field?

Thinking Working

Identify the quantities required in their correct units. ε = ?

l = 25 m

B = 5.0 × 10−5 T

v = 2000 km h−1 = 556 m s−1

Substitute the values into the appropriate formula and 
calculate ε.

ε = lvB

= 25 ×556 ×5.0 ×10−5

= 0.70V

State your answer as a response to the question. ε = 0.70 V (to 2 significant figures)

This is a very small EMF and would not  
be dangerous.
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KEY QUESTIONS

Knowledge and understanding
1 a Yes, an EMF will be induced as there is a change in the magnetic flux.

b Yes, an EMF will be induced as there is a change in the magnetic flux.
c There is no change in magnetic flux and so there is no induced EMF.
d Yes, an EMF will be induced as there is a change in the magnetic flux.

2 0 Wb. Since the plane of the coil is parallel to the magnetic field, there is no flux passing through the coil.

3 ΦB = B⊥A

= 0.20 × 0.010

= 2.0 ×10−3 Wb

4 ε = lvB

= 0.15 × 0.11× 0.60

= 9.9 ×10−3 V

5 You can increase the magnetic flux through a coil either by:
• increasing the magnetic field strength over the surface area and/or 

• increasing the area of the loop, which could also include adjusting the angle so that the maximum magnetic field 
passed through the loop.

Analysis
6 A plot of y = cos θ such as the following:

90°
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0
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Magnetic flux during coil rotation

7 a The area of the coil perpendicular to the magnetic field is 6.0 cm × 6.0 cm = 0.06 m × 0.06 m = 0.0036 m2.
The magnetic flux ΦB = B⊥A = 2.0 × 10−3 × 0.0036 = 7.2 × 10−6 Wb.

b The magnetic flux decreases from 7.2 × 10−6 Wb to 0 after one quarter of a turn. Then it increases again to 
7.2 × 10−6 Wb through the opposite side of the loop after half a turn. Then it decreases to 0 again after  
three quarters of a turn. After a full turn it is back to 7.2 × 10−6 Wb.

7.2  Induced EMF from a changing magnetic flux

Worked example: Try yourself 7.2.1

INDUCED EMF IN A COIL

A student winds a coil of area 50 cm2 with 10 turns. She places it horizontally in a vertical uniform magnetic field of 0.10 T.

a Calculate the magnetic flux perpendicular to the coil.

Thinking Working

Identify the quantities required to calculate the magnetic 
flux through the coil. Convert them to SI units where required.

B = 0.10 T

A = 50 cm2 = 50 × 10−4 m2

Calculate the magnetic flux. Give your answer in the 
appropriate units.

ΦB = B⊥A

= 0.10 ×50 ×10−4

= 5.0 ×10−4 Wb
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b Calculate the magnitude of the average induced EMF in the coil when the coil is removed from the magnetic  
field in 1.0 s.

Identify the quantities required for determining the 
induced EMF.

N = 10 turns 

ΔΦB =Φ2 −Φ1

= 0 −5.0 ×10−4

= 5 ×10−4 Wb

Δt =1.0s

Calculate the magnitude of the average induced EMF, 
ignoring the negative sign that indicates the direction. ε = −N

ΔΦB

Δt

=10 × 5.0 ×10−4

1.0
= 5.0 ×10−3 V

Worked example: Try yourself 7.2.2

NUMBER OF TURNS IN A COIL

A coil of cross-sectional area 2.0 × 10−3 m2 experiences a change in the strength of a magnetic field from 0 to 0.20 T 
in 1.0 s. If the magnitude of the average induced EMF is 0.40 V, how many turns must be on the coil?

Thinking Working

Identify the quantities required to calculate the magnetic 
flux through the coil when in the presence of the 
magnetic field. 

ΦB = B⊥A

B = 0.20 T

A = 2.0 × 10−3 m2

Calculate the magnetic flux when the coil is in the 
presence of the magnetic field.

ΦB = B⊥A

= 0.20 × 2 ×10−3

= 4 ×10−4 Wb

From the question, identify the quantities required by 
Faraday’s law.

N = ? 

ΔΦB =Φ2 −Φ1

= 4.0 ×10−4 − 0

= 4 ×10−4 Wb

Δt =1.0s

ε = 0.40V

Rearrange Faraday’s law and solve for the number of 
turns on the coil. Ignore the negative sign. ε = −N

ΔΦB

Δt

N = εΔt
ΔΦB

= 0.4 ×1.0
4 ×10−4

=1000 turns
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Worked example: Try yourself 7.2.3

INDUCED CURRENT IN A COIL FROM A PERMANENT MAGNET

The south pole of a magnet is moved downwards away from a horizontal coil held directly above it. In which direction 
will the current be induced in the coil?

S

Thinking Working 

Consider the direction of the change in magnetic flux. The direction of the magnetic field will be downwards 
towards the south pole. Downwards flux from the magnet 
will decrease as the magnet is moved away from the coil. 
So the change in flux is decreasing downwards. 

What will oppose the change in flux? The magnetic field that opposes the change would act 
downwards.

Determine the direction of the induced current required 
to oppose the change.

In order to oppose the change, the direction of the 
current would be clockwise when viewed from above 
(from the right-hand grip rule).

Worked example: Try yourself 7.2.4

INDUCED CURRENT IN A COIL FROM AN ELECTROMAGNET 

What is the direction of the current induced in the solenoid shown below when the electromagnet is:

a switched on

b left on

c switched off.

X Y

– +

Thinking Working 

Consider the direction of the change in magnetic flux in 
each case. 

a Initially there is no magnetic flux through the solenoid. 
When the electromagnet is switched on, it creates a 
magnetic field directed to the right. So the change in 
flux through the solenoid is increasing to the right.

b While the current in the electromagnet is steady, the 
magnetic field is constant and the flux through the 
solenoid is constant.

c Initially there is a magnetic field from the electromagnet 
directed to the right. Then there is no longer a magnetic 
field, so the change in flux through the solenoid is 
decreasing to the right. 
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What will oppose the change in flux in each case? a The magnetic field that opposes the change in flux 
through the solenoid is directed to the left.

b There is no change in flux and so no opposition is 
needed. (There will be no magnetic field created by 
the solenoid.) 

c The magnetic field that opposes the change in flux 
through the solenoid is directed to the right.

Determine the direction of the induced current required 
to oppose the change in each case.

a In order to oppose the change, the current must be 
produced in the solenoid from Y to X (or through the 
meter from X to Y), from the right-hand grip rule. 

b There will be no induced EMF or current in the 
solenoid. 

c In order to oppose the change, the current must be 
produced in the solenoid from X to Y (or through the 
meter from Y to X), from the right-hand grip rule.

Worked example: Try yourself 7.2.5

FURTHER PRACTICE WITH LENZ’S LAW 

A coil is moved to the right and out of a magnetic field that is directed out of the page. In what direction will the 
current be induced in the coil while the coil is moving?

Thinking Working 

Consider the direction of the change in magnetic flux. Initially the magnetic flux passes through the full area of 
the coil and out of the page. Moving the coil out of the 
field decreases the magnetic flux. So the change in flux is 
decreasing out of the page.

What will oppose the change in flux? The magnetic field that opposes the change would act 
out of the page.

Determine the direction of the induced current required 
to oppose the change.

In order to oppose the change, the current direction must 
be anticlockwise (from the right-hand grip rule).

KEY QUESTIONS

Knowledge and understanding
1 a ΦB = B⊥A

=1.2 ×10−3 × 0.07 × 0.03

= 2.5 ×10−6 Wb

b No flux passes through the loop when the loop is parallel to the magnetic field.
c ΔΦB = 2.5 × 10−6 Wb

ε = −N
ΔΦB

Δt

= 2.5 ×10−6

0.060
= 4.2 ×10−5 V
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2 a  ΦB = 65 ×10−3 ×15 ×10−4

= 9.75 ×10−5 Wb

ε = ΔΦB

Δt

= 9.75 ×10−5

0.025
= 3.9 ×10−3 V in each turn of wire

b The effect of using multiple coils is similar to placing cells in series; that is, the EMF of each coil is added to derive 
the total EMF.
ε = 600 × 3.9 × 10−3 V = 2.3 V

3 ΦB =10.0 ×10−3 × 225 ×10−4

= 2.25 ×10−4 Wb

ε = −N
ΔΦB

Δt

=10 × 2.25 ×10−4

0.25
= 9.0 ×10−3 V

Analysis
4 C. The speed of the magnet reduces the time over which the change occurs, but there is no change in the strength of 

the magnetic field or the area of the coil. Hence the total flux (i.e. the area under the curve) is the same.

5 The student must induce an EMF of 1.0 V in the wire by changing the magnetic flux through the coil at an appropriate 
rate. A change in flux can be achieved by changing the strength of the magnetic field or by changing the area of the 
coil. The magnetic field can be changed by changing the position of the magnet relative to the coil. The area can be 
changed by changing the shape of the coil or by rotating the coil relative to the magnetic field.

 To calculate the required rate of change of flux to produce 1.0 V:

ΔΦB

Δt
= ε

N

= 1.0
100

= 0.01Wbs−1

 For example, if the shape is changed from 0.01 m2 to 0.02 m2 in 0.1 s, then:

ΔΦB

Δt
= (100 ×10−3 × 0.02) − (100 ×10−3 × 0.01)

0.1

= 0.001
0.1

= 0.01Wbs−1

6 ε = −N
ΔΦB

Δt

= −N
ΔBA⊥

Δt

A⊥ = −εΔt
NΔB

= 0.020 × 0.050
1× 0.10

= 0.010m2

7 ε = −N
ΔΦB

Δt

Δt = −N
ΔΦB

ε

=100 × 0.40 ×50 ×10−4

1600 ×10−3

= 0.13s
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7.3  Applications of Lenz’s law

Worked example: Try yourself 7.3.1

PEAK AND RMS AC CURRENT VALUES

A 1000 W kettle is connected to a 240 V AC power outlet. What is the peak power use of the kettle? 

Thinking Working

Note that the values given in the question represent rms 
values. Power is P = VI so both V and I must be known 
to calculate the power use. The voltage is given and the 
current can be calculated from the rms power supplied.

Prms = Vrms Irms

Irms =
Prms

Vrms

= 1000
240

= 4.17A

Substitute the known quantities into the appropriate 
equation and solve for peak power.

Pp = 2Vrms × 2 Irms

= 2Vrms Irms

= 2 × 240 × 4.17

= 2000W

=2.00 ×103 W

KEY QUESTIONS

Knowledge and understanding
1 The resulting output of all three phases maintains an EMF near the maximum voltage more continuously than output 

from a single coil.

2 A graph similar to the one shown below.

∆ΦB
∆tEMF ∝ –

90˚ 180˚ 270˚ 360˚
(a) (c)

θ

(e)

(b)

(d)

3 The differences between a slip ring and a split ring commutator are:
• A slip ring is a continuous ring with no breaks or cuts.

• A split ring commutator has at least two breaks.

• A slip ring provides a continuous transfer of current and is generally used in AC motors and generators.

• A split ring commutator reverses the polarity of the current and is used in DC motors and generators.

4 EMF using split rings

t (s)

EMF (V)

EMF using split rings

 t (s)

EMF (V)
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5 a 
I(

A
)

3.7

–3.7

0.025
t (s)

0

b The peak current is calculated as follows:

Ip = Irms × 2

= 3.7A

The peak-to-peak current is calculated as follows:
Ip–p = 2Ip 

= 2 × 3.7 
= 7.4 A

c The period is calculated as follows:

T = 1
f

= 1
40

= 0.025s

Analysis
6 B. When the coil begins rotating, the flux is a maximum and decreases initially, having the shape of graph D. The 

graph of the current (like the graph of induced EMF) will be zero initially and then increase, having the pattern shown 
in graph B.

7 a Vp = 8.0 V
Vp–p = 2 × Vp = 2 × 8.0 = 16 V

Vrms =
Vp

2

= 8.0
2

= 5.7V

b The period of the waveform is 0.02 seconds
c 

8 V

0
0.02 0.04

t (s)

Halving the magnetic field strength will halve the EMF, as will halving the frequency. Doubling the radius increases 
the area to four times its original, and so increases the EMF to four times its original. Thus the EMF will remain the 
same magnitude overall. Halving the frequency of rotation, however, does double the period of the output.



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

7.4  Producing electricity—photovoltaic cells

CASE STUDY: ANALYSIS

Small-scale solar production
Calculate the electrical power that needs to be supplied to the pump, given an efficiency of 60%:

P = 150
0.6

= 250W

Thus one 400 W panel will be enough to operate the pump.

KEY QUESTIONS

Knowledge and understanding
1 D. Approximately 20%.

2 The photons from sunlight cause an electron to move away from a silicon atom, setting the electron loose and causing 
it to move in the semiconductor material.

3 The solar panel contains a semiconductor material, usually made from silicon. The top layer of the semiconductor has 
an excess of electrons (n-type silicon) and the bottom layer a deficit of electrons (p-type silicon).

4 An inverter converts the DC current generated by the solar cell into AC current that can be used by household and 
industrial appliances (or fed into the electricity transmission grid).

Analysis
5 To maximise the use of solar energy, it would be best to run appliances that consume large amounts of power  

(e.g. those for heating and cooling), during peak daylight hours even if they are not required. Appliances that require 
less power (e.g. dishwashers and washing machines) can be run during the shoulder times (that is, morning and late 
afternoon).

7.5  Supplying electricity—transformers and large-scale  
power distribution

Worked example: Try yourself 7.5.1

TRANSFORMER EQUATION—VOLTAGE

A transformer built into a phone charger reduces the 240 V supply voltage to the required 6 V. If the number of turns 
in the secondary coil is 100, what is the number of turns in the primary coil?

Thinking Working

Note the relevant quantities given in the question. V2 = 6 V

V1 = 240 V

N2 = 100 turns

N1 = ?

Substitute the given quantities into the transformer 
equation and solve for N1.

N1

N2

= V1

V2

N1

100
= 240

6

N1 = 100 × 240
6

= 4000 turns
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Worked example: Try yourself 7.5.2

TRANSFORMER EQUATION—CURRENT

A phone charger with 4000 turns in its primary coil and 100 turns in its secondary coil provides a current of 0.50 A. 
What is the current in the primary coil?

Thinking Working

Note the relevant quantities given in the question. I2 = 0.50 A

N2 = 100 turns

N1 = 4000 turns 

I1 = ? 

Recall the transformer equation written in terms of 
current. Substitute the given quantities into the equation 
and solve for I1.

N1

N2

= I2
I1

I1
0.50

= 100
4000

I1 = 0.50 ×100
4000

= 0.013A

Worked example: Try yourself 7.5.3

TRANSFORMERS—POWER

The power drawn from the secondary coil of the transformer in a phone charger is 3 W. What power is drawn from the 
mains supply if the transformer is an ideal transformer?

Thinking Working

The energy efficiency of an ideal transformer is 100%. 
Hence the power in the secondary coil will be the same 
as that in the primary coil.

The power drawn from the mains supply is the power in 
the primary coil, which will be the same as the power in 
the secondary coil: P = 3 W.

Worked example: Try yourself 7.5.4

TRANSMISSION-LINE POWER LOSS

300 MW is to be transmitted from a power station to Melbourne along a transmission line with a total resistance of 
1.0 Ω. What would be the total power loss if the voltage along the line is 500 kV?

Thinking Working

Convert the power and voltage to SI units. P = 300 MW = 300 × 106 W

V = 500 kV = 500 × 103 V

Determine the current in the line based on the 
given voltage.

P = V × I

I = P
V

= 300 ×106

500 ×103

= 600A

Determine the corresponding power loss. P = I2R

= 6002 ×1.0

= 3.6 ×105 W or 0.36MW
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Worked example: Try yourself 7.5.5

VOLTAGE DROP ALONG A TRANSMISSION LINE

Power is to be transmitted from a power station to Melbourne along a transmission line with a total resistance of 
1.0 Ω. The current is 600 A. What voltage would be needed at the power station to achieve a supply voltage of 500 kV?

Thinking Working

Determine the voltage drop along the transmission line. ΔV = IR

= 600 ×1.0

= 600V

Determine the initial supply voltage. Vinitial = Vsupplied + ΔV

= 500 ×103 + 600

= 5.0 ×105 V

Worked example: Try yourself 7.5.6

POWER LOSS THROUGH A TRANSMISSION NETWORK

Consider the power transmission system shown below. The power plant generates AC voltage at 40 kV, which is 
stepped up to 600 kV using transformer T1. Transformer T2 steps the 600 kV voltage down to 60 kV and transformer T3 
steps the 60 kV voltage down to 240 V for the load.

The resistance of the high-voltage transmission line is 2.5 Ω, the resistance of the medium-voltage distribution line is 
2.5 Ω and the resistance of the low-voltage distribution line is 7.5 Ω.

Assume that the transformers are 100% efficient and that the load consumes 2 MW of power.

power
generation

plant

high-voltage
transmission line

medium-voltage
distribution line

low-voltage
distribution line

load

T1 T2

T3

a Calculate the turns ratio of transformers T1, T2 and T3.

Thinking Working

Rearrange the transformer equation and calculate the 
turns ratios.

 

N2

N1

= V2

V1

For T1: V1 = 40 kV and V2 = 600 kV, therefore:

 
V2

V1

= 600 ×103

40 ×103 =15

For T2: V1 = 600 kV and V2 = 60 kV, therefore:

 V2

V1

= 60 ×103

600 ×103 = 0.10

For T3: V1 = 60 kV and V2 = 240 V, therefore:

 

V2

V1

= 240
60 ×103 = 4.0 ×10–3
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b Determine the power loss through the high-voltage transmission and medium-voltage distribution lines.

Thinking Working

Calculate the current through each 
part of the system. Recall that the load 
consumes 2 MW of power. Work back 
from the load to find the current in the 
other sections.

At the load: 

P = VI

I = P
V

= 2 ×106

240
= 8.33kA

In the medium-voltage distribution line:

 

I1
I2

= N2

N1

I1 = N2

N1

× I2

= 0.004 × 8.33kA = 33.3A

In the high-voltage transmission line: 

I1
I2

= N2

N1

I1 = N2

N1

× I2

= 0.10 ×  33.3 = 3.33A

Calculate the power losses using the 
currents calculated in the last step.

The power loss through the high-voltage transmission line is:

P = I2 × R = (3.33)2 × 2.5 = 28 W

The power loss through the medium-voltage distribution line is:

P = I2 × R = (33.3)2 × 2.5 = 2.8 kW

c Calculate the power loss through the medium-voltage distribution line if it carried 120 kV instead of 60 kV.

Thinking Working

Determine the effect of the change on 
the turns ratio and therefore on the 
current ratio. Recall that the power loss 
is proportional to I2. If I decreases, so will 
the power loss.

If the voltage of the medium-voltage distribution line were increased to 
120 kV from 60 kV, the turns ratio for that transformer (T2) would increase 
by a factor of 2. Therefore the current in the medium-voltage distribution 
line would decrease by a factor of 2.

If the current decreased by a factor of 2, the power loss would decrease 
by a factor of 4. Therefore the power loss through the medium-voltage 
distribution line would decrease from 2.7 kW to 675 W.

d Describe how the power loss could be minimised throughout the system.

Thinking Working

Recall that power loss is proportional 
to I2 and that voltage and current are 
inversely proportional in this type of 
system.

Power loss through the transmission network can be minimised by reducing 
the effective resistance of the transmission lines or by using higher voltages 
to transmit power. It is for this reason that power is distributed at such high 
voltages across the country to major centres or loads. 

KEY QUESTIONS

Knowledge and understanding
1 B. The power equation is P = VI and the ‘2’ indicates the secondary coil.

2 It is best to transmit power at high voltage and low current (since power loss is proportional to the square of the 
current).

3 D. A change in flux through the secondary coil is required for an EMF to be induced in the coil, but a DC input to the 
primary coil will create a constant flux. Therefore the voltage output is zero.
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4 N2

N1

= V2

V1

N2

600
= 24

240

N2 = 24 × 600
240

= 60turns

5 a V2

V1

= N2

N1

V2

10
= 500

50

V2 = 10 ×500
50

=100V

b Assuming an ideal transformer, the power output from the secondary coil must be equal to the power input at the 
primary coil.

 P1 = V1I1 = 10 × 5.0 = 50 W

c I2 = P2

V2

= 50
10

= 0.50A

6 I = P
V

= 9.9 ×103

700
=14.14A

Ploss = I2R

=14.142 × 3.6

= 7.2 ×102 W

7 a I = P
V

= 720 ×106

100 ×103 = 7.20 ×103 A

b Vdrop = IR

= 7200 × 2.5 =18000V or 1.8 ×104 V

Vsupplied =100 −18 = 8.2 ×104 V = 82kV

Analysis
8 There are advantages to both AC and DC high-voltage (HV) transmission. The solar production facility generates DC 

voltages; however, these are unlikely to be sufficiently high to achieve low power losses on a HVDC transmission 
network. Therefore the generated DC voltage would need to be stepped up before transmission. This would require 
DC-to-AC converters, transformers and then AC-to-DC converters. Thus extra equipment would be needed, which 
adds costs and additional maintenance requirements. In addition, the output from the generation plant feeds into 
the Victorian electricity network which uses HVAC for transmission. Therefore, considering the costs and ease of 
integration with the rest of the state’s electricity network, HVAC is the preferable option. 

9 a Using the transformer equation:

 

N1

N2

= V1

V2

250
N2

= 50000
220000

N2 = 250 × 220000
50000

=1100 turns

b An ideal transformer has no power loss, therefore V1 × I1 = V2 × I2.
The input power = V1 × I1 = 50 kV × 75 A = 3.75 MW
The output power = V2 × I2 = 220 kV × 14.5 A = 3.19 MW
The output power is less than the input power, therefore this is not an ideal transformer.
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10 The resistance for the 13 km section of the high voltage transmission line would be:

R = 0.34 ×13

= 4.42Ω

 The power loss using the rms current of 1 kA would therefore be:

P = I2R

=10002 × 4.42

= 4.4MW

 The peak current would be 1× 2 =1.41kA .

 Therefore the peak power loss would be:

P = I2R

=14102 × 4.42

= 8.8MW

Chapter 7  Review

REVIEW QUESTIONS 

Knowledge and understanding
1 Only two conductors (live and return) are required.

 DC can be more economical for transmission over very long distances (especially greater than 500 km).

 High voltage DC (HVDC) can be used to connect different AC power networks (e.g. different AC frequencies).

2 A split ring commutator connects the armature of the motor to the external power supply. Its function is to reverse the 
connection between the rotor coil and power supply each half cycle. This ensures that the current in the armature of 
the motor produces a torque in one direction as the rotor coil rotates.

3 Anticlockwise. Initially there is no flux through the coil. As the coil begins to rotate, the amount of flux increases and 
is directed to the left. To oppose this change, an induced magnetic field will be directed to the right. As the right-hand 
grip rule will show, this creates an anticlockwise current in the coil relative to the orientation shown in the diagram.

4 As the coil area is reduced, the flux into the page will decrease. To oppose this, the induced current will act to increase 
the flux again in the same direction. The right-hand grip rule shows that the direction of the induced current will be 
clockwise.

5 AB and CD. Both sides cut across lines of flux as the coil rotates.

6 a B changes from 8.0 × 10−4 T to 32 × 10−4 T, a change of 24.0 × 10−4 T.

ΔΦB = ΔB × A

= 24.0 ×10−4 × 25 ×10−4

= 6.0 ×10−6 Wb

ε = −N
ΔΦB

Δt
= 6.0 ×10−6

3.5 ×10−3

=1.7 ×10−3 =1.7mV

b Anticlockwise. Halving the magnetic field strength decreases the flux through the coil out of the page. The induced 
magnetic field will be out of the page to oppose the decreasing magnetic flux out of the page. The right-hand grip 
rule shows that the direction of the induced current is anticlockwise around the coil.

7 a ΦB = 35 ×10−3 × π × 0.052

= 2.7 ×10−4 Wb

ε = −N
ΔΦB

Δt

= 65 × 2.7 ×10−4

0.15
= 0.12V

b From Y to X. As the coil is removed, the magnetic flux through it changes from being directed downwards to no 
magnetic flux. To oppose this change the coil must create a magnetic field that is directed downwards again. The 
right-hand grip rule shows that the current must be clockwise around the coil when viewed from above.
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8 a ε = lvB = 0.45 × 2.5 × 35 × 10−3 = 3.9 × 10−2 V = 39 mV
b From X to Y. As the rod moves to the right, the area of the loop decreases. Thus the magnetic flux through the loop, 

which is directed out of the page, decreases. In order to oppose this change, the loop will produce a magnetic field 
directed out of the page. The right-hand grip rule shows that the current will be from X to Y.

9 ε = lvB = 12.0 × 6.5 × 7.5 × 10−5 = 5.9 × 10−3 V or 5.9 mV

10 a I2
I1
= V1

V2

I2
3.5

= 18
54

I2 =1.2A

b N1

N2

= V1

V2

N1

45
= 18

54
N1 =15

There are 15 turns in the primary coil.

11 a The maximum magnetic flux the coil experiences is in a quarter of a turn:

ΔΦB =120 ×10−3 ×10 ×10−4

=1.2 ×10−4 Wb

The frequency is 50 Hz, so a quarter of a turn takes 
1
4
× 0.02 = 0.005s.

ε = −N
ΔΦB

Δt

= 750 × 1.2 ×10−4

5 ×10−3

=18V

b By Faraday’s law, doubling the frequency halves ∆t, which doubles the average EMF to 36 V.

12 a Without the first transformer, voltage in the transmission lines is 1000 V.
Calculate I:

P = VI

250 ×103 =1000 × I

I = 250 ×103

1000
= 250A

When the voltage is stepped up to 10 000 V, the current is reduced to 25 A.
b The power loss in the lines is:

P = I2R

= 252 × 2

=1kW

c If the voltage was not stepped up, the current in the transmission line would be 250 A. The power lost  
in the transmission line would be I2R = (250)2 × 2 = 125 kW. Power supplied to the load would then be  
250 kW − 125 kW = 125 kW. This is a 50% power loss—a bad idea!

Application and analysis
13 C.  The magnetic flux through a coil is proportional to the area of the coil and the strength of the magnetic field. It is 

not dependent on the number of turns of the coil. The magnetic flux is calculated using:

Φ = B × A = 0.05 × 0.2

= 0.01Wb

=10mWb
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14 D. The magnitude of the average induced EMF is calculated using:

Φ2 = B × A = 5 ×10−4 × 0.075 = 3.75 ×10−5 Wb

Φ1 = B × A = 5 ×10−4 × 0 = 0Wb

ε = −N
Φ2 −Φ1

Δt

= −2 × 3.75 ×10−5

0.25
= 3 ×10−4 V

15 A. The output voltage is calculated using the transformer equation:

V1

V2

= N1

N2

200
V2

= 1500
60

V2 = 200 × 60
1500

= 8V

16 The power loss is proportional to the square of the current. Therefore the power loss in transmission line B would be  
9 times as much as in transmission line A.

17 a The data can be plotted as follows:

10 a.m.
0.0

0.5

1.0

1.5

2.0

2.5

11 a.m. Noon 1 p.m. 2 p.m. 3 p.m.
Time of day

solar
production

household
consumption

P
o

w
er

 (k
W

)

Household power consumption and solar power production

The energy for each one-hour period is as follows:

Time period Energy used (kW h) Solar energy produced (kW h) Energy to/from grid (kW h)

10 a.m. to 11 a.m. 1.5 1.75 0.25 to grid

11 a.m. to noon 2.0 1.75 0.25 from grid

noon until 1 p.m. 2.5 1.75 0.75 from grid

1 p.m. to 2 p.m. 2.0 1.75 0.25 from grid

2 p.m. to 3 p.m. 1.5 1.75 0.25 to grid

b The total consumption of electricity from the grid is 1.25 kW h. At $0.25 per kW h, that would cost $0.31.
c The house’s total consumption of electricity between 10 a.m. and 3 p.m. is 9.5 kW. At $0.25 per kW h, the cost would 

be $2.38. With the solar panels, the price for electricity between 10 a.m. and 3 p.m. is $0.3125. The cost savings is 
$2.07.
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18 a It is an AC generator, as it has slip rings. 
b The magnetic field flows from the north to the south pole of the magnets (from left to right in the diagram), which 

would induce a current in the rotor loop wire from contact Y to contact X. Therefore contact Y would be at a higher 
potential than contact X.

c The induced EMF is momentarily zero when the rotor coil is perpendicular to the magnetic field. The induced EMF 
is proportional to the rate of change of magnetic flux through the coil. The rate of change of magnetic flux is zero 
when the plane of the coil is perpendicular to the magnetic field.

19 a As the generator is ideal, the output power must equal the input power. The power provided to the circuit is 4.5 kW. 

P = VI

I = P
V

= 4.5 ×103

240
=18.75

=19A (to 2 significant figures)

R = V
I

= 240
18.75

=12.8

=13Ω (to 2 significant figures)

b If the total resistance of the circuit is quadrupled to 51.2 Ω, then:

P = V 2

R

= 2402

51.2
=1.1kW
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Unit 3 Area of Study 3

How are fields used in electricity generation?
Multiple-choice questions

1 D. ΦB = B⊥A

2 C

ΦB = B⊥A

= 60 ×10−3 × 0.052

= 0.15mWb

3 D. As no field lines pass through the loop, the flux is zero. 

4 A. As the induction of EMF depends on the rate of change of magnetic flux, the field lines will need to thread through 
the coil. But the flux within the coil needs to be changed by moving the magnet, which will change the number of field 
lines threading through the coil. 

5 C. The alternating current in the primary windings produces a changing magnetic flux, which induces an EMF in the 
secondary windings (as well as in the primary windings).

6 B. As the magnet enters the coil, the magnetic field direction from the magnet will be away from the north pole, i.e. 
downwards. Therefore the change in flux is increasing downwards. To oppose the change, the current direction would 
be anticlockwise when viewed from above. As the magnet exits the coil, the magnetic field direction from the magnet 
will be away from the north pole, i.e. downwards. Therefore, the change in flux is decreasing downwards. To oppose 
the change, the current direction would be clockwise when viewed from above.

7 C. Initially, the magnetic flux passes through the full area of the coil and into the page. Moving the coil out of the field 
decreases the magnetic flux. So the change in flux is decreasing into the page. The magnetic field that opposes the 
change would act into the page again. To oppose the change, the current direction would be clockwise (from the right-
hand grip rule).

8 D.

N1

N2

= V1

V2

N1

80
= 240

10

N1 = 240 × 80
10

=1920 turns

9 B. The output of photovoltaic cells is DC but most household appliances require AC current. (Some devices used in 
the home run on DC power, but they have their own transformers built in.)

Short-answer questions

10 a Since the plane of the loop is parallel to the direction of the magnetic field, no flux threads the loop.
b Rotate the loop or the magnetic field so that they are no longer parallel.
c The maximum flux threads the loop when the plane of the loop and the direction of the magnetic field are 

perpendicular (that is, at right angles to each other).
d ΦB = B⊥A

= 0.50 × 0.20 × 0.10

= 0.010Wb or 1.0 ×10−2 Wb

11 a As the loop enters the magnetic field there is a flux increasing down through the loop. Lenz’s law states that the 
induced current in the loop will oppose the change in flux that causes it. Therefore there will be an induced field 
(or flux) up through the loop. Using the right-hand grip rule, align your fingers so that they are pointing up on the 
inside of the loop. Your thumb will point in the direction of the induced current, that is, from Y to X. 
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b The loop moves at 5.0 cm s−1 and, with a side length 20 cm, it is halfway into the field when it has travelled 10 cm, 
which takes 2.0 s. 

 

ε = N
ΔΦB

Δt

=1× 0.40 × 0.20 × 0.10
2.0

= 4.0 ×10−3 V

c I = V
R

= 4.0 ×10−3

0.50
= 8.0 ×10−3 A

d P = VI

= 4.0 ×10−3 × 8.0 ×10−3

= 3.2 ×10−5 W

e The source of the power is the external force that is moving the loop into the magnetic field.
f As the loop is moving at 5.0 cm s−1, after 5.0 seconds it has moved 25 cm and has been totally within the magnetic 

field for 1.0 second. Since there is now no flux change there will be no EMF induced in the loop at this moment.
g As the loop emerges from the magnetic field there is flux decreasing down through the loop. Lenz’s law states that 

the induced current in the loop will oppose the change in flux that causes it. Therefore there will be an induced 
field (or flux) down through the loop. Using the right-hand grip rule, align your fingers so that they are pointing 
downwards on the inside of the loop. Your thumb will point in the direction of the induced current, that is, from  
X to Y.

12 a ΦB = B⊥A

=1.0 ×10−3 ×100 ×10−3 ×50 ×10−3

= 5.0 ×10−6 Wb

b No flux threads the loop in the new position as the plane of the loop is now parallel to the magnetic field. 
Alternatively, θ = 90° and cos θ = 0, so no flux threads the loop in the new position.

c To find the magnitude:

 

ε = N
ΔΦB

Δt

=1× 5.0 ×10−6

2.0 ×10−3

= 2.5 ×10−3 V

d I = V
R

= 2.5 ×10−3

2.0
=1.3 ×10−3 A

e No. Once the loop is stationary there is no change in flux. Therefore no EMF is generated and no current flows in 
the loop.

13 a The EMF, and hence the current, depends on the rate of change. If the rate is increased by 4, then the current will 
also increase by 4. Thus I = 200 μA.

b The EMF generated is V = IR = 50 × 10−6 × (595 + 5.0) = 3.0 × 10−2 V.

 

ε = N
ΔΦ
Δt

 and ΦB

= B⊥A where A = π r2

∴ ε = N
B⊥π r2

Δt

B = εΔt
Nπ r2

= 3.0 ×10−2 × 2.0
100 × π × 0.0302

= 0.21T
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14 a T = 1
f
= 1

100
= 0.0100s =1.00 ×10−2 s

 The graph is a sine wave with peak amplitude of 0.90 V and a period of 0.0100 s (i.e. 10.0 ms).
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b The output graph would have half the period and twice the amplitude. 

5.0
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15 An alternator has a pair of slip rings instead of a split ring commutator.

16 AC is generated in the coils of an alternator. Each slip ring connects to each end of the coil. The slip rings are 
continuous and so maintain the AC generated in the coil at the output. Carbon brushes press against the slip rings to 
allow a constant output to the circuit without a fixed point of connection.

17 a I2 = I1 ×V1

V2

= 2.0 × 600
3000

= 0.40A

b Vp-p = 2 × 3000 = 6000V

c N1 = N2 ×V1

V2

= 1000 × 600
3000

= 200 turns

d P2 rms = V2 rms × I2 rms

= 3000
2

× 0.40

= 849 W = 8.5 ×102 W

e P2 peak = V2 peak × I2 peak

= 3000 × 0.40 × 2

=1697W or 1.7 ×103 W
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18 a With little or no current in the power line there was almost no voltage drop. When the house appliances were 
turned on, there was a higher current in the power line and hence a voltage drop along the line, leaving a lower 
voltage at the house.

b As the generator was supplying 4000 W at 250 V, the current in the line was I = 4000
250

=16.0A.

 The voltage drop along the line was therefore ΔV = IR = 16.0 × 2.0 = 32 V and so the voltage at the house was 
250 − 32 = 2.2 × 102 V.

 The power lost is Ploss = I2R = 16.02 × 2.0 = 512 W. Thus the power at the house was: 
4000 − 512 = 3488 = 3.5 × 103 W.

 Alternatively, Phouse = VI = 218 × 16.0 = 3488 W.
c At the generator end a 1:20 step-up transformer is required (since 5000 ÷ 250 = 20). There will be 20 times as 

many turns in the secondary circuit as in the primary circuit. At the house end a 20:1 step-down transformer is 
required.

d I = P
V

= 4000
5000

= 0.8000A

e The voltage drop is V = IR = 0.8000 × 2.0 = 1.6 V.
f The power loss is P = I²R = 0.80002 × 2.0 = 1.3 W.

g The voltage at the house will be 5000 −1.60
20

 = 249.92 V = 2.5 × 102 V.

h The power at the house will be 4000 − 1.28 = 3998.72 = 4.0 × 103 W.
i The power loss before the transformers were added was 512 W (from part b) which was 12.8% of the power 

generated (4000 W), and the power loss with the transformers was 1.3 W (from part f), which is about 0.03% of  
the power generated.

j The reason is that power loss in the power line depends on the square of the current (P = I2R). Since the current 
was reduced by a factor of 20 and the resistance remained constant, the power loss decreased by a factor of  
202 or 400.
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Chapter 8 Light as a wave 

8.1  Wave interactions

Worked example: Try yourself 8.1.1

WAVE SUPERPOSITION

Two wave pulses are travelling towards each other parallel to the x-axis at 1 m s−1. The directions are shown by the red 
arrows. The x- and y-axes have a scale of 1 m for each box.

y

x
What is the amplitude of the combined pulse when they interact 2 seconds after the instant shown above?

Thinking Working 

Draw a diagram of the two pulses after 2 seconds. y

x

Draw a new diagram with the waves superimposed. y

x

The amplitude is the height of the resultant wave. The amplitude of the combined pulse wave is zero.

KEY QUESTIONS

Knowledge and understanding
1 a True

b False. As the pulses pass through each other, the interaction does not permanently alter the characteristics of  
either pulse.

c True

2 Resonance occurs when the applied frequency is equal to the object’s natural frequency of vibration.

3 B. The amplitude of the vibration will increase due to constructive interference from the forcing vibration. Note that 
the frequency stays the same when resonance occurs.
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4 To push a child on the swing you need to work out the frequency of the swing (i.e. how regularly the swing goes 
backwards and forwards) and then push at exactly the same rate. This will enable the maximum transfer of energy 
from the person pushing the swing to the swing, thereby increasing the amplitude of the swing.

5 Each pulse travels 3 m in 3 s. 

 The superimposed waves will look like this: 

Adding their amplitudes together results in the waves being cancelled:

Analysis
6 The bridge resonates at 1.5 Hz. A pedestrian moving at a frequency of 1.5 Hz would be completing 1.5 cycles per 

second. Since one cycle is 2 steps, that pedestrian would be taking 3 steps per second. This closely corresponds on 
the graph to fast running. Thus a pedestrian running fast may cause an increase in the amplitude of the bridge’s 
oscillation which, over time, could damage it.

7 Pendulum D would swing with maximum amplitude. Pendulum D is the same length as the first pendulum. Therefore 
its natural frequency of vibration is the same as the first pendulum. The frequency of vibration of the first pendulum 
becomes the applied frequency for pendulum D; thus there is maximum energy transfer. 

8 As the vibration of the truck is noticeably larger when the truck is stationary, the natural frequency of vibration of the 
body of the truck must be close to 100 Hz, the frequency of vibration of the motor. As the truck accelerates to a higher 
speed, the frequency of vibration of the motor increases and is no longer at the resonant frequency of the truck body. 
Therefore the amplitude of vibration becomes much less. 

8.2  Standing waves in strings

Worked example: Try yourself 8.2.1

FUNDAMENTAL FREQUENCY

A standing wave in a string fixed at both ends has a wavelength of 0.50 m for the fundamental frequency of vibration. 

a What is the length of the string?

Thinking Working 

Note the wavelength of the string (λ) in metres and the 
harmonic number (n).

λ1 = 0.50 m

n = 1

Recall that for any frequency, λn = 2l
n . Rearrange the 

equation to make l the subject.
λn = 2l

n

l = nλn

2

Substitute the given values and solve for l.
l = 1× 0.50

2
= 0.25m

b What is the wavelength of the third harmonic?

Thinking Working 

Note the length of the string (l) in metres and the 
harmonic number (n).

l = 0.25 m

n = 3

Recall that for any frequency, λn = 2l
n . Substitute the  

given values and solve for λ.
λ3 = 2l

3

= 2 × 0.25
3

= 0.17m
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CASE STUDY: ANALYSIS

Physics of the guitar
1 For the low-E string, f1= 82.41 Hz and the length of the string is 0.650 m.

 For the fundamental:

	 λ1 = 2l = 2 × 0.650 = 1.30 m

 v = f1λ1 = 82.41 × 1.30 = 107 m s−1

2 The wavelength of the fundamental frequency for each string remains the same. The fundamental frequency 
decreases for each string as the guitarist moves from the higher-pitched strings to the lower-pitched strings. Therefore, 

by the equation v = f1λ1, the speed of the wave along the string must also decrease. Thus, from the relationship v = T
µ

,  

either the mass per unit length must increase (as it is an inverse relationship) or the tension must decrease. A thicker 
string of the same material means a greater mass per unit length and a lower pitch. Using a low-density material 
(such as nylon) for the higher-pitched strings and denser steel for the lower-pitched strings also gives a higher mass 
per unit length for the lower-pitched strings. Guitarists tune guitars by adjusting the tension in the strings.

3 For the D string, the fundamental frequency is 146.83 Hz and the wavelength is 1.30 m.

 vD = f1λ1 = 146.83 × 1.30 = 190.88 m s−1

 If the string is shortened to 2
3

 of the original length:

 l = 2
3
× 0.650 = 0.433m and

	 λ = 2l = 2 × 0.433 = 0.866 m

 Then:

 f1 = vD

λD

= 190.88
0.866

= 220Hz

Note that the final answer is expressed to 3 significant figures, as the wavelength is expressed to 3 significant figures.

4 The high-E string has a frequency of 329.63 Hz.

 Waves travel along the low-E string with a velocity of 107 m s−1 (from question 1). 

 Matching this to the frequency of the high-E string corresponds to a wavelength of 
v
f
= 107

329.63
= 0.325m.

 Therefore, since this is the fundamental, l = λ1

2
= 0.325

2
= 0.163m.

 Note that the velocity of the waves along the high-E string will be greater than the velocity of the waves along the 
low-E string, as discussed in question 2. 

5 For the low-E string, v = 107 m s−1 (from question 1).

 When n = 3:

 λ3 = 2l
3

= 2 × 0.650
3

= 0.433m and

 f3 = vE

λ3

= 107
0.433

= 247Hz

 This is almost the same as the fundamental frequency of the B string. Thus the n = 3 vibration of the low-E string 
should resonate with the B string and cause it to vibrate. 

KEY QUESTIONS

Knowledge and understanding
1 a False: The frequency of the wave stays the same.

b False: The speed of the wave stays the same.
c False: There is no phase shift when reflected from an end that is free to move. The 180° phase change occurs when 

the wave is reflected from a fixed end. 
d True

2 A transverse wave moving along a rope is reflected from a fixed end. The interference that occurs during the 
superposition of the reflected wave and the original wave creates a standing wave. This standing wave consists of 
locations called nodes (where the movement of the rope is cancelled out) and antinodes (where maximum movement 
of the rope occurs). 

 It is a common misconception that these standing waves remain stationary. It is only the pattern made by the nodes 
and antinodes along the rope that stays still. The rope is still moving, especially at the antinodes.
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3 When the wave is reflected, there is a 180° change in phase (and thus a crest is reflected as a trough and vice versa).

4 λ = 2l
n

= 2 × 0.40
1

= 0.80m

 f = v
λ1

= 58
0.80

= 73Hz

5 Rearranging λ = 2l
n

gives l = nλ
2

= 4 × 0.750
2

=1.50m

6 a f1 = nv
2l

= 1× 300
2 × 0.50

= 300Hz

b f2 = nv
2l

= 2 × 300
2 × 0.50

= 600Hz

c f3 = nv
2l

= 3 × 300
2 × 0.50

= 900Hz

Analysis
7 This wave will have a frequency four times that of the fundamental frequency. This means that it will have a 

wavelength 
1
4

 of the fundamental wavelength (due to the inverse relationship between frequency and wavelength).

8 a Recall the formula l = n
λ
2

. There are 4 half-wavelengths in the diagram. Therefore n = 4.

b For the fifth harmonic n = 5, so there will be 5 half-wavelengths. Therefore λ = 2l
n

= λ5 = 2
5
×10 = 4.0m .

9 f1 = 350Hz and v = 387ms−1. Therefore the original fundamental wavelength is λ1 = v
f1
= 387

350
=1.106m .

 Shortening the length of the string by two thirds will also shorten the fundamental wavelength by two thirds: 

λ1 new = 2
3
× λ1 = 2

3
×1.106 = 0.737m .

8.3 Evidence for the wave model of light

Worked example: Try yourself 8.3.1

USING THE WAVE EQUATION FOR LIGHT

A particular colour of red light has a wavelength of 600 nm. Calculate the frequency of this colour. 

Thinking Working

Recall the wave equation for light. c = fλ

Transpose the equation to make frequency the subject.
f = c

λ

Substitute the appropriate values to determine the 
frequency. f = 3.0 ×108

600 ×10−9

= 5.0 ×1014 Hz

CASE STUDY: ANALYSIS

Heating up food in a microwave 
1 The microwave oven is a resonant cavity. The microwave electromagnetic radiation is reflected from the cavity walls 

and forms a standing wave. The hot spots are where the antinodes occur.

2 2.45 GHz = 2.45 × 109 Hz

3 f = 2.45 × 109 Hz, λ = 0.06 × 2 = 0.12 m

 c = fλ
= 2.45 ×109 × 0.12

= 2.94 ×108 ms−1
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4 The accepted value is c = 2.997 924 58 × 108 m s−1.

 
Δc = 2.99792458 ×108 − 2.94 ×108

2.99792458 ×108 ×100 = 2%

5 The marshmallows may have melted unevenly. There would be uncertainty in measuring the position of the antinodes. 

Worked example: Try yourself 8.3.2

CALCULATING WAVELENGTH FROM FRINGE SEPARATION 

A green laser is directed through a pair of thin slits that are 25.0 μm apart. The slits are 1.50 m from a screen on 
which bright fringes are 3.30 cm apart. What is the wavelength of the green light in nm? 

Thinking Working 

Recall the equation for fringe separation.
Δx = λL

d

Transpose the equation to make λ the subject.
λ = Δxd

L

Substitute the given values and solve for λ. 

(Note: 1 µm = 1 × 10−6 m)
λ = 0.0330 × 25.0 ×10−6

1.50
= 5.50 ×10−7m

Express your answer using convenient units (in this case 
nm, where 1 nm = 1 × 10−9 m).

λ = 550 nm

CASE STUDY: ANALYSIS

X-ray diffraction
1 The wavelength of X-rays is similar in size to the lattice spacing of the crystal (i.e. the spacing between the atoms).

2 f = 4.23 ×1018 Hz

λ = c
f
= 3.0 ×108

4.23 ×1018

= 7.09 ×10−11m

= 0.71Å

3 The peaks in an X-ray diffraction pattern occur where the path difference is equal to one wavelength or multiples of 
one wavelength (which is where constructive interference occurs).

4 For the left peak, 2θ =12o  so θ = 6o

 At θ = 6o  and λ = 0.71×10−10 m:

 
d = nλ

2sinθ
= 1× 0.71×10−10

2sin6o = 3.4 ×10−10 m = 3.4Å

 For the right peak, 2θ = 27o  so θ =13.5o

 At θ =13.5o:

 
d = nλ

2sinθ
= 1× 0.71×10−10

2sin13.5o =1.52 ×10−10 m =1.5Å

KEY QUESTIONS

Knowledge and understanding
1 Light does not require a medium in which to travel. Accelerating charges produce varying magnetic fields. A varying 

magnetic field produces a varying electric field, which produces a varying magnetic field and so on. Therefore light 
is self-propagating and we can see light from far away (providing there is no obstruction or heavy gravitational field 
which can divert the light). 

2 a D
b  Significant diffraction occurs when 

λ
w

 is approximately 1 or greater. Red light has a wavelength of 700 nm (which is 

approximately 10−6 m) and a diffraction opening of 0.001 mm is 0.001 × 10−3 or 10−6 m.

3 If light were a particle it would be expected to create two bright bands on the screen behind the slits. However, an 
interference pattern with alternating bright and dark lines is seen, which is characteristic of wave behaviour. 
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4 C and D. As laser light is monochromatic and coherent, all waves line up and are in phase, so it is more likely to 
produce the interference pattern observed in Young’s experiment. Torch light has many wavelengths and the waves 
are not in phase.

5 A and D. When crests meet troughs, the addition of these out-of-phase waves means that complete destructive 
interference occurs and they cancel to form a node.

6 Recall the equation for fringe separation: Δx = λL
d

.
a increase
b decrease, as the wavelength is shorter
c increase

Analysis

7 pd = n + 1
2

⎛
⎝⎜

⎞
⎠⎟ λ

 For the fifth dark fringe, n = 4. (Recall that numbering starts from n = 0.). Hence pd = (4 + 1
2

)λ .

 Therefore the fifth dark fringe occurs where the path difference is 4.5λ = 4.5 × 580 nm = 2610 nm or 2.61 × 10−6 m. 

8 Constructive interference occurs when the path difference is a whole-number multiple of the wavelength. 
Destructive interference occurs when the path difference is an odd-number multiple of half the wavelength.
a destructive
b constructive 
c destructive

9 pd = nλ	. Recall that the central maximum is where n = 0. So for the second bright fringe, n = 2 and pd = 2λ	. Therefore 
the second bright fringe occurs where the path difference is 2 × 700 = 1400 nm.

10 Δx = λL
d

λ = Δxd
L

= 0.037 × 40 ×10−6

3.25
= 4.55 ×10−7 m

= 455nm

11 The diagram shows diffraction occurring. Increasing the frequency of the wave decreases its wavelength. Once the 
wavelength is smaller than the slit width, the diffraction effects would become less significant.

12 The central antinode occurs where both waves have travelled the same distance, i.e. the path difference is 0. The next 
antinodes on either side occur when the path difference is 1λ.

 

Intensity

M

Chapter 8  Review
Knowledge and understanding
1 The green wave represents the superposition of the blue and the red waves.

2 This is known as destructive interference. The two wave pulses must have the same frequency (or wavelength) and the 
same amplitude and be out of phase by 180°. In these circumstances a maximum positive displacement of one wave 
coincides with a maximum negative displacement of the other wave.

3 The motor produces different frequencies of vibrations depending on its speed. At speeds where the car is vibrating 
more strongly, the motor frequency can be assumed to be at a similar frequency to the natural frequency of the car. 
This is known as resonance. The amplitude of the vibration will depend on how well the wheels are aligned. 

4 a A node is where the amplitude of the standing wave is zero. 
b An antinode is where the amplitude of the standing wave varies from maximum positive through to zero through to 

maximum negative.
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5 a The lowest frequency is the longest wavelength, which is the fundamental.

 fn = nv
2l

 

f1 = 1× 400
2 × 0.950

=  211Hz

b f3 = 3 × f1 = 3 × 211 = 633Hz

6 The fundamental frequency is given by f1 = 1
T

= 1
4.0

= 0.25Hz.

 The frequency of the second harmonic is given by f2 = 2 × f1 = 2 × 0.25 = 0.50 Hz.

7 Calculate the wavelength of the wave using the wave equation:

 v = fλ

λ = v
f

= 95.0
540

= 0.176m

 Since the distance between an antinode and a node in a standing wave in a string with fixed ends is a quarter of a 
wavelength, then:

 
d = λ

4
= 0.176

4
= 0.044m or 4.4cm

8 a The strings on a violin are fixed at both ends. Therefore l =
λ1

2
= 0.710

2
= 0.355m.

b If n = 5, λ5 = 2l
n

= 2 × 0.355
5

= 0.142m  

 Alternatively, λ5 = λ1

5
= 0.710

5
= 0.142m

9 The speed of light is 3.0 × 108 m s−1. Start by converting 2.537 million years to seconds:

 t = 2.537 ×106 × 365.25 × 24 × 60 × 60 = 8.0 ×1013s.

 Since c = d
t
, d = ct = 3.0 ×108 × 8.0 ×1013 = 2.4 ×1022 m.

 This distance is so large that astronomers use the term ‘light-years’ to express astronomical distance. The Andromeda 
galaxy is 2.537 million light-years from the Earth.

10 A varying magnetic field is produced by accelerating oscillating charged particles. The varying magnetic field induces 
a varying electric field which in turn produces a magnetic field. This sequence repeats indefinitely. 

11 The phenomenon is diffraction. The figure shows the edges of the waves bending as the waves pass through the gap. 
Narrowing the gap would make the effect stronger.

12 D. The frequency and the speed of light are both known. Solve for the wavelength of green light: 

 λ = c
f
= 3.0 ×108

5.66 ×1014 = 5.3 ×10−7 m

 Convert to mm by multiplying by 1000: λ = 5.3 ×10−4 mm.

13 The green light (λ = 525 nm) has a longer wavelength than blue light (λ = 460 nm). Since Δx = λL
d

, the diffraction 
pattern spacing, Δx, would spread out more when changing from a blue laser to a green laser. 

14 a Δx = λL
d

λ = Δxd
L

= 0.031×75.0 ×10−6

4.00
= 5.81×10−7

= 581nm

b 581 nm is closest to yellow.



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

15 A path difference of 1
1
2

λ corresponds to the second dark band on each side of the central maximum (at M), circled on 
the diagram below.

 

Intensity

M

Application and analysis
16 The resultant wave pattern, shown by the red line, is determined using the principle of superposition.

 

resultant wave

17 The resultant wave from the interference of two waves travelling in opposite directions is shown below.

 

wave 1

wave 1 + wave 2

wave 2

18 

 

 The shorter wavelength shows a smaller diffraction effect because the width of the gap is much greater than the 
wavelength. The larger wavelength shows significant diffraction because the width of the gap is similar to the 
wavelength.
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19 This would occur if the natural frequency of the human ear is 2500 Hz. If the applied frequency of the signal generator 
is the same as the natural frequency of the ear canal, there would be maximum transfer of energy from the generator 
to the ear, which is perceived as a louder sound.

20 a The principle of superposition states that the resultant wave pattern from two overlapping waves is the vector 
sum of the individual displacements of the waves. The resultant wave has an amplitude greater than that of each 
individual wave. This is constructive interference. The whole wave shows constructive interference, as both waves 
have the same period (if the horizontal axis is time) or wavelength (if the horizontal axis is linear position).

b A 
λ
2

 (or 180°) shift in phase of one of the waves would result in a resultant wave pattern with an amplitude less 

than the individual amplitudes of wave A and wave B. This would be destructive interference.

21 The spacing between the ruts is d = 0.10 m and v = 50 km h−1 = 
50
3.6

 = 13.9 m s−1. Therefore f = vcar

d
= 13.9

0.10
=139Hz.

22 The wavelength of light is very small, in the order of 10−7 m. Significant diffraction only occurs when 
λ
w

≥1. The 
wavelength of light is too small to diffract around most everyday objects. 

23 The visible light used in optical instruments varies in wavelength from 400 nm to 700 nm. For objects with spacings of 
400 nm or less, diffraction effects will limit the ability of the microscope or telescope to resolve the image. 

24 A microwave oven is tuned to produce electromagnetic waves with a frequency of 245 GHz. This is the resonant 
frequency of water molecules. When food is bombarded with radiation at this frequency, the water molecules in the 
food start to vibrate. The energy of the water molecules is transferred to the rest of the food, heating it up.

25 a False. Visible light waves have a wavelength range from 400 nm to 750 nm and require an opening with a width of 
400 nm to 750 nm for diffraction to occur.

b Determine the wavelength:

 λ = v
f
= 0.5

0.2
= 2.5m

 This is similar in size to the opening, so the statement is true.

c Determine the wavelength: 

 λ = v
f
= 400

261.6
=1.53m

 This is similar in size to the opening, so the statement is true.
d False. Red light has a longer wavelength than violet light; therefore red light will diffract through a larger gap than 

violet light.
e True

26 Plot the data in the table to obtain the graph below.

 

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
4.0 × 10–3

5.0 × 10–3

6.0 × 10–3
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8.0 × 10–3

9.0 × 10–3

10 × 10–3

Distance to screen, L (m)
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(m
)

Young’s experiment

 Draw line of best fit. The gradient construction lines (shown in red above) should be drawn from the line of best fit. 
From the line of best fit:

 
gradient = 8.9 ×10−3 − 4.7 ×10−3

0.98 − 0.5
= 0.00875

 From Δx = λ
d

L, the gradient = λ
d

.
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 Rearranging to make the slit separation the subject of the equation gives:

 
d = λ

gradient
= 550 ×10−9

0.00875
= 63 ×10−6 = 63µm

 Answers between 60 to 65 µm are acceptable.

27 Count the number of wavelengths between S1 and position A:

 d1 = 5 wavelengths = 5λ
 Count the number of wavelengths between S2 and position A:

 d2 = 6 wavelengths = 6λ
 Path difference = 6λ −5λ = λ
 Thus constructive interference occurs at position A. This is called an antinodal point.
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Chapter 9 The dual nature of light and matter

9.1  The photoelectric effect

Worked example: Try yourself 9.1.1

USING PLANCK’S EQUATION 

Calculate the energy in joules of a quantum of infrared radiation that has a frequency of 3.6 × 1014 Hz. 

Thinking Working 

Recall Planck’s equation. E = hf

Substitute the appropriate values and solve for E. E = 6.63 ×10−34 × 3.6 ×1014

= 2.4 ×10−19 J

Worked example: Try yourself 9.1.2

CONVERTING TO ELECTRON VOLTS

A quantum of light has 2.4 × 10−19 J of energy. Convert this energy to electron volts.

Thinking Working 

Recall the rate for converting joules to electron volts and 
vice versa.

1 eV = 1.6 × 10−19 J

Divide the value expressed in joules by 1.6 × 10−19 to 
convert it to electron volts. E = 2.4 ×10−19

1.6 ×10−19

=1.5eV

Worked example: Try yourself 9.1.3

CALCULATING QUANTUM ENERGIES IN ELECTRON VOLTS 

Calculate the energy in eV of a quantum of infrared radiation that has a frequency of 3.6 × 1014 Hz.  
Assume that h = 4.14 × 10−15 eV s.

Thinking Working 

Recall Planck’s equation. E = hf

Substitute in the given values and solve for E. E = 4.14 ×10−15 × 3.6 ×1014

=1.5eV

Worked example: Try yourself 9.1.4

CALCULATING THE WORK FUNCTION OF A METAL

Calculate the work function (in J and eV) of gold, which has a threshold frequency of 1.2 × 1015 Hz. 

Thinking Working 

Recall the formula for work function. φ = hf0

Substitute the threshold frequency of the metal and solve 
for ϕ.

φ = 6.63 ×10−34 ×1.2 ×1015

= 8.0 ×10−19 J

Convert the energy from J to eV.
φ = 8.0 ×10−19

1.6 ×10−19

= 5.0eV
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Worked example: Try yourself 9.1.5

CALCULATING THE KINETIC ENERGY OF PHOTOELECTRONS

Calculate the kinetic energy in eV of the photoelectrons emitted from lead by ultraviolet light with a frequency of 
1.50 × 1015 Hz. The work function of lead is 4.14 eV. Assume that h = 4.14 × 10−15 eV s.

Thinking Working 

Recall Einstein’s photoelectric equation. Ek max = hf − ϕ

Substitute the given values and solve for Ek max . Ek max = 4.14 ×10−15 ×1.50 ×1015 − 4.14

= 2.07eV

CASE STUDY: ANALYSIS

Lenard’s experiment
1 The frequencies can be calculated using the formula f = c

λ
. The maximum kinetic energy can be converted to joules 

using 1 eV = 1.6 × 10−19 J.

λ (nm) Maximum 
kinetic 
energy (eV)

f (× 1014 Hz) Maximum 
kinetic energy 
(× 10−19 J)

517 0.14 5.8 0.22

448 0.53 6.7 0.85

414 0.75 7.2 1.20

395 0.86 7.6 1.38

366 1.09 8.2 1.74

353 1.25 8.5 2.00

2 
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Demonstrating the photoelectric effect for potassium

0 2 6 8 124 10

y = 0.6407x – 3.4669

3 From the graph in question 2:
a m = 6.4 × 10−34 J s
b y = (0.64 × 10−33) x – 3.5
c x-intercept = 5.4 × 1014 Hz

4 From the values derived in question 3:
a The gradient of the line is Planck’s constant, h:

h = 6.4 × 10−34 J s
b The x-intercept of the line is the threshold frequency, f0:

f0 = 5.4 × 1014 Hz
c The y-intercept of the line is the work function, ϕ:

ϕ = 3.5 × 10−19 J
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KEY QUESTIONS

Knowledge and understanding
1 In the photoelectric effect, a metal surface may become positively charged if light shining on it with a frequency above 

the threshold frequency of the metal causes electrons to be released. This leaves electron-deficient atoms, hence the 
positive charge. If the incident light is below the threshold frequency for that metal, the photoelectric effect will not 
occur.

2 a True
b False. When light sources of the same intensity but different frequencies are used, the higher frequency light has a 

higher stopping voltage, but it produces the same maximum current as the lower-frequency light.
c True

3 a True
b False. The stopping voltage is reached when the photocurrent is reduced to zero.
c True
d True

4 

 

Ek max = 4.14 ×10−15 × 8.00 ×1014 − 3.15

= 0.162eV

Analysis
5 a E = hc

λ

= 6.63 ×10−34 × 3.0 ×108

656 ×10−9

= 3.0 ×10−19 J

b E = hc
λ

= 6.63 ×10−34 × 3.0 ×108

589 ×10−9

= 3.4 ×10−19 J

c E = hc
λ

= 6.63 ×10−34 × 3.0 ×108

486 ×10−9

= 4.1×10−19 J

d E = hc
λ

= 6.63 ×10−34 × 3.0 ×108

397 ×10−9

= 5.0 ×10−19 J

6 a ϕ = hf0 = 4.14 × 10−15 × 1.0 × 1015 = 4.1 eV
b ϕ = hf0 = 4.14 × 10−15 × 1.1 × 1015 = 4.6 eV
c ϕ = hf0 = 4.14 × 10−15 × 1.5 × 1015 = 6.2 eV

7 D.  The threshold frequency is:

 
f0 = φ

h

= 3.66
4.14 ×10−15

= 8.84 ×1014 Hz

 In order to release photoelectrons, the light must have a frequency higher than the threshold frequency. Therefore 
frequencies greater than 8.84 × 1014 Hz (e.g. 9.0 × 1014 Hz) are the only frequencies that will release photoelectrons.
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8 Ek = hc
λ

− 3.77

= 4.14 ×10−15 × 3.0 ×108

310 ×109 − 3.77

= 4.01− 3.77

= 0.24eV

9 C and D

 

φ = hf0 = hc
λ0

λ0 = hc
φ

= 6.86 ×10−7 m

= 686nm

 Photons with wavelengths shorter than the threshold wavelength—e.g. violet light and ultraviolet radiation—will cause 
photoelectrons to be emitted.

10 Ek max = hf − φ

= hc
λ

− φ

0.60 = 4.14 ×10−15 × 3.0 ×108

530 ×10−9 − φ

φ = 2.34 − 0.60

=1.74eV

11 a 
 
f = v

λ

= 3.0 ×108

585 ×10−9

= 5.61×1014 Hz

b E = hf

= 6.63 ×10−34 ×5.61×1014

= 3.72 ×10−19 J

c Total energy = 5000 × energy per photon

= 5000 × 3.72 ×10−19

=1.86 ×10−15 J

9.2  The quantum nature of light and matter

Worked example: Try yourself 9.2.1

CALCULATING THE DE BROGLIE WAVELENGTH

Calculate the de Broglie wavelength of a proton travelling at 7.0 × 105 m s−1. The mass of a proton is 1.67 × 10−27 kg. 

Thinking Working 

Recall de Broglie’s equation.
λ = h

mv

Substitute the appropriate values and solve for λ.
λ = h

mv

= 6.63 ×10−34

1.67 ×10−27 ×7.0 ×105

= 5.7 ×10−13 m
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Worked example: Try yourself 9.2.2

CALCULATING THE DE BROGLIE WAVELENGTH OF A MACROSCOPIC OBJECT

Calculate the de Broglie wavelength of a 66 kg person running at 36 km h−1.

Thinking Working 

Convert velocity to SI units. v = 36
3.6

=10ms−1

Recall de Broglie’s equation.
λ = h

mv

Substitute the appropriate values and solve for λ.
λ = h

mv

= 6.63 ×10−34

66 ×10
=1.0 ×10−36 m

Worked example: Try yourself 9.2.3

WAVELENGTH OF ELECTRONS EMITTED FROM AN ELECTRON GUN

Find the de Broglie wavelength of an electron that has been accelerated from rest through a potential difference of 
50 V. The mass of an electron is 9.1 × 10−31 kg and the charge on an electron is 1.6 x 10−19 C.

Thinking Working 

Calculate the kinetic energy of the electron from the work 
done on it by the electric potential. Recall from earlier 
chapters that W = qV = Ek.

W = qV

=1.6 ×10−19 ×50

= 8.0 ×10−18 J

Calculate the velocity of the electron.
Ek = 1

2
mv2

v = 2Ek

m

= 2 × 8.0 ×10−18

9.1×10−31

= 4.2 ×106 ms−1

Use de Broglie’s equation to calculate the wavelength of 
the electron. λ = h

mv

= 6.63 ×10−34

9.1×10−31 × 4.2 ×106

=1.7 ×10−10

= 0.17nm

CASE STUDY: ANALYSIS

Electron microscope
1 High-energy electrons colliding with gas atoms will produce anomalies in the resulting images.

2 By de Broglie’s equation λ = h
mv

⎛
⎝⎜

⎞
⎠⎟  the wavelength is inversely proportional to the velocity.

3 While an electron is in any part of a magnetic field its path will be circular.
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4 Remember from Chapter 6 that the force on an electron is proportional to both its velocity and the strength of the 
magnetic field (F = qvB). Therefore if we reduce the velocity (v) we must increase the magnetic field (B) by the same 
factor in order to keep the electron beam travelling in the same path.

 qvB = mv2

r

B = mv
qr

5 Convert the energy in eV to J:

 Ek = 150 × 103 × 1.60 × 10−19 = 240 × 10−16 J

 Use the equation for kinetic energy to calculate the velocity:
 

Ek = 1
2

mv2

v2 = 2Ek

m

= 2 × 240 ×10−16

9.1×10−31

v = 52.7 ×1015

= 2.3 ×108 ms−1

Worked example: Try yourself 9.2.4

CALCULATING PHOTON MOMENTUM

Calculate the momentum of a photon of blue light with a wavelength of 450 nm.

Thinking Working 

Recall the formula for the momentum of a photon.
p = h

λ

Convert 450 nm to m. 450 nm = 450 × 10−9 m

Substitute the appropriate values and solve for p.
p = h

λ

= 6.63 ×10−34

450 ×10−9

=1.47 ×10−27 kgms−1

KEY QUESTIONS

Knowledge and understanding
1 The wavelength of a cricket ball is so small that its wave-like behaviour could not be seen by a cricket player.

2 The wavelength of light is larger than the radius of the atom so it cannot be reflected from the atom. An electron 
microscope can observe individual atoms because the wavelength of the electron is very small and comparable to the 
radius of the atom. When it strikes the atom it is scattered and can create an image of the atom. 

3 B. The wavelike behaviour of matter is determined by its mass and velocity (that is, momentum). Therefore only 
moving particles exhibit wave-like behaviour.

4 Classical physics requires an object to have a rest mass in order to calculate its momentum. Therefore it cannot 
determine the momentum of a photon because a photon has no rest mass. 
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Analysis

5 W = qV = 1
2

mv2

v = 2qV
m

λ = h
mv

= h

m
2qV
m

= h

2qVm

6 The image from a light microscope is produced by reflecting white light from the object. White light comprises many 
wavelengths. Those that are reflected to, and seen by, the observer depend on the colour of the object itself.

 The image from an electron microscope is produced by a beam of electrons with specific wavelengths that lie outside 
the visible spectrum. Where the beam passes easily through parts of the object, a white region will result. Areas that 
are more difficult to pass through will result in shades of grey to black.

7 λ = h
mv

v = h
mλ

= 6.63 ×10−34

9.1×10−31 × 2.5 ×10−9

= 2.9 ×105 ms−1

8 a λ = 3.0 ×108

9.6 ×1017

= 3.1×10−10 m

b λ = h
mv

3.1×10−10 = 6.63 ×10−34

9.1×10−31 × v

v = 6.63 ×10−34

9.1×10−31 × 3.1×10−10

= 2.4 ×106 ms−1

9 λ = hc
E

= 6.63 ×10−34 × 3.0 ×108

3.65 ×10−13

= 5.45 ×10−13 m

 The speed of a proton necessary to exhibit this wavelength is:

 

v = h
mλ

= 6.63 ×10−34

1.67 ×10−27 ×5.45 ×10−13

= 7.3 ×105ms−1
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9.3  Light and matter

Worked example: Try yourself 9.3.1

SPECTRAL ANALYSIS

In the Sun’s absorption line spectrum, one of the dark Fraunhofer lines corresponds to a frequency of 6.9 × 1014 Hz. 
Calculate the energy (in joules) of the photons that corresponds to this line.

Thinking Working 

Recall Planck’s equation. E = hf

Substitute the appropriate values and solve for E. E = 6.63 ×10−34 × 6.9 ×1014

= 4.6 ×10−19 J

Worked example: Try yourself 9.3.2

USING THE BOHR MODEL OF THE HYDROGEN ATOM

Calculate the wavelength (in nm) of the photon produced when an electron drops from the n = 3 energy level of a 
hydrogen atom to the n = 1 energy level. Identify the spectral series to which the corresponding spectral line belongs. 
Use Figure 9.3.10 to calculate your answer.

Thinking Working 

Note the energy of the relevant energy levels of the 
hydrogen atom.

E3 = −1.5 eV

E1 = −13.6 eV

Calculate the difference in energy. ΔE = E3 − E1

= −1.5 − (−13.6)

=12.1eV

Calculate the wavelength of the photon with this amount 
of energy. λ = hc

E

= 4.14 ×10−15 × 3.0 ×108

12.1
=1.03 ×10−7 m

=103nm

Identify the spectral series. The electron drops to the n = 1 energy level.

Therefore the spectral line belongs to the Lyman series.

Worked example: Try yourself 9.3.3

ABSORPTION OF PHOTONS

Some of the energy levels for atomic mercury are shown in the diagram below.

0

–1.6

–3.7

–5.5

–10.4

n = ∞

n = 4

n = 3

n = 2

n = 1

E (eV)

Light with photon energies 6.7 eV, 9.0 eV and 11.0 eV passes through some mercury gas. What could happen as a 
result of the incident light?



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

Thinking Working 

Calculate the difference in energy between each level. 

n = ∞

E (eV)

n = 4

n = 3

n = 2

n = 1

0
–1.6

–3.7

–5.5

–10.4 4.9 eV
6.7 eV
8.8 eV
10.4 eV

1.8 eV
3.9 eV
5.5 eV

2.1 eV
3.7 eV

1.6 eV

Check whether a given photon energy corresponds with 
any energy difference.

A photon of 6.7 eV corresponds to the energy required 
to promote an electron from the ground state to the 
second excited state (n = 1 to n = 3). The photon may be 
absorbed.

A photon of 9.0 eV cannot be absorbed.

A photon of 11.0 eV may ionise the mercury atom. The 
ejected electron will leave the atom with 0.6 eV of kinetic 
energy.

KEY QUESTIONS

Knowledge and understanding
1 a Energy levels are restricted to certain discrete values.

b The ground state is when the electrons in the atom are not in an excited state. It is the lowest energy state.
c Excited states are the quantised energy states to which electrons can be excited by the addition of energy.
d Ionisation energy is the minimum energy needed to overcome the forces keeping the electron in the atom.

2 The electrons in an element in the gaseous state become excited to a higher energy level when the gas is heated or an 
electric current flows through it. On returning to their ground state, the electrons emit the energy gained as a photon 
of light.

3 Bohr’s model could not explain the spectra of multi-electron atoms, the continuous emission spectrum of compounds 
and the two close spectral lines in hydrogen that are only revealed at high resolution.

4 An electron ordinarily occupies the lowest energy orbit, so absorption is observed when electrons move mainly from 
the ground state, while emission includes all possible downward transitions from a higher excited state to a lower 
excited state.

5 E = hf

= 6.63 ×10−34 × 5.3 ×1014

= 3.5 ×10−19 J

6 E = hc
λ

λ = hc
E

= 4.14 ×10−15 × 3.0 ×108

1.84
= 6.75 ×10−7 m

= 675nm
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Analysis
7 a The energies of incident photons that correspond to the exact differences between energy levels in the lithium 

atom are absorbed if the photons collide with electrons in a gas atom and excite them to a higher energy level. 
The wavelengths that correspond to these energies are removed from the incident beam, leaving a dark line on the 
spectrum of the emergent beam.

b E = hc
λ

= 6.63 ×10−34 × 3.0 ×108

452 ×10−9

= 4.40 ×10−19 J

= 4.40 ×10−19

1.60 ×10−19 eV

= 2.75eV

Electrons absorbed, and removed, the 452 nm photons from the incident beam and were excited from the n = 3 
level to the n = 4 level.

8 a ΔE = E3 − E1

= −1.5 − −13.6( )
=12.1eV

b E = hc
λ

λ = hc
ΔE

= 4.14 ×10−15 × 3.0 ×108

12.1
=1.03 ×10−7 m

=103nm

9 E = hc
λ

= E5 − E2

4.14 ×10−15 × 3.0 ×108

410 ×10−9 = E5 − (−3.4)

3.03 = E5 − (−3.4)

E5 = 3.03 − 3.4

= −0.37eV

Chapter 9  Review
Knowledge and understanding
1 a The detector observed a sequence of maximum and minimum intensities. 

b As the electron beam is diffracted, the electrons are exhibiting wave-like behaviour. Electrons are not light but, like 
light, a beam of electrons can be diffracted.

2 The energy levels in an atom cannot be any value within a continuous range but are restricted to certain discrete 
values, i.e. the levels are quantised.

3 Bohr’s work on the hydrogen atom and his idea of electrons revolving around the nucleus in orbits with specific 
energies convinced many scientists that a particle model was needed to explain the way light behaves in certain 
situations. It built significantly on the work of Planck and Einstein.

4 The emission line spectrum of sodium appears as a series of coloured lines. The absorption line spectrum of sodium 
appears as a full visible spectrum with a number of dark lines. The colours that are missing in the absorption line 
spectrum match the colours that are visible in the emission line spectrum.

5 The Sun’s spectrum is an absorption line spectrum with the dark lines being the same as those in the emission line 
spectra of hydrogen and helium. This indicates that these gases are present in the Sun’s atmosphere.
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6 The photoelectric effect is explained by the particle nature of light and electron diffraction patterns are explained by 
the wave nature of particles. The interference pattern in Young’s double slit experiment is used as evidence of the 
wave nature of light, so an electron diffraction pattern produced in a similar way suggests that electrons have a wave 
property.

7 From de Broglie’s equation, momentum, p, equals h
λ

. It is possible for particles and photons to have the same 

momentum provided both the particle and photon have the same wavelength. 

8 photoelectrons

9 E = hf = 4.14 × 10−15 × 6.0 × 1014 = 2.5 eV

10 E = 5.0 × 1.6 × 10−19 J = 8.0 × 10−19 J

11 φ = hf0

f0 = φ
h

= 5.0
4.14 ×10−15

=1.2 ×1015 Hz

12 φ = hf0
= 4.14 ×10−15 ×1.5 ×1015

= 6.2eV

Ek max = 4.14 ×10−15 × 2.2 ×1015 − 6.2

= 2.9eV

13 The stopping voltage is equivalent to the maximum kinetic energy of the photoelectrons, so Ek max = 1.95 eV.

Application and analysis
14 The work function is given by the y-intercept of the Ek max versus frequency graph. Approximate values are:

 Rb = 2.1 eV, Sr = 2.5 eV, Mg = 3.4 eV, W = 4.5 eV

15 a  

E k
 m

ax
 (e

V
)

Frequency (×1014 Hz) 
5.44 5.52 5.60 5.68 5.76 5.84 5.92 6.00 6.08 6.16 6.245.12

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

0.33

0.36

0.39

0.42

0.45

0.48

0.54

0.51

5.20 5.28 5.36

Maximum kinetic energy of photoelectrons versus frequency for rubidium
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b gradient = h = rise
run

= 0.494 − 0.080
6.20 ×1014 −5.20 ×1014

= 0.414
1.00 ×1014

= 4.14 ×10−15 eV s

c The x-intercept is at approximately 5.0 × 1014 Hz. This is the threshold frequency.
d No. The frequency of red light is below the threshold frequency for rubidium. Its frequency is:

f = c
λ

= 3.0 ×108

680 ×10−9

= 4.41×1014 Hz

This is less than the threshold frequency of 5.0 × 1014 Hz, so no photoelectrons will be emitted.

16 a E = hc
λ

= 4.14 ×10−15 × 3.0 ×108

260 ×10−12

= 4777eV

= 4.78keV

b The electrons have a de Broglie wavelength that is similar to the wavelength of the X-rays. This is evidence of the 
dual nature of light and matter.

c p = h
λ

= 6.63 ×10−34

260 ×10−12

= 2.55 ×10−24 kgms−1

17 Electron:

 

λ = h
mv

= 6.63 ×10−34

9.1×10−31 ×7.5 ×106

= 9.7 ×10−11m

 Blue light:

 λ = 470 × 10−9 = 4.7 × 10−7 m

 X-ray: 

 

c = fλ

λ = c
f

= 3.0 ×108

5 ×1017

= 6 ×10−10 m

 Proton: 

 

λ = h
p

= 6.63 ×10−34

1.7 ×10−21

= 3.9 ×10−13 m

 Therefore blue light has the longest wavelength (option B).
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18 a λ = h
mv

= 6.63 ×10−34

0.040 ×1.0 ×103

=1.658 ×10−35

=1.7 ×10−35 m

b No. The wavelength is much smaller than the size of everyday objects.
The wavelength of the bullet travelling at 1.0 × 103 m s−1 is many times smaller than the radius of an atom. 
Significant diffraction only occurs when the wavelength is equal to or greater than the size of the gap (or object), i.e. 
when λ ≥ w.

19 a 6 spectral lines:
n4 to n1

n4 to n2, n2 to n1

n4 to n3, n3 to n1

n4 to n3, n3 to n2, n2 to n1

As there are two repeated transitions listed, there are only six unique lines.
b ΔE = E4 − E1

= −0.85 − (−13.6)

=12.75eV

= hf

f = ΔE
h

= 12.75
4.14 ×10−15

= 3.08 ×1015 Hz

c This is the ultraviolet region.

20 a 1
2

mv2 = 3.72 ×1.60 ×10−19

v2 = 1.60 ×10−19 × 3.72 × 2
9.11×10−31

=1.307 ×1012

v =1.14 ×106 ms−1

b 3.62 eV
3.20 eV
2.11 eV
0 eV

When high-energy incident electrons collide with ground state electrons, they can impart some of their energy to 
these electrons. If the energy absorbed by any ground state electron corresponds to the exact energy difference 
between a higher state and the ground state, the ground state electron will be excited to that state. These excited 
electrons will quickly fall back to the ground state via one or more steps, emitting a photon of light equal to the 
energy difference of that step. In this example electrons can be excited to all levels between the ground state and 
up to, but not including, the energy of the incident electrons, as these must retain some kinetic energy to escape. 
The excited states are:
3.72 − 1.61 = 2.11 eV
3.72 − 0.52 = 3.20 eV 
3.72 − 0.10 = 3.62 eV
 The electron emerging from the tube at 3.72 eV has the same energy as the incident electron, so it must have 
passed straight through without transferring any of its energy to electrons in the sodium vapour.

c  Six spectral lines with energies of 3.62 eV, 3.62 − 2.11 eV, 3.62 − 3.20 eV, 3.20 eV, 3.20 − 2.11 eV, and 2.11 eV are 
possible, as the excited electron returns to the ground state via one or more steps.

d E = hc
λ

= 6.63 ×10−34 × 3.0 ×108

589 ×10−9 ×1.6 ×10−19 = 2.11eV. The electron transition will be from the second energy level to the first 

energy level (i.e. to the ground state).
e lowest frequency = lowest energy: transition is n = 4 to n = 3
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Chapter 10 Einstein’s special theory of relativity 

10.1  Einstein’s special relativity

KEY QUESTIONS

Knowledge and understanding
1 They believed that all waves needed to travel in a medium, so just as air is the medium for sound, they invented the 

aether to be the medium for light.

2 Place a hanging pendulum in both spaceships. The pendulum in the accelerating spaceship will move from its normal 
vertical position when the spaceship accelerates. 

3 The speed of the ball is greater for Jana than it is for Tom.

 The speed of the sound in the carriage is greater on the approach than it is on departure for Jana, while for Tom it is 
the same both forwards and backwards.

 The speed of light is the same for Jana and Tom.

4 Two examples are a person standing on a train that has a constant velocity and a passenger sitting on a plane that is 
travelling with constant velocity.

5 Two examples are a person sitting on a Ferris wheel that is rotating at a constant speed and a driver in a racing car 
accelerating away from the start line.

6 Einstein’s first postulate is that the laws of physics are the same in all inertial frames of reference. On a train or in a 
plane moving at constant velocity, an object dropped would hit the ground vertically below the point from which it 
was dropped. Both situations show that the laws of physics apply equally in inertial frames of reference. On a rotating 
Ferris wheel, the normal force acting on a person would be different at the top of the ride than at the bottom, while if 
a driver were to drop a ball inside an accelerating racing car, it would hit the floor at a point not vertically below the 
point from which it is dropped. Both these situations show that in non-inertial frames of reference, the laws of physics 
don’t appear to be consistent with the laws in inertial frames of reference.

7 Max’s sister is in circular motion, so she is in a non-inertial frame of reference. Thus she sees the path of the ball 
curve. Max sees the path of the ball move in a straight line, as the ball is in his inertial frame of reference. He should 
have thrown the ball slightly in front of his sister for her to catch it.

Analysis
8 a 340 + 30 = 370 m s−1

b 340 – 40 = 300 m s−1

c 340 + 20 = 360 m s−1

d 340 + 10 = 350 m s−1

9 a In Alex and Bill’s frame of reference v = 7.00
1.59

= 4.40ms−1 north, so in Carla’s frame of reference

v = (−6.00) + (4.40) = −1.60 =1.60ms−1 south

b d = vt = (−1.60)(1.59) = −2.54 = 2.54m south

c 1.59 s

10 a t = 7.00
70.0

= 0.100s

b 70.0 m s−1, as it is in all frames of reference
c s = vt = (6.00)(0.100) = 0.600m south
d 70.0 m s−1, as it is in all frames of reference

10.2 Einstein’s Gedanken train

KEY QUESTIONS

Knowledge and understanding
1 The three dimensions of space and the fourth dimension of time are interdependent, i.e. the passage of time can be 

affected by motion in space. It is most noticed when the velocity involved is very fast. Similarly, distances in space are 
also affected by the motion of an object through space at high speeds.

2 The effects of relativity occur in situations that we cannot normally observe. In a similar way, observations of 
simultaneous events would not be possible using our senses. Thus we must use thought experiments in which we 
have special abilities of observation.
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3 Galilean relativity applies to objects moving in inertial frames of reference. The outside observer would see the balls 
moving at different speeds in their frame of reference. So the ball travelling forwards is going faster by the amount 
required to cover the extra distance that the front wall moves away in the same time that the ball moving backwards is 
slowed to cover the shorter distance as the back wall moves forward.

4 Both Amaya and Clare will see the light travel at 3.0 × 108 m s−1. According to Einstein’s second postulate, the speed of 
light will always be the same no matter what the motion of the light source or observer.

5 The fundamental property that causes the lack of simultaneity is the constancy of the speed of light viewed from any 
frame of reference.

6 Muons have very short lives. They are created approximately 15 km up in the atmosphere. As they travel down 
through the atmosphere the muon’s speed is very similar to the speed of light. According to Newtonian laws, muons 
should not reach the Earth’s surface. However, many do.

Analysis
7 Stephen is in a different frame of reference to Barry. Stephen will be moving towards the light source on the left and 

away from the light source on the right. Thus Stephen sees the light from the left arrive first and the light from the 
right arrive some time later. He then deduces that the flashes of light were sent at different times.

8 Answers will vary. An example is a person sitting in a plane travelling at high speed and sending flashes of light 
simultaneously towards the front and back of the plane. If a stationary observer on the ground could see this light, 
they will see the flash of light strike the back of the plane first, whereas the person on the plane will see the flashes of 
light strike the front and back at the same time.

9 Atomic clocks enable extremely short durations to be timed to many decimal places. Differences in time for the 
same event to occur, when measured by observers in different inertial frames of reference, indicate that time is not 
uniform between the two inertial frames. The ability to time these very small differences enables researchers to gather 
evidence to support Einstein’s special theory of relativity.

10 a 10 × (23 × 10−24) = 2.3 × 10−22 s
b d = vt = (0.993) × (3.0 × 108) × (2.3 × 10−22) = 6.9 × 10−14 m
c To still exist over 8 times the distance from their source, the hydrogen-7 atoms must be living for a longer time. By 

existing for a longer time, they can travel further.

10.3  Time dilation

Worked example:  Try yourself 10.3.1

TIME DILATION

A stationary observer on the Earth sees a very fast scooter passing by, travelling at 2.98 × 108 m s−1. On the wrist of the 
rider is a watch on which the stationary observer measures 60.0 s passing. Calculate how many seconds pass by on 
the stationary observer’s clock during this observation. Assume that c = 3.00 × 108 m s−1.

Thinking Working

Identify the variables: the time for the stationary observer 
is t, the proper time for the moving clock is t0 and the 
velocities are v and c.

t = ?

t0 = 60.0 s

v = 2.98 × 108 m s−1

c = 3.00 × 108 m s−1

Use Einstein’s time dilation formula and the 
Lorentz factor.

t = γ t0 = t0

1− v2

c2

Substitute the appropriate values and solve for t.
t = γ t0 = t0

1− v2

c2

= 60.0

1− (2.98 ×108)2

(3.00 ×108)2

= 60.0
0.11528

= 5.20 ×102 s
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KEY QUESTIONS

Knowledge and understanding
1 In a device called a light clock, the oscillation of light is used to measure time, as the speed of light is constant no 

matter from which inertial frame of reference it is viewed. 

2 Proper time, t0. This is because, from this observer’s frame of reference, the observer can hold their stopwatch 
stationary in one location, start it when the front of the space probe is in line with the stopwatch and stop it when the 
back of the probe is in line with the stopwatch.

3 t = γ t0

= t0

1− v2

c2

= 1.05

1− (1.75 ×108)2

(3.00 ×108)2

= 1.05
0.81223

=1.29s

4 t = γ t0

= t0

1− v2

c2

75.0 = t0

1− (2.30 ×108)2

(3.00 ×108)2

t0 = 75.0 × 0.642

= 48.2s

5 t = γ t0

= t0

1− v2

c2

5.50 = t0

1− (2.75 ×108)2

(3.00 ×108)2

t0  =  5.50 ×  0.3996

= 2.20s

6 t = γ t0

= 1

1− 0.502
×1

=1.2s

Analysis
7 a The height of the clock: 1.0 m 

b tN = d
v
= 1.0

3.00 ×108

    = 3.3 ×10−9 s
c d = ctG
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d As the distance the ship moves in Gemma’s frame of reference is 0.90ctG and the height of the clock is 1.0 m, the 
distance, d, which the light travels is given by: 

 d2 = (0.90ctG)2 +1.02 = 0.81c2tG
2 +1.0

 As this also equals c2tG
2 (from part c), it follows that:

 

0.81c2tG
2 +1.0 = c2tG

2

0.19c2tG
2 =1.0

 Thus:

 

tG
2 = 1.0

0.19c2

tG = 7.6 ×10−9 s

e 
tG

tN
= 7.6 ×10−9

3.3 ×10−9 = 2.3 which is the same as γ for v = 90% of c.

8 a t = γ t0

= t0

1− v2

c2

= (2.20 ×10−6 )

1− (0.9992c)2

c2

= 2.20 ×10−6

1− 0.99922

= 5.50110 ×10−5 s or 55.0µs

b Non-relativistic:
 d = vt = 0.9992 × 3.00 × 108 × 2.20 × 10−6 = 660 m
 Relativistic:
 d = vt = 0.9992 × 3.00 × 108 × 5.50110 × 10−5 = 1.649 × 104 m or 16.5 km

9 a t = d
v

= 15.5 ×10−2

2.93 ×108

= 5.29010 ×10−10 s

 The moving particles last for 5.29 × 10−10 s.

b t = γ t0

t = t0

1− v2

c2

5.29010 ×10−10 = t0

1− (2.93 ×108)2

(3.00 ×108)2

t0 =1.13611×10−10 s

 Hence the particle lives for 1.14 × 10−10 s in the rest frame of reference. This is expected, as the lifetime for the 
particle at rest should be shorter than when observed to be travelling at high speeds.

10 The equator clock is moving faster relative to the poles, so special relativity effects mean that the clock will run slower 
relative to an observer at the poles. It is also accelerating and hence will run slower due to general relativity effects. 
The combined effect is well below what we can detect with any clock, as the speed of the equator is only about 
460 m s−1, which is about 1.5 millionth the speed of light.
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10.4  Length contraction

Worked example: Try yourself 10.4.1

LENGTH CONTRACTION 

A stationary observer on the Earth sees a very fast scooter travelling by at 2.98 × 108 m s−1. The stationary observer 
measures the scooter’s length as 22.0 cm. Calculate the proper length of the scooter, i.e. the length measured when 
the scooter is at rest. Assume that c = 3.00 × 108 m s−1.

Thinking Working

Identify the variables: the length measured by the 
stationary observer is L, the proper length of the scooter 
is L0 and the velocities are v and c.

L0 = ?

L = 0.220 m

v = 2.98 × 108 m s−1

c = 3.00 × 108 m s−1

Use Einstein’s length contraction formula and the  
Lorentz factor.

L0 = Lγ

= L

1− v2

c2

Substitute the appropriate values and solve for L0. L0 = 0.220

1− (2.98 ×108)2

(3.00 ×108)2

= 0.220
0.11528

=1.91m

Worked example: Try yourself 10.4.2

LENGTH CONTRACTION FOR DISTANCE TRAVELLED 

A stationary observer on the Earth sees a very fast train approaching a tunnel at a speed of 0.986c. The stationary 
observer measures the tunnel’s length as 123 m. Calculate the length of the tunnel as seen by the train’s driver.

Thinking Working 

Identify the variables: the length seen by the driver is L, 
the proper length of the tunnel is L0 and the velocity is v.

L = ?

L0 = 123 m

v = 0.986c

Use Einstein’s length contraction formula and the  
Lorentz factor. L = L0

γ

= L0 1− v2

c2

Substitute the appropriate values and solve for L.
L =123 1− 0.9862 × c2

c2

=123 1− (0.986)2

=123 × 0.16675

= 20.5m
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CASE STUDY: ANALYSIS

How length contraction affects linear particle accelerators 

1 L = L0 1− v2

c2

= (16.0) 1− (0.99999422)2c2

c2

= (16.0)(0.003399995)

= 0.054399921

= 0.0544m or 5.44cm 

2 L = L0 1− v2

c2

= (216) 1− (0.9999999855)2c2

c2

= (216)(1.702938637 ×10−4 )

= 0.036783474

= 0.0368m or 3.68cm

3 C = 2π r

r = C
2π

= 216
2π

= 34.4m

 This is the same as the radius that would be seen in the electrons’ frame of reference, as it is perpendicular to their 
motion.

KEY QUESTIONS

Knowledge and understanding
1 To measure proper length, the object being measured must be at rest relative to the observer.
2 Width and height are not affected as they are at right angles to the direction of motion, but the stationary observer will 

see the spaceship with a contracted length.

3 L = L0

γ

= L0 1− v2

c2

=1.00 × 1− (1.75 ×108)2

(3.00 ×108)2

=  1.00 × 0.81223

= 0.812m

4 L = L0

γ

= L0 1− v2

c2

= 5.25 × 1− (2.30 ×108)2

(3.00 ×108)2

=  5.25 × 0.64205

= 3.37m
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5 a γ = 3.50
1.50

= 2.33

 Thus:

1− v2

c2 = 1
2.33

= 0.429

v2

c2 =1− 0.184

v2 = c2 × 0.816

v = 0.9c or 2.71×108 ms−1

b L = L0

γ

= L0 1− v2

c2

=1.50 × 1− (2.71×108)2

(3.00 ×108)2

=1.50 × 0.42894

= 0.643m

 To the car driver the fast-moving garage appears even shorter than its proper length.

Analysis
6 a γ = 800.0

400.0
= 2.000

 Thus:

 

1− v2

c2 = 1
2.000

= 0.5000

1− v2

c2 = 0.25000

v2

c2 =1− 0.2500

v2 = c2 × 0.7500

v = 0.8660c or 2.598 ×108 ms−1

b γ = 2.000

L
L0

= 1
γ

= 1
2.000

= 0.5000

 So Emily appears half as thin as she normally would, but only in the direction of her motion. Alternatively, recognise 
that if the track length has been halved, then Emily appears half her thickness as well.

7 L = L0 1− v2

c2

= 35.0 × 1− (745)2

(3.00 ×108)2

= 35.0 ×1.0000000

= 35.0cm

 At this speed there is no difference in length.

8 a L = L0 1− v2

c2

= 2.55 × 1− (0.934)2c2

c2

= 2.55 × (1− (0.934)2)

= 2.55 × 0.35727

= 0.911m

b The length of the fishing rod is the proper length: 2.55 m.
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9. a an almost flat circular disc with a radius of 125 m

 
b an almost flat square with sides of 141 m

 
c an almost flat circular ring 30.0 m in radius

 
d an almost flat triangle with a base of 50.0 m and an apex 80.0 m above the base

 

10.5  Einstein’s mass–energy relationship

Worked example: Try yourself 10.5.1

TOTAL ENERGY OF AN OBJECT

Calculate the total energy of an electron speeding through the Australian Synchrotron if its rest mass is 9.11 × 10−31 kg 
and it is travelling at a speed of 2.9979 × 108 m s−1. Assume that c = 3.00 × 108 m s−1 and that Gedanken conditions 
apply for this question.

Thinking Working

Identify the relevant variables: the question asks for the 
total energy Etot, the mass of the electron is m, the speed 
is v and the speed of light is c.

Etot = ?

m = 9.11 × 110−31 kg

v = 2.9979 108 m s−1

c = 3.00 × 108 m s−1

Use Einstein’s total energy formula and the Lorentz 
factor.

Etot = γmc2

= mc2

1− v2

c2

Substitute the appropriate values and solve for Etot. Etot =
mc2

1− v2

c2

= (9.11×10−31)(3.00 ×108)2

1− (2.9979 ×108)2

(3.00 ×108)2

= (8.19900 ×10−14 )
(0.037410)

= 2.19 ×10−12 J
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Worked example: Try yourself 10.5.2

FUSION

A fusion reaction in the Sun fuses two helium nuclides. A helium nucleus and two protons are formed, and 30.0 MeV of 
energy is released.

2
3He +2

3 He →2
x He + 21

1H

a What is the value of the unknown mass number x?

Thinking Working

Analyse the mass numbers. 3 + 3 = x + (2 ×1)

x = 4

A helium-4 nucleus is formed.

b How much energy is released in joules?

Thinking Working

Recall that 1 eV = 1.60 × 10−19 J. 30.0 MeV=(30.0 ×106)(1.60 ×10−19)

= 4.80 ×10−12 J

c Calculate the mass defect for this reaction.

Thinking Working

Use ∆E = ∆mc2.
Δm = ΔE

c2

= (4.80 ×10−12)
(3.00 ×108)2

= 5.33333 ×10−29

= 5.33 ×10−29 kg

Worked example: Try yourself 10.5.3

TRANSFORMATIONS AND CONSERVATIONS

Two protons each with 82.0 MeV of kinetic energy collide to produce a neutral pion (π0) with a mass–energy equivalence 
of 134.976 8 MeV. One of the two protons remains intact after the collision, while the fate of the other proton is unknown. 
The total kinetic energy available to the particles after the collision is 29.022 90 MeV. Use c = 3.00 × 108 m s−1 and the 
data in the table below to answer the following questions.

Particle Mass (kg)

proton/antiproton 1.672 622 × 10−27

neutron/antineutron 1.674 922 × 10−27

electron/positron 9.109 384 × 10−31

a Calculate the total energy of the reactants before the collision.

Thinking Working

Use Einstein’s equation to calculate the total mass–energy 
of the two protons before the collision (in joules).

E = mc2

= 2(1.672622 ×10−27)(3.00 ×108)2

= 3.010720 ×10−10  J

Convert the energy to MeV.
E = (3.010720 ×10−10 )

(1.60 ×10−19)

=1.881700 ×109 eV

=1.881700 ×103 MeV
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Add the kinetic energy of the colliding protons. Einitial = (1.881700 ×103) + 2(82.0)

= 2.045700 ×103

= 2.05 ×103 MeV

b Determine the total energy of the known particles present after the collision and hence identify the particle that one 
of the protons transforms into.

Thinking Working

Use Einstein’s equation to calculate the total mass–energy 
of the proton after the collision (in joules).

E = mc2

= (1.672622 ×10−27)(3.00 ×108)2

=1.505360 ×10−10 J

Convert the energy to MeV.
E = (1.505360 ×10−10 )

(1.60 ×10−19)

= 9.408499 ×108 eV

= 9.408499 ×102 MeV

Add the mass–energy equivalents of the known particles 
to the kinetic energy of the products.

E = (9.408499 ×102) + (134.9768) + (29.02290)

=1.104850 ×103 MeV

Subtract the total energy of the known products in eV 
from the total energy of the reactants to find the mass–
energy of the unknown particle.

Eunknown = (2.045700 ×103) − (1.104850 ×103)

= 9.408504 ×102 MeV

= 9.408504 ×108 eV

Convert the mass–energy of the unknown particle to mass 
in kilograms and identify the name of the particle from the 
table provided. Note that the energy in eV will need to be 
converted to joules.

E = mc2

m = (9.408504 ×108)(1.60 ×10−19)
(3.00 ×108)2

=1.672623 ×10−27 kg

This is close to the mass of a proton, so the unknown 
particle is still a proton.

c Show that charge is conserved during the collision.

Thinking Working

Write the overall reaction for the collision. p+ +p+ ⎯ →⎯ p+ +p+ + π0

Determine the sum of the charges before and after the 
collision.

(2 × +) ⎯ →⎯ (2 × +) + (1× 0)

    2 + ⎯ →⎯ 2 +

Hence charge is conserved.

KEY QUESTIONS

Knowledge and understanding
1 As the velocity of an object increases, so does its momentum, but at a rate much greater than predicted by classical 

mechanics. This is due to the increase in the mass of the object. As the object approaches the speed of light, the mass 
increases and approaches infinity.

2 In this fusion reaction some mass goes missing when the two particles fuse and create the two products. This missing 
mass (the mass defect) is converted into energy according to Einstein’s equation E = mc2.

3 Einstein’s equation suggests that matter and energy are interchangeable. The mass in kilograms of the electron can 
be completely converted into the equivalent amount of energy. For an electron, 0.510 MeV is the energy-equivalent of 
its mass.
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Analysis
4 a p = γmv

= mv

1− v2

c2

= (1230)(775)

1− (775)2

(3.00 ×108)2

= (9.5325 ×105)
1.00000

= 9.53 ×105 kgms−1

 

b Given that the value of γ is essentially 1, at this speed no relativistic effects would be noticed. Thus the value for the 
classical momentum would be identical to the relativistic momentum to many decimal places.

5 p = γmv

= mv

1− v2

c2

= (1.99264824 ×10−26 )(0.950)(3.00 ×108)

1− (0.950)2c2

c2

= (5.67905 ×10−18 )
0.097500

=1.82 ×10−17 kgms−1

6 a Ek = (γ −1)mc2

=
1

1− v2

c2

−1⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
mc2

=
1

1− 0.8402c2

c2

−1⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
(15.1×10−3)(3.00 ×108)2

= 1.843024 −1( )(1.35900 ×1015)

=1.15 ×1015 J

b Ek = 1
2

mv2

= 1
2

(15.1×10−3)(0.840 × 3.00 ×108)2

= 4.79 ×1014 J

 

c According to Einstein, the momentum of the arrow at relativistic speeds increases much more rapidly than classical 

theory predicts. Since Ek = 1
2

mv2, Ek = 1
2

mv × v and Ek = 1
2

pv. The relativistic momentum shown in the third version 

of the equation has a significant effect on the kinetic energy of the arrow.

7 E = mc2

= (4.00 ×109)(3.00 ×108)2

= 3.60 ×1026 J per second

= (3.60 ×1026)(24 × 60 × 60)

= 3.11×1031 J per day
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8 1
1H+ 1

1H⎯ →⎯ 1
2H+ 1

0e+ + 0
0ν

 

Δm = mreactants − mproducts

= (2 ×1.672622 ×10−27) − (3.34358 ×10−27 + 9.10938 ×10−31 + 2.14000 ×10−37)

= (3.345244 ×10−27) − (3.34449 ×10−27)

= 7.54000 ×10−31kg

E = mc2

= (7.54000 ×10−31)(3.00 ×108)2

= 6.78600 ×10−14 J

= 6.78600 ×10−14

1.60 ×10−19

= 4.24125 ×105 eV

= 0.424125 ×106

= 0.424MeV

9 a mtotal = 2(1.672622 ×10−27)

= 3.345244 ×10−27 kg

E = mc2

= (3.345244 ×10−27)(3.00 ×108)2

= 3.010720 ×10−10 J

= (3.010720 ×10−10 )
(1.60 ×10−19)

=1.881700 ×109 eV

=1.881700 ×103 MeV

Etotal = (1.881700 ×103) + 2 × (105.0)

= 2.091700 ×103

= 2.09MeV

b Egamma = 2.091700 ×103

2
=1.045850 ×103

=1.05 ×103 MeV

c        p+ +p− ⎯ →⎯ γ 0 + γ 0

(1× +) + (1× −) ⎯ →⎯ (2 × 0)

            0 ⎯ →⎯ 0

 Hence charge is conserved.

10 a E = mc2

= (2 ×1.674922 ×10−27) × (3 ×108)2

= 3.014860 ×10−10 J

= (3.014860 ×10−10 )
(1.60 ×10−19)

=1.884287 ×109 eV

=1.884287 ×103 MeV

Einitial = (1.884287 ×103) + 2(145.0000)

= 2.174287 ×103 MeV
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b Eknown = 2(139.57039) + 4(2.072649)

= 2.874314 ×102 MeV

Eunknown = (2.174287 ×103) − (2.874314 ×102)

=1.8868556 ×103 MeV

=1.8868556 ×109 eV

= (1.8868556 ×109)(1.60 ×10−19)

= 3.018969 ×10−10 J

E = mc2

munknown = E
c2

= (3.018969 ×10−10 )
(3.00 ×108)2

= 3.354410 ×10−27 kg

meach = (3.354410 ×10−27)
2

=1.677205 ×10−27 kg

 This is close to the mass of a proton, so the two particles produced are protons.

c n0 + n0 ⎯ →⎯ p+ +p+ + π− + π−

 (2 × 0) ⎯ →⎯ (2 × +) + (2 × −)

        0 ⎯ →⎯ 0

 Hence charge is conserved.

Chapter 10  Review
Knowledge and understanding
1 A and D. An aircraft taking off is accelerating, as is a car going around a curve. These are non-inertial frames of 

reference, as they are accelerating. 

2 At the poles. The Earth has a very small centripetal acceleration which is negligible for most purposes; however, at the 
poles it is zero.

3 The observer on the track would see the ray of light strike the back wall before the ray of light strikes the front wall. 
This is because (a) the rays of light travel at the same speed forwards and backwards, (b) the front of the carriage 
is moving forward, thus extending the distance that the forward-moving ray must travel before it hits the front wall 
and (c) the back wall has moved forward, thus decreasing the distance that the rear-moving ray must travel before it 
hits the back wall. The ray that travels the shorter distance takes less time to hit the wall than the ray that travels the 
longer distance.

4 A. For the same events to be simultaneous in one inertial frame of reference and not simultaneous in another inertial 
frame of reference, time must pass differently in each inertial frame of reference.

5 A (postulate 2) and C (postulate 1)

6 C. There is no fixed space in which to measure absolute velocities. We can only measure velocity relative to some 
other frame of reference.

7 A and B. We are in the same frame of reference as the event in both cases. C and D may be true, but they are not 
sufficient conditions, as we must also be in the same frame of reference. (C did not specify with respect to what we 
were stationary.)

8 You could not tell the difference between (i) and (iii), but in (ii) you could see whether an object, such as a pendulum, 
hangs straight down. 

9 Space and time are interdependent: motion in space alters an object’s passage through time as measured by a 
stationary observer. Thus the three dimensions of physical space must be considered relative to the one dimension of 
time, as they are not independent.

10 Crews A and B will see each other normally as there is no relative velocity between them. They will both see the 
people on Earth moving in slow motion, as the Earth has a high relative velocity.

11 In your frame of reference time proceeds normally. Your heart rate would appear normal. As Mars is moving at a high 
speed relative to you, people on Mars appear to be in slow motion, as time for them—as seen by you—will be dilated.



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

12 Both observers will see the light travel at 3.0 × 108 m s−1. According to Einstein’s second postulate, the speed of light 
will always be the same whatever the motion of the light source or observer.

Application and analysis
13 t = γ t0

= t0

1− v2

c2

= 20.0

1− (2.00 ×108)2

(3.00 ×108)2

= 26.8s

14 a t = γ t0

t0 = t 1− v2

c2

= 21.5 1− (2.12 ×108)2

(3.00 ×108)2

= 21.5 × 0.707547

=15.2s

b 15.2 s. The swimmer sees their own watch as t0 and the pool clock as t. This is due to the fact that, in the frame 
of reference of the swimmer, it is the pool and its clock that are moving while the swimmer and their watch are 
stationary.

15 a γ = 2 as the observed length is half the proper length. Thus:

γ = 1

1− v2

c2

= 2

1
2
= 1− v2

c2

1
4
=1− v2

c2

v2

c2 =1− 1
4

v2 = 0.75c2

v = 0.866c

b The contraction has doubled, so in this instance γ = 4. Thus:

1
4
= 1− v2

c2

v2

c2 =1− 1
16

v2 = 0.9375c2

v = 0.968c

16 a t = γ t0

= t0 ×
1

1− v2

c2

= 4.00 × 1

1− (2.38 ×108)2

(3.00 ×108)2

= 4.00 ×1.64261

= 6.57s
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b L = L0

γ
 and, from part a, γ =1.64261

= 18.3
1.64261

=11.1m

 The length is observed to be 11.1 m and the width is unchanged at 1.07 m.

17 a t = d
v
= (5.96)

(0.900)
= 6.62 years

b t = γ t0

t0 = t
γ

= t 1− v2

c2

= 6.62 1− (0.900c)2

c2

= 6.62 × 0.435890

= 2.89 years

c An observer on the Earth, who is stationary in the star’s frame of reference, measures the proper length as  
5.96 light-years. However, that distance is contracted for Amelia:

L = L0

γ
= (5.96) × 1− (0.900c)2

c2

= 2.60 light-years

 As she travelled a shorter distance, this means it took her less time to travel to the star.

18 a L = L0

γ
= (145) × 1− (0.885c)2

c2

=145 × 0.465591

= 67.5km

 The difference (in km) will therefore be ΔL =145 − 67.5107 = 77.5km.
b No. Since the motion is perpendicular to the depth, this dimension is not affected.

19 a γ = 1

1− v2

c2

= 1

1− 0.9972c2

c2

= 1

1− 0.9972

=12.9196 ≈13 times

b No, they do not experience any difference in the rate at which time passes in their own frame of reference.

c t = 10.89
0.997

=10.92 years

d t0 = t
γ
= 10.92

12.9196
= 0.845 years

e No. The moving explorer travels a contracted distance between the Earth and Ross-128, which is about 13 times 
shorter than we see on the Earth. The speed of the spaceship is constant in both frames of reference, so the 
explorer travels only 0.845 light-years to the star.

20 The observer on the Earth will not measure the proper time of the muon’s lifetime. Instead they will see that the 
muon’s lifetime is slow according to the equation t = t0γ , where t0 is the lifetime of a muon at rest. The result is that 
the observer sees the muon live a much longer time, t, and therefore makes it to the surface.

 The muon will see the Earth approach at a very high speed (approx. 0.992c) and will see the distance contracted. It 

will not be 15.0 km. Instead it will travel a much shorter distance according to the equation L = L0

γ
. As the distance the 

muon travels is shorter, it can make the journey to the Earth’s surface during its proper lifetime.



Copyright © Pearson Australia 2023 (a division of Pearson Australia Group Pty Ltd) ISBN 978 0 6557 0010 4

Heinemann Physics 12 5E

21 a Ek = (γ −1)mc2

= 1

1− v2

c2

−1⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
mc2

= 1

1− 0.9252c2

c2

−1⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
(30.0 ×10−3)(3.00 ×108)2

= 2.63181−1( )(2.70000 ×1015)

= 4.41×1015  J

b Ek = 1
2

mv2

= 1
2

(30.0 ×10−3)(0.925 × 3.00 ×108)2

=1.16 ×1015 J

22 2
3He + 2

3He ⎯ →⎯ 2
4He + 1

1p+ + 1
1p+

 

Δm = mreactants − mproducts

= (2 ×5.00823 ×10−27) − (6.64648 ×10−27 + 2 ×1.67262 ×10−27)

= (1.00165 ×10−26 ) − (9.99172 ×10−27)

= 2.47400 ×10−29 kg

E = mc2

= (2.47400 ×10−29)(3.00 ×108)2

= 2.226600 ×10−12 J

E = 2.226600 ×10−12

1.60 ×10−19

=1.391625 ×107 eV

=1.391625 ×101MeV

=13.9MeV

23 a E = mc2

= (2 ×1.674922 ×10−27) × (3 ×108)2

= 3.014860 ×10−10 J

= (3.014860 ×10−10 )
(1.60 ×10−19)

=1.884287 ×109 eV

=1.884287 ×103 MeV

= (1.884287 ×103) + 2(155)

Ebefore = 2.194287 ×103 MeV

Eafter =
(1.674922 ×10−27 +1.672622 ×10−27) × (3 ×108)2

1.60 ×10−19 ×106 +139.6

=1.882994 ×103 +139.6

= 2.022594 ×103 MeV

Ek = Ebefore − Eafter

= 2.194287 ×103 − 2.022594 ×103

=1.716935 ×102

=1.72 ×102 MeV
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b n0 + n0 ⎯ →⎯ +n0 +p+ + π−

 (2 × 0) ⎯ →⎯ (1× 0) + (1× +) + (1× −)

         0 ⎯ →⎯ 0

 Hence charge is conserved.

24 a mtotal = 2 × (9.10938356 ×10−31)

=1.8218767 ×10−30 kg

E = mc2

= (1.8218767 ×10−30 )(3.00 ×108)2

=1.6396890 ×10−13 J

= (1.6396890 ×10−13)
(1.60 ×10−19)

=1.02480565 ×106 eV

=1.02480565MeV

Etotal = (1.02480565) + 2 × (42.0000)

= 85.0248MeV

b Egamma = 8.5024806 ×101

2
= 4.2512403 ×101

= 42.5124MeV

c             e+ + e− ⎯ →⎯ γ 0 + γ 0

(1× +) + (1× −) ⎯ →⎯ (2 × 0)  
                   0 ⎯ →⎯ 0

 Hence charge is conserved.
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Unit 4 Area of Study 1

How has understanding about the physical world changed?
Multiple-choice questions

1 A. Gamma rays are a form of electromagnetic radiation. The electric and magnetic fields in electromagnetic radiation 
are perpendicular to each other and are both perpendicular to the direction of propagation of the radiation.

2 B and E. The spectra in A and C are continuous, and the spectrum in D is an absorption spectrum.

3 C. The de Broglie wavelength of a particle is given by λ = h
p

 and therefore depends only on the momentum of the  
particle.

4 B

 Electron:

λ = h
mv

= 6.63 ×10−34

9.1×10−31 ×7.5 ×106

= 9.7 ×10−11m

 UV light:

λ =150 nm =150 ×10−9 =1.5 ×10−7m

 X-ray:

f = c
λ

λ = c
f

= 3.0 ×108

3.0 ×1017

=1.0 ×10−9 m

 Proton: 

λ = h
p

= 6.63 ×10−34

1.7 ×10−21

= 3.9 ×10−13m

 Comparing these, UV has the longest wavelength.

5 B. V0 is proportional to the energy of the incident photons. Since blue light has a higher frequency than yellow light, its 
photons have more energy.

6 C. The reverse potential difference works against the electrons as they try to reach the collector.

 A and B are incorrect because the potential difference between the emitter and the collector does not affect these 
quantities.

 D is incorrect, as the photoelectrons crossing the gap are what complete the circuit when not at the stopping voltage. 
When at the stopping voltage, it is not the presence of the gap that accounts for zero current. 

7 A. The colour of the incident light is indicated by the value of V0, as the stopping voltage is proportional to the energy 
of the photons (which in turn is proportional to the frequency of the photons), while the intensity of the incident light 
is indicated by the size of the current.

8 C

Ek max = hc
λ

− φ

1.21 = 4.14 ×10−15 × 3.0 ×108

200 ×10−9 − φ

φ = 6.21−1.21 = 5.0 eV

9 A (postulate 2) and C (postulate 1)
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10 A. Inertial frames move at a constant velocity.

11 C. γ must be > 1, so A and B are not correct. The speed is much less than c, so D is not correct. C is the only feasible 
answer. 

 You could also calculate γ :

 
γ = 1

1− v2

c2

= 1

1− 500002

3000000002

=1.000000014

12 D. It undergoes length contraction in the dimension that is parallel to the direction of motion. The width and height 
are perpendicular to the direction of motion, so they do not change. 

13 A. In one second 4.0 × 109 kg of mass is being converted to energy. 

 

E = mc2

= 4.0 ×109 × (3.0 ×108)2

= 3.6 ×1026 J

14 C. It was believed that light needed a medium through which to propagate. The Michelson–Morley experiment sought 
to measure the velocity of the Earth with respect to the aether by measuring the speed of light on the Earth when 
travelling with and against the proposed aether. As the velocity was constant in both directions, there was no evidence 
for an aether being present; thus the experiment provided evidence for the theory of special relativity.

15 A. The speed of light in a vacuum is constant.

Short-answer questions

16 When two or more waves meet and combine, the resulting waveform will be the vector addition of the displacement of 
the individual particles in the waves due to the principle of superposition. Although there is a different displacement 
as the waves are superimposed, passing through each other does not permanently alter the shape, amplitude or 
speed of the individual waves.

17 a A = node, B = antinode
b The two images show the maximum and minimum positions of the rope as it oscillates.
c The image shows three loops of the rope, so it is the third harmonic.
d The oscillating hand makes the incident waves. Those waves approach the hook. As the hook is a fixed end, the 

wave is inverted (i.e. it undergoes a 180° phase change) and is reflected back towards the hand. The continuous 
incident waves superimpose with the reflected waves, forming a series of nodes and antinodes in the standing 
wave.

e fn = nv
2l

 As this is the third harmonic:

 
f3 = 3 × 2.0

2 × 0.800
= 3.8Hz

18 a Since Δx = λL
d

, if d is halved, ∆x will be doubled. 

b Since Δx = λL
d

, if L is doubled, ∆x will be doubled. 

c There will be no effect, as the brightness (intensity) of the light does not affect the interference pattern. 

d Since Δx = λL
d

, if λ is decreased, ∆x will decrease. 

e There will be a wider central band. 

19 a The two models are the wave model and the particle (or corpuscular) model.
b Young’s experiment resulted in bright and dark bands or fringes being seen on a screen. These can only be 

due to interference effects. A property of waves is that they can interfere with one another (constructively and 
destructively), so his work supported the wave model of light. (The particle model could not explain the interference 
effects observed; it could predict just two bright bands.)

20 A and B show maximum constructive interference. At position A, two crests add to give maximum constructive 
interference, as the waves are arriving in phase. At position B, two troughs add to give maximum constructive 
interference, as again the waves are arriving in phase. At positions C and D, a trough and a crest add to give maximum 
destructive interference, as the waves are arriving 180° out of phase.
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21 Destructive interference occurs where there is a path difference of n + 1
2

⎛
⎝⎜

⎞
⎠⎟ λ  where n = 0, 1, 2 … For the third dark 

band, n = 2 and pd = 2.5λ. For the fourth dark band, n = 3 and pd = 3.5λ. That is, the path difference is always one 

whole wavelength greater for each consecutive dark band. As this value is 500 nm in this example, λ = 500 nm.

22 Only certain frequencies of light will emit photoelectrons.

 There is no time difference between the emission of photoelectrons by light of different intensities.

 The maximum kinetic energy of the ejected photoelectrons is the same for different light intensities of the same 
frequency.

23 a A series of bright fringes/bands (indicating that electrons were detected) and dark fringes/bands (indicating that no 
electrons were detected). The pattern is called an interference pattern.

b The high-speed electrons are exhibiting wave-like behaviour.

c λ = h
p
= h

mv

= 6.63 ×10−34

9.1×10−31 × 0.1
100

× 3.0 ×108

= 2.4 ×10−9 m

d i λneutron = λelectron

 λ = h
mn

 v = h
mλlλ = h

mn
 v = h

mλ

 

v = 6.63 ×10−34

1.67 ×10−27 × 2.4 ×10−9

=163.5

=1.6 ×102 ms−1

ii As the pattern is the same and the spacing of the bands (Δx ) depends on 
λL
d

, λneutron = λelectron given that L, d and 

the slit width remain constant. So the answer remains the same as for part i: v = 1.6 × 102 m s−1.

24 a i ΔE = E4 − E1

= −1.6 − (−10.4)

= 8.8 eV

 ΔE = hf → f = ΔE
h

 
f = 8.8

4.14 ×10−15

= 2.1×1015 Hz

ii ΔE = E2 − E1

= −5.5 − (−10.4)

= 4.9 eV

 ΔE = hf → f = ΔE
h

 
f = 4.9

4.14 ×10−15

=1.2 ×1015 Hz

iii ΔE = E4 − E3

= −1.6 − (−3.7)

= 2.1 eV

 ΔE = hf → f = ΔE
h

 
f = 2.1

4.14 ×10−15

= 5.1×1014 Hz
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b As E = hf , a higher frequency photon will be produced from the largest energy jump. As a photon is being emitted, 
the transition must be from n = 4 to n = 1.

 

0

–1.6

–3.7

–5.5

–10.4

n = ∞

n = 4

n = 3

n = 2

n = 1

E (eV)

c As E = hf = hc
λ

, a larger wavelength photon will be produced from the smallest energy jump. The transition must be 

from n = 3 to n = 2, as this corresponds to the smallest jump possible (1.8 eV).

0

–1.6

–3.7

–5.5

–10.4

n = ∞

n = 4

n = 3

n = 2

n = 1

E (eV)

d E3–2 = −3.7 − (−5.5) = 1.8 eV
E3–1 = −3.7 − (−10.4) = 6.7 eV
E2–1 = −5.5 − (−10.4) = 4.9 eV

 Therefore 1.8 eV, 4.9 eV and 6.7 eV photons will be present in the emission spectrum.

25 a W = ΔEk = 1
2

mv2  and W = qV  (where V = voltage; take care not to confuse this with velocity, v)

 From this we can get:

 

qV = 1
2

mv2

1.6 ×10−19 × 65 = 1
2
× 9.1×10−31 × v2

v = 2 ×1.6 ×10−19 × 65
9.1×10−31

= 4.8 ×106ms−1

b λ = h
mv

= 6.63 ×10−34

9.1×10−31 × 4.8 ×106

=1.5 ×10−10 m

26 Bohr stated that if incident light has an energy value less than the minimum energy difference between the lowest 
and next orbital levels within the hydrogen atom, the light would not cause any orbital changes. Therefore the light 
would not be absorbed by the atom.

27 a λ = h
p
= h

mv

= 6.63 ×10−34

9.1×10−31 ×1.75 ×107

= 4.16 ×10−11 m

= 0.0416nm
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b According to de Broglie, the electrons were diffracted as they passed through the gaps between the atoms in 
the crystal, thus creating a diffraction pattern. This pattern would be circular bands or fringes of specific spacing 
around a common central point. Dark bands are due to destructive interference; bright bands are due to 
constructive interference.

c As the accelerating voltage is increased, the electron speed would increase. Therefore the electron has more

 momentum. As λ = h
p

, the electron’s wavelength is reduced. The amount of diffraction depends on 
λ
w

 and so less 

 diffraction occurs. Less diffraction means the overall pattern is smaller, that is, the circular bands are more closely 
spaced.

28 After discovering that light displays both particle and wave properties, physicists discovered that matter also has wave 
properties (when moving very fast) as well as particle properties. Both matter and light display wave–particle duality, 
but matter waves are not experienced in our macroscopic, low-speed world.

29 a In the particle model, the energy of the incident photons is set by their frequency (according to E = hf ). Each 
incident photon interacts with only one electron. Therefore the energy of the emitted electrons will depend only on 
the frequency of the incident light. Electron energy is not altered by altering the intensity because this only varies 
the number of photons, not their energy. Therefore the energy of the emitted electrons is not affected, only the 
number emitted.

b The wave model predicts that altering the intensity of light corresponds to waves of greater amplitude. Hence the 
wavefronts should deliver more energy to the electrons and the emerging electrons should thus have higher energy. 
(This is not observed.)

30 a Ek max represents the maximum kinetic energy with which electrons are emitted.
 f is the frequency of the light incident on the metal plate (usually after the light passes through a filter, so it is not 

sufficient to call this the frequency of light from the source).
 ϕ is the work function, which is the minimum energy required to eject an electron. (This is a property of the metal.)
b Ek max does not change.
c More photoelectrons are ejected each second, therefore there is a higher photocurrent. 

31 a Both the X-rays and the electrons have produced diffraction patterns with the same fringe separation. The amount 

of diffraction is proportional to 
λ
w

. Given that the X-rays and electrons are both diffracting through the same sample 

of crystal, they are diffracting through the same width, w. Therefore they must have equivalent wavelengths.
b Given w is constant, λX-ray = λelectron

 

λX-ray = c
f
= 3.0 ×108

8.3 ×1018

= 3.6 ×10−11m

= λelectron  as found in part a

 Finding the momentum:

 
p = h

λ
= 6.63 ×10−34

3.6 ×10−11

=1.8 ×10−23 kgms−1

 (This would also be the momentum of the X-ray.)

c No. The energy of the X-rays, being a form of electromagnetic radiation that travels at c, is given by E = hc
λ

 and the 

energy of the electrons is given by ΔEk = 1
2

mv2, as electrons have mass and do not travel at c.

d Because optical microscopes use visible light, they will encounter considerable diffraction around objects with 
widths similar to the wavelength of light, resulting in blurriness. 

 As electrons have wavelengths equal to X-rays, which are smaller than visible light, less diffraction will occur with 
widths similar to the wavelength of light, resulting in less blurry images. 

32 a time = distance
speed

= 5
0.9

= 5.6 years

b At 0.9c, Raqu’s time will seem to be shortened by a factor γ = 2.3, thus it will seem to take her only 2.4 years.
c Relative to Raqu, the distance appeared to be shortened by the factor γ, thus the distance she travelled was much 

less than 5 light-years.
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33 a The mass difference is 4 ×1.673 ×10−27 − 6.645 ×10−27 = 4.7 ×10−29 kg.

 

E = mc2

= 4.7 ×10−29 × (3.0 ×108)2

= 4.2 ×10−12 J

b As the total energy produced by the Sun each second is 3.9 × 1026 J, and part a gives us the energy produced for 

each helium atom, the number of helium atoms must be given by 3.9 ×1026

4.2 ×10−12
 = 9.3 × 1037 every second.

c The mass lost by the Sun each second is given by m = 9.3 × 1037 × 4.7 × 10−29 = 4.37 × 109 kg.
 In one day this will be 4.37 × 109 × 24 × 60 × 60 = 3.8 × 1014 kg.
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