

1 2 3 4 5 6 7 23 22 21 20 19

Software Development

1st Edition

Gary Bass

Selina Dennis

Therese Keane

ISBN 9780170440943

© 2019 Cengage Learning Australia Pty Limited

Senior publisher: Eleanor Gregory

Project editor: Georgia O’Connor

Editor: Vanessa Lanaway

Indexer: Bruce Gillespie

Cover design: Chris Starr, MakeWork

Text design: Leigh Ashforth, Watershed Art & Design

Project designer: James Steer

Permissions researcher: Mira Fatin

Production controller: Karen Young

Typeset by: DiacriTech

Any URLs contained in this publication were checked for currency during the

production process. Note, however, that the publisher cannot vouch for the

ongoing currency of URLs.

Copyright Notice

This Work is copyright. No part of this Work may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means without prior

written permission of the Publisher. Except as permitted under the

Copyright Act 1968, for example any fair dealing for the purposes of private study,

research, criticism or review, subject to certain limitations. These limitations

include: Restricting the copying to a maximum of one chapter or 10% of this

book, whichever is greater; providing an appropriate notice and warning with the

copies of the Work disseminated; taking all reasonable steps to limit access to

these copies to people authorised to receive these copies; ensuring you hold the

appropriate Licences issued by the Copyright Agency Limited (“CAL”), supply a

remuneration notice to CAL and pay any required fees. For details of CAL licences

and remuneration notices please contact CAL at Level 11, 66 Goulburn Street,

Sydney NSW 2000, Tel: (02) 9394 7600, Fax: (02) 9394 7601

Email: info@copyright.com.au

Website: www.copyright.com.au

For product information and technology assistance,

in Australia call 1300 790 853;

in New Zealand call 0800 449 725

Acknowledgements

Extracts from the VCE Applied Computing Study Design (2020–2023), are

reproduced by permission, © VCAA. VCE is a registered trademark of the VCAA.

The VCAA does not endorse or make any warranties regarding this study

resource. Current VCE Study Designs, past VCE exams and related content can be

accessed directly at www.vcaa.vic.edu.au

For permission to use material from this text or product, please email

aust.permissions@cengage.com

ISBN 978 0 17 044094 3

Cengage Learning Australia

Level 7, 80 Dorcas Street

South Melbourne, Victoria Australia 3205

Cengage Learning New Zealand

Unit 4B Rosedale Office Park

331 Rosedale Road, Albany, North Shore 0632, NZ

For learning solutions, visit cengage.com.au

Printed in Singapore by 1010 Printing International Limited.

9780170440943

Contents

Unit

Introduction

3
Chapter 1 Introduction to programming

Data types

Data structures

Design brief

Representing designs

Files

Programming languages

Internal documentation

Naming conventions

Chapter 2 Development and features
of a computer program

Processing features of a programming language

Algorithms for sorting

Algorithms for searching

E�ciency of algorithms

Validation techniques

Checking that modules meet design specifications

Preparing for Unit 3, Outcome 1

Preface v

About the authors

How to use this book

Outcomes

Problem-solving methodology

Key concepts

vi

vii

ix

xiii

xvi

1

2

3

5

12

14

17

21

22

24

34

35

46

53

56

57

58

74

Chapter 3 Software analysis

What is a ‘software solution’?

75

76

Project management

Collecting data

Functional and non-functional requirements

Software requirements specifications

Interfaces between solutions, users and networks

Security considerations

Next steps

Chapter 4 Software development:
software design

Continuing Unit 3, Outcome 2

Software solution specifications

Generating design ideas

Evaluating design ideas

Evaluating the e�ciency and e�ectiveness of solutions

Mock-ups

Preparing for Unit 3, Outcome 2

77

86

88

91

92

108

112

122

123

123

123

130

132

138

165

iii

9780170440943

Unit

Introduction

4
Chapter 5 Software development and

project evaluation

Managing files

Organising and manipulating data using data structures

Features of a programming language

E�cient and e�ective solutions

Techniques for checking coded solutions

Validation techniques

Testing

Recording the progress of projects

Factors influencing the e�ectiveness of the
development model

Evaluating the e�ciency and e�ectiveness of
solutions and project plans

Next steps

Preparing for Unit 4, Outcome 1

167

168

169

174

182

187

188

188

189

194

198

198

202

209

Chapter 6 Cybersecurity risks

Physical and software security controls

211

212

Data security

Physical security

Software security

Software development practices

Strategies for minimising potential risks

Identifying software and data vulnerabilities

Strategies to protect against web application risks

Software acquired from third parties

Integrity of data

Next steps

Chapter 7 Software security

Why develop software?

Minimising risk

Key legislation for storage and disposal of data
and information

Ethical issues

The impact of ine�ective security strategies
on data integrity

Data security

Preparing for Unit 4, Outcome 2

Index

215

216

219

224

229

232

237

244

245

251

258

259

260

260

269

275

276

292

293

iv CONTENTS

9780170440943

Preface

This first edition of Software Development VCE Units 3 & 4 is written to meet the requirements

of the VCAA VCE Applied Computing Study Design that took e�ect from 2020.

This textbook looks at how a software development life cycle is implemented.

We believe that teachers and students require a text that focuses on the Areas of Study

specified in the Study Design, and that presents information in a sequence that allows

simple transition from theory into practical assessment tasks. We have therefore written

this textbook so that a class can begin at chapter 1 and work their way systematically through

to the end. Students will encounter material relating to the key knowledge dot points for

each Outcome before they reach the special section that describes the Outcome. The

Study Design outlines key skills that indicate how the knowledge can be applied to produce a

solution to a client need or opportunity. These Outcome preparation sections occur regularly

throughout the textbook, and flag an appropriate point in the student’s development for

each Outcome to be completed. The authors have covered all key knowledge dot points for

the Outcomes from the Software Development VCE Units 3 & 4 course.

Our approach has been to focus on the key knowledge required for each school-assessed

Outcome, and to ensure that students are well prepared for these; however, there is

considerable duplication in the Study Design relating to the knowledge required for many of

the Outcomes. We have found that, with an Outcomes approach, we are sometimes covering

material several times. For example, knowledge of a problem-solving methodology is listed as

key knowledge for five di�erent Outcomes. In these cases, we have tried to provide general

coverage in the first instance, and specifically apply the concept to a situation relevant to the

related Outcome on subsequent encounters.

The authors allow teachers flexibility to develop the required key skills with their students

within the context of the key knowledge addressed in this textbook and the resources

available to them.

We have incorporated a margin column in the text that provides additional information

and reinforcement of key concepts. The margin column also includes activities related to the

topics covered in the text, and a consideration of issues relevant to the use of information

systems.

Outcome features are included at several points in the book, indicating the nature of the

tasks that students are to undertake in the completion of the school-assessed Outcome. The

steps required to complete the Outcome are listed, together with advice and suggestions

for approaching the task. The output and support material needed for submission are

described. Sample tasks and further advice relating to the Outcomes are available at

http://softwaredevelopment3and4.nelsonnet.com.au.

The chapters are organised to present the optimum amount of information in the most

e�ective manner. The text is presented in concise, clearly identified sections to guide students

through the text. Each chapter is organised into the sections described on pages vii–viii.

v

9780170440943

About the authors

Gary Bass teaches VCE Applied Computing at Year 11 and Year 12 in an online course

environment at Virtual School Victoria. Previously he has taught VCE Physics, as well as

developing and delivering middle-school ICT courses. Gary has presented at DLTV DigiCON

and the annual IT teachers’ conference on many topics, including Pop-up Makerspace; Big

Data requires huge analysis – data visualisation; AR + VR = Mixed reality; and Marshall

McLuhan – Medium is the message.

Selina Dennis is a Software Development and English Language teacher for the Department

of Education and has been heavily involved in past and present Computing Study Designs.

Selina has a Bachelor of Arts and Science in Computer Science and Linguistics from the

University of Melbourne, and has a particular interest in Computational Linguistics. She

spent several years in California in the computing industry as an engineering manager and

director of engineering before entering teaching.

Associate Professor Therese Keane, Deputy Chair of the Department of Education at

Swinburne University, has worked in a variety of school settings, where she has taught IT

and led in K–12 education as the director of ICT. Her passion and many achievements in the

ICT in Education and Robotics space have been acknowledged by her peers in her receiving

national and state awards. Therese has presented numerous seminars and workshops for

teachers involved in the teaching of IT. She has written several textbooks in all units of Senior

IT in Victoria, VCE Information Technology since 1995. Therese’s research interests include

the use of technology in education, gender inequalities in STEM-based subjects, robotics in

education and computers in schools for teaching and learning purposes. Therese is involved

with the FIRST LEGO League the Championship Tournament Director for Victoria, and is

a lead mentor for the RoboCats – an all-girl robotics team that participates in the FIRST

Robotics Competition.

PUBLISHER ACKNOWLEDGEMENT

Eleanor Gregory sincerely thanks Gary, Selina and Therese for their perseverance and

dedication in writing the manuscript for this book. She also thanks Tabitha Melgalvis for

reviewing this book and providing valuable feedback to the authors.

vi

vii

How to use this book

K E Y K N O W L E D G E

The key knowledge from the VCAA Software Development VCE Units 3 & 4 Study that

you will cover in each chapter is listed on the first page of each chapter. The list includes key

knowledge specified in the Outcome related to the chapter.

F O R T H E S T U D E N T

The first page of each chapter includes an overview of the chapter’s contents so that you are

aware of the material you will encounter.

F O R T H E T E A C H E R

This section is for your teacher and outlines how the chapter fits into the overall study of

Software Development, and indicates how the material relates to the completion of Outcomes.

C H A P T E R S

The major learning material that you will encounter in the chapter is presented as text,

photographs and illustrations. The text describes in detail the theory associated with the

stated Outcomes of the Software Development VCE Units 3 & 4 Study in easy-to-

understand language. The photographs show hardware, software and other objects that have

been described in the text. Illustrations are used to demonstrate concepts that are more

easily explained in this manner.

Throughout the chapter, glossary terms are highlighted in bold, blue text, and you can

find their definitions at the end of the chapter, in Essential terms.

The School-Assessed Task Tracker at the bottom of every odd-numbered page provides

M A R G I N C O L U M N

The margin column contains further explanations that support the main text, weblink icons,

additional material outside the Study and cross-references to material covered elsewhere

in the textbook. Issues relevant to Software Development that you can discuss with your

classmates are also included in the form of ‘Think about Software Development’ boxes.

C H A P T E R S U M M A R Y

The chapter summary at the end of each chapter is divided into two main parts to help you

review each chapter.

Essential terms are the glossary terms that have been highlighted throughout the

chapter.

Important facts are a list of summaries, ideas, processes and statements relevant to the

chapter, in the order in which they occur in the chapter.

9780170440943

you with a visual reminder to help you track your progress in the school-assessed task so that

you can complete all required stages on time.

THINK ABOUT

SOFTWARE

DEVELOPMENT

3.1

Project-management
tools are useful to find
the perfect number
of people needed on
a task so it is finished
as quickly as possible
without anyone being
idle. Using software,
develop a Gantt chart
to plan the baking of a
cake. Assume you can
use as many cooks as
you want.

9780170440943

T E S T Y O U R K N O W L E D G E

These are short-answer questions that are provided to help you when reviewing the chapter

material. The questions are grouped and identified with a section of the text to allow your

teacher to direct appropriate questions based on material covered in class. Teachers will be able

to access answers to these questions at http://softwaredevelopment3and4.nelsonnet.com.au.

A P P LY Y O U R K N O W L E D G E

Each chapter concludes with a set of questions requiring you to demonstrate that you can apply

the theory from the chapter to more complex questions. The style of questions reflects what you

can expect in the end-of-year examination. Teachers will be able to access suggested responses

to these application questions at http://softwaredevelopment3and4.nelsonnet.com.au.

P R E PA R I N G F O R T H E O U T C O M E S

This section appears at points in the course where it is appropriate for you to complete an

Outcome task. The information provided describes what the you need to do in the Outcome,

the suggested steps to be followed in the completion of the Outcome and the material that

needs to be submitted for assessment.

N E L S O N N E T

The NelsonNet student website contains:

• multiple-choice quizzes for each chapter, mirroring the VCAA Unit 3 & 4 exam.

• additional material such as spreadsheets and infographics.

An open-access weblink page is also provided for all weblinks that appear in the margins through

out the textbook. This is accessible at http://softwaredevelopment3and4.nelsonnet.com.au.

The NelsonNet teacher website is accessible only to teachers and it contains:

• answers for the Test your knowledge and Apply your knowledge questions in the book

• sample SACs

• chapter tests

• practice exams.

Please note that complimentary access to NelsonNet and the NelsonNetBook is only

available to teachers who use the accompanying student textbook as a core educational

resource in their classroom. Contact your sales representative for information about access

codes and conditions.

viii HOW TO USE THIS BOOK

9780170440943

Outcomes

OUTCOME KEY KNOWLEDGE

Unit 3
Area of Study 1
Outcome 1

Data and
information

Approaches to
problem solving

Software development: programming

On completion of this unit the student should be able to interpret teacher-provided solution
requirements and designs, and apply a range of functions and techniques using a programming
language to develop and test working software modules.

• characteristics of data types

• types of data structures, including associative arrays (or dictionaries or hash tables), one-
dimensional arrays (single data type, integer index) and records (varying data types, field index)

• methods for documenting a problem, need or opportunity

• methods for determining solution requirements, constraints and scope

• methods of representing designs, including data dictionaries, mock-ups, object descriptions and
pseudocode

• formatting and structural characteristics of files, including delimited (CSV), plain text (TXT)
and XML file formats

• a programming language as a method for developing working modules that meet specified needs

• naming conventions for solution elements

• processing features of a programming language, including classes, control structures, functions,
instructions and methods

• algorithms for sorting, including selection sort and quick sort

• algorithms for binary and linear searching

• validation techniques, including existence checking, range checking and type checking

• techniques for checking that modules meet design specifications, including trace tables and
construction of test data

• purposes and characteristics of internal documentation, including meaningful comments and
syntax.

Key skills • interpret solution requirements and designs to develop working modules

• use a range of data types and data structures

• use and justify appropriate processing features of a programming language to develop working
modules

• develop and apply suitable validation, testing and debugging techniques using appropriate test
data

• document the functioning of modules and the use of processing features through internal
documentation.

p. 3

p. 5

p. 12

p. 13

p. 14

p. 17

p. 21

p. 24

p. 35

p. 46

p. 53

p. 57

p. 58

p. 22

p. 5

p. 5

p. 35

p. 58

p. 22

LOCATION

ix

p. 80

OUTCOME KEY KNOWLEDGE LOCATION

Unit 3
Area of Study 2
Outcome 2

Digital systems

Data and
information

Approaches to
problem solving

Software development: analysis and design

On completion of this unit the student should be able to analyse and document a need or
opportunity, justify the use of an appropriate development model, formulate a project plan,
generate alternative design ideas and represent the preferred solution design for creating a
software solution.

• security considerations influencing the design of solutions, including authentication and data
protection.

• techniques for collecting data to determine needs and requirements, including interviews,
observation, reports and surveys.

• functional and non-functional requirements

• constraints that influence solutions, including economic, legal, social, technical and usability

• factors that determine the scope of solutions

• features and purposes of software requirement specifications

• tools and techniques for depicting the interfaces between solutions, users and networks,
including use case diagrams created using UML

• features of context diagrams and data flow diagrams

• techniques for generating design ideas

• criteria for evaluating the alternative design ideas and the e�ciency and e�ectiveness of solutions

• methods of expressing software designs using data dictionaries, mock-ups, object descriptions
and pseudocode

• factors influencing the design of solutions, including a�ordance, interoperability, marketability,
security and usability

• characteristics of user experiences, including e�cient and e�ective user interfaces

• development model approaches, including Agile, Spiral and Waterfall

• features of project management using Gantt charts, including the identification and sequencing
of tasks, time allocation, dependencies, milestones and critical path.

Interactions and
impact

Key skills

• goals and objectives of organisations and information systems

• key legal requirements relating to the ownership and privacy of data and information.

• select a range of methods to collect and interpret data for analysis

• select and justify the use of an appropriate development model

• apply analysis tools and techniques to determine solution requirements, constraints and scope

• document the analysis as a software requirements specification

• generate alternative design ideas

• develop evaluation criteria to select and justify preferred designs

• produce detailed designs using appropriate design methods and techniques

• create, monitor and modify project plans using software.

x OUTCOMES

9780170440943

p. 108

p. 86

p. 88

p. 91

p. 90

p. 91

p. 92

p. 96

p. 123

p. 130

p. 134

p. 140

p. 141

p. 77

p. 77

p. 149

p. 152

p. 86

p. 144

p. 91

p. 91

p. 123

p. 132

p. 134

OUTCOME KEY KNOWLEDGE LOCATION

Unit 4
Area of Study 1
Outcome 1

Digital systems

Data and
information

Approaches to
problem solving

Software development: development and evaluation

On completion of this unit the student should be able to develop and evaluate a software solution
that meets requirements, evaluate the e�ectiveness of the development model and assess the
e�ectiveness of the project plan.

• procedures and techniques for handling and managing files and data, including archiving,
backing up, disposing of files and data and security.

• ways in which storage medium, transmission technologies and organisation of files a�ect access
to data

• uses of data structures to organise and manipulate data.

• processing features of a programming language, including classes, control structures, functions,
instructions and methods

• characteristics of e�cient and e�ective solutions

• techniques for checking that coded solutions meet design specifications, including construction
of test data

• validation techniques, including existence checking, range checking and type checking

• techniques for testing the usability of solutions and forms of documenting test results

• techniques for recording the progress of projects, including adjustments to tasks and
timeframes, annotations and logs

• factors that influence the e�ectiveness of development models

• strategies for evaluating the e�ciency and e�ectiveness of software solutions and assessing
project plans.

Key skills • monitor, modify and annotate the project plan as necessary

• propose and implement procedures for managing data and files

• develop a software solution and write internal documentation

• select and apply data validation and testing techniques, making any necessary modifications

• prepare and conduct usability tests using appropriate techniques, capture results, and make any
modifications to solutions

Unit 4
Area of Study 2
Outcome 2

Digital systems

• apply evaluation criteria to evaluate the e�ciency and e�ectiveness of the software solution

• evaluate the e�ectiveness of the selected development model

• assess the e�ectiveness of the project plan in managing the project.

Cybersecurity: software security

On completion of this unit the student should be able to respond to a teacher-provided case study
to examine the current software development security strategies of an organisation, identify the
risks and the consequences of ine�ective strategies and recommend a risk management plan to
improve current security practices.

• physical and software security controls used to protect software development practices and
to protect software and data, including version control, user authentication, encryption and
software updates

• software auditing and testing strategies to identify and minimise potential risks

9780170440943

p. 212

p. 229

OUTCOMES xi

p. 169

p. 173

p. 174

p. 182

p. 187

p. 188

p. 188

p. 189

p. 194

p. 198

p. 198

p. 201

p. 169

p. 22

p. 188

p. 192

p. 198

p. 199

p. 201

9780170440943

OUTCOME KEY KNOWLEDGE

• types of software security and data security vulnerabilities, including data breaches, man-in-
the-middle attacks and social engineering, and the strategies to protect against these

• types of web application risks, including cross-site scripting and SQL injections

• managing risks posed by software acquired from third parties.

Data and
information

Interactions and
impacts

• characteristics of data that has integrity, including accuracy, authenticity, correctness,
reasonableness, relevance and timeliness.

• reasons why individuals and organisations develop software, including meeting the goals and
objectives of the organisation

• key legislation that a�ects how organisations control the collection, storage (including cloud
storage) and communication of data: the Copyright Act 1968, the Health Records Act 2001, the
Privacy Act 1988 and the Privacy and Data Protection Act 2014

• ethical issues arising during the software development process and the use of a software solution

• criteria for evaluating the e�ectiveness of software development security strategies

• the impact of ine�ective security strategies on data integrity

• risk management strategies to minimise security vulnerabilities to software development
practices.

Key skills • analyse and discuss the current security controls to protect software development practices

• identify and discuss the potential risks to software and data security with the current security
strategies

• propose and apply criteria to evaluate the e�ectiveness of the current security practices

• identify and discuss the possible legal and ethical consequences to an organisation for
ine�ective security practices

• recommend and justify an e�ective risk management plan to improve current security
practices.

Reproduced from the VCE Applied Computing Study Design (2020–2023) © VCAA; used with permission.

LOCATION

p. 232

p. 237

p. 244

p. 245

p. 259

p. 260

p. 269

p. 275

p. 275

p. 276

p. 215

p. 218

p. 229

p. 275

p. 276

xii OUTCOMES

9780170440943

Problem-solving
methodology

When an information problem exists, a structured problem-solving methodology is followed

to ensure that the most appropriate solution is found and implemented. For the purpose of this

course, the problem-solving methodology has four key stages: analysis, design, development

and evaluation. Each of these stages can be further broken down into a common set of

activities. Each unit may require you to examine a di�erent set of problem-solving stages. It

is critical for you to understand the problem-solving methodology because it underpins the

entire VCE Applied Computing course.

Problem-solving methodology

Analysis

Activities

Solution
requirements

Solution

constraints

Solution

scope

Design

Activities

Solution
design

Evaluation

criteria

Development

Activities

Manipulation

Validation

Testing

Documentation

Reproduced from the VCE Applied Computing Study Design (2020–2023) © VCAA; used with permission.

Analyse the problem

The purpose of analysis is to establish the root cause of the problem, the specific information

needs of the organisation involved, limitations on the problem and exactly what a possible

solution would be expected to do (the scope). The three key activities are:

1 identifying solution requirements – attributes and functionality that the solution needs

to include, information it must produce and data needed to produce this information

2 establishing solution constraints – the limitations on solution development that need to
be considered. Constraints are classified as economic, technical, social, legal and related

to usability.

3 defining the scope of the solution – what the solution will and will not be able to do.

FIGURE 1 The four
stages of the problem-
solving methodology and
their key activities

Evaluation

Activities

Solution
evaluation

Evaluation
strategy

xiii

9780170440943

Des ign the so lu t ion

During the design stage, several alternative design ideas based on both appearance and

function are planned and the most appropriate of these is chosen. Criteria are also created

to select the most appropriate ideas and to evaluate the solution’s success once it has been

implemented. The two key design activities are:

1 creating the solution design – it must clearly show a developer what the solution should
look like, the specific data required and how its data elements should be structured,

validated and manipulated. Tools typically used to represent data elements could

include data dictionaries, data structure diagrams, input–process–output (IPO) charts,

flowcharts, pseudocode and object descriptions. The following tools are also used to show

the relationship between various components of the solution: storyboards, site maps, data

flow diagrams, structure charts, hierarchy charts and context diagrams. Furthermore,

the appearance of the solution, including elements like a user interface, reports, graphic

representations or data visualisations, needs to be planned so that overall layout, fonts

and their colours, for example, can be represented. Layout diagrams and annotated

diagrams (or mock-ups) usually fulfil this requirement. A combination of tools from each

of these categories will be selected to represent the overall solution design. Regardless of

the visual or functional aspects of a solution design, at this stage a design for the tests to

ultimately ensure the solution is functioning correctly must also be created.

2 specifying evaluation criteria – during the evaluation stage, the solution is assessed to
establish how well it has met its intended objectives. The criteria for evaluation must be

created during the design stage so that all personnel involved in the task are aware of

the level of performance that ultimately will determine the success or otherwise of the

solution. The criteria are based on the solution requirements identified in the analysis

stage and are measured in terms of e�ciency and e�ectiveness.

Develop the so lu t ion

The solution is created by the developers during this stage from the designs supplied to

them. The ‘coding’ takes place, but also checking of input data (validation), testing that the

solution works and the creation of user documentation. The four activities involved with

development are:

1 manipulating or coding the solution – the designs are used to build the electronic solution.
The coding will occur here and internal documentation will be included where necessary.

2 checking the accuracy of input data by way of validation – manual and electronic
methods are used; for example, proofreading is a manual validation technique. Electronic

validation involves using the solution itself to ensure that data is reasonable by checking

for existence, data type and that it fits within the required range. Electronic validation,

along with any other formulas, always needs to be tested to ensure that it works properly.

xiv PROBLEM-SOLVING METHODOLOGY

9780170440943

3 ensuring that a solution works through testing – each formula and function, not to
mention validation and even the layout of elements on the screen, need to be tested.

Standard testing procedures involve stating what tests will be conducted, identifying

test data, stating the expected result, running the tests, stating the actual result and

correcting any errors.

4 documentation allowing users to interact with (or use) the solution – while it can be
printed, in many cases it is now designed to be viewed on screen. User documentation

normally outlines procedures for operating the solution, as well as generates output (like

reports) and basic troubleshooting.

Evaluate the so lu t ion

Some time after a solution has been in use by the end user or client, it needs to be assessed

or evaluated to ensure that it has been successful and does actually meet the user’s

requirements. The two activities involved in evaluating a solution are:

1 evaluating the solution – providing feedback to the user about how well the solution meets
their requirements, needs or opportunities in terms of e�ciency and e�ectiveness. This

is based on the findings of the data gathered at the beginning of the evaluation stage

when compared with the evaluation criteria created during the design stage.

2 working out an evaluation strategy – creating a timeline for when various elements of the
evaluation will occur and how and what data will be collected (because it must relate to

the criteria created in the design stage).

PROBLEM-SOLVING METHODOLOGY xv

9780170440943

Key concepts

Within each VCE Applied Computing subject there are four key concepts whose purpose is

to organise course content into themes. These themes are intended to make it easier to teach

and make connections between related concepts and to think about information problems.

Key knowledge for each Area of Study is categorised into these key concepts, but not all

concepts are covered by each Area of Study. The four key concepts are:

1 digital systems

2 data and information

3 approaches to problem solving

4 interactions and impact.

Digital systems focuses on how hardware and software operate in a technical sense. This

also includes networks, applications, the internet and communication protocols. Information

systems have digital systems as one of their parts. The other components of an information

system are people, data and processes.

Data and information focuses on the acquisition, structure, representation and

opportunities and ways of creating solutions. Computational, design and systems thinking

are the three key problem-solving approaches.

Interactions and impact focuses on relationships that exist between di�erent information

interpretation of data and information in order to elicit meaning or make deductions. This

process needs to be completed in order to create solutions.

Approaches to problem solving focuses on thinking about problems, needs or

systems and how these relationships a�ect the achievement of organisational goals and

objectives. Three types of relationships are considered:

1 how people interact with other people when collaborating or communicating with digital
systems

2 how people interact with digital systems

3 how information systems interact with other information systems.

This theme also looks at the impact of these relationships on data and information needs,

privacy and personal safety.

xvi

Sh
u
tt

er
st

oc
k.

co
m

/
w

h
it
eM

oc
ca

Unit

3
INTRODUCTION

In this study, software will be developed by applying the problem-solving
methodology through the stages of analysis, design, development and
evaluation.

In Unit 3 of Software Development, you will develop working
software modules using a programming language (Unit 3, Outcome 1).
You will then identify a suitable client, analyse a need or opportunity for
that client, select an appropriate development model, prepare a project
plan, develop a software requirements specification (SRS) and design
a software solution. You will use all the stages of the problem-solving
methodology (PSM) to prepare the project plan. This will complete the
first half of the School-assessed Task (SAT) (Unit 3, Outcome 2). The
second half of the SAT will be completed in Unit 4 (Unit 4, Outcome 1).

Area of Study 1 – Programming

OUTCOME 1 In this Outcome, you will respond to teacher-provided
solution requirements and designs to develop working modules of a
programming language. You will use a programming language to apply
the problem-solving activities of manipulation (coding), validation,
testing and providing documentation in the development stage.

Note: You will create a complete solution in Unit 4, Area of Study 1.

Area of Study 2 – Analysis and design

OUTCOME 2 In this Outcome, you will identify a software need or
opportunity for a client. You will use the problem-solving methodology
stages of analysis and design to complete part 1 of the School-assessed
Task (SAT). Part 2 will be completed in Unit 4 (Unit 4, Outcome 1). You
will use all the stages of the problem-solving methodology to prepare a
project plan, using teacher-provided milestones.

A range of methods will be used to gather data for analysis. While a
range of analysis tools, including use case diagrams, context diagrams
and data flow diagrams will be used to describe the software solution to
the need or opportunity. A full solution description is proposed using a
software requirements specification (SRS), which entails documented
details of requirements, constraints and scope of the solution. A design
folio of several possible design ideas is generated, with a preferred
design chosen by the client. This is then fully described with mock-up,
pseudocode, object descriptions and data dictionary.

Contains extracts reproduced from the

VCE Applied Computing Study Design (2020–2023)

© VCAA; used with permission.

1

©
Sh

u
tt

er
st

oc
k.

co
m

/
D

om
in

ik
 B

ru
h
n

CHAPTER

1
KEY KNOWLEDGE

On completion of this chapter,
you will be able to demonstrate
knowledge of:

Data and information

• characteristics of data types

• types of data structures, including
associative arrays (or dictionaries or
hash tables), one-dimensional arrays
(single-type data, integer index) and
records (varying data types, field
index).

Approaches to problem solving

• methods for documenting a
problem, need or opportunity

• methods for determining solution
requirements, constraints and scope

• methods of representing designs,
including data dictionaries, mock-
ups, object descriptions and
pseudocode

• formatting and structural
characteristics of files, including
delimited (CSV), plain text (TXT)
and XML file formats

• a programming language as a
method for developing working
modules that meet specified needs

• naming conventions for solution
elements

• purposes and characteristics of
internal documentation, including
meaningful comments and syntax.

Reproduced from the VCE Applied Computing Study

Design (2020–2023) © VCAA; used with permission.

Introduction to
programming

FOR THE STUDENT

While programming languages di�er, the fundamental components and
logic needed to write using a programming language are the same. Data
types and structures are consistent across many di�erent programming
languages, as are the conventions for naming solution elements, internal
documentation and the formatting and structure of di�erent file types.
Similarly, methods of representing designs are also independent of any
programming language; in fact, this is their strength.

FOR THE TEACHER

The focus of this chapter is the key elements of programming that are
platform and language independent, as well as the methods used to
create design briefs and represent designs. This chapter forms the basis
of the background needed to prepare students for Unit 3, Outcome 1 as
well as Unit 3, Outcome 2.

2

9780170440943

3
CHAPTER 1 » INTRODUCTION TO PROGRAMMING

Data types
In programming, a data type is a method of classifying a variable to determine the data that

variable can contain, as well as how the variable can be manipulated – that is, what it can do,

and what can be done to it. While programming languages vary widely from each other, data

types do not; they are consistent across all programming languages. When programming,

it can be important to choose an appropriate data type when creating a variable. It is also

important to select the most ef�cient data type. For example, it is not ef�cient to select a

numeric data type that supports decimal places when creating a variable if that variable will

only ever contain whole numbers. Similarly, storing a number as a string is not as ef�cient as

storing it as a numeric data type, even if it is possible to convert strings to numbers.

Numeric

The numeric data type consists of whole numbers, referred to as integers, and decimal

numbers, referred to as floating points. Integers can be referred to as unsigned, which means

they can only store positive whole numbers, or signed, which means they can store both

positive and negative whole numbers.

All numeric data types can have mathematical operations performed on them. The

fundamental operations shown in Table 1.1 are the most common.

TABLE 1.1 Fundamental data type operations

Addition

Subtraction

Multiplication

Division

Whole number division (quotient)

Remainder after division (modulo)

Powers

Assign values

+

−

*

/

/ /

%

**

= or ←

When more than one operation appears within a line of code, the order of operations

follows the same rules as BODMAS in mathematics: brackets, orders, division and

multiplication, addition and subtraction. If two operators have the same precedence, they

are evaluated from left to right.

Numeric data can also undergo comparisons, with the comparisons shown in Table 1.2

being the most common.

TABLE 1.2 Data type comparison operations

Less than

Less than or equal to (or ≤)

Greater than

Greater than or equal to (or ≥)

Equal to

Not equal to

☐ Project plan

9780170440943

☐ Justification ☐ Analysis

<

<=

>

>=

== or =

!= or < >

☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Some languages, such as
Perl, Ruby and Swift, are
dynamically typed, which
means that type checking
for variables is completed
when the program is run
rather than in the code
itself. Programmers do not
need to set variable data
types in dynamically typed
languages.

9780170440943

4

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

The power of 31 for signed
integers represents 32 bits,
minus 1 bit that is needed
to determine if the signed
integer is positive or negative.
The 1 that is subtracted from
the total is due to computer
systems counting from 0,
rather than 1.

THINK ABOUT

SOFTWARE

DEVELOPMENT

How big is 2 ? How big64

1.1

Integer

Integers are commonly represented internally in a computer system as a group of binary

digits, called bits. A bit is the smallest unit of data in a computer, and has a single binary

value, 0 or 1. Bits are stored in multiples of eight, referred to as bytes; therefore, there are

eight bits to a byte.

The maximum and minimum values of an integer depend on the computer architecture

used to run the program and whether the integer is signed or unsigned.

would the number be if
we began using 128-bit
computer systems?

THINK ABOUT

SOFTWARE

DEVELOPMENT

1.2

In 32-bit computer systems , integers that are signed have a minimum value of −231

and a maximum value of 2 − 1 ; from –2147483647 to 2147483647. Unsigned integers31

have a minimum of 0 and a maximum of 2 − 1 (4294967295).32

In 64-bit computer systems, integers that are signed have a minimum value of −263

and a maximum value of 2 − 1. Unsigned integers have a minimum of 0 and a maximum63

of 2 − 1.64

It is important to know the computer architecture on which a program will run before

designing and developing a software solution. Going beyond the maximum and minimum

values of integers can result in an integer overflow, which may result in a program crashing,

or producing inconsistent or invalid output. Integer over�ows compromise a software

solution’s reliability and security.

Floating point

Research the likelihood
of 128-bit computer
systems becoming
the norm within your
lifetime. What would
prevent these systems
being used in standard
computers?

The maximum and
minimum values for
floating point numbers are
not as easy to determine as
integers. When single-
precision floating point
numbers are stored, 1 bit is
used for the sign (positive
or negative), 8 bits for
the exponent, and 23 bits
to store the significant
digits of the floating
point number (that is, the
fraction). For interest, the
formulae that calculate the
maximum and minimum
for 32-bit systems and
64-bit systems can be
found at the weblink.

32-bit systems
64-bit systems

Floating point numbers, also referred to as ‘�oats’ or ‘doubles’, are the computer representation

of real numbers; that is, numbers that allow for decimal places.

Floating points consist of two main parts:

• a significand, which contains the digits of the number that is represented. These can be

either positive or negative.

• an exponent, which helps determine where the decimal point is placed within the

signi�cand.

Two basic formats of a �oating point number in computer systems are single precision

and double precision. Single precision is used in 32-bit systems and double precision in

64-bit systems.

Character

The character data type is a symbol that has meaning. It can consist of any single meaningful

unit, such as a letter, a number, a punctuation mark, a symbol, or even a space. For example,

the word ‘example’ has 7 characters.

What is determined as ‘meaningful’ relies on something referred to as character

handle different character sets. For example, ASCII is a character-encoding scheme that

represents English characters, punctuation and numbers. UTF-8 encoding is a character-

encoding scheme that can represent characters from other languages, such as Japanese

Kanji and Korean Hanja, as well as symbols such as those representing the euro (€) and

yen (¥).

encoding. Character encoding is a way that a computer program can translate binary

data into meaningful characters. There are many character-encoding schemes that

A set or sequence of characters is referred to as a string. For example, the string ‘I like pie’

consists of 8 characters that are letters, and two characters that are spaces. Strings are often

implemented in programming languages as an array of characters.

type.

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

Characters and strings can undergo the same comparisons as numeric data types,

as listed in Table 1.2. Depending on the programming language used, they can also

undergo some of the fundamental data type operations listed in Table 1.1, such as

addition, multiplication and assignment. An example of string addition can be seen in

Figure 1.1.

INPUT firstName

PRINT “Hello “ + firstName + “!”

FIGURE 1.1 Pseudocode example of string addition

Boolean

Boolean data types have only two possible values: 0 and 1. In a programming language these

are often referenced with the words ‘False’ or ‘True’, respectively. This data type is named

after George Boole, a 19th-century mathematician who was the �rst to de�ne an algebraic

system of logic. Boolean data types are very useful for systems that require decisions to be

made or conditions to be met.

Much like integers, boolean values can be treated mathematically, allowing for comparison

operators such as those listed in Table 1.2. This allows for boolean logic operations to occur

in any programming language.

Boolean values can also be used with the fundamental operators and, or and not in

statements where a condition must be met. For example, if a program is required to turn on

a light in a room if it is dark and the light is not already on, it could use two boolean values

to test for this condition (Figure 1.2).

IF isDark = True AND lightOn = False THEN

turnOnLight()
ENDIF

FIGURE 1.2 Pseudocode example of boolean test conditions

Data structures

A data structure is a method of organising data to allow particular operations to be performed

on them ef�ciently; in this way, they are more complex than data types. The types of data

structures used in Software Development are: arrays, associative arrays such as hash tables

and dictionaries, stacks, queues, linked lists, �les, �elds, records and classes.

Array
An array is a data structure that contains groupings of data. These elements are traditionally

of the same data type, such as character, numeric or boolean. Arrays can also store groupings

of other data structures, such as �elds, records, or even other arrays. Arrays are very useful in

programming, as they allow for related sets of data to be organised and ordered ef�ciently.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests

Some programming
languages, such as Python,
allow arrays to contain
more than one data type.

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

THINK ABOUT

SOFTWARE

DEVELOPMENT

1.3

5

You may come
across the term
‘null terminated
string’ when looking
at programming
language reference
manuals and computer
science texts. What
is a null terminated
string?

Boolean values take up only
a small amount of space in
memory, so it is tempting
to use them to store any
type of data that seems
to only have two values.
However, it is important to
consider future expansions
to programs before making
a decision that will limit
a data type. For example,
many old systems that had
gender stored as a boolean
value are now being
rewritten to change gender
to a character or string data

9780170440943

6

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

For example, a teacher might collect data related to the height of each of their students

and store this data as a one-dimensional array of �oating point numbers. This is a much

more ef�cient method of storing data than creating separate variables to store each student’s

height, as it allows for faster sorting and searching.

The contents of an array are referenced using an index value – often an integer starting

at 0. The way that an array is stored means that each element has a set position within it.

This allows for quick access to a particular element of the array, without necessarily needing

to check every element.

Arrays can typically use the operations shown in Table 1.3.

TABLE 1.3 Array data structure operations

Add or append

Remove or delete

Lookup

+

−

arrayName[indexValue]

arrayHeights ← [1.23, 1.35, 1.21, 1.61]

firstStudent ← arrayHeights[0]

secondStudent ← arrayHeights[1]

fourthStudent ← arrayHeights[3]

FIGURE 1.3 Pseudocode example of an array

Consider the array in Figure 1.3. In this example, firstStudent would contain the

�oating point number 1.23, secondStudent would contain 1.35 and fourthStudent 1.61.

In pseudocode (covered later in this chapter), arrays are sometimes indexed starting at 1,

but this should always be made clear in the pseudocode comments.

Associative array
An associative array is a special type of array data structure that consists of a collection of key

and value pairs, where the key is unique and can be of any data type or structure. This makes

it more �exible than an array with an integer index.

Associative arrays can typically use the operations shown in Table 1.4.

For example, if a teacher were to collect student heights in a one-dimensional array, they

would not be able to go back and �nd a particular student’s height, as that data (the student's

name) was not stored in the array. If the teacher used an associative array, they could store the

data they collected as (key, value) pairs, where the key is the student’s name, and the value is

the height of that student. This would allow the teacher to look up any particular student to

�nd out their height.

TABLE 1.4 Associative array data structure operations

Add or append assocArray[key].add (value)
or
assocArray[key] ← value

Remove or delete

Modify or change

Lookup

assocArray[key].remove (value)

assocArray[key].change (value)
or
assocArray[key] ← value

assocArray[key]

Collisions are often handled by inserting all matching values from the hash into an array

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

7

assocArrayHeights ← {}
assocArrayHeights[“Paulo”] ← 1.23
assocArrayHeights[“Shehara”] ← 1.35
assocArrayHeights[“Phoebe”] ← 1.21
assocArrayHeights[“Tuan”] ← 1.61

PRINT assocArrayHeights[“Phoebe”]

FIGURE 1.4 Pseudocode example of an associative array

In the pseudocode example shown in Figure 1.4, Phoebe’s height would be printed once

the code was executed.

One important limitation of an associative array is that keys are not organised or sorted in

a consistent way. If the teacher wanted to print the heights of every student in sorted order,

this would not be possible using just an associative array.

Dictionary

A dictionary is a synonym for an associative array. Associative arrays can also be referred to

as maps or symbol tables.

Hash table

A hash table is a particular type of associative array which, instead of (key, value) pairs, uses

(key, bucket) pairs, where the bucket (or slot) is a one-dimensional array. The key in the (key,

To print the heights of
every student in sorted
order from an associative
array, the teacher would
need to extract the key
elements of the associative
array into a normal array
and sort that array of key
elements. They could then
retrieve each value based
on the sorted array of key
elements.

bucket) index is computed using a hash function on the value that is to be inserted. Once

this key has been computed, the value is then inserted into the bucket at the correct position.

The bene�t of using a hash table over a regular associative array is that it allows for

ef�cient searching. When dealing with very large amounts of data, it can take a very long

time to search through and �nd a particular element if every element has to be checked.

Hash tables are faster, as they move elements into smaller array ‘buckets’, requiring fewer

items to look through when searching. The better the hash function, the faster the search,

with a perfect hash function resulting in a hash table that has only one element in each

bucket. This is quite rare, however, and imperfect hash functions are far more likely. An

imperfect hash function is a function that possibly computes the same key index for more

attached to the key index.

Consider Figure 1.5, a simple hash table that contains words from a book, where the

hash function looks at the �rst character of the value to obtain the key.

hash Table : { a

apple

and

b

banana

be

c

can

cup

cake

FIGURE 1.5 A hash table containing words from a book

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

d e

end

......}

than one value. This results in a collision, which must be handled within a software program.

©
S
h
u
tt

e
rs

to
ck

.c
o
m

/
V
ib

ra
n
t

Im
a
g
e
 S

tu
d
io

8

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

If the next word to be inserted into the hash table is ‘durian’, the hash function would

return the key as ‘d’ and the value of ‘durian’ would be inserted into the bucket with the ‘d’

key, as shown in Figure 1.6.

hash Table : { a

apple

and

b

banana

be

c

can

cup

cake

FIGURE 1.6 An updated hash table, with ‘durian’ added

If the next word after that is ‘egg’, the hash function would return the key as ‘e’. A collision

will occur, as the ‘e’ bucket already has ‘end’ in it, so the value ‘egg’ would need to be added

to the end of the ‘e’ bucket. This is shown in Figure 1.7.

hash Table : { a

apple

and

b

banana

be

c

can

cup

cake

d

durian

e

end

egg

......}

d

durian

e

end

......}

FIGURE 1.7 An updated hash table, with ‘egg’ added

Each time a collision occurs, the new value is added to the end of the bucket – notice

that the array inside each bucket is not sorted.

Hash tables are most useful when there is a lot of data to store and none of it needs to be

sorted. They are particularly useful for searching, as long as the hashing function does not

create too many collisions.

Queue

A queue is a data structure that is best

described using the analogy of a line at

a cafeteria. The person at the start of

the line is the next person served, and

any new person joining the line adds

themselves to the end of the line.

Much like queueing for food,

elements of data in a queue are inserted

at the end of the queue (enqueue), and

each element can only be accessed by

taking it from the start of the queue

(dequeue). This is referred to as first

in first out (FIFO) access. FIGURE 1.8 People in a queue

9780170440943

©
G

e
tt

y
Im

a
g
e
s/

T
h
e
 I
m

a
g
e
 B

a
n
k/

P
a
u
l
Ta

yl
o
r

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

TABLE 1.5 Queue data structure operations

enqueue queue.enqueue (value)

dequeue

front

empty

size

9

inserts a value at the end of a queue

queue.dequeue (value)
removes and returns a value from the front of the queue

queue.front ()
returns a value from the front of the queue, without removing it

queue.empty ()
returns a boolean value of true if the queue is empty, false if not

queue.size ()
returns the number of elements in the queue

Queues can contain any data type or structure, including other queues. In

many programming languages, queues are implemented as arrays or linked

lists. They are useful for implementing functionality to manage wait lists and

access to shared resources (e.g. print queues), and for handling multiprocessing

software with parallel processing needs.

Stack

A stack is a data structure that is most often described using the analogy

of a stack of dirty dinner plates. As each plate is washed, it is removed from

the top of the stack. The dirty plate that was underneath it is now at the

top of the stack. Any new dirty plate is placed on top of the current stack of

dirty plates.

front

front

FIGURE 1.9 Queue operations on data
using an array

front of
queue

3 7 4 6 2 1

queue.dequeue()

7 4 6 2 1

queue.enqueue(4)

7 4 6 2 1 4

FIGURE 1.10 A stack of dirty plates

Just like in the plates analogy, elements of data in a stack are inserted at the top of the

stack (push) and each element can only be accessed by taking it from the top of the stack

(pop). This is referred to as last in first out (LIFO) access.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

10

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 1.6 Stack data structure operations

push stack.push (value)

pop

top

empty

size

inserts an element on top of the stack, pushing all other elements down one place in the stack

stack.pop (value)
removes and returns the last inserted element

stack.top ()
returns the last inserted element, without removing it

stack.empty () returns a boolean value of true if the stack is empty, false if not

stack.size ()
returns the number of elements in the stack

top of
stack

top

3 7 4 6 2 1

stack.pop()

7 4 6 2 1

4 7 4 6 2

top

FIGURE 1.11 Stack operations on
data using an array

stack.push(4)

1

Stacks can contain any data type or structure, including other stacks. In many

programming languages, queues are implemented as arrays or linked lists. They

are useful for implementing functionality such as an undo operation in word

processing software, or for storing the history of visited web pages.

Linked list

A linked list is an ordered set of elements in which each element is connected

to the next element in the list. This data structure allows data elements to

be ordered into a sequence, and allows for ef�cient insertion and removal of

elements from any position in the sequence. Linked lists are particularly useful

in sorting algorithms.

In a linked list, each element is referred to as a node. Each node contains a

data element as well as the memory address of the next node in the linked list.

This is typically referred to as a pointer.

Linked lists are often used to implement stacks, queues and associative

arrays. The simplest type of linked list is referred to as a singly linked list,
which only has the ability to traverse the list in one direction. Another common type

of linked list is a doubly linked list, which allows for two-directional traversal, as each

element in the linked list keeps track of the next element as well as the previous one.

Linked lists make it very easy to add and remove elements at the start, middle and end

of the list. Unlike arrays, whose index values must be shifted (increased) to make room for a

new element to be inserted, linked lists only need to change the pointer to the next element

in the list, and the pointer to the previous element if it is a doubly linked list.

3 7 4

head of singly linked list

linkedList.next()

47

6 2 1

6 2 1

FIGURE 1.12 An example of a singly linked list of integers

A
la

m
y

S
to

ck
 P

h
o
to

/
A

rc
a
d
e
Im

a
g
e
s

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

TABLE 1.7 Data structure operations on a doubly linked list

Head linkedList.head ()
returns the first element in the linked list

Tail

Next

Previous

linkedList.tail ()
returns the last element in the linked list

linkedList.next ()
returns the next element in the linked list based on the current element

linkedList.prev ()
returns the previous element in the linked list based on the current element

Record and field

A record is a basic data structure for collections of related elements. These elements may or

may not be of the same data type. Most frequently, records are used in database systems but

they are also commonly used in programming languages, where they are referred to as structs.

A record consists of a number of fields that are typically �xed – that is, the �elds do not

tend to change once the record is de�ned and used. Each �eld has a name and each has its

own data type.

For example, a customer record may contain �elds such as firstName, lastName

and dateOfBirth.
Records are most useful when a collection of variables are related to each other. This provides

a logical method of ordering data within a program so that data can be accessed quickly.

In object-oriented programming languages, a record is essentially an object that has no

object-oriented features, containing only collections of �elds and values. Records and �elds

can also exist in some types of structured plain text �les.

As records contain programmer-de�ned �elds, there are no set operations that can

be listed for the record data structure. Rather, there are common operations that can be

performed on the record and the �elds within it, such as assignment and comparison, as well

as adding or removing �elds.

Class

Imagine a developer is writing a game where players play golf.

11

FIGURE 1.13 An example of a golf game

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

12

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

THINK ABOUT

SOFTWARE

DEVELOPMENT

1.4

Think about gaming in
general. When would
it be useful to keep
statistics (variables)
about something?

THINK ABOUT

SOFTWARE

DEVELOPMENT

1.5

In the game, the golf clubs that a player uses in�uence the outcome of the game.

Players can upgrade golf clubs as they gain experience in playing courses. Each club carries

information (variables) unique to that club, such as the quality of the club (its condition), the

material of the grip and the material of the club itself.

A golf club also has actions associated with it, such as the action of swinging the golf

club, or the action of breaking the golf club because a player is frustrated. For those actions,

a programmer would need to know the quality, grip material and club material of each and

any golf club used by a player.

What happens if each time a player uses the golf club, the quality decreases, the grip on

the handle wears away a little, a new scratch is formed on the club and the player gets a little

more frustrated?

In a gaming context,
consider the speed of
processing required
to open and close files
every time a player
gains a stat or skill, or
has damage dealt to
them.

How many people
played Fortnite
concurrently at the
peak of its popularity?

Imagine that many
read/write operations
– this would be an
absurd amount of load
on a system.

Describe other
contexts where read/
write operations would
be an important factor
to consider when
writing software.

Before object-oriented
programming introduced
classes and objects, there
was no straightforward
way to write the golf clubs
in the golf game with a
programming language
that just used functions,
subroutines and variables. It
would only be possible if the
program saved information
constantly to files and then
read them back for each
golf club and each player.
Reading and writing to files
is very slow and the game
created could not be played
by more than a couple
players at a time.

Writing a function in the source code of the game would not easily help a programmer keep

track of all those things for each golf club being used, particularly if there are many players

and many golf clubs. The source code would need to have a different variable for each club

a player has, as well as a different variable for each player who plays the game. This becomes

quite tedious to maintain within code, because to avoid hard-coding variables containing

players and their clubs, the code would need to have used multiple associative arrays that were

synchronised with each other so that each index value matched a particular player.

Using a data structure called a class allows a programmer to solve the ‘golf club’ problem.

A class is a programmer-de�ned data structure that exists in object-oriented programming

languages. Classes group conceptually similar functions and variables together in one place

and work as templates for creating objects, which are instantiations, or instances, of classes

that exist in memory on the computer where the program is run. A useful analogy to describe

a class is to think of it as a blueprint or architectural design, such as one used when building a

house. It describes everything that needs to be built to make a house, but is not a house itself.

The house that is built using the design is an instance of the house blueprint. Classes work

in the same way. They describe all of the elements and components that are required by the

object created from the class blueprint, and this object is referred to as an instance of the

class. The number of objects that can be created from a class is limited only by the amount

of memory (RAM) in the computer system on which the program is running.

The purpose of a class is to create a template for objects with pre-determined variables and

behaviour. These templates can then be instantiated as objects or be used by another class

in order to extend upon or change their behaviour. This allows for code re-use in programs

where objects are similar to each other. In the golf club example, a programmer could extend

on a base golf club class using inheritance to make woods, irons, wedges and putters.

Classes contain relevant variables, data types, data structures, methods and events. These

are explained further in chapter 2.

Design brief
A design brief is a document or statement that outlines the nature of a problem, opportunity or

need. It brie�y describes processes, systems and users as a way to ‘kickstart’ the design process.

The design brief is created during the analysis stage of the problem-solving methodology.

A design brief contains an overview of the solution requirements, any known constraints

and a short discussion of the scope. Once the analysis stage of the problem-solving

methodology has been completed, these elements are further developed and incorporated

into a software requirements speci�cation as part of the design stage of the problem-solving

methodology, as outlined in chapter 2.

developing a product.

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

Solution requirements
Solution requirements are what the client needs from the solution. What features do they

want in the solution? Solution requirements in a design brief are often worded descriptions,

rather than technical descriptions.

Constraints
Solution constraints are factors that may limit or restrict solution requirements. At the

stage when a design brief is created, these constraints are described only in general terms.

Typically, constraints involve economic, technical, social, legal and usability factors.

Economic

Economic constraints include time and cost.

The deadline by which the user or client needs to have the solution operational will

de�ne the time available to design and develop the solution. The more time available, the

more time there is to complete an in-depth analysis and detailed designs, and to develop

advanced features of the solution. The shorter the timeframe, the faster each stage in the

problem-solving methodology needs to be completed.

Meanwhile, the funds available to complete the project may affect the hardware and software

(digital systems) available for use, the number and range of staff who are available to work on the

solution and even the data used as input, if the required data sets need to be purchased.

Both a lack of time and a lack of money may result in a re-evaluation of the user’s

requirements, or a re-evaluation of how those requirements can be achieved.

Technical

Technical constraints are constraints related to the hardware and software available for

the project. Available hardware and software, memory and storage capacity, processing and

transmission speeds and security concerns are all examples of possible technical constraints.

For example, developers need to keep in mind that smartphone users may not always have

access to a high-speed network connection, so they need to ensure that any animated data

visualisation solution does not require a large amount of bandwidth to download and view.

Social, legal and usability

Non-technical constraints relate to areas other than hardware and software. Usability and

the user’s level of expertise (social) are examples of non-technical constraints. For example,

if a solution is being developed for users with little digital systems expertise, this may restrict

the inclusion of requirements that would involve complex manoeuvres. Creating a solution

for a child audience may also restrict the method used to input data into the solution.

Legal requirements are another type of non-technical constraint. Privacy laws may restrict

features linked to displaying personal data in the solution, or to collecting data from the

device of someone using your solution. Copyright laws may restrict features that allow other

users to upload content to the solution.

Scope
The scope outlines the boundaries or parameters of the solution, so that all stakeholders

are aware of exactly what the solution will contain. The scope of the solution consists of two

elements: what the solution will do and what the solution will not do.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

THINK ABOUT

SOFTWARE

DEVELOPMENT

1.6

13

List three other
technical constraints
developers of
smartphone apps
need to consider when

9780170440943

14

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Many house and land
package contracts state
exactly what is included
in the package as well as
what is not included in
the package. For example,
tiles on the floor of the
kitchen are included, but
the garden will not be
landscaped.

THINK ABOUT

SOFTWARE

DEVELOPMENT

1.7

What the solution will do

What the solution will do is a list of all the solution requirements (both functional and non-

functional) that will be included in the solution.

What the solution will not do

What the solution will not do is a list of all the solution requirements that will not be included

in the solution.

Usually these are solution requirements that were initially sought by the client, but that,

because of constraints, have been left out of the solution project.

At the start of the project, outlining what will and will not be included in the solution can

help prevent arguments between the client and the developer later in the project.

Rifle target view

What problems do you
think a clear scope
of solution can avoid
later in the project?

The area that is within the scope is
relevant to the project; areas outside
the scope are not.

FIGURE 1.14 Scope of solution

An example of a scope of solution would be: The solution will display population data of

towns in Victoria in a visual format and graphically represent the distances between those

towns. It will be created to be user-friendly, and for privacy reasons, it will not display any

personal details.

The requirement that allows the user to zoom in on a particular region or town will not

be included in the project because of economic factors but may be added at a later stage.

In a design brief, aspects of the solution that are within scope are described without

technical detail, and may consist of general descriptions of what the solution will contain

in relation to functional and non-functional requirements. Determining what may be out of

scope normally occurs during the analysis stage, such as deciding what functionality may be

delayed for later releases due to time constraints.

Representing designs
Once a software requirements speci�cation has been completed, it is important that

considerable time is spent designing the software that is going to be written. This helps

reduce the time and effort that goes into writing the software, as problems are normally

resolved before any code has been written. There is nothing worse than needing to rewrite

code due to an issue that could have been resolved in the design stage!

Some common methods of representing designs are to use data dictionaries, object

descriptions, mock-ups and pseudocode. Each of these methods has a different purpose in

the design stage.

15
CHAPTER 1 » INTRODUCTION TO PROGRAMMING

Data dictionaries
A data dictionary is used to plan the storage of software elements including variables, data

structures, and objects such as GUI textboxes or radio buttons. A data dictionary should

list every variable’s name and data type or structure. It may also include the data’s purpose,

source, size, description, formatting and validation.

TABLE 1.8 Data dictionary

Name

customerId

postCode

userActive

totalOrderCost

Type

integer

string

boolean

floating point

Format

999999

9999

True/False

99.99

Purpose

Unique identifier for a
customer

Postcode for a suburb

Stores if user is active
or not

Total cost of an order

Data dictionaries are valuable when code needs to be modi�ed later by other programmers

and the purpose of a variable is unclear. You will learn more about data dictionaries in

chapter 4.

Object descriptions
An object description is a way of describing all of the relevant properties, methods and

events of an object.

OBJECT: txtName

PROPERTIES

Class: textbox

Left position: 300

Width: 500

Font: Arial

Justification: left

Visible: yes

Font colour: black

METHODS

Cut: save cut text to disk

EVENTS

Keypress: if key is CTRL+[set text justification to left.

FIGURE 1.15 Example of an object description

Object descriptions are valuable when code needs to be modi�ed later by other

programmers and the properties of the object are unclear or unknown.

Mock-ups
If software will be used directly by people (rather than running hidden deep in the OS), it

needs an interface – a place where people can control the program, enter data and receive

output. A successful interface must be carefully designed to ensure it is usable and clear.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

16

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

To design an interface, use a mock-up, which is a sketch showing how a screen or printout

will look. A mock-up should typically include the following features:

In VCE Software
Development you are not
required to use software
to create your mock-ups.
You may use software if
you wish, but you can also
create them by hand using
pen and paper.

• the position and sizes of controls such as buttons and scroll bars

• the positions, sizes, colours and styles of text such as headings and labels

• menus, status bars and scroll bars

• borders, frames, lines, shapes, images, decoration and colour schemes

• vertical and horizontal object alignments

• the contents of headers and footers.

BLACK

CURRENCY CALCULATOR

all
labels
Arial
14 pt

FROM CURRENCY
(hotkey ‘F’)

TO CURRENCY
(hotkey ‘T’)

Align

label

Align

$US XXX.XX = $AUD XXX.XX

(Whatever currencies
were chosen above)

All text is black.

(2 decimal places)

Clear Exit

hotkey
‘C’

Clears

hotkey ‘X’

combo boxes
& amount

$US
Combo boxes

$AUD

textbox
XXX.XX

AMOUNT
(hotkey ‘M’)

$
$ $ $

ARIAL 18 pt
centred

green
back

white
backgrounds

picture
of
money

align

& conversion label output text.

FIGURE 1.16 A mock-up of a screen interface

A mock-up can be considered successful if you can give it to another person and they can

create the interface without needing to ask you questions.

Pseudocode

Writing an algorithm in source code is slow. An algorithm written in source code also limits

itself to use in only one compiler. Pseudocode, also known as Structured English, is a

quick, �exible and language-independent way of describing a calculation strategy – halfway

between English and source code. Once the algorithm is sketched out in pseudocode, it can

be converted into source code for any desired programming language.

A good algorithm can be extremely valuable. A clever strategy can make software run twice

as quickly or use half the amount of RAM. An ingenious idea can lead to the development of a

program that was previously considered impossible. For example, Google’s PageRank completely

changed the way the world searched the internet, and made its inventor billions of dollars. The

invention of public key encryption �nally cracked the age-old problem of how to encode and

transmit secrets without having to also send an unlocking key, which could be intercepted.

The following pseudocode determines if a year is a leap year.

IF (year is divisible by 4 AND NOT divisible by 100)

OR (year is divisible by 4 AND 100 AND 400) then

it’s a leap year

FIGURE 1.17
ELSE

Pseudocode to determine
leap years

it’s not a leap year
ENDIF

submission

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

The rules of pseudocode

What are the rules of pseudocode? Easy: there are none. As long as the intention of the

calculation is clear, it is good pseudocode. If not, it is bad.

It is important to ensure that you specify assignment (the storage of a value) using the ←
symbol rather than the equals sign (=) that is used in algebra and in most real programming

languages. For example:

isLeapYear ← True

The equals sign is reserved for logical comparisons, such as:

IF B=0 THEN SoundAlarm()

Common features found in pseudocode include:

• iterations/loops, such as WHILE/ENDWHILE and FOR/NEXT

• condition control structures, especially IF/ELSE/ENDIF blocks

• logical operators – AND, OR, NOT, TRUE and FALSE

• arrays, such as Expenses[3]

• associative arrays, such as Expenses[“Gary”]

• records and �elds, such as Customer.�rstName, where Customer is the record and

�rstName is the �eld

• arithmetic operators (+ – * /) and the familiar order of operations, as used in Year 7

mathematics and Microsoft Excel spreadsheet formulas.

Pseudocode punctuation and the names of key words are largely up to you, so long as it

is clear what you mean. For example, it does not really matter if you prefer WHILE/WEND

or WHILE/ENDWHILE.

To ‘Get data from keyboard’, you could use INPUT, GET, FETCH, or another keyword.

To read data from a disk �le, you could choose INPUT, GET, READ or something else. To

avoid ambiguity, you could explain your pseudocode’s conventions using comments within

the pseudocode. Comments can be pre�xed with a hash, #, or included in parentheses/curly

brackets, {}.

GET reads the keyboard.

READ loads data from a disk file.

DISPLAY shows output on screen.

WRITE saves output to a file.

DISPLAY “What is your name?”

GET UserName

OPEN FILE “Users.txt”

READ data for UserName

IF new data exists THEN

WRITE new data to file
ENDIF

Files

Computer �les are resources that allow data to be recorded on any

type of storage device in a computing system. Files are therefore

critical for the operation of almost every software solution if the

program needs to save information to be retrieved later.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas

TABLE 1.9 File operations

open

close

read

write

☐ Usability tests

17

FIGURE 1.18

Pseudocode to add new
users to a file

file.open (filename, mode)

file.close ()

file.read ()

file.write (character)

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

©
U

se
d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 M
ic

ro
so

ft

18

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

There are two types of �les: text files and binary files. Text �les store data as easily readable

plain text, while binary �les store data in binary form, such as with images and sound. Binary

�les are not easily readable and are therefore more secure than text �les.

Files can be opened using different modes, such as read, write, append and binary.

Plain text files

A plain text file is a structured �le that contains characters of readable data. This data

can be structured with spacing, new lines and tabs, but can only be read as character and

string data types.

Plain text �les are commonly used for con�guration settings or for storing small

amounts of data in simple software programs.

FIGURE 1.19 An example plain
text file of names and heights

While plain text �les that are stored in a computer system can be opened and

read by a human, they are not typically designed for human readability. Instead, they

are designed for fast processing and reading by computer programs. This means that

a plain text �le often lacks comments, headings and sub-headings that would make

it more coherent for a human.

FIGURE 1.20 An example plain text configuration file from a Windows 10 system

Delimited files

A particular type of text �le is a delimiter-separated value (DSV) text �le, which is a text

�le where data values are separated by a programmer-selected character. This character

is referred to as the delimiter. The most common delimiters used in delimited �les are

commas, tabs and colons. Delimited files allow for the storage of two-dimensional arrays in

a structured, readable format. When a comma is used as a delimiter in a delimited �le, the

�le is referred to as a comma-separated value �le, or CSV �le.

FIGURE 1.21 An example CSV file containing student and subject data

9780170440943

19
CHAPTER 1 » INTRODUCTION TO PROGRAMMING

In programming, delimited �les are very useful when storing small amounts of data.

When there is a lot of data, however, loading, reading and writing to a delimited �le is

inef�cient, as it is very slow. Delimited �les are also not secure – anyone opening the �le

can read its contents. For this reason, they are not suitable for storing sensitive data, such as

usernames and passwords, �nancial details or medical details. This risk to security can be

reduced if sensitive data is encrypted.

XML files

An eXtensible Markup Language (XML) �le is one that has been created using a set of

rules for encoding the �le into a format that can be read by both a human and a computer

program. XML makes it easier to store and transport data within a system and between

systems, as it is based on a set of standards and conforms to published conventions. XML was

designed to be as self-descriptive as possible, which increases human readability.

XML �les contain a prolog, which is information that appears before the start of any data

in the XML �le. It includes information that applies to the XML �le as a whole, such as the

version of XML it uses and the character encoding of the data within it.

XML is very similar to HTML, but a key difference is that XML has no pre-de�ned

tags. Instead, XML tags are determined by the person who creates the XML �le. There are,

however, types of tags, referred to as elements, that are meaningful within the XML �le.

An XML �le contains an XML tree, which is the set of elements contained within the

�le. The tree begins with a root element that is a parent to child elements. These child

elements are sub-elements of the root, but any element can contain sub-elements. This

makes the structure of an XML �le hierarchical, using the analogy of a family tree.

An XML element can contain attributes, text or any other element.

TABLE 1.10 XML element types and characteristics

Root

Parent

Child

Sibling

Attribute

Text

The first element in an XML tree, and parent to all other elements. There can only be one
root element. In Figure 1.22, this is represented by the <recipes> element.

Any element that contains sub-elements. An example in Figure 1.22 is the <recipe>
element.

Any sub-element to another element. An example in Figure 1.22 is the <ingredient>
element.

Any sub-element on the same level as another sub-element is a sibling to it. The <time> and
<serve> elements in Figure 1.22 are siblings to each other.

An element can contain one or more attributes. Attributes must be enclosed in quotation
marks. An example of an attribute in Figure 1.22 is the ‘name’ attribute inside the <recipe>
element.

An element can contain text content. An example of text content in Figure 1.22 is ‘40
minutes’ inside the <time> element of the recipe for ‘Fudge Choc-Cherry Biscuits’.

While elements and attributes are user-de�ned, some naming rules still apply. Elements

are case-sensitive, must start with a letter or an underscore, cannot start with the letters ‘xml’

and cannot contain spaces. They can contain letters, numbers, hyphens, underscores and

full stops.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Comprehensive
documentation
outlining XML

9780170440943

20

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

FIGURE 1.22 An XML file containing ingredients for recipes

21
CHAPTER 1 » INTRODUCTION TO PROGRAMMING

The advantages of using an XML �le over a plain text �le are that XML is industry

standard, widely used and cross-platform. It allows rules to be set and used on data in a way

that text �les cannot. XML also allows storage of data that does not rely on a user interface –

the same data can be displayed in different formats and interfaces.

XML �les are used for many different purposes, including:

• storing data – for internal and/or external systems

• storing con�guration information

• storing user interface details

• moving and sharing data between internal and/or external systems.

These purposes are particularly useful for cross-platform and cross-system applications.

Using an XML �le ensures that data received from a source is in an ‘as expected’ format.

This ensures data integrity across systems.

Programming languages
Programming languages are used to give instructions to computer processors so they can

calculate useful information or carry out tasks for humans. Whether your phone is streaming

music, your car is turning on its anti-skid braking, or McDonald’s is calculating staff wages,

programming languages are needed.

Like human languages, there are many programming languages, each with distinctive

grammar, punctuation and vocabulary. Most programming languages have special abilities

or strengths that make them more useful than other languages for a particular task.

Professional programmers know a handful of languages and choose the best language for

each job, based on its strengths and weaknesses. Choosing which languages to learn is a big

decision, but remember that learning one language makes it easier to learn others. The most

popular programming languages include C (C++ or C#), Python, Java, JavaScript, Perl and

PHP, SQL, Visual Basic and Swift.

• C, C++ or C# are used for writing low-level systems and utilities and fast applications.

This could include operating systems, embedded microcontroller programs, web-based

applications and games.

• Python is an interpreted object-oriented programming language used for web and app

development.

• Java is used for web applications and web services and for building Android apps.

• JavaScript is a client-side scripting language for websites.

• Perl and PHP are used in website and network programming.

• SQL, or structured query language, is a scripting language for database programming.

• Visual Basic and Visual Basic .NET are used widely to create applications for Windows-

based computers.

• Swift is a programming language for macOS, iOS, watchOS and tvOS.

While programming languages may differ, they all do basically the same job. They

control a digital system such as a computer, tablet or smartphone.

Programming languages differ in the amount of direct control they give over a computer’s

hardware and operating system. With a high-level language such as Visual Basic or Python,

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

22

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

programmers avoid having to worry about complex details of the structure of actual disk �les

or where data is stored in memory. High-level languages are simpler to use, but lack the

control of complex but more dif�cult to learn low-level languages. Conversely, a low-level

language such as assembly or machine code requires more skill and knowledge from the

programmer, but allows more direct control of the workings of a computer.

High- and low-level programming languages each have their uses. To write a simple

alarm clock program, a high-level language is �ne. To write �rmware for a micro-controller,

a low-level language is more appropriate.

Internal documentation

One of the most important yet easily forgotten aspects of writing good code is including

meaningful internal documentation. Internal documentation is the notes and comments

written by a programmer within the code itself. It includes information about the program

as a whole, as well as about each of the classes, functions, methods, objects, algorithms, etc.

within it. It is often combined with meaningful, well-named variables to create manageable

and effective code.

Internal documentation has no impact on the compilation or running of the code itself. It

exists only to provide context and important information about the code. Often it is most useful

when a programmer is reading through code that they did not write themselves, or that was

written a long time ago. This means that the programmer does not need to rely on memory

alone or on interpreting complex algorithms to understand how the program works. Well-

written internal documentation saves time, as it reduces effort on the part of the developer,

making it a core feature of ef�ciency in creating and maintaining software solutions.

Internal documentation conventions

Version control is the
management of changes
to source code files and
other project-related
documents throughout
the duration of a software
project. Version control
systems typically run as
stand-alone programs
or web-based systems
that not only help track
changes to documents, but
also allow for more than
one developer to work on
source code at the same
time. They also enable a
developer to revert back to
previous versions of source
code.

Git/GitHub version

control

While there is no single set of conventions for internal documentation, there are many

common elements of internal documentation that should be included. These are:

• a header comment , containing the name of the �le, a brief description of the program,

the author’s name, and the date the program was �rst created

• documentation of classes and methods, describing their behaviour and how they are

used, including any expected inputs and outputs and their respective data types

• function and subroutine comments, describing their purpose, as well as describing all

inputs and outputs and their respective data types

• single-line comments, providing brief summaries of portions of code

• multi-line comments, explaining a complex algorithm within the code itself

• descriptions of how to test aspects of the software

• extra information on upgrades, changes or enhancements made to the program.

While internal documentation can include comments related to revisions and new

versions, this does not replace the need to use an effective version control system.

When writing internal documentation, it is important that the comments made within

the source code are well formatted so they can be easily read. Comments should be separated

from code by a blank line before the comment. For multi-line comments, a blank line should

be included before and after the comment. Comments should be vertically aligned with the

submission

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

indent level of the current code to make it clear which code it is associated with. Depending

on the programming language used, comments must be enclosed using special characters.

Table 1.11 includes a list of the characters used in some popular programming languages.

TABLE 1.11 Common programming language commenting conventions

C, C++, Java,
JavaScript, Swift

// this is a single line comment
/*

*/

Python

PHP

This is a multiple line
comment

this is a single line comment

this is a single line comment

// this is also a single line comment
/*

*/

XML, HTML

This is a multiple line
comment

<!-- this is a single line comment -->
<!--

This is a multiple line
comment

-->

VB, VB.Net ‘ this is a single line comment

While it is important to include internal documentation in all software modules, the

comments that are included should be meaningful and non-trivial. Unless it is being used

for teaching purposes, internal documentation should not simply state or re-state what is

occurring in the code, particularly if this is clearly apparent in the code itself.

For example, the following commented Python code would be considered trivial, as the

code comments do little more than re-state what the next line of code does.

Many programming
languages have tools that
make creating internal
documentation easier.
There are also tools
that extract internal
documentation to create
reference manuals and
online documentation for
users.

Doxygen

23

FIGURE 1.23 Poorly commented code

An example of better comments is shown in Figure 1.24. Notice that the code comments

provide information about the function, its inputs, and its outputs, including reference to

data types.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

24

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

FIGURE 1.24 Appropriately commented code

Naming conventions
A naming convention is a set of rules that is used when creating variables, subroutines,

functions, methods, objects, classes, etc. in programming source code, as well as in internal

documentation. It is a consistent and meaningful way of labelling each of these elements

so that they are easily read and understood. The most useful naming conventions tell a

programmer the purpose of an element and, if relevant for the programming language, its

data type or structure.

Each programming language tends to have a set of language-speci�c conventions to

follow when naming elements. For example, Microsoft.NET, Python and Swift all use a

convention called ‘camel case’ within its code. Two other common naming conventions are

snake case and Hungarian notation.

Camel case

Camel case, also known as camel caps or lowerCamelCase, uses compound words and

phrases as a naming convention, where each word after the �rst begins with a capital

letter. For example, camelCase. No spaces or punctuation are included when naming

variables and other elements. While multi-word variable and function names are useful,

it is important that these are kept as short as possible, while remaining meaningful. Often,

this is achieved through abbreviating some of the words in the compound phrase. A variable

named firstNameOfEmployeeWhoIsPartTime is not as effective as one named

firstNameEmplPT, as it is too long. Writing and reading code using the longer version

of this variable would be very tedious. Camel case is one of the most common naming

conventions used in modern programming, in particular when programming using a

dynamically typed language.

Snake case

Snake case is very similar to camel case, but instead of compounding phrases into a single

word without spaces, it joins each word in the phrase using an underscore. For example,

snake_case. Many programmers prefer snake case over camel case because the

underscores separating each word make it easier to read the variable, method and function

names.

submission

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

Hungarian notation
Hungarian notation, in particular a variety referred to as Systems Hungarian, is similar

in style to camel case, in that it compounds words and phrases, without spaces, and each

word after the �rst begins with a capital letter. Hungarian notation also adds a prefix, that is,

an initial letter sequence, before the name of the variable. This letter sequence represents

the data type or structure of the variable. For example, iNumEmployees to represent the

number of employees as a whole integer. This can be useful when programming using

programming languages that are not dynamically typed, as it immediately tells a programmer

what data type or structure they are handling when they read the variable name.

TABLE 1.12 Some Hungarian notation prefixes

iNumEmployees

arrEmployees

strEmployee

chEmployeeGender

fpEmployeeHeight

fnEmployeeFunction

Integer

Array

String

Character

Floating point

Function

Hungarian notation is a �exible naming convention, with many programmers creating

user-de�ned pre�xes that are meaningful for the programming language they are using. For

example, while classes and objects were not considered in the initial Hungarian notation

pre�xes, many programmers use ‘cl’ as the pre�x to represent a class and ‘obj’ for an object.

With the increasing prevalence of dynamically typed programming languages, however,

most programmers prefer to use the camel case or snake case naming convention over a

modi�ed Hungarian notation.

25

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

1
Essential terms

CHAPTER

SUMMARY

32-bit computer system a computer system with 32 bits of memory addresses

64-bit computer system a computer system with 64 bits of memory addresses

array a list of elements indexed by position. In most programming languages the first
element has index zero.

associative array similar to an array; information is stored in key-value pairs

binary file a computer-readable file, such as executable programs, images and sound

boolean a data type with one of two possible values, 0 and 1, usually referred to as False and
True, respectively

camel case a naming convention in programming where each word or abbreviation after the
first in a phrase begins with a capital letter; there are no spaces or punctuation

case-sensitive a program's ability to distinguish between upper-case and lower-case letters

character a data type representing any single meaningful unit, such as a letter, a number, a
punctuation mark, a symbol, or even a space

character encoding a code that allows a computer program to interpret binary digits
(0s and 1s) into meaningful units representing characters and numbers. For example, ASCII,
UTF and Unicode are types of character encoding.

child element any sub-element of a parent element in an XML file

class a program code template for creating objects in object-oriented programming
languages

collision when two di�erent input values to a hashing function output the same hash value

constraint a restriction on what can and cannot occur in the creation of a software solution,
external to the solution itself

CSV a comma-separated value file, which is a delimited file, separated by commas

data dictionary a set of information that describes elements within software, such as
variables, data structures and objects

data structure a method of organising data to allow particular operations to be performed
on them e�ciently

data type a method of classifying a variable to determine the data that variable can contain,
as well as how that variable can be manipulated

delimited file a text file where data values are separated by a programmer-selected
character

delimiter the character used to separate data values in a delimited file

dequeue removing and returning a value from the start of a queue

dictionary an associative array, also referred to as a map or symbol table

enqueue inserting a value at the end of a queue

field a single data item in a record, e.g. FamilyName

first in first out (FIFO) the first element in a queue is the first element out of the queue

floating point computer representation of real numbers, with decimal places

hard-coding to include fixed data in a program that cannot be changed during run-time
and can only be changed by modifying the program source code

hash function a function that takes a key value and returns another, related, value that is
normally smaller than the original value

26

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

hash table a data structure that uses a hash function to map keys to values by computing an index that is related to, but
smaller than, the initial key

header comment a set of meaningful comments at the top of a source code file, outlining information such as the name of
the file, its purpose, the author’s name and the date of creation

Hungarian notation a naming convention in computer programming where the name of the variable or function determines
its purpose and its data type or structure

imperfect hash a hash function where two or more keys can be computed to have the same hash index

inheritance a method of basing an object or class on another object or class, taking on its attributes and methods and
potentially extending upon them

instantiation in object oriented programming, the process by which an object is created from a class

integer a data type representing whole positive and negative numbers

integer overflow a condition occurring as a result of a mathematical operation where the output exceeds the maximum or
minimum integer value that can be stored on that computer system

interface within software, the place where people control the program, enter data and receive output

internal documentation notes and code comments contained within source code that describe the code

last in first out (LIFO) the last element in a stack is the first element out of the stack

linked list a data structure containing an ordered set of elements in which each element is connected to the next element in the list

mock-up a sketch showing how a screen or printout will look, used to aid in the design of an interface

naming convention an agreed set of rules by which to name source code elements such as variables, functions, classes,
methods and objects

node a basic unit of a data structure that may contain data and/or link to other nodes

non-technical constraints limitations relating to areas other than hardware and software: social, legal and usability

numeric a data type consisting of whole numbers, referred to as integers, and decimal numbers, referred to as floating points

object any instantiated class that a program can inspect and/or change, in terms of appearance, behaviour or data

object description a way of describing all of the relevant properties, methods and events of an object

parent element any element in an XML file that contains at least one sub-element

perfect hash a hash function where no two keys can be computed to have the same hash index

plain text file a structured file that contains characters of readable data

pointer a programming language element that stores the memory address of another data value located in memory; the
pointer ‘points’ to that memory space

pop an element of data removed from the top of a stack, moving all remaining stack elements up one place

prolog the information in an XML file that appears before the start of the document’s contents, including information such as
the XML version and character encoding that is being used

pseudocode code that designs algorithms in a clear, human-readable, language-independent format

push an element of data inserted at the top of a stack, moving all current stack elements down one place

queue a ‘first in first out’ data structure storing elements to be processed in order

RAM random access memory; a type of computer memory that can be accessed randomly; it is most often volatile memory
that is lost if power is removed

record a complete set of fields relating to an entity, such as a person

root element a parent element to all other elements in an XML file

scope the boundaries or parameters of the solution – what it will do and what it will not do

snake case a naming convention in programming where each word or abbreviation in the middle of a phrase is joined using an underscore

solution requirements what the client needs from the solution in relation to its features

27

9780170440943

1
stack a ‘last in first out’ data structure

string a data type representing a set or sequence of character data types

struct record used in database systems and programming languages

CHAPTER

SUMMARY

technical constraints constraints related to the hardware and software available for the
project

text file a structured file containing sequences of characters that are not encrypted, such
as a plain text file or CSV file

tree the structure of an XML file that contains a root element and all of its sub-elements

variable a method of storing and labelling data to be referenced and manipulated in a
computer program

version control system a software product that manages the revisions, changes and parallel
editing of source code and its related documentation

XML eXtensible Markup Language, a metalanguage that allows for user-defined tags and
rules for encoding documents in a format that is readable by humans and machines

Important facts

1 Data types are consistent across all programming languages.

2 Variables can be classified as particular data types and structures.

3 Integers are positive and negative whole numbers; floating point numbers can have
decimal places.

4 It is important to know the computer architecture on which a program will run before
designing and developing a software solution, as some data types di�er depending on
whether the computer runs on a 32-bit or 64-bit system.

5 A set or sequence of characters is also known as a string data type.

6 Boolean values are 0 and 1, but sometimes coded as true or false in a programming
language.

7 Data structures are more complex than data types.

8 Arrays start at index value 0 in almost all programming languages.

9 Arrays traditionally contain elements of the same data type, but this depends on the
programming language selected.

10 Dictionaries and hash tables are types of associative arrays.

11 Queues are first in first out (FIFO), stacks are last in first out (LIFO).

12 Records are collections of related data (fields) that may or may not have the same data
types.

13 Classes are blueprints, and objects are instantiations of those blueprints.

14 Classes can be extended upon using inheritance.

15 Objects contain methods, a function or subroutine, and events, called when an object's
state changes.

16 A design brief is typically written during the analysis stage of the problem-solving
methodology.

17 Solution requirements describe what a client needs from a solution; they are general
rather than technical descriptions.

18 Solution constraints limit or restrict solution requirements.

28

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

19 The scope of a solution is the boundary or parameters of the solution that outlines what a program will do and what it will
not do.

20 Designs can be represented using tools such as data dictionaries, object descriptions, mock-ups and pseudocode.

21 Data dictionaries are valuable as references when modifying code.

22 Object descriptions describe all of the relevant properties, methods and events in an object.

23 Mock-ups are annotated visual representations of the user interfaces of software solutions.

24 Pseudocode is a way of representing algorithms using structured English that does not rely on the syntax of any
programming language.

25 Text files are easily readable by a human; binary files are not.

26 Plain text files are typically structured using spacing, new lines or tabs.

27 Delimited files are a way to store two-dimensional arrays in a structured, readable format.

28 XML is a powerful markup language that allows for easy transportation of data between systems.

29 Programming languages give instructions to computer processors so they can carry out tasks for humans.

30 While programming languages may di�er, they all do basically the same job: they control a digital system such as a
computer, tablet or smartphone.

31 Internal documentation should be relevant, consistent and non-trivial.

32 Naming conventions make source code easier to read, increasing its e�ectiveness.

29

9780170440943

TEST YOUR

KNOWLEDGE

Qz Review quiz Data types and structures

1 Select the most appropriate data types and structures for the following data:

a 222

b 2.95

c True

d panda

e 019234

f Customer: { Phoebe, Corp, 08/08/2018, 123 Fourth Street,

Fifthsville, VIC, 3888 }

g Players: { Wanda, Greg, Tuan, Rishad, Dillon, Nicole, Shveta,

Ramesh }

h Stock: { “potatoes”: 300kg, “cauliflower”: 344kg, “peas”:120kg,

“carrots”:403kg }

i -

j 0

2 A computer program runs an algorithm on very large numbers and displays an incorrect output
number: 2 147 483 647. Explain what has most likely occurred.

3 What is the di�erence between a hash table and a dictionary?

4 When would you use a record over an array to store a collection of related values?

5 A cafe would like a new ordering system to process orders so that they are cooked in the order in
which they are received. Which data structure is the most appropriate to store kitchen orders?

6 An application to store song playlists has been written so that when a new song is added to the
playlist, it is queued so that it plays next, in front of any other song on the playlist. Which data
structure is the most appropriate to use for the playlist?

Naming conventions

7 Use the pseudocode below to answer the questions that follow:

INPUT strFileName

dictAll ← {}

elTree ← fnReadXmlFromFile(strFileName)

elRoot ← elTree.fnGetRoot()

FOREACH elSubEl IN elRoot

dictAll[elSubEl.fnGetElement("height")] ←

elSubEl.fnGetAttrib("height")

ENDFOREACH

RETURN dictAll

30 SOFTWARE DEVELOPMENT VCE UNITS 3&4

31

TEST YOUR

KNOWLEDGE

a Which variable is a string?

b What data structure is dAll?

c What data structure is elRoot?

d What naming convention is being used?

Design briefs

8 What is contained within a design brief?

9 Define ‘scope’.

10 Define ‘constraints’.

11 Explain how scope can a�ect the success of a solution.

12 A developer is writing an application for a mobile phone. What are two constraints the solution
will have?

13 Why is it important to design a system before writing source code?

Representing designs

14 What is a data dictionary and what is its purpose?

15 What is an object description and what is its purpose?

16 What is pseudocode and what is its purpose?

17 What is the di�erence between ← and = in pseudocode?

18 State the values that will be returned or displayed in the following examples of pseudocode:

a stkFruit ← { "banana", "cherry",
"mango" }

stkFruit.pop()
stkFruit.push("pear")
stkFruit.pop()
stkFruit.pop()

DISPLAY stkFruit.top()

b qFruit ← { "banana", "cherry",
"mango" }

qFruit.dequeue()
qFruit.enqueue("pear")
qFruit.dequeue()
qFruit.dequeue()

DISPLAY qFruit.front()

☐ Project plan ☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

9780170440943

9780170440943

TEST YOUR

KNOWLEDGE

Files

19 What is the di�erence between a text file and a binary file?

20 What are delimited files?

21 What is a CSV file?

22 What is the di�erence between XML and HTML?

23 What is the purpose of XML? Provide an example as part of your explanation.

24 Describe a situation where you would use a CSV file over an XML file.

25 Describe a situation where you would use an XML file over a CSV file.

Programming languages

26 Name three high-level programming languages.

27 What is the di�erence between a high-level programming language and a low-level
programming language?

Internal documentation

28 Explain the purpose of internal documentation.

29 What are three conventions of internal documentation that should be included in source code?

30 Does internal documentation slow down a software solution? Explain.

Naming conventions

31 Name two types of naming conventions.

32 Why are naming conventions important in source code?

32 SOFTWARE DEVELOPMENT VCE UNITS 3&4

APPLY YOUR

KNOWLEDGE

1 Brainstorm ideas for a problem, opportunity or need for which you are interested in creating
a software solution. You may need to ask people in your family or local community for ideas
as part of this process. Consider applications relevant to your hobbies and interests as well.
Examples of potential projects are:

» job scheduling system for a small business

» healthy lifestyle app for a mobile system

» fitness apps for wearable technology

» order management system for a retail store

» automated invoice production

» competition ladder tournament creation tool.

2 The nature of your problem will determine the contents of your design brief. Begin drafting
your design brief by describing the problem, opportunity or need that most appealed to you
from question 1. You should check with your teacher to make sure your selection is feasible and
appropriate.

3 Complete data collection to determine the constraints of your solution. You will want to
consult with a client to gather this information. Ensure you consider technical, economic,
social, legal and usability constraints. Document these constraints in your design brief. It may
be useful to list and describe the constraints in table format.

4 Complete data collection to determine the scope of your solution. You will want to consult with
a client to gather this information. Ensure you consider your constraints when determining
scope. Document what is in and out of scope in your design brief. It may be useful to list these
as dot points.

5 Complete your design brief. Ensure it includes:

a details about your client

b a full description of the problem, opportunity or need

c constraints relevant to the proposed solution

d the scope of the proposed solution.

☐ Project plan ☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

9780170440943

33

34

12
3R

F.
co

m
/

p
rz

em
ek

kl
os

CHAPTER

2
KEY KNOWLEDGE

On completion of this chapter,
you will be able to demonstrate
knowledge of:

Approaches to problem solving

• processing features of a
programming language, including
classes, control structures,
functions, instructions and methods

• algorithms for sorting, including
selection sort and quicksort

• algorithms for binary and linear
searching

• validation techniques, including
existence checking, range checking
and type checking

• techniques for checking that
modules meet design specifications,
including trace tables and
construction of test data.

Reproduced from the VCE Applied Computing Study

Design (2020–2023) © VCAA; used with permission.

Development
and features of a
computer program

FOR THE STUDENT

The processing features of a programming language are fundamental,
as the focus is on the logic of programming, rather than on syntax.
Similarly, algorithms written in pseudocode are able to be translated
into any language on any platform; this is the benefit of designing an
algorithm in pseudocode before writing it in source code. Validation
techniques are critical to make sure data that is handled by a computer
application is as well-formed as possible. While it is important to take
time to develop a software solution, it is equally important to spend
time checking that the modules that have been written meet design
specifications and are as bug-free as possible. This involves rigorous
testing procedures.

FOR THE TEACHER

The focus of this chapter is on the fundamental processing features of a
programming language. Students should spend a considerable amount
of time putting the theoretical underpinnings of programming logic into
practice using their selected programming language, initially writing
small pieces of source code that attempt instructions, control structures,
methods, functions and classes. Once students are comfortable with
these processing features, they should attempt to implement more
complex algorithms, such as sorting and searching algorithms.
Chapters 1 and 2 form the basis of Unit 3, Outcome 1.

submission

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

Processing features of a
programming language

Variables
Variables are methods of storing data so that they can be retrieved later within a program.

Without variables, it would be impossible to reference data once it has been stored in

memory. A variable is typically used to store a data type or structure, but it can also be used to

store a pointer to a function or method. Variables should be named appropriately, following

consistent naming conventions.

Instructions
An instruction is a unit of code that can be executed by a compiler or interpreter. There are

two types of instructions in programming: de�nitions and statements.

A definition is an instruction that assigns a value to a variable. The �rst line in Figure 2.1

is an example of a de�nition.

a ← 7

PRINT a

FIGURE 2.1 Pseudocode example of two types of instructions

Control structures
There are three fundamental control structures in programming: sequences, conditions and

iterations.

Sequence

A sequence is a set of instructions that executes line by line, a little bit like a recipe. Every

line of code in the sequence is run in the order that it is written.

ALGORITHM askName()
BEGIN

PRINT “What is your name?”

INPUT name

PRINT “Hello, “ + name + “. Nice to meet you.”
END

FIGURE 2.2 Pseudocode example of a sequence of instructions

In the algorithm shown in Figure 2.2, a sequence of code runs that asks a user for their

name, reads the name as input and then greets the user by name. Each line of code in the

algorithm is run, in order, only once.

A statement is a single line of code that, when executed, performs a single action. The

last line in Figure 2.1 is an example of a statement.

35

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

36

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Conditional

A conditional statement is a control structure that allows a programmer to write lines of

code that are only run when a particular requirement is met; this is sometimes referred

to as a selection control structure. The code within a conditional statement can contain

instructions, sequences, other conditional statements or iterations.

Conditions are boolean, in that they are run based on the result of a condition being

evaluated as either true or false. If the condition evaluates as ‘true’, the code within that

conditional statement is executed. If it evaluates as ‘false’, it is not executed.

The simplest type of conditional statement is one that tests against a single condition, as

seen in Figure 2.3.

ALGORITHM printPositive()
BEGIN

INPUT firstNumber

IF firstNumber > 0 THEN

PRINT “The number is positive.”
ENDIF

END

FIGURE 2.3 A single condition selection control structure

Alternative execution

Another form of a conditional statement involves an alternative execution. This means that

if the condition is not met, alternative code will run. For example, in Figure 2.4, a user is

asked if they like pie. If they respond with ‘yes’ they receive a happy comment. If the user

does not input ‘yes’, a sad comment will be printed instead. Note that the user does not need

to input ‘no’ for the sad comment to be printed – any input other than ‘yes’ will execute the

alternative code.

ALGORITHM likePie()
BEGIN

PRINT “Do you like pie?”

INPUT likePie

IF likePie = “yes” THEN

PRINT “Hooray!”
ELSE

PRINT “That makes me sad. :(”
ENDIF

END

As you can see in
Figure 2.4, the use of
‘ELSE’ in a conditional
statement is optional.

FIGURE 2.4 A condition selection control structure with alternative execution

Conditionals with more than one logical expression

A conditional statement is not limited to testing only one logical expression. Theoretically,

the number of logical expressions a single conditional statement can test is unlimited.

Figure 2.5 contains pseudocode that uses the logical operator ‘AND’ within a single

conditional statement to check for two conditions to be simultaneously true.

submission

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

37

ALGORITHM likePieCake()
BEGIN

PRINT “Do you like pie?”

INPUT likePie

PRINT “Do you like cake?”

INPUT likeCake

IF likePie = “yes” AND likeCake = “yes” THEN

PRINT “Hooray!”
ELSE

PRINT “That makes me sad. :(”
ENDIF

END

FIGURE 2.5 A simple conditional with more than one logical expression

When writing conditionals with more than one logical expression, it can be useful to

construct a truth table to make sure that no logic errors have been made. Truth tables use

boolean algebra to test each combination of values in a condition. For example, Table 2.1

contains a truth table to check the logical expressions in the pseudocode from Figure 2.5.

Because the logical operator connecting the two conditions was ‘AND’, both conditions

need to be true for the conditional statement as a whole to evaluate as true, which is shown

when only a single case in the truth table evaluates the whole condition as true.

TABLE 2.1 Truth table to evaluate ‘AND’

likePie

True

True

False

False

likeCake

True

False

True

False

likePie AND likeCake

True

False

False

False

If the logical operator connecting the two conditions was ‘OR’, the resulting truth table

can be seen in Table 2.2. In this instance, the use of ‘OR’ expands the number of cases where

the condition would evaluate to true to three, with the only time it evaluates to false being

when both conditions are false.

TABLE 2.2 Truth table to evaluate ‘OR’

likePie

True

True

False

False

likeCake

True

False

True

False

likePie OR likeCake

True

True

True

False

Truth tables are a systematic method of testing the logic of a conditional statement. They

are particularly useful when there are more than two conditions within a single statement.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

38

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

For example, Table 2.3 contains a truth table for the conditional statement in Figure 2.6.

The truth table shows that there are three cases where the entire conditional statement

would evaluate to true, and �ve cases where it would evaluate to false. This would not be

easily apparent without constructing the truth table.

ALGORITHM multiConditions()

BEGIN

INPUT a, b, c, d

IF a < b AND (b < c OR c < d) THEN

PRINT “Condition met.”

ELSE

PRINT “Condition not met.”

ENDIF

END

FIGURE 2.6 A complex conditional with more than one logical expression

TABLE 2.3 Truth table for Figure 2.6

a < b

True

True

True

True

False

False

False

False

b < c

True

True

False

False

True

True

False

False

c < d

True

False

True

False

True

False

True

False

b < c OR c < d

True

True

True

False

True

True

True

False

a < b AND (b < c OR c < d)

True

True

True

False

False

False

False

False

A truth table can be used in conjunction with a trace table to determine if an algorithm is

without logical errors. They can also be used to help select test data for testing an algorithm,

as discussed later in this chapter.

Chained conditional

The algorithm shown in Figure 2.7 uses a more complex set of conditional control structures

(IF/ELSEIF) in order to react to user input when a condition needs to be tested more than

once. This is referred to as a chained conditional. In this example, the user can select four

operations: addition, subtraction, multiplication and division. The program must therefore

test the user input four times to see if it matches against the four conditions given.

As the algorithm uses ‘ELSEIF’, it will check each condition only if the condition prior to

it evaluates as false. Without the use of ‘ELSEIF’, each condition would be run in sequence

regardless of whether the condition before it evaluated as true or false. This is an important

characteristic of the condition control structure that is often forgotten by programmers,

resulting in logical errors in code.

submission

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

39

ALGORITHM computeOperation()
BEGIN

PRINT “What is the first number?”

INPUT firstNumber

PRINT “What is the second number?”

INPUT secondNumber

PRINT “What operation would you like to perform?”

INPUT operationChosen

Total ← 0

IF operationChosen = “add” THEN

Total ← firstNumber + secondNumber

ELSEIF operationChosen = “subtract“ THEN

Total ← firstNumber - secondNumber

ELSEIF operationChosen = “multiply” THEN

Total ← firstNumber * secondNumber

ELSEIF operationChosen = “divide” THEN

Total ← firstNumber / secondNumber
ELSE

PRINT “Invalid operation chosen.”
ENDIF

PRINT “The result is: “ + Total
END

FIGURE 2.7 Pseudocode example of a chained conditional control structure

ALGORITHM ifElseExample()
BEGIN

PRINT “What is the current temperature?”

INPUT currentTemp

IF currentTemp < 10 THEN

PRINT “It is very cold.”
ENDIF

IF currentTemp < 20 THEN

PRINT “It is a little cool.”
ELSE

PRINT “It is very warm.”
ENDIF

END

FIGURE 2.8 Pseudocode example of conditions with logical errors

Consider the pseudocode in Figure 2.8. Assume the current temperature is input as 9

degrees. The �rst IF condition tests to see if the temperature is less than 10 degrees – as 9

degrees is less than 10 degrees, the algorithm will print ‘It is very cold’ and then continue

in sequence to the next line of code in the program, which is the second IF condition. The

second IF condition will check if the temperature is less than 20 degrees: as 9 degrees is less

than 20 degrees, it will print ‘It is a little cool’ and then continue in sequence to the next line

of code in the program, which is the ELSE condition. This portion of the code is not run:

because the IF statement it is attached to evaluated to true, the ELSE condition has not been

met (9 degrees is not greater than 20 degrees).

There is no limit to the number of conditions that can be contained in a chained

conditional statement. Chained conditions also do not need to contain an ELSE statement.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

40

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

It is important to use
consistent formatting in
your source code. This not
only makes the code easier
to read, it also reduces
the chance of logical
errors occurring due to
nested conditionals. The
pseudocode in Figure 2.9
shows the hierarchy of the
conditional statements
because of the use of
indentation, such as tabs
and spacing; it is much
easier to read than if no
indentations were used.

Nested conditional

Conditional statements can also be placed inside each other. This type of condition is

referred to as a nested conditional. This control structure is useful when multiple conditions

must be handled within the code. For example, Figure 2.9 contains pseudocode where a

conditional statement is used to check if it is raining. If it is, another check is made to see if

the person has an umbrella. If they do, they use the umbrella, otherwise they get wet. The

check for ‘hasUmbrella’ is nested within the check for ‘isRaining’.

ALGORITHM checkUmbrellaUsage()
BEGIN

INPUT isRaining

INPUT hasUmbrella

IF isRaining = True THEN

IF hasUmbrella = True THEN

useUmbrella()
ELSE

getWet()
ENDIF

ENDIF

END

FIGURE 2.9 Pseudocode examples of a nested conditional statement

Switch/Case

A switch/case statement, also referred to as a switch statement, is very similar to a chained

conditional, in that it allows for multiple conditions to be tested. Figure 2.10 includes an

example of the use of switch/case.

ALGORITHM computeOperation()
BEGIN

PRINT “What is the first number?”

INPUT firstNumber

PRINT “What is the second number?”

INPUT secondNumber

PRINT “What operation would you like to perform?”

INPUT operationChosen

Total ← 0

SWITCH operationChosen

CASE “add”

Total ← firstNumber + secondNumber

CASE “subtract”

Total ← firstNumber - secondNumber

CASE “multiply”

Total ← firstNumber * secondNumber

CASE “divide”

Total ← firstNumber / secondNumber
DEFAULT

PRINT “Invalid operation selected.”
ENDSWITCH

PRINT “The result is: “ + Total
END

FIGURE 2.10 Pseudocode example of a switch/case control structure

Not all programming languages have switch/case functionality implemented. In the

programming languages that do have it implemented, it is typically more ef�cient to use

switch/case than it is to use chained conditionals.

referred to as ‘breaks’.

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

Iteration

An iteration, also known as a loop, is used to repeat sections of code multiple times until a

condition is met. There are four main types of iterations: WHILE loops, DO/WHILE loops,

FOR loops and REPEAT/UNTIL loops.

WHILE loops

A WHILE loop is a section of code that is run when, and for as long as, a condition is met.

These types of loops are useful when the programmer does not know when the condition

might be met, such as when running sections of code based on user input that will only cease

when a user inputs a particular key sequence.

An example of a WHILE loop can be seen in Figure 2.11. This type of WHILE loop is

very common, because when opening a �le for reading, it is not possible to tell how many

lines there are in the �le until all those lines are actually read.

ALGORITHM readFromFile()
BEGIN

INPUT fileName

fileObject ← open filename for reading

WHILE end of file is not reached DO

nextLine ← read one line from fileObject

PRINT nextLine
ENDWHILE

END

FIGURE 2.11 An example of a WHILE loop to read from a file

Key elements of WHILE loops:

• They are used when it is unknown how many times the loop will execute.

• The condition being tested within the WHILE loop must be met at least once for the

code within it to be executed.

• If the condition being tested within the WHILE loop is always true, the loop will never

terminate; this creates an infinite loop.

DO/WHILE loops

A DO/WHILE loop is similar to a WHILE loop in that it executes code within the loop for

as long as a condition is met.

An example of pseudocode to read the contents of a �le using a DO/WHILE loop is

shown in Figure 2.12.

ALGORITHM readFromFile()
BEGIN

INPUT fileName

fileObject ← open filename for reading
DO

nextLine ← read one line from fileObject

PRINT nextLine

WHILE end of file is not reached
END

FIGURE 2.12 An example of a DO/WHILE loop to read from a file

☐ Project plan ☐ Justification

9780170440943

☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

41

Most programming
languages include a method
for exiting an iteration
early. These are often

9780170440943

42

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

The difference between a WHILE loop and a DO/WHILE loop is that a WHILE loop

may not run if the condition being tested is never true, whereas a DO/WHILE loop always

runs at least once. For example, in the pseudocode shown in Figure 2.12, it is assumed that

there is at least one line to read in the �le that is opened. If this is not the case and this code

were to be implemented in a programming language, it would produce a runtime error.

Key elements of DO/WHILE loops:

• They are used when it is unknown how many times the loop will execute.

• The code within the DO/WHILE loop will always execute at least once.

• If the condition being tested within the DO/WHILE loop is always true, the loop will

never terminate; this creates an in�nite loop.

FOR loops

A FOR loop is a section of code that is run a pre-de�ned number of times. These types of

loops are particularly useful to perform an action on every element of an array, or to perform

a basic search through a set of elements in a data structure.

FOR loops need three pieces of information to execute. The �rst is a starting point, the

second is the end condition, and the third is a statement called an increment that increases

the starting point so that it approaches the end condition.

Most programming languages have a special format for writing FOR loops. For example,

in C and C++, a FOR loop is written as shown in Figure 2.13, and in Visual Basic it is

written as shown in Figure 2.14.

for (starting_point; end_condition; increment)
{

statement(s);
}

FIGURE 2.13 A FOR loop in the style of the C, C++ and C# programming languages

For counter = start_condition to end_condition
Statement(s)

Next

FIGURE 2.14 A FOR loop in the style of the Visual Basic programming language

An example of a FOR loop in pseudocode is shown in Figure 2.15. This FOR loop

checks every element of an array to see if a word being searched for is found in the array.

Each time the loop is executed, the end condition (i < iNumNames) is tested; the loop will

continue to run for as long as this returns true.

ALGORITHM checkArray()
BEGIN

INPUT arrayNames
INPUT searchTerm

iNumNames ← length of arrayNames
FOR i ← 0, i < iNumNames, i ← i + 1 DO

IF arrayNames[i] = searchTerm THEN
PRINT “Found “ + searchTerm

ENDIF

ENDFOR

END

FIGURE 2.15 A FOR loop checking every element of an array

43
CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

Key elements of FOR loops:

• The loop runs for a set number of times and this must be known beforehand.

• The loop will only execute the code inside it if the end condition is still being met; it may

not execute the code at all.

• Unlike WHILE and DO/WHILE loops, it is very rare for a FOR loop to not terminate; this

occurs only if the increment and end condition are unrelated. This type of occurrence

would be considered a logic error.

REPEAT/UNTIL loops

Much like WHILE loops, REPEAT/UNTIL loops repeatedly run a source code within the

loop, however they differ in the treatment of the condition that terminates the loop. A WHILE

loop will run for as long as a condition returns true, whereas a REPEAT/UNTIL loop will

run for as long as a condition returns false. Figure 2.16 demonstrates the pseudocode that

uses a REPEAT/UNTIL loop to read lines from a �le.

ALGORITHM readFromFile()
BEGIN

INPUT fileName

fileObject ← open filename for reading
REPEAT

nextLine ← read one line from fileObject

UNTIL end of file is reached
END

FIGURE 2.16 An example of a REPEAT/UNTIL loop to read from a file

Key elements of REPEAT/UNTIL loops:

• They are used when it is unknown how many times the loop will execute.

• The code within the REPEAT/UNTIL loop will always execute at least once.

• If the condition being tested within the REPEAT/UNTIL loop is always false, the loop

will never terminate; this creates an in�nite loop.

Functions

A function is a sequence of instructions that performs a speci�c task that has been given a name by

a programmer. The code within a function executes an algorithm and typically provides a return

value as a result. To use a function within source code is to ‘call’ it. An example of a function

call can be seen in Figure 2.17; both useUmbrella() and getWet() are function calls.

ALGORITHM checkUmbrellaUsage()
BEGIN

INPUT isRaining

INPUT hasUmbrella

IF isRaining = True THEN

IF hasUmbrella = True THEN

RETURN useUmbrella()
ELSE

RETURN getWet()
ENDIF

ENDIF

RETURN False
END

FIGURE 2.17 An example of a function call

☐ Project plan ☐ Justification

9780170440943

☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Notice that functions
in pseudocode use
parentheses after the name
of the function. This helps
distinguish them from
variables.

9780170440943

44

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

A function can, but does not need to, provide a return value back to where the function

was called.

TABLE 2.4 Function declarations in some popular programming languages

C, C++, C#

VB, VB.Net

Python

PHP

Swift

int max(numOne, numTwo);

Function max(byVal numOne as Single, byVal numTwo as Single)

def max(numOne, numTwo):

function max($numOne, $numTwo);

func max(numOne: Int, numTwo: Int) -> Int

Many programming
languages require functions
to be declared before they
can be defined. Similarly,
functions must be defined
before they can be used
within the source code.
For this reason it is a good
idea to place all function
declarations at the top
of your source code, and
function definitions near
the top as well.

It is best to use a built-
in function whenever
possible, as they have been
tested and are less likely to
contain bugs than a user-
defined function.

Functions require a function declaration that names the function and its arguments. In

many languages, function declarations must include the return value data type. They can

also include an optional reference to the function visibility.

Functions must then have a function definition written, which simply means that the

function must be written. Some languages, such as C and C++, require that the function

declaration is written separately, prior to the function de�nition, whereas other languages,

such as Python and VB.Net, include the function declaration as part of the function

de�nition. Once a function is de�ned and written it can be used throughout the source code.

Almost all programming languages have built-in functions that can be used without

needing to provide a function declaration or function de�nition. These functions have

been written by the creators of the programming language to execute common sequences

of code, such as drawing a widget on a user interface, printing text to a screen, computing

mathematical equations such as square roots and powers, or accepting input from a

keyboard.

Arguments/parameters

Functions can optionally include variables in their de�nition. These are known as

arguments, or parameters, and they act as speci�c inputs that are ‘passed’ to the function

when the function is called. The data within the arguments passed to a function are assigned

temporary variable names as part of the function declaration. This allows the use of local

variables within a function, avoiding the need to use global variables to access data that

exists outside of the function.

Many programming languages have two categories of arguments that can be passed to a

function: those that are pass by reference and those that are pass by value. Pass by reference

means that the original data being passed into the function can be modi�ed without needing

to be ‘returned’. Pass by value means that the original data is left unchanged, even if the data

in the temporary variable is modi�ed within the function. For languages that only use pass

by value in functions, in order to modify the data stored in the original variables that have

been passed to the function, the modi�ed data must be returned back to the source code that

called the function.

Figure 2.18 demonstrates how to declare a function using pseudocode. Note that the

data types of the arguments and the function’s return value are de�ned within a pseudocode

comment. The arguments are included as part of the function de�nition to distinguish them

from other types of input.

and events.

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

45

FUNCTION max(numOne, numTwo)
{ Purpose: return max value as an integer }
{ Arguments: numOne and numTwo are integers }
{ Output: integer, the maximum integer }
BEGIN

IF numOne > numTwo THEN
RETURN numOne

ELSE

RETURN numTwo
END

FIGURE 2.18 Representation of a function in pseudocode

Function visibility

Security is an important aspect to consider when writing source code for modern applications.

Aside from encryption, there are other ways a software developer can protect access to data

within variables. The most common method is to use function visibility to restrict access to

functions within applications.

Public

Public visibility of a function means that it is visible both inside the source code or class in

which the function exists, and also via external source �les, classes and applications.

While a programmer can explicitly refer to a function as public, there is no need to do this

in most programming languages, as public visibility is the default visibility of all functions.

Protected

Protected visibility of a function means that it is visible only to a class or extensions of that

class. This means that the functions and methods de�ned as protected within a class can

only be used by that class as well as by any classes that inherit the class that contains the

protected function.

Private

Private visibility of a function means that it is visible only to a particular class. Unlike

protected functions, a private function cannot be used by a class that inherits the class that

contains the private function.

Classes
As mentioned in chapter 1, a class is a feature of object-oriented programming that allows

a programmer to group together related functions and variables in one place. This acts as a

template for creating objects.

In a business application, a programmer could write a ‘user’ class that contains typical

user variables and methods, such as username, password, the ability to log in, and the ability

to change user details. They could then use this base ‘user’ class to create an ‘administrator’

class that adds other methods, such as the ability to change other users’ passwords and user

details. This is demonstrated in Figure 2.19, where the Administrator class is inheriting all

of the variables and methods from the User class and then adding three more. These two

classes, Administrator and User, could then be instantiated into objects within the program

to allow for two different types of users to exist. This saves programming time, as the basic

user methods do not need to be rewritten when creating a different type of user.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Visibility and scope are
elements of programming
that can be applied not just
to functions, but also to
variables, methods, classes

9780170440943

46

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

User

userId: integer

userName: string

password: string

login()

changeUserDetails()

Administrator

adminId: integer

changeUserPassword(User)

changeUserDetails(User)

FIGURE 2.19 An example of inheritance

Classes are also useful when security of data is paramount. Much like function visibility,

variables inside a class can have class visibility and be ‘hidden’ from other parts of the

code. The only way to access the data in those variables is to use a method that has been

written with security in mind. These methods may, for example, encrypt or decrypt data

or check user permissions before allowing a variable’s data to be changed.

Methods

Events can be user-defined
or they can be built-in
events.

A method is a function that exists within a class. A special type of method is an event, which

is a method that is called when an object’s state changes; this means that something has

occurred to trigger the event. For example, pressing a button in a user interface object can

trigger an event to submit that button.

ALGORITHM useMethod()
BEGIN

mathObj = create new object from math class

mathObj.addTwoNumbers(4, 1)
END

FIGURE 2.20 Pseudocode of an object and a method

As sorting algorithms are
not language specific,
almost all programming
languages have built-in
functions that implement
standard sorting algorithms
for programmers to use.

Algorithms for sorting
Many applications require some method of sorting data so it can be used within a program

or by a user of a program. It may seem trivial for a human to place a set of items into sorted

order, but to achieve the same result in a computer program requires the use of control

structures and repetition of sequences of steps. It is also important that the combination of

control structures and sequences are ef�cient, particularly when a lot of data needs to be

sorted.

sorted deck of cards?

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

While there are many different algorithms that can be used to sort data, Software

Development students must know about two speci�c types of sort: selection sort and

quicksort.

Selection sort

A simple method of sorting a set of elements into a sorted list is to use selection sort.

Selection sort involves searching through a whole list, selecting the smallest element it �nds,

and swapping that element to the front of the list. The searching and swapping continues

until the entire list is sorted.

The selection sort algorithm follows these steps:

• Assume the �rst element is the smallest element.

• Compare the �rst element to every other element in the array, one by one.

• Each time the element compared to the �rst element is smaller, swap the �rst element

with the smaller element.

• Compare the (possibly new) �rst element with the rest of the array.

• Repeat the whole process, starting with the second element in the array.

• Repeat the whole process, starting with the third element in the array.

• Continue repeating the whole process until all elements in the array have been

checked.

This algorithm is called selection sort because it repeatedly selects the next-smallest

element and swaps it into place.

For example, consider the following list of unsorted numbers:

12 8 31 1

Assume the �rst element is the smallest element, in this case, 12. Keep track of the index

value of this element in a variable, such as one called ‘smallest’. For this example, index

values start at 1, but in almost all programming languages they begin at 0.

smallest 1

Compare 12 with 8. 8 is smaller, so update the variable ‘smallest’ with the index value for

the number 8.

smallest 2

The number 8 is then compared to 31. As 31 is not smaller than 8, the ‘smallest’ variable

is unchanged.

The number 8 is then compared to 1. 1 is smaller, so update the variable ‘smallest’ with

the index value for the number 1.

smallest 4

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

47

THINK ABOUT

SOFTWARE

DEVELOPMENT

2.1

Take a shu�ed deck of
cards, and physically
sort them. Consider
how you chose to sort
them. Did you separate
suits into four stacks
and then sort by face
value? Or did you sort
by face value and then
by suit? What steps did
you repeat to finally
succeed in having a

9780170440943

48

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

The end of the array has been reached, so the element in the �rst position of the array is

now swapped with the element at the index position stored in the variable ‘smallest’.

1 8 31 12

The sort then moves to the next element of the array and uses the index value of this

element as the new value for ‘smallest’.

smallest 2

The number 8 is the new smallest element, in position two of the array. It is compared

with 31, which is larger, so no change is made to the variable ‘smallest’. It is then compared

to 12, which is also larger, so no change is made to the variable ‘smallest’.

1 8 31 12

As the end of the array has been reached, the element referred to by the variable ‘smallest’

should be swapped with the 8, but as they are the same index values, no swap needs to

happen.

1 8 31 12

The sort then moves to the next element of the array (the third element) and uses the

index value of this element as the new value for ‘smallest’.

smallest 3

The number 31 is the new smallest element, in position three of the array. It is compared

with 12, which is smaller, so the variable ‘smallest’ is updated with the index value of the 12.

smallest 4

As the end of the array has been reached, the element referred to by the variable ‘smallest’

is swapped with the 31.

1 8 12 31

The sort then moves to the next element of the array (the fourth element). However, this

is the last element of the array so there is nothing left to compare it to. The selection sort

algorithm is therefore complete and all elements in the array are now sorted.

Figure 2.21 shows the pseudocode for selection sort.

submission

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

49

ALGORITHM selectionSort(arrElements)
{ Purpose: sorts a list of elements }
{ Input: an array of elements }
{ Index values start at 1 }
{ Output: Array, a sorted array of elements }
BEGIN

n ← number of items in arrElements
FOR i ← 1 to n - 1 DO
{ select the smallest item }
smallest ← i
{ compare smallest to the rest of the array }
FOR j ← i + 1 to n DO

IF arrElements[j] < arrElements[smallest] THEN
{ update the index value of smallest }
smallest ← j

ENDIF

ENDFOR

{ the smallest item in the array has been found }
{ so swap it with the current element }
IF smallest != i THEN

swap arrElements[smallest] AND arrElements[i]
ENDIF

ENDFOR

RETURN arrElements
END

FIGURE 2.21 Pseudocode for selection sort

When converting pseudocode to real code, some of the pseudocode elements may need

to be expanded upon. For example, in most programming languages, swapping two elements

generally cannot be achieved using a single line of code. Consider the different outputs of

Figures 2.22 and 2.23. Only Figure 2.23 will successfully swap the two values, as the x value

is lost in Figure 2.22.

x ← 20
y ← 10

x ← y
y ← x
PRINT x, y

FIGURE 2.22 Incorrectly swapping two values

x ← 20
y ← 10

temp ← x
x ← y
y ← temp
PRINT x, y

FIGURE 2.23 Correctly swapping two values

THINK ABOUT

SOFTWARE

DEVELOPMENT

2.2

Convert the
pseudocode in
Figures 2.22 and 2.23
into the language of
your choice. Run both
versions to see their
outputs.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

50

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

FIGURE 2.24 An example of selection sort implemented using Python

Quicksort

Another algorithm used to sort sets of elements is quicksort, referred to as a divide and

conquer algorithm. This is because quicksort is an example of a recursive sort, which means

that it partitions the items that need to be sorted into smaller and smaller sets and passes

those sets back into itself; thus, it ‘divides’ the array into smaller and smaller pieces until it

can ‘conquer’ the array and sort it. This allows items to be sorted very quickly. In almost all

cases, quicksort is more ef�cient than selection sort.

The quicksort algorithm follows these steps:

• Unless the array contains only a single element, complete the following steps:

– Select an element from the array at random – this is referred to as the pivot. Often, this

‘random’ element is the last element in the array.

– Check each other element in the array and reorder it so that all elements with values

less than the pivot come before it, while all elements with values greater than the pivot

come after it (equal values can go either way). This involves swapping, much like in

selection sort, but the elements are not sorted based on anything else except the pivot

when they are swapped.

– Take all of the elements that are less than the pivot (all the elements to the left of the

pivot) and repeat the process of quicksort on these elements, selecting a new pivot.

– Take all of the elements that are greater than the pivot (all of the elements to the right

of the pivot) and repeat the process of quicksort on these elements, selecting a new

pivot.

• If the array contains only a single element, return just that element.

For example, consider the following list of unsorted numbers:

12 8 31 1 77 75 18

Select the �rst element as the pivot and store its index value in a variable, ‘pivot’. Two

more variables need to be made, one storing the �rst index value, and the other storing the

last index value. At the beginning of the quicksort algorithm, there should therefore be three

variables: for this example, they are called pivot, low and high. Assuming index values begin

at 1, the index value of pivot is 7, low is 1 and high is 7.

Begin iterating through the list, comparing each value to the value stored at the

pivot. The �rst element checked is 12, which is smaller than the pivot’s value of 18. This

means the �rst element should be swapped with the element at the ‘low’ index value.

In this instance, the ‘low’ index value is the same index as the �rst element, so no

51
CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

swap occurs. After this, the ‘low’ index value is incremented by 1, and now holds the

value of 2.

12 8 31 1 77 75 18

The next element checked is 8, which is smaller than 18. This means that this element

must be swapped with the element at the ‘low’ index value. In this instance, the ‘low’ index

value of 2 is the same as the second element, so no swap occurs. The index value of ‘low’ is

then incremented by 1, and now holds the value of 3.

12 8 31 1 77 75 18

The next element checked is 31, which is larger than 18. This element is left alone.

12 8 31 1 77 75 18

The next element checked is 1, which is smaller than 18. This means that this element

must be swapped with the element at the ‘low’ index value; 1 and 31 are therefore swapped. The

index value of ‘low’ is then incremented by 1, and now holds the value of 4.

12 8 1 31 77 75 18

The next element checked is 77, which is larger than 18. This element is left alone. The

same occurs with 75.

Once the algorithm reaches the last element, 18, it is swapped with the element at the

index value of ‘low’. In this case, this is the element at the fourth index value, 31.

12 8 1 18 77 75 31

The list is now partitioned so that every number less than the pivot (18) is to the left

of it, and every number that is greater is to the right of it. The algorithm is run again on

each side.

Left side:

12 8

Pivot: 3 (value: 1)

Low: 1 (value: 12)

High: 3 (value: 1)

After the �rst pass, no swaps are made as 12 is greater than 1:

12 8

Pivot: 3 (value: 1)

Low: 1 (value: 12)

High: 3 (value: 1)

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

1

1

9780170440943

52

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

After the second pass, no swaps are made as 8 is greater than 1. There are no more passes

to make, so the ‘low’ and ‘high’ index values are swapped:

1 8 12

The list is now partitioned so that every number less than the pivot (1) is to the left of it,

and every number that is greater is to the right of it. The algorithm is run again on each side,

even though one of the sides (the left side) is empty. These steps are not shown here, as this

particular sub-list is already in sorted order.

Right side:

77 75

Pivot: 3 (value: 31)

Low: 1 (value: 77)

High: 3 (value: 31)

After the �rst pass, no swaps are made as 77 is greater than 31:

77 75

Pivot: 3 (value: 31)

Low: 1 (value: 77)

High: 3 (value: 31)

After the second pass, no swaps are made as 75 is greater than 31. There are no more

passes to make, so the ‘low’ and ‘high’ index values are swapped:

31 75 77

The list is now partitioned so that every number less than the pivot (31) is to the left of

it, and every number that is greater is to the right of it. The algorithm is run again on each

side, even though one side (the left side) is empty. These steps are not shown here, as this

particular sub-list is already in sorted order.

Once all sub-lists have been processed through the quicksort algorithm, the array that is

left is in sorted order:

1 8 12 18 31 75 77

Figure 2.25 shows the pseudocode for quicksort.

While quicksort is algorithmically complex for a human brain to understand, recursive

algorithms are extremely fast for a computer to process.

31

31

{

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

53

ALGORITHM quickSort(arrElements, low, high)
{ Purpose: sorts a list of elements }
{ Inputs: an array of elements, two integers representing }
{ the first last element in the array }
{ Index values start at 1 }
BEGIN

IF low < high THEN
{ run the partition algorithm to know where }
{ to split the array }
split ← partition(arrElements, low, high)

{ run quicksort on the left side }
quickSort(arrElements, low, split-1)

{ run quicksort on the right side }
quickSort(arrElements, split+1, high)

ENDIF

END

ALGORITHM partition(arrElements, low, high)
{ Purpose: to split an array into two based on a pivot, }
{
{
{

the first last element in the array }
{ Index values start at 1 }
{ Output: integer, index value of the partition point }
BEGIN

pivot ← arrElements[high]

FOR i ← low to high DO
IF arrElements[i] ← pivot THEN

IF low != i THEN
swap arrElements[low] and arrElements[i]

ENDIF

low = low + 1
ENDIF

ENDFOR

swap arrElements[low] and arrElements[high]
RETURN low

END

Algorithms for searching
As with sorting, many applications require some method of searching through data to

�nd a particular item within a set of items. It is important that these searches are ef�cient,

particularly in the modern era of ‘big data’.

While there are many different algorithms that can be used to search data, Software

Development students must know about two speci�c types of searches: linear search and

binary search.

Linear search

A linear search is the simplest type of search. This search involves checking every element

in the list, from �rst to last, when searching for a particular element.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

FIGURE 2.25

Pseudocode for quicksort

where the left side contains values less than }
the pivot and the right side contains value }
greater than the pivot }

{ Inputs: an array of elements, two integers representing }

9780170440943

54

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

For example, consider the following list of unsorted numbers, where the number being

searched for is 77:

12 8 31 1 77 75 18

A linear search is typically performed using a FOR loop if the size of the list is known.

The �rst step of the FOR loop will check the �rst index value, which is 12. 12 is compared

with the search input, 77, and this returns false. As a result, the FOR loop will iterate again,

checking the next index value in the list, 8. This repeats until it reaches the 77, where the

linear search returns true, as it has found the value. Linear searches will execute until the

end of the list is reached or the search item is found.

Figure 2.26 shows the pseudocode for a linear search. Linear searches are useful when

the elements are not sorted and the number of elements to search through is small.

ALGORITHM linearSearch()
{ Purpose: searches through a list of elements }
{ Output: Boolean, True if item found, False if not }
BEGIN

Input searchList, searchItem
found ← FALSE
FOR eachItem in the searchList DO
IF eachItem = searchItem THEN
found ← TRUE
BREAK {exit loop once found}

ENDIF

ENDFOR

RETURN found
END

FIGURE 2.26 Pseudocode for a linear search

While linear searches are the simplest to implement in almost every programming

language, they are also extremely inef�cient. This is not a concern if the number of elements

being checked is relatively small, but it becomes problematic as the number of elements

increases. Consider a search of 6 billion records where the record being searched for is not

there. This is referred to as a ‘worst-case’ scenario, as all 6 billion records would need to be

checked to con�rm that the record was not in the set.

Binary search
A binary search is more ef�cient than a linear search. Binary search is similar to quicksort in

that it is also a recursive algorithm, but instead of being divide and conquer, it is a decrease
and conquer algorithm, as it is able to discard half of the data being searched through at

each iteration of the algorithm. This makes it an extremely ef�cient method of searching.

Binary search relies on the data it is searching through being sorted. It works by selecting an

element from the very middle of the data set being searched and checking it against the search

item. If it matches, the search halts. If it doesn’t match, it will search the data to the left of the

element in the middle if it is less than that element, otherwise it will search the data to the right of it.

This process is repeated until the item is found or there are no more elements to search through.

For example, consider the following list of sorted numbers, where the number being

searched for is 77:

1 8 12 18 31 75 77

55
CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

A binary search will begin by checking the length of the list. If it is greater than one, it

will then �nd the index value of the middle of the list by dividing the length of the list by 2.

As the list has 7 elements, dividing by 2 produces a fraction, which must be rounded up or

down. It doesn’t matter which way it is rounded, as long as the rounding is consistent. For

this example, the binary search will round up, therefore the index value that is checked �rst

is at index 4. 18 is compared to the number being searched for and does not match. The

binary search will then check to see if 18 is greater than or less than 77. As it is less than 77,

the search will discard every element to the left of the 18, inclusive. The rest of the list is

passed back into the binary search to be searched again.

31 75 77

There are three elements in the list, so the mid-point is calculated again; this time it is

index value 2. The number 75 is compared to 77 and does not match; it is also less than 77

so it is discarded, as is every element to the left of it. The rest of the list is passed back into the

binary search to be searched again.

77

There is only one item left in the list, so no mid-point needs to be calculated. The item is

compared to the search item and it matches, so the search item is found.

Figure 2.27 shows the pseudocode for a binary search. Binary searches are useful when

there are large amounts of elements to search through, but can only be used if those elements

are sorted. This means that you need to consider the time it takes to sort the list as well as

search the list when considering the ef�ciency of binary search.

ALGORITHM binarySearch(arrayList, searchItem)
{ Purpose: searches through a list of elements }
{ Inputs: an array of elements to be searched }
{ and the item being searched for }
{ Output: Boolean, True if item found, False if not }
BEGIN

found ← FALSE
iLen ← the length of arrayList
midP ← the middle index value of arrayList
IF searchItem = arrayList[midP] THEN

found ← TRUE
ELSEIF iLen > 1 THEN

IF searchItem < arrayList[midP] THEN
low ← first index value of arrayList
RETURN binarySearch(arrayList[low to midP-1],

searchItem)
ELSEIF searchItem > arrayList[midP] THEN

high ← iLen
RETURN binarySearch(arrayList[midP to high],

searchItem)
ENDIF

ENDIF

RETURN found
END

FIGURE 2.27

Pseudocode for a binary
search

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

56

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

That being said, the ef�ciency of a binary search versus a linear search is not a small

comparison. Consider the search discussed earlier, where there are 6 billion records and the

record being searched for is not there. Recall that in a worst-case scenario, if a linear search

was used, all 6 billion records would need to be checked to con�rm that the record was not

there. If a binary search was used, only 33 items at most would need to be checked to come

to the same conclusion. The difference in speed of a linear search and binary search in a

worst-case scenario can be seen in the graph shown in Figure 2.28.

10

12

14

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20

FIGURE 2.28 Worst-case linear search (red) vs. worst-case
binary search (blue)

Efficiency of algorithms
When more than one algorithm could achieve a particular purpose, it is important to consider

the ef�ciency of each algorithm. Some algorithms perform better in certain contexts than

others, and some are simply better than others overall.

The mathematical notation used to describe the ef�ciency of algorithms is referred to

as ‘Big O notation’, and while it is not explicitly in the Software Development course, it is

useful to know the Big O notation for algorithms in order to make an informed decision

on which one to use. Big O notation is expressed using a capital O and then enclosing in

brackets the maximum amount of time it would take for an algorithm to �nish, expressed

in terms of the number of items being processed by the algorithm. For example, if a sorting

algorithm used a single FOR loop to sort all of the elements, n, in a list, it would be expressed

as running in O(n) time. If a nested FOR loop were used to sort the same list, where one

FOR loop runs inside of another FOR loop, it would be expressed as running in O(n) time.2

Divide and conquer algorithms generally involve logarithmic time.

When measuring algorithm ef�ciency, there are three scenarios that are considered: best

case, average case and worst case. The best-case scenario for many sorting algorithms, for

example, is for the set of elements to already be sorted. The worst-case scenario for many of those

same sorting algorithms would be for the elements to be in reverse-sorted order. The average-

case scenario for a sorting algorithm would be when the elements are not in any particular
orderGenerally, programmers consider the average case of an algorithm when deciding which

one to use, and then consider the worst-case scenario if the average cases are equivalent.

They may also consider the worst-case scenario to make sure that it is not considerably slower

than an alternative algorithm.

n)

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

of items before it �nds the item being searched for. A binary search will check approximately

log n items, which is more ef�cient. In a worst-case scenario where an item is not present, a2

For example, on average, a linear search will check approximately half (n—2) the number

linear search must check n items, whereas a binary search divides the list in two each time it

iterates through it, which means checking log n items. This means that a binary search is2

57

faster than a linear search in both average-case and worst-case scenarios.

Only average-case and worst-case scenarios are typically considered because it is often

not helpful to consider the best-case scenario of an algorithm. Data is rarely in a format

that would allow for a best-case scenario to occur, so best-case scenarios are very rare. For

example, in a best-case scenario linear search, the item being searched for would be the

�rst item in the list. This is not something that would occur reliably enough to matter when

deciding which algorithm to use.

For the two sorting algorithms and two searching algorithms used in Software

Development, the average case and worst case are shown in Table 2.5.

TABLE 2.5 Average case and worst case of Software Development algorithms

Average case

Selection sort

Quicksort

Linear search

Binary search

Worst case

Selection sort

Quicksort

Linear search

Binary search

O(n2

O(n2

O(n)

)

)

O(log
2
n)

As you can see, in a worst-case scenario, quicksort combined with binary search is no

worse than selection sort combined with binary search. However, once the average case is

considered, the most ef�cient method of sorting and searching is to combine a quicksort

with a binary search.

Validation techniques
Validation is the process of checking that input data are reasonable. Validation does not and

cannot check that inputs are accurate.

Existence checking
An existence check checks whether a value has been entered at all. This is particularly

useful to ensure that all required �elds in a form have been completed before saving the

contents of those �elds to a �le.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

O(n2)

O(n log
2

O()n—2

n)

O(log
2

9780170440943

58

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Type checking
A type check is a useful method of con�rming that the values entered into �elds are of the

expected data type. It will con�rm if the wrong type of data have been entered in �elds, such

as if strings are entered into �elds that expect only integer values.

When implementing type checking, it is important to consider how inputs from a user are

processed by the selected programming language. For example, in Python, unless explicitly

handled otherwise, all inputs are treated as strings, even if they are numeric. In languages

such as these, there typically exists methods for checking type, such as the process of casting

the data as a particular data type to see if it remains valid.

Range checking
A range check checks that data are within acceptable limits or come from a range of

acceptable values. For example, students enrolling in kindergarten must be between the

ages of 3 and 6 years (acceptable limits). As another example, the product size must be small,

medium or large (acceptable values).

Checking that modules meet
design specifications
When building an application, one of the most important steps is to check that each

completed module meets the design speci�cations.

When checking to see if a module meets design speci�cations, it is important to make

sure it performs as expected with appropriate inputs, that it is usable and ef�cient, and that

it achieves what was speci�ed in the design. This often involves internal testing, where

programmers tests the program themselves; external testing, where quality assurance testers

test the program using test cases based on the design speci�cations; and client testing, where

clients participate in walk-throughs and reviews of the software to con�rm that it is what they

speci�ed in the design stage.

In VCE Software Development, modules are checked to ensure they meet design

speci�cations mostly through internal testing methods. An important aspect of this is to

make sure that the modules that have been built are as bug-free as possible. This is achieved

by completing appropriate testing activities, such as establishing test cases that determine

test data and expected results, conducting tests, recording results and then correcting any

errors.

One method used in the testing process is debugging, which is a testing method that

includes �nding errors through the construction of trace tables and testing the system using

test data.

Debugging
Different types of errors can occur throughout the development of a software solution. Each

error can be categorised as a syntax error, runtime error or logic error.

Syntax errors

Each programming language has a de�ned syntax, which is a set of rules that de�nes which

symbols and characters can be used to write source code. Syntax errors occur while writing

submission

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

code and are typically �xed immediately, as they prevent code from compiling. These are

errors such as missing brackets or semi-colons, not passing the correct number of arguments

into a function, or not putting quotes around characters and strings. Most compilers and

interpreters will indicate on which line a syntax error occurs, which allows a programmer to

�nd the error easily.

Runtime errors

Unlike a syntax error, a software module with a runtime error will compile without any error

noti�cations. It is not until the program is run and used that a runtime error can appear.

These types of errors often result in the program crashing or printing error messages. For

Other common runtime errors include divide-by-zero errors, opening non-existent �les for

reading, calling functions that do not exist, or validation errors that have not been handled

within the source code.

example, one type of runtime error is a memory leak, where a program continually uses

more and more RAM while the program is running, such as when an in�nite loop occurs.

59

Runtime errors are often found during the development stage, but software can, and

does, get released with the possibility of runtime errors still occurring. This is because these

errors tend to occur only when certain conditions are met, or when unexpected inputs are

entered into the software. Once a runtime error is found in a distributed piece of software,

many software companies release patches and software updates to correct the error.

Logic/semantic errors

Logic errors, also known as semantic errors, occur when the logic of a software program

fails. This means that the source code is syntactically correct but the software solution does

not produce the expected output when run. In this case, the output is often unintended,

undesirable or incorrect. For example, a function written to return the square root of a number

may instead return the square of a number. Similarly, a function in an air-conditioning unit

that checks to see if the temperature in a room is greater than 30 degrees before turning itself

on may activate the air-conditioning unit at 29 degrees instead.

Logic errors can be very dif�cult to �nd, as there is nothing within a compiler or

interpreter that will tell a programmer on which line a logic error appears. It is often up to

the programmer as a human to construct test data and trace tables in order to track down the

error manually.

Test data
In order to systematically test that a module works, appropriate test data must be used to

write a test case. A test case is a set of steps that a tester uses to determine if the element

being tested works correctly. It involves selecting test data, writing testing procedures

and determining expected results. It is particularly important that appropriate test data is

selected so that test cases can be run. At a minimum, the selected test data must ensure

full coverage of the algorithm when test cases are run. This means that all paths of all

control structures are tested fully.

There are four main types of test data. The �rst involves validation test data that tests

the validation techniques that have been included in the module. Data must therefore be

selected to test any instances of existence checking, type checking and range checking that

have been included in the source code. At a minimum, this should involve selecting test data

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

60

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

that checks for both valid and invalid inputs. For example, if checking for a valid age integer

being input by a user, a valid input would be a positive integer, likely in the range of 0 and

120. An invalid input would be a negative integer, such as –1.

The second type of test data is data that will test all conditions, including the operators

within those conditions. This may involve the construction of truth tables to help choose

appropriate test data. It may also involve selecting appropriate boundary values to ensure full

coverage of the operators included in the conditions.

The third type of test data involves data that will test all iterations, including any operators

within those iterations. This may involve selecting or creating data that will ensure all

conditions of those iterations are met. For example, if a WHILE loop is designed to iterate

over each line of a �le, test data would involve testing the following:

• when the �le does not exist

• when the �le exists but is empty

• when the �le exists and has one line to read

• when the �le exists and has more than one line to read.

The fourth type of test data involves creating test cases that will attempt to cover all of the

functionality within the system from the perspective of a user. This typically involves testing

the Graphical User Interface (GUI) to ensure that each screen within the application can be

accessed correctly. Typically, test cases are written based on design documents such as mock-

ups, storyboards and/or site maps, to ensure that the order and sequence of user interface

elements are correct. This type of testing can be the most time-consuming, particularly if the

application allows a user to take multiple paths to access particular screens. Developers often

write formal test cases that allow for automated software testing programs to be used to run

these tests so they do not need to be performed manually. These test cases can be written to

simulate the actions of a user navigating through the software solution.

Boundary values

Testing for boundary values involves selecting test data that will test the ‘boundaries’ of any

condition or iteration within the code; that is, the maximum and minimum values available

for any given input. Boundary values are particularly relevant for algorithms that use range

checks. The general rule for boundary testing is that at each boundary, test data should be

selected to test inside the boundary and outside the boundary.

For example, imagine a software solution designed for a Scout group that would only

allow users to join if they are in the ‘Venturer’ age group (15–17 years). The boundary values

for testing this can be determined by considering the type of data that is being collected. As

this example involves testing for age, valid integers begin at 0 and are unlikely to go beyond

120. Testing for valid ages would therefore require testing an age that is below the age group,

within the age group, and above the age group.

The ages that are in range can be represented on a continuum, as shown below.

0 1 2 3 … 14 15

↑

16

↑

17

↑

18 19 …

61
CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

There are two boundaries for this particular test. One boundary exists at age 15 and the

other exists at age 17. The pseudocode that demonstrates these can be seen in Figure 2.29.

ALGORITHM checkIsVenturer(age)
{ Purpose: to check that a user is a Venturer based on age }
{ Inputs: age, as an integer }
{ Output: Boolean, True if age is valid, False if not }
BEGIN

IF age > 14 AND age < 18 THEN
RETURN True

ELSE

RETURN False
ENDIF

END

FIGURE 2.29 Pseudocode to check an age range

In order to fully test this algorithm, the test data that must be selected are:

Age

14

15

17

18

Reason

One year below the lower boundary of the valid range

The lower boundary of the valid range

The upper boundary of the valid range

One year above the upper boundary of the valid range

Expected result

False

True

True

False

When selecting above and below a boundary, test data should be in the smallest increment

possible given the context. In this case it is 1 year, but if an algorithm were to test for a price

range, for example, the smallest increment would be 0.01. Similarly, if testing an algorithm

that uses boundaries involving hours or minutes in a day, the smallest increment would

typically be 1 minute, thus boundaries at the hour would be 59, 0 and 1.

ALGORITHM abstractBoundaries()
BEGIN

INPUT a, b
IF a < b THEN

PRINT “Condition met.”
ELSE

PRINT “Condition not met.”
ENDIF

END

FIGURE 2.30 An abstract set of boundary conditions

For a more abstract example, the pseudocode in Figure 2.30 would require the following

boundary values to be tested.

a

a

a

b

a+1

a

☐ Project plan

9780170440943

Reason

a is guaranteed to be less than b

a is guaranteed to not be less than b

☐ Justification ☐ Analysis

Expected result

Condition met

Condition not met

☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

62

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

For more complex algorithms, more test data needs to be selected. This is when it can be

very useful to construct a truth table to determine what that test data should be.

Consider the pseudocode example testing for multiple conditions in Figure 2.31.

ALGORITHM multiConditions()

BEGIN

INPUT a, b, c, d

IF a < b AND (b < c OR c < d) THEN

PRINT “Condition met.”

ELSE

PRINT “Condition not met.”

ENDIF

END

FIGURE 2.31 A complex conditional with more than one logical expression

Consider also the truth table constructed for this algorithm, shown in Table 2.6.

TABLE 2.6 Truth table for Figure 2.31

a < b

True

True

True

True

False

False

False

False

b < c

True

True

False

False

True

True

False

False

c < d

True

False

True

False

True

False

True

False

b < c OR c < d

True

True

True

False

True

True

True

False

a < b AND (b < c OR c < d)

True

True

True

False

False

False

False

False

The test data required to fully test the conditions in Figure 2.31 must test the conditions

shown on each line of the truth table. For example, the second line of the truth table requires

that the condition c < d is not met, so a boundary test must be performed where c is not less

than d (e.g. c = d).

For this pseudocode, at least eight test data elements must be written to test the conditional

statement fully.

It can be useful to use an algebraic expression to map out which values are needed for a

test condition to be met. For example, using the example from Figure 2.31 and Table 2.6,

the �rst line of the truth table can be interpreted algebraically in this way:

a < b

a = b – 1

are met.

b < c

b = c – 1

c < d

c = d – 1

b < c OR c < d

True

a < b AND (b < c OR c < d)

True

This is because each condition can be guaranteed to be true if the algebraic conditions

True

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

a < b

The algebraic expressions can be further simpli�ed:

b < c c < d

a = b – 1

And again:

a < b

a = ((d – 1) – 1) – 1

And �nally:

a < b

a = d – 3

b < c

b = d – 2

c < d

c = d – 1

b < c OR c < d

True

a < b AND (b < c OR c < d)

True

Therefore, only a value for d needs to be chosen, as the values for a, b and c can all be

determined from this value.

It is important that test data is selected systematically rather than in an ad-hoc manner,

otherwise the source code cannot be guaranteed to be logically correct throughout all of its

algorithms. This results in a considerably large set of test data to be used to test the system,

which is why many software development companies use automated tools to construct and

run tests on source code.

Trace tables

To prevent logic errors occurring, programmers often construct trace tables to validate the

logic of the algorithms used in their source code. Trace tables simulate the execution of a

program, referred to as the flow of execution. Given test data, each processing feature within

an algorithm is executed, step by step, and, based on the test data, the values of the variables

that change within that algorithm are tracked to ensure that the logic within the algorithm

is correct. This systematic method of tracking the execution of code allows for the thorough

testing of even the most complex of algorithms.

As an example, consider the pseudocode in Figure 2.32. This algorithm uses a WHILE

loop control structure to print values until a condition is met. The trace table to represent

the �ow of execution of this pseudocode is in Table 2.7.

ALGORITHM sampleWhileLoop()
BEGIN

x ← 0

y ← 0

WHILE x < 32 DO

x ← x + 8

y ← y + 4
ENDWHILE

PRINT x, y
END

FIGURE 2.32 Pseudocode example of a WHILE loop

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

b < c c < d b < c OR c < d

b = (d – 1) – 1 c = d – 1 True

a < b AND (b < c OR c < d)

True

b = (d – 1) – 1 c = d – 1

63

b < c OR c < d

True

a < b AND (b < c OR c < d)

9780170440943

64

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 2.7 Trace table for the pseudocode in Figure 2.32

Step Statement

1

x

2

3

4

5

6

7

8

9

10

11

x ← 0

y ← 0

While x < 32 Do

x ← x + 8

y ← y + 4

While x < 32 Do

x ← x + 8

y ← y + 4

While x < 32 Do

x ← x + 8

y ← y + 4

12 While x < 32 Do

13

14

x ← x + 8

y ← y + 4

15 While x < 32 Do

EndWhile

Print x, y

16

17

0

0

0

8

8

8

16

16

16

24

24

24

32

32

32

32

32

y output

0

0

0

4

4

4

8

8

8

12

12

12

16

16

16

16 32, 16

Another example, where a logic error exists within an algorithm, can be seen with the

algorithm in Figure 2.33.

ALGORITHM applyDiscount()
BEGIN

INPUT fullPrice

INPUT discPerc

discPrice ← fullPrice – discPerc

RETURN discPrice
END

FIGURE 2.33 Pseudocode containing a logic error

As this algorithm requires input from a user, the trace table can only be constructed

using test data. For the purposes of this example, the test data is as follows, with the �ow

of execution being tested twice, with two sets of inputs, and the expected discounted price

being listed with the test data.

TABLE 2.8 Test data for pseudocode in Figure 2.33

fullPrice

20.00

50.00

discPerc

5

50

Expected result

19.00

25.00

After completing the trace tables, the test data can be completed to show the following

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

TABLE 2.9 Trace tables for the pseudocode in Figure 2.33

Step

1

Statement

2

3

4

Step

1

2

3

4

results.

TABLE 2.10 Completed test data for pseudocode in Figure 2.33

fullPrice

20.00

50.00

discPerc

5

50

Expected result

19.00

25.00

Actual result

15.00

0.00

The actual results from the trace table and the test data make it clear that the algorithm

is not calculating a correct discounted price given the inputs it is receiving; it is merely

subtracting the discount percentage as if it were a dollar value to be discounted. The

corrected algorithm can be seen in Figure 2.34.

ALGORITHM applyDiscount()
BEGIN

INPUT fullPrice

INPUT discPerc

discAmount ← fullPrice * (discPerc / 100)

discPrice ← fullPrice – discAmount

RETURN discPrice
END

FIGURE 2.34 Discount pseudocode after the logic error is fixed

Trace tables were traditionally produced manually by a programmer to test code and

check for logic errors. Many programming languages today, however, have integrated

developer environments (IDEs) that allow a programmer to trace the �ow of execution

through a debugger built into the IDE, so that they do not need to construct trace tables

by hand.

☐ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Input fullPrice

Input discPerc

fullPrice

20

20

discPrice ← fullPrice – discPerc 20

return discPrice

Statement

Input fullPrice

Input discPerc

20

fullPrice

50

50

discPrice ← fullPrice – discPerc 50

return discPrice 50

65

discPerc

5

5

5

discPerc

50

50

50

discPrice output

15.00

15.00

discPrice

15.00

output

0.00

0.00 0.00

9780170440943

2
Essential terms

CHAPTER

SUMMARY

alternative execution code that is run if a condition is not met

arguments specific inputs passed into a function that act as local, temporary variables

average case the time it takes to run an algorithm, on average

best case the best time it can take to run an algorithm

binary search a decrease and conquer algorithm that repeatedly halves a sorted search
space until an element is found or not found

boolean a data type that holds the values of true or false

boundary values the maximum and minimum edge values possible for a given input

built-in functions functions that have been written by the creators of the programming
language to execute common sequences of code

casting converting a variable from one data type to another, such as converting a string to
an integer

chained conditional a conditional statement that handles more than one possible
conditional outcome

class visibility the accessibility of a class from source code; public, private or protected

compiler a program that turns source code into machine language that can be executed by
a computer processor

conditional statement a control structure that allows a programmer to write lines of code
that are only run when a particular requirement is met

debugging identifying and removing errors from computer software

decrease and conquer to recursively reduce a problem to two or more smaller instances of
the same problem until the problem can be solved

definition an instruction that assigns a value to a variable

divide and conquer to recursively break down a problem into two or more sub-problems of
the same type until they are simple enough to solve on their own; the solved problems are
then combined to provide a final solution

divide-by-zero error an error occurring when an arithmetic equation is attempting to
divide by 0

DO/WHILE loop an iteration over a set of instructions, conditions and/or iterations that is
repeated for as long as a condition is met; it is always run at least once

event a special type of method that is called when an object’s state changes

existence check test to see if a value has been entered as input or not

expected results the output expected from an algorithm, assuming it is logically correct

flow of execution the order in which instructions, conditions and iterations are executed or
evaluated

FOR loop an iteration over a set of instructions that is repeated a set number of times

function a sequence of related code that has been given a name that can be called from
other points in the source code

function call to execute the contents of a function

function declaration to name a function and its arguments

function definition to define (write) the contents of a function

function visibility the accessibility of a function from source code; public, private or
protected

66

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

global variables variables that are defined outside any function and can be accessed by all functions throughout the source code

infinite loop an iteration that will never reach the condition upon which it can terminate

instruction a unit of code that can be executed by a compiler or interpreter

integrated developer environment (IDE) software that provides tools to aid in programming, such as source code editing,
syntax highlighting, code completion, debugging aids, or tools to help construct a user interface

interpreter a computer program that directly executes source code without needing to have it compiled beforehand

linear search a search that checks every element in a list, from first to last, when searching for a particular element

local variables variables that are defined inside a function that can only be accessed by that function

logic error when source code is syntactically correct but contains an error resulting in unintended, undesirable or
incorrect output

logical operator a boolean operator used to combine expressions, such as AND, OR

memory leak a failure of a program to release memory that is no longer needed, causing impaired performance, application
failure and/or system failure

method an action an object can carry out; e.g. window.refresh, golfClub.swing

nested conditional when a condition contains one or more additional conditions within its structure

parameters see arguments

pass by reference to pass data into a function as an argument so that it can be modified without needing to be returned

pass by value to pass data into a function as an argument so that it cannot be modified without needing to be returned

patches sets of changes to a software application designed to update or fix it

pointer a variable that stores the memory position of another variable’s value

quicksort a divide and conquer algorithm that sorts a set of data by recursively partitioning and sorting smaller and smaller
sets of that data

range check tests to see if a value is within a given range of acceptable values

recursive algorithm an algorithm that calls itself with smaller or simpler sets of values until a solution can be found

REPEAT/UNTIL loop an iteration over a set of instructions that is repeated for as long as a condition is not met; it will
always execute at least once

return value a value or set of values that is passed back to the origin of a calling function, often to be assigned to a variable,
used in an equation, or tested within a conditional statement

runtime error an error that occurs while a program is running

selection sort the process of selecting and swapping elements within a list until the entire list is sorted

sequence a set of instructions that executes line by line in the order that it is written

statement a single line of code that, when executed, performs a single action

switch/case a conditional statement that handles more than one possible conditional outcome

syntax error often a typographical error in source code that violates the set of rules that define a programming language

test case a set of steps that a tester uses to determine if the element being tested works correctly, often outlining test data,
testing procedures and expected results

test data data that has been specifically identified to be used in a test case

trace table a table used to test an algorithm, typically by hand, to ensure that no logic errors occur

truth table a table used to represent all of the combinations of values for inputs and their outputs, typically used to test
conditional statements

type check tests to see if a value is of the specified data type or structure

WHILE loop an iteration over a set of instructions that is repeated for as long as a condition is met

worst case the longest amount of time it can take to run an algorithm

67

9780170440943

2
Important facts

CHAPTER

SUMMARY

1 Variables are references to stored data so they can be used within a program.

2 Instructions are units of code that can be executed by a compiler or interpreter.

3 Definitions and statements are two types of instructions.

4 Control structures typically involve sequences, conditions and iterations.

5 Sequences are sets of instructions that execute line by line.

6 Conditional statements are control structures that will execute only if a particular
requirement is met.

7 Conditionals allow for: alternative execution, more than one logical expression, chaining,
nesting and switching.

8 Iterations are repetitive loops that repeatedly run sections of code until a condition is
met or not met.

9 There are four types of iterations: WHILE, DO/WHILE, FOR and REPEAT/UNTIL.

10 Functions are sequences of related code that have been named by a programmer.

11 Functions contain arguments, also known as parameters, that act as local variables to
the function.

12 Functions can have visibility within source code, so that they can be accessed by every
other function, some other functions, or no other functions.

13 Classes allow programmers to group related functions and variables together.

14 Classes can be instantiated to create objects.

15 Methods are functions that exist inside classes and objects.

16 Events are special types of methods that perform a sequence of code when an action
occurs.

17 Two algorithms used to sort data are selection sort and quicksort.

18 Selection sort repeatedly selects the next smallest element from a set of elements and
swaps it into its correct position until all elements are sorted.

19 Quicksort repeatedly partitions elements into smaller and smaller sets in order to
produce a final sorted list.

20 Two algorithms used to search through data are linear search and binary search.

21 Linear search checks every element in a list, from first to last, when searching for a
particular element.

22 Binary search repeatedly divides and discards half of the elements in a list while
searching for an element until the element is found or it is determined to not be in
the list.

23 It is important that algorithms are as e�cient as possible.

24 Algorithm e�ciency can be described in terms of best case, average case and
worst case.

25 Validation techniques include existence checks, type checks and range checks.

26 Existence checks test to see if any value has been entered as input.

27 Type checks test to see if the input entered is of the correct data type.

28 Range checks test to see if the input entered is within a range of acceptable values.

68

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

29 Debugging is the process by which software errors are found and fixed.

30 Syntax errors occur when the grammatical rules of a programming language have not been followed.

31 Runtime errors occur while the program is being used.

32 Logic errors occur when the expected output of an algorithm does not match the actual output, but no runtime errors
occur.

33 Test data must be carefully selected in order to test all aspects of an algorithm.

34 Truth tables can be useful when selecting test data to use.

35 Test cases should be created to test all boundary values.

36 Trace tables simulate the flow of execution of a program and allow a programmer to manually detect logic errors.

69

9780170440943

TEST YOUR

KNOWLEDGE

Qz Review quiz Variables and instructions

1 Which of the following are most likely to be variables?

a getUmbrella()

b isFound

c customer.firstName

d True

e 2018

f “cake”

g apple

Control structures

2 Give an example of an instruction that is a definition.

3 Give an example of an instruction that is a statement.

4 What is the di�erence between a definition and a statement?

5 How does a sequence di�er from an iteration?

6 What is the di�erence between a WHILE loop and a DO/WHILE loop?

7 Mary writes some code to iterate over a set of data. It runs exactly once, but no conditions
have been met. What types of iterations could Mary have written?

8 State the values that will be returned or displayed in the following examples of pseudocode:

a a ← 4

b ← 2

c ← 3

IF (a > c) OR (b > c) THEN

RETURN True
ELSE

RETURN False
ENDIF

b age ← 10

IF age < 10 Then

RETURN "Child"

ELSEIF age < 18 THEN

RETURN "Teenager"
ELSE

RETURN "Adult"
ENDIF

70 SOFTWARE DEVELOPMENT VCE UNITS 3&4

71

TEST YOUR

KNOWLEDGE

Functions, classes, methods

9 How do you get a function to run within source code?

10 How are functions represented in pseudocode?

11 What is the di�erence between a function declaration and a function definition?

12 How is a class di�erent to an object?

13 What is the relationship between a method and an event?

14 How are methods represented in pseudocode?

Algorithms for sorting

15 Explain the steps taken to perform a selection sort, using a worked example as part of your
explanation.

16 Explain the steps taken to perform a quicksort, using a worked example as part of your
explanation.

17 Which is faster, quicksort or selection sort? Is this always the case? Explain.

Algorithms for searching

18 Explain the steps taken to perform a linear search, using a worked example as part of your
explanation.

19 Explain the steps taken to perform a binary search, using a worked example as part of your
explanation.

20 Roland executes a linear search and then a binary search on a very large set of data. He
searches for the same item in each of the searches. The linear search was much faster than the
binary search. How is this possible?

Validation techniques

21 Cerie needs to perform all three validation techniques on a particular input. In what order
should Cerie perform these checks when she writes her source code? Why?

☐ Project plan ☐ Justification ☐ Analysis ☐ Folio of alternative
designs ideas

☐ Usability tests ☐ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

C H A P T E R 2 » D E V E L O P M E N T A N D F E AT U R E S O F A C O M P U T E R P R O G R A M

9780170440943

9780170440943

TEST YOUR

KNOWLEDGE

22 Annotate the following pseudocode to show where each validation technique is being used.

ALGORITHM validateInput()

BEGIN

INPUT fullName

INPUT age

IF fullName = blank THEN

PRINT “Please enter your full name.”

ENDIF

IF isInteger(age) = False THEN

PRINT “You must enter age as a whole number.”

ELSEIF age < 0 THEN

PRINT “Invalid age.”

ENDIF

END

Meeting design specifications

23 What steps can be taken to ensure design specifications are being met?

24 What is the di�erence between a test case and test data?

25 What is the di�erence between a syntax error and a runtime error?

26 Dina executes some code on her computer and everything seems to slow down. Eventually,
her computer crashes. What has most likely occurred within the code?

27 Why is it important for software companies to release patches?

28 What is the purpose of a truth table in relation to testing?

29 Explain what a boundary value is.

30 Why are trace tables useful when debugging?

72 SOFTWARE DEVELOPMENT VCE UNITS 3&4

73

APPLY YOUR

KNOWLEDGE

1 Write a program that asks a user for their name. Once they have entered their name, the
program should say hello to them.

2 Write a simplified calculator program that implements basic arithmetic operations. At a
minimum, it should handle addition, subtraction, multiplication and division of at least two
numbers.

3 Using the pseudocode in Figures 2.25 and 2.26 on pages 53 and 54, implement linear and
binary searches in your selected programming language.

4 Using the pseudocode in Figures 2.20 and 2.24 on pages 46 and 50, implement selection sort
and quicksort in your selected programming language.

5 Complete a trace table for the following algorithm:

ALGORITHM printResult()
BEGIN

x ← 2

y ← 1

WHILE y < x DO

y ← x * y

x ← x + x
ENDWHILE

PRINT x, y
END

6 Construct a truth table and algebraically determine the test data required to test the following
algorithm:

ALGORITHM returnResult()
BEGIN

INPUT x, y, z

IF x < y AND z > y THEN

RETURN True
ELSE

RETURN False
ENDIF

END

☐ Project plan ☐ Justification ☐ Analysis ☐ Folio of alternative
designs ideas

☐ Usability tests ☐ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

9780170440943

9780170440943

PREPARING FOR

Unit

OUTCOME 1

On completion of this unit, the student should be

able to interpret teacher-provided requirements

and designs, develop and test working modules

and justify the use of processing features of a

programming language.
3

Steps to follow

To achieve this outcome, you will draw on key knowledge and key skills outlined in Area of Study 1. This Outcome requires
that you use a programming language to create working modules, undertake the problem-solving activities of designing,
coding, validating and testing, and create internal documentation in response to teacher-provided requirements and
designs. These working modules do not need to represent complete solutions, but the modules themselves should be
complete as outlined in the design specifications provided to you.

and programming instruction, or they may give them to you as a group after all of the theory and programming has
been covered. To encourage you to meet all of the requirements, your teacher may choose to allocate di�erent classes
to di�erent stages of the task, such as separating development from testing. Your justifications of the use of processing
features of a programming language will be included in your internal documentation, alongside descriptions of the
modules and their features.

Your teacher may choose to give you the requirements and designs one at a time after periods of relevant theory

Documents required for assessment

• Source code

• Internal documentation within the source code

• Evidence of testing using appropriate test data

– Keep and submit all documents used to construct your tests, including test data, any truth tables used to select
your test data, and trace tables.

Assessment

You will be assessed on the following measures:

• Your choice of data types and data structures

• Your choice of file types

• Selection, creation and use of appropriate processing features

• Naming conventions

• Validation techniques

• Debugging techniques

• Internal documentation of module functions

• Internal documentation justifying the use of processing features

• Thoroughness of testing

74 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

iS
to

ck
.c

om
/

an
d
re

w
h
ou

g
h
to

n

CHAPTER

3
KEY KNOWLEDGE

On completion of this chapter,
you will be able to demonstrate
knowledge of:

Digital systems

• security considerations influencing
the design of solutions, including
authentication and data protection

• features of project management
using Gantt charts, including the
identification sequencing of tasks,
time allocation, dependencies,
milestones and critical path.

Data and information

• techniques for collecting data to
determine needs and requirements,
including interviews, observation,
reports and surveys.

Approaches to problem solving

• functional and non-functional
requirements

• constraints that influence solutions,
including economic, legal, social,
technical and usability

• factors that determine the scope of
solutions

• features and purposes of software
requirement specifications

• tools and techniques for depicting
the interfaces between solutions,
users and networks, including use
case diagrams created using UML

• features of context diagrams and
data flow diagrams

Reproduced from the VCE Applied Computing Study

Design (2020–2023) © VCAA; used with permission.

Software analysis

FOR THE STUDENT

The process of creating documentation related to project management
and for the specifications and design of a software system must be
systematic in order to ensure success. Throughout both Units 3 and
4 you will be required to maintain a project management progress
report in the form of a Gantt chart. The SAT requires that the project
management report be submitted twice. In Unit 3 it will be in the
form of a proposed plan. In Unit 4 it is an amended plan and, with the
benefit of hindsight, includes changes that reflect the actual project
progress, rather than the imagined progress as recorded by the proposed
plan in Unit 3. Data collection techniques help to determine software
requirements, both functional and non-functional, and also help to
determine the scope of the system, particularly when considering the
constraints faced by the software developer. Data collection must be
interpreted using tools such as use case diagrams (UCDs), context
diagrams and data flow diagrams (DFDs) to provide an increasingly
detailed overview of the system being built. At this stage of the problem-
solving methodology, it is also important to determine the criteria that
will be used to evaluate the e�ciency and e�ectiveness of design ideas
in order to select a solution to develop further.

FOR THE TEACHER

This chapter, along with Chapter 4, covers the theory required for Unit 3,
Outcome 2, which is the first part of the SAT. The SAT will be completed
in Unit 4, Outcome 1. Chapter 3 focuses on the analysis stage of the
problem-solving methodology (PSM). Chapter 4 will deal with the
design stage. The focus of this chapter is the core elements of analysis
that help students understand the requirements of project management
and to construct a software requirements specification (SRS) for the
proposed systems. Students should apply data collection techniques to
obtain information that will help determine the constraints and scope of
a proposed system as well as document its functional and non-functional
requirements. As part of this documentation, students must learn to
construct use case diagrams using UML, as well as context and data flow
diagrams to represent the inputs, processes and outputs of systems and
solutions. Students must propose di�erent design ideas for their solution.
They must construct and use evaluation criteria to determine the most
e�cient and e�ective design.

75

9780170440943

76

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

What is a ‘software solution’?

Software is the means by which computer hardware can achieve a purpose. The key

ingredient of effective and ef�cient software is that the expectations of the user and

the software developer are satis�ed by the look, feel and function of the software, or

program.

What makes a ‘good program’?
Over the course of Units 3 and 4, the SAT and PSM will take you through a series of steps.

First you will collect information about the needs and requirements that have been identi�ed

by ‘your client’, and then this information or data will be transformed into a software

requirements speci�cation (SRS). A bene�t of identifying the purpose to be achieved by

your software is that the evaluation criteria will be well known before you get to coding and

testing in Unit 4.

As part of Unit 3, Outcome 2 follows a problem-solving methodology (PSM) to go

through the stages of analysis and design. Development and evaluation will take place in

Unit 4, Area of Study 1.

To prepare you for Unit 3, Outcome 2 and also for Unit 4, Outcome 1, we will discuss

planning and managing a complex project, including how to use a Gantt chart, because this

relates to the project you are undertaking.

As part of Unit 3, Outcome 2, you �rst need to �nd a suitable client who has a need

or opportunity for a software solution. The �rst thing we will discuss is how to determine

a client’s needs and requirements. A variety of techniques will be considered, including

interviews, surveys, reports and observations.

Next, we will talk about the features of functional and non-functional requirements for a

solution, both in terms of general solutions and your speci�c software solution.

Then we will discuss factors such as scope and constraints that will affect the ability

to deliver the solution and to satisfy client expectations. Before you begin any software

design, you need to create the software requirements speci�cation (SRS). In order to

explain your intended software solution, you will use tools and techniques to illustrate the

relationships between your solution, users and networks. The tools used will include use

case diagrams (UCDs) with a uni�ed modelling language (UML), context diagrams and

data �ow diagrams (DFDs).

The �rst thing to do after choosing a client is to gather data about their requirements.

You can acquire data through methods such as surveys and reports, and through conducting

interviews and observations.

Once you have gathered all of this data, you need to store it, protect it and understand

what type of data it is. We discuss how to reference those sources properly and brie�y cover

data types and structures, which is relevant to Outcome 2, later in Chapter 4.

Project
management

Collecting
data

FIGURE 3.1 Chapter map

Functional
and

non-functional
requirements

Solution
constraints

Scope of a
software
solution

Software
requirements

specification
(SRS)

Solution
interfaces

Software

diagrams

Security

considerations

Gantt charts

CHAPTER 3 » SOFTWARE ANALYSIS

Project management
Project management is the process of planning, organising and monitoring a project in order to

ensure it is completed on time and within budget and scope. Building or changing information

systems for a project can be expensive and disruptive and, if managed badly, can be damaging

to an organisation’s operations and pro�t. Large-scale changes are often approached as projects

so they can be planned, organised and conducted appropriately, ensuring that they �nish on

time and within budget, and ful�l the project’s goals (scope). You will formulate a project plan

to manage your progress through Unit 3, Outcome 2 and Unit 4, Outcome 1.

For your project to be successful, you need to identify, schedule and monitor tasks,

resources, people and time. While you can use a software tool for planning a project, our

77

main focus initially will be on the concepts and processes of project management.

One of the items you are required to submit as part of your Outcome is a Gantt chart.

A Gantt chart is a type of bar chart or graphic timeline named after its inventor, Henry

Gantt, that:

• lists all tasks in a project

• organises the tasks in order

• shows which tasks must wait for other tasks to �nish before they can begin

• allocates people and resources to tasks

• tracks the progress of tasks and the entire project.

Although you can create a Gantt chart with a pen and paper or a spreadsheet, project

management software is usually easier and faster. Suitable software includes the commercial

Microsoft Project, and the free, easy-to-use GanttProject and ProjectLibre.

When using software to create your Gantt chart, you will not be assessed on your technical

prowess with the software. Rather, you will be assessed on how well your Gantt chart

demonstrates your understanding of the concepts and processes of project management.

Project management

Concepts Processes

Milestones Dependencies

Concepts

Milestones

A milestone represents the achievement of a signi�cant stage in a project and has zero time

duration. For example, the completion of the printing of a questionnaire so that it can be

distributed to respondents would be a task of zero time and represents a milestone. This

follows tasks in which the questionnaire has to be researched, written, proofread and �nally

printed, all of which take time.

☑ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Task

identification
Sequencing

FIGURE 3.2 Key project management concepts and processes

Time allocation

resources

Documentation using

9780170440943

78

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Dependencies

Tasks are interdependent, meaning that they must be completed in a particular order. The

commencement of some tasks depends directly on the task that is completed before. For

example, you cannot distribute a questionnaire (one task) before writing the questions for

it (another task). However, you cannot write the questions for the questionnaire without

�rst determining what information, or data, you need (a third task). Ultimately, the task of

distributing a questionnaire has multiple dependencies. It is not possible to distribute the

questionnaire without �rst writing the questions.

Processes

Task identification

You would break a large project such as Unit 3, Outcome 2 down into discrete tasks, such

as the following:

• Identify a suitable client.

• Analyse the client’s needs and requirements.

• Create a Gantt chart to identify tasks.

• Create a working title for your software solution.

• Write qualitative questions for interviews.

• Conduct interview(s) with the client and possible users.

• Write quantitative questions for questionnaires.

• Distribute questionnaires.

• Locate other data sets and secondary data.

• Collate data.

• Interpret data and create the SRS.

• Modify your SRS after discussion and agreement with your client.

• Finalise the purpose and function of your software solution.

Note: Not all of the tasks you would undertake for Unit 3, Outcome 2 are included in the

list above. You should not use this as your own exhaustive list.

To break down your project into achievable tasks, develop a work breakdown structure

(WBS) and draw a WBS diagram to accompany it. For large projects, a WBS will often be

hierarchical, breaking major tasks into subtasks and even sub-subtasks. Although this may

sound confusing, it will actually keep your tasks organised and in context, allowing them

to be collapsed or expanded to view overall task progress or �ne details about how minor

subtasks are proceeding.

Do not leave any tasks out of the WBS. For example, imagine you distributed both a

print and online version of a questionnaire, but did not list the printed version in the WBS,

and forgot to collect the printed forms from respondents. All the gathered data would be

overlooked, or counted too late.

Figure 3.3 shows a sample potential WBS for Unit 3, Outcome 2. Again, the tasks may

not be exhaustive and you may �nd that your own WBS requires additional tasks.

submission

CHAPTER 3 » SOFTWARE ANALYSIS

79

Outcome project
(Unit 3, Outcome 2)

1.1 Find client

1.1.1 Identify
possible
software
solution

1.2 Analysis

1.2.1 Scope
Constraints

1.2.2

1.3 SRS

Requirements
1.2.3

Functional
1.2.3.1

Non-functional
1.2.3.2

FIGURE 3.3 Sample breakdown structure (WBS) diagram for Unit 3, Outcome 2

Sequencing

When you have identi�ed each individual task, you need to estimate how long each task

will take and then put them in a sequence; that is, arrange them in a particular order. As

discussed in dependencies, one task often cannot be started before one or more other tasks

have been completed.

Decide which tasks can be worked on concurrently, but are dependent on other tasks

that have already been completed. For example, you could work concurrently on conducting

interviews, researching similar applications and writing questions for a survey, but these tasks

are all dependent on having a client with a need or opportunity.

Similarly, you cannot write an SRS before you have interpreted the data that you have

collected in the analysis stage.

Tasks that must be completed before another task can begin are called predecessors. The

dependent tasks are called successors.

If a predecessor runs overtime, all of its successors will be delayed, causing problems

for other tasks and deadlines. This is where a Gantt chart becomes very useful – it helps

to monitor tasks and meet deadlines, keeping the project on schedule. It also helps you to

visualise the problems that will occur down the line if a predecessor is late.

The amount of time that a task can be delayed without delaying another task, or the

1.4 Design

1.4.1 Design
mock-up

1.5 Software
design

user interface

1.4.2 Evaluate
designs

1.5.1 Data flow
diagram

1.5.2 Use case
diagram

1.5.3 Context
diagram

1.6 Progress
report

1.6.1 Gantt
chart

project completion date, is called slack time. When workers have slack time, you can

reassign them to other tasks.

Time allocation resources

A Gantt chart shows tasks as horizontal bars. Each horizontal bar is of a length proportional

to the task’s duration. A very short task will have a very short bar, while a very long task will

have a very long bar. Figure 3.4 displays a number of features typical to a Gantt chart.

The names of the tasks are shown in the left pane, along with start and end dates, while

the right pane shows task timelines. Tasks that overlap in time are concurrent and can be

carried out at the same time using different teams.

☑ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

80

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Arrows are used to indicate dependency. For example, neither the ‘Functional’ nor the

‘Non-Functional’ tasks under ‘Requirements’ can begin until all tasks under ‘Analysis’ have

�nished, because they depend on these tasks.

The diamond shape indicates a milestone. Milestones are points of signi�cant progress in

a project. They are often the start or end of major stages, and can be used to monitor whether

a project is on track. A milestone is an event with zero duration and no allocated resources.

It is simply shown as a diamond-shaped ‘task’. In this instance, ‘Submit �nal report’, the end

of the project, is one such milestone.

An event differs from a task because although something happens (for example, a major

task ends), no resources, work or time are allocated to it because there is nothing that people

need to do to make it happen.

A project’s critical path is the sequence of tasks from beginning to end, which:

• contains no slack time – any delay in a task on the critical path will affect the end date

of the project

• is the longest duration

• is the minimum possible time in which all of the project’s tasks can be completed.

Sometimes, more than one critical path is possible. No task on the critical path can have

its duration changed without affecting the end date of the whole project.

Documentation using Gantt charts

You can use the Gantt chart you develop to mark your progress throughout this Area of

Study. Including information about the progress of the task and the planned versus actual

duration of the task will help keep you on track.

Ad

Additional
resources

NelsonNet
additional resource:
Figure 3.4 Sample
GanttProject chart

FIGURE 3.4 An annotated Gantt chart. This Gantt chart provides a partial sample model for Unit 3,
Outcome 2, with placeholder dates.

9780170440943

submission

CHAPTER 3 » SOFTWARE ANALYSIS

To manage your solution effectively as a complex project, you should also use your Gantt

chart to document the resources you have allocated to it, such as any tools and equipment.

While a company or organisation may list consultants and buildings as resources, your

resources might be computers, particular data sets and software tools.

You should also frequently modify your Gantt chart to re�ect contingencies. A

contingency is an unforeseen event, incident or emergency. You may �nd that your client

suddenly becomes unavailable or unwilling to continue. The software language you wish

to use is no longer acceptable. The website hosting your analysis and results crashes and

you lose your data. Your Gantt chart should show problems like these and how you react

to them, such as �nding a new client or a different software solution strategy, or switching

languages.

You should keep your Gantt chart updated throughout both Unit 3, Outcome 2 and

Unit 4, Outcome 1. You will submit an initial project plan, indicating times, resources and

tasks, in Unit 3, Outcome 2. After modifying the plan to indicate changes, you will submit

an evaluation of the plan in Unit 4, Outcome 1.

Gantt chart for creating a database

Several web developers are working on a database project together. As part of their
project, they need to build a Gantt chart.

Task identification

They �rst identify the tasks they need to complete using a WBS diagram (see Figure 3.5).
Next, they enter these tasks into their chosen Gantt software, GanttProject (see
Figure 3.6).

1 Database project

81

THINK ABOUT

SOFTWARE

DEVELOPMENT

3.1

Project management
tools are useful to find
the perfect number
of people needed on
a task so it is finished
as quickly as possible
without anyone being
idle. Using software,
develop a Gantt chart
to plan the baking of a
cake. Assume you can
use as many cooks as
you want.

CASE

STUDY

1.1 Hire staff 1.2 Conduct analysis

1.1.1 Programmers

1.1.2 Creative designers

1.1.3 Technical writers

1.2.1 Scope

1.2.2 Constraints

1.2.3 Requirements

1.2.3.1 Functional

1.2.3.2 Non-functional

1.3 Design 1.4 Develop

1.3.1 Tables, relationships

1.3.2 Fields, data types

1.3.3 Appearance

1.3.4 Scripts

1.3.5 Documentation and training

1.3.6 Evaluation criteria

FIGURE 3.5 Task identification

1.5 Evaluate

1.4.1 Database

1.4.2 Conduct informal testing

1.4.3 Write documentation

1.4.4 Provide training

1.4.5 Conduct formal testing

1.4.6 Implement

☑ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

82

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

THINK ABOUT

SOFTWARE

DEVELOPMENT

3.2

In terms of project
management, research
the meaning of:

• an ‘optimistic’ task
duration

• a ‘pessimistic’ task
duration.

FIGURE 3.6 Entering tasks into Gantt software

The developers use a hierarchical structure to group tasks under headings, such as
HIRING and ANALYSIS, to make task management easier. Groups of tasks can be collapsed
or expanded or moved as a group. In GanttProject, multiple levels of sub-tasks can easily
be created by just indenting them in the task properties.

Sequencing

The tasks are suf�ciently sequenced, but the order can be shifted easily if needed. The
developers start creating dependencies, forcing dependent tasks to wait until their
predecessors have �nished.
• All of the HIRING (1.1) tasks can start immediately.
• Management will complete the tasks in the ANALYSIS group (1.2), which can also begin

immediately and run concurrently with the hiring tasks.
• The DESIGN (1.3) tasks cannot begin until the ANALYSIS tasks are complete, so DESIGN

is made dependent on ANALYSIS.
• The DEVELOPMENT (1.4) tasks cannot begin until DESIGN is �nished, so DESIGN is as

a predecessor to DEVELOPMENT.
• EVALUATE SYSTEM (1.5) must wait for everything else to �nish, so it is made dependent

on DEVELOPMENT.

9780170440943

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

CHAPTER 3 » SOFTWARE ANALYSIS

83

FIGURE 3.7 Major dependencies have been added. Arrows lead from predecessor tasks to
dependent tasks.

• The team wants DESIGN to be well underway before they start creating documentation

and training, because they would be greatly affected by changes to the database. They

Subtler dependencies can now be added.

• They also make 1.4.4 (Carry out training) dependent on 1.4.3 (Write documentation)

being �nished.

make 1.3.5 dependent on other design tasks being �nished.

• Formal testing (1.4.5) must follow all database creation tasks, so they add another

dependency.

that if their needs change later, they can easily adapt the chart to suit their needs.

Time allocation resources

The project developers now tackle the challenge of the time required for each task. They
consult with experts and colleagues, and use their extensive experience and knowledge of
past projects to guide their estimates.

• selecting a project start date
• showing a critical path (critical tasks are shown cross-hatched)
• adding milestones to mark the end of major stages of the project.

The developers can �nish with their Gantt chart by:

☑ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

• Implementation (1.4.6) comes as the last stage of development.

They are now happy with the logical task sequences and dependencies, but they know

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

84

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Ad

Additional
resources

NelsonNet
additional resource:
Figure 3.8 Gantt
chart showing task
durations FIGURE 3.8 Dependencies have been created

Ad

Additional
resources

NelsonNet
additional resource:
Figure 3.9 Gantt
chart finished first
draft FIGURE 3.9 Task durations have been estimated

Questions

1 The project team has made a mistake with the starting date of the ‘Evaluate system’
task. Explain why. How could they �x it?

2 How much slack does the ‘Hire creative designers’ task have?
3 If designing scripts took a day longer than expected, would it affect the project

end date?
4 The team discovers that the ‘Develop database’ task is running over time. How could

they keep the project from running past its planned end date?
5 Explain the bene�ts of using Gantt chart software instead of using a pen and paper or

a whiteboard.

9780170440943

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

CHAPTER 3 » SOFTWARE ANALYSIS

85

FIGURE 3.10 Finished first draft of the Gantt chart

FIGURE 3.11 Adding resources to the project

Activity

6 Obtain a Gantt software tool and create a simple chart of your own.

Documentation using Gantt charts

To ensure that project workers are not booked to be in two places at once, or idle, and
that equipment is ready at the right time, the project manager allocates resources to tasks
using the Gantt chart.

Once the project is underway, the team will continue to refer to the Gantt chart to
monitor their progress, and they will modify the chart when contingencies force plans to
change.

While Gantt charts are one crucial aspect of project management, good �le
management practices are another. Wise �le-naming strategies are easy to learn and
useful in many ways. You will �nd it easier to keep track of the materials you collect for
your solution if you learn to manage your �les by naming them wisely.

☑ Project plan

9780170440943

☐ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

S
h
u
tt

e
rs

to
ck

.c
o
m

/
A

n
d
re

y
P
o
p
o
v

86

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Collecting data
Data to construct a software requirements speci�cation (SRS) is usually collected through

methods such as surveys, interviews, reports and observations. Each method of data collection

has its strengths and weaknesses, and it is important that the most relevant methods of data

collection are used within a given context. In Software Development, data that is collected

typically helps determine the project scope, the functional and non-functional requirements,

and the constraints. It can also help determine and/or decide who the end users will be, or

how the client is going to use the software.

Survey
A survey is usually a set of questions that ask for a response to be selected from a list of

alternatives, such as A, B, C, D; or a range, such as 1–5 or very low to very high. This type

of survey is also called a questionnaire. Surveys can easily be given to many people, and are

quickly processed and analysed using computer-based methods because the answers can

be recorded as numbers as long as close-ended questions are

used. Close-ended questions are questions where the answers

are either boolean (yes or no) or ranked on a �xed scale. These

types of questions allow for analysis of quantitative data to

produce results, which is more ef�cient than surveys with open-

ended questions. Open-ended questions are questions that

ask for answers in sentences or worded form. This means the

number of answers is potentially in�nite. These questions tend

to ask for opinions, and must undergo analysis of qualitative

FIGURE 3.12 A survey with a close-ended question

data to interpret the results.

The advantage of administering a survey is that they are

relatively inexpensive to conduct. They can also be delivered

digitally, so results can be collected immediately, and the survey

can easily be given to a large number of users to complete. The disadvantages are that processing

of results can take a lot of time if open-ended questions are asked, users may not necessarily

be truthful in their responses and, if the survey is quite lengthy, users may lose interest in

completing it.

Interview
An interview is usually conducted face-to-face, sometimes in groups, and can take a

substantial amount of time. Interviews give an opportunity for in-depth follow-up and the

ability to ask clarifying questions – this cannot be done with a survey, which is often answered

in private. Interviews are very useful for eliciting feelings, attitudes and opinions that are too

complex to easily record in a survey.

Report
A report is typically a written document providing a summary of �ndings in relation to the

system being analysed. Often when a software developer is creating a new system to replace

the system that is currently in place, they must investigate the current system as part of their

analysis of the requirements of the new system. In this instance, it can be useful to collect

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS

87

FIGURE 3.13 Metro train performance report

data about the current system; often this data has been

summarised in report documents. These could include

error reports, customer complaint summaries, uptime

reports and other related system reports such as system

performance reports and monitoring reports. The types of

reports collected will vary depending on the system being

built and the system being replaced.

The advantages of using reports as part of data

collection is that they are often pre-prepared and quick

to obtain, and therefore inexpensive. The data within

them has already been collated and interpreted, saving

time (Figure 3.13). This can also be a disadvantage,

however, as the method of interpretation may not be

sound, or may have been deliberately manipulated

to present a particular point of view. Using data from

reports can be risky if the source of those reports is not

reliable (Figure 3.14).

FIGURE 3.14 Server uptime report

FIGURE 3.15 Error log report

☑ Project plan

9780170440943

☑ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

S
o
la

rW
in

d
s®

Lo
g
g
ly

®
to

p
 J

a
va

 e
xc

e
p
ti
o
n
s.

©
 2

0
19

 S
o
la

rW
in

d
s

W
o
rl
d
w

id
e
,
L
LC

. A
ll

ri
g
h
ts

 r
e
se

rv
e
d
.

M
e
tr

o
 T

ra
in

s

w
w

w
.d

o
tc

o
m

-m
o
n
it
o
r.c

o
m

requirements.

88

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Observation
Observation is a method of data collection that involves physically observing how a system

operates and how it is used. Observations are typically performed when designing a system that

will replace a current system, and are useful when attempting to solve a problem with an existing

system. For example, a system may become particularly slow at certain times of the day, but will

work well outside of those times. An observation of users at the time when the system slows

would be useful in helping determine why the issue has occurred. Similarly, systems may have

wildly varying performance depending on the time of year, such as consumer websites during

periods of high sales such as Boxing Day or the end of the �nancial year (EOFY). Observations

can also be used when creating a new system that will replace something that is currently being

completed manually. In these instances, the manual process is observed and documented.

Advantages of observations are that they can provide an unbiased view of the system;

information can be gathered without asking for a user’s opinion or relying on their memory.

Observations can also occur simultaneously as long as users are located in the same physical

space. Disadvantages are that they are quite time-consuming and therefore very expensive if

they need to occur more than once or over a long period of time. Time-speci�c observations

can also be very dif�cult if the project timeline does not allow for it; for example, waiting for

the end of the �nancial year may require waiting 12 months. Similarly, if the observations

occur at the wrong time, the results may not be very useful as they may not be representative

of how the system is typically used. Another disadvantage is that people can become very self-

conscious when they are being observed, so their actions may not necessarily be the same as

if they were alone, resulting in inaccurate data.

Functional and non-functional

Functional requirements
Functional requirements are directly related to what the solution will do. These typically

involve calculations; data processing; opening, reading and writing to �les; data manipulation

such as image editing; and other speci�c functionality required within the system.

Some examples of functional requirements for software solutions are:

• save customer data to a �le

• calculate discount values on products

• set an alarm to go off at a particular time

• load a set of jobs into a timetable.

Functional requirements are usually described in terms of the inputs required, the sequence

of operations that will be performed, and the output(s) after processing has occurred. These

written descriptions often include dot-point descriptions for the purposes of clarity. An example

of a functional requirement for a music performance system can be seen in Figure 3.16.

Functional requirements that require user interaction are typically accompanied by a use

case; these are described in more detail later in this chapter.

9780170440943

requirements
Solution requirements are what the client needs from a solution; that is, what the system

must do. These can be broken down into functional requirements and non-functional

submission

CHAPTER 3 » SOFTWARE ANALYSIS

89

FIGURE 3.16 A functional requirement for a music performance system

Non-functional requirements
Non-functional requirements are other requirements that the user or client would like

the solution to have but that do not affect what the solution does. These tend to be referred

to as quality requirements, as they typically involve criteria that can be used to ‘judge’ a
system, rather than criteria that involves speci�c behaviour the system is required to have.

Non-functional requirements are often tied to the constraints of the system. They can be

categorised in terms of usability, reliability, portability, robustness and maintainability.

Non-functional requirements must be measurable – this means that they must be able to

be tested to see if the requirement is met.

Determining non-functional requirements usually involves discussions with a client,

such as asking if the software must work on different operating systems, or asking who the

users of the system will be and the level of technical experience they have.

Usability

Usability relates to how easy a system is to learn and use. This is typically described in terms of

ef�ciency and effectiveness. Common factors of usability include the clarity of the user interface

and the intuitiveness of the functions within the system. The success of a system’s usability

is often measured in terms of user satisfaction. An example of a non-functional requirement

related to usability is ‘users should be able to use all basic functions after one hour of training’.

☑ Project plan

9780170440943

☑ Justification ☐ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

= 1 – the probability of failure. An example of a reliability measure is the prediction of the

90

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

This non-functional requirement is highly reliant on the skills, expertise and needs of the

intended users of the system.

Reliability

The reliability of a software solution relates to how much it can be depended upon to

function as designed, and for how long. Typically, this requires that the software is deemed

fit for purpose over time and that it is resistant to failure.

uptime of a system or solution, such as ‘the system should have a 99.9% uptime over any

12-month period’ or ‘the ability to add a new customer should be available to staff members

during working hours on weekdays’.

Portability

The portability of a software solution relates to how easily it can be used in different

operating environments. This can involve measuring how easy it is to move from one system

to another system with the same architecture; how easy it is to reinstall a program on a new

system; and the ability to use the same software on multiple operating systems and platforms,

or in multiple languages.

The most time-consuming element of portability is when a developer is required to

write software that will work on multiple operating systems and platforms, in particular

when multiple languages are involved. This typically means that the user interface must be

separated from the core functionality and logic so it is easy to create a new user interface for

a new system; for example, creating an application that works on a mobile device as well as

a desktop computer, in Mandarin as well as in English.

Portability is increasingly important as mobile computing becomes the norm; users often

expect that applications will work on mobile technology as well as desktop technology.

Robustness

The robustness of a system relates to how well a software solution responds to errors that

occur when the software is being used; that is, it should perform correctly in every situation

encountered by a user. Robustness is therefore an evaluation of the error handling techniques

within a software solution. For example, a piece of software would be evaluated according to

how it responds to bad input from a user. Robustness is closely linked to the use of validation

techniques, as these can help prevent errors from occurring when users enter unexpected

or invalid input. An example of a non-functional requirement related to robustness is ‘the

system should reject invalid data entered by a user’.

Robustness is measured in terms of the number of failures, crashes and errors that occur

while a system is running.

Maintainability

Maintainability is related to how easy it is to look after software once it is being used. This

can involve �xing errors in the code, maximising ef�ciency and reliability, installing the

software on new systems, and in some cases expanding on the current functionality with new

functionality. Simply put, maintainability is measured in terms of how easy it is to �x, modify

or change the software once people are using it.

Often, maintainability is measured in terms of the number of hours a developer or

administrator spends to keep the system running after it has been put in place. An example

9780170440943

The reliability of a system is generally expressed as a probability measure, where reliability

91
CHAPTER 3 » SOFTWARE ANALYSIS

of a non-functional requirement related to maintainability is ‘fewer than 10 hours should be

spent per quarter on maintaining the system’.

Scope
The scope of the software solution must be de�ned. A project without limits will never be �nished,

and inevitably disputes will arise over what was and was not included in the expected software

solution. A scope statement identi�es who will develop the solution and what will be speci�cally

considered, and it may speci�cally exclude other areas. In its simplest terms, the scope of the

project describes the project and explains what the project will and will not do (see pages 13–14).

Constraints
The constraints on a software solution are anything that may limit the software developers’

options for development or delivery. The software requirements speci�cation (SRS) should

contain any decisions made before the project begins. Examples include: time and budget

available, programming languages, software processes, hardware limitations, operating

systems, speci�c design tools, previously purchased components or use of licences, safety and

security considerations, legal compliance requirements and privacy laws. The constraints

statement could also include any assumption or dependencies that will affect the developers’

ability to provide the software solution. For example: A new power supply will be required to

power the servers, and a cooling system for the server room. This is not part of the software

solution, but successful implementation will rely on the change to infrastructure.

Software requirements specifications
A software requirements specification (SRS) is a single document that contains the

outcomes of the analysis stage of the problem-solving methodology. This document is

created after data collection has occurred and before the design stage begins.

An SRS must outline all of the elements considered in the analysis stage. In particular, the

constraints under which the system must exist, the scope of the proposed system (what it will

and will not contain) and the functional and non-functional requirements of the system itself.

An SRS may also include an appendix containing additional information needed to interpret

the requirements, such as a description of the operating environment of the proposed system

(linked to constraints) or descriptions of any third-party tools required (linked to functional

or non-functional requirements).

A well-written SRS provides quality assurance for the client that the issue to be solved by

the software solution is well documented and understood. It ensures that:

• the client’s problem or opportunity is understood, the issues have been identi�ed, and in

response a systematic process of addressing each issue has been documented

• the completed SRS will be the basis for the design speci�cations. The criteria identi�ed

in the SRS will be used to evaluate the success of the �nal product.

• the �nal evaluation will verify the software product and test that the software performs as

expected.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

S
h
u
tt

e
rs

to
c
k
.c

o
m

/
B

a
k
h
ti
a
r

Z
e
in

92

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

FIGURE 3.17 Software requirements specification

Scope creep is when a
client changes the scope of
a project (by increasing it)
during the life cycle of the
project. This can be very
expensive to a developer in
terms of time and money,
as it means the project will
take longer to complete,
often without any extra
money being provided by
the client.

An SRS can contain performance parameters such as response time, processing time,

maintenance requirements, resource demands, and security and backup arrangements.

Diagrammatical tools that can be used to assist in the creation of the SRS include use

cases, context diagrams and data �ow diagrams.

An SRS is useful because it provides all of the required information about the proposed

system in one place. It often also acts as a legally binding contract between a client and a

developer, preventing a client from requesting additional features as the project timeline

progresses.

Creating a software requirements specification
An SRS should include a cover page that states the name of the project, the author (or

authors), the contact details of the author(s) and the version of the proposed system.

The �rst page after the cover page should contain a table of contents that clearly lists

each section of the SRS. Each section inside the SRS should use numbered headings and

subheadings so each element of the document can be easily tracked. Page numbers are also

included on each page.

Any additional documentation should be included at the end of the SRS as part of a set of

appendices. This may include reports collected in the analysis stage, evidence of interviews

and observations, etc.

Because an SRS is a professional document, consistency in the use of fonts, font sizes and

font colours is also important.

Interfaces between solutions, users

and networks

There are many useful tools to interpret data collected in the analysis stage of the problem-

solving methodology. Three methods of depicting the interfaces between solutions, users and

networks are use case diagrams (UCDs), context diagrams and data �ow diagrams (DFDs).

Use case diagrams
A use case diagram (UCD) is a method of describing how a user interacts with a system.

This is created using a Unified Modelling Language (UML), which is a general-purpose

visual modelling language. Use cases are a diagrammatical representation of the externally

visible user interactions, and are often used to complement worded descriptions of those

9780170440943

case diagram

CHAPTER 3 » SOFTWARE ANALYSIS

interactions. Use case diagrams are normally completed prior to the creation of context

diagrams or data �ow diagrams.

A use case diagram provides a structured view of the functionality of a software solution;

it ‘tells a story’ of how the functions within a system work. It is intended to provide a high-

level view of how a user actively interacts with the system, and does not show the internal

functionality of the system itself. Use case diagrams are not designed to show the sequence

or order of interactions a user undertakes within a system, either.

Use case diagrams include actors who have relationships with use cases.

Actor

In a use case diagram, an actor represents an entity that can interact with the software

solution. While this typically means a human user, it does not have to be, and can include

external systems. Actors are described in terms of the role of a user or external system, rather

than as speci�c users themselves. For example, if Serai was a manager in charge of adding

users in a new system, she would be represented by an actor named ‘manager’ rather than by

an actor named ‘Serai’.

Actors are represented by stick �gures in use case diagrams, even if they are not humans.

They can be connected to use cases and other actors through relationships and generalisations,

and should always be described using nouns.

Use case

A use case diagram contains use cases, which describe transactions or functions a user (actor)

can complete in the system. These represent system functionality. Use cases are shown using

an ellipse with the name of the function written inside. Each use case is often quite broad,

as a use case diagram is often the �rst tool used to understand how a system will work. They

are generally expanded upon in other diagrams, such as context diagrams and data �ow

diagrams, or in the functional requirements.

Use cases should begin with strong verbs that describe the action or function being

represented in the use case. The phrase inside the use case should be brief, often no more

than two or three words. For example, ‘add customer’ or ‘delete user’.

Use cases can be connected to actors and other use cases through relationships and

generalisations.

Relationship

A relationship in a use case diagram represents the connections between elements within

the use case diagram. Relationships can exist between actor and use case, actor and actor,

and use case and use case.

Association

A typical relationship is represented by a solid line connecting two elements. This type of

relationship is referred to as an association. This is the default relationship within a use case

diagram.

Generalisation

A second type of relationship is a generalisation, which indicates a type of inheritance, or

parent–child relationship between the two elements. The ‘child’ in a generalisation gains all

of the structure, behaviour and relationships that the parent has. A parent element can have

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Actor

FIGURE 3.18

An actor in a
use case

93

A use case diagram should
show non-technical people
what the system will do
when it is completed. It
should show developers
what is expected of an
application. It does not
go into detail about how
a system will implement
functionality; it only shows
what it will do.

Use case

FIGURE 3.19

A use case in a use

9780170440943

94

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

more than one child element. This feature of a use case diagram is often used to show when

the same job can be performed differently by different users. It can also be used to show

different types of use cases.

Generalisations are represented by a solid, straight line with a closed arrow head, with

the child use case pointing to the parent use case. An example of a generalisation is shown in

Figure 3.20, where two actors are connected via a generalisation. The ‘Administrator’ actor

in this example can also perform the role of the ‘User’ actor. Another example is shown in

Figure 3.21, where a parent use case ‘process payment’ has child use case ‘process paypal

payment’ connected via generalisations.

Process payment

Administrator

Process PayPal

payment

FIGURE 3.20 A generalisation
of actors where an administrator is
a type of user User

Include and extend

Two other types of relationships are include and extend. These are shown through the use

of dotted or dashed lines with an open arrow head connecting two use cases; they are not

used to connect actors. These relationships must be labelled to indicate whether they are an

inclusion or an extension.

FIGURE 3.21 A generalisation
of use cases

edit user <<include>>

FIGURE 3.22 A use case using ‘include’.

When include is used, it indicates that the entirety of one use case is included in another.

This means that the process of completing a use case always requires running the functions

in the other use case at least once. For example, in Figure 3.22, the use case shows that

‘edit user’ includes ‘load user’. This is because to edit a user, that user must �rst be loaded.

Similarly, ‘update user details’ also includes ‘load user’, as that

functionality also requires that a user be loaded �rst. Notice

that the arrow head on the include relationship is pointing

towards the use case that is included in the other use case.

The include relationship must always be labelled using two

angled brackets on each side of the word ‘include’, as shown

in Figure 3.22.

load user

When extend is used, this indicates that one use case can sometimes be included in

another. It is often used to represent additional or optional functionality within the system.

For example, in Figure 3.23, the ‘move image’ use case is an extension of the ‘select image’

submission

CHAPTER 3 » SOFTWARE ANALYSIS

use case, as moving the image is an action a user can choose to complete after selecting an

image. Similarly, in Figure 3.24, the ‘display help’ use case is an extension of the ‘register

user’ use case, meaning that users can choose to display help relevant to registration, but do

not necessarily need to in order to complete the registration process. Notice that, in both

examples, the arrow head on the extend relationship is pointing towards the use case that

is being extended upon. A use case should not be an extension of another use case if it is

required as part of the functionality of that use case; in these cases, the relationship should

be an ‘include’. The extend relationship must always be labelled using two angled brackets

on each side of the word ‘extend’, as shown in Figures 3.23 and 3.24.

select image <<extend>> move image

FIGURE 3.23 A use case for an image system using
‘extend’.

System boundary

Use case diagrams show the use cases contained with a system boundary. This makes it

clear what is included in the system being built and what is not. System boundaries are

shown by drawing a rectangle around the use cases that are relevant to the proposed system.

Actors should remain outside of the system boundary box. Although there is typically only

one system boundary, in cases where scope has been reduced, system boundary boxes can

be nested to indicate which use cases are within the current scope of the project, and which

have been deemed out of scope. This shows which use cases are part of the scope of an SRS

and which may be included in later versions of the software.

Drawing use case diagrams

For consistency, use cases are usually ordered

so that all of the main use cases are in the centre

of the diagram, typically running vertically,

from top to bottom. The order of the use

cases does not normally matter, but it can be

helpful if similar actions are grouped together.

Use cases that are extensions or inclusions

of other use cases are typically placed to the

right of the use cases they have a relationship

with; this often creates two vertical rows of use

cases, as shown in Figure 3.25.

Actors are shown on each side of the use

cases, and can be repeated (i.e. one on each

side) to avoid overlapping relationships; this

adds clarity and makes the diagram more

readable. System boundaries must be labelled,

☑ Project plan

9780170440943

☑ Justification ☑ Analysis

User registration system

register user <<extend>> display help

register user <<extend>> display help

FIGURE 3.24 A use case for a registration system using
‘extend’.

95

User change

password

ban user

Administrator

FIGURE 3.25 A use case diagram for a user registration system

☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

96

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

typically in the top left corner or bottom right corner of the boundary. Use cases should be

labelled within the ellipse, and actors should have labels underneath the stick �gure.

Context diagrams
A context diagram, sometimes referred to as a Level 0 data �ow diagram, is a visualisation

of a system in its entirety that indicates the data that is passed into and out of the system.

Context diagrams are often created after use case diagrams have been drawn, as all of the

interactions a user can have with the system have been documented in the use cases. This

allows all of the actions a user can complete to be systematically translated to the data that is

needed for those actions to succeed.

Context diagrams do not typically show much detail. They are only intended to focus on

the �ow of data in and out of the proposed system. This helps establish the context and the

boundaries of the software system being created.

There are three primary symbols used in context diagrams, which represent processes,

entities and data �ows.

Process

process

FIGURE 3.26

A context diagram
process

A process in a context diagram is an abstract representation of the whole system being

created. Unless the proposed system is very complex, a context diagram will typically contain

only a single process. This is shown on the diagram using a circle, with the name of the

system contained within that circle.

In a context diagram, the system process is connected to external entities by the use of

data �ows.

Entity

A context diagram may contain one or more entities, which are the users or external systems

that interact with the system being created. These are drawn as rectangles within the context

external entity

FIGURE 3.27

A context diagram
entity

data flow

diagram, with the name of the entity contained within the rectangle. Much like actors in use

case diagrams, entities should not be labelled with the names of real people, but instead with

the abstract role those people have.

In a context diagram, entities can only interact with the system process and cannot

interact with each other.

Data flow

process external entity

FIGURE 3.28 A context diagram with a
process, entity and data flow

A data flow represents a single piece or logical collection of data as

it moves into and out of the system being represented in the context

diagram. These are represented by solid lines, typically curved, with an

open arrow head representing the direction of the data �ow. While most

data �ows are unidirectional, there are instances where data �ows in

both directions. In these instances, both ends of the data �ow should

show open arrow heads.

In a context diagram, data �ows connect entities to the system

process. They must always start or end at a process, and cannot directly

connect entities to other entities.

submission

CHAPTER 3 » SOFTWARE ANALYSIS

Drawing context diagrams

There are two main notation styles used to represent context diagrams: Gane-Sarson and

Yourdon-DeMarco. In this text, the Yourdon-DeMarco style is used.

When drawing context diagrams, the single process referring to the proposed system

should be displayed in the centre of the diagram, with entities appearing on each side so that

they are as balanced as possible. Each data �ow should be represented as lines, normally

curved, and must clearly indicate the direction the data is moving in. Labels on data �ows

that indicate which data is transferred should appear close enough to the line that it is clear

which data �ow the label is attached to.

Context diagram:

Patient information system

patient diagnosis

patient information

patient history

selected appointment date

Patient

Patient

available appointment dates

information

system

bulk billing request

Doctor

97

payment information

payment confirmation

Medicare

FIGURE 3.29 A context diagram for a patient information system

Data flow diagrams
A data flow diagram (DFD) is a graphical visualisation of the �ow of information within

a system, including data provided by external entities. DFDs provide more information

than context diagrams, and are designed to show the data �owing in to and out from every

function within the system. For this reason, DFDs are normally drawn with consideration

to ‘levels’, where each level of the diagram contains more detailed information than

the previous level. Context diagrams are therefore often referred to as ‘Level 0 data �ow

diagrams’, as they contain the least amount of information about the data �owing in to and

out from the system.

Level 1 DFD diagrams contain the core processes within the system. There may be

more than one of this level of diagram, depending on system complexity. The general rule

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

98

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

is that a DFD should contain at least three but no more than seven to nine processes; if

there are more, they should be separated into related collections of processes across multiple

DFDs. Level 2 DFDs (and higher) contain a more detailed look at the inner workings of

the processes that were included in Level 1 DFDs. These are used when processes are quite

complex, and more detail is needed to show what the processes are doing. If two or more

levels of DFDs are created, the data that �ows into and out of Level 1 DFDs must be the

same; the only change in the diagrams is the level of detail shown for selected processes. The

decision to proceed beyond Level 1 for DFDs can be separately made for each process, with

the developer deciding when the level of detail is suf�cient.

Much like context diagrams, DFDs contain processes, entities and data �ows and they

also show data stores, which represent where data is coming from.

Process

A process in a DFD is not the same as a process in a context diagram. While a context

diagram process represents the whole system, a process within a DFD represents a whole

function. For this reason, DFDs typically include at least as many processes as there are use

cases in the system’s use case diagram.

Processes in DFDs are shown using a circle, with the name of the process contained

within that circle. Process names are typically short and begin with a strong verb and a

singular noun, such as ‘validate PIN’ or ‘print receipt’, and normally represent the functions

of the proposed system. Much like use cases, the name of a process should not be longer

than two or three words.

In a DFD, processes can be connected to external entities, other processes and data

stores. These are all connected via labelled data �ows.

A process must have at least one input data �ow and one output data �ow. Processes must

also transform data – the data going in should not be exactly the same as the data coming out.

Entity

A DFD may contain one or more entities, which, as in context diagrams, are the users or

external systems that interact with the system being created. These are drawn as rectangles

within the DFD, with the name of the entity contained within the rectangle. Much like

actors in use case diagrams, entities should not be labelled with the names of real people,

but instead with the abstract role those people have.

In a DFD, entities can only be connected to processes via a data �ow. They cannot

directly interact with data stores or other entities.

Data flow

A data �ow represents a single piece or logical collection of data as it moves between entities,

processes and data stores within the system. Much like in a context diagram, data �ows in a

DFD are represented by solid lines, typically curved, with an open arrow head representing

the direction of the data �ow. While most data �ows are unidirectional, there are instances

where data �ows in both directions. In these cases, both ends of the data �ow should show

open arrow heads.

In a DFD, data �ows can connect entities to processes, processes to other processes, and

processes to data stores. They must always be coming from or going to a process and cannot

directly connect data stores with each other.

99
CHAPTER 3 » SOFTWARE ANALYSIS

Data store

A data store represents a collection of data that is stored in some way. Some examples of data

storage include a database, a plain text �le and an XML �le. Data that �ows out of a data

store indicates that it is retrieved from it, whereas data �owing into the data store is assumed

to be updating or adding to it.

In a DFD, data stores are represented by two parallel lines, with the name of the data

store in between them. Data stores can only be connected to processes. Each data store

should have at least one input and one output data �ow.

Drawing data flow diagrams

Much like context diagrams, there are two main notation styles used to represent DFDs:

Gane-Sarson and Yourdon-DeMarco. In this text, the Yourdon-DeMarco style is used.

DFDs should be drawn to reduce the amount of data �ow overlaps. DFDs do not need to

show entities if they have already been shown in a preceding level DFD, although they can

still be included for clarity.

When creating a DFD, the following questions should be asked:

• Where does the data come from? Does it come in as input from an entity, or does it come

from a data store?

• What happens to the data once it enters the system? Which process(es) does it �ow into?

Which data stores does it �ow into?

• Where does data go once it enters a process? Is it stored in a data store? Is it returned to

an entity as output?

The �rst step in constructing a DFD is to identify the processes that are needed to

perform the work within the system. These are often closely related to the use cases that

were included in the use case diagrams constructed in the analysis stage. At a minimum,

each use case should be represented in a DFD as a process. Some use cases will require

more than one process.

Once the processes have been identi�ed they should �rst be connected to the relevant

entities that provide the data that �ows into the process. They should then be connected to

other related processes and data stores, with each data �ow appropriately labelled. Finally,

any outputs from the processes should be included. In general, a process requires at least one

data �ow as input and at least one as output; if it has less than this, it is not a valid process.

Once all processes and DFDs have been created at Level 1, a decision can be made

about whether any process within those diagrams requires further detail. If this is the case, a

Level 2 DFD should be created to re�ect that detail.

The layout of a DFD follows similar conventions to a context diagram, but as there are

more processes involved, it is sometimes dif�cult to keep them all centred. The general

rule is that processes are grouped in the middle of the DFD. Data �ows should, as much

as possible, be separated so they do not overlap other data �ows, and data stores should be

beneath the processes that use them. If entities are shown, they should be on the far left or

far right of the diagram.

Once a DFD is complete, it should be checked for accuracy. Verifying that the DFD is

accurate involves checking each process, data �ow, data store and entity.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Data store

FIGURE 3.30

A data store

9780170440943

100

SOFTWARE DEVELOPMENT VCE UNITS 3&4

Each process should be checked to make sure it has a unique name, and that its name is

a strong verb phrase and is suf�ciently descriptive. Each process must also have at least one

input data �ow and one output data �ow. Output data �ows should have different pieces or

collections of data from the input data �ows. The DFD should not be overcrowded with

processes.

Each data flow should be checked to make sure it is named after a piece of data or

collection of data; they should be noun phrases. Each data �ow should connect to at least

one process. They should have a minimum amount of overlap with other data �ows; it is

preferred that there is no overlap.

patient name,
appointment date

make

appointment

Appointment
information

date range

appointment date range

Patient

doctor name, available dates

Medicare number,

diagnosis, current date

diagnosis, payment information

make diagnosis

FIGURE 3.31 DFD Level 1 for a patient information system

Medicare number, diagnosis

get appointment
dates

Patient

information
Doctor

patient name, date of birth

get patient
history

Medicare number,
patient history

doctor name,
available dates

patient name,

Medicare number

patient history

Each data store should be checked to make sure it has a unique name and that it is

named appropriately to the data it represents; the names should be noun phrases. Each data

store should have at least one data �ow connecting it to a process.

Each external entity, if shown, should match the name of an entity in the context diagram.

The name of the entity should be unique and be a noun or noun phrase. Each entity should

be connected to at least one process by at least one data �ow.

submission

CHAPTER 3 » SOFTWARE ANALYSIS

101

Software to track music performances

Susan is a music director who is in charge of running music performances. She would like to
replace her current manual system of tracking music performances with a software system
so she can track concerts and performances without needing to rely on written notes. She
would like the system to run on her computer at home as well as on her mobile phone.
Susan is a relatively inexperienced technology user, but needs to be able to learn to use
the software quickly; her preference is that it will require no more than an hour of training.

The system Susan needs must enable her to add performances and concerts. If she is
adding a concert, she would also like to be able to assign a theme to it. She wants concert
themes to come from a saved list that she can add to as required. Susan also needs the
software to track the themes of each concert that she runs. She runs these twice a year, and
must not use the same theme in any given six-year period; most people will not pay to see
a concert again if the theme is the same. She tends to run her concerts in different locations
on a six-year rotation.

Susan also needs the ability to edit concerts, performances and themes. In the future
she would like the ability to upload recordings of live performances and concerts to the
system.

She would like the software to be �nished before her next concert in January next year.
Susan has approached a local software developer, Donna, and asked her to create

the system for her. Donna began writing a software requirements speci�cation (SRS) that
outlined the functional requirements, non-functional requirements, constraints and scope
of the system, which are listed below.

The functional requirements are:
• Music performances and concerts can be added (Figure 3.32).

• Music performances and concerts can be edited (Figure 3.33).
• Concert themes can be added (Figure 3.34).
• Concert themes can be edited (Figure 3.35).

• Music concert themes can only be attached to a concert if no concert has had that

theme in the last six years (Figure 3.32).

CASE

STUDY

FIGURE 3.32 An ‘add performance’ functional requirement for Susan’s music
performance system

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

102

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

• Portability: the software must run on Susan’s mobile phone as well as her computer

at home.

The non-functional requirements are:

• Usability: Susan should take less than an hour to learn how to use the software.

The constraints are:
• Technical: Data entry must be supported via keyboard as well as touch screen.
• Usability: Susan has very little experience using technology.
• Economic: Susan wants the software �nished before January next year.

FIGURE 3.33 An ‘edit performance’ functional requirement from Susan’s music performance system

FIGURE 3.34 An ‘add theme’ functional requirement from Susan’s music performance system

submission

CHAPTER 3 » SOFTWARE ANALYSIS

103

• the ability to add and edit music performances and music concerts
System components that are in scope:

• the ability to add and edit concert themes.

System components that are out of scope:
• the ability to delete music performances, concerts or themes
• the ability to upload live recordings of performances and concerts.

Using the information already contained within the SRS, Donna must complete the SRS
by creating a use case diagram, a context diagram and relevant data �ow diagrams to
represent the system.

FIGURE 3.35 An ‘edit theme’ functional requirement from Susan’s music performance system

Step 1: Creating a use case diagram

Determine the actors

As Susan is the only person who will use this system, there is only one actor. Susan’s role in
relation to the system is Music Director.

Determine the use cases

To create a use case diagram, Donna looks at the functional requirements of Susan’s system:
• Music performances and concerts can be added (Figure 3.32).

• Music performances and concerts can be edited (Figure 3.33).
• Concert themes can be added (Figure 3.34).

• Add performance
• Add concert
• Edit performance
• Edit concert
• Add theme
• Select theme
• Edit theme

☑ Project plan

9780170440943

• Music concert themes can only be attached to a concert if no concert has had that

theme in the last six years (Figure 3.32).

• Concert themes can be edited (Figure 3.35).

Most of these functional requirements can be represented as a use case. These need to
have short names that begin with strong verbs:

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

104

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

After writing out the list of potential use cases, Donna realises that concerts are just
a particular type of performance, the only difference being that a concert requires that a
theme be selected, while a performance does not. She revises her list of use cases as a result:
• Add performance
• Edit performance
• Select theme
• Add theme
• Edit theme

Determine the relationships

In this scenario, concerts are special types of performances, and not all performances are
concerts. This suggests that the relationship between a performance and a concert is an
extension, where a concert is an extension of a performance. The difference between the two
is that a concert requires that a theme is selected, while a performance does not. Therefore,
the select theme use case has an extend relationship with the add performance use case.

Determine the system boundary

All of the listed use cases are within scope of the functional requirements of the new
software. This means the system boundary will include all use cases. Donna could also
choose to include the functional requirements that are out of scope in the use case
diagram, such as the ability to upload live recordings, but this is optional.

Draw the use case diagram

Given all of the information she now has about the actors, use cases, relationships and
system boundary, Donna is able to draw the use case diagram, as shown in Figure 3.36.

Music performance tracker

add

performance

edit

Music director performance

<<extend>>

<<extend>>

select theme

add theme

edit theme

FIGURE 3.36 A use case diagram for the Music Performance Tracker software

It is also possible to
combine the ‘add
performance’ and ‘edit
performance’ use cases,
as well as the ‘add theme’
and ‘edit theme’, as the
functionality inside them
is very similar. For the
purposes of this example,
however, they have been
left in.

Step 2: Creating a context diagram

Determine the processes

The single process shown in the context diagram represents the whole system: Music
Performance Tracker.

Determine the entities

Donna checks the use case diagram to see which actors are involved in the system; the
only actor is the Music Director. As no data is received from any other external sources, this
must be the only entity that interacts with the music performance software.

submission

CHAPTER 3 » SOFTWARE ANALYSIS

105

Determine the data flows

To determine the data that �ows in and out of the music performance system, Donna
checks the use case diagram again for each of the use cases:
• Add performance
• Edit performance
• Select theme
• Add theme
• Edit theme

Each of these must provide data in some way to the system, and some of them must
return data back to the music director. Donna systematically considers each use case
to decide if it must be included in the context diagram. All of them except the select

theme use case require data from the user, so she uses the information in the functional
requirements to determine the following data �ows:

From the Music Director to the Music Performance Tracker:
• Add performance: performance details (performance ID, performance name, date,

whether it is a concert, theme name)
• Edit performance: performance ID, changed performance details
• Add theme: theme details (themeID, theme name)
• Edit theme: theme name, changed theme name

From the Music Performance Tracker to the Music Director:
• Add performance: Theme re-used error
• Add performance: Performance added success or fail message
• Edit performance: Theme re-used error
• Edit performance: Performance edited success or fail message
• Add theme: Theme added success or fail message
• Edit theme: Theme edited success or fail message

Draw the context diagram

Given all of the information she now has about the process, entities and data �ows, Donna
is able to draw the context diagram, as shown in Figure 3.37.

performance details

theme ID, theme name

performanceID,

changed performance

details

theme name, changed theme name

FIGURE 3.37

A context diagram
for the Music
Performance Tracker
software

Music director Music performance tracker Music director

theme edited success or

fail message
performance edited success or

fail message

theme re-used error theme added success or

fail message

performance added success

or fail message

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

106

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Step 3: Creating data �ow diagrams

Determine the processes

Donna uses the use case diagram again to determine the processes that must exist in her
data �ow diagram. Each of the use cases must have a corresponding process in the data
�ow diagram:
• Add performance
• Edit performance
• Select theme
• Add theme
• Edit theme

Determine the entities

Donna checks the context diagram and only a single entity is needed: Music Director.

Determine the data stores

Before determining which data �ows are needed, Donna must consider where data will
be stored. Performances, including concerts, can be stored in a single data store. Themes
should be stored in a different data store, as they are a different collection of data to the
performance data.

Donna therefore decides that there will be two data stores: Performances and Themes.

Determine the data flows

Each of the processes must now be considered in relation to the data they receive from
external entities, the data they pass to other processes and the data they store and retrieve
from the data stores.

Donna checks the context diagram to look at each of the data �ows she represented
going to the system. This takes quite a while, as she must make sure she shows the
movement of every piece of data to and from processes, data stores and entities.

TABLE 3.1 Data flows going into and out of the music performance system

From To

1

2

Add performance Music Director

Add performance Music Director

Data

Performance added
success or fail message

Reason

Output to the Music
Director when adding a

performance

Theme re-used error Output to the Music
Director if re-using a
theme before 6 years

is up

3

4

5

6

7

Add performance

Add performance

Add theme

Add theme

Performances data
store

Select theme

Music Director

Themes data store

Edit performance Music Director

Performance details

Theme name

Theme added success

or fail message

Theme ID, theme
name

Performance edited
success or fail message

Sending the performance
data to be saved

Sending the theme name
to get a valid theme ID

Output to the Music

Director when adding a
theme

Sending a new theme
and theme ID to the data

store to be saved

Output to the Music
Director when editing a

performance

submission

CHAPTER 3 » SOFTWARE ANALYSIS

107

From

8

To

Edit performance Music Director

Data Reason

Theme re-used error Output to the Music

Director if the changed
theme was used in the

last 6 years

9

10

11

12

13

14

Edit performance

Edit performance

Edit performance

Edit theme

Edit theme

Edit theme

15 Music Director

16 Music Director

17 Music Director

18 Music Director

19 Performances data

store

20

21

22

Select theme

Performances data
store

Performances data
store

Select theme

Music Director

Themes data store

Themes data store

Add performance

Add theme

Edit performance

Edit theme

Edit performance

Changed performance
details

Performance ID

Theme name

Theme edited success

or fail message

Theme ID, changed

theme name

Theme name

Performance details

Theme details

Performance ID,
changed performance
details

Theme name, changed
theme name

Performance ID,

performance details

Themes data store

Themes data store Edit theme

Themes data store Select theme

Theme name

Theme ID, theme
name

Theme ID

Sending the changed
performance details to

be saved

To retrieve the
performance details when
a performance is selected

Sending the theme name
to get a valid theme ID

Output to the Music

Director when editing a
theme

Sending the changed

theme details to be saved

To retrieve the theme ID
when a theme is selected
to be edited

Providing performance
details to be saved

Providing theme details

to be saved

Providing changed
performance details to
be saved

Providing changed theme
details to be saved

Checking to see if a

performance exists and
returning its details if it
does

Sending the theme name
to get a valid theme ID

Providing theme details
to be edited

Providing a theme ID for
a given theme name

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

108

SOFTWARE DEVELOPMENT VCE UNITS 3&4

Draw the data flow diagram(s)

Donna decides that she will only use one data �ow diagram, as there are only �ve processes.
Given all of the information she now has about the process, entities, data stores and data
�ows, she draws this data �ow diagram, as shown in Figure 3.38.

Music performance tracker
Level 1: Data flow diagram

performance added success/fail message

theme

Music director
re-used error

theme re‐used
error

performance edited
success/fail message

changed
performance
details performance

ID performance ID,

performance details

edit

performance

performance
details

edit

theme

name

theme ID,

theme name

theme ID theme
name

theme ID

theme

add
performance

theme ID

theme

name

theme
name

theme ID

add
theme

select
theme

theme details

theme name,
changed theme name

theme edited
success/fail message

Music director

theme added success/fail message

theme ID,
changed theme name

performances themes

FIGURE 3.38 A data flow diagram for the Music Performance Tracker software

Security considerations
In an increasingly connected world, security considerations for software have become

paramount for any business, large or small. The risk of a software solution being compromised

is very high, with data breaches having widespread repercussions ranging from loss of

reputation to �nancial loss and possible violation of legal regulations. For example, some

countries hold businesses legally responsible for a system that does not comply with laws

regarding the storage and communication of electronic data. Programmers therefore have

an obligation to protect the security of data within a system as much as possible. This can

involve implementing security features such as encryption for data storage and transfer, as

well as putting in place authentication protocols to access elements of the software or the

software solution as a whole.

Encryption

A common application of
encryption is to encrypt
messages using a digital
signature. Digital signatures
give people the confidence
that the message they
receive is authentic.

Encryption is the process by which plain text data is encoded – scrambled – so that it is

unreadable by unauthorised applications or people. Once encrypted, this data is referred to

as cipher text data. Plain text data is encrypted using a key, and the resulting cipher text

data can only be decrypted by a person or application that has a decryption key. Encryption

is typically used to protect data when it is stored on a computer system, as well as to protect

data as it is transferred over unsecured networks.

S
h

u
tt

e
rs

to
ck

.c
o
m

/
R

a
w

p
ix

e
l.c

o
m

CHAPTER 3 » SOFTWARE ANALYSIS

109

THINK ABOUT

SOFTWARE

DEVELOPMENT

Bluetooth is

FIGURE 3.39 Encryption is a common method of securing data.

There are two main algorithms used to encrypt data. The �rst involves using symmetric
key encryption, where the key used to encrypt the data is the key that is also used to decrypt

that data. An analogy to describe this is when a code is needed to open a safe, and anyone

who has that code can open the safe and access its contents.

Examples of popular symmetric key encryption algorithms are AES, Two�sh, Blow�sh,

3DES and RC4.

A second type of encryption algorithm is public key encryption, also known as

asymmetric key encryption, where the key used to encrypt data is not the same as the key

that is used to decrypt that data. In this algorithm, a public key is used to encrypt the data.

This key can be used by any person or application and is generally widely known. The data

can only be decrypted using a private key, which is known only to the recipient person or

application. Public key encryption is used widely in the computing industry, such as with

Transport Layer Security (TLS) and Secure Sockets Layer (SSL). This type of encryption

is typically used when data is transferred over an open networked environment, such as the

Internet. A popular public key encryption algorithm is RSA, which is the standard used for

data transfers via the Internet. Other public key encryption algorithms are Dif�e-Hellman,

ECC and DSA.

Implementing encryption algorithms

Encryption algorithms are quite complex to implement and it is critically important that the

implementation is accurate and bug-free. A faulty algorithm could, at best, result in data not

being able to be decrypted and, at worst, allow data to be decrypted easily by unauthorised

people or applications.

Most programming languages have built-in functions or third-party packages that provide

the ability to implement encryption without needing to write the encryption algorithm

yourself. For example, Python has libraries that include implementations of encryption

algorithms such as AES and RSA. Similarly, Visual Basic contains classes that implement

3DES and AES.

An example of how to represent encryption in pseudocode is shown in Figures 3.40

and 3.41.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests

The AES encryption
algorithm is one of the
most popular symmetric
encryption algorithms used
in the computing industry.
Many financial and
government institutions
use this type of encryption.
AES encryption typically
uses 128-bit keys, but
stronger versions can also
use 192-bit and 256-bit.

TLS and SSL are security
protocols that are used over
computer networks. These
protocols are typically
used by web browsers
and email programs to
provide encryption over
the Internet. SSL is the
predecessor to TLS; TLS
was based on SSL 3.0. This
means that TLS should be
used over SSL for relevant
applications unless the use
of SSL is a constraint.

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

3.3

commonly used to
transfer data between
systems, particularly
mobile phones.
Conduct research
on which type of
encryption algorithm
is typically used
for Bluetooth data
encryption.

9780170440943

110

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

ALGORITHM encryptData(plainTextData)
BEGIN

ENCRYPT (plainTextData) using 3DES
END

ALGORITHM decryptData(encryptedCipherText)
BEGIN

plainTextData ← DECRYPT(encryptedCipherText) using 3DES

RETURN plainTextData
END

FIGURE 3.40 Representing symmetric key encryption in pseudocode

ALGORITHM encryptData(plainTextData, publicKey)
BEGIN

ENCRYPT(plainTextData, publicKey) using RSA
END

ALGORITHM decryptData(encryptedCipherText, privateKey)
BEGIN

plainTextData ← DECRYPT(encryptedCipherText, privateKey) using RSA

RETURN plainTextData
END

FIGURE 3.41 Representing public key encryption in pseudocode

Authentication
Aside from encryption, another method of securing data to reduce the risk of data breaches

is to integrate authentication functionality into a software solution. Authentication in

computing can have two meanings: one is to prove an identity, the other is to prove that a

user has a right to access a software system. For the purposes of VCE Software Development,

authentication should be interpreted as the latter: authorisation.

Authentication methods can range from the simplest, single-factor authentication to

more complex multi-factor authentication.

Single-factor authentication

This is the simplest method of authentication, where something you know, typically a username
and password, is required to log in to a software solution. Once logged in, users can have full

access or restricted access to the functionality within the software, depending on the level

of access they have been granted. This method of authentication is increasingly considered

inadequate due to the prevalence of password cracking tools available on the Internet.

Two-factor authentication

This type of authentication involves something you know as well as something you have.

Two-factor authentication, also known as two-step veri�cation, typically involves the user

possessing some physical item alongside a password that they must use to access a particular

piece of software. One example of two-factor authentication is the process you take to

withdraw money from an ATM. To do this, you traditionally must have a physical card in

your possession as well as a password, which in this instance is your PIN. Another common

example of two-factor authentication is the use of a secondary application to provide a single-

use veri�cation code to the user that changes frequently, such as every 60 seconds. The user

must provide this alongside a username and password to gain access to the relevant software.

S
h

u
tt

e
rs

to
ck

.c
o
m

/
m

e
ta

m
o
rw

o
rk

s

CHAPTER 3 » SOFTWARE ANALYSIS

111

Google Authenticator
is an application that
implements two-factor
authentication for users.
It uses a Time-based
One-Time Password
algorithm (TOTP) for
authenticating users of
mobile applications.

THINK ABOUT

SOFTWARE

DEVELOPMENT

FIGURE 3.42 Verification codes are required for two-factor
authentication.

The ease of implementing two-factor authentication is highly dependent on the

programming language selected. Some languages have third-party packages and libraries

that allow for ‘plug-in’ style inclusion into a software solution, such as Swift and Python, but

this is not necessarily the case in all programming languages.

Multi-factor authentication

Multi-factor authentication typically involves a user

providing three or more pieces of evidence to prove that

they are who they say they are. Typically, these involve

something you know, something you have and something

you are. It can also involve somewhere you are. As in single-

factor and two-factor authentication, something you know

is typically a username and password and something you

have is typically a physical or digital authenticator that

acts as a secondary device providing single-use passwords.

The third element, something you are, typically uses one

or more physical characteristics of the user to authenticate

them on the system, such as checking against biometric

3.4

Research Time-based
One-Time Password
(TOTP) algorithms.
How do they work?
Aside from Google,
what other companies
use this algorithm
to authenticate
users? How secure
is this method of
authentication?

data. Biometric data is data that is obtained from humans,

which can include �ngerprints, iris scanning, facial

recognition, palm prints, hand geometry and DNA matching. It can also involve behavioural

characteristics, such as typing speed, key-press patterns, gait patterns and voice recognition.

The fourth element, somewhere you are, involves location-based factors that involves the
physical location of the user. For example, a user may only be able to access a system if they

are on a hard-wired network within an organisation, or within a range of GPS coordinates.

The complexity of implementing multi-factor authentication is tied to the complexity of

the biometric data that is required for authentication to be successful. These methods are

typically very expensive, and tend to be implemented on systems that are highly sensitive or

require tight security.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☐ Folio of alternative

designs ideas
☐ Usability tests

FIGURE 3.43 Biometric data can involve facial or voice

recognition.

THINK ABOUT

SOFTWARE

DEVELOPMENT

3.5

What are some of the
risks of two-factor
and multi-factor
authentication
processes?

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

A
la

m
y

S
to

ck
 P

h
o
to

/
C
ri

st
ia

n
 D

in
a

9780170440943

112

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Next steps
In this chapter, we discussed the features of project management, and the need for regular

monitoring and adjustment. A log or weblog (blog) of changes is to be kept throughout

Unit 3 and Unit 4.

Next, we discussed the data collection methods available to analyse client requirements,

scope of the solution, functional and non-functional requirements and the various constraints

that can impact on a project.

Finally, we discussed data security, with regard to how it relates to you and your �le

management requirements.

Your next step, upon completion of the chapter summary, is to work towards completion

and submission of the solution analysis for Unit 3, Outcome 2, according to your teacher’s

instructions.

As you collect your data, take steps to protect your respondents and subjects. You should

begin to think about relevant constraints, the scope of the speci�cation and appropriate

analytical diagrams to represent data �ow and users. Chapter 4 begins with a discussion of

the software solution design requirements for Unit 3, Outcome 2.

9780170440943

3
Essential terms

CHAPTER

SUMMARY

actor an entity that can interact with the software solution as shown in a use case diagram

analysis stage the stage of the problem-solving methodology where solution requirements,
constraints and scope are determined

association a relationship between two elements in a use case diagram

asymmetric key encryption see public key encryption

biometric data data that is obtained from humans, which can include fingerprints, iris
scanning, facial recognition, palm prints, hand geometry and DNA matching, as well as
behavioural characteristics such as typing speed, key-press patterns, gait patterns and voice
recognition

cipher text data data that has been encoded so that it is unreadable by unauthorised
applications or people

clarity the extent to which a product is coherent and intelligible

close-ended questions questions that can be answered with a finite set of responses

concepts (project management) the milestones and dependencies within a project
timeline

concurrently when a task is carried out at the same time as another task

constraints factors that may limit or restrict solution requirements

context diagram a visualisation of a system in its entirety that indicates the data that is
passed into and out of the system

critical path the shortest possible time in which a project can be completed

data raw, unprocessed facts and figures

data flow the movement of a piece or collection of data within an information system, as
shown in context diagrams and data flow diagrams (DFDs)

data flow diagram (DFD) a graphical visualisation of the flow of information within a
system, including data provided by external entities

data store a representation of a collection of data that is stored in some way within a system

decrypt to decode encrypted cipher text data

design stage the stage of the problem-solving methodology where the function and
appearance of a solution are planned, and evaluation criteria created

encrypt to encode plain text data so that it cannot be read by unauthorised applications or
people

encryption the process of encrypting data

entity the users or external systems that interact with the system being created

evaluation criteria the benchmark or set of standards by which a solution or design is
measured

event a special type of method that is called when an object’s state changes

extend a relationship between use cases where one use case has optional or additional
functionality, which is represented in a use case diagram as a second use case

fit for purpose to be well suited for a role or purpose

full access access to all of the functionality of a software solution without any restrictions

functional requirements the desired operations of a program that have specified inputs,
behaviours and outputs

113

9780170440943

3
functionality the extent to which a solution is suited to its purpose

CHAPTER

SUMMARY

Gantt chart shows the progress of a project by placing tasks on a timeline, often with
comments or annotations

generalisation a parent–child relationship between two elements in a use case diagram

include a relationship between use cases where one use case is tied to, or relies upon, the
functionality contained within another use case

interview a face-to-face meeting between people for consultative purposes

maintainability how easy a solution is to look after once it has been put in place

non-functional requirements qualitative requirements of a solution, often tied to solution
constraints

observation a method of data collection that involves physically observing how a system
operates and how it is used

open-ended questions questions where the number of potential answers is infinite

plain text data data that can be read without any manipulation

portability how easily a solution is able to be used in di�erent operating environments

predecessor a task that must be completed before another one can be performed

private key an encryption key used in public key encryption that is only known to the
recipient person or application

problem-solving methodology (PSM) an approach that develops the stages involved in
solving a problem

process (context diagram) an abstract representation of the whole system being created

process (data flow diagram) an abstract representation of a function within a system

processes (project management) task identification, sequencing and allocation of time
and resources within a project timeline

project management a method of recording the progress of a project and managing
resources to operate within time, resource and cost availability

public key an encryption key used in public key encryption that is known by any person or
application

public key encryption a type of encryption where the key used to encrypt the data is
di�erent to the key that is used to decrypt that data

qualitative data data that consists of descriptive details, usually gathered via surveys or
interviews

quantitative data data that can be easily processed in a statistical manner, usually
composed of definite numbers

relationship the connections between elements within a use case diagram

reliability how much a solution can be depended upon to function as designed, and for how
long

report a written document providing a summary or finding in relation to the context or
system being analysed

restricted access access to functionality within a software solution is limited or restricted
based on user or group permissions

robustness how well a software solution responds to errors that occur when the software is
being used

Secure Sockets Layer (SSL) an obsolete security protocol designed to provide secure
transfer of data over computer networks

114

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS

slack time the length of time that a task can run overtime before a�ecting other tasks

software programs used by a computer

software developer a human who participates in design and creation of software programs, typically by writing programming
code

software requirements specification (SRS) a single document that contains the outcomes of the analysis stage of the
problem-solving methodology, including scope, constraints, functional requirements and non-functional requirements

successor a task that must be completed after another task

survey a set of questions that ask for a response to be selected from a list of alternatives

symmetric key encryption a type of encryption where the key used to encrypt the data is also the key that is used to
decrypt that data

system boundary a rectangle around relevant use cases that indicate the use cases that are within the scope of the solution

Transport Layer Security (TLS) a security protocol designed to provide secure transfer of data over computer networks

two-factor authentication verification that involves users possessing two forms of information to confirm their identity

Unified Modellign Language (UML) a general-purpose visual modelling language

uptime the time during which a machine, solution or application is operational

usability the extent to which a system is easy to learn and use

use case a representation of the transactions or functions a user (actor) can complete in a system, as shown in a use case
diagram

use case diagram (UCD) a method of describing how a user interacts with a system, using Unified Modelling Language (UML)

username and password a username is a name that uniquely identifies a person in a software solution; a password is a secret
word, phrase or set of characters that allows that person access

work breakdown structure (WBS) an often hierarchical breakdown of a project that organises the work to be done into
manageable sections, often displayed as a visual outline or map

Important facts

1 Project management is the practice of applying techniques, processes, tools, knowledge and skills to deliver a
solution. Features of project management include identification of tasks, sequencing, time allocation, milestones,
dependencies and critical path.

2 Critical path indicates the shortest time possible to complete the project.

3 If there is any change on the critical path, the timing of the entire project is a�ected.

4 Data collection involves surveys, interviews, reports and observations.

5 A survey is a set of questions that ask for a response from a user.

6 Close-ended questions in surveys are where the number of responses are finite.

7 Open-ended questions in surveys are where the number of responses are infinite.

8 Quantitative data contains information that is easily collated, such as values, numbers or counts; typically this involves
numeric variables.

9 Qualitative data contains information that is not easily measured, such as opinions and qualities.

10 Surveys are relatively inexpensive, and results can be immediately collected.

11 Processing survey results can take time if open-ended questions are used.

12 People are not always truthful when answering surveys.

13 Interviews are usually conducted face to face, and can be one-on-one or in groups.

115

9780170440943

3
14 Interviews can take a lot of time to complete, but allow in-depth data to be collected.

15 Interviews are very useful for eliciting feelings, attitudes, judgements and opinions
that are too complex to easily record in a survey.

CHAPTER

SUMMARY

16 Reports are written documents providing summaries or findings in relation to a system
being analysed.

17 Reports include error reports, customer complaint summaries, uptime reports and
system performance reports.

18 The types of reports collected will vary depending on what is most relevant for the
proposed system.

19 Reports are useful as they are often pre-prepared, which can save time and money.

20 A disadvantage of reports is that the data may have been manipulated to present a
particular point of view.

21 Using data from reports can be risky if the source of those reports is not reliable.

22 Observations involve physically observing how a system operates and is used.

23 Observations are considered unbiased, as information can be gathered without asking

for an opinion or judgement.

24 Observations can be time-consuming, and they may not always provide the
information needed due to being performed at an inopportune time.

25 Functional requirements are part of the solution required and directly relate to what a
solution will do.

26 Functional requirements are typically described in terms of required inputs, sequence
of operations and expected outputs.

27 Non-functional requirements are qualities and aspects of the solution that are desired
but do not a�ect what the solution does.

28 Non-functional requirements are often tied to the constraints of the system.

29 Non-functional requirements are described in terms of usability, reliability,
portability, robustness and maintainability.

30 Determining non-functional requirements most often involves client interviews and
observations.

31 Usability relates to how easy a system is to learn and use.

32 Reliability relates to how much, and for how long, a system can be depended upon to
function as designed.

33 Portability relates to how easily software can be used in di�erent operating
environments.

34 Robustness relates to how well a software solution responds to errors that occur while
the software is being used.

35 Maintainability relates to how easy the software is to look after once it is put in place.

36 A software requirements specification (SRS) is a single document that outlines
all of the elements considered in the analysis stage: constraints, scope, functional
requirements and non-functional requirements.

37 An SRS provides all of the required information about the proposed system needed in
order to design the system.

38 An SRS should contain a cover page, table of contents, numbered sections, headings
and subheadings, page numbers and relevant appendices.

39 Three methods of depicting interfaces between solutions are use case diagrams,
context diagrams and data flow diagrams.

116

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS

40 A use case diagram visually describes how a user interacts with a system.

41 Use cases include actors who have relationships with use cases.

42 An actor represents an entity that can interact with the functionality within software.

43 Actors should be described in terms of roles rather than real people.

44 Actors are represented as stick figures in use case diagrams.

45 Use cases describe transactions or functions an actor can complete on a system.

46 Use cases are drawn using an ellipse with the name of the use case written inside.

47 Use cases should be described using strong verbs to describe the action or function being represented.

48 Relationships represent the connections between elements in a use case diagram.

49 Relationships can exist between actors and use cases, actors and other actors, and between two use cases.

50 Associations are the standard form of representing a relationship.

51 Associations are represented as solid, straight lines.

52 Generalisations are a type of relationship that is considered parent-child.

53 Generalisations are represented as solid, straight lines with a closed arrow head pointing from child to parent.

54 Include and extend are special types of relationships in a use case diagram.

55 The include relationship represents a use case that is entirely included in another use case.

56 The extend relationship represents a use case that provides additional and/or optional functionality within a system that is
connected to a use case, but not always run.

57 Include and extend relationships are represented with dashed or dotted lines and open arrow heads pointing to the relevant
use case.

58 System boundaries make clear what is included within a system and what is not.

59 System boundaries are useful to show the scope of a system.

60 Context diagrams provide a visualisation of data that is passed into and out of a system.

61 Context diagrams are brief and do not show much detail, focusing only on the flow of data.

62 Three primary components of a context diagram are processes, entities and data flows.

63 A context diagram process is an abstract representation of the whole system.

64 A context diagram entity is a user or external system that interacts with the system being described.

65 A context diagram data flow represents a single piece or logical collection of data as it moves into and out of the system
represented.

66 Two notation styles used to represent context diagrams and data flow diagrams are Gane-Sarson and Yourdon-DeMarco.

67 Data flow diagrams (DFDs) are visualisations of the flow of information within a system, including data provided by
external entities.

68 DFDs provide more information than context diagrams, as they show all of the processes that occur within a system.

69 Four primary components of DFDs are processes, entities, data flows and data stores.

70 A DFD process represents a function or method within the system.

71 A DFD entity represents a user or external system that interacts with the system.

72 A DFD data flow represents a single piece or logical collection of data as it moves between entities, processes and data
stores within the system.

73 A DFD data store represents a collection of data that is stored in some way within the system.

74 The repercussions of data breaches include loss of reputation, financial loss and possible violation of legal regulations.

75 Programmers are obliged to protect the security of data as much as possible within a software solution.

117

9780170440943

3
76 Encryption is the process by which plain text data is encoded so that it cannot be read

by unauthorised applications or people.

77 Once encrypted, data is referred to as cipher text data.

CHAPTER

SUMMARY

78 Encryption typically involves a key that encrypts the text, and a key that decrypts
the resulting cipher text.

79 Encryption keys are the same as decryption keys in symmetric key encryption.

80 Encryption keys are di�erent to decryption keys in public key encryption.

81 Transport Layer Security (TLS) and Secure Sockets Layer (SSL) are protocols
designed to provide secure transfer of data over computer networks.

82 TLS is widely used over SSL; SSL is considered obsolete.

83 Most programming languages have built-in functions, third-party packages or plug-ins
that provide the ability to encrypt and decrypt data.

84 Another method of securing data is to use authentication.

85 Authentication is also known as authorisation.

86 Single-factor authentication typically relies on user knowledge of a username and
password.

87 Two-factor authentication uses two methods of authorising a user, such as knowing a
password and possessing a swipe-card authenticator.

88 Multi-factor authentication involves three or more methods of authorising a user,
such as using a password, possessing an authenticator and using biometric data or
location mapping.

89 Biometric data includes fingerprints, iris scans, facial recognition, DNA matching, palm
prints, hand geometry.

90 Behavioural characteristics include typing speed, gait patterns, key press patterns and
voice recognition.

91 Implementing multi-factor authentication is as complex as the elements that are used
to authenticate; implementation of fingerprint scanning would be simpler than DNA
matching, for example.

118

Review quiz

TEST YOUR

KNOWLEDGE

What is a software solution?

1 What is meant by a software solution?

Project management

2 What is meant by project management?

3 Identify two consequences of a badly managed project.

4 Why is a Gantt Chart used?

5 Di�erentiate between concepts and processes in project management.

6 Di�erentiate between predecessors and successors on a Gantt Chart.

Collecting data

7 How does a survey di�er from an interview?

8 When would an observation be a preferred method of collecting data?

9 What are three advantages of an interview?

10 What are two disadvantages of using reports as part of data collection?

Functional and non-functional requirements

11 How is a functional requirement di�erent to a non-functional requirement?

12 Categorise each of these requirements as functional or non-functional:

a A report must print to a printer.

b All font colours must be green.

c A discount must be applied to a product.

d The drone must be able to navigate a path through a maze.

e The body mass index of a person will be calculated.

f A typical six-year old should understand all of the words displayed.

g Button sizes must be big enough for touch-screen capability.

h Input can be via voice or keyboard.

13 What is the di�erence between reliability and robustness?

14 What does it mean for a software solution to be maintainable?

15 What does it mean for a software solution to be usable?

16 Explain portability in terms of non-functional requirements.

☑ Project plan ☑ Justification ☑ Analysis ☐ Folio of alternative
designs ideas

☐ Usability tests ☐ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

CHAPTER 3 » SOFTWARE ANALYSIS 119

9780170440943

Qz

9780170440943

TEST YOUR

KNOWLEDGE

Software requirements specifications

17 Why are software requirements specifications written?

18 What is contained within an SRS?

Interfaces between solutions, users and networks

19 What is the purpose of a use case diagram?

20 What is the purpose of a context diagram?

21 What is the purpose of a data flow diagram?

22 Explain the di�erence between include and extend in a use case diagram.

23 Explain the di�erence between an association and a generalisation in a use case diagram.

24 How does a process di�er between context diagrams and data flow diagrams?

25 A proposed food ordering system has two types of users, a chef and a server. The server places
food orders given to them by customers. A chef confirms orders and flags them as cooked so a
server knows they can take the food to the customer. Once a server has delivered the food to
the customer, they remove the order from the queue.

a Draw a use case diagram to represent this system.

b Draw a context diagram to represent this system.

c Draw a data flow diagram to represent this system.

Security considerations

26 What is the di�erence between symmetric key encryption and public key encryption?

27 Which is best to use for security on a web server, TLS or SSL? Why?

28 What type of authentication involves entering a username and password?

29 When would it be advisable to use two-factor authentication over single-factor authentication?

30 When would it be advisable to use multi-factor authentication over two-factor authentication?

120 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

APPLY YOUR

KNOWLEDGE

1 Consider the problem, opportunity or need you have selected for your School Assessed
Task (SAT).

2 Construct a Gantt chart with tasks, milestones and dependencies, including predecessors and
successors.

3 Ensure you have collected all relevant data for your solution. Your constraints and scope
should have been included in your design brief, but if not, make sure you have documented the
following:

a Constraints: ensure you have considered technical, economic, social, legal and usability
constraints.

b Scope: ensure you have considered the constraints of your system when deciding what is in
scope and what is out of scope.

4 In your software requirements specification, include all elements related to the constraints and
scope that were outlined in your design brief. Expand on any element where required.

5 Collect data in order to determine the functional and non-functional requirements of your
chosen system. This will likely involve client and/or user interviews, observations, surveys and
collecting reports.

6 Add the functional and non-functional requirements to your software requirements
specification.

7 Using the data you have documented in your SRS in regard to constraints, scope, functional
requirements and non-functional requirements:

a create a use case diagram for your proposed software solution.

b create a context diagram for your proposed software solution.

c create a relevant number of data flow diagrams for your proposed software solution.

8 Attach appendices containing any additional information that is required to interpret elements
of your SRS.

☑ Project plan ☑ Justification ☑ Analysis ☐ Folio of alternative
designs ideas

☐ Usability tests ☐ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

CHAPTER 3 » SOFTWARE ANALYSIS 121

9780170440943

iS
to

ck
.c

om
/

R
aw

p
ix

el
CHAPTER

4
KEY KNOWLEDGE

After completing this chapter,
you will be able to demonstrate
knowledge of:

Approaches to problem solving

• techniques for generating design
ideas

• criteria for evaluating the alternative
design ideas and the e�ciency and
e�ectiveness of solutions

• methods of expressing software
designs using data dictionaries,
mock-ups, object descriptions and
pseudocode

• factors influencing the design of
solutions, including a�ordance,
interoperability, marketability,
security and usability

• characteristics of user experiences,
including e�cient and e�ective user
interfaces

• development model approaches,
including agile, spiral and waterfall.

Interactions and impact

• goals and objectives of organisations
and information systems

• key legal requirements relating to
the ownership and privacy of data
and information.

Reproduced from the VCE Applied Computing Study

Design (2020–2023) © VCAA; used with permission.

Software
development:
Software design

FOR THE STUDENT

This chapter concludes the discussion of the theory and skills required
for Unit 3, Outcome 2.

You will be introduced to generating design ideas, software design,
evaluating design options and user experience criteria, as well as privacy
and data ownership considerations.

By the end of this chapter, you will be ready to choose one design idea
based on your design criteria to further develop in Unit 4, to identify
legal requirements and to report your progress.

FOR THE TEACHER

This chapter concludes the theory and skills needed for Unit 3,
Outcome 2. Having covered identification and analysis of client and
software requirements in chapter 3, students are now introduced to
software design, user experience, development model approaches,
goals and objectives of information systems, legal requirements and
evaluation of alternative design ideas with consideration of e�ciency
and e�ectiveness.

By the end of this chapter, students should be equipped to generate
several alternative designs and choose a preferred software design
according to a evaluation criteria, be ready to use software development
tools, and understand user experience characteristics and legal
requirements for user data and information.

Note: Students will develop their own software product for the SAT,
including identifying the software solution.

122

submission

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

Continuing Unit 3, Outcome 2
In Chapter 3, you learned how to create a software requirements speci�cation (SRS) after

consulting widely and analysing the need or opportunity.

The SRS provides the framework for you to consider when designing your solutions.

Your design options will address factors identi�ed in the SRS. These factors are all relevant

preparation for Unit 3, Outcome 2. For this Outcome, you will fully specify one design that

that has been chosen from the several alternative designs you have created and documented.

This chapter begins with a discussion of how to design a software solution and to identify

the relevant elements that will lead to a successful project. Next, we will talk about how to

determine the characteristics of a positive user experience, both in terms of ef�ciency and

effectiveness of the user interface. We will also talk about approaches by different software

development models, types of information system goals and objectives, and important legal

requirements for the privacy of data and information that apply to your Outcome.

Software
solution

specifications

Generating
design ideas

FIGURE 4.1 Chapter map

Software solution specifications
In order to achieve a successful software design, the software developer must satisfy all design

speci�cations and parameters. The measure for successful delivery of a software product

is a combination of meeting user expectations and requirements as detailed in the SRS,

followed by an evaluation of the client response to the �nal product. This is usually assessed

through client or user opinion surveys, user interviews and by observing users.

If a feature or function is not included in the speci�cations, it will not be in the design

and it will not be an evaluated design criterion. The designed software solution is created as a

response to the SRS. Other factors, if discovered after the SRS has been �nalised, can create

chaos, if not well documented. Your project management progress report and Gantt chart

Evaluating
design ideas

Evaluating
solutions

Solution
design factors

User
experience

characteristics

Software
development

life cycle

models

Goals and

objectives of
information

systems

Ownership

and privacy
legal

requirements

123

should include any changes to the SRS and to the design brief. Any subsequent changes to

the software development process have implications for the evaluation of the �nal product

and must be included.

Generating design ideas
Generating design ideas requires a logical approach as well as a creative mind. These

thinking skills are referred to as convergent thinking and divergent thinking respectively.

There are several aspects to design that need to be considered. The estimated experience of

the expected users may be in�uenced by the previous experience of the software designers

and developers. Generally, there is low to very low awareness of accessibility issues when

designing software applications. Designing products that can be used by people with a wide

range of abilities and disabilities is called universal design.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests

Some individuals use
specialised software and
hardware called assistive
technology to operate
software products. For
example, a person who is
blind might use a screen
reader program with a
speech synthesiser to
access the content and
functionality of a program.

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

124

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Convergent thinking
Convergent thinking involves coming up with a single, well-established answer to a

problem. All avenues are explored when considering possible solutions, and the best solution

is found, ignoring all constraints. This type of thinking involves completing research, such as

looking at other software programs that achieve similar purposes, or visiting other companies

in the same �eld to interview or observe their employees. Convergent thinking results in

design ideas that are based on other, proven ideas. Data is used from interviews, reports,

observations and surveys (see chapter 3), and this data is extrapolated to provide an optimal

solution to the problem.

Divergent thinking

Divergent thinking is
sometimes described as
finding solutions ‘outside
the box’.

Divergent thinking is more creative than convergent thinking. It involves exploring many

possible solutions using spontaneous, free-�owing techniques, such as mind mapping,

brainstorming, meditation and role-playing. Divergent thinking involves considering as

many possible solutions as you can in a given amount of time. Problems are often explored

using stream-of-consciousness techniques. These techniques typically produce unexpected

solutions that may not necessarily have been considered using convergent thinking

techniques.

Combining thinking skills
On their own, neither convergent thinking nor divergent thinking are likely to produce the

most ef�cient and effective design idea. Convergent thinking ignores constraints that are

likely non-negotiable, and divergent thinking may never produce an optimal result. The

most effective method of generating design ideas is to use a combination of these thinking

skills to produce design ideas that are worth further exploration.

Techniques for generating design ideas
There are several techniques for generating a range of creative and appropriate design ideas.

The Study Design does not list speci�c design techniques that you must know, but the

techniques discussed here are the most common techniques. They all aim to �nd the most

effective and ef�cient software solution to solve a client problem. Your techniques should

take into account the functional and non-functional requirements of your solution.

RESEARCH
Functional and non-functional requirements

1 Using the definitions of both terms as set out in chapter 3 as a guide to help you, identify:

a the functional requirements of your solution

b the non-functional requirements of your solution.

2 Justify your decision.

3 Discuss the functional and non-functional requirements of your solution in class with others.

4 Suggest how a design technique could take into account both functional and non-functional
requirements.

S
h
u
tt
e
rs
to
ck
.c
o
m
/
R
ti
m
a
g
e
s

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

Brainstorming

Brainstorming is a process where ideas are presented in a non-judgemental, spontaneous,

unstructured and admittedly somewhat haphazard process. The only rule is that no idea is

criticised or rejected; every idea, no matter how outrageous or silly, goes onto a list of possible

solutions. Try not to hamper your imagination by rejecting ideas too soon.

Participants must have no fear of being judged, making mistakes or breaking rules. While

some ideas may turn out to be ridiculous, sometimes a half-baked, half-comical concept may in

fact turn out to be creative genius, or it may stimulate a related idea that turns out to be perfect.

There are certain rules that you need to follow when running a brainstorming session.

The most important one is that no one judges any contribution – all suggestions must be

accepted. An idea that may seem slightly crazy to begin with can sometimes be workshopped

into something great. In the 1970s, a brainstorm produced the idea of a pet rock. The idea

was workshopped, and before long you could buy not only a pet rock, but also a pet rock

house and a training manual. The idea made the company millions of dollars. It was the pre-

technological version of the 1990s Tamagotchi.

Make sure that everyone listens to everyone else’s ideas. Make sure that only one person

talks at a time, and that there is only one idea at a time. This ensures that even the most

shy member of the group will contribute, and also makes it easier to record the ideas. Using

these rules will help you gather a large number of ideas to work with.

125

Scan it to get
a digital
image

GIMP is
free

MS Paint

Powerful

Photoshop

Specialist online
software tool?

Can automatically
rearrange charts
to make them tidy

Microsoft Word
Shapes tool

Inspiration

HOW TO CREATE

A DIAGRAM

Dia
Diagramly
website

PowerPoint

Google Draw
(in Google Drive)

Copyright?

Find similar
pic online as

starting
point and
edit it

In Excel

Can save slide
as image, or

take screenshot

Microsoft Word
for combining pictures,
arrows, call-outs, etc

Easier than

Simple diagrams
website

Hand
drawn

Flexible

Gliffy website
Like

FIGURE 4.2 Whiteboards are popular brainstorming aids because they are visible to all, and are easy to edit.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

126

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Brainstorming example: NASA faces the problem of lifting people and equipment into

space. It is extremely dif�cult, expensive, loud and dangerous. How can it be improved?

Brainstorms for this project include:

• helium balloons: �oat up, take off

• �re the rockets from the tops of mountains: reduce the distance to space

• a very, very tall ladder

• a giant catapult

• a jet airliner carries the rocket ship as high as it can, then the rocket takes off from there

• antigravity.

While antigravity has no foundation in real science, some of the other design ideas could

work, and warrant more research. The team chuckles at the funny ‘very, very tall ladder’ idea

until one person pauses and says:

‘Wait … I wonder if we could somehow get a super strong cable from the ground to low

Earth orbit and anchor it in space, like a space elevator. You would ride up the cable to the

end. The rocket can take off from there. You wouldn’t need all the fuel to achieve escape

velocity … no need to launch from the ground.’

‘And … and re-entry,’ says someone else. ‘You could ride down the cable to get home.

Simple. And low cost.’

From thinking that was whimsical, impromptu, unconventional and unconcerned with

constraints came a serious concept that was further investigated by scientists at the Shizuoka

University in Japan, with deployment of a prototype in October 2018. They aim to have a

fully functional space elevator by 2050.

Brainstorming is helped by including people with different skills, experiences and areas

of expertise. Sometimes, a group of specialists struggling for a solution may be inspired by

an idea from someone who is not constrained by their shared assumptions, preconceptions

and modes of thought.

Consult end users

Your solution, and all information solutions, will be used by real people. Thus, it makes sense

to include real people in the design stage, rather than wait for the testing and evaluation

stages of the problem-solving methodology (PSM) to �nd out what they think of the solution.

Manufacturers, political campaign organisers and �lm producers are known for their use of

‘focus groups’ – groups of ordinary consumers who they ask about their likes, dislikes and

reactions to design ideas.

A dedicated team of specialist designers may have their own ideas of what an end user

wants, but you should value primary evidence of your audience’s requirements.

Mind mapping

Mind mapping is an ideal technique to complement the process of brainstorming. Mind

mapping involves quickly generating and linking ideas. It is a creative and �exible tool that

enables you to add, connect, organise and reorganise ideas (see Figure 4.2). Mind-mapping

software is generally �exible enough that you will not need to stop very often to learn how it

works while mapping; in other words, your creative �ow will not be interrupted.

Unlike whiteboards or physical sheets of butcher’s paper, electronic mind maps can

stretch endlessly in any direction. It is easy to add or remove links between items, or move

A
la

m
y

S
to

ck
 P

h
o
to

/
N

A
S
A

 P
h
o
to

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

entire branches of thought to new locations. Also, you will not have to copy out all of the

scribbled ideas at the end of the session. The mind map can be saved for later development,

printed, saved as an image, or transferred to a word processor.

Using the ‘getting to space’ problem, an example of a mind map of the design process is

shown in Figure 4.3.

... or cable
–space elevator

Long space ladder

Okay for cargo –
G-force would kill humans

Catapult

Getting to space

Expensive
and uses

large
amount of

fuel

Piggy-back on large jet

Helium ? balloons

Anti-gravity

Does
not
exist

127

Launch from top of mountain

FIGURE 4.3 Mind mapping a project about how to get into space, using Inspiration software

Graphic organisers

Graphic organisers are visual methods of organising ideas. One popular type of graphic

organiser is a PMI. A PMI involves organising ideas into three columns: what has been

successful (Plus), what was unsuccessful (Minus) and what needs more thought (Interesting).

You can use a PMI to re�ect and evaluate, or to brainstorm new ideas (see Table 4.1).

TABLE 4.1 Example of a PMI

Using helium balloons to reach space

P

Quiet

Relatively cheap

Limited payload weight

A spider diagram (Figure 4.4) is a powerful tool that gives an overview of a central idea.

The body of the spider is the central idea and the branching legs radiate out to related ideas

and sub-ideas.

There are dozens of variations of such visual tools to help organise and clarify

ideas. Others include character maps, concept webs, POOCh (Problem –

Options – Outcomes – Choice), ranking ladder (to prioritise or rank ideas, information or

tasks), stair steps (to organise a process step-by-step), a chain of events, sequence charts (to

put sequential factors in order), pie charts (to represent the relative sizes of components in a

whole), bone charts, organising trees and even Gantt charts for managing project timelines.

Gantt charts were discussed in chapter 3 (see page 77).

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

M I

Crashes if gas leaks

Slow to reach stratosphere

Can balloon go high enough?

How much does helium cost?

G
e
tt

y
Im

a
g
e
s/

P
h
o
to

fu
si

o
n
/

U
IG

128

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Edward deBono became
well known for ‘lateral
thinking’. Mind mapping,
rubrics, POOCh and
SCAMPER are some
of his approaches worth
considering.

FIGURE 4.4 A spider diagram showing related concepts and sub-classes of concepts; this one was created
with Inspiration software. Other suitable software is LucidChart.

Tips for creative thinking

Creative design can be learned. You do not need to be born with the talent. There are

techniques that anyone can use to improve their design creativity.

Substitute

Replace part of the problem with something else. For example, if you are producing hundreds

of certi�cates, do not use mail merge to take data from a spreadsheet and insert it into a word

processor. Use a database instead.

Combine

Join unconnected things together, such as reducing the weight of camping

supplies by combining a spoon and fork into a single utensil – the spork.

Adapt

Use an existing component in a different way. For example, use

presentation software such as Powerpoint or Keynote to create a poster.

The �rst spreadsheet was created using the concept of paper-based

accounting books.

Strip

FIGURE 4.5 A Raspberry Pi

Compare

Ask yourself, ‘What other thing do I know that resembles this problem, and how does that

other thing work?’ For example, when sending a number of print jobs to a single printer, how

can they be handled? Like a group of people waiting at a gate, you could organise them into

a queue and process them in the order of their arrival.

9780170440943

Strip the problem right back to its most basic parts and see what is left.

For example, the tiny and cheap computer, the Raspberry Pi, is a stripped-

down Linux PC with minimal components. Inspecting the basics may

reveal the nature of a problem more clearly.

A
la

m
y

S
to

ck
 P

h
o
to

/
S
to

ck
tr

e
k

Im
a
g
e
s,

 I
n
c

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

Sleep on it

Creators often reach a point where they can make no further progress. Rather than

dwelling on the same failed ideas, it is often better to let them go and think of

something else. While the front of your brain is enjoying a wrestling match with

your sibling, or an episode of Australia’s Got Talent, the back of your brain will

busily be pulling ideas together to create a solution.

Research

Thomas Edison said, ‘Through all the years of experimenting and research, I never

once made a discovery. I started where the last person left off.’ It is important to learn

from your predecessors so you don’t waste time ‘reinventing the wheel’.

You’re unlikely to be the �rst person to have faced a particular problem. How have

other people solved problems similar to the one you face? How have others coped?

Their successes may lead you in the right direction, and their failures may prevent

you wasting time. Take care when using Google. Make sure you acknowledge your

sources, and watch out for false information.

Visualisation

Geniuses often represent their thoughts visually because

words cannot adequately convey their ideas. Einstein was

famous for his non-verbal thought experiments. He visualised

travel at the speed of light as travelling on a train. He said that

written words and numbers did not play a signi�cant role in

his thinking process.

Leonardo da Vinci is renowned for his sketches of

his inventions. Galileo Galilei drew diagrams and maps

of planetary orbits and phases of the Moon (Figure 4.6).

Sigmund Freud, Alfred Hitchcock, Isaac Asimov, Beethoven

and Mozart all reported the use of mental imagery in their

creative processes. Dr Temple Grandin, famous for her work

with livestock, said:

‘I think in pictures. Words are like a second language to me

… Language-based thinkers often �nd this phenomenon

dif�cult to understand, but in my job as an equipment

designer for the livestock industry, visual thinking is a

tremendous advantage.’

You may choose to use software simulations or models to help

structure your thinking and construct knowledge (Figure 4.7).

Be observant and prepared

Many inventions have arisen from people seeing things that were similar to the problem

they were trying to solve. Can a blockage in a canal be similar to solving a blockage in blood

vessels? How can thousands of ants travel safely and quickly through a small gap, while a

crowd of human spectators takes nearly an hour to leave a football stadium?

Play Doh, Post-It Notes, potato chips, Velcro, Te�on, Cellophane, insulin, Dynamite,

stainless steel, Super Glue, Corn�akes and vulcanised rubber were all found by observant

people after accidents or failed attempts to invent something else.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

FIGURE 4.7 Creating a flow diagram with LucidChart

129

FIGURE 4.6 Galileo’s
drawings of phases of the Moon,
based on observations through
his telescope, from his 1610
manuscript, Sidereus Nuncius

D
ia

g
ra

m
 c

re
a
te

d
 i
n
 L

u
ci

d
ch

a
rt

 -
 w

w
w

.lu
ci

d
ch

a
rt

.c
o
m

9780170440943

130

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Research also suggests that creative people are typically hoarders – they keep lots of knick

knacks, photos and articles around, and revisit these for stimulus.

Keep your eyes open for connections between apparently dissimilar things. Revolutionary

ideas often come from ‘ridiculous’ connections that no one previously considered. Physicists

argued whether light was a wave or a particle, until someone innocently (and correctly)

proposed that it could be both.

Someone with a solid knowledge of a topic and an ongoing curiosity about new ideas is

receptive, and this will help them recognise the importance of an observation to an existing

idea. The uncreative observer will either not notice the idea, or will fail to see its relevance

to a developing design.

Take risks, persist and be brave

Someone with a creative design idea often needs to take the risk of being dismissed, mocked

or rejected. Many of the greatest breakthroughs were rejected at �rst, and took a lot of time

and effort to be accepted.

The Germ theory, that diseases are caused by microorganisms, was put forward by Louis

Pasteur in the 1860s. It superseded the miasma theory, which suggested that a poisonous

vapour in the air caused diseases. This theory had endured for several centuries. Pasteur’s

theory was initially mocked, until further experimentation showed it to be most likely correct.

More recently, Steve Wozniak combined the concepts of a typewriter, a calculator and

a display. He was envisioning a whole new technological paradigm: the personal computer.

His employer at the time, Hewlett-Packard, rejected Steve’s concept �ve times. This led

Wozniak to team up with Steve Jobs, which in turn led to the creation of Apple Computer

Inc. The idea of a tablet computing device had been tried by Apple and Microsoft and

ended in failure. Steve Jobs tried again when the technology was mature, following the

development of the iPod and iPhone, and the resultant iPad was this time successful.

James Dyson (of Dyson vacuum cleaner fame) is believed to have created 5000 prototypes

of his vacuum cleaner over �ve years before he got it right.

These examples show that persistence, not genius, is the greatest contributor to success.

Quotes by Thomas Edison, developer of the light bulb, phonograph and electric power:

• ‘Genius is one per cent inspiration; 99 per cent perspiration.’

• ‘Many of life’s failures are people who did not realise how close they were to success when

they gave up.’

• ‘I have constructed 3000 different theories in connection with the electric light, each

one of them reasonable and apparently likely to be true. Yet only in two cases did my

experiments prove the truth of my theory.’

Evaluating design ideas
The criteria that should be used to evaluate design ideas must be based on the software

requirements speci�cation (SRS) produced at the end of the analysis stage. Elements such

as the constraints, functional requirements and non-functional requirements should be

considered carefully, and each design should be evaluated in relation to these components

before a preferred design is selected. For example, a decision to be made in relation to

functional requirements would be the �le format in which to save data: plain text, CSV

or XML (see pages 17–21). There are advantages and disadvantages to each, which would

131
CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

then need to be considered against the requirements listed in the SRS before making a �nal

decision. Similarly, the non-functional requirement of usability may result in alternative

user interface designs, which must then be evaluated against the needs of the users before a

decision is made as to which design is preferred.

When designing the solution to a problem, the �rst design idea you have will rarely be the

best one. A different strategy might be cheaper, easier, faster, more effective, or may better

meet the client’s needs. While one design idea may be attractive to the developer, the client

may have non-technical constraints or priorities that will make another strategy more attractive.

Providing a range of design ideas means the client can choose the solution that best suits them.

Although previously proven strategies can be useful, you need to be willing to think outside

the box. You may have used a design idea successfully in the past, but it may not be appropriate

in the current circumstances. Old strategies will not work for you in every situation.

A successful problem-solver will consider current functional and non-functional

requirements and relevant constraints in order to develop an imaginative range of options.

The best design idea can then be chosen and developed into a detailed design.

The criteria for choosing the best design idea may include:

• ease of use

• how long it will take to implement

• scalability (how easily the product can be increased in capacity)

• its scope for future modi�cation and enhancement (for example, one design idea may

include plug-ins so extra functionality can easily be added)

• the degree to which it satis�es all requirements

• the degree to which it copes with constraints

• ease of implementation

• development cost, future running and maintenance costs

• the amount of labour required to create it and keep it working

• the amount of disruption likely to be caused to the organisation

• compatibility with existing hardware, software, data and procedures

• the amount of training required for staff.

To make an evaluation, the criteria used must ask a question. The answer to that question

will indicate whether the criteria has been achieved or satis�ed.

For example, some of the previously listed criteria would be evaluated by asking:

• Is the software easy to use?

• Can the software be implemented quickly?

• Can the software be scaled for more users?

• Can the software be simply modi�ed?

• Can the software be implemented easily?

Some design decisions can be very dif�cult, and require careful balancing of competing

needs – usually cost and time against quality. A design that is cheap and quick to produce may

quickly wear out, be barely competent or unpleasant to use. A superior design that would lead to

a solution with a long life and happy users will probably take longer to produce and cost more.

Compare the likely differences in design philosophies and criteria between the pairs

shown in Figure 4.8.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

A
la

m
y/

K
e
it
h
 E

rs
ki

n
e

132

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

A Formula One race car A Smart Car

A PC desktop tower An all-in-one Mac

A basic, inexpensive co�ee table An ornate, expensive antique table

FIGURE 4.8 Pairs

Evaluation criteria should be documented, ideally in a table format, and as each design

is evaluated the outcome of each criteria should be recorded.

Testing and evaluation
are NOT the same thing!
Testing can be done at any
time, and may use dummy
or test data. Testing looks
for specific results and
expected behaviour by
the known capabilities of
programs or equipment.
Evaluation is conducted
after the software solution
has been implemented.
Users are consulted and
criteria are considered.

Evaluating the efficiency and
effectiveness of solutions
Evaluation typically involves checking to see how well a software solution has met its stated

requirements. This post-implementation review evaluation is normally performed at a set

time period after the solution has been put into place, where the timeframe selected is

relevant to the context in which the software operates. However, such an evaluation would

not generally occur in the �rst six months of software being put in place.

9780170440943

C
o
u
rt

e
sy

 o
f

D
e
ll

In
c.

S
h
u
tt

e
rs

to
ck

.c
o
m

/
M

a
ri

ya
n
a
 M

S
h
u
tt

e
rs

to
ck

.c
o
m

/
D

a
vi

d

A
co

st
a
 A

lle
ly

S
h
u
tt

e
rs

to
ck

.c
o
m

/
b
e
rg

a
m

o
n
t

C
o
p
yr

ig
h
t

©
 2

0
15

 A
p
p
le

 I
n
c.

A
ll

ri
g
h
ts

 r
e
se

rv
e
d

133
CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

In order to conduct an evaluation, an evaluation strategy needs to be created. This

normally occurs at the end of the design stage of the problem-solving methodology. The

evaluation strategy speci�es the timeframe in which an evaluation will occur and outlines

the data that will need to be collected to complete the evaluation, including a description of

the methods and techniques that will be used to collect that data. It is also made clear how

the data collected relates to the criteria that was written in the design stage.

The software solution is then evaluated in terms of e�ciency and e�ectiveness.

Efficiency
The e�ciency of a solution concerns how much time, cost and effort has been applied

to achieve the intended results. This could include measurements against the speed of

processing, the functionality of the software, or the cost of �le manipulation.

Effectiveness
The e�ectiveness of a solution relates to how well a solution achieves its intended

results. This typically requires measurements of the quality of the solution in relation to its

completeness, readability, attractiveness, clarity, functionality, accuracy, accessibility,

timeliness, report formats, relevance, usability and communication of message.

Some examples of the criteria that could be used to evaluate the effectiveness of a solution

are included in Table 4.2.

TABLE 4.2 Criteria for evaluating the e�ectiveness of a solution

Completeness Were all of the functional and non-functional requirements that were required by the
client implemented in the software system?

Readability Can every part of the software program be easily read by its users?
Are the fonts chosen appropriate in size and face to the system on which the software is
installed?
Are contrast ratios acceptable?
Is the text colour readable against the background colour?

Attractiveness

Clarity

Functionality

Accuracy

Accessibility

Are the colours used throughout the software complementary?
Are the colour choices appropriate to the context?

Is the language used in the software age-appropriate?
Are headings, labels and buttons consistently used throughout the software?

Does the system respond appropriately to user input errors?
What percentage of uptime does the software have?

Is all of the data stored accurate in relation to how it was entered?
Are all calculations accurate 100% of the time?
Are all reports produced within the correct date ranges, including boundary values?

How well can the system be accessed by someone who is hearing impaired or vision
impaired?
e.g. Does your solution use a colourblind safe palette? Do all images have an ALT-tag?
Will a screen reader work with your solution?

Timeliness

Report formats

Does the software respond to requests within an acceptable timeframe?

Are all of the search/sort reports produced by the system appropriate to their contexts?

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

‘Cost’ in relation to the
e�ciency of a solution
does not necessarily
mean monetary cost. It
can also refer to time, as
manipulating files can be
quite slow depending on
the amount of data being
manipulated and the
selected algorithms that
have been implemented to
handle that data.

N
a
ti
o
n
a
l
C
e
n
te

r
fo

r
A

c
c
e
s
s
ib

le
 M

e
d
ia

134

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 4.2 Criteria for evaluating the e�ectiveness of a solution (continued)

Relevance

Usability

Communication
of message

Is all of the information produced and shown by the software system relevant to its
intended use?
Are there any parts of the system that are not often used (or not at all) by users?

Are all of the elements within the software easy to use?
Are there sections of the program where users are more likely to make errors?

Have appropriate and region-specific conventions been used for all displayed data
(e.g. currency conventions, date/time format, alignment)?

Design criteria

Functionality Appearance

Usability Accessibility Attractiveness Contrast

Robustness Flexibility Language Vision Repetition Space

Ease of use Accuracy Timeliness

FIGURE 4.9 Design considerations for your software solution

If you sense that a page or screen is awkward to use, looks odd

or is unattractive, but you cannot exactly say why, you are probably

responding intuitively to the use of design in the solution (Figure 4.9).

Methods of expressing software
designs
Once you have decided on a design architecture where:

• the use case diagram identi�es each entity and accurately shows

all relationships

• the context diagram has all aspects of your software solution

recorded

•

FIGURE 4.10 The Web Access Symbol signifies
sites or pages where an e�ort has been made to
enable access for disabled users.

the data �ow diagram has been mapped out and your model is

consistent

you are ready to begin the software design documentation.

Documentation is essential to record de�nitions, decision details and

assumptions that underlie the �nal software solution. For example, if

a date of birth input allowed an unrestricted age range, but a further

Navigation

9780170440943

developer

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

calculation assumed only adults would be included, then unexpected results would be

generated if an adolescent used the application. This assumption, if documented, would be

shown to cause problems in the evaluation stage of the PSM.

There are several methods available to document software designs, including:

• data dictionaries

• object descriptions

• mock-ups (describe appearance)

• wireframes (describe functions)

• pseudocode.

Data dictionaries

There are several types of data dictionary used in the computing industry. In Software

Development the data dictionary has a particular meaning, which is different to the de�nition

used in VCE Data Analytics. Both types are included here so you can compare the different

purposes.

Data dictionary used as a database design tool

Data dictionaries are used when designing databases to explain how to set up the properties

of each �eld in database tables. Table 4.3 is an example of a data dictionary that can be used

in database design.

TABLE 4.3 An example of a data dictionary used by database developers

Modern
naming style

id

firstName

lastName

birthDate

Traditional naming
style (old school)

txtCustomerID

txtFirstName

txtFamilyName

dateDOB

Type

Text

Text

Text

Date

clubMember boolClubMember Boolean

memberYears intMemYears

sales sngSales

Integer

Single
precision

Format

XXX99 5

Xxxxxxxxxxxx 15

Xxxxxxxxxxxx 25

YYYY-MM-
DD

Yes/No

99

Size Purpose

Customer
given name

Example

Customer ID SMI40

Jane

Customer
family name

Fixed Is a member
of the

Fixed Years a
member

$##,###.## Fixed Total amount
spent

Data dictionary used as a software design tool

A data dictionary in software design is used to plan storage structure including variables,

arrays and GUI objects such as text boxes, combo boxes and radio buttons in a program.

It usually lists the names of the variables, their type, size (in characters), scope in regard

to the code and purpose of the variable’s function. In some cases, it may also list the format

and example for the variable.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Smith

Fixed Date of birth 2001-07-
19

Yes

buyer’s club?

12

$12,456.78

In 2015 the International
Standards Organisation
recommended specific
ways of naming files and
variables: ‘singular nouns,
present tense verbs,
uppercase 1st letter for
second and subsequent
words. DO NOT prefix
names with type or table
name’

– ISO 11179-5 :2015

135

Developing apps
for accessibility –
Windows developer

Creating accessible
computer
applications

Human Interface
Guidelines – Apple

$12,543.76

136

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Data dictionaries are most commonly used when code needs to be modi�ed at a later

date by programmers. It allows them to understand the purpose of a variable or array that

may be unclear without it. Data dictionaries may need to be kept up to date during the

development stage, when changes are introduced to the initial design.

TABLE 4.4 An example of a data dictionary used by software developers

TypeModern
naming
style

id or ID

Traditional naming
style (old school)

intCustomerID Integer

firstName strFirstName Text

lastName strLastName

DOB

club-
Member

member-
Years

dtDOB

Text

Size Scope Format

6 Local 999999

Purpose

Customer
ID

50 Local Xxxxxxxxxxxxxxx Client first
name

50 Local Xxxxxxxxxxxxxxx Client last
name

Date/time 8

bolClubMember Boolean 1

Local YYYY-MM-DD Client date
of birth

Local true/false Is the
client
a club

intMemYears Integer 2 Local NN

Example

201940

Jane

Smith

2001-07-19

true

member?

Loyalty
bonus paid
to 5, 10, 15
etc. year
members

sales fpSales Floating-
Point

8 Local NN,NNN.NN Total
Amount
spent

Differences between the two styles of data dictionary

For VCE Software Development you will only be required to use and answer questions

about the software design data dictionary. It is good to know about data dictionaries for

database design, but it is not within the scope of this course (it is, however, important for

students enrolled in VCE Data Analytics).

The major differences between the data dictionaries are as follows.

• The data dictionary related to software design concentrates on variables and arrays used

in programming, while data dictionaries related to database design focus on data being

stored in a database.

• There are a number of �eld heading differences between each template table design (see

Tables 4.3 and 4.4).

• One is used by a computer programmer, the other by a database developer.

Data dictionaries are valuable when code needs to be modi�ed later by other programmers,

and the purpose of a variable is not clearly understood.

Note: VCAA Examination questions sometimes use ‘old school’ variable naming

conventions. Be aware of this and be prepared for i. writing your own data dictionary for the

design stage of the PSM and ii. responding to examination questions.

9780170440943

06

submission

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

Object descriptions

There are many different ways of representing objects that are to be incorporated into the

design of the software solution. The basic capabilities for any computer software object are

identity, properties and attributes. Object-orientated languages have the added capability of

inheritance.

Object descriptions are similar to data dictionaries, but can contain information about

methods and events that the object contains. Additionally, object descriptions differ between

computer languages.

Figure 4.11 shows an example of ways to de�ne objects. There is not one standard for

describing this type of design tool. It is important to understand the purpose and function of

each design tool.

Examples of an object description

Example 1:

A class Person has name, date of birth, phone number email address.

A sub-class of Person called Student has enrolled subjects, assessment results.

Another sub-class of Person called Activity has sport, league.

Class:Person

Description:name,
DOB, phone no, email

Sub-class:Student

subjects, results

Sub-class:Activity

sport, league

137

FIGURE 4.11 Example of an object description

Example 2:

Object

Windows

Event

The user clicks on the tick button

Method

Void windowClosing(WindowEvent e)

The window is opened for the first time Void windowOpened(WindowEvent e)

The window is activated

The window is deactivated

The window is closed

The window is minimised

The window is maximised

Void windowActivated(WindowEvent e)

Void windowDeactivated(WindowEvent e)

Void windowClosed(WindowEvent e)

Void windowIconified(WindowEvent e)

Void windowDeiconified(WindowEvent e)

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

inheritance

138

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Example 3:

Object Name: buttonSubmit

Name

buttonSubmitClick

Inheritance is when an
object that is derived from
an existing base class, a
sub-class or ‘child’, acquires
all the properties and
behaviours of the super-
class or ‘parent’.

In some languages (e.g.
JAVA), the child can only
inherit parent behaviours,
NOT grandparent

buttonSubmitEnabled

buttonSubmitFocus

Type

Event

Event

Description

When the button is clicked it will submit the transaction and
display successful or unsuccessful in a message box on the
screen to the user.

Display the button or grey out the button, depending on the
user selected options.

Method Change the colour of the Submit button font from black
to dark blue when the mouse is hovered over and all fields
required to be filled in are valid.

Base class

behaviours – i.e. no super-
super set of behaviours.
C++ can inherit both.

A Grandparent

Intermediate class B Parent

Derived class C

Mock-ups

Mock-ups and annotated diagrams
Mock-ups and annotated diagrams show the intended appearance of printed output,

on-screen information and interfaces.

To design an interface, use a mock-up, which is a sketch showing the appearance of the

software output. A mock-up should typically include the following features:

• Positions and relative sizes of controls (buttons, scroll bars, status bars)

• Positions, sizes, colours and styles of text (headings and labels, body text)

• Menu positions and contents

• Input boxes, default prompts

• Borders, frames, lines, shapes, images, decoration and colour schemes

• Object alignments (vertical, horizontal, diagonal)

• Contents of headers and footers

Remember, a mock-up can be considered successful if you can give it to another person

and they could create the interface without needing to ask you any further questions about it.

9780170440943

Child

FIGURE 4.12 Multi-level

p
e
rm

is
si

o
n
 f

ro
m

 A
d
o
b
e

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

139

a b

BLACK

CURRENCY CALCULATOR

all
labels
Arial
14 pt

FROM CURRENCY
(hotkey ‘F’)

TO CURRENCY
(hotkey ‘T’)

Align

label

Align

$US XXX.XX = $AUD XXX.XX

(Whatever currencies
were chosen above)

All text is black.

(2 decimal places)

Clear Exit

hotkey
‘C’

Clears

FIGURE 4.13 Input menu options: a Mock-up for an app in Adobe XD CC; b hand-drawn screen interface

Pseudocode

Pseudocode is intended for human reading rather than machine reading. It appears as

informal high-level descriptions of a computer program or other algorithm. A combination

of programming terminology and plain English describes algorithms, or instructions, which

are easier to understand than programming language code.

Pseudocode describes the logic of the program or algorithm. Each line has one step from

the algorithm. Pseudocode is written in structured English and contains control syntax

such as:

IF-THEN-ELSE a choice is made between two alternatives when a

condition is satisfied (this is also known as boolean)

REPEAT is a loop with a conditional test at the start

FOR-NEXT is a loop with a conditional test at the end

SEQUENCE is when one task is followed by another task

Common keywords are used when writing pseudocode. For example:

START, END, BEGIN, STOP, DO, WHILE, FOR, UNTIL, REPEAT, IF, THEN,

ELSE, EQUAL, CASE, LESS THAN, GREATER THAN, NOT, OR, TRUE, FALSE,

GET, OPEN, CLOSE, READ, WRITE, END OF FILE, RETURN

Combinations of keywords can extend the terms. For example:

DO UNTIL, DO WHILE, ELSEIF, END WHILE, END UNTIL, END REPEAT, END IF,

FOREACH NOT EQUAL, NOT OR, XOR

Symbols often carry keyword meaning; there are several that have currency. See Table 4.5

for examples. However, there is no single de�nition of pseudocode.

TABLE 4.5 Common symbols used in pseudocode

Assign value to variable

Equivalence (exactly equal to)

Comparison

☑ Project plan

9780170440943

☑ Justification ☑ Analysis

←

= =

=, ≠, <, >, ≤, ≥, <=, >=

☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

hotkey ‘X’

combo boxes
& amount

$US
Combo boxes

$AUD

textbox
XXX.XX

AMOUNT
(hotkey ‘M’)

$
$ $ $

ARIAL 8 pt
centred

green
back

white
backgrounds

picture
of
money

align

& conversion label output text.

In VCE Software
Development you do not
have to use software to
create your mock-ups.
You may use software if
you wish, but you may also
create your mock-ups by
hand using pen and paper.
See the following weblinks
for free software tools.

Mockplus
Balsamiq Mockups
(Flash based)
Wireframe CC
Adobe XD CC

A
d
o
b
e
 p

ro
d
u
ct

 s
cr

e
e
n
sh

o
t

re
p
ri

n
te

d
 w

it
h

9780170440943

140

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Preparation for the VCE
examination:
While there are no ‘rules’
with pseudocode, only
conventions, previous
VCE examinations have
established some specific
expectations:
• the assign symbol (left

pointing arrow)
• indenting of code.

Other ideas that can be incorporated into your pseudocode include the following.

• Choose sensible variable names.

• Include comments (where necessary, no need to explain the obvious).

• Indent to assist readability and pairing of keywords.

• Ignore unnecessary details.

The purpose of your code needs to be obvious, not too simple, not too dif�cult. Here are

two simple examples of pseudocode.

Compute the area of a rectangle
BEGIN

INPUT (or READ) length ← longside,

INPUT (or READ) width ← shortside,

Compute the area ← longside*shortside

PRINT area
END

Compute letter grade for assignment score, first three options shown:
Enter score ← yourscore

IF (SCORE > 90) THEN

output A+

ELSEIF (score > 80) THEN

output A

ELSEIF (score > 75) THEN

output B+

Note: there are other ways of achieving this result using ‘ < ‘ or using ‘CASE’. Further

examples of pseudocode were provided in chapter 1, page 16.

Factors influencing solution design
Factors in�uencing solution design include usability, affordance, security, interoperability

and marketability. There are design options that can affect each of these factors. The degree

to which each factor is implemented depends on the intended purposes of the client.

There is an interdependence between these factors, so the development of the software

product is often a cycle. Each cycle will improve the user experience, or UX, to meet user

expectations. The product will be constrained to remain affordable to the target user group.

Security of data and user pro�les is an increasingly sensitive topic for software companies

Android developers
macOS
winOS
iOS

and developers. Constant assurance is necessary for continued acceptance by the user

community, and any perception that data is gathered for unauthorised purposes will seriously

damage the developer’s reputation and credibility. Interoperability may become an issue if

devices or operating systems require adjustments to guarantee continuity of service. Some

updates ‘break’ the software, requiring massive rewrites. For example, the switch from

TABLE 4.6 Timetable showing announcement of 64-bit OS and end of 32-bit applications. At the time of

writing, no 32-bit end dates have been notified for desktop/notebook devices.

64-bit transition announced

macOS

winOS

iOS

Android

2008

2009

2013

2017

64-bit implemented
No longer accept 32-bit apps

tba by Apple

tba by Microsoft

October 2015

August 2021

P
e
te

r
M

o
rv

il
le

,
S
e
m

a
n
ti
cs

 S
tu

d
io

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

32-bit to 64-bit applications was announced more than 10 years ago for notebooks and desktop

devices. Recent OS updates require 64-bit devices and applications. 32-bit applications will

no longer operate on some new smartphone devices.

Characteristics of user experiences, including
efficient and effective user interfaces
User experience (UX) and user interface (UI) may be considered to be the same thing,

but there are clear differences and emphases, although effectively they are inseparable.

Both processes are oriented to the same ends of getting the content to the user in the most

pleasant way.

UX design provides relevant and meaningful experiences for all users. This incorporates

hierarchy, navigation and functionality. UI design, on the other hand, has a focus on

appearance. These elements include choice of colour, shape, spacing and the look and feel

of the software.

What is a successful user interface?

Many experts have studied this issue. If you follow their guidelines you will be on the right

track to create a good user interface.

useful

usable

valuable

findable

credible

FIGURE 4.14 User experience honeycomb

However, what is a ‘good’ user interface or UI? What are the characteristics of a good UI?

It should be:

• clear

• concise

• familiar

• responsive

• consistent

• attractive

• ef�cient

• tolerant.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

accessible

desirable

141

THINK ABOUT

SOFTWARE

DEVELOPMENT

4.1

Why are smartphone
OSs moving to
64-bit applications
more quickly than
notebook/desktop
devices? Identify
some factors that
have influenced these
announcements.
For example: The
size of the budget
for development will
be dependent upon
the expected return
from the sales of the
finished software
product.

Developer advice on
OS standards
Universal
windows platform
documentation

U
se

d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 M
ic

ro
so

ft

142

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Clarity

FIGURE 4.15 Clarity: the interface explains
what the button will do with a tooltip pop-up to
provide an indication of functions.

The purpose of the UI is to allow people to interact with your system.

Your software solution must communicate meaning and function easily.

If people cannot decipher how your application works, or what to do,

then confusion and frustration will be the inevitable result (Figure 4.15).

Concise

FIGURE 4.16 Concise: in macOSX the volume
controls have tooltip hover and icons to volume
levels.

Clarity is great, but it is easy to fall into the trap of over-clarifying. Be careful

that the interface doesn’t grow every time you add details. Aim to provide

just enough guidance, while still being concise. Use icons wherever

possible to reduce the amount of text on the screen (Figure 4.16).

Familiar

FIGURE 4.17 Familiar icons for save to local

storage: HDD, SD card, SSD or USB drive, Save to
the cloud, Print, Email, Search.

The goal for many developers is to create an ‘intuitive’ interface. This

requires the user to recognise and understand how the menu works, as if

they have seen it before. Standard icons are easily recognised as buttons

with an action (Figure 4.17).

Responsive

There are two possible interpretations of responsive.

1 If your software is responsive, it will operate quickly. There will

be no waiting for �les to load. An interface that loads quickly will

improve the UX.

FIGURE 4.18 Wolfram Mathematica has an
animated indication icon as the application signs in
to Wolfram Cloud.

Consistent

An interface needs to maintain consistency across all screens and pages. A consistent look

and feel allows users to develop patterns of use in one context, and to quickly transfer skills

and understanding into a new context (FIgure 4.19).

2 Responsive can also mean the software gives feedback on what is

happening, while it is happening. Examples of feedback include:

a button animates, changes colour or the text label changes when

pressed; a loading bar showing how long the process may take; a

spinning icon to show that a process is underway (Figure 4.18).

FIGURE 4.19 Microsoft O�ce menus are consistent for a reason.

9780170440943

C
o
p
yr

ig
h
t

©
 2

0
19

 A
p
p
le

In
c.

 A
ll

ri
g
h
ts

 r
e
se

rv
e
d
.

U
se

d
 w

it
h
 p

e
rm

is
si

o
n

fr
o
m

 M
ic

ro
so

ft

C
o
u
rt

e
sy

 o
f

Ju
ic

y
S
tu

d
io

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

Attractive

Appearance is often the �rst thing observed. Colour, shape and layout all contribute to the

appeal of the appearance.

143

FIGURE 4.20 Colour palette specifications that
are colourblind safe

FIGURE 4.21 Luminosity Colour

Contrast Ratio analyser. A minimum
rating of 4.5 to 1 is considered acceptable.
A higher value for text and images of text
is better.

Efficient

Ef�ciency is the art of providing what the user needs to achieve, with a minimum of fuss. For

example, placing frequently chosen items on a screen rather than on a dropdown menu, or

on the next screen, gives the user a more satisfying experience, as the task has been achieved

without too many clicks.

An ef�cient interface will achieve a

purpose quickly and with minimal effort.

Tolerant

Users make mistakes and change their

minds (Figure 4.22). A tolerant interface

allows users to retrace their path to

choose again. If a �le is deleted, can it be

recovered? If data is entered incorrectly,

can it be changed or deleted simply? If

a user chooses a menu item and changes

their mind, can they simply ‘get back’ to

the previous screen?

FIGURE 4.22

Microsoft Word has a
20-level undo function.

Design tools are available
to assist compliance.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

U
se

d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 M
ic

ro
so

ft

Te
ch

n
ol

og
y,

 v
ol

 2
. n

o.
 5

.

144

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Software development life cycle (SDLC)

Lucy’s famous
chocolate scene
Which sort of model
was used here?

As with all management models and schemes, there are plenty of opinions on how to

achieve the ‘best’ result. As discussed previously, there are many measures of success, so

any evaluation criteria need to be carefully considered. Modern development models have

been altered to provide the �exibility needed to shift to new information or a change in

circumstances. Our Gantt chart is a tool to measure progress against a predicted timeline.

We ‘know’ that timeline will change, so management also needs to change to ensure the

project is ‘manageable’. The alternative of ‘do nothing’ would see the project out of control,

over time, over budget and under-resourced. In the worst case, it may fail and be abandoned.

We will explore three software development life cycle (SDLC) models in detail:

Waterfall development model

The Waterfall model, sometimes described as the ‘factory model’, requires stages of

production to be identi�ed. Each stage must be completed and signed off before the next

stage can begin. There is no going back. This kind of production line or conveyor belt

approach has the developer working on only one section of the development. Each stage has

its own project plan. The Waterfall model was originally proposed by Winston W Royce in

1970 to describe a possible software engineering practice.

Analysis SRS requirements and specifications

Design design

Implementation code

Testing bug fixes

Maintenance

FIGURE 4.23 The Waterfall software development model

final product

Waterfall, Agile and Spiral. There are several other models. For example, Kanban, rapid

prototyping, and scrum are other popular SDLCs.

The analysis phase assembles the software requirements speci�cation (SRS). The SRS

contains a complete description of the behaviour of the software to be developed, including

functional and non-functional requirements.

The design phase plans the software solution, algorithm design, concept design, graphical

interface and data structure de�nitions.

The implementation or development phase constructs the executable program by writing

the code, creating the �les and the database.

The testing phase veri�es and validates that the software meets and satis�es the original

speci�cations.

9780170440943

A
d
ap

te
d
 f

ro
m

 B
as

si
l,

Yo
u
ss

ef
 (

20
12

).
A

 S
im

u
la

ti
on

M
od

el
 f

or
 t

h
e

W
at

er
fa

ll
So

ft
w

ar
e

D
ev

el
op

m
en

t

Li
fe

 C
yc

le
. I

n
te

rn
at

io
n
al

 J
ou

rn
al

 o
f

E
n
g
in

ee
ri

n
g
 &

©
 C

o
u
rt

e
sy

 o
f

Te
st

in
g
 E

xc
e
lle

n
ce

,
h
tt

p
s:

//
w

w
w

.t
e
st

in
g
e
xc

e
lle

n
ce

.c
o
m

/

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

The maintenance phase occurs after deployment to �ne tune output and correct any

identi�ed problems or errors, in order to improve performance and reliability. If user

circumstances have changed this will be addressed at maintenance/implementation.

TABLE 4.7 Advantages and disadvantages of the Waterfall model

Advantages

• Simple to use and understand.
• Rigid and defined phases allow simple

management.

Disadvantages

• All phases are well documented.
• The progress of each phase is visible.
• Unlikely to produce unexpected financial

expenses.
• Testing is simple.
• End of project is well defined.

• Rigid process not easily altered.
• A long process, with few shortcuts possible.
• Detailed progress may be di�cult to identify

within each stage.

145

• Amplified delays, where a small change in one
phase causes delays in all subsequent phases.

• Software is available at the end of the project.
• Limited opportunities to identify, test and

rectify problems or errors.

The Waterfall development model would be appropriate for projects:

• that are small in scope

• where the speci�cations do not change

• where the speci�cations are well-known, de�ned and documented

• where there are many dependencies in the project or system.

V-model and the Iterative models

The V-model (also known as the veri�cation and validation model) is a modi�cation of the

Waterfall model with testing at each stage, rather than being left to the end. Each stage is

completed prior to the next stage beginning, and once a stage is �nished it is dif�cult to go

back and make changes.

The Iterative model has short stages that develop functionality. The cycle is repeated

until the product satis�es requirements.

Validation
planning

User

Verification
traceability

requirements

System
requirements

Verification
traceability

Technical
architecture

Detailed
design

Validation

traceability

Verification

traceability

Verification

traceability

Verification
traceability

Verification
traceability

System configuration

and development

FIGURE 4.24 The V-model

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Validation
reporting

User acceptance
testing

System
testing

Installation
qualification

Unit and
integration testing

©
 2

0
0

1
h
tt

p
:/

/
a
g
ile

m
a
n
if
e
st

o
.o

rg
/

146

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Requirements

Planning

Initial planning

Evaluation

Testing

FIGURE 4.25 The Iterative model

Agile development model

The Lean and Agile models were developed to overcome the de�ciencies in plan-driven

software development methods such as Waterfall. The Agile model was created in 2001. The

four values and 12 principles were written as a response to the heavy management-driven

models that were almost universal in the late 20th century and the early 2000s.

The Agile manifesto establishes priorities and stipulates how people working with processes

and tools will be supported when working together and delivering value to their clients.

Analysis and design

Implementation

Deployment

The story behind Agile

FIGURE 4.26 The Manifesto for Agile Software Development ©2001

Individual and interactions

Working software

Customer collaboration

Responding to change

over

over

over

over

FIGURE 4.27 The Agile methodology

9780170440943

Processes and tools

Comprehensive
documentation

Contract negotiation

Following a plan

©
 C

o
u
rt

e
sy

 o
f

Te
st

in
g
 E

xc
e
lle

n
ce

,

h
tt

p
s:

//
w

w
w

.t
e
st

in
g
e
xc

e
lle

n
ce

.c
o
m

/

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

The Agile software development method favours:

• �exibility

• communication

• collaboration

• simplicity.

The key idea for Agile development is iteration. A cycle is repeated, and after each cycle

the software shows improvement in a range of areas. The software is under continuous

development, and software releases can be more frequent.

147

FIGURE 4.28 The Agile software development method is a series of cycles, which continue

until the product can be accepted as a minimum viable product (MVP).

Two approaches under the Agile description are Kanban and Scrum. These approaches

can also be described as ‘lean’. The key difference between Lean and Agile is in the nature

of the work�ow. Lean is a continuous �ow method, whereas Agile begins a new iteration,

or cycle, at the completion of each cycle. Most development cycles can be combinations of

different schemes, such as ‘scrumban’. The emphasis is on the bene�ts of the method, rather

than the name of the de�nitions.

Scrum basics

Product backlog

Requirements are
arranged and ordered
in the product backlog.

Sprint backlog

The sprint backlog is
comprised of the
highest priority
requirements. The
development work
to satisfy the
requirements
becomes one sprint.

☑ Project plan

FIGURE 4.29 The basics of the Scrum approach

☑ Justification ☑ Analysis

9780170440943

☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Lean software
development originated
in 2003.
There are seven principles:
• Eliminate waste
• Amplify learning
• Decide as late as

possible
• Deliver as fast as

possible

Sprint

A sprint usually lasts
between 2 and 4
weeks. A daily sprint
refers to the work
undertaken in
one day.

Release

Each sprint results in
key functionality being
released or delivered.

• Empower the team
• Build in integrity
• See the whole

Integration

148

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Benefits of the Agile software development cycle

The Agile software development model has short, rapid iteration cycles, called sprints. At

the end of each sprint, the client can observe and evaluate the result of each iteration and

comment on whether the software solution is acceptable. Suggestions can also be made.

A further addition to the weekly cycle is a ‘scrum’. A scrum is a daily occurrence where

developers focus intensely on the issue of the day to resolve as many issues as possible. Overall,

the process is unmapped, so the time required and costs can escalate without warning.

TABLE 4.8 Advantages and disadvantages of an Agile model

Advantages

• Short, rapid interactions segment the project.
• Functional requirements are modified quickly.
• Risks are reduced.
• Early release of first product
• Clients are involved closely with developers and

testers.

Disadvantages

• Developers must be highly skilled, with an ability
to listen and respond to clients.

• Changes may be inconsistent with previous
development.

The Agile software development model would be appropriate where:

• client needs are not well de�ned or are changing

• the iterations can include many changes at lower cost per implemented modi�cation

• documentation is minimal, as only initial planning is required to begin the project.

Spiral development model

The main bene�t of the Spiral software development model is repeated iterations of

processes and the elimination of risk. Rotation through each sector in turn develops the

software solution until a minimum viable product (MVP) is achieved. To keep costs down,

Cumulative Cost
Progress

1 Determine Objectives 2 Identify Risks

• Timelines may expand beyond expected delivery
time.

Review Requirements

plan

Concept of
operation

Development
plan

Test plan

Concept of
requirements

Verification
& Validation

Verification
& Validation

Implementation

Release

4 Plan the Next Iteration

FIGURE 4.30 The spiral model

9780170440943

3 Development and Test

Test

prototype 1 prototype 2

Requirements
Draft

Operational
prototype

Detailed
design

Code

submission

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

TABLE 4.9 Advantages and disadvantages of the Spiral model of software development

Advantages Disadvantages

• Traditional processes remain in place, yet can scale
to meet need for more development and testing.

• Prototypes are developed quickly; testing begins
early.

• Risks can be dealt with quickly at each turn of the
spiral.

• More expensive than other methods.
• More documentation necessary for and

between each stage.
• An increase in stages for small projects.
• High skill sets are necessary for each stage to

be e�ective.

the number of spirals would be kept to a minimum. Each spiral produces a new dot point

version of the software solution, which is evaluated. When it reaches a threshold, that product

is released and development continues to ‘version 2’, or the next major ‘numeral’ version.

Deployment of the Spiral software development model would be appropriate where:

• risks are expected and need to be prevented with quick responsive action

• the client is not certain how to proceed

• products will be released then updated quickly, based on client reactions and feedback

• major edits can be incorporated if developers do not agree.

Goals and objectives of organisations and
information systems
Goals help de�ne an organisation’s purpose, assist its growth and achieve its �nancial

objectives. Speci�c goals help measure progress and identify areas for improvement.

Goals need to be speci�c, measurable, achievable and timely.

There are two types of organisational goals:

• Of�cial: goals that an organisation aims to achieve

• Operative: goals that are necessary to achieve an outcome.

Of�cial goals can be found in public statements and in the organisation’s mission

Organisational goals provide the means by which the organisation’s aims can be achieved.

Operational goals are short term, can be measured, and enable the organisation to achieve

statement. A mission statement outlines what is important to the organisation.

its purpose.

Examples of organisational goals:

• To provide quality products and services

• To develop low-cost, high-value products

• To maintain a well-regarded company reputation

• To provide quality customer service

• To maintain and improve pro�tability

• To improve client satisfaction.

A goal is usually ambitious and will be achieved over the longer term. Many smaller

objectives may be required for the organisation to achieve the larger goal.

Often the nature of a business is re�ected in its goals. When important choices need to

be made, the goals can provide direction.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests

149

THINK ABOUT

SOFTWARE

DEVELOPMENT

4.2

Use the Internet to
locate organisational
goals from the mission
statements of the
following software
and digital technology
companies.

• Microsoft

• Samsung

• ACER

• Hewlett Packard
(HP)

• Huawei

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

150

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

RESEARCH
Match the organisational goal to the company.

Company

Boeing

Organisational goal

To drive prosperity through transport solutions and our vision to be the most
desired and successful transport solution provider in the world

Volvo

Kia

Volkswagen

Coca-Cola

Apple (1977)

Google

To refresh the world in mind, body and spirit. To inspire moments of optimism
and happiness through our brands and actions

People working together as a global enterprise for aerospace industry leadership

To make a contribution to the world by making tools for the mind that advance
humankind

To o�er attractive, safe and environmentally sound vehicles which can compete
in an increasingly tough market and set world standards in their respective class

To organize the world’s information and make it universally accessible and useful

We believe that we are on the face of the earth to make great products … We
are constantly focusing on innovating. We believe in the simple not the complex.
We believe that we need to own and control the primary technologies behind
the products that we make, and participate only in markets where we can make a
significant contribution

Apple (2017)

BMW

To become the most successful premium car manufacturer in the car industry

To blend cultures to become the best and most innovative automotive company
in the world by ensuring customer first and mutual prosperity of people

For example: A company has the choice between raising prices or reducing its workforce.

If the value is ‘good customer experience’, then prices will be increased. If the value is

‘providing the lowest possible prices’, then staf�ng numbers will be cut.

When values are not upheld, CEOs and directors often resign, as their behaviours and

decisions are inconsistent with the company values.

Some common organisational goals

Consider the needs of a simple organisation such as a sporting club. A small club might have

only one or two goals. These might be as simple as keeping an accurate record of members’

names and addresses and whether they have paid their subscriptions. As the club expands, it is

likely that the goals and objectives will grow. Table 4.10 illustrates how the goals and objectives

of an organisation can in�uence the type of information system that needs to be developed.

Every business has a different set of organisational goals. Some have �nancial goals, such

as making large pro�ts, while others want to be more competitive by increasing their market

share. The goals will differ depending on the type of organisation.

Other goals that may be included in an organisational mission statement or vision

statement include the following.

• Ef�ciency will reduce waste of time, energy and effort

• Effectiveness will improve how well the operation works

• Governance and decision-making will be clearly communicated

• Establish and maintain reputation

151
CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

TABLE 4.10 How goals and objectives can influence the type of information system required

Goal Explanation

Increase the company’s
profit margin

Expand the company

Provide quality service

Maintain confidentiality

Businesses exist largely to make money. To provide value to the owners (shareholders or owner/operator), and
to allow for further growth and the realisation of opportunities, the business needs to increase its profits.

As businesses want to increase their profit margins, they may find that they need to grow. They may need to
employ more people and build larger premises so that their production levels meet customer demand.

Non-profit organisations such as charities, in particular, would see this as one of their most important goals.
They exist to provide service to people who are disadvantaged in the community. A department store such as
Myer would also regard this as an important goal, as excellent customer service is paramount to its existence.

Information stored about customers, products and the workings of a company needs to be protected by an
organisation. Organisations need to ensure privacy, and that all information will be treated with confidentiality.

• Improve the client experience

• Customer support

• Supplier support.

Information systems are often created to support the organisational goals. When planning

the system, the systems analyst will identify a system goal. The system goal explains the

speci�c role of the information system in achieving the organisational goal, and ultimately the

company’s mission. Setting up the right type of information system can help an organisation

make improvements in ef�ciency, effectiveness and decision-making.

Organisational goals can be assisted by information systems

Information systems usually have speci�c system goals. They exist to do a particular job, and

their success can be measured by speci�c criteria.

Note the difference between system goals and organisational goals: an organisation may

contain many different systems, but the organisation has overall goals it wants to achieve

(such as pro�tability, competitiveness, ef�ciency, high-quality products, etc.).

These organisational goals should be supported by each system in the organisation, such

as the stock control system and payroll system, which have their own speci�c goals. For

example, if an organisational goal is to improve ef�ciency, each system in the organisation

would also need to be ef�cient.

The goal would set out clear numeric ef�ciency goals so that both the current situation

and the desired goal were quanti�ed. After a period of time gathering data, a measurable

improvement (or not) would be obtained.

Some examples of system goals are:

• a payroll system’s objective may be to produce accurate employee payroll statements,

keep track of tax deductions, and produce summarised statements for management and

government departments

• a desktop publishing system’s objective may be to produce high-quality page layouts for

magazine-quality printing

• a point-of-sale transaction processing system’s objective may be to accurately and quickly

record purchases, produce customer receipts, and update stock inventories after each sale.

Think of your house as an organisation: its organisational goal is to keep you safe,

comfortable and entertained. In the house there are many systems: the doors, the beds

and chairs, the TV, radio, computer and bookshelves. The door systems have their system

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

152

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

goals: to prevent unauthorised entry, to keep out insects and unwelcome animals, to keep

out rain and wind. The bed/chair systems have their system goals: to provide comfortable

support. The entertainment systems’ system goals are to provide entertainment. You

would not expect a toaster to entertain you because that is not one of its system goals.

Each system in an organisation has a clear purpose and goal. They combine to support

the overall goals of the organisation they belong to.

Common system goals are:

• speed

• accuracy

• reliability

• responsiveness

• quality of output

• capacity

• security

• ease of use

• cost effectiveness

• attractiveness of appearance

• �exibility, con�guration adaptability and expandability

• safety

• operator comfort

• durability

• robustness, strength, toughness and endurance

• compatibility with other systems.

Legal requirements relating to the ownership and
privacy of data and information
Data and information can be very valuable, both to you and to others. Decisions and actions

can be made in response to knowing such details, but only if you are authorised to use

that information. Unauthorised access to personal and sensitive business information is an

increasing problem. Since 1998, in Australia, legislation has been developed to manage

information effectively. At the federal level, the Privacy Act 1988 and, at state level in Victoria,

the Privacy and Data Protection Act 2014 and the Health Records Act 2001 have been

enacted. Periodically, this legislation is updated to re�ect the technological advances that

impact on information. The Copyright Act 1968 (which includes the Copyright Amendment

(Digital Agenda) Act 2000) also limits who can use certain information.

Information is the most valuable asset that an organisation owns. In many cases, the

time and resources that have been used to collect the data and assemble the information

could not be replicated. If the data and information were lost or damaged, it may not be

recoverable. An information systems manager would plan to prevent loss from occurring.

There are several key laws relating to the information systems and telecommunications

industries. At a federal level, the law concerned with how information about people can be

used is the Privacy Act 1988. In Victoria, we are especially concerned with the Privacy and

Data Protection Act 2014 and the Health Records Act 2001. Combined, these laws govern

153
CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

the collection and use of private information by both government and non-government

organisations at both state and federal levels. Employers and government agencies have a

legal responsibility to ensure that these laws are implemented within their organisations. In

addition, organisations must make employees and customers aware of their rights, as well as

their responsibilities, in relation to these laws.

Privacy Act 1988

In the mid-1980s, the Federal Government attempted to introduce an ‘Australia Card’. This

proposal was met with overwhelming resistance from the public, and eventually dropped.

In its place, the pre-existing tax �le number (TFN) system was updated. There were many

concerns about how the Federal Government might use tax �le numbers, especially regarding

the release of con�dential tax information, or matching data from different government

departments. Under international law, the government was required to provide adequate

protection for personal data being sent to other countries, and to ensure that civil rights with

regard to privacy were not being ignored.

Originally, the Privacy Act 1988 only dealt with the handling of data by government
agencies. Many people criticised these limitations because it seemed that private organisations

were not required to apply even the most basic of safeguards regarding the data they

collected. Even worse, there were no regulations preventing non-government organisations

from collecting data by any method and using it for any purpose without consent. The rapid

growth of electronic transactions, especially over the Internet, led many people to demand

some sort of legal protection from those who might gather data about their browsing habits.

The government was keen to encourage the development of electronic commerce, while

protecting the con�dentiality of consumers and increasing public con�dence in electronic

transactions. As a result, several amendments were incorporated into the Privacy Act 1988.
These were the most signi�cant changes to have been made to privacy laws since the

inception of the legislation.

There have been several additional powers included within this Act since 1988, but

its main purpose has remained unchanged. The Privacy Act 1988 was amended by the
Privacy Amendment (Enhancing Privacy Protection) Bill 2012, which came into effect on

12 March 2014.

Application of the Privacy Act

The Privacy Act applies to both electronic and manual or conventional forms of data gathering
and handling by private organisations. The Act also has provisions speci�cally addressing the

use of personal data for direct marketing via email, which can only be used with the consent

of the individual concerned. It also extends to general privacy issues regarding workplace

email. The Act encompasses businesses with an annual turnover of $3 million, all private

health services that store health records, businesses that trade in personal information, and

those organisations that choose to opt-in.

Individuals also have rights under the Act, which makes for provisions on how their

personal information is collected. The Act de�nes personal information as being:

• information or an opinion about an identi�ed individual, or an individual who is

reasonably identi�able: whether the information or opinion is true or not; and whether

the information or opinion is recorded in a material form or not.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

‘These are the most
significant changes to
privacy laws in over 25
years and a�ect a large
section of the community.
The world has changed
remarkably since the late
1980s when the Privacy
Act was first introduced,
and so the changes were
required to bring our
laws up-to-date with
contemporary information
handling practices,
including global data
flows,’ said then Australian
Privacy Commissioner
Timothy Pilgrim in
2014 when the Privacy
Amendment (Enhancing
Privacy Protection) Bill
came into e�ect.
– Australian Government,
O�ce of the Australian
Information Commissioner

9780170440943

154

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

THINK ABOUT

SOFTWARE

DEVELOPMENT

4.3

Many organisations
have a privacy policy
listed on their website.
Find out what is
covered by your
school’s privacy policy.
What information
might the school have
about students that
should not be made
publicly accessible?

The amended Act de�nes personal information as including an individual’s:

The amount specified
in the Privacy Act is not
variable. That is, the fine of
$340 000 for individuals
and $1 700 000 for public
and private organisations
does not change. The
amount will only change
if the Act is changed. In
Victoria, however, the
fines are variable and tied
to penalty units with an
amount that is adjusted on
1 July each year.

• name and address

• signature

• telephone number

• date of birth

• medical records and health information

• bank account details

• photos and videos

• biometric and genetic information

• philosophical beliefs

• likes and dislikes

• opinions or commentary about a person

• racial or ethnic origin

• memberships of political associations

• professional or trade associations or trade unions

• religious beliefs or af�liations

• criminal record

• sexual orientation or practices.

Since the introduction of the updated Privacy Act 1988, organisations have had to review
the way they handle customer information and had to update their technologies and their

security processes to ensure they comply with the new legislation.

The Act prescribes severe penalties for serious and repeated interferences with privacy,

which can result in criminal prosecution and/or �nes of up to $340 000 for individuals and

$1 700 000 for public and private organisations.

Privacy and Data Protection Act 2014

The Privacy and Data Protection Act 2014 (PDPA) was introduced by the Victorian

Government. It replaced the Information Privacy Act 2000 and the Commissioner for Law

Enforcement Security Act 2005. The PDPA is intended to strengthen the protection of
personal information and other data held by Victorian government agencies, including local

councils and contractors working for the State Government.

Under the PDPA there is a single privacy and data protection framework. The PDPA

uses its own Information Privacy Principles (IPPs), and organisations are obliged to act

in accordance with the IPPs. As a result of the PDPA, a Privacy and Data Protection

Commissioner has been established.

Information Privacy Principles

APPs are discussed further
on pages 267–68.

As discussed in the previous section, the amendments to the Privacy Act 1988 in 2014
introduced new Australian Privacy Principles (APPs). It was anticipated that the current

Victorian Information Privacy Principles (IPPs) would be replaced with new principles

based on the Australian Privacy Principles (APPs). However, this has not happened, so the

Victorian Privacy and Data Protection Act 2014 continues to use the IPPs.

submission

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

155

TABLE 4.11 The 10 Information Privacy Principles (IPPs)

IPP Description

Collection of personal
information

Use and disclosure of
personal information

Data quality

Data security

Openness

Access and correction

Unique identifiers

Anonymity

Transborder data flows

Sensitive information

When an organisation collects information, it should only collect the
information it needs. The organisation should inform people that their
information is being collected.

When an organisation uses and discloses personal information it is only for the
purpose that it was collected for, or for a secondary purpose that you would
reasonably expect.

Ensure that the information collected is accurate, complete and up-to-date.

Information must be protected from misuse, loss, unauthorised access,
modification or disclosure. Reasonable steps must be taken to destroy or
de-identify personal information that is no longer needed.

The organisation needs to be transparent about what it does with information.
Non-compliance will result in a maximum penalty for a body corporate of
3000 penalty units and 600 penalty units for an individual.

When an organisation collects information it should allow people to see the
information it collects about them and provide them with the opportunity to

correct it if it is inaccurate.

Use of unique identifiers, usually a number, is only allowed where an
organisation can demonstrate that the assignment is necessary to carry out its
functions e�ciently.

Where possible, people supplying information should be given the option of
not identifying themselves.

If your personal information travels outside Victoria, your privacy protections
must travel with it.

Organisations need to ensure that they do not collect sensitive information
about people, such as their religion, political views or criminal record, without
checking the applicable laws.

Penalty units define the
amount that needs to
be paid for o�ences in
Victoria. Generally, the
legislation does not specify
the monetary amount, but
does specify the penalty
unit. Each year, the
penalty unit is specified.
For example, from 1 July
2015 to 30 June 2016,
one penalty unit was worth
$151.67. The rate for
penalty units is indexed
each financial year so that
it is raised in line with
inflation. Changes to the
value of a penalty unit take
e�ect on 1 July each year.

THINK ABOUT

SOFTWARE

DEVELOPMENT

4.4

The new APPs replaced the two sets of principles that have applied to Commonwealth

public sector and private sector organisations since 2001. They were known as the

Commonwealth Information Privacy Principles and the National Privacy Principles.

Health Records Act 2001

The Victorian Health Records Act 2001 was created to provide direction regarding the
collection and handling of health information in both the public and private sector. It is

anticipated that patients will use both private and public health services at various stages of

their life. The Health Records Act allows people to access their own medical information, as

well as establishing the health record privacy principles for both public and private medical

services. The Health Records Act established 11 Health Privacy Principles to provide rights

to both living and deceased people. These principles apply to the collection, use and storage

of personal health information in Victoria.

Stevie is a student
support o�cer at a
Victorian government
school. He has
access to student
and parent personal
details. He has been
approached by an
external organisation
to ‘sell’ these details
in exchange for new
computer equipment
for the school.

1 Identify key
legislation that
Stevie should
consider before
providing the
information to the
external company.

2 What are
Stevie’s ethical
responsibilities
to the students,
parents and the
school?

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

156

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

The Health Records Act

2001 applies to a deceased
individual who has been
dead for 30 years or less.

From the age of 16,
teenagers can consent
to medical and dental
treatment with the same
authority as an adult.
Therefore, teenagers can
see a doctor by themselves
without their parents. At
18 years of age, they have
the legal capacity to give
consent to, and refuse,
medical treatment.

The Act protects the con�dentiality of patients’ health care information by allowing

the information to be used only for the primary purpose for which it was gathered. This

means that information about medical test results and your medical history may be used

by your doctor, the hospital and any other health professionals only for the purpose of your

immediate or ongoing care. This information would not be disclosed to a third party for a

‘secondary’ purpose (for example, to your medical insurance company or another hospital)

without your consent. Health information may, however, be provided to third parties without

your consent under certain, and strictly limited, circumstances, including requests by family

members in an emergency when you cannot give your consent and your life is threatened,

where there is a serious threat to public health and welfare, research in the public interest,

investigation of unlawful activity and as part of a legal claim.

An individual who believes that the Health Records Act has been breached can make

a complaint to the Health Services Commissioner, who will try to achieve a resolution

by discussion between the parties. If a satisfactory resolution cannot be reached, the

Commissioner may then serve a compliance notice on the organisation that has breached

the Act. This notice informs the organisation which area of the Act has been breached,

and states that it must correct its procedures. The maximum penalty for an organisation is

currently 3000 penalty units, and 600 penalty units for non-corporate cases.

Health Privacy Principles

Table 4.12 presents a summary version of the Health Privacy Principles. This is not the full

set or form of the Principles, and is intended for quick reference only. The principles in full

can be found in the Act.

TABLE 4.12 A summary of the Health Privacy Principles

Health Privacy Principles summary

1 Collection

Only collect health information if necessary for the performance of a function or activity and with consent
(or if it falls within HPP1). Notify individuals about what you do with the information, and that they can gain
access to it.

2 Use and disclosure

Only use or disclose health information for the primary purpose for which it was collected or a directly
related secondary purpose that the person would reasonably expect. Otherwise, you generally need consent.

3 Data quality

Take reasonable steps to ensure health information you hold is accurate, complete, up-to-date and relevant
to the functions you perform.

4 Data security and retention

Safeguard the health information you hold against misuse, loss, unauthorised access and modification.
Only destroy or delete health information in accordance with HPP4.

5 Openness

Document clearly expressed policies on your management of health information and make this statement
available to anyone who asks for it.

submission

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

157

Health Privacy Principles summary

6 Access and correction

Individuals have a right to seek access to health information held about them in the private sector, and to
correct it if it is inaccurate, incomplete, misleading or not up to date.*

7 Identifiers

Only assign a number to identify a person if the assignment is reasonably necessary to carry out your
functions e�ciently.

8 Anonymity

Give individuals the option of not identifying themselves when entering transactions with organisations
where this is lawful and practicable.

9 Transborder data flows

Only transfer health information outside Victoria if the organisation receiving it is subject to laws
substantially similar to the HPPs.

10 Transfer/closure of practice health service provider

If you are a health service provider, and your business or practice is being sold, transferred or closed down,
without you continuing to provide services, you must give notice of the transfer or closure to past service
users.

11 Making information available to another health service provider

If you are a health service provider, you must make health information relating to an individual available to
another health service provider if requested by the individual.

*In the public sector, individuals already have this right under Freedom of Information.

Department of Health and Human Services, Victoria

Ethics are the principles of
right and wrong that are
accepted by an individual
or a social group. Ethical
behaviour often guides
policy makers within
organisations. For example,
a network policy within an
organisation governs both
the legal and ethical use of
the information system.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

4
Essential terms

CHAPTER

SUMMARY

accessibility how easily the software can be used by those who experience disabilities

accuracy the absence of mistakes or errors

Agile a method of software development that emphasises flexibility and interactive
improvement. Developers, testers and clients communicate directly without management
involvement.

annotate add comments to a document or diagram

array a collection of values or variables that are sometimes indexed

assistive technology any device or system that is designed for individuals who would
otherwise find the task di�cult or impossible

attractiveness how pleasing something is to the viewer

clarity ease of understanding

communication of message the process through which meaning is transferred

completeness nothing left out

convergent thinking involves coming up with a single, well-established answer to a
problem

data raw, unorganised facts, figures and symbols fed to a computer during the input
process; data can also refer to ideas or concepts before they have been refined

data dictionary (software design) used to plan storage structure; provides specifications
of variables, arrays and GUI objects

design brief a document or statement that outlines the nature of a problem, opportunity or
need

design idea brief, rough strategies for solving a problem; the best design idea will satisfy
all functional and non-functional requirements, work within the defined constraints and be
e�cient

divergent thinking involves exploring many possible solutions using spontaneous, free-
flowing techniques

e�ectiveness produces the expected result

e�ectiveness of a solution how well the software works to produce the desired result

e�ciency economic use of resources with minimum waste

e�ciency of a solution whether the result is produced quickly and simply

evaluation an assessment of whether a solution achieves the goals for which it was originally
designed; not the same as testing

evaluation criteria rules set out during design that include e�ectiveness and e�ciency
criteria; based on the solution’s requirements, which were defined during analysis

functionality what the software can do

goal an anticipated result or aim, which is specific, measurable, achievable and timely

information knowledge about a person, place, event or thing

Lean software development a methodology that optimises e�ciency and minimises waste

minimum viable product (MVP) Agile methods develop simple prototypes quickly, which
meet client software requirements specifications (SRS)

mission statement statement setting out an organisation’s purpose or what it is trying to
achieve; the mission of most companies is to make a profit, while non-profit organisations
tend to define their key mission as providing a service to their members

158

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

mock-up a sketch showing the look of the software output

objectives small, achievable tasks undertaken to accomplish a larger task

organisational goal how an organisation intends to go about achieving its mission

pseudocode code that designs algorithms in a clear, human-readable, language-independent format

readability the ease of understanding the text

relevance appropriate meaning in the context of the discussion

report formats the resultant screen after a search or sort

scrum part of the Agile software development process

software development life cycle (SDLC) a plan to develop, test, evaluate and implement a software solution

Spiral a method of software development that adopts an iterative cycle overlaid on the Waterfall method

sprint a method of software development where each interaction cycle is 2–4 weeks, resulting in quicker development of a
finished minimum viable product

system goal how the specific role of an information system will help in achieving an organisational goal

timeliness occurring at the right time

testing checking that occurs during development to ensure that a solution works, answers are correct, links resolve, site does
not crash and all is fully functional

universal design designing products that can be used by people with a wide range of abilities and disabilities

usability ease of use to achieve specified goals in terms of e�ciency, e�ectiveness and satisfaction

user experience (UX) an emotional reaction when using a device or software

user interface (UI) interaction between the user and the device

variables used in an algorithm or equation to carry values for calculations

Waterfall a method of software development that is lock-step, sequential and traditional. Once a stage is completed, there is
no going back.

Important facts

1 A detailed design is produced based on a design idea that best solves the problem.

2 Design ideas may come from brainstorming, using outside consultants, talking to end users, mind mapping, graphic
organisers, attribute listing, research and looking at parts of the problem in di�erent ways.

3 Gantt charts and project plans should be updated on an ongoing basis to reflect real events as projects proceed.

4 Designing products that can be used by people with a wide range of abilities and disabilities is called ‘universaldesign’.

5 Include real people in the design stage, rather than waiting for the testing and evaluation stages.

6 Criteria used to evaluate design ideas must be based on the software requirements specification (SRS).

7 Testing and evaluation are NOT the same thing.

8 The e�ciency of a solution concerns how much time, cost and e�ort has been applied to achieve the intended results.

9 The e�ectiveness of a solution relates to how well a solution achieves its intended results.

10 Documentation is essential to record definitions, decision details and assumptions that underlie the final software solution.

11 Data dictionary (programming) specifies details of variables, arrays and objects.

12 Security of data and user profiles is an increasingly important topic for software companies and developers.

13 UX design provides a relevant and meaningful experience for all users.

14 UI design has a focus on appearance.

159

9780170440943

4
15 The Waterfall software development model, often described as the ‘factory model’, has

identified stages of production. Once each stage is completed, it is ‘signed o�’ so the
next stage can begin. There is no going back.

CHAPTER

SUMMARY

16 The Agile software development method achieves flexibility, communication,
collaboration and simplicity through iteration.

17 Agile has short, rapid iteration cycles called ‘sprints’. At the end of each sprint a working
model is produced and the client has an opportunity to observe, evaluate and comment
on whether the product is acceptable.

18 The Spiral software development method has repeated iterations of processes and aims
to eliminate risk.

19 Goals help define an organisation’s purpose, assist its growth and achieve its financial
objectives.

20 Goals need to be specific, measurable, achievable and timely.

21 A mission statement outlines what is important to the organisation. Organisational
goals provide the means by which the organisation’s aims can be achieved.

22 Information systems usually have specific system goals. They exist to do a particular job,
and their success can be measured by specific criteria.

23 Unauthorised access to personal and sensitive business information is an increasing
problem.

24 Information is obtained when data is manipulated by the computer’s processor into a
meaningful and useful form (also becoming its output).

25 At a federal level, the law concerned with how information about people can be used is
the Privacy Act 1988.

26 As part of the Privacy Act, the Australian Privacy Principles (APPs) were devised to
set out the standards, rights and obligations for collecting, handling, holding, accessing,
using, disclosing and correcting personal information.

27 The Privacy and Data Protection Act 2014 (PDPA) was introduced by the Victorian
Government. It replaced the Information Privacy Act 2000 and the Commissioner for Law
Enforcement Security Act 2005.

28 The other key Victorian law relating to privacy is the Health Records Act 2001. This Act
governs the collection and handling of confidential medical records.

160

9780170440943

TEST YOUR

KNOWLEDGE

Generating design ideas

1 What is the di�erence between convergent thinking and divergent thinking?

2 What is the most important rule to follow when you are conducting a brainstorming session?

3 Why is it important to show your solution to the end user?

4 Explain how you would use mind mapping to follow up a brainstorming session.

5 Provide one example of an historical breakthrough. What technique was used to get to that
breakthrough?

Evaluating efficiency and effectiveness

6 What is the di�erence between e�ectiveness and e�ciency?

7 Explain how an improvement in e�ciency may cause a decrease in e�ectiveness.

8 Describe how e�ciency and e�ectiveness might be measured. How might these quantities be
measured?

9 The statement, ‘Testing is not evaluation’ suggests that evaluation is not about test tables and
input–output expected results. Identify some of the quantities that evaluation will measure.

10 When should evaluation take place?

Software development life cycle

11 Why can the Waterfall method be described as a linear model?

12 What is the Agile methodology when it is applied to software development?

13 Describe any similarities and di�erences between the Waterfall software development method
and an Agile SDLC method.

Goals and objectives of organisations and information

systems

14 Explain the di�erence between an organisational goal and a mission statement.

15 What is a vision statement?

16 How are values important to the content of mission and vision statements?

17 Where does the purpose of mission and vision overlap?

18 Why are mission and vision important for organisational goals and objectives?

Qz Review quiz

☑ Project plan ☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN 161

9780170440943

TEST YOUR

KNOWLEDGE

19 Apart from making a profit, think of an organisational goal for each of the following types of
organisations:

a A veterinary clinic

b A large shopping centre

c An airline

d A brewery

e A public library

Information management strategies

20 Explain why an organisation must comply with legal requirements.

21 Briefly summarise the role and scope of the three key laws a�ecting privacy of information.

22 Why have these laws been introduced?

23 If you believe that the privacy of your information has been breached by the Australian
Taxation O�ce, to whom can you complain?

24 What are the penalties for breaches of the Privacy and Data Protection Act 2014?

25 For each of the following breaches of privacy, suggest which privacy law would apply.

a You find that your employer has published your tax file number on the Internet.

b Medical records are found at the tip.

c A bank refuses to give you a loan because the manager claims your credit record is poor,
when it should actually be very good.

d A consultant working for the Victorian Government passes on your VCE results to a friend
without your permission.

e A website you visit asks for personal information from you, but does not display its privacy
policy.

162 SOFTWARE DEVELOPMENT VCE UNITS 3&4

h

APPLY YOUR

KNOWLEDGE

1 Match the evaluation criteria with the method of evaluation. Identify which criterion is
e�ciency and which is e�ectiveness.

Evaluation criteria

User survey should achieve a very high
satisfaction level.

20% less operator time with adoption of the
new system

Usability of the system should be rated
highly

Method of evaluation

The system should have over 95% availability. Opinion interviews of 500 users at random

Operators record time on task and other
duties

Online survey of users

A log of faults records the time and duration
of system failure.

2 A large Australian financial institution sends a policy document to all clients on how the
company handles personal information. The document includes the following statements:

Your personal information

Personal information is information or opinions that allows others to identify you. It includes
your name, age, gender, contact details, as well as your health and financial information.
We will act to protect your personal information in accordance with the National Privacy
Principles or an industry privacy code. We collect personal information to provide you with
the products and services you request as well as information on other products and services
o�ered by or through us.

How we use your personal information

Personal information may be used and disclosed within the company to administer our
products and services, as well as for prudential and risk management purposes and, unless
you tell us otherwise, to provide you with related marketing information. We also use the
information we hold to help detect and prevent illegal activity. We cooperate with police
and other enforcement bodies as required or allowed by law.

a Explain why the document is sent to clients.

b Provide reasons for including these statements within the document.

Also included in the document is the following statement:

We disclose relevant personal information to external organisations that help us provide
services. These organisations are bound by confidentiality arrangements. They may include
overseas organisations.

c How should the organisation ensure that a client’s privacy is protected if they need to send
personal details overseas?

☑ Project plan ☑ Justification ☑ Analysis ☑ Folio of alternative
design ideas

☐ Usability tests ☐ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN 163

9780170440943

e

f

g

9780170440943

APPLY YOUR

KNOWLEDGE

3 The Children’s Singing and Dancing Academy is an organisation that runs singing, dancing
and acting classes specifically aimed at school-age children. The company o�ers classes after
school on most weeknights and on weekends in various locations around Melbourne. Children
from many suburbs participate in this extracurricular activity. The company is a not-for-profit
organisation set up specifically to broaden children’s interest in the performing arts. The
Academy has a website and advertises its classes and locations through this medium. Pictures
taken of students during their end-of-semester performances are used for advertising the
company. The company relies on technology usage by creating brochures, updating their
website and storing clients’ data. Although the data stored is primarily about the children, data
on the parents/guardians of the children is also stored.

a What particular data on children is stored at the Children’s Singing and Dancing Academy?

b What particular data on the parents/guardians is stored at the Children’s Singing and
Dancing Academy?

c Why does the company need to store data on their clients?

d If you were to write an organisational goal for the Children’s Singing and Dancing
Academy, what would it be?

e What does the Children’s Singing and Dancing Academy need to do to ensure they are
compliant with the Privacy Act 1988?

f What measures are needed for the Children’s Singing and Dancing Academy to protect the
integrity of data and information?

164 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

PREPARING FOR

Unit

3
OUTCOME 2

Design, develop and evaluate a software solution

that satisfies a client need or opportunity in

response to the SRS and present a project plan for

managing progress of the project.

To achieve this Outcome you will draw on key knowledge and key skills outlined in Area of Study 2. This Outcome
concludes the analysis and design stage of the problem-solving methodology for Unit 3, Outcome 2.

Outcome milestones

1 Develop a project plan (Gantt chart). This plan includes all known dates and tasks for Unit 3 and Unit 4. (SAC and
SAT dates and tasks will be available from your teacher.) The project plan outlines tasks to be completed, which will
include duration, sequencing, milestones and dependencies.

2 Compile an SRS report. The SRS provides an analysis that defines details of the software solution purpose,
requirements, constraints and scope, functional and non-functional features, and analytical tools diagrams (data
dictionary, context diagram, use case diagram, data flow diagram, flow chart).

3 Design the software solution folio. The design folio includes two or three feasible alternative design ideas, which are
rough sketches or mock-ups of development strategies, without much detail. Choose one design idea using criteria
derived from the SRS, then add further details to create a complete preferred design of your software solution.

Steps to follow

1 Develop the SRS, including:

a purpose and audience of the SRS

b user characteristics (general characteristics of eventual users)

c environment characteristics (technical description of environment within which the solution will operate)

d scope of the solution

e functional requirements

f non-functional requirements

g constraints

h analytical tools diagrams

i use case diagrams (UCD)

ii context diagrams

iii data flow diagrams (DFD).

☑ Project plan ☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☐ Usability tests ☐ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN 165

9780170440943

PREPARING FOR UNIT 3 OUTCOME 2

2 Use appropriate software or manual design techniques to design the software solution. Develop two or three feasible
alternative designs, and add further details of your preferred design with a total of three or four design strategies. Your
design folio should include information about:

a WIRE-FRAME of each alternative design, using manual or software methods.

b relevant and appropriate evaluation criteria to select the preferred design. These criteria are derived from the SRS.

c how the selection of the nominated preferred design from an evaluation of each alternate design was achieved.

d the final preferred design, with further developed complete details; may include mock-ups with colours, font,
layout specifications for input and output screens, screen sizing, screen layout alternatives (notebook, smartphone,
tablet), pseudocode, and data dictionary descriptions.

3 Develop a proposed project plan (Gantt chart), as a written report or annotated visual plan. Note: This will be used as a
progress report and will be resubmitted with changes for project evaluation in Unit 4, Outcome 1.

a The Gantt chart will include all known dates and tasks, duration, sequencing, milestones and dependencies.
A critical path will be indicated. Unit 3 and 4 dates will be provided by your teacher.

b Problem-solving methodology stages will be included over both parts of the project. Analysis, design, development
and evaluation stages must be explicitly stated and break down tasks included with estimates of duration, sequence
and resources..

c The project duration and tasks must include both Unit 3, Outcome 2 and Unit 4, Outcome 1.

Documents required for assessment

1 An analysis of the client need or opportunity in the form of a software requirements specification (SRS) that defines
the purpose, requirements, constraints, scope, functional and non-functional features and analytical tools diagrams as
detailed in Unit 3, Outcome 2

2 A folio of two or three alternative design ideas and the detailed design specifications of the preferred design

3 A proposed project plan (Gantt chart) for monitoring project progress in a written report or an annotated visual plan

Assessment

Your teacher will provide you with a more detailed set of assessment criteria before you begin this assessment.

The SAT (comprising Unit 3, Outcome 2 and Unit 4, Outcome 1) will contribute 30 per cent to your Software
Development study score.

166 SOFTWARE DEVELOPMENT VCE UNITS 3&4

Sh
u
tt

er
st

oc
k.

co
m

/
w

h
it
eM

oc
ca

Unit

4

9780170440943

INTRODUCTION

In Unit 3, Outcome 2, you identified a client who requested a software
solution to their problem or opportunity. The software requirements
specification (SRS) provided details about data relationships and
functional and non-functional requirements. A design folio outlined
a preferred design, chosen from several alternatives, with mock-up,
data dictionary and pseudocode descriptions in preparation for further
development of a software solution.

In Unit 4, Area of Study 1, you will use the development and
evaluation stages of the problem-solving methodology to complete the
second part of the School-assessed task (the SAT). This will develop the
preferred design, identified in part one, into a software solution using an
appropriate programming language.

You will especially focus on good design (chosen from several
alternative design ideas) and communicating your message clearly to the
intended audience.

You will also evaluate how e�ectively your software solution achieves its
goals.

Throughout the development of your solution, you will use and
evaluate the project management plan you began in Unit 3, Outcome 2.

In Area of study 2, you will focus on the security risks to software
and data during the software development process. You will do this by
examining the security practices of an organisation and the risks to software
and data during the development and use of the software solutions.

You will also evaluate the current security practices and develop a risk
management plan.

Area of Study 1 – Software Development:
Development and evaluation

OUTCOME 1 In this Outcome, you will develop and evaluate a
software solution that meets requirements, evaluate the e�ectiveness of
the development model and assess the e�ectiveness of the project plan.

Area of Study 2 – Cybersecurity: software security

OUTCOME 2 In this Outcome, you will investigate the current
software development security strategies of an organisation, identify the
risks and the consequences of ine�ective strategies and recommend a
risk management plan to improve current security practices.

Contains extracts reproduced from the VCE Applied Computing Study Design (2020-2023)

© VCAA; used with permission.

167

including identifying the software solution.

Sh
u
tt

er
st

oc
k.

co
m

/
W

ill
ia

m
 P

ot
te

r
CHAPTER

5
KEY KNOWLEDGE

On completion of this chapter, you will
be able to demonstrate knowledge of:

Digital systems

• procedures and techniques for
handling and managing files and
data, including archiving, backing up,
disposing of files and data and security.

Data and information

• ways in which storage medium,
transmission technology and
organisation of files a�ect access to data

• uses of data structures to organise and
manipulate data.

Approaches to problem solving

• processing features of a programming
language, including classes, control
structures, instructions and methods

• characteristics of e�cient and
e�ective solutions

• techniques for checking that coded
solutions meet design specifications,
including construction of test data

• validation techniques, including
existence checking, range checking
and type checking

• techniques for testing the usability of
solutions and forms of documenting
test results

• techniques for recording the progress of
projects, including adjustments to tasks
and timeframes, annotations and logs

• factors that influence the
e�ectiveness of development models

• strategies for evaluating the e�ciency
and e�ectiveness of software solutions
and assessing project plans.

Reproduced from the VCE Applied Computing Study

Design (2020–2023) © VCAA; used with permission.

168

9780170440943

Software
development and
project evaluation

FOR THE STUDENT

This chapter will cover the theory and skills required for Unit 4, Outcome 1. You
will consider procedures and techniques for file management, including how
access to data is a�ected by storage medium. We will discuss control structures
as a feature of your chosen programming language as well as characteristics
of e�ective and e�cient solutions leading to the construction of test data,
validation techniques and usability testing. Finally, the chapter will consider
evaluation of the e�ciency and e�ectiveness of the software solution, the
problem-solving methodology (PSM) and the project management plan.

By the end of this chapter, you will be ready to develop and evaluate your
software solution, and to report on the e�ectiveness of the PSM and the Gantt
chart in monitoring the progress of your software solution.

FOR THE TEACHER

This chapter provides the theory and skills needed for Unit 4, Outcome 1. Having
covered analysis and design requirements of the PSM in chapters 3 and 4, students
are now introduced to the development and evaluation stages. Students will study
file handling and management of files and data, how storage media a�ects access
to data, and data structures for organising and managing data. Programming
languages, processing features, characteristics of e�cient and e�ective
solutionsand techniques for checking that SRS design specifications are verified will
all bereviewed. Testing, validation and usability techniques will be applied to the software
solution. The chapter concludes by considering project evaluation of the software
solution, e�ciency and e�ectiveness of the PSM and the project management plan.

By the end of this chapter, students should be able to complete development
of their software solution using features of the chosen programming language
to e�ectively manage file storage and handling; document the progress of the
project using an updated Gantt chart with annotations; evaluate the e�ciency
and e�ectiveness of the software solution with testing, validation and usability
testing; and evaluate the e�ectiveness of the problem-solving methodology and
the project management plan.

Note: Students will develop their own software product for the SAT,

submission

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

Managing files
Managing electronic documents forms part of an overall �le management strategy.

A comprehensive management plan will include all aspects of handling documents,

169

including storage, retrieval, backups, archiving and security.

Computer operating systems and applications have wonderful search functions, but these

tools are not as ef�cient as knowing where �les are kept. An easily understood �ling system

allows you to go directly to the folder or �le. Good �le management practices always save

time, whether used by a single person on one computer or in organisations with a few or

hundreds of employees.

A file management plan
Establishing a �le management plan involves following these steps:

1 Creating the document management plan

2 Implementing the plan

3 Following through and establishing consistency

Creating documents

A business organisation will have many types of documents, such as sales estimates,

email, spreadsheets, invoices and publicity brochures. Is there a process for creating these

documents? For example, are there standard templates with logo letterhead for regular

business documents? If so, where are they located? Is there a style guide to be followed? How

are new documents date and time stamped? How will documents be shared?

TABLE 5.1 Comparison of operating system filename limitations

Windows OS

Windows operating system (Win32) has a limit, called MAX_PATH, of
260 characters for the file path name; e.g. C:\Program Files\filename.txt.
A filename and location may be acceptable until moved or copied to
another location where the new path name exceeds 260 characters.
Certain characters are reserved by the operating system and are not
permitted for general use:
< (less than)
> (greater than)
: (colon)
" (double quote)
/ (forward slash)
\ (backslash)
| (vertical bar or pipe)
? (question mark)
* (asterisk)

macOS

There is no filename length limit,
though after 1024 characters Finder
has display issues.
If, however, the file is ever to be
shared beyond the host computer,
then a 255-character limit ensures
compatibility with Win32 computers.
There are only two characters that
are disallowed by OSX:
\ (backslash)
: (colon)
Note: O�ce does not allow : (colon)
in filenames.
However, for cross platform
compatibility, the Win32 limitations
have become the default standard.

These conditions may change; refer to the links for the current restrictions.

Current restrictions Cross platform compatability

Linux

Just one character is
reserved /
(forward slash).
There is no limit on
filename length.
However, for cross
platform compatibility,
the Win32 limitations
have become the
default standard.

Linux restrictions

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

A
ll

ri
g
h
ts

 r
e
se

rv
e
d
.

170

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Naming documents

When naming documents, choose meaningful �lenames that can be clearly understood.

Dates can also be included to ensure �les are displayed in a sorted order. There are some

limitations on �lenames.

SDV1.php

The �lename SofDevProjectV1.php has more meaning associated with the name than

This approach also means subsequent versions can easily be identi�ed. Version control is

important when projects generate updates of a �le. For example:

SofDevProjectV1.php

SofDevProjectV3.php

SofDevProjectV4.php

In a similar way, including the date can indicate when the �le was created, without

having to open the �le or inspect Properties. For example:

ElectricityNMIData20181201

ElectricityNMIData20191201

ElectricityNMIData20201201

Downloaded on December 1 each year.st

Directory structure is the
same as folder structure.

Storing and retrieving files within a directory structure

Managing �les on a computer requires a consistent method of allocating locations for those

�les. Directories are the names given to the hierarchy of folders that can be constructed.

Every new installation of an operating system establishes a standard arrangement. Once a

user begins creating folders and allocating �les, the certainty of where a �le may be found is gone.

a b

FIGURE 5.1 a Windows 10 directory; b macOSX directory

Some basic �le management approaches that apply to every computer �le system are:

• Most user created �les should go into the My Documents folder (WIN10) or Documents

(macOSX).

• Brevity promotes clarity.

• Use folder names to specify where �les are to be saved.

• Keep folder names short, but meaningful.

• Separate work in progress from �nished tasks.

• In your regular or monthly clean-up, consider moving �les that you no longer need to

another drive; you could call that collection ‘Archives’.

• Avoid deep and wide folder structures. If there are so many sub-folders that the display is

cut off, consider alternatives.

• Keep similar �le types together, such as applications, video, music, pictures, graphics,

.docx, .xlsx, .pptx etc., as this makes searching simpler.

9780170440943

U
se

d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 M
ic

ro
so

ft

C
o
p
yr

ig
h
t

©
 2

0
19

 A
p
p
le

 I
n
c.

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

• Limit the number of �les kept. Many �les are unnecessary to keep once they have been

read and action has been taken.

• Your email inbox is NOT a �ling system. Save important messages and attachments to

known locations. Choose to delete, move or keep email as soon as you have read the message.

Where there are too many copies of a �le, version control can be a problem. While one

may have been updated, the others will be out of date, despite retaining the same name.

Consider using shortcuts and aliases instead of creating multiple copies that may later

become ‘orphans’ and never be updated. The single source of truth (SSOT) is a management

approach that attempts to reduce duplication of �les with a similar purpose but different details.

For example, a downloaded or printed directory is no longer updated and cannot be changed. Yet

that �le can be made widely available, putting out inaccurate, misleading or wrong information.

To create a shortcut: Windows
right-click/ make shortcut

Cloud storage

Cloud storage is now an option to overcome multiple copies of source �les and work in

progress. A single online data warehouse storage can hold all data �les in one place. The

backup strategy is the responsibility of the warehouse provider. Examples of free online

storage suitable for student use are: Google drive (15GB), Onedrive (5GB), Dropbox (2GB),

Box (10GB), iCloud (5GB).

Backups

A ‘good’ backup must be up to date so data must be ‘mirrored’. There will be a tension

between how many times a �le will be saved, and copied, and the time it takers to save/copy

the �le. Small �le sizes will not be an issue. Larger �les will take some time to save and to

transmit to the off-site secure location. An alternative strategy is to save only the changed parts

of the �le. These incremental saves are much quicker than a full save. Specialist software is

often used to ensure better ef�ciency, i.e. less time taken is more ef�cient. When it comes

to backups, follow the 3-2-1 rule. Keep three copies in two formats, with one off-site. If you

have just one copy of a �le, it can’t be that important!

HDD

VM VM with data

3-2-1 Rule

macOS
ctrl-click /make alias

Once created, just drag and drop the shortcut to another location.

171

media types
copy

off-site

VM FIGURE 5.2 The 3-2-1
backup strategy

The purpose of a backup is to ensure a copy of the primary data is available in case the

original is damaged or lost. Data recovery will take time, and the process and time taken

forms part of a disaster recovery plan (DRP).

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

The logic behind this strategy is that keeping a copy of important data on another

partition, such as on the D:\ drive, is not enough, as the media may fail or the computer may

F
a
il
u
re

 r
a
te

172

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

be damaged, stolen or lost, especially if you are using a notebook computer. Another reason

to have more than two copies of data is to avoid a situation where the primary copy and the

only backup are both stored in the same location. Cloud storage is now considered to be a

different medium, and one that is off-site.

An old adage states that, ‘There are only two types of hard drive: those that have failed,

and those that have yet to fail’.

RAID �le storage is becoming more affordable. RAID – Redundant Array of Independent

Drives – relies on the probability that ‘only’ one drive will fail. If all the drives are matched

from the same manufactured batch, then a construction defect may cause the drives to

be short-lived. MTBF – Mean Time Between Failures – is a statistical expectation, and a

dramatically shorter or longer time is possible. Reliability of drives is also measured using

Annualised Failure Rate (AFR) or Component Design Life (CDL). For consumer devices,

a CDL would be �ve years and an AFR < 0.8 per cent. Alternative media include SD cards,

portable HDD, portable SSD, CDs and DVDs. Floppy drives are no longer considered a

viable medium, as access to a read/write drive may be unreliable.

Bathtub curve

All engineered devices have an effective serviceable lifetime during which the performance

is �t for purpose. Once the performance degrades, the device must be replaced. Reliability

engineering attempts to predict the working lifetime of a device by calculating the failure

rate (symbol λ, called lambda, Greek letter ‘l’). The MTBF is calculated as 1/λ.

The bathtub curve has three distinct sections:

1 Decreasing failure rate, or early failures, usually due to manufacturing defects

2 Constant failure rate caused by random unpredictable events

3 Increasing failure rate due to the device wearing out

THINK ABOUT

SOFTWARE

DEVELOPMENT

1 If a HDD is rated
with a MTBF of
1.2 million hours,
how long is this
in days, weeks,
months and years?
If 1000 drives were
operating for eight
hours a day, how
many would be
expected to fail in
the first year?

2 Research the drives
in your computers.
What is the
expected MTBF?

3 What is the
typical MTBF for
a 256 GB micro-
SDXC card X10?

Decreasing
failure
rate

Constant
failure
rate

Increasing
failure
rate

Early
‘infant

mortality’
failure

Observed failure
rate

Constant (random)
failures

Wear out
failures

Time

FIGURE 5.3 The ‘bathtub curve’ estimates the expected failure rate of an
engineered device.

A tactic to reduce the �rst section of early failures is to ‘burn in’ the device. This requires

the device to be run under test conditions until the start of the second section. There are

limits to this approach, as the boundaries between sections are not well de�ned, and can

often only be described with any precision after all devices have failed. This strategy is not

useful for prediction of future events.

9780170440943

submission

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

Disposing of files

Placing a �le in the recycle or trash marks the �le to be deleted. The deletion takes place

once the recycle or trash is emptied. The space on the drive is �agged as being available. The

next time a �le is saved, this space may be overwritten.

Deleting a �le does not remove the data from the drive or memory. When a �le is

‘deleted’, the data usually remains untouched and the �le allocation table (FAT) or table of

contents (TOC) entry is removed. This will allow a ‘�le recovery’ application to reassemble

the data from the volume so the �le can be read. The only change is that the name of the �le

may have been lost. Many �le recovery applications regularly record the Directory structure

so that a complete re-build can be achieved.

To permanently delete a �le, the data must be made unreadable, also known as being

magnetic pattern of the original data. File recovery applications can recover data that has

been overwritten. Multiple overwrites are necessary to prevent recovery. Three overwrites are

considered to be suf�cient scrubbing. This requires a cycle of writing all locations to read 1,

then overwriting with 0, then repeating this twice more, for three cycles.

Disposing of a drive

When a computer is being passed on to be used by someone else, the existing data should be

removed or deleted. The simplest strategy is to replace the drives with new, unused drives.

If the drives are to be erased, then a secure erase process of overwriting at least three times

must be completed. If the removed drives contain sensitive data, then the drives should be

physically disabled or destroyed.

Archiving

It is important to understand that backups are not archives. Remember, the purpose of a

backup is to allow a recovery after damage or loss. Archives, however, preserve a record of

events and are often required by regulatory authorities. Archives are placed in medium- to long-

term storage and are usually compressed to preserve storage space. An index of �les archived

would help locate the necessary document. For example, the Australian Tax Of�ce requires all

records to be kept for seven years, although prosecutions can go back 10 or more years.

The archived data may not be easily accessible to a regular user who is logged in daily.

While backups may occur hourly or daily, archiving usually occurs when �les are no

longer needed, such as each year following the tax reporting season, after a major project is

completed and signed off, when a semester unit is �nished, or at the end of year.

Factors affecting access of data
File access can be affected by the method of �le organisation and the storage media onto

which the �les are placed. There are different technologies available for storage, either

mechanical or solid state.

File organisation and storage media

Frequently accessed �les need to be placed in an easily accessible location on fast and reliable

media. The choice of media for storage is often about capacity, but other important attributes are:

• latency, or speed of access

• reliability

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests

173

scrubbed or wiped. This will require the data to be overwritten with 0s and 1s. There are

different levels of erasing data. A single overwrite of 1s and 0s is insuf�cient to remove the Windows: SDelete is a
Microsoft command level
utility that will securely
clean the space on a logical
disk. The number of passes
can be specified.
macOS: Disk utility
application that is
integrated within macOS X
has a function to erase 1, 7
or 35 times.

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

174

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

You can use an Internet
search to locate typical
latency times, access
speeds and costs for:
• HDD
• SSD
• fusion drive.

• cost

• ease of use.

The fastest access can be provided by SSD. When placed on SSD, the operating

system offers a typical start-up time of 10 seconds, compared to several minutes for HDD.

Modern operating systems require at least 10 per cent ‘scratch space’ for saving frequently

accessed system �les. A hybrid solution is a ‘fusion drive’, which has a small SSD attached

to a HDD.

Organising and manipulating data
using data structures
Data structures were �rst introduced in chapter 1, page 5, for Unit 3, Outcome 1. We will

brie�y revisit some of the main ideas here. A data structure is a way of organising and storing

data for ef�cient access and operations. There are a number of data structures. Relevant data

structures for VCE Software Development include:

• array

• associative arrays, including hash tables and dictionaries

• �elds

• records

• queues

• stacks

• lists

• linked lists

• classes

• objects.

Data structure types

Arrays

Arrays have elements that can be any data type. Each element is indexed to uniquely identify

it with an integer. The simplest array is a 1-D (one dimensional) array. This stores one piece

of data under each index. Multi-dimensional arrays are also possible. Two indices are required

for a 2-D array, 3 indices for 3-D, etc. N-dimensional arrays, while possible, may not have any

physical equivalent. For example, while a two-dimensional grid can be thought of as having rows

and columns, there is also a convention to use i, j, k as indices. The grid co-ordinates would

correspond to GRID[i,j]. A three-dimensional matrix could have an array MATRIX[i,j,k].

Arrays are considered when storing and accessing a sequence of objects. For example, if

there were six car registrations to be sorted into alphabetical order, the data would �rst be

placed into an array with a data type: string (see Figure 5.4).

Index

Registration

0

1AB234

1

1AC712

2

1BB111

3

1AB235

4

1BA101

5

1AA222

FIGURE 5.4 The array element index often begins at zero, i.e. Registration[0] is the first element.

index 0 to n – 1.

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

A sort algorithm can arrange the registrations into a sorted order. A search algorithm

could locate a speci�c value.

Arrays are well suited to organising large numbers of elements, such as when you want

to add 100 numbers together. Without an array, you would input one data value at a time,

assign a value to each variable, then add them together and output the result (see Figure 5.5).

An alternative approach uses an array Number[n] where n can be from 0 to 99 for a total of

100 elements (see Figure 5.6).

BEGIN

Total ← 0

Input number1

Input number2

Input number3

.

.

Input number99

Input number100

Total ← number1 + number2 + number3 + … + number99 + number100

DISPLAY Total
END

FIGURE 5.5 Pseudocode for a simple addition of 100 elements

BEGIN

Total ← 0

FOR Loop ← 0 to 99

Input Number(Loop)

Total ← Total + Number(Loop)

NEXT Loop

DISPLAY Total
END

FIGURE 5.6 Pseudocode for adding an array with 100 elements

Compare the two pseudocode versions. The non-array version (Figure 5.5) would require

100 lines of code to take the input values. When using an array (Figure 5.6), just six lines of

code are needed.

If the task were extended to 500 numbers, the array would still require just six lines of

code. The FOR Loop would change from 0 to 99 to become 0 to 499.

Associative arrays

An associative array, also called dictionary or map, holds data as pairs. The pairs are indexed

using a key and a value. The key is unique and may be used no more than once.

Hash tables

A hash table is often used to implement an associative array. A hash function generates a key

index, which allows the value to be found. The hash function may create the same key index

for more than one value. This collision must be handled within the software program. (Refer

to chapter 1, page 7 for a detailed explanation and example.)

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

175

In general, an array of size
n will have elements from

9780170440943

176

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Indexed array Associative array

0

1

2

3

4

Index

’auto’

’4WD’

’Jeep’

’2015’

’steel grey’

Values

FIGURE 5.7 Comparing indexed arrays and associative arrays

Records

A record is a basic data structure for collections of related elements. These elements may or

may not be of the same data type. Records are most frequently used in database systems and

spreadsheets, but they are also commonly used in programming languages, where they are

referred to as structs.

A record consists of a number of fields that are typically �xed – that is, the �elds do not

tend to change once the record is de�ned and used. Each �eld has a name and each has

its own data type. For example, a customer record may contain �elds such as �rstName,

lastName and dateOfBirth.

Records are most useful when a collection of variables are related to each other. The

structure provides a logical method of ordering data within a program so that data can be

accessed quickly.

In object-oriented programming languages, a record is essentially an object that has no

object-oriented features, containing only collections of �elds and values. Records and �elds

can also exist in some types of structured plain text �les.

As records contain programmer-de�ned �elds, there are no set operations that can

be listed for the record data structure. Rather, there are common operations that can be

performed on the record and the �elds within it, such as assignment and comparison, as well

as adding or removing �elds.

Searching and sorting
Once data has been stored in a record or array, the next operation is to search or sort the data.

Searching and sorting were
also covered in chapter 2,
pages 46–56.

Search

Searching for data can be accomplished using either linear search or binary search. Linear

search is the simpler of the two processes.

’item type’

’subtype’

’make’

'year'

’colour’

Keys

’auto’

’4WD’

’Jeep’

’2015’

’steel grey’

Values

177

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

Linear search

A linear search begins at the �rst element and compares the value with the search item. If

there is a match then a �ag ‘found’ is returned, and the next stage of the program takes place.

If no match is found, then the search moves on to the next element and continues the

process until all elements have been compared. The maximum number of comparisons will

be n, where n is the number of elements. The average number of comparisons will be n/2.

Consequently, linear search is suitable for collections of a few elements, or a single search

on unordered elements.

ALGORITHM searchArray()

//Purpose: linear searches through a list of elements

//there are two comparisons per iteration

//number of elements left to search/finished search

//search term found
BEGIN

Input arrayNames

Input searchTerm

indexLenNames ← length of arrayNames

FOR i ← 0, i < indexLenNames, i ← i + 1 DO

IF arrayNames[index] = searchTerm THEN

PRINT “Found” + searchTerm
ENDIF

ENDFOR

END

FIGURE 5.8 Pseudocode for linear search

Binary search requires a sorted collection

Binary search is more ef�cient than linear search. As a divide and decrease algorithm,

binary compares terms very quickly. As the number of elements increases, the advantages

are dramatic. Binary search has been discussed in more detail, with examples, in chapter 2

(see Figure 2.27, page 54).

For small collections, the combined time of sorting then binary searching may take

longer than the linear search. If the collection will be searched multiple times, however,

then the binary search becomes the better choice.

Sort

There are a large number of sorting algorithms available. For our purposes, the simpler

ones are quicker to understand and implement. For beginning software developers,

quicksort, selection sort and bubble sort provide a solid basis to explore other, more

complex, algorithms.

Bubble sort

This simple sorting algorithm is not ef�cient for a large number of elements. For example, a

one-dimensional array of numbers has �ve elements. To sort the array using bubble sort from

lowest number to highest will require three passes (see Figure 5.10).

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

9780170440943

178

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

ALGORITHM binarySearch(arrayNames, searchTerm)

// Purpose: binary searches through a list of elements

// Inputs: an array of elements to be searched

// and the item being searched for

// Output: Boolean, True if item found, False if not found
BEGIN

found ← FALSE

indexLenNames ← the length of arrayNames

midPt ← the middle index value of arrayNames

IF searchItem = arrayNames[midPt] THEN

found ← TRUE

ELSEIF indexLenNames > 1 THEN

IF searchItem < arrayNames[midPt] THEN

low ← first index value of arrayNames

RETURN binarySearch(arra yNames[low to midPt-1],

searchItem)

ELSEIF searchItem > arrayNames[midPt] THEN

high ← indexLenNames

RETURN binarySearch(arra yNames[midPt to high],

searchItem)
ENDIF

ENDIF

RETURN found //false
END

FIGURE 5.9 Pseudocode for a binary search

First pass:

[7 4 5 3 9] → [4 7 5 3 9] first comparison, 7 > 4, swap positions, now 4

7

[4 7 5 3 9] → [4 5 7 3 9] second comparison, 7 > 5, swap positions, now

5 7

[4 5 7 3 9] → [4 5 3 7 9] third comparison, 7 > 3, swap positions, now 3

7

[4 5 3 7 9] → [4 5 3 7 9] fourth comparison, 7 < 9, no change

Second pass

[4 5 3 7 9] → [4 5 3 7 9] first comparison 4 < 5, no change

[4 5 3 7 9] → [4 3 5 7 9] second comparison 5 > 3, swap position now 3 5

[4 3 5 7 9] → [4 3 5 7 9] third comparison 5 < 7 no change

[4 3 5 7 9] → [4 3 5 7 9] fourth comparison 7 < 9 no change

Third pass

[4 3 5 7 9] → [3 4 5 7 9] compare 4 > 3, swap, now 3 4

[3 4 5 7 9] → [3 4 5 7 9] compare 4 < 5 no change

[3 4 5 7 9] → [3 4 5 7 9]

[3 4 5 7 9] → [3 4 5 7 9]

FIGURE 5.10 Example of bubble sorting algorithm process. During the third pass, the array was sorted after the
first comparison, but the algorithm did not ‘know’ this until the entire pass had been completed.

The process is a simple comparison: if greater, swap; if not, move to the next element.

This process is repeated, passing through the population until there are no further swaps.

The only positive factor in favour of bubble sort is its simplicity; it is very easy for beginning

programmers to understand. By any other measure, bubble sort cannot be recommended.

submission

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

179

ALGORITHM bubbleSort(Array)

//Purpose: comparison sort through a list of elements
BEGIN

n = indexLenArray
REPEAT

swapped ← FALSE

FOR i = 0, n-1 DO

// if this pair is out of order

IF A[i] > A[i+1] THEN

// swap them and remember something changed

swap(A[i], A[i+1])

swapped ← TRUE
ENDIF

ENDFOR

UNTIL swapped ← TRUE
END

FIGURE 5.11 Bubble sort is not e�cient or e�ective, but it is simple to follow the steps.

Quicksort

Quicksort is a comparison sort algorithm that is also known as a divide and conquer

algorithm (see chapter 2, page 50). A pivot value is chosen, and all values that are smaller are

moved before it, and all values that are larger are moved after it. These sub-lists can then be

sorted into a single sorted list.

ALGORITHM quicksort(Array, low, high)

//Purpose: partition sort through a list of elements

//Array has elements from A[0] to A[n]:length of array= n + 1

//initial values of low and high

//high = indexLenArray; length of array - 1

//low = 0

//Call this function using

//quicksort(arrayNames, 0, indexLenNames - 1)
BEGIN

IF low < high THEN

p ← partition(Array, low, high)

quicksort(Array, low, p - 1)

quicksort(Array, p + 1, high)
END

//function to determine partition

// i is index of lower partition

ALGORITHM partition(A, lo, hi)

pivot ← A[hi]

i ← lo

FOR j ← lo, hi - 1, i ← i + 1 DO

IF A[j] < pivot THEN

swap A[i] with A[j]
ENDIF

swap A[i] with A[hi]
ENDFOR

RETURN i

FIGURE 5.12 Example of pseudocode description for Quicksort

The slowest performance is caused by placing the pivot as the �rst or last element in the

list. A well-placed pivot can increase the speed of the sort. In practice, a randomly chosen pivot

provides acceptable performance compared with other slower algorithms, such as bubble sort.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

180

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Quicksort is not considered a stable sort, as the relative order is not maintained for equal

sort items after sorting.

Selection sort

There are many ways to carry out a sort; so far we have discussed two simple mechanisms.

A third simple and fast algorithm is selection sort (see chapter 2, page 47). The name

describes the process of repeatedly selecting the next smallest element and swapping places.

The index of the last smallest value increases each time a swap takes place. In this way, the

entire population is compared until all elements are in order of size.

Figure 5.13 shows an example of selection sort, where six unordered elements are

considered.

Sorted sublist

()

(12)

(12, 26)

(12, 26, 27)

(12, 26, 27, 32)

(12, 26, 27, 32, 33)

(12, 26, 27, 32, 33, 65)

Unsorted sublist

(32, 12, 27, 65, 26, 33)

(32, 27, 65, 26, 33)

(32, 27, 65, 33)

(32, 65, 33)

(65, 33)

(65)

()

Smallest element in the

unsorted sublist

12

26

27

32

33

65

-

FIGURE 5.13 Selection sort begins at the left and progresses through the list

A similar process can be applied to a list or a linked list. Linked lists were introduced in

Chapter 1. This process can remove the smallest element and insert at the end of the sorted

values.

65 32 12 27 26 33 Begin with element 0, left-most element, �nd the smallest and insert

12 65 32 27 26 33 Begin with element 1, repeat, �nd the next smallest and insert

12 26 65 32 27 33 Repeat, search from element 2, insert

12 26 27 65 32 33

12 26 27 32 65 33

12 26 27 32 33 65 When the search index equals the length of the list, the process stops.

FIGURE 5.14 Selection sort of an unordered list

Insertion sort

Insertion sort is a simple sorting algorithm that builds the sorted list one element at a

time. On short lists and small arrays (less than 25 elements), insertion sort will perform
fewer comparisons than selection sort, depending on the particular ‘sortedness’ of the list
or array.

CASE

STUDY

and right to left.

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

181

FIGURE 5.15 When sorting a hand of cards, the player usually selects one card and compares it with

each other card in turn before placing the cards into sorted order. Usually card players arrange the cards
smallest to largest, from left to right.

ALGORITHM insertion-sort(Array)

//length of array is n; elements A[0 .. n-1]
BEGIN

n = indexLenArray

FOR j ← 1 TO n - 1 DO

key ← Array[j]

//insert element A[j] into the sorted sequence A[0 .. j]

i ← j - 1

WHILE i >= 0 AND A[i] > key DO

A[i + 1] ← A[i]

i ← i - 1

A[i + 1] ← key
END

FIGURE 5.16 Pseudocode for insertion sort

The following is an example of how to use insertion sort to place �ve cards into

increasing numerical order.

1 Applying the pseudocode algorithm to a player who has dealt a hand with �ve cards.

For example:

7

Scope:

The array length is 5 (n = 5)

The maximum number of passes through the array to sort all cards will be n-1 or 4

passes.

2 Assign index to array elements:

A[0]

7

☑ Project plan

9780170440943

A[1]

2 5

A[2] A[3] A[4]

10 4

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

2 10 5 4

THINK ABOUT

SOFTWARE

DEVELOPMENT

5.2

1 Create an insertion
sort algorithm that
arranges smallest
to largest, right to
left.

2 Compare and
contrast to identify
the similarities
and di�erences
between insertion
sort left to right

9780170440943

182

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

3 Ignore the �rst element, as it has been assumed to be sorted. Begin with A[1]:

7

key

key

key

2

2

2

key

2

7

2

7

5

4

10

10

10

7

5

5

5

5

10

7

4

4

4

4

10

1. First pass. Compare 2 and 7 insert

2. Second pass. Compare 10 with 2, 7 no change

3. Third pass. Compare 5 with 2, 7 insert

4. Fourth pass. Compare 4 with 2, 5 insert

5. Complete

As well as writing the code,
you will need to check
other important details in
order for your program to
operate correctly. Testing
of your code must be
documented in a test table.
Validation of data and data
types are to be thoroughly
carried out.
Remember, testing is not
validation. One checks
that the code executes as
expected. The other checks
boundary conditions for
data so the limitations are
observed.
Be sure to know the
di�erence, as a program
can execute correctly with
the wrong input data.

Features of a programming language
Programming features were �rst introduced in chapter 2 (see page 35). This section will

review and extend on that knowledge for inclusion in your SAT Unit 4, Outcome 1. Stage 3

of the problem-solving methodology (PSM) is development. Your development task will

implement your previously chosen design, with details documented in your client’s software

requirements speci�cation (SRS).

Choice of programming language
Your actual programming language will be chosen at your school in accordance with

Software Development programming requirements. These requirements are considered

each year, and any changes are announced annually in the VCAA Bulletin.

The discussion about languages presented in this text provides development within three

conceptual layers:

• Interface includes graphical user interface (GUI) for digital systems such as notebooks,

tablets, smartphones, gaming consoles, and microprocessors including robots.

• Logic is applied through data structures, data validation techniques, and the control

structures of selection, iteration and sequencing. Modular organisation and code

optimisation is supported. The programming language contains objects, methods and

event-driven programming functions.

• Data sources can allow retrieval of data from external storage or external access

technologies.

There are many programming languages used within education, in industry and for personal

use. No two languages are the same. Programming languages come with their own syntax and

style, but there are elements in a computer language that can be found in all languages.

The following are features that every programming language contains.

Instructions and syntax
Every language has its own syntax. Syntax is the set of rules that are used to create instructions.

An instruction is something you want the computer to execute. A language reference guide

is usually available to assist in �nding the syntax and reserved words for the language.

submission

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

183

FIGURE 5.17 An example of PHP syntax

The following shows syntax with a couple of instructions:

if ($my_name == “someone”)
{
echo “Your name is someone!
";
}

echo “Welcome to my homepage!”;

The words in bold are the built-in commands for this particular language, while the

whole lines (and there are three lines) are instructions and follow a speci�c syntax.

TABLE 5.2 Examples of Hello World! in several computer languages

JAVA public class Main
{

public static void main(String[] args)
{

System.out.println(“Goodbye, World!”);
}

}

PYTHON

C#

Print (”Hello, World!”)

public class Hello
{

public static void Main()
{

Console.WriteLine(“Hello, World!”);
}

}

VB – visual basic

HTML
(note: HTML
is NOT object
oriented and does
NOT meet VCAA
requirements)

Console.WriteLine(“Hello, World!”)

<!DOCTYPE html>
<html>

<head>
<title>Hello, World!</title>

</head>
<body>
<p>Hello, World!</p>

</body>

PHP

RUBY

☑ Project plan

9780170440943

</html>

<?php
echo “Hello, World!”;
?>

puts ‘Hello, World!’

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

9780170440943

184
S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 5.2 Examples of Hello World! in several computer languages (continued)

Mathematica CloudDeploy[

ExportForm[

Style[

Framed["Hello, World", ImageMargins -> 60],

80,

Orange,

FontFamily -> "Verdana"],

"GIF"],

CloudObject

Permissions -> "Public"]

Once written, Wolfram language uses CloudObject, which does not require a ‘host
computer’, just a browser.

There are many other programming languages, but any language chosen in VCE

Software Development must meet the VCAA programming requirements.

Control structures
Control structures were introduced in chapter 2 (page 35) and several detailed examples

were provided. Here is a brief review.

Control �ow is the execution order of statements, instructions or functions that are

evaluated in a program. Flow of control is implemented with three basic types of control

structures:

• sequential

• selection, which chooses between two or more alternatives

• repetition or iteration, where looping determines how many times the instruction is

executed.

Sequence or sequential structure

Sequential is the default mode, where instructions are executed line by line in the sequence

they were written.

Sequence

begin

process 1

process 2

end

FIGURE 5.18 Start at the beginning and follow the steps, one by one.

NO

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

Selection structure

Selection is used for branching when a choice is made between two or more alternate paths.

All the instructions for every program can be constructed from just seven control structure

statements (see Table 5.3).

a

Branching

b

Multiple

branching

test

condition

YES

NO

1

test CASE

2 3

185

Otherwise

FIGURE 5.19 Branching selection: a Binary, e.g. If/Then; b Multiple branches, e.g. Switch or Select. CASE.

Iteration structure

Repetition allows loops to execute a section of code multiple times. There are three types of loops.

Pre-test loop

test

condition

NO

YES

FIGURE 5.20 Pre-test: the condition is met at the beginning of the
loop, e.g. While-Do

Post-test loop Counted loop

FOR

condition

NO test

condition

YES

FIGURE 5.21 Post-

test: the condition is met
at the end of the loop,
e.g. Repeat Until

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

NEXT

☑ Usability tests

FIGURE 5.22 Counted

where the number of
times can be specified

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

YES

9780170440943

186

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 5.3 Control structure statements

Control structure statement

If

Switch or Case

If … Then … Else

While …

Do … While

Repeat … Until

For

Action

When condition is met, flow is directed to the alternative instruction

Choose between listed alternatives

When condition is met, flow can be directed multiple times

May not execute to satisfy condition

May not execute if condition is not satisfied once

Executes at least once
If conditions are not met then there is a possibility of an infinite loop

A counting loop to be executed a set number of times

These control statements are combined in only two ways: stacking and nesting. The

stacking method for control statements has the exit point of one control statement connecting

to the entry point of the next control statement. These control statements are simply lined up

one after the other, or stacked. The only other method for connecting control statements is

to place control statements inside other control statements. This method is known as nesting.

Methods, functions and procedure subroutine
It is important to understand the difference between a function, a subroutine and a method.

To identify each one, just remember:

• if a subroutine returns a value, then it is a function

• if a subroutine does not return a value, then it is a procedure

• if the function is coded within a class, then it is a method.

Functions*

*Depending on the programming language you have chosen to use, these may have different

names. For example, in PHP they are all functions.

A function is a block of statements that takes one or more inputs and then executes those

statements and returns a value. A function is mainly used when a programmer requires a

block of instructions to be used frequently in the program.

There are two types of functions:

• built-in functions

• user-de�ned functions.

Built-in library functions

Built-in library functions are functions that are created as part of the language. These built-in

functions are there to make programming easier. For instance, most languages have a date

function, which would return the computer’s current date.

Make sure you check the handbook or online programming advice websites for

information about what you speci�cally want a function to do before you create your own

function. There is usually a long list of optimised built-in functions that have been fully

tested.

U
se

d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 M
ic

ro
so

ft

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

187

FIGURE 5.23 An example of Excel built-in functions.

FIGURE 5.24 Python built-in functions listed at www.W3schools.com

Efficient and effective solutions

Ef�ciency and effectiveness can often be seen as competing goals. A process may be effective

if it is thorough and checks all possible options. A similar task may be considered ef�cient

if it is quick, uses few resources and is completed with minimal interactions with other

activities. For a task to be more effective, it will often become less ef�cient.

Ef�ciency is gauged in terms of measurable quantities. Each part of your software solution

will need data collected relating to these quantities:

• time taken

• the effort required

• resources accessed.

Once this data is collected, you can evaluate how ef�cient your solution may be.

Effectiveness relates to accuracy. What characteristics would a software solution need

in order to be effective? The output has to suit the client’s purpose and be in a format that

follows appropriate conventions as described in the SRS. The information produced by the

system needs to be accurate and comprehensive, without glaring omissions or super�uous

information.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

©
 1

9
9
0

–
2
0

14
,
P
yt

h
o
n
 S

o
ft

w
a
re

 F
o
u
n
d
a
ti
o
n

9780170440943

188

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Techniques for checking coded
solutions
There are some basic and essential software testing processes that every software developer

should be performing as they go, before the code is shown to anyone else.

• Functionality testing means every feature is tested at each stage and after any changes.

• Versions are kept of working code, �les are saved and backed up regularly with date (and

time if necessary). This may be automated in some development environments.

• Undertake one change at a time, and ensure it is tested. When change is working with no

errors, the next change/improvement can be introduced.

• Undertake module testing, where independent modules can be modi�ed without

affecting other parts of the software solution.

• Identify edge condition or boundary values for testing while coding, and place them into

the test table for later.

Different types of testing
Unit tests are low level and test close to the source of your application. Individual methods

and functions of the classes and components of your software solution are tested.

Functional tests are only interested in whether the SRS are met. The output is checked,

and not intermediate stages.

Acceptance testing is a formal test that veri�es whether the SRS has been satis�ed and

the client will accept the �nal version of the software.

improvements can be made to the software.

Other types of tests

Black box testing observes inputs and outputs only. The internal process is unknown.

White box testing considers processes within the component to achieve the correct output.

Integration tests verify that the different modules used by your application are

working together. Multiple parts of the solution must be up and running for this test to be

worthwhile.

The difference between an integration test and a function test may be that integration just

veri�es that the database can answer a query, while a function test will expect a speci�c value.

Performance testing will observe response times, user behaviour and how the system

behaves in a production setting. Performance testing often indicates where further

User acceptance testing determines whether end users are satis�ed. A combination of

interviews, questionnaires and observations can determine end user sentiment, which may

not be visible through one technique.

Validation techniques
Validation checks that input data are reasonable. Validation does not and cannot check

that inputs are accurate. For example, it cannot tell whether a person is being honest when

entering their age. However, validation can detect problems when a person enters their age

as 174 years, or ‘banana’, or nothing at all. You can perform validation manually (yourself)

or allow software to do it for you.

submission

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

Computers are particularly good at conducting validation checks.

1 Existence checks ensure that a value has been entered and the �eld is not blank, or <null>.

2 Type checks ensure data is of the right type; for example, the age that has been entered is

actually a number.

3 Range checks ensure that data is within acceptable limits (for example, children enrolling

in kindergarten must be 3–6 years old) or comes from a list of acceptable values (for

example, small, medium or large).

4 Format checks ensure that data is in the correct format. For example, a birth date

should be numbers in the format 00/00/0000.

5 Consistency checks perform a comparison

between different entries. For example, users enter

their email address twice. Survey responses are

often cross-checked to ensure the responses are

based on fact, and not made up.

6 Reasonableness checks consider whether the

details are plausible. For example, a 10-year-old

would not have a driver’s licence.

People can perform manual validation, such

as proofreading for sense, clarity, relevance and

appropriateness. In addition, unlike spreadsheets,

people tend to smell a rat when values pass electronic

validation checks but are clearly inaccurate because

they are ridiculous.

Similarly, Microsoft Word can detect words that are

not in its dictionary, but it cannot advise writers that

a paragraph is boring or that the text on the previous

page was pretentious, misleading or irrelevant.

Testing

disadvantage users.

If your solution fails because of undiscovered faults, it may become dif�cult to use, or

completely unreadable.

Testing checks that a solution will produce the correct output and will do what it should

do. Testing is not simple, quick or cheap – especially for a product such as an operating

system with megabytes of code in thousands of �les created by hundreds of people.

The typical steps involved in testing are as follows:

1 Decide which tests will be conducted.

2 Create suitable test data.

3 Determine expected results.

4 Conduct the test.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests

THINK ABOUT

SOFTWARE

DEVELOPMENT

5.3

If a user is expected to
enter their age, what
would be a reasonable
range check?

a 5–50 years

b 15–80 years

c 0–100 years

d 1–200 years

189

Verification or validation?

Verification checks that the
specific requirements are
being developed.
Validation checks that
the final product meets
expectations.

FIGURE 5.25 Validation rules in

FileMaker database. Here an ID field
is made compulsory (‘Not Empty’) and
unique, and within a defined range of
values. The database is also told what
error message to display if validation fails.

Usability of solutions
Thorough and careful testing is necessary, whether the software solution is a game, a

website shopping cart, or an airliner autopilot. If a software solution fails, this could

THINK ABOUT

SOFTWARE

DEVELOPMENT

5.4

In Unit 4, Outcome 1,
which data will you need
to validate, and how will
you achieve this?

Remember:

• validation checks
whether the
data inputs are
reasonable

• testing checks
the accuracy
of information
outputs.

In your SAT, ensure
that all of your
data is thoroughly
and appropriately
validated.

☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final

Whether users with special needs or disabilities can use your software solution

190

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

5 Record the actual results.

6 Correct any errors.

7 Document all steps in a summary table.

There are many test types, each intended to uncover different kinds of errors at different

times during development. The types of testing relevant to your solution are listed in Table 5.4.

TABLE 5.4 Testing types

Name of test What is tested?

Informal (alpha)

User acceptance
(beta)

Component

Integration

System

Installation

Compatibility

Usability

Accessibility

Test data

To prove the accuracy of the output of a software solution, provide some test data to work

with, and compare the actual output answer with expected output that is known to be correct.

Good test data includes:

• valid data – data that is perfectly acceptable, reasonable and �t to be processed.

• valid but unusual data – data that should not be rejected even though it seems odd.

For example, a 10-year-old might, very occasionally, enrol in university. Validation that

rejected the young genius’ enrolment would cause embarrassment.

• invalid data – to test the code’s validation routines. For example, if people must be 18

years old to be given a credit card, test data should include people under 18 so they can

be seen to be rejected.

• boundary condition data – data that is on the borderline of some critical value where the

behaviour of the code should change. These ‘tipping point’ errors are a frequent cause of

logical errors in programming.

• wrong data – data with an inappropriate format would be expected to generate an error.

• absent data – a blank �eld entry will test how the system handles a ‘no entry’ entry.

TABLE 5.5 A data test table with suitable (a) dummy data (b) boundary test

Data name

(a) Postcode

ID number

Data type Range

Numeric

Numeric

Order number Numeric

3000–3999

500–2000

Below range Within range

2200

200

00100–10000 50

3500

1000

500

Above range

4500

3000

11000

9780170440943

The part of the solution that has just been finished

Typical end users use their own equipment to check that the finished solution is
acceptable under di�erent user conditions

A single part of a system works properly by itself (for example, a user entry form applies
the correct delivery cost for a given destination postcode)

Individual parts of a system work together (for example, the embedded code correctly
accesses the separate database table)

All components in the solution work properly as a single unit

The form control is installed correctly and is working on your system, server or domain

The code and its components are compatible with a variety of computers and the main OS

Whether users can operate your software solution quickly and simply

10001

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

191

Data name

(b) Postcode

ID number

Data type Normal data
range

Numeric

Numeric

Order number Numeric

3000–3999

500–2000

Testing your solution
After designing and building your software solution you need to demonstrate that it has been

thoroughly tested. You need to know what to test in your solution. These will be discussed in

the following sections.

Inputs

Every input must be inspected to check that it is displaying in the right place, at the right

time, and at the right speed and volume in a variety of common environments (meaning

different browsers and devices).

Buttons and links

Every internal and external button or link in the solution needs to be manually clicked and

the result noted. Create a list of buttons and links and tick off each one as it passes testing.

Links to external services

You should be able to completely test all parts of the solution under your control. You need

to test the operation of any external connections to your product, to ensure that data updates

the function as expected.

Readability

Use the checklist provided in Table 5.6 to test readability of your solution.

TABLE 5.6 Readability checklist

Checklist

Is the text large enough to read comfortably on a
small device?

Is contrast optimal, or at least satisfactory?

Is the typeface a readable size?

Are all buttons labelled and identifiable as buttons?

Is text alignment attractive and readable on the page?

Are the spelling, punctuation and grammar correct?

Is expression clear and unambiguous?

Calculations

If your solution calculates any information, its answers need to be veri�ed by manual

recalculation in a testing table. For example, you might create a screen containing code to

display a countdown timer to the next Software Development examination. To prove that you

have tested the accuracy of its output, take a screenshot. Annotate the screenshot with whatever

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Below lower
boundary

2999

499

00100–10000 99

At boundary Above upper
boundary

3000 and 3999 4000

500 and 2000 2001

100 and 10000

9780170440943

192

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

manual calculations will demonstrate that it is true, based on the time the screenshot was taken

and the time of the exam.

Loading times

If the software solution is online, clear any cache to remove pre-loaded copies of �les and

media and try loading the site via cable and wi-�. Any page that takes more than a few

seconds to load should be inspected and optimised. Another method is to use one of many

online services that can measure the loading times for your pages. Online data repositories

may have varying access times due to user demand.

Making the web
accessible

Accessibility

Does your solution create unnecessary dif�culty for users with common disabilities such as

poor eyesight or muscular control, or other challenges such as weak language skills? Is alt

text applied to images? Are colour combinations considerate of colourblind people? Many

colourblind-safe palettes are documented online.

There are several places online to test the accessibility of your solution. Try the Making

the web accessible website.

Dynamic features

Every selection option item must be checked and its behaviour documented in a testing

table (see Table 5.7). If data entry forms are expected to work, data should be entered and

its successful arrival at its destination should be documented. Any simulated functionality,

such as a faked login box, should, as far as is practical, appear to work genuinely. Any coding

should be run using a variety of test data and the behaviour of the code recorded.

Usability testing
A usability test is undertaken with real users, to determine how easy the software solution is to
use.A researcher observes users while they complete tasks with the software. Any opinion about the

software is recorded. Whether problems are met and dealt with, and any frustration, confusion

or ambiguity is also noted. If several users are observed, any similarities can be identi�ed as

programming or user issues. All will need to be simpli�ed and removed in order to improve the

usability. Ideally, these changes will be accomplished before the software is released.

Elements of a test plan

Identify each of the following and state your specific details.

Scope
• State what will be tested

Purpose
• Test questions, concerns and goals

System requirements
• Hardware and software necessary for the test

Users
• Identify who the interview participants will be

• Summarise any likes, dislikes and suggestions for improvement

FIGURE 5.26 Planning a usability test

Details
• State the questions that will be asked
• Identify the quantitative data that will be collected

193
CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

Conducting a usability test

A formal interview with the user will achieve consistency if more than one person is to be

interviewed and observed.

1 Establish how long the testing might take.

2 Emphasise that the interview is about the software product and not the user’s ability to

operate the software and the equipment.

3 Consider a video recording. This recording could be consulted to provide further data,

but must not be used for any other purpose. A signed consent form will be required if

video is to be recorded.

4 Explain the use of equipment and software.

5 Introduce each task, for the video record, and observe the user’s responses. Ask the user

to ‘think aloud’ to ensure their actions are clear.

6 At the completion of the tasks, thank the user for their time and invite any comments,

questions or observations about the usability test.

Documenting test results
A testing table is a commonly used way to record evidence of functionality testing. A testing

table for a software solution may look like the example in Table 5.7.

TABLE 5.7 A testing table

What was tested How it was tested

Age < 18

Age = 18

Age > 18

Readability

17 y 364 d

18 y 0 d

18 y 1 d

Asked two volunteers to read
sample pages and report on
text size, contrast, alignment,
spelling, vocabulary,
o�ensiveness and headings

Code calculation
of number of
days since the
last event

Set computer’s clock to 7
days after the event

Expected
result

‘under age’

‘happy
birthday’

‘adult’

Reports each

page was
easy to read,
accurate and
ino�ensive

Index page
should display
‘The last event
occurred 7
days ago.’

How to document your testing

• Use a testing table such as the one shown in Table 5.7.

• Seek a subjective report from a fellow student who tried out your solution’s readability

and usability.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☐ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☐ Final submission

Actual result How it was fixed,
if relevant

‘under age’

‘under age’

‘adult’

One reader
suggested a
button label

in italics was
hard to read

Displayed
‘… created
6.89586
days ago …’

-

Boundary

-

Changed button
label text style
from italics to
bold

Rounded up the
age calculation in
the code

condition test was
fixed

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

194

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

• Capture screenshots of features that are not normally visible, such as dropdown menus

and warning messages, showing that they work when needed.

• Make handwritten calculations, annotating printed screenshots of your solution’s

calculations to verify that the output has been checked for accuracy.

• Capture screenshots of the solution’s validation rules, responding properly to invalid data.

Recording the progress of projects

Adjustments to tasks and time frames
In the �rst half of this SAT (Unit 3, Outcome 2), we have discussed how to manage a project,

and why project management is important. In Unit 4, you will continue to use these project

management techniques to complete development and evaluation of your software solution.

Very few projects ever proceed perfectly in line with the project plan. One unexpected

rainy day, a hard disk crash or a sick day for a key worker can slow down a work team enough

to affect tasks, other teams and deadlines. Project plans are not written in stone, and Gantt

charts should be regularly modi�ed to re�ect reality.

Project plans are living documents. Tasks that run overtime may have resources added to

them or be modi�ed so they �nish earlier. Bad weather may force changes to scheduling, so

indoor tasks may be completed instead of outdoor work. Late deliveries of equipment may

cause a project manager to move people off one task and assign them to another one that can

proceed without the deliveries.

Annotations

Ad

Additional
resources

NelsonNet
additional resource:
Figure 5.27

A project plan should be annotated to give reasons for changes to task schedules or resourcing

priorities. When the project is later assessed, these annotations will serve as valuable lessons

before undertaking the next project. Annotations might also be added by other project

leaders to advise the team of signi�cant news or concerns. Annotations could be handwritten

or added as notes in the Gantt chart itself.

FIGURE 5.27 Gantt chart: a project plan for the chosen solution

9780170440943

C
o
u
rt

e
sy

 o
f

G
a
n
tt

P
ro

je
ct

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

195

RESEARCH Gantt chart

1 Modify the project plan by adding two days to the ‘2.1 Identify evaluation criteria’ stage.

Redraw Figure 5.27, either by hand or electronically, or modify the electronic file on
student NelsonNet.

2 Do you need to adjust the rest of the project so that the final date for Submit solution does
not move forward by more than one day?

3 Justify how you have maintained the project end date.

Handwritten annotations are also acceptable. One strategy for Unit 4, Outcome 1 is

to print out the �nal version of the Gantt chart and write directly onto the printed copy.

Laminating before annotation adds extra presentation �nesse. Printing to PDF and

annotating that is also an option, or you could just place a screenshot into Powerpoint and

add callouts. Annotation needs to be quick, simple and effective. Where do the comments

and observations, insights and suggestions come from?

FIGURE 5.28 Gantt chart with notes added

Keeping logs
Project logs are a record of all the small and large steps a project takes on its way to completion.

The log is usually in electronic form and is shared with all project leaders. It may be created

using specialist log software, in a weblog (‘blog’) for example, or with Microsoft Word or

Excel. It could be shared online using Google Drive or similar technology.

Conditional formatting

The spreadsheet has many inbuilt functions that automate the formatting of the appearance.

Once initial settings have been chosen and tested, the conditionally formatted cells can be

copied down the column, ready for the data to be placed.

☑ Project plan

9780170440943

→Justification →Analysis →Folio of alternative
designs ideas

→Usability tests →Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

→Final submission

U
se

d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 M
ic

ro
so

ft

196

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Automated Excel data

validation

Select the cell for the
dropdown menu.
Go to Data tab on
the ribbon, then Data
validation.
On the Setting tab, in the
Allow box, click List.
Click in the Source box,
then select your list range,
or a comma separated list
will provide option choices
for that cell.

Ad

Additional
resources

NelsonNet
additional resource:
Figure 5.29 Project
log template

FIGURE 5.29 Project log template created in Microsoft Excel. Columns C, F, G and H are data validation

dropdown lists. Columns G, H and J also have conditional formatting applied to indicate priority and impact
by colour: low, medium, high, critical and showstopper. This template is available for download through your
NelsonNet login.

FIGURE 5.30 Excel data validation dialog

As shown in Figure 5.31, the priority

cells can be conditionally formatted to give

you a dropdown menu choice of options.

High, Medium and Low data will appear

once you begin typing, but the formatting of

the cells relies on you manually formatting

each individual cell. Alternatively, format the

�rst, then copy format and pasting across all

similar cells. In this example, the �rst row

is conditionally formatted for Column C:

Reported by [Developer, Reviewer], then

column F: Issue type [Usability, Design,

Data,], column G: Priority [High, Medium,

Low], column H: Impact [High, Medium,

Low], column J: Status [Resolved, Partly resolved, Not resolved].

A project log helps a team keep track of the status of project tasks, which team member

is responsible for the tasks, and when deadlines and milestones are due. It can also help

you keep track of the work you are doing on your solution alone. In conjunction with your

Gantt chart, a project log can be a valuable tool to help you manage your project ef�ciently.

9780170440943

U
se

d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 M
ic

ro
so

ft

fr
o
m

 M
ic

ro
so

ft

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

It can include time and date stamps, comments on progress, project risks, issues that arise,

ideas for solutions, actual solutions, explanations of decisions, results of testing, forecasts

and warnings, task changes, photos and future action needed. A project log is like a diary

that records the complete history of a project. An online version would be to keep a weblog,

or blog. Keeping a weekly blog that records daily achievements would be a very effective

method of gathering evidence. Your �nal Gantt chart can be annotated with entries from

your blog, with references to the URL.

If you �nd yourself struggling to divide up the tasks by priority, creating a priorities

quadrant may also be of use (see Figure 5.32).

a b

197

FIGURE 5.31 An example of automated cell formatting in Excel. a New rule; b Managing rules

Urgent important

Something you must handle
right now

Examples:

Select authoring software

Generate design ideas

A major error in the build of

your data visualisation

Not urgent, but

important

Something crucial you need to
schedule/plan

Examples:

Assess your project plan

Submit your solution for

assessment

Urgent, but not
important Not urgent and not

important

Things you should delegate;
interruptions; trivialities

Examples:

Ask a potential end-user to

review your solution

Last minute add-ons outside

the scope

Things you should NOT do

Examples:

Procrastinating

Dealing with old emails

Pointless busy work

FIGURE 5.32 Example of a priorities quadrant

Efficiency tips
You have a limited amount of time to complete the project, so you need to ensure that you

use your time as ef�ciently as possible. Your �rst priority is to make your proposed solution

work. While the attractiveness of your solution is an assessment criterion, appearance is

worth much less than the quality of its information. You need to make sure that you allocate

your time appropriately to re�ect this priority.

☑ Project plan

9780170440943

→Justification →Analysis →Folio of alternative
designs ideas

→Usability tests →Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

→Final submission

U
se

d
 w

it
h
 p

e
rm

is
si

o
n

9780170440943

198

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

One way of doing this is to use a plain text heading and then insert all of the key

information. If you have time later, you can go back and design a graphic heading and

modify the fonts. Remember, a beautiful solution with incomplete content is a waste of time.

It is easy to get sidetracked ‘�ddling’ with small details. Spending half an hour in

Photoshop cutting a �gure from its background is an inef�cient use of your time, and this

will be re�ected in your assessment. You need to complete the less exciting jobs, such as

typing data and testing that all links work.

It may help to make an agreement with yourself to do just a little of the task. It will not be

�nished, but at least you will have made some progress. This will boost your self-con�dence,

and you may even decide to do a little bit more while you are at it. The hardest part of most jobs

is taking the �rst step. Once the �rst step has been taken, it is usually much easier to continue.

Factors influencing the effectiveness
of the development model
As previously described, effectiveness is about accuracy. Factors that in�uence the

effectiveness of your software solution will affect the ability of the software to deliver the

expected output.

Hardware limitations can limit a program’s ability to perform as expected. This may be

processing speed limitations, RAM capacity or storage access limitations. Large amounts

of data take a �nite time to be transferred, processed and stored. These limitations must be

factored in when performance expectations are being considered.

Evaluating the efficiency and
effectiveness of solutions and
project plans

Evaluation is not the same
as testing; its purpose is
very di�erent.

Evaluation

Evaluation is the �nal stage of the problem-solving methodology. It checks how well the

solution is satisfying the needs of the user it was originally created for.

Remember, you will be evaluating your programming solution and your project plan as

part of your assessment in Unit 4, Outcome 1. When evaluating your solution, you need to

refer to the evaluation criteria you developed during the design phase. For each criterion,

you will choose a method to evaluate it.

Evaluation is not the same as testing; its purpose is distinctly different. By the time

evaluation begins, the solution has already been proved to work properly and its functionality

is no longer in question.

Evaluation can best be understood by saying what it does not do:

• Evaluation does not test that a solution is working properly. That should have been done

during testing.

• Evaluation does not enter test data to check that output is accurate. That should have

been done during testing.

199
CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

• Evaluation does not use a stopwatch to time how long a process takes. That should have

been done during testing.

• Evaluation does not perform checks with immediate results, such as pulling out the

power plug to see if a system loses data. That should have been done during testing.

Evaluation looks at a solution’s performance over time in terms of the evaluation criteria.

What to evaluate

Evaluation criteria are determined during the design phase of the problem-solving

methodology, and are based on the most important qualities that the solution is expected to

have when it is designed. For example, for your solution, essential criteria include the ability

to quickly enter and record data. You should evaluate the features that would, if they were

not achieved, render your solution unsatisfactory.

Evaluation criteria fall under two headings: ef�ciency and effectiveness.

1 Ef�ciency can be measured in terms of speed or productivity (work produced in a given

time), pro�tability (income generated versus running costs) and labour requirements

(how much labour is required to achieve its productivity levels).

2 Effectiveness includes completeness, readability, attractiveness, clarity, accuracy, accessibility,

timeliness, communication of message, relevance and usability (see chapter 4, Table 4.2).

You may conduct interviews or create questionnaires to seek feedback from your peers

regarding the criteria you were expecting to achieve. This feedback could be offered as

evidence of evaluation.

For your software solution, you may decide to use annotated screenshots to demonstrate

how key criteria were satis�ed, such as readability, or consistency of formatting. If recordings

of animated screen activity are needed to prove that you satisfied an evaluation criterion, you

could use screen recording software such as Camtasia.

Evaluation methods

For each evaluation criterion for your solution, there must be a corresponding evaluation

method that can measure the degree to which the criterion has been achieved.

• Objective (fact-based, measurable) results are solid facts that are hard to argue with.

Measure whenever you can.

• Subjective results (emotions, opinions, personal judgements) can be gained from

interviews, questionnaires and surveys. These should only be used when objective

measurement is not possible or practical, such as when evaluating how comfortable users

feel when using an unfamiliar programming solution.

Remember: Evaluation assesses your solution’s performance over time. It is not

instantaneous, like testing is. Any emotional or judgemental feedback is only gathered on

appropriate criteria. For example, it is pointless to ask interviewees questions such as, ‘Is the

new system faster than the old one?’ Even if you received an answer to this question, you

would not be able to trust its accuracy.

When to evaluate

Evaluation occurs after the solution has been in regular use for some time, when it is well

‘bedded in’ and its users are familiar and comfortable with it. A few months of regular, daily

use is typical.

☑ Project plan

9780170440943

→Justification →Analysis →Folio of alternative
designs ideas

→Usability tests →Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

→Final submission

9780170440943

200

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 5.8 Typical evaluation methods

Criterion Method

Accuracy
(e�ectiveness)

Reliability
(e�ectiveness)

Security
(e�ectiveness)

Attractiveness,
pleasure, comfort,
confidence
(e�ectiveness)

Productivity
(e�ciency)

Profitability
(e�ciency)

Labour requirements
(e�ciency)

Ease of use, usability
(e�ectiveness)

Check the complaints log and count the complaints from sta� or customers about
inaccurate information received from the system over the past three months.

Count the number of faults in the system’s error log.

Count the number of successful and thwarted attempts made to penetrate system
security.

Interview users.

Refer to system logs and count how many transactions the system handled over
three months compared to the previous system.

Ask the accountants to tally the new system’s running costs over time. Check
organisational profit figures and see if profit has increased.

Count the number of sta� hours spent operating and maintaining the system
compared with the previous system.

Count the number of times the help file was used (indicating that the solution may
not have been intuitive).
Add up how many errors were made by users. (A solution that is hard to use tends
to cause users to make mistakes.)
Check the help desk records to see how often users asked for help or complained
about the solution.
Ask users to complete a questionnaire about their feelings regarding the system’s
usability.

Evaluating a solution too soon can lead to negative feedback, because users may not be

used to it, and may be slow and prone to making errors. Later, when they are comfortable

and skilled with the solution, their feedback is likely to be more positive.

If a system is used infrequently but its success is critical to the organisation (such as

creating school reports, or managing a �ood of tax returns at the end of the �nancial year),

evaluation may be done immediately after the system is used.

You will not have the luxury of waiting for a long period of time for users to explore your

solution. Instead, you will need to ensure that you evaluate your own solution especially

thoroughly, and take into account all of the feedback you received during beta testing, which

should have included asking potential end users to look at your solution. (These could have

included classmates, friends, your teachers, your parents/guardians and other family members.)

Solutions

Evaluation of your software solution began with the SRS. That document recorded all the

client’s expectations and speci�cations. Those performance statements can be converted into

evaluation criterion. It is against each of those criteria that the evaluation will be performed.

For example:

• Speci�cation (SRS) statement: The menu will be easy to understand.

• Evaluation criteria: Is the menu easy to understand?

→Final submission

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

A Likert (pronounced lick-ert) scale would be the most appropriate conversion of opinion

to a rating scale. To extend the authority of such a user survey, several users need to be

interviewed or questioned about the usability of the software solution.

There may be too many speci�cations contained within the SRS, so you will need to

prioritise which are the most signi�cant.

Project plans
Organisations invest a great deal of time, money and labour into projects, so they tend to

look back at their project plans to evaluate how the planning went. Organisations often need

to undertake further projects, so they need to evaluate earlier projects to avoid repeating

mistakes. Evaluating an organisational project plan can help answer the following questions:

1 Did the project �nish on time?

2 What tasks delayed your project? Why weren’t these delays anticipated?

3 Could lessons be learned to help the next project �nish on time?

4 Did the project �nish on budget?

5 What assumptions did we get wrong?

6 Why did this task cost far more than expected? How can we avoid that next time?

7 Why were new requirements being added just weeks before the system was due to go

online? Was our analysis a failure?

8 Why did the �rst three prototypes blow up? Was the design team under-skilled, overworked,

under-equipped or working to an impossible deadline?

Even a failed project can be a valuable learning experience if it keeps the same mistakes

from happening again. For example, in November 2012, the US Air Force scrapped a major

enterprise resource planning software project called the Expeditionary Combat Support System

(ECSS) after it cost $1 billion in expenses but failed to create any signi�cant military capability.

THINK ABOUT

SOFTWARE

DEVELOPMENT

5.5

Identify the questions
from the list opposite
that could also be
used to evaluate your
project plan.

201

ECSS was supposed to replace more than 200 legacy systems. The project had been underway

since 2005, and its ballooning costs clearly suggest that Air Force of�cials and systems contractors

conducted an overwhelming amount of additional custom coding and integration work. An Air

Force spokesman said the project would require another $1.1 billion just to complete 25 per

cent of the original scope, and that the project would not be complete until 2020.

On the other hand, not undertaking projects to improve systems can also be an expensive

mistake. As of 2012, Long Beach, California was owed $18 million in parking �nes as a result

of antiquated software used by the local government. Fines had gone uncollected because of

the age of the systems in use. Staff were stuck using manual processes, which were so time-

consuming that there was no time left to undertake collection efforts – leading to $18 million

in unpaid �nes. Long Beach �rst knew about the problem in 2009, but still failed to address it.

Your project may be on a more modest scale than these scenarios, but there are still

lessons you can learn from them. The purpose of assessing your own project plan is to judge

how your plan and the techniques you used to make adjustments along the way helped

you manage your project. For instance, how much notice did you ultimately take of your

plan? How did your plan assist you when things didn’t go as expected? Did the quality of

your annotations or other tools you may have used help keep you on track? These types of

questions are of great use, both now and for your future studies and later career, because they

will help you understand how planning functions alongside real-world projects.

☑ Project plan

9780170440943

→Justification →Analysis →Folio of alternative
designs ideas

→Usability tests →Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

9780170440943

202

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

You need to fully think through the scope of the tasks to ensure you don’t discover a forgotten

task when it is too late to �nish it. Veri�cation is important – keep referring to the project plan

and SRS so you don’t forget tasks, do them in the wrong order, or fail to observe milestones.

You also need to think carefully about your software choices. For example, it would be

unwise to choose an editing tool, only to discover halfway through development that it is

unsuitable for the task. If you need to learn and practise new software skills, do this before

the project begins. Learning new software while you work on a critical solution is very

inef�cient, and you will be prone to making errors.

You also need to be realistic when you are estimating time requirements. Think back to

times when you had similar tasks to complete. Remember which problems caused delays in

completing those tasks, and add time to your schedule to deal with them this time. If a task

looks like it will run overtime, refer to your Gantt chart to see what consequences this delay will

have on the project. If the task has slack built into it already, it may have no effect on subsequent

tasks. If it is a critical task, however, you will need to �nd a way to save time on other tasks.

When evaluating your project plan, you �rst need to establish the evaluation criteria that

will tell you how successful it was in getting the project completed on time.

Such criteria may include the following.

• Completeness: Were any signi�cant tasks omitted from the project management plan?

Were resources included? Was it annotated when required?

• Maintainability: How easy was it to modify the Gantt chart to keep it up to date with reality?

• Accuracy: Were tasks correctly identi�ed and marked as dependent or concurrent? Were

tasks in the right sequence? Were time estimates realistic?

• Readability: Was it easy to see all tasks and their dependencies? Was the Gantt chart and

its text of a readable size? Were colour choices appropriate?

Once your criteria have been chosen, you will again need a method to evaluate each one.

Annotated printouts highlighting key features of the software solution may be useful. You

might take screenshots before and after changing the duration of a task to show how easy it

was to maintain the chart. You can describe how well the project plan worked.

In your project management review report, you need to be able to explain factors that

in�uenced the effectiveness of the project plan. These factors include tasks, due dates,

resources, tasks done concurrently, tasks that are dependent on other tasks, resources and

people. Your report could also:

• explain the advantages and disadvantages of using a Gantt chart

• offer lessons you learned from this project that will make later projects even more successful

• explain what further development of your software solution might take place for Version

2.0 if you had additional time and resources.

Next steps
Work your way through the chapter summary material, including ‘Preparing for Unit 4,

Outcome 1’, then, after consultation with your teacher’s instructions, begin to prepare your

solution for submission.

9780170440943

5
Essential terms

CHAPTER

SUMMARY

acceptance test a formal test to verify that the SRS for the software solution has been met
and that the client will accept the final version

algorithm a series of steps or instructions that achieves a purpose

array a list of elements indexed by position. In most programming languages the first
element has index zero.

associative array similar to an array; information is stored in key-value pairs

black box test a test of only inputs and outputs of the software solution

CD compact disk, typically 740MB

comparison sort two values are compared for higher or lower value and placed in order by
swapping places if necessary. The comparison sort cycles through the entire list several times.

comprehensive management plan includes storage, retrieval, backups, archiving and
security

disaster recovery plan (DRP) details of the steps required to recover the information
systems in the event of damage or loss

DVD dynamic versatile disk, typically 4.7GB or 8.5GB with dual layers

evaluation the final stage of the problem-solving methodology. It checks how well the
solution is satisfying the needs of the user for which it was originally created.

evaluation criteria performance criteria made from the expectations and specification

fields elements in a record, struct or database

functional test a test to verify that the SRS for the software solution has been met; only
output is checked

hash table a data structure that uses a hash function to map keys to values by computing an
index that is related to, but smaller than, the initial key

infinite loop when the control structure iteration (loop) has no exit

insertion sort a simple sorting algorithm that builds the sorted list one element at a time

integration test a test to verify that the di�erent modules of the software solution are
working together

HDD hard disk drive; a magnetic platter with a read/write mechanism

key used in associative arrays to specify values

legacy system old technology that is still in use

linked list a linear data structure where each element is stored separately and has a pointer
to the next element

MTBF mean time between failures; a statistical estimate of the expected reliability of a
computer component. Usually read/write actions for drives.

nesting when control statements are placed within other statements. The outer statement
waits until the inner statement has finished execution.

performance test a test for response times, user behaviour and system behaviour of the
software solution in a production setting

record a fixed number and sequence of related fields, or data, held within one structure.
They may be di�erent data types.

scrubbed when a file is permanently deleted; the data must be made unreadable

selection sort a simple sort that repeatedly selects the next smallest element and swaps places

203

9780170440943

5
SSD solid state drive; has no moving parts. SSDs have an estimated ‘lifetime’ that is
dependent on the number of read/write actions.

stable sort a sort in which equal sort items have relative order, which is maintained after sorting

CHAPTER

SUMMARY

stacking when control statements are listed one after another. Each statement is executed
in sequence.

structs records used in database systems and programming languages

syntax set of rules used to create meaningful statements in a computer language

testing checks the accuracy of information outputs

testing table a commonly used way to record evidence of functionality testing

unit test a low level test of individual methods and functions of the classes and components
of the software solution

user acceptance test a test of whether users of the software solution are satisfied;
conducted through interviews, questionnaires and observations

validation checks the reasonableness of data inputs

value the element that is stored as an element in an array

VCAA programming requirements advice considered annually, advising programming
language requirements that must be met before using for Software Development

version control the method that keeps track of the current, most up-to-date document
through a drafting process

weblog/blog an online diary written in reverse chronological order

white box test a test of processes within the software solution to ensure correct output

wiped when the data is scrubbed and overwritten with 1s and 0s

Important facts

1 A comprehensive management plan will include all aspects of handling documents,
including storage, retrieval, backups, archiving and security.

2 Clearly understood, meaningful file names are always best.

3 Use shortcuts and aliases to folders and files instead of creating multiple copies, which
may later become ‘orphans’ and never be updated.

4 The purpose of a backup is to ensure a copy of the primary data is available in case the
original is damaged or lost. Data recovery will take time, and the process and time taken
forms part of a disaster recovery plan (DRP).

5 A full data wipe is when a full write and rewrite of 1s and 0s is completed at least three
times to ensure the data cannot be recovered and can be considered secure.

6 There are three types of control structures: sequential, selection and iteration.

7 Archives are placed in medium- to long-term storage and are usually compressed to
preserve storage space. Archives preserve a record of events and are often required by
regulatory authorities.

8 A data structure is a way of organising and storing data for e�cient access and
operations.

9 Arrays store a fixed number of elements of the same data type.

10 The array element index often begins at zero.

11 An associative array is more informative than an (indexed) array. Information is stored
in key-value pairs.

204

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION

12 Linear search is suitable for collections of a few elements, or a single search on unordered elements.

13 Binary search uses a divide and decrease algorithm, and is more e�cient than linear search.

14 There are a number of sorting algorithms available, including quicksort, selection sort and bubble sort.

15 A sorting algorithm is stable, if the order of equal elements in the input array remains unchanged in the output array.

16 Syntax is the set of rules that are used to create instructions. An instruction is something you want the computer to execute.

17 Flow of control is implemented with three basic types of control structures: sequential, selection and repetition or

iteration.

18 A routine returns a value when it is a function; otherwise, it is a procedure.

19 A function coded within a class is a method.

20 Validation checks that input data are reasonable. There are three types of validation checks: existence checks, type
checks and range checks.

21 Testing of your code should be documented in a testing table.

22 A project plan should be annotated to explain reasons for changes to task schedules or resourcing priorities.

23 Project logs are a record of all the small and large steps a project takes on its way to completion.

24 To divide up tasks by priority, create a priorities quadrant.

25 Evaluation checks how well the solution is satisfying the needs of the user for which it was originally created.

26 Evaluation looks at a solution’s performance over time in terms of the evaluation criteria.

27 Evaluation criteria fall under two headings: e�ciency and e�ectiveness.

28 For each evaluation criterion, there must be a corresponding method that can measure if the criterion has been achieved.

29 Objective results (fact-based, measurable) are solid facts that are hard to argue with.

30 Subjective results (emotions, opinions, personal judgements) can be gained from interviews, questionnaires and surveys.

31 For project plan evaluation, establish criteria that indicate how successful the project plan was. For example:

completeness, maintainability, accuracy and readability.

205

9780170440943

9780170440943

TEST YOUR

KNOWLEDGE

Managing files
Qz Review quiz

1 Why do files need to be organised? Explain how a directory hierarchy might work.

2 You are asked for advice on how to keep your software application and data safe and secure.
What would you recommend?

3 How can a HDD be securely wiped? How is this di�erent to just deleting a file?

Organising and manipulating data using data

structures

4 Explain the di�erence between an array and a record. Include reference to data type.

5 When is a data dictionary useful for programming? Explain how you would convince someone
who thinks the programming language will keep track of variable names and datatypes.

Features of a programming language

6 Briefly explain how any programming language works. Include reference to control structures.

7 What is iteration? Why is it useful? Give an example using an array with ten elements.

Efficient and effective solutions

8 E�ectiveness is often subjective. Who will you ask to determine the e�ectiveness of your
software solution? How will you ask so you know they didn’t just make up their response?

9 E�ciency is usually measured. What can be measured to demonstrate the e�ciency of a
software solution?

Techniques for checking coded solutions

10 What are some techniques for checking code?

11 Explain how ‘black box’ testing occurs. How is that di�erent to ‘white box’ testing?

Validation techniques

12 How is validation di�erent to testing?

13 Create a table listing what validation does and does not do.

14 List three types of validation.

206 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

TEST YOUR

KNOWLEDGE

Testing

15 If you cannot ‘test everything’, what do you test? Explain why.

16 What is a ‘testing table’? What does it record?

Recording the progress of projects

17 Why are developers strongly advised to keep an accurate daily log journal?

Factors influencing the effectiveness of the

development model

18 The PSM has been referred to many times, in which each of the stages has specific tasks to be
completed. E�ectiveness might be seen as the ability of the developer to deliver the promised
software. Why is a structured development model helpful in achieving the development plan?

19 List some of the advantages and disadvantages of the ‘single pass’ PSM. Can you suggest an
alternative?

Evaluating the efficiency and effectiveness of solutions

and project plans

20 What are some of the reasons that a plan may not finish on time?

21 How does a critical path assist with modifying a project plan? Could you have arranged your
plan to make better use of the available time?

22 What advice would you give to someone who is thinking of starting their Unit 3 Gantt chart?

☑ Project plan →Justification →Analysis →Folio of alternative
designs ideas

→Usability tests →Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

→Final submission

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION 207

9780170440943

APPLY YOUR

KNOWLEDGE

1 How would you apply validation to the following user input?

a Country of birth

b Age

c Agreement to terms and conditions

d Email address

e Victorian residence address (give two methods)

f Date of birth (give two methods)

2 Write a pseudocode algorithm for a new member to enter a username and a new password.
Include verification of the password, without displaying the characters. Provide a ‘Re-enter
password’ message if the passwords do not match, and an acknowledgement message if there is
a match.

3 How would you adjust the sort algorithms to sort from largest to smallest?

4 Write the following as pseudocode, then select and apply suitable test data for the following
data entry:

a A person is an adult if their age is 18 years or older.

b Data entry of daily maximum and minimum temperatures in Victoria

c Ages of clients for a local dental surgery

d Car registration number plates

e A system accepts values between 1 and 20 entered as input.

208 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

Unit

PREPARING FOR

4
OUTCOME 1

Develop the software solution, using an approved

programming language, conduct user evaluation in

response to the SRS criteria. Evaluate the project

plan for managing progress.

On completion of this unit, the student should be able to develop and evaluate a software solution that meets
requirements, evaluate the e�ectiveness of the development model and assess the e�ectiveness of the project plan in
monitoring progress.

This outcome (U4O1) will be assessed according to the school-based assessment advice issued annually by the VCAA.
All details should be verified each year prior to beginning your submission. Your teacher will provide specific details of the
assessment rubric that will be used in that year.

the project plan evaluation have been developed throughout chapter 5. Long reports must follow a sequence and have
internal consistency. The examples and suggestions in chapter 5 provide some guidance on how to accomplish the PSM –
development and evaluation stages to complete Unit 4, Outcome 1.

The methods for the usability testing, evaluation of the e�ciency and e�ectiveness of the software solution and

There are four criteria assessed in Unit 4, Outcome 1. Teachers will provide you with a schedule for submission of
these assessments.

The following completed assessment tasks are to be submitted for the SAT:

• Client software solution

• Usability testing

• Evaluation of e�ciency and e�ectiveness of the software solution

• Project plan evaluation report (including Gantt chart annotation)

Notes:

• Each of the documents can be in the form of (i) an annotated visual plan or (ii) a written report.

• The submissions correspond to assessment criteria in the school-based assessment rubric.

• Your work must be verified and authenticated by your supervisor.

• The log journal or weblog/blog will provide both supporting evidence that the work is your own and additional material
for annotating the Gantt chart.

1 Submission: Client software solution

(Final delivery of your finished software will be negotiated with your teacher.)

Your finished ‘product’ should be made available for assessment as a compressed (zipped) folder containing a directory
of all files required for the software to function with a plain ReadMe.txt file, with instructions for installation and
operation.

☑ Project plan ☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☑ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

CHAPTER 5 » SOFTWARE DEVELOPMENT AND PROJECT EVALUATION 209

9780170440943

PREPARING FOR UNIT 4 OUTCOME 1

Also included in the readMe.txt file would be any passwords to allow entry past security.

Ensure your software solution meets the SRS criteria before submission. This is achieved by continual verification
during the PSM – development stage.

2 Document: Testing

This report will contain a comprehensive range of test data that provides:

• testing tables with expected and actual results

• evidence of usability test – how the usability test was designed and delivered

• documentation of results of usability test

• documentation of modifications made to software solution as a result of testing.

Notes:

• You will prepare a usability test that addresses the core features of your solution.

• The test must have been undertaken by at least two other users and the results recorded.

• You can make any necessary adjustments to the software solution based on these results or make suggestions for
improvements.

3 Document: Evaluation of efficiency and effectiveness of the

software solution

Evaluate the quality of the software solution using criteria from the SRS and Design folio developed for Unit 3.

• Evaluate e�ciency and e�ectiveness of the solution based on the evaluation criteria created in Unit 3.

• Evaluate e�ciency and e�ectiveness of how the software solution meets functional and non-functional requirements.

4 Document: Project plan evaluation report (including Gantt chart

annotation)

Evaluate the e�ectiveness of the project plan and the PSM in developing the software solution. This document will
contain:

• annotated project plan with notes and comments explaining which tasks needed to be modified and what the changes
were

• your change log, which corresponds with the changes on your project plan

• the evaluation strategies determined earlier to assess the usefulness of the project plan

• the assessment and analysis of the e�ectiveness of the project plan and usefulness of the project plan.

When completing your project plan evaluation report, consider using headings and dot points where possible. This is
not an essay. Refer to the latest VCAA assessment criteria for the report headings.

210 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

G
et

ty
 Im

ag
es

/
A

n
d
ri

y
O

n
u
fr

iy
en

ko

CHAPTER

6
KEY KNOWLEDGE

On completion of this chapter,
you will be able to demonstrate
knowledge of:

Digital systems

• physical and software security
controls used to protect software
development practices and to
protect software and data, including
version control, user authentication,
encryption and software updates

• software auditing and testing
strategies to identify and minimise
potential risks

• types of software security and data
security vulnerabilities, including
data breaches, man-in-the-middle
attacks and social engineering, and
the strategies to protect against
these

• types of web application risks,
including cross-site scripting and
SQL injections

• managing risks posed by software
acquired from third parties.

Data and information

• characteristics of data that has
integrity, including accuracy,
authenticity, correctness,
reasonableness, relevance and
timeliness.

Reproduced from the VCE Applied Computing Study

Design (2020–2023) © VCAA; used with permission.

Cybersecurity risks

FOR THE STUDENT

In this chapter you will focus on the security risks to software and data
during the software development process. This chapter introduces the
theory and skills necessary for completing Unit 4, Outcome 2. You
will also consider the ongoing security risks for the use of the software
solution by an organisation. During this chapter you will analyse and
evaluate current software development practice security, including the
risks to software and data and the consequences of deploying software
with ine�ective security strategies. You will investigate types of security
vulnerabilities, including physical and software controls, web application
risks and third-party software risks. Finally, you will develop a risk-
management plan to recommend improvements to current practices,
after considering an organisation’s key legal requirements and ethical
issues.

FOR THE TEACHER

This chapter begins consideration of cybersecurity risks during the
software development process and deployment of the software solution
software and data. Students will analyse and evaluate a range of threats,
including physical and software controls to protect software and data
including version control, user authentication, encryption and software
updates, software auditing, types of software security and data breaches,
types of web application risks and, finally, managing risks o�ered by
software through a third party.

By the end of this chapter students should be able to identify and
discuss potential risks to software and data security, propose and apply
criteria to evaluate the e�ectiveness of security practices, identify and
discuss possible legal and ethical consequences of ine�ective security
practices for an organisation and to recommend an e�ective risk-
management plan.

The theory and skills for Unit 4, Outcome 2 will be applied to a
teacher-provided case study. The assessment task will be determined as
either structured questions, a written report or a multimedia report.

211

9780170440943

212

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Physical and software security
controls
It is very dif�cult today to imagine a world without the Internet, an international network

of computer networks that enables instant communication around the world. Web browsers

were �rst introduced around 1994 to provide simple access to web pages containing text,

audio and video. The development of the Internet has altered our daily lives in ways that

were unimaginable 25 years ago. While users can appear to surf the web without having to

identify themselves, attackers can also use this anonymity as a cloak to prevent authorities

from �nding and prosecuting offenders.

This chapter discusses the threats and vulnerabilities targeted by malware and social

engineering, and the increasing number of threats targeting applications. Many of these

attacks can have immediate impact as they exploit a previously unknown vulnerability.

These zero-day attacks leave no time (zero days) to respond to the threat. There has been

no preparation, as the threat or vulnerability was previously unknown. These attacks include

web application attacks, client-side attacks and buffer over�ow attacks.

Securing the web
Security includes a wide range of considerations. There are many ways and means to get

access to information and information systems. An attacker could simply walk in and read

data from a screen, or save it to a portable drive. In the online space, access to the administrator

privileged root level will allow an online intruder to freely explore all contents of all �les.

A Chief Information Security Of�cer (CISO) is a management position responsible for

the information security of the entire company. The CISO would devise and implement a

strategic plan to prevent, detect and respond to any attempts to breach security.

Security is de�ned as a combination of:

• con�dentiality

• integrity

• availability.

THINK ABOUT

SOFTWARE

DEVELOPMENT

6.1

Consider Figure 6.1,
and Donald Rumsfeld’s
comments on a lack
of evidence to support
his view.

1 Identify some
known unknowns
for cyber security.

2 Are there
any unknown
unknowns?

3 When does the
latter become the
former?

Known

knowns
unknowns

Known

Unknown

unknowns

FIGURE 6.1 ‘ There are known knowns. These

are things we know that we know. There are
known unknowns. That is to say, there are things
that we know we don't know. But there are also
unknown unknowns. There are things we don't
know we don't know …’ – Donald Rumsfeld

US$150 000.

CHAPTER 6 » CYBERSECURIT Y RISKS

Who are the attackers?
While we may never know for sure, we can take a guess at likely types of individuals who

may attempt to gain access to information and data or remove assets. These include hackers,

spies, insiders, cyber criminals and cyber terrorists.

Hackers

There are several types of hackers. Not all are malicious or are intent on causing disruption

and damage. Only two of these actors pose a threat to an organisation.

• White hat hackers, also called ethical hackers, act for good rather than evil purposes. They

will offer to repair virus damage, or to test for malware to provide a vulnerability alert.

• Grey hat hackers are not malicious, but their hacking methods may cross legal or ethical

lines.

• Black hat hackers, also called crackers, generate malicious code in several forms intended

to steal information and corrupt or disrupt computer operations through unauthorised

access to IT systems.

• Script kiddies use downloaded code from a variety of sources – rarely their own. They join

the dots by watching ‘How to’ YouTube videos on how to shape a denial of service (DoS)

attack. They use the Internet as their playground, rather than seeking out systems to attack.

Spies

Computer espionage targets speci�c computer installations, aiming to steal data and

information without being detected. Industrial espionage is a common motivator – this is

when the aim is to steal company secrets and provide them to competitors.

Insiders

The most effective attack on an organisation comes from an unlikely source known as an

insider. Employees, sub-contractors and business associates can abuse their access to company

information and systems. Many attacks are simple sabotage or theft of intellectual property,

although carelessness also contributes to data breaches. For example, hundreds of notebook

computers are lost or misplaced every day. These portable computers often contain sensitive

commercial information, personal details, client lists, price lists and company strategies.

Departing employees often ‘take their work’ with them to the new place of employment.

Company policy on staff departures needs to be clearly articulated.

Cybercriminals

Hacking is big business. Cybercriminals or skilled hackers establish schemes that harvest

information and scam unsuspecting computer users or legitimate companies, from large

corporations to small family businesses and individuals. For example, some black hat

organisations operate call centres and run phone scams. In one such scam, the hacker rings

a person and claims to work for Microsoft, and offers to help with a computer problem. After

the hacker convinces the potential victim to grant remote access to their computer or to

download and install software, the criminal harvests passwords and banking information or

takes over the computer and uses it to launch attacks on others. The victim is often charged

a fee for this ‘help’.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

213

WannaCry ransomware
was released in May
2017. Within two weeks
an estimated 400 000
computers in 15 countries
were infected. Security
experts released decryption
tools quickly to limit the
damage to approximately

9780170440943

214

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Sophisticated criminal organisations set up hundreds of schemes to defraud users. One

such scheme exploits so-called celebrity in�uencers. ‘Likes’, followers and friend requests

can be bought online to provide instant popularity. Fake Facebook and Twitter accounts are

easily automated to generate thousands of likes a minute. Twitter has a follower limit of 1000

per day, and a total limit of 5000. Twitter has 260 million accounts with 46 per cent of these

active on the platform daily.

Cyberterrorists

Terrorists are motivated by an ideological belief, and will attack on the basis of their principles.

Cyberterrorists are considered unpredictable, as the frequency and timing of their attacks are

strategically chosen to maximise disruption to computer users, and to interrupt systems and

networks that result in infrastructure outages or corruption of community data. For example,

they might target computers that control the electricity power grid, traf�c control systems or

railway or airport control systems.

What are the likely threats?
While the essence of the Rumsfeld statement referred to in Figure 6.1 may still apply, there

are many ‘known known’ threats. Threats represent a constant danger to an asset, and while

the details will vary according to the speci�c situation, threats have been well researched and

are well understood.

There are several categories of threat and they require different responses by those

entrusted to ensure security of data, information assets and personnel.

TABLE 6.1 Categories of threats

Category of threat

Acts of human error

Intellectual property compromised

Espionage

Extortion

Sabotage or vandalism

Theft

Software attacks, including malware

Forces of nature

Technical hardware failure or errors

Technical software failure or errors

Technological obsolescence

Examples

Accidents, incorrect assumptions, inadequate training,
inexperience, ignorance of policy requirements, leaving a back
door open

Piracy, copyright infringements

Unauthorised access and data collection

Blackmail where ransoms are demanded in return for release of
stolen data or control of systems

Destruction of systems or information

Illegally taking data, physical assets or IP

Viruses, worms, macros, XSS, SQL, XML injections, denial-of-

service

Fire, flood, earthquake, lightning

Equipment failure, known equipment weaknesses

Bugs, code problems, unknown loopholes, known loopholes
(back doors)

Outdated technology causes the system to be unreliable and
untrustworthy

submission

CHAPTER 6 » CYBERSECURIT Y RISKS

Data security
The purpose of any information system is to provide reliable and predictable performance.

To ensure an IT system is performing as expected, speci�c standards and criteria have been

devised through collaboration with industry and government.

Trust and con�dence in the quality of the information within a system is compromised if

any of the three components shown in Figure 6.2 is violated.

Confidentiality

215

Integrity Availability

FIGURE 6.2 The concepts of confidentiality, integrity and availability

(CIA) in relation to data security were devised over many years as use of
computer systems increased to become commonplace, widespread and
ultimately ubiquitous.

Confidentiality
Access to sensitive information is available only to those who have authorisation; anyone

not authorised is denied access. Implementation relies on usernames, passwords, access

control lists and encryption. Permission may be categorised on several levels according to

the sensitivity or amount of impact or damage that may be done if the information should get

into unauthorised hands. Security clearance levels of access used by military organisations

are sometimes adopted. This requires material to be classi�ed into six levels of access:

• top secret

• secret

• con�dential

• restricted

• of�cial

• unclassi�ed.

If a person holds a security clearance, they may be eligible to view a category of material;

however, there is still a requirement that they must ‘need to know’.

The Australian Government
Security Classification
system has four levels:
• top secret
• secret
• confidential
• protected.

A dissemination limiting
markers scheme further
limits disclosure by
declaring material to be For
O�cial Use Only (FOUO)
or Sensitive.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

G
e
n
e
ra

l'
s

D
e
p
a
rt

m
e
n
t

216

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Integrity
Information must be consistent with the original purposes and have true and correct details.

The receiver of the information must be able to trust the source and be assured that any edit

or modi�cation has been performed only by those authorised. Integrity can be assured when

data and information is stored using security mechanisms such as encryption or hashing.

Backups that are identical to the source must also be kept.

Availability
Access is available to those permitted to use the materials. Hardware is maintained in a ready

state so that issues of hardware maintenance and redundancy, software updates, patching

and network access issues do not affect the user. Dedicated hardware can overcome the

serious consequences of downtime, or when denial of service (DoS) attacks occur.

Physical security

FIGURE 6.3 The Australian Government Protective Security Policy Framework describes the physical
protections required to safeguard people, information and assets.

While there are many interpretations of processes to safeguard the physical security of

people and assets, the Australian Government has a fully documented protocol readily

available online. The Protective Security Policy Framework (PSPF) speci�es in exhaustive

detail the steps required to minimise or remove security risks to people, information and assets.

The core requirement states:

Each entity must implement physical security measures that minimise or remove the
Protective Security
Policy Framework
(PSPF)

risk of:

a harm to people

b information and physical asset resources being made inoperable or inaccessible, or being

accessed, used or removed without appropriate authorisation.

In summary:

… that entities protect their resources by using a combination of physical and procedural

security measures to achieve this outcome. These include measures to:

a Deter – measures that cause signi�cant dif�culty or require specialist knowledge and

tools for adversaries to defeat

b Detect – measures that identify unauthorised action is being taken or has already occurred

c Delay – measures to impede an adversary during attempted entry or attack, or slow the

progress of a detrimental event to allow a response

d Respond – measures that prevent, resist or mitigate an attack or event when it is detected

e Recover – measures to restore operations to normal levels (as soon as possible) following

an event.

© Commonwealth of Australia 2019. Australian Government: Attorney-General's Department. Released under CC BY 4.0 International, link

to license: https://creativecommons.org/licenses/by/4.0/

9780170440943

©
 C

o
m

m
o
n
w

e
a
lt
h
 o

f

A
u
st

ra
lia

 2
0

19
. A

u
st

ra
lia

n

G
o
ve

rn
m

e
n
t:
 A

tt
o
rn

e
y-

CHAPTER 6 » CYBERSECURIT Y RISKS

217

Layering zones

FIGURE 6.4 PSPF indicative zone names and definitions for physical access

Entities are advised

to layer zones,

working in from

Zone One (public

access areas), and

increasing the level

of

each

protection with

new zone.

Multiple layers are

the ‘delay’ design

feature, as they pro-

vide more time to

detect unauthorised

entry and respond

before resources are

compromised.

FIGURE 6.5 These
diagrams demonstrate
indicative layering of
zones implemented for
di�erent locations. In
some instances it may
not be possible for higher
zones to be fully located
within lower zones, and
so higher zone areas may
need to be strengthened.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

©
 C

o
m

m
o
n
w

e
a
lt
h
 o

f
A

u
st

ra
lia

 2
0

19
. A

u
st

ra
lia

n
 G

o
ve

rn
m

e
n
t,
 A

tt
o
rn

e
y-

G
e
n
e
ra

l’s
 D

e
p
a
rt

m
e
n
t.
 R

e
le

a
se

d

u
n
d
e
r

a
 C

C
 B

Y
 4

.0
 I
n
te

rn
a
ti
o
n
a
l
lic

e
n
se

,
lin

k
to

 l
ic

e
n
se

:
h
tt

p
s:

//
cr

e
a
ti
ve

co
m

m
o
n
s.

o
rg

/
lic

e
n
se

s/
b
y/

4
.0

/

©
 C

o
m

m
o
n
w

e
a
lt
h
 o

f
A

u
st

ra
lia

 2
0

19
. A

u
st

ra
lia

n

G
o
ve

rn
m

e
n
t:
 A

tt
o
rn

e
y-

G
e
n
e
ra

l’s
 D

e
p
a
rt

m
e
n
t.
 R

e
le

a
se

d

u
n
d
e
r

C
C
 B

Y
 4

.0
 I
n
te

rn
a
ti
o
n
a
l,

lin
k

to
 l
ic

e
n
se

:
h
tt

p
s:

//

cr
e
a
ti
ve

co
m

m
o
n
s.

o
rg

/
lic

e
n
se

s/
b
y/

4
.0

/

9780170440943

218

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

THINK ABOUT

SOFTWARE

DEVELOPMENT

6.2

Consider the diagram
of the typical secure
building shown in
Figure 6.6.

Identify which secure
measures are to:

a deter

b detect

c delay.

In addition, are there
any other measures
that could be
deployed?

A secure building with IT resources
A typical building with sensitive data resources and a high risk of losses if the IT systems

were compromised would employ a variety of security measures to deter, detect or delay an

intruder. These include:

• closed circuit television cameras (CCTV) to warn guards of approaching people, and to

provide a record identifying individuals if evidence is later required

• motion sensors to activate CCTV monitoring and security lighting to record all activity

in the immediate area

• physical barriers to isolate areas of the building

• security passes to authorise access to secure areas

• biometric authentication for authorised personnel

• alarm systems, such as perimeter (or external) intrusion detection systems (PIDS) or

alarms and internal security alarm systems

• security guards, which provide the highest level of scrutiny when available 24/7 with

random interval patrols every four hours.

FIGURE 6.6 A typical
secure building layout

A typical office environment

There are many opportunities to improve security of assets and information in a typical of�ce

environment. The entire network and all its components need physical protection to ensure

con�dentiality, integrity and availability.

Lock the server room

Keep the server room door locked at all times, and ensure the automatic door closer has a

short return time to deter tailgating, or piggyback entry. Physical locks are the single best

deterrent once an intruder has breached all other barriers. Master keys and keycodes need

to be recorded to identify who has authorised access. Electronic locks record both time of

access and the user code.

Traditional keylocks require CCTV monitoring to identify who enters and when.

M
ar

ch
 2

0
19

.

CHAPTER 6 » CYBERSECURIT Y RISKS

Software security
Over time, CISOs and other IT managers have become aware that there is no single way of

securing information.

To develop secure applications, begin by assuming that all data received by the application

is from an untrusted source. This applies to all data received – data, cookies, emails, �les

or images. This includes users who have logged in to their account and authenticated

themselves. There is no preferential treatment to any user; all should be subject to the entire

range of security measures.

Not trusting user input means always validating it for type, length, format and range. The

data is challenged each time it is processed; for example, when data is entered through a

web form to an application script, and encoded before being displayed on a dynamic page.

Logistically, this means that any values accepted from the client side are checked, �ltered

and encoded before being passed back to the user. Any user-supplied data handling and

processing must be certi�ed as secure.

Which security incidents/attack types have
you encountered in the past year?

Percentage of respondents, N=2,909

Malware

Malicious spam

Phishing

Spyware

Data breach

Ransomware

Mobile malware

Improper file sharing

Stolen credentials

Fileless malware

Security attacks
Billions of dollars and thousands of hours are expended each year on computer security. The

number of attacks that are prevented increases each year, as do the number of successful attacks.

How do these attacks occur?

Recent attacks include malware and online banking attacks.

1 Malware: Fake anti-virus attacks are responsible for the majority of the malware delivered

by web advertising. For example, a user clicks on an advertisement on a web page offering

a free virus scanner. Suddenly a warning declares that the computer is infected. A pop-up

window invites the user to purchase anti-virus software to clean their computer. At this

point the window cannot be closed, and rebooting does not clear the pop-up window.

Many users enter their credit card details to purchase the software; these are transmitted

to the attacker, who uses them to make online purchases. Malware often remains on a

computer until the computer drive is wiped and a fresh operating system is installed.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

Australia’s Cyber
Security Strategy

27%

23%

21%

19%

19%

42%

38%

36%

33%

FIGURE 6.7 A survey across
many businesses and several
countries identified the most
frequent risk of attacks. Notably,
the first three all use email to
gain access to a computing
device.

49%

219

THINK ABOUT

SOFTWARE

DEVELOPMENT

6.3

The Australian
Government will
spend $38.7 billion on
national security in the
2019–2020 financial
year. Some of these
funds are allocated
to defending against
cyberattacks as part
of the government’s
CyberSecurity
Strategy. Quick
responses are required
in the event of a
targeted attack
against government IT
systems.

The Australian
Cyber Security Centre
delivers intelligence,
cyber security and
o�ensive operations
in support of
the Australian
Government and
Australian Defence
Force (ADF).

1 Use the weblink
below to research
the details of the
Cyber Security
Strategy.

2 What are the cyber
security goals?

3 How might these
goals a�ect you,
either directly or
indirectly?

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

B
as

ed
 o

n
 d

at
a

fr
om

 C
is

co
’s

 C
yb

er
se

cu
ri

ty
 S

er
ie

s
20

19
: ‘

A
n
ti
ci

p
at

in
g
 t

h
e

U
n
kn

ow
n
s:

 C
h
ie

f
In

fo
rm

at
io

n
 S

ec
u
ri

ty
 O

ff
ic

er
 (

CI
SO

)
B

en
ch

m
ar

k
St

u
d
y’,

9780170440943

220

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

In June 2016, 94 per cent
of adult Australians used
the Internet to conduct
banking, pay bills, or buy
and/or sell goods and
services.
Source: Cybersecurity
Strategy, First Annual
update 2017, Australian
Government

2 Online banking: The increase in the use of mobile devices, smartphones and tablets has

brought a corresponding increase in ‘convenience apps’. These applications remove the

‘friction’ when interacting with certain activities. For example, one-touch purchasing

and �ngerprint or facial recognition remove the delays in purchasing online products

and services. If a consumer can be convinced (i.e. ‘conned’), then the purchase is

approved, often without goods and services being supplied, or with exorbitant shipping

fees and delays. Stolen credentials and payment authority are increasingly common, with

unsecured wi-� transmitting usernames, passwords and credit card details unencrypted.

Shopping centre wi-� is often imitated by the attacker. The goal is often to capture online

banking details transmitted across wi-� networks, rather than a single transaction with a

credit card. For example: paying for car parking by smartphone on wi-�, instead of via the

more secure 4G network.

FIGURE 6.8 Phishing for your details. Spelling and grammar errors are the first indication of a scam. The
unusual domain name in the email should also increase concerns.

Cryptojacking malware increases 4000% in 2018

ISSUE
Crypto mining scams occur when a hacker accesses someone’s computer without their
permission to mine for digital tokens. Hackers will infiltrate a computer by tricking a person into
clicking on a malicious link in an email or they will infect a website to gain access.

The rise of crypto mining malware this year has displaced ransomware, which was a huge story
in 2017 as bitcoin and other digital token prices plummeted. With hackers no longer making
money o� holding individuals’ and companies’ data for ransom, they searched for new ways to
earn a living. Crypto mining malware is attractive because it can go undetected for a very long
time, but it takes longer to make money o� the scam. A ransomware attack can yield a hacker
more money in less time, but the victim will become aware very soon and could baulk at paying.

Source: From Forbes.com © 2018 Forbes. All rights reserved. Used under license.

221
CHAPTER 6 » CYBERSECURIT Y RISKS

Other technical threats that seek to exploit a vulnerability are listed in Table 6.2.

TABLE 6.2 Technical threats

Threat

Back door

Brute force

DoS and DDoS

Password dictionary

DNS cache poisoning

Hoax

Mail bombing

Malicious code or malware

Man-in-the-middle

Rootkit

Sni�er

Spear phishing

Spoofing

Malware

There is a huge variety of malicious software that can take advantage of weaknesses in the

host computer software or operating system. The main objective of viruses and worms is to

spread infection, while others aim to remain concealed and undetected. All, however, enter

the computer system without the user’s knowledge and perform unwanted and sometimes

harmful actions.

Viruses

A computer virus is malicious code that reproduces itself on the same computer. The code

inserts itself into �les and modi�es, corrupts or destroys the ability of the �le to operate as

normal. There are many ways the virus can infect the data �le or program:

a Appender infection

b Swiss cheese infection

c Split infection

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

Description

Program feature left by developers during maintenance or installed by
malware

By sheer computing power, every combination of a password is tested

Overwhelming number of connection requests, which e�ectively block
access to the website

Using known passwords from data breaches reduces the number of guesses
to break in compared with random or brute force attacks

DNS data is replaced with bogus URL and redirects to an attacker’s fake
facsimile website

Time wasted on fake threats or attacks

Huge volumes of email directed at a target

Viruses, worms, trojans, logic bombs, active scripts C++, PHP, Python,
Ruby, VBnet, Flash, SQL injection, cross-site-scripting

A network connection is hijacked, enabling a third party to see and modify
the transferred data

Sections of the computer operating system are altered or replaced to allow
prohibited activity

Data over a network is monitored by software or a device

Targeted social engineering phishing invitations exploit personal and financial
information, particularly through email and social media. Increasingly
focused on known wealthy individuals.

Unauthorised access is gained by fooling the host computer into trusting a
fake IP address

9780170440943

222

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

THINK ABOUT

SOFTWARE

DEVELOPMENT

6.4

Explore the latest
Scamwatch statistics
at the ACCC website.

1 What are the
limitations on
the information
displayed?

2 If these statistics
are an estimate,
will the actual
numbers be higher
or lower than those
displayed? Explain
your reasoning.

3 For the current
year, which
category has:

a the most
reported scam?

b the greatest
amount lost?

c the most
frequent
delivery
method?

d the most
a�ected age
group?

4 Why is the
connection
between ‘Amount
lost’ and ‘Number
of reports’
inconsistent?

FIGURE 6.9 Types of virus infection that can overwhelm a file collection on local storage media:
a Appender virus; b Swiss cheese virus; c Split infection virus

Worms

A worm is a self-replicating malicious code that can spread across computer systems, which

can modify, corrupt or delete data or information. Other programs can also be run undetected

by the legitimate user and operated remotely as ‘zombie bots’.

Trojans

This code is named after the story from Greek mythology where the Trojan Horse appears

to be one thing, but is actually another. Trojans often take the form of ‘free virus-checking

software’, when in fact they are malware and can be virus propagators. Permission must be

granted to allow of the software to be installed on the computer. The user must be convinced

to enter the appropriate password to activate installation.

This attack is dif�cult to counter, as the weakness is the human user who has administrative

permission to install software. If that person installs the software, the computer can be infected.

Preventative measures are mostly defensive, such as maintaining full incremental backups

of system and user �les and applying anti-virus software that scans for known characteristics.

The disadvantage with both of these strategies is that the newer malware will not be detected

and the computer hard drive will need to be wiped and a full system reinstalled.

Logic bomb

Malicious software will lie dormant until a timer or conditional trigger goes off, which will

activate at a pre-determined time or when certain circumstances are satis�ed. Logic bombs

are placed by programmers or developers who have access to the source code.

Detection and prevention

Scamwatch

In Australia, the Australian Competition & Consumer Commission (ACCC) maintains a

Scamwatch website, where instances of the frequency and estimated costs of various scams

are presented.

The Australian Cyber Security Centre (ACSC) provides:

• monitoring of cyber threats across the globe 24 hours a day, seven days a week so that

Australians can be alerted early on about what to do

• advice and information about how to protect individuals and businesses online

CHAPTER 6 » CYBERSECURIT Y RISKS

223

FIGURE 6.10 ACCC Scam statistics for 2018

• clear and timely advice to individuals, small to medium business, big business and critical

infrastructure operators when there is a cybersecurity incident

• investigation and solution development to cybersecurity threats

• services to �ght cybercrime.

Security procedures related to malicious software are shown in Table 6.3.

FIGURE 6.11 The Australian Cyber Security Centre is part of the Australian Signals Directorate, which
works in matters of intelligence, cybersecurity and o�ensive operations.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

©
 C

o
m

m
o
n
w

e
a
lt
h
 o

f
A

u
st

ra
lia

 2
0

19

©
 C

o
m

m
o
n
w

e
a
lt
h
 o

f
A

u
st

ra
lia

 2
0

19
. A

u
st

ra
lia

n
 G

o
ve

rn
m

e
n
t:
 A

tt
o
rn

e
y-

G
e
n
e
ra

l’s
 D

e
p
a
rt

m
e
n
t.

R
e
le

a
se

d
 u

n
d
e
r

C
C
 B

Y
 3

.0
 A

U
,
lin

k
to

 l
ic

e
n
se

:
h
tt

p
s:

//
cr

e
a
ti
ve

co
m

m
o
n
s.

o
rg

/
lic

e
n
se

s/
b
y/

3
.0

/

a
u
/

d
e
e
d
.e

n

9780170440943

224

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 6.3 Security procedures for malicious software or malware

Detection Prevention equipment

Malicious software
(malware) may cause:

Changes in file sizes
or date/time stamps

Computer slow
starting or slow
running

Unexpected or
frequent system
failures

Change of system
date/time

Low computer
memory or increased
bad blocks on disks

Unexpected data loss
or file corruption

Performing a virus
scan may uncover
potential threats

Firewall: A firewall is a hardware device or
software that blocks unauthorised access
from particular locations or to particular
parts of a computer.

For example, web tra�c is normally sent
and received on port 80 of your modem; a
firewall can be configured to block access
from all other ports.

Firewalls are very good at stopping the
spread of ‘worms’ but ine�ective with other
types of ‘malware’.

A network firewall resides between two
networks (usually the Internet and the
organisation’s network).

A client firewall is software that runs on the
end user’s computer.

Antivirus software: Antivirus software
can scan your system for known viruses or
detect system behaviour that may indicate
an infection.

Spam filter: Worms often present

themselves as an email attachment. Having
an e�ective spam filter with up-to-date
definitions can prevent this.

Prevention policies Countermeasures

Limit user privileges. Limiting
user privileges will limit the
damage that can be done.

Limit user connectivity and
user downloads.

Limit executable files and limit
media that can be used for
loading data and software.

Provide thorough user training.
Many threats, including
trojans, rely on inadvertent
user cooperation. User training
is the best prevention.

Perform security upgrades.
Upgrade via security patches as
soon as they become available.

Keep all virus and spam
definition files up to date.

Perform regular backups.
In the event that infection

cannot be prevented, the
data needs to be able to be
e�ciently restored.

Quarantine a�ected
equipment and remove
from the network. Infected
computers may need to be
completely reformatted and all
data destroyed.

Run antivirus software and
attempt to locate and destroy
known viruses.

Determine source of infection
and issue alert. Depending on
the nature of the threat, the
alert may need to be issued not
only to other system admins,
but to all network users.

Restore any lost data with most
recent backups and replace any
damaged equipment.

Enact business continuity plan
in order to limit the amount
of downtime and minimise the
negative consequences of the
infection.

Software development practices
The software development life cycle (SDLC) may take months or years before a product is

released. The product is then maintained through various updates and eventually retired.

Over that entire period of time, the product is expected to withstand many potentially hostile

acts and still preserve the integrity, con�dentiality and availability of its underlying functions,

database and customer/consumer information.

The process of securing the integrity of the software begins in the design and development

See chapter 5 for further
details about Waterfall and
Agile SDLCs.

stages. In a traditional ‘waterfall’, SDLC security might come towards the end of each stage

in the development cycle. In recent times, ‘agile’ SDLC methods have integrated security

considerations into early discussions about how the software operates and identifying essential

functions.

Frequently, a security software development life cycle (secSDLC) is necessary to apply

known solutions and preventative measures to the developing product.

Often, vulnerabilities are caused unintentionally. Software developers insert sections of code

as a temporary measure, with every intention of returning to ‘�x’ this short-term measure. Too

frequently these insecure methods are used in order to meet a deadline. Project management

and version control software has removed the opportunity for insecure code that is ‘not ready’

or does not meet production requirements. The ‘new’ strategy does not allow the creation of a

potential weakness or vulnerability. Instead, only compliant code can be added to the project;

any code that is not yet ready is simply not permitted to be added to the project. (See the case

studies on ATLASSIAN project tracking on page 225, and Apache Subversion on page 226.)

CHAPTER 6 » CYBERSECURIT Y RISKS

How to protect software and data
Data must be protected in line with legal requirements (see chapter 7 for legislation

implications) during the stages of development and after release of the product. Frequently,

‘real data’ may be used for testing purposes, when protections may not have been put in place.

Software may be a ‘work in progress’, but it can be an attractive target for those interested

in gaining commercial advantage, early release for bootleg copies, or with other motivations.

Software security in this instance may be more vulnerable and more important than after the

release of the gold master �nal version.

There may be large numbers of employees with proximity and access to the master �le

storage. The security protocols outlined in the security plan will specify when and who has

access, and this needs to be consistently applied during the development and release stages.

Version control

As all software developers quickly discover, keeping track of changes and the working up-to-

date ‘master’ �le is a challenging task. Frequently, soon after changes are made, a reversion

to the previous unmodi�ed �le is necessary. Should the developer choose to keep one master

�le, all changes will not be recorded. Clearly a log of all changes is necessary. This version

When teams of developers work on several streams of the software, versions and stages

become important, and the issue of merging the improvements becomes a new challenge.

Software control of versions has been developed with ‘Subversion’, a popular open source option.

Atlassian provides a commercial ecosystem for software development, and is free for teams of

less than �ve. Version control may also be integrated into the programming language IDE.

Atlassian

Creating a branch for each issue makes it easy to hand-pick which changes to ship out to
production or bundle into a release. Since you are not dog-piling changes onto master,
you get to select what comes into master – and when. You can ship an epic’s MVP plus one
nice-to-have, rather than wait until all the nice-to-haves are fully baked. Or ship a single
bug �x and do it within the framework of a regular ol’ release. Even if the �x is urgent, you
won’t have to deal with the three-ring circus of backing out other changes that aren’t ready
to ship yet just to get that one change out the door.

And that ease of shipping a single code change is the essence of continuous delivery.

Text extract from ‘Super-powered continuous delivery with Git’, by Sarah Goff-Dupont, accessed from https://es.atlassian.com/

continuous-delivery/principles/why-git-and-continuous-delivery-are-super-powered

Basic workflow

Keep master green

MASTER

FEATURE/DEV - 30

FEATURE/DEV - 45

Experiment on your feature branch

FIGURE 6.12 Atlassian software creates a development branch for each story or bug-fix or task you implement.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

CASE

STUDY

225

control records each stage of the development so that it is possible to ‘roll back’ to any

previous point in the development.

©
 A

tl
a
ss

ia
n
,
lin

k
to

 a
rt

ic
le

:
h
tt

p
s:

//
w

w
w

.

a
tl
a
ss

ia
n
.c

o
m

/
co

n
ti
n
u
o
u
s-

d
e
liv

e
ry

/

p
ri

n
ci

p
le

s/
w

h
y-

g
it
-a

n
d
-c

o
n
ti
n
u
o
u
s-

d
e
liv

e
ry

-a
re

-s
u
p
e
r-

p
o
w

e
re

d

14

226

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

CASE

STUDY

Apache Subversion

Apache Subversion (SVN) is a system of software versioning and revision control. Subversion
was created by CollabNet Inc. in 2000, and is now a top-level Apache project being built
and used by a global community of contributors.

Subversion uses branches and tagging to map versions. A branch represents a separate
line of development. Tagging refers to labelling the repository at a certain point in time
so that it can be easily found in the future. In Subversion, the only difference between
branches and tags is how they are used.

A new branch or tag is set up by using the ‘svn copy’ command, which should be used
in place of the native operating system mechanism. The copied directory is linked to the
original in the repository to preserve its history, and the copy takes very little extra space
in the repository.

All the versions in each branch maintain the history of the �le up to the point of the copy,
plus any changes made since. One can ‘merge’ changes back into the trunk or between
branches.

Subversion is distributed as open source under the Apache License. Subversion is used
by software developers to maintain current and historical versions of �les such as source
code, web pages and documentation. Its goal is to be a mostly compatible successor to
the widely used Concurrent Versions System (CVS). The open source community has used
Subversion widely in projects such as Apache Software Foundation, FreePascal, FreeBSD,
GCC and SourceForge.

6

Branches Merges

2 3

1

Trunk

4

5 Tags

FIGURE 6.13 A project plan using Subversion

User authentication

THINK ABOUT

SOFTWARE

DEVELOPMENT

6.5

A common developer
saying is: ‘Beware of
code written by just
one person’.

Most software is
developed by teams.
Sometimes hundreds
of people are involved
in the various stages
of construction,
exploration and
production following
an Agile method of
SDLC. Provide at least
two reasons to explain
why this might be.

The ACSC recommends using certain techniques to prevent cybersecurity threats. These

techniques include clearly documenting and training employees in cybersecurity systems and

plans, and designing and implementing cybersecurity awareness programs for all employees.

To prevent or lessen the impact of data spills and breaches and other cybersecurity

incidents, the ACSC advises the implementation of the following steps.

1 Require all users to periodically reset passwords to reduce the ongoing risk of credential

compromises.

2 Consider increasing password length and complexity requirements to mitigate the risk of

brute-force attacks being successful.

3 Implement a lockout for multiple failed login attempts.

4 If credentials have been compromised, reset passwords as soon as possible.

5 Discourage users from reusing the same password across critical services such as banking

and social media sites, or sharing passwords for a critical service with a non-critical service.

6 Recommend the use of passphrases that are not based on simple dictionary words or a

combination of personal information. This reduces the risk of password guessing and

simple brute-forcing.

9780170440943

7 8

10 12

13

9 11 15 16

Discontinued development
branch

U
se

d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 M
ic

ro
so

ft

CHAPTER 6 » CYBERSECURIT Y RISKS

7 Advise users to ensure new passwords do not follow a recognisable pattern. This reduces

the risk of intelligent brute-forcing based on previously stolen credentials.

8 Use multi-factor authentication for all remote access to business systems and for all users

when they perform a privileged action or access an important (sensitive/high-availability)

data repository.

9 Look out for unusual account activity or suspicious logins. This may help detect when a

service such as email has been compromised and needs a password reset.

10 Encourage users to think carefully before entering credentials.

– Ask if this is normal.

– Don’t enter credentials into a form loaded from a link sent in email, chat or other

means open to receiving communications from an unknown party.

– Even if the page looks like the service being reset, think twice.

– Do not click the link. Instead, browse to the website and reset the password from there.

– Be aware that friends’ or other contacts’ accounts could be compromised and

controlled by a third party to also send a link.

11 If some credentials have been compromised, try to identify a speci�c cause. Were the

credentials entered in an untrusted place? Were they recently reset? What were the

credentials for? Were the credentials used elsewhere?

12 Keep operating systems, browsers and plugins up-to-date with patches and �xes.

13 Enable anti-virus protections to help guard against malware that steals credentials.

© Office of the Australian Information Commissioner— www.oaic.gov.au. Extract from ‘Information from the Australian

Cyber Security Centre about preventing and mitigating data breaches’. Released under CC BY 3.0 AU, link to license:

https://creativecommons.org/licenses/by/3.0/au/deed.en

Encryption

The encryption strategy recognises that data will be exposed to unauthorised access, so the

data is rendered useless by encoding it to make it unintelligible to all but those properly

authorised and accredited. There are several forms of encryption readily available. Pretty

Good Privacy or PGP has been available since 1991.

Software updates

Vulnerabilities to existing systems are constantly identi�ed and a �x is created by the

distributors of the software. These �xed versions are released by software companies as

a ‘patch’ to be inserted in the operational software wherever it may be installed. The

obligation for installing and updating the vulnerable software

is entirely on the user or operator of the software. The software

company has a responsibility to make the patch available, but it is

up to the software operator to update and ensure the software and

system is as secure as it can be. (See the WannaCry case study,

page 228.)

There are dire implications for running compromised systems.

For example, compensation is likely to be due to affected users of

the system if all reasonable steps have not been taken to secure

users’ personal data and information.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas

FIGURE 6.14 ‘Patch Tuesday’ is when Microsoft
releases updates and patches every second Tuesday.

☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

227

228

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Software updates are a regular step in the maintenance of deployed software products.

Operating systems are frequently updated according to a published timetable or as the need

arises.

FIGURE 6.15 macOS updates for OSX. There is a major release each year; dot updates have been

irregular or as the need demands.

CASE

STUDY

WannaCry is a ransomware cryptoworm

In 2017 the WannaCry cryptoworm, also known as WannaCrypt, targeted Microsoft
Windows operating systems by encrypting data and demanding ransom payments in
Bitcoin cryptocurrency.

The worm automatically spread itself by using a vulnerability that was �rst identi�ed by
the US National Security Agency but was withheld to allow the exploit to be used for NSA
purposes. WannaCry has been estimated to affect 230 000 computers in 15 countries over
a period of two weeks.

Ninety-eight per cent of the affected systems were running Windows 7 and 8, with the
remainder running Windows XP. Microsoft had released a patch several months earlier that
would have prevented the attack, but only if Windows updates were enabled. The affected
computers had not received an update since the last patch issued by Microsoft in 2014.

To avoid such exploit attacks:
1 Maintain the operating system by installing all security updates immediately. Microsoft

issued a patch in March; WannaCry did the damage in May.
2 Only run supported operating systems. Both Windows XP and Windows 7 are no longer

receiving updates.
3 Software developers rely upon noti�cation of vulnerabilities as and when they are found.

The vulnerability was known but had been stockpiled, rather than disclosed.

FIGURE 6.16 Widespread impact of the WannaCry cryptoworm attack

9780170440943

©
 R

o
b
se

rv
a
to

ry

R
o
ke

 v
ia

 W
ik

im
e
d
ia

. R
e
le

a
se

d
 u

n
d
e
r

C
C
 B

Y
 S

A
 3

.0
,
lin

k
to

 l
ic

e
n
se

:
h
tt

p
s:

//

cr
e
a
ti
ve

co
m

m
o
n
s.

o
rg

/
lic

e
n
se

s/
b
y-

sa
/

3
.0

/

d
e
e
d
.e

n

In
te

rn
a
ti
o
n
a
l,

lin
k

to
 l
ic

e
n
se

 h
tt

p
s:

//
cr

e
a
ti
ve

co
m

m
o
n
s.

o
rg

/
lic

e
n
se

s/
b
y-

sa
/

4
.0

/

CHAPTER 6 » CYBERSECURIT Y RISKS

Strategies for minimising
potential risks
A recommended attitude to security would be that risks can be reduced rather than

eliminated. When new threats and variations on existing threats are revealed, quite often the

basics need to be checked, and well-known, established solutions implemented.

Software auditing and testing strategies
During software development there are many opportunities to test the software for compliance

with expected outputs. An end-to-end strategy ensures that testing takes place at every stage of

the software development cycle. The Open Web Application Security Project (OWASP)

has published a recommended testing framework that may be considered to form the basis of

the development work�ow. OWASP provides software tools that can perform tests for known

vulnerabilities. Sample code is provided which will ‘break’ the web application.

OWASP

229

Before
development

Review SDLC
process

Metrics
criteria

Policy review
Standards

review

measurement

traceability

Definition
and design

Requirements
review

Design and
architecture

review

Create/
review UML

models

Create/
review threat

models

Development Code review
Code

walkthroughs
Unit and

system tests

Deployment
Penetration

testing

Configuration
management

reviews

Unit and
system tests

Acceptance
tests

Maintenance
Chance

verification

Health

checks

Operational
management

reviews

Regression

tests

FIGURE 6.17 The OWASP Testing Guide outlines a comprehensive security strategy for the software
development life cycle.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

©
 O

W
A

S
P.

 A
cc

e
ss

e
d
 f

ro
m

 h
tt

p
s:

//
w

w
w

.o
w

a
sp

.o
rg

/
im

a
g
e
s/

1/
19

/
O
T
G

v4
.p

d
f.
 R

e
le

a
se

d
 u

n
d
e
r

C
C
 B

Y
 A

tt
ri

b
u
ti
o
n
-S

h
a
re

A
lik

e
 4

.0

9780170440943

230

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

A cautionary comment by Michael Howard, a software security expert at Microsoft, at an

OWASP AppSec Conference held in Seattle (2006) was:

‘Tools do not make software secure! They help scale the process and help enforce

policy.’

The Foreword to the OWASP Testing Guide also warns that companies should not rely

on OWASP’s security software alone:

Most importantly, these tools are generic - meaning that they are not designed for

your custom code, but for applications in general. That means that while they can �nd

some generic problems, they do not have enough knowledge of your application to

allow them to detect most �aws. In my experience, the most serious security issues

are the ones that are not generic, but deeply intertwined in your business logic and

custom application design.

Quote from Michael Howard at the 2006 OWASP AppSec Conference in Seattle. Accessed from

https://www.owasp.org/index.php/Testing_Guide_Foreword.

Released by CC BY-SA 4.0 International, link to license: https://creativecommons.org/licenses/by-sa/4.0/

Software auditing

A software security audit may be conducted separately or as part of a larger overall software

audit. Auditing of software may have several meanings. One meaning looks at how the software

works. Another meaning is to review the software for compliance with speci�ed standards. Does

the construction of the software follow the rules? Has any licencing been noted and recorded?

For example, the costs of licensing should be looked at when a site licence is held for 10 seats

but only six people are ever using the software, or when a licence for 10 is being paid for but 30

people are using the software every day. This issue is not about how the software works; rather,

it is a consideration of the risk of legal action and cost bene�t of a particular software solution.

The purpose of a software review is to:

• uncover any issues or problems early; it is simpler and costs less to �x an issue earlier in

the project

• improve performance, scalability and reliability

• review any necessary or unnecessary testing

• ensure the application can be maintained and extended in the future

• make sure you use the appropriate technology for the job

• satisfy legal and licensing requirements.

The software audit may be an internal or external review; that is, the review may be

carried out by someone independent of the developer team, or by the developer team itself.

The software audit may use analysis tools to gather data on the performance of the software

for security or for functionality.

A typical software audit process will usually:

• document all uses and demands of the software

• test the software for standards compliance, also known as pen testing

• identify assets necessary for the operation of the software, including extreme case limits

• identify security con�gurations and compare with acceptable security settings

• consider levels of user training necessary for the operation of the software.

submission

CHAPTER 6 » CYBERSECURIT Y RISKS

231

System

design
Threat

source

No risk
NO

Vulnerable?

YES

No risk
NO YES

Exploitable?
System is
vulnerable
to attack

Threat and
vulnerability exist

Risk of
loss exists

NO

Risk acceptable

Attacker gain
>

attack cost?

YES

Risk acceptable
NO Expected loss

>
capacity to pay?

YES

Unacceptable risk

FIGURE 6.18 Determining unacceptable security risk

These �ndings would be documented and a report prepared. A management group

would consider the �ndings and authorise any further action. Part of the consideration of the

report would be to look at risk management and cost–bene�t analysis. The directors would

consider the legal obligations, and once satis�ed that all legal compliance had been met,

gauge the level of risk that the organisation would be prepared to accept.

If it is not possible to eliminate all risks, the question then becomes, ‘What level of risk

is tolerable?’

Risk tolerance, also known as risk appetite, is determined by balancing the expense in

terms of �nancial resources and usability of information assets against �nancial liability, loss

of information assets and reputational damage if the risk is exploited.

The steps in determining unacceptable risk are as follows.

• When a �aw or weakness exists, reduce the chances of the vulnerability being exploited

by implementing security controls.

• When the vulnerability can be exploited, prevent the opportunity for attack by applying

changes in design or administrative controls, or increase protections.

• When an attacker’s gain is greater than the costs of attack, apply measures to increase the

attacker’s costs or reduce the attacker’s gains so the gain is not worth the effort.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

9780170440943

232

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

THINK ABOUT

SOFTWARE

DEVELOPMENT

6.6

• When the predicted losses are beyond the ability to absorb the costs, use technical and

non-technical protection to limit the impact of an attack and the amount of losses. For

example: at the �rst sign of a DDoS attack, switch the IP address of the server to maintain

connections.

The Australian Notifiable
Data Breaches (NDB)
scheme was applied from
22 February 2018.

The Privacy Amendment
(Notifiable Breaches)
Act 2017 applies
to all agencies and
organisations regulated
under the Australian
Privacy Act 1988.

‘The NDB scheme includes
an obligation to notify
individuals whose personal
information is involved in
a data breach that is likely
to result in serious harm.
The notification must
include recommendations
about the steps individuals
should take in response to
the breach. The Australian
Information Commissioner
(Commissioner) must also
be notified of eligible data
breaches.’

© Office of the Australian

Information Commissioner—

www.oaic.gov.au. Extract from

‘Notifiable Data Breaches

scheme’. Released under CC

BY 3.0 AU, link to license:

https://creativecommons.org/

licenses/by/3.0/au/deed.en

Examples of a data
breach include the
following incidents:

• a device containing
customers’ personal
information is lost or
stolen

• a database containing
personal information is
hacked

• personal information is
mistakenly provided to
the wrong person.

Research the latest
(known) data breach
locally and globally.

a Identify the nature of
the breach.

b How many people
were a�ected?

c What impact will the
breach have?

Penetration testing (also known as a pen test)

Penetration testing identi�es security vulnerabilities in web applications. This is achieved

by challenging every page and line of code in the application for known weaknesses. This

could be a very time-consuming process if attempted manually. Fortunately, there are

automated security tools that will perform continuous web application penetration tests.

These automated tests rely on up-to-date descriptions of the parameters that can cause a

vulnerability. Each application must be scanned, or crawled, and each parameter must be

tested for compliance with OWASP security standards.

The OWASP guide states that ‘the most important thing to remember when performing

security testing is to continuously re-prioritize. There are an in�nite number of possible

ways that an application could fail, and organisations always have limited testing time and

resources. Be sure time and resources are spent wisely. Try to focus on the security holes that

are a real risk to your business.’

Extract from OWASP ‘Testing Guide Foreword’, accessed from https://www.owasp.org/index.php/Testing_Guide_Foreword. Released by CC

BY-SA 4.0 International, link to license: https://creativecommons.org/licenses/by-sa/4.0/

Identifying software and data
vulnerabilities
The best defence is to maintain awareness of the possibilities as they may apply to your

immediate and future situation. Many of the vulnerabilities are adapted from analogue

frauds, scams and con�dence tricks that have existed for more than a century. Deception

and misrepresentation is a common factor in a large number of the schemes that have been

successful in gaining unauthorised access and performing illegal or corrupting actions with

data and information.

The largest single common factor is loss of trust with employees or insiders. More than

40 per cent of all criminal activities are perpetrated by people who have inside knowledge or

access to the IT systems.

Data breaches

The number of users of the Internet has increased such that:

• commercial company activities are now online

• organisations use the cloud for storage

• big data is collected routinely across the Internet and social media

• greater amounts of information can be created from data due to improved processing

speeds and increased storage

• routine retail transactions of consumer banking and purchasing are carried out online.

Accompanying these increases are announcements of data breaches that have become

commonplace. This is partly due to new regulations that require anyone affected to be

noti�ed (see Think About Software Development 6.6), and partly because there are more

D
a
v
id

 M
c
C
a
n
d
le

s
s
 v

ia
 I
n
fo

rm
a
ti
o
n
 i
s
 B

e
a
u
ti
fu

l

CHAPTER 6 » CYBERSECURIT Y RISKS

233

Breach categories
can be filtered on
the interactive
infographic in
Figure 6.19.

FIGURE 6.19 A selection of data breaches; only those with over 30 000 records
are shown.

breaches being discovered. There are many examples of huge numbers of usernames and

passwords being accessed by unauthorised actors. This may come about because:

• a web page looks like a legitimate site and tricks a user into entering their credentials

• there is an automated brute-force attack against a service that does not prevent such an

attack

• a service is accessed by an outside party and credentials are stolen, which are then used

to access social media and email

• credentials are stolen by malware.

Man-in-the-middle attacks

Man-in-the-middle (MITM) attacks are a type of eavesdropping attack that is dif�cult to

detect. The threat is present whenever a transmission takes place and communications and

data are exposed to an unauthorised third party. While unsecured wi-� is a commonplace

opportunity for MITM to occur, many other situations also permit unauthorised interception

of the transmission.

In its simplest form, an instance of a MITM attack requires a transmission to be redirected

through a third computer system, which the attacker controls, then relayed to either side of

a conversation. Often data and information is harvested for valuable or sensitive items, or

modi�ed or substituted; for example, bank account login details, company secrets or other

con�dential material.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

9780170440943

234

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Ways to avoid man-in-the-middle attacks usually involve thorough user authentication. Let’s
revise the advice from the ACSC to prevent unauthorised access to accounts.

1 Require all users to periodically reset passwords to reduce the ongoing risk of credential
compromises.

2 Consider increasing password length and complexity requirements to mitigate the risk of
brute-force attacks being successful.

3 Implement a lockout for multiple failed login attempts.

4 If credentials have been compromised, reset passwords as soon as possible.

5 Discourage users from reusing the same password across critical services such as
banking and social media sites, or sharing passwords for a critical service with a
non-critical service.

6 Recommend the use of passphrases that are not based on simple dictionary words or
a combination of personal information. This reduces the risk of password guessing and
simple brute-forcing.

7 Advise users to ensure new passwords do not follow a recognisable pattern. This reduces
the risk of intelligent brute-forcing based on previously stolen credentials.

8 Use multi-factor authentication for all remote access to business systems and
for all users when they perform a privileged action or access an important
(sensitive/high-availability) data repository.

9 Look out for unusual account activity or suspicious logins. This may help detect when
a service such as email has been compromised and needs a password reset.

10 Encourage users to think carefully before entering credentials:

– Ask if this is normal.

– Don’t enter credentials into a form loaded from a link sent in email, chat or other
means open to receiving communications from an unknown party.

– Even if the page looks like the service being reset, think twice.

– Do not click the link. Instead, browse to the website and reset the password
from there.

– Be aware that friends’ or other contacts’ accounts could be compromised and
controlled by a third party to also send a link.

11 If some credentials have been compromised, try to identify a specific cause. Were the
credentials entered in an untrusted place? Were they recently reset? What were the
credentials for? Were the credentials used elsewhere?

12 Keep operating systems, browsers and plugins up-to-date with patches and fixes.

13 Enable anti-virus protections to help guard against malware that steals credentials.

© Commonwealth of Australia 2019. Australian Government: Office of the Australian Information Commissioner.

Released under CC BY 3.0 AU, link to license: https://creativecommons.org/licenses/by/3.0/au/legalcode

submission

CHAPTER 6 » CYBERSECURIT Y RISKS

235

Normal flow Man-in-the-middle flow

THINK ABOUT

SOFTWARE

DEVELOPMENT

Client

MITM

Client

6.7

Describe the steps of
a simple MITM attack
during an online
banking transaction.

FIGURE 6.20

Server

Server

Man-in-the-
middle attacks
are very
di�cult to
detect.

Peter Paul

Victim 1

Send over your key

Paul sends a different key

to Peter

Peter sends his account

number as 123456789

Man in the

middle

Send over your key

Mary sends a key to Peter

Mary

Victim 2

Paul sends Mary his account

number as 987654321

Mary sends money transfer
to the wrong account

The MITM

attack is
complete

FIGURE 6.21 A banking scam using MITM. This occurs on unsecured wi-fi. Often free wi-fi in shopping centres and airports can

be impersonated (faked) and users fooled (spoofed) into using the attacker’s wi-fi server.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

9780170440943

236

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Social engineering
In many ways, social engineering attacks are not about computing. Social engineering

attacks rely on the manipulation of human nature to persuade the victim to provide personal

information or to initiate a transaction. Once the attacker convinces the victim that they can

be trusted, they gain the management and control needed to achieve the illegal activity.

The basic tricks of the ‘con’ artist are employed, using �attery and friendliness to gain

trust. Another tactic is to create the illusion that ‘everyone is doing it’ in order to encourage

the victim to join in.

Types of social engineering attacks include:

• Phishing steals personal information such as usernames, passwords, phone numbers,

tax �le number, driver’s licence number, credit card and banking details. The phishing

methods deceive victims into providing personal details by using fake websites or urgent

messages requiring a response, or malware that searches the computer and extracts

documents and �les from the documents directory.

• Spear phishing targets wealthy individuals or victims with valuable access or information.

• Pretexting fabricates a plausible scenario that fools a victim into revealing sensitive

information or providing access to restricted systems.

• Baiting entices users to provide their password in exchange for free music or movie

downloads. This frequently takes the form of a USB stick that installs malware or a

keylogger once connected to a computer or network.

• Pharming redirects users to false websites that imitate the legitimate URL. Pharming

can affect large numbers of users simultaneously by a ‘poisoned’ DNS server that

re-directs to the wrong website.

• Quid pro quo attacks offer a bene�t in exchange for information. These are often in

the form of IT service assistance that requires the installation of a ‘�x’, which is actually

malware.

• Tailgating or piggybacking allows unauthorised people into restricted areas. This may

take place at security doors or by observing password entry at login screens.

Is there protection against social engineering attacks?

Users must take every online request seriously and treat each one as a potential threat

from someone trying to compromise their data. Most social engineering attacks rely on

vulnerabilities in human behaviour and poor security habits. In an attempt to overcome the

limitations of humans, certain procedures can be adopted.

• Train all users so there is awareness of the risks and an ability to recognise an attack, and

the indications of an attack.

• Make sure users know how to report an incident and who to report it to.

• Keep anti-virus software up to date, and activated.

• Use spyware detection software.

• Maintain operating systems and applications with updates and patches, after receiving

the advice of system administrators.

• Do not open email (or SMS) attachments when the source is unknown.

• Avoid social engineering attacks by refusing to disclose information by phone or email.

• Only download, and install, authorised software from approved download sites.

• Use complex two-factor authentication and protect passwords and usernames.

submission

CHAPTER 6 » CYBERSECURIT Y RISKS

Strategies to protect against web

237

application risks
Why are web applications vulnerable? The basis of HTTP is clear text. Attackers therefore

�nd it very simple to modify the parameters and execute functionality that was not intended

to be a function of the application.

There are known vulnerabilities that simple programming practices can reduce. However,

it is surprising to discover that many exploits are variations on known vulnerabilities that were

identi�ed many years ago. Many newly published websites just do not apply best practice, or

the developers may not have heard of those vulnerabilities. Consequently, their organisations

have not been provided with the necessary information and guidance for awareness.

Programming languages used for web applications have many issues in common. A

reasonable prediction would suggest that the languages most at risk are the older, more

established programs with widespread adoption across many industries and users. The most

frequent reported vulnerabilities re�ect this prediction. The programming language C was

developed in 1973 and quickly spread during the 1980s to provide the basis for solutions

across every area of business and consumer computing. PHP was released in 1995 and

quickly became the basis for the majority of online commercial websites. In 2019, C and

PHP have the highest reported instances of intrusion.

In summary, no user input can be trusted. This means always validating input for type,

length, format and range. The data is challenged each time it is processed. For example,

when data is entered through a web form to an application script, it will be encoded before

being displayed on a dynamic page. Logistically, this means that any values accepted from

the client side are checked, �ltered and encoded before being passed back to the user. Any

user-supplied data handling and processing must be certi�ed as secure.

Web application risks
Assessing web application risks is essential, as an application on the web is exposed to millions

of users through the Internet. The �rst step is to identify the threat, then the counter measure

to prevent the exploit being activated. Several threats are well known and well documented.

Cross-site scripting (XSS)

Cross-site scripting (XSS) is the most prevalent web application security �aw. The popularity

and frequency of the XSS attack is due to the widespread opportunities provided by so many

websites that do not apply basic security procedures. XSS has been well known for many

years, but new websites appear every month with dated vulnerable code.

Dynamic and interactive websites are frequently exposed to the threat of cross-site

scripting. XSS �aws occur when an application includes user-supplied data in a page sent

to the browser without properly validating or escaping that content prior to acceptance at

the server. The use of XSS is relatively simple, as it allows malicious active script to be

inserted into a regular web page form and instructions issued to the server to provide access

or information.

XSS attacks can:

• steal data

• hijack a session and take control of the account

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

9780170440943

238

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

• install and run malicious code

• be part of a phishing scam.

XSS attacks usually take the form of embedded JavaScript; however, any active script is

potentially compromising. This includes C++, PHP, Python, Ruby, ActiveX, Visual Basic

Script (VBScript) and Flash.

There are three known types of XSS �aws:

1 Stored attacks are those where the injected script is permanently stored on the target

servers, such as in a database, message forum, visitor log or comment �eld. The victim

then retrieves the malicious script from the server when it requests the stored information.

Stored XSS is also sometimes referred to as Persistent or Type-I XSS.

2 Reflected attacks are those where the injected script is re�ected off the web server, such

as in an error message, search result, or any other response that includes some or all of

the input sent to the server as part of the request. When a user is tricked into clicking on

a link, submitting a specially crafted form, or even just browsing to a malicious site, the

injected code travels to the vulnerable website, which re�ects the attack back to the user’s

browser. The browser then executes the code because it came from a ‘trusted’ server.

Re�ected XSS is also sometimes referred to as Non-Persistent or Type-II XSS.

3 DOM-based XSS or client-side XSS is where the local user browser is modi�ed so that

it behaves in an unexpected manner. The appearance of the page does not change, but

the page executes differently due to modi�cations that have occurred in the client-side

browser environment. This type of attack is different other XSS attacks, which are due to

a server-side �aw. This attack is sometimes referred to as a Type-0 XSS.

SQL injection

Structured query language (SQL) is a standard set of instructions that can manipulate a

database server. A very large number of websites have access to database repositories of

information and �le collections. The usual procedure for requesting information from a

database is to enter characters into a form, which is then passed to the database for action.

Control characters have been permitted to be entered and accepted. The preventative

measures are relatively simple, ensuring all user input is restricted to acceptable characters,

with no delimiting control characters.

For example:

• SQL injections take advantage of special coding characters to break out of data access

and switch into code access. The result of injection could be data stolen, modi�ed,

corrupted or deleted, denial of access or loss of accountability. Injection can be prevented

by keeping untrusted data separate from commands and queries. A secure interface is the

most common preventative measure.

• SQL injections have language-speci�c requirements. JAVA, .NET, PHP and SQLite

have well established libraries of suitable preventative procedures.

This is sometimes described as a ‘tautology attack’, where the condition is always true. This

code injection masquerades as a query, but it will always request all records, or usernames

and passwords, or admin control of the database.

To avoid SQL injection �aws, developers must i) not use dynamic queries and ii) prevent

user supplied inputs, containing malicious SQL code, from affecting the logic of the query.

submission

CHAPTER 6 » CYBERSECURIT Y RISKS

239

Client side

Request

User views and inputs data
through a browser

A. Customer browser generates

request to web server requesting
single term data

Internet connection Responses HTTP server
e.g. Apache, IiS

File requests are passed to

APP server, interpreted,
executed and returned

Server side Web server returns

(X)HTML, CSS, JavaScript

APP server

B. Attacker’s browser generates
request for single item AND all

customers’ usernames and

passwords
Attacker

e.g. PHP, Python, Ruby, JAVA,
Perl, .Net

Database requests pull, edit,

delete or save data

Database server
e.g. MySQL, Oracle, MS SQL

FIGURE 6.22 A standard request for records from a database

FIGURE 6.23 An example attack scenario

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

9780170440943

240

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Appropriate measures to prevent SQL injections are to:

• validate all user input before passing the query to the SQL database

• use only prepared statements for database queries to eliminate unvalidated user input.

Parameters can be adjusted for narrowing any query

• use stored procedures for users to choose from, rather than entering untested inputs

• whitelist input validation, which requires input redesign to ensure query names come

from established names rather than input by the user.

Insecure cryptographic storage

Attackers gain access to sensitive �nancial or personal subscriber details when data is stored

inappropriately or illegally. For example, in Australia, credit card details are not to be kept

after a transaction is completed.

During transmission on a secure connection (HTTPS), the data is encrypted and not sent

‘in the clear’. Details are encrypted or hashed before storage, so that if security is breached

the thieves cannot make sense of the data.

Cross-site Request Forgery (CSRF)

CSRF occurs when a user’s browser is spoofed into logging into a site with an unauthorised

user’s credentials.

Distributed denial of service attacks (DDoS)

A distributed denial-of-service attack (DDoS), or the lesser version, a denial-of-service

attack (DoS), involves an overwhelming number of access requests being put to a web server.

The attacker sometimes makes use of botnet zombies, which have been commandeered

unknowingly and are marshalled in a coordinated attack against a speci�ed target. Zombies

in a botnet are instructed to send IP requests to a targeted web server simultaneously. The

server becomes overwhelmed by the huge number of access requests, and this slows all server

operations or causes the server to stop altogether, or crash.

1 Bot programs turn victim

computers into zombies
once installed

2 Bots connect zombies

to controllers

3 Command and control
servers (e.g. rogue IRC
servers) are controlled

by botnet controllers

http://www

FIGURE 6.24

Denial-

of-service
attacks are
increasingly
from cloud-
based data
centres.

5 Zombies then execute

these commands

4 Commands are sent to zombies

(e.g. launch a DDoS attack, send mass spam)

G
lo

b
a
l
D

o
ts

 2
0

18
 B

a
d
 B

o
t

re
p
o
rt

CHAPTER 6 » CYBERSECURIT Y RISKS

DDoS attacks do not attempt to steal or corrupt data; the purpose is simply to overload

web servers and cause them to be unstable. This loss of service can be very expensive to a

company or institution. One possible solution for a single server is to change the IP address.

It can take up to 72 hours to propagate a new IP. However, this may not stop the problem,

as the attackers can simply redirect the attack on the new IP. Other options are to operate

several servers with different IP addresses; to increase bandwidth to accommodate ‘spikes’ in

traf�c; and con�guring �rewall/router settings to reject certain DNS and ping-based attacks

by blocking certain ports. Automatic active solutions monitor the number of incomplete

connections and cancel them when a predetermined threshold has been reached. This will

avoid the server being overwhelmed with connection requests.

XML injection or XPath injection

Extensible markup language (XML) is similar to HTML (hypertext markup language);

however, it is designed to carry data rather than instructions for displaying web pages. XML

is less structured than HTML, and allows for users to de�ne tags. This provides a criminal

opportunity to substitute malicious tags in the data to take control of the web page. The

XPath injection exploits the XML queries that require user inputs.

Bots and web scraping

Overall, automated Internet robots, or netbots, are responsible for approximately 40 per cent

of all web traf�c. While there are good and bad bots, harmful bots are responsible for 29 per

cent of web traf�c. The bad bots include spambots and unauthorised data scrapers. Spam
generated automatically accounts for 80 per cent of the email messages circulating each day.

So-called ‘good bots’ are essential for the orderly conduct of many web functions. For

example, Google and Facebook operate many millions of web crawlers or data-extracting

spiders that check the connections and update details every day. Feed fetchers are helper

bots that update a Facebook feed on a mobile app and cause about �ve per cent of all web

traf�c.

There are examples where
thousands of bots every
day send millions of
unauthorised spam emails
to make up over half of all
Internet tra�c.
• 54 billion spam

messages per day
• 156 million phishing

emails per day
The most common spam
email is healthcare or
dating spam.

241

Bad Bots 21.8%

Humans 57.8%

Good Bots 20.4%

FIGURE 6.25 Findings from the Global Dots 2018 Bad Bot report

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

G
lo

b
a
l
D

o
ts

 2
0

18
 B

a
d
 B

o
t

re
p
o
rt

242

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

All other countries

24.3%

United States

45.2% Netherlands 3.1%

Germany 3.3%

Canada 3.7%

France 9.9%

China 10.5%

FIGURE 6.26 Source of bot attacks by country. The cyber criminals could be anywhere in the world, but
choose to use an IP address that is less likely to be blocked, or is just cheaper.

Impersonator bots, also known as zombies, are controlled by attackers to perpetrate

THINK ABOUT

SOFTWARE

DEVELOPMENT

6.8

Research the latest
Bad Bot report.

1 Identify the most
recent numbers of
Humans vs Good
bots vs Bad bots.

2 Consider whether
any categories
of attack have
changed.

3 Has the source
of bot attacks
changed?

DDoS attacks against third parties. An estimated 25 per cent of web traf�c is used in this

way. The bot may operate without the knowledge of its owner host. It may be created

by malicious code, which creates undetected activities to be carried out by the captured

computer. The only way to detect this presence is to monitor computer activity for

unexpected online traf�c or CPU loads.

Denial of inventory

Bots hold items in shopping carts, which prevent access to items for ‘real’ customers. The

shopping cart is later abandoned as the ‘hold’ times out. Retailers notice increases in the

number of abandoned shopping carts from certain ‘zombie’ accounts with no purchases.

Gift card balance checking

Bots steal money from gift card accounts with a remaining balance. This is a variation on

brute force or dictionary attacks, and can be detected by spikes in login requests to gift

card balances, and resultant complaints from customers who have ‘lost’ the balance of their

account.

Price scraping

Web scraping is the act of taking data and information without authority or permission. Often

a website display relies on the application of copyright laws to protect ownership access and

use of the information and data. Data scraping aggregates enormous volumes of data and

applies the knowledge gained for commercial advantage. For example, price scraping of

competitors’ websites ensures that up-to-date knowledge can be used to undercut and the

perpetrator can emerge with the lowest prices in the marketplace. Airlines, gambling odds,

real estate, used-car prices, petrol and other supply retailers are all business categories where

price scraping occurs every minute of every day.

Content scraping

Content scraping is when web page content is stolen and reused without permission.

Although copyright laws apply, the fact that the Internet is international means it is unlikely

9780170440943

243
CHAPTER 6 » CYBERSECURIT Y RISKS

that any action will be taken. Another aspect of content scraping is to save on the cost of

gathering data and information and take advantage of the infrastructure of another business.

Examples are news gathering, textbook and subject reference websites, sporting results

websites and stock market ‘ticker’ websites where summary reports of activity are available

for a fee. Paywalls and login requirements offer little defence against aggressive web scraping.

The web bots can mimic human behaviour, create login accounts and extract large amounts

of content. Previously, displaying the web page as an image was an effective defence against

bots that would record text; however, AI and OCR converting text within an image have

made this a trivial conversion task.

An example of a web scraper application is when the application can record a speci�c

stock price every �ve minutes and the volumes traded without the need to subscribe to a

stock market monitoring service. Similar monitoring of airline prices for ticketing can be

automated. Images, email addresses, phone contacts and addresses can all be harvested from

websites automatically.

Strategies to reduce the occurrence of bot attacks

• Identify out-of-date browser agents, which often disguise legacy bots. Access to the website

can be denied by blocking superseded versions of common browsers; for example,

versions of Firefox, Chrome, Internet Explorer and Safari that are more than two years

out of date. An alternative is to insist on human logic for login access, such as using the

captcha process.

• Monitor website traf�c. Spikes in traf�c can be assessed and the sources identi�ed. If a

single speci�c source is indicated, then a bot is responsible for the increase in apparent

business. Failed logins may also indicate bad bot activity.

• Be alert for public data breaches. Whenever credit cards details are stolen, they are quickly

deployed to run the credentials into your website. Be aware of �nancial authorities’

warnings and updates to ensure credit cards are genuine.

Session hijacking

The integrity of transactions across the web depends on certainty of identity – if users are

who they say they are. Usually when an account holder logs in, a session token is issued. All

transactions that take place in that login session exchange the token to verify the identity

of the user. Session hacking is a variation on eavesdropping, where the attacker attempts to

impersonate the legitimate user. Bene�ts of session hijacking depend on what is dealt with

in the session, which typically ranges from shopping carts to credit card details.

The vulnerability is caused when session identi�er tokens are stored or transmitted

insecurely. A simple solution is to ensure that the Internet connection is secure and uses the

encrypted protocols HTTPS and SSL.

Buffer overflow

When a process attempts to store data in RAM beyond the assigned �xed length storage buffer,

an over�ow into neighbouring memory locations may occur. Under certain conditions the

over�ow data may corrupt data, or it can stop functioning by crashing the computer or being

replaced with attacker code to provide alternate instructions for execution once the program

restarts.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

A
d
o
b
e
 p

ro
d
u
ct

 s
cr

e
e
n
sh

o
t

re
p
ri

n
te

d
 w

it
h
 p

e
rm

is
si

o
n
 f

ro
m

 A
d
o
b
e
.

244

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Buffer over�ow attacks are well known, but legacy and newly developed applications

a

continue to be vulnerable. The basis of the success is violation of a programmer’s assumptions.

NORMAL PROCESS

Program instructions
Buffer storing
integer data

Buffer storing
character data

Program jumps to address of next instruction

b

BUFFER OVERFLOW

Program instructions
Buffer storing
integer data

Buffer storing
character data Return address pointer

MALWARE Fill and overflow buffer New pointer

Program jumps to attacker malware

FIGURE 6.27 a The normal process; b bu�er overflow. The simplest bu�er overflow attack is the most
common.

Protection against buffer over�ow attacks can be provided by ensuring all code that accepts

input from users via an HTTP request is reviewed to make sure it provides appropriate size

checking on all such user inputs.

Java and Python are interpreted programming languages, and are

immune to these attacks.

Restrict URL access

Undertake access control checks each time a page is accessed. This will

prevent attackers entering URLs directly into browsers, meaning hidden

or orphan pages cannot be accessed, as permission will be denied to

unauthorised requests.

Software acquired from

third parties
Many software products are offered as a subscription rather than as a

‘purchase’. Traditionally, a software purchase was a payment for a licence

to use the software on a ‘as is’ basis. The software was not permitted to be

modi�ed or re-engineered.

One direct result of the subscription model is to maintain the

FIGURE 6.28 Adobe Creative Cloud is a
subscription service.

distributed user base of software and ensure software is up to date.

Automatic software updates prompt the user to ensure that the latest

security patches will be installed.

Other software purchased and installed may have been registered with

the developer. This registration usually provides update noti�cations or

access to a web page that provides information about security issues and

�xes.

9780170440943

Return address pointer

CHAPTER 6 » CYBERSECURIT Y RISKS

Overall, the user is reliant on the software developer or distributor for noti�cation about

necessary improvements and modi�cations to the original product.

Web applications often rely on third-party services and applications. For example, Google

forms is often used to host a survey activity which is used for purposes unrelated to Google.

Disclaimers warn users that their details are not secure.

A security vulnerability

is discovered

Risk

level

Vulnerability is known
to the vendor

The vendor

notifies its clients

(sometimes)

Vulnerability is
made public

245

Security

tools are
updated (IDS

signatures,
new modules

for VA tools)

A patch is
published

The existence

of the patch is
widely known

The patch is

installed in

all systems
affected

From Google Terms of
service: Software
… You may not copy,
modify, distribute, sell,
or lease any part of our
Services or included
software, nor may you
reverse engineer or attempt
to extract the source
code of that software,
unless laws prohibit those
restrictions or you have our
written permission …

Extract from Google terms of

service: Software, accessed from

https://policies.google.com/

terms?hl=en

Time

FIGURE 6.29 Window of vulnerability for software

Integrity of data
A secure system must ensure that con�dentiality, integrity and availability are maintained.

This CIA data security systems approach was previously described on page 215 and shown in

Figure 6.2. A further consideration on the security of the system is the data held within and

generated by the system. Every interaction with a computer system requires data certainty.

Without an unblemished level of trust, doubt and uncertainty will develop to the point

where that system, consisting of software and hardware components, must be abandoned,

banned or blocked to avoid further disruptions, losses and contamination. For example,

many websites are blocked by ISP and networking administrators (i.e. ‘blacklisted’) because

they are a known source of malware including trojans, worms and/or adware.

Threats to data integrity
Threats to data integrity can be accidental, event-based or deliberate.

Accidental threats

There are several ways users can cause accidental damage to information systems. It is

important to make a distinction between inadvertent errors, which may be unlikely or

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

©

O

W
A

S
P.

A

cc
e
ss

e
d

fr

o
m

h
tt

p
s:

//
w

w
w

.o
w

a
sp

.o
rg

/
im

a
g
e
s/

1/
19

/
O
T
G

v4
.p

d
f.

R
e
le

a
se

d
 u

n
d
e
r

C
C
 B

Y
 A

tt
ri

b
u
ti
o
n
-S

h
a
re

A
lik

e
 4

.0
 I

n
te

rn
a
ti
o
n
a
l,

lin
k

to
 l

ic
e
n
se

h
tt

p
s:

//
cr

e
a
ti
ve

co
m

m
o
n
s.

o
rg

/
lic

e
n
se

s/
b
y-

sa
/

4
.0

/

9780170440943

246

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

unforeseen, and those errors that occur due to poor training or poor design of user interfaces

(UI). Mistakes rarely ‘just happen’.

Mitigating circumstances or contributing factors often include:

• user inattention or carelessness

• confusing screen design with lookalike interface

• lack of con�rmation before execution; all changes are ‘live’ with no simple backup process

• inappropriate permissions, which allow untrained users access to modify or delete

strategic �les or settings.

Event-based threats

Event-based threats are usually external to the organisation and beyond the immediate

control or in�uence of security planning to prevent. The only course of action is to prepare

contingency plans in the event that the threat occurs. Well-considered recovery plans can

minimise the impact on the organisation.

Event-based threats include:

• failure of storage; e.g. HDD or SSD

• power failure

• �le corruption

• using cloud storage where power outage, software malfunction or data breach occurs

• using third-party software where software malfunction or data breach occurs

• acts of nature; for example, �re, �ood, earthquake, lightning strike/power surge.

Similar strategies can be used to prevent accidental loss or event-based damage.

A hot site maintains a full or partial duplicate for a primary IT operation, including

complete computer systems and near-real-time backups for systems, applications and data.

In its most expensive form, mirroring software is used to keep a hot backup site and a primary

site synchronised. A hot site is used when an organisation can tolerate little or no downtime,

and is where a switchover may be achieved in a few hours.

A cold site by contrast may take a few weeks to be established following a catastrophic

systems failure, though the business may be able to operate at a reduced level without full IT

services. Increasingly, businesses are more dependent on IT, so warm sites (also known as

mobile sites) become attractive. The time for startup depends on how quickly access to the

restored backup can be made operational.

Deliberate threats

Many of the details of deliberate threats have been discussed earlier in this chapter. Table

6.5 provides a summary of those threats, prevention strategies and actions to be taken.

One particular security strategy, known as a honeypot, has been widely adopted to detect,

de�ect or counteract unauthorised access to computer systems. The honeypot acts as

a decoy for trapping hackers’ or tracking new hacking methods, or simply as a delay by

wasting hackers, time. Honeypots are established solely to take attention away from the main

company servers. They have no other purpose, and legitimate users will not connect with

the honeypot. Attackers can be identi�ed and traced if a honeypot has logged the attacker IP

details. Multiple honeypots across a network may form a honeynet. Honeypots can also be

used on an internal network to prevent authorised users browsing beyond their immediate

permissions.

recent backups.

CHAPTER 6 » CYBERSECURIT Y RISKS

TABLE 6.4 Summary of event-based threat detection, prevention and recovery actions

Detection Prevention

Unexpected
computer system
behaviour:
• data loss
• slow

performance

Disaster alert
from emergency
services, smoke
alarm

Ensure diagnostic monitoring
operates continuously, regularly
checking condition of storage
media.

Periodic full backups are enabled.
Incremental backups with short
intervals are enabled, dependent
on activity and cost e�ectiveness.

Ensure regular backups are
recorded.

Establish o�-site duplicate of IT
services when the base operation
is unavailable.

Prevention action

Maintain RAID and incremental backup protocols.

Diagnostic tools constantly monitor hardware and
software. Alerts are issued when anomalous events
occur.

Uninterruptable power supply (UPS) provides
su�cient time to save all data and settings before
controlled shutdown.

Fire services deployed appropriate to the
circumstances. Fire detection/smoke alarms.
Halon gas reduces potential for flame and water
damage.

Uninterruptable power supply (UPS) provides
su�cient time to save all data and settings before

controlled shutdown.

TABLE 6.5 Summary of deliberate threat detection, prevention and recovery actions

Detection Prevention

Malicious software or
malware: viruses, worms,
trojans, logic bombs,
spyware, back doors,
keyloggers may

cause:
• unexpected file

losses or corruption
• slowly running

computer
• unusual file sizes or

date/time stamps

Cyber attackers:
hackers, spies, insiders,
criminals and terrorists;
activity is sometimes
di�cult to detect

Social engineering
attacks:
phishing, hoaxes,
fraudulent o�ers,

Permissions are restricted for all
users.

Establish download limits and
email attachment limits.

Ensure all users are trained in
recognising the dangers of ‘unsafe
sources’ of software and untrusted
sources of documents.

Install and run anti-virus software
and SPAM filters.

Run anti-virus scans on incoming
email.

Intrusion detection system (IDS)
monitors system and file activity
to identify and signal an alert
whenever anomaly or violations
occur.

impersonation,
pharming, shoulder
surfing, tailgating,

spear phishing, vishing,

Ensure all users are trained in
recognising the characteristics
of social engineering and receive
regular updates on the most
recent versions.

smishing; often

di�cult to detect.

Restrict the use of company SMS
and email accounts to strictly
business purposes.

Ensuring user email subscriptions
are limited to essential contacts to
minimise SPAM.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis

Constant vigilance is
necessary, as detection is
slow and false alarms are
more frequent than actual
attacks.

Social engineering is, at its
most basic, about confidence
tricks, or the ‘con’. Vigilance
is necessary at all times with
email messages, SMS and
websites.

Limit financial authority
within the organisation to
ensure only legitimate orders
are taken and payments
made.

☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

Data breaches require notification of
those a�ected (see chapter 7).

Loss of usernames and passwords will
necessitate re-establishing authenticity
for users. Suspend all account activity
until all passwords are reset through
two-factor recovery process.

Depends on the instance, and whether
the violation is detected, or reported.
Often embarrassment prevents the
reporting of these criminal activities.

Prevention action

Firewall settings block
unauthorised access to the
computer or the network.

Spam filters are constantly
available to scan all email.

Set anti-virus software to
scan files introduced on USB
drives.

Recovery

Quarantine a�ected files and any
infected computer from the network.
Reformat the drives and wipe all data.
Restore lost data from latest
incremental backup.

247

Recovery

Restore data with most
recent backups.

Replace damaged, lost
or stolen equipment.

Activate disaster
recovery plan (DRP) to
limit losses and damage.

Consider hot or cold
site recovery plan
solution.

Restore data with most

9780170440943

248
S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Characteristics of data integrity
The factors of data integrity that must be maintained by a properly functioning information

system include:

• accuracy

– correctness

– completeness

– consistency

– clarity

• authenticity

• reasonableness

• relevance

• timeliness.

We shall now consider each of these factors in further detail.

Accuracy

There are two main characteristics of data accuracy: content (functionality) and form

(appearance). Content is divided into two parts: correctness and completeness. Form is

divided into consistency and clarity. The following sections discuss each aspect of accuracy,

followed by challenges to data accuracy and measures to improve them.

Correctness

Correctness means that the values stored for a given object must be correct. For example,

if you create a database that includes a list of all the users subscribing to the software that

you are developing for Outcome 1, you would need to ensure that you enter each subject’s

details into the database correctly. The content would be incorrect if you keyed the wrong

date of user testing into the TestDate �eld or misspelled a surname in the LastName �eld.

Data is also correct if it is a truthful representation of the real-world construct to which

it refers. For example, the weather forecasts by the Bureau of Meteorology are considered

(usually) correct, in that they truthfully represent our concept of the weather in terms of

predicted temperatures, rainfall, winds and so on.

Completeness

Characteristics of
data accuracy

Content (functionality)

Correctness:

The values stored for a given
object must be correct

Completeness:
The values stored must be as

complete as possible and any

instances of 'missingness'
must be accounted for

Form (appearance)

Consistency:

The values must be presented
in a consistent way

Clarity:

The values must be formatted

in an unambiguous way

FIGURE 6.30 Characteristics of data accuracy

Completeness means that the entire data set is

intact – all the data from all programs on all

variables at all relevant points in time and space.

Completeness can be very dif�cult to achieve.

Clarity

The form of data is important as well as the

content, because this will remove ambiguity

about the content. Accordingly, form is divided

into two parts: clarity and consistency.

Clarity is about formatting data in an

unambiguous manner to prevent misinter-

pretation. For example, you have users enter

dates and they are the correct values. However,

249
CHAPTER 6 » CYBERSECURIT Y RISKS

they are still not completely accurate, because some of the dates have been entered using

the US date format (MM/DD/YYYY), and others using the Australian date format (DD/MM/

YYYY). Worse still, some of the dates have both days and months less than 12, making the
actual entered dates ambiguous:

04/11/2020

12/02/2018 User test complete

06/09/2019

Consistency

Correct, unambiguous data can still cause a problem if it is not consistent. Inconsistent data

is unwelcome because it means the data is unreliable. This is why consistency is part of data

accuracy.

Consistency is also a concern on a larger scale, when it occurs between multiple data

sources where con�icting versions of data appear in different places. If a ‘true’ value cannot

be easily determined between multiple data sources, an entire data source loses integrity and

becomes tainted.

Authenticity

Data and information are only authentic while the origin attributed to them is correct,

and providing that the data has not been improperly or inappropriately changed since

it was published.

Digital documents are easy to fake and distort convincingly. It can be dif�cult to tell

if an image, document, database or web page is genuine, a parody (for example, The

Onion website) or a deliberate attempt to mislead, fool or defraud people, as with spam,

links that trick visitors into clicking ads, and phishing sites.

Characteristics of authentic data

Digital data can only be considered authentic (genuine) if it:

• comes from the author and/or source it claims to be from

• has not been deliberately corrupted

• is not faked or disguised as something else

• has not been changed without authorisation

• is what it claims to be and does not misrepresent itself

• does not aim to mislead or deceive by pretending to be anything else

• does not lie.

Reasonableness

It is possible for data to be perfectly valid; however, it may still be unreasonable.

Computer systems cannot apply meaning to data unless speci�cally instructed to

examine limitations.

Reasonableness checks or reasonableness tests apply logic to the raw data to consider

whether the combinations are plausible or logically possible or satisfy common sense.

In order to perform a reasonableness test, an understanding of the extent of the data

is �rst required. Reasonableness checks are usually performed before data processing.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests

authenticity of data

Spoofing

Plagiarism

Challenges to

Viral ads and fake

YouTube videos

Computer-generated
imagery (CGI)

Digitally edited photos

Fake posts and tweets
from hacked social

media accounts

Avatars and nicknames
allow widespread

anonymity

Fake celebrity social
media accounts

Fake ‘From’ email

addresses

Software cracking

The prevalence of
downloading from

torrent sites

FIGURE 6.31 Challenges to

authenticity of data

☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

Data testing complete

Data verified

The dates are inaccurate because you cannot tell what the true, correct values are. You

need to be stricter when entering data. Doing this means you can apply consistency.

9780170440943

250

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Some examples of reasonableness are as follows.

Data is reasonable:

• Medical records have parents and children listed; the age difference is 15–45 years

• Address of student has the same postcode as the school attended

• Tax records have deductions for 500 kilometres per week of work-related car travel

• ABS census indicates there are �ve persons living at the three-bedroom apartment address

• W-League player has represented Australia 150 times after debuting in 2004

Data is unreasonable:

• Address data and place of work may need to be in the same state, depending on

employment

• Medical records have parents and children listed; the age difference is about 10 years

• Tax records have deductions for $1000 per week of work-related internet usage

• ABS census indicates there are 12 persons living at the single-bedroom apartment address

• AFL player has played 450 AFL/VFL games

Relevance

People look for information that relates to a topic that is of interest to them. Relevance

measures how closely a resource, such as a document, database or webpage, corresponds to

that person’s desire for information.

Relevance is not always easy to measure. For example, it is obvious that income is relevant
to spending habits. However, it is less clear whether age or gender are relevant to development

of mental conditions such as schizophrenia. Data about schools in the United States and

United Kingdom or Finland may be relevant to Australian schools, but this is not absolute.

Data about men may apply to women in some circumstances, but not in others. Assuming

that data is relevant when it may not be can lead to invalid conclusions being drawn.

TABLE 6.6 Circumstances when data is in danger of becoming less relevant

Reason Example

It is on a di�erent topic. Using Internet research to
drift from link to link may lead to information that is
irrelevant to the original topic.

It is from a place where conditions are not
comparable.

It is from a di�erent time.

There are significant di�erences in history,

conditions or circumstances that prevent two data
sets being compared.

A discussion of Scottish history mentions the sport
of caber tossing, which leads to a discussion of
how the sport is scored, which somehow drifts into
detailed coverage of kilts.

Comparing gun ownership in suburban Australia
with that of wild Canadian bear country

Boys in the 1960s were happy to leave school at 15
and work in the same job for 45 years.

Cultural di�erences, war status, climate data

methods, characteristics of interview subjects and
unusual recent events

submission

CHAPTER 6 » CYBERSECURIT Y RISKS

Timeliness

Data must be timely for it to produce usable information. That means it needs to be processed

while it is current and there should be no signi�cant delays in retrieving it. The methods

used to process data should be ef�cient enough to be completed by the time the data is

actually needed.

Ensure that the digital systems (hardware and software) used are powerful enough and

appropriate for the task at hand to avoid causing delays. It is crucial that decision-making is

never based on outdated data.

Users of the data are protected as much as possible from potential delays caused by power

outages, hardware failures, downtimes due to system upgrades, and deliberate threats from

outsiders, such as denial-of-service attacks or malware infection.

Make sure the age of data is known before using it: it may be meaningless to draw

conclusions from very old data; for example, using data about computer use that is 10 years

old to draw conclusions about network performance today.

Next steps
This chapter has discussed cybersecurity and some of the main threats to physical and logical

(software) security. Software development processes continually prepare for maintenance

of con�dentiality, integrity and availability. Those entrusted with preparing security plans

regularly update their understanding of social engineering, web application threats and the

countermeasures required to prevent such attacks. In the next chapter you will consider the

legal requirements and obligations for software providers, and those who provide customer

services involving personal data and information.

The �nal assessment for Unit 4 will be Outcome 2, which requires you to consider a

case study and provide recommendations on modi�cations after exploring security and legal

implications.

251

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

9780170440943

6
Essential terms

botnet zombies a coordinated network of compromised or ‘zombie’ computers used to
transmit malware or spam or to launch DDoS attacks

CHAPTER

SUMMARY

cold site prepared external recovery IT infrastructure; when the duplicate is not
immediately ready to replace operations, and may take a few weeks to resume normal
operations

crypto jacking / crypto mining hijacking idle processing power of a victim’s device and
using it to mine cryptocurrency

cybercrime targeted attacks against financial networks, gaining unauthorised access to
information and stealing sensitive information

cybercriminals identity thieves, fraud perpetrators, scammers using spam and phishing

distributed denial-of-service attack (DDoS) an attack that overwhelms a web server
by targeting requests

exploit take advantage of a vulnerability

hacking unauthorised access to a computer or network or the modification of programs,
systems or security for unapproved purposes

honeynet multiple honeypots across a network

honeypot a decoy server that imitates the ‘real’ website to lure attackers away from
production systems to waste time and dissipate their energies harmlessly

hot site prepared external recovery IT infrastructure; where the duplicate is ready
immediately to replace operations by restoring backups and resuming normal operations
with little or no downtime

impersonation an attack that creates a fictional persona and then plays the role of that
person in order to defraud or deceive

keyloggers record keystrokes from a computer and send passwords or sensitive information
to unauthorised attackers

malware ‘malicious software’ designed to infiltrate and damage computer systems without
authorisation

man-in-the-middle (MITM) attacks a type of eavesdropping attack where
communications and data are exposed to an unauthorised third party

warm site a recovery plan that is in between hot and cold, and limited in scope and scale
compared with normal operations; relies on restored backups being brought online before
systems and services can be made operational

OWASP Open Web Application Security Program

pharming redirecting users to false websites that imitate the legitimate URL

phishing pretending to be a reputable person or entity in order to induce the disclosure of
sensitive information

piggyback entry see tailgating

ransomware will lock or encrypt a user’s computer until a ransom fee is paid

risk appetite see risk tolerance

risk tolerance the quantity and nature of risk that is acceptable

shoulder surfing when an attacker observes password entry or security codes on a keypad,
sometimes with a camera

smishing using SMS for phishing attacks

252

9780170440943

CHAPTER 6 » CYBERSECURIT Y RISKS

social engineering attacks tricking the victim into clicking ‘accept’ with admin permissions or into giving the attacker
physical access to a device

spam unsolicited bulk messages and advertising

spoofing involves hoaxing, tricking and deceiving users by use of fake usernames or user identities, email addresses or URLs

spyware collects information without the users’ knowledge; arrives as a free download and is automatically installed

tailgating when an authorised person swipes their entry card and enters, and an unauthorised person quickly enters behind
them before the door closes

trojan like a trojan horse, a program that appears to be safe and reliable but which creates a back door into the computer

two-factor recovery using a recovery email and a phone or SMS message in order to verify or re-establish the identity of
the user

version control records each stage of the development so that it is possible to ‘roll back’ to any previous point in the
development

virus often arrives as an email attachment or download, and infects the active host computer and those on any contact list
with spam and unwanted ads; hijacks the web browser and disables security access settings

worms standalone self-replicating programs that exploit operating system vulnerabilities

XPath injection an attack technique that is used to compromise the logic of an XML application

zero-day attacks attacks that leave no time to prepare for or defend against the attack

Important facts

1 Spam is estimated to comprise up to 80 per cent of the 20 billion messages sent on Twitter each day.

2 Phishing attacks are increasing as other methods are defeated by automatic protections; humans are the weakest part of
any security system or strategy.

3 Phishing can come in the form of email, SMS, web pages and other social messaging apps.

4 Spear phishing is a targeted attack at someone with something of value, which may be financial, data or information
about access to other systems.

5 Users should change their passwords regularly, have unique passwords for di�erent accounts, take advantage of
multi-factor authentication features whenever possible, or use a password manager tool to help securely store credentials.

6 Social engineering attacks rely on human weakness, so users must apply critical thinking in their social media
consumption, and be diligent in checking whether an email or a phone call is from a trusted source.

7 Smartphones receive smishing messages when an SMS message contains an invitation to enter personal information,
bank account or credit card details.

8 Users often do not know their computer has been compromised and is acting as a zombie computer. Botnet activity is
commonly detected by unusual CPU activity or bandwidth use.

9 Pharming can a�ect large numbers of users simultaneously due to a ‘poisoned’ DNS server, which re-directs to the wrong
website.

10 Computers, tablets and smartphone devices need to be protected from ransomware, dangerous websites, and identity
theft threats by using anti-malware solutions, including only acquiring apps from trusted sources.

11 Honeypot is a decoy server that imitates the ‘real’ website to lure attackers away from production systems to waste time
and dissipate their energies harmlessly. An attacker’s IP may be identified and traced. New malware may be captured and
identified using honeypots.

253

9780170440943

TEST YOUR

KNOWLEDGE

Qz Review quiz Physical and software security controls

1 What is a ‘zero-day’ attack? Why is it so e�ective for hackers?

2 What is the di�erence between a vulnerability and an exploit?

3 Only certain users are permitted to view the information because they have:

A confidentiality.

C integrity.

B availability.

D authorisation.

4 Defence against attackers is increasingly di�cult due to: (more than one answer)

A complexity of attack tools.

B weak patch distribution.

C greater sophistication of attacks.

D delays in patching software products.

5 The process that ensures an individual is who they claim to be is known as:

A authentication.

C certification.

B access control.

D verification.

6 Using a brute force attack, what is the average number of combinations that will be attempted
in order to crack a cryptosystem that is based on 32-bit key? The estimated number is
an average of 1, being the first combination attempted, and the maximum number of
combinations, being the last combination if none others were the key. The actual combination
will be between the first and last options.

Software acquired from third parties

7 After an attacker has explored a network for information, the next step is to:

A move on to another system.

B modify security settings.

C corrupt networks and devices.

D overcome any defences.

8 Which of the following are not considered ‘insiders’?

A Business partners

C Employees

B Sub-contractors

D Cybercriminals

9 Networks of attackers, identity thieves, scammers and financial fraudsters are known as:

A script kiddies.

C hackers.

B cybercriminals.

D spies.

10 Which malware requires a user to transport it from one computer to another?

A Worm

C Virus

B Rootkit

D Trojan

11 How do viruses di�er from worms?

254 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

TEST YOUR

KNOWLEDGE

Software development practices

12 What is the SDLC management strategy adopted to prevent insecure code being included in a
final software product?

Strategies for minimising potential risks

13 Explain two strategies that are used to minimise potential risks in software development.

Identifying software and data vulnerabilities

14 Web application attacks cannot be blocked by traditional networking security devices. Why not?

15 What is an SQL injection attack?

16 What is an XSS attack?

17 What is an XML injection attack? How is this di�erent to SQL or XSS attacks?

18 How does a distributed denial-of-service attack (DDoS) di�er from a denial-of-service attack
(DoS)? Which is the more dangerous, and has the largest impact? Why?

Strategies to protect against web application risks

19 What are some tactics to defend against an SQL injection attack?

20 If no user input can be trusted, how should this be checked (validated)?

21 What are some tactics to defend against an XSS attack?

22 What is a bu�er overflow attack? How could this vulnerability be prevented?

23 How can a server be defended against a DoS, or DDoS attack?

24 How is the management of security achieved with third-party software?

25 What are the limitations on this strategy?

Integrity of data

26 Why is integrity of data important?

27 What are the threats to data integrity?

28 What are the characteristics of data integrity?

29 Why could validation be unsatisfactory, and how can the reasonableness of data be tested?

☑ Project plan ☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☑ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

CHAPTER 6 » CYBERSECURITY RISKS 255

9780170440943

APPLY YOUR

KNOWLEDGE

A recently established software development company is considering expanding its workforce and
relocating to the top floor of a three-storey building.

The original directors will be joined by four others, who will be responsible for web design,
database design, Python language development and sales and marketing.

Each designer will have their own o�ce, and the web designer will also be the reception and
phone-switch operator. Each worker will be provided with a notebook, which can be taken home,
and a desk station with an external monitor.

and 12Mbps download.

DogMatch WebAPP details:

The wi-fi will be shared with a friendly company that resides on the second floor.

The servers will be kept in the basement. The building has a lift.

The Internet connection will be on a basic (NBN12) plan with o� peak speeds of 1Mbps upload

• The first software project will be a dating WebAPP that will match dog owners with a common
interest in a variety of categories.

• The WebAPP will collect personal information, pictures of the dog and owner, and provide a
match according to an algorithm.

• A meetup will be organised at a mutually acceptable safe location by swapping contact details.

• The WebAPP will be written in Python, uses an SQL database and will be available on any web
browser.

• Members of the DogMatch WebAPP will pay a monthly subscription after entering credit card
details or direct debit details into a web form and paying the initial joining fee.

• New members will be sent a confirmation email with BSB bank account details for them to
arrange a bank account direct debit.

• Login to the WebAPP will be through a four-digit number passcode with a limit of 30 tries
before a 30-minute timeout.

Questions

1 Design a secure physical arrangement for the software company. Include any hardware
that will be necessary to ensure sensitive, and expensive, equipment and information can be
retained within the building.

2 While developing the software, the Python designer had di�culty completing the final hash
algorithm to meet the release deadline. The hash table worked slowly, causing delays on logins,
so the developer skipped the final validation and just kept the password as plain text.

Identify some of the:

a physical security issues.

b logical (software) security issues.

c humanware security issues.

256 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

APPLY YOUR

KNOWLEDGE

3 What may the implications for expansion be if the webAPP goes viral?

4 What are the implications if the webAPP gets infected with a virus?

5 Unknown to the directors, there is a security breach when one of the notebooks is stolen.
The notebook does not have a login password and uses autofill to login through the browser to
an Admin account.

a What are the obligations on the directors when there is a data breach?

b What are the liabilities for the company if bank account details are lost, with personal
details, names, addresses and phone numbers, driver’s licences and dog name(s)?

☑ Project plan ☑ Justification ☑ Analysis ☑ Folio of alternative
designs ideas

☑ Usability tests ☑ Evaluation and
assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

CHAPTER 6 » CYBERSECURITY RISKS 257

9780170440943

A
la

m
y

St
oc

k
P
h
ot

o/
Cu

lt
u
ra

 C
re

at
iv

e
Chapter

7
KEY KNOWLEDGE

After completing this chapter,
you will be able to demonstrate
knowledge of:

Interactions and impacts

• reasons why individuals and
organisations develop software,
including meeting the goals and
objectives of the organisation

• key legislation that a�ects how
organisations control the collection,
storage, including cloud storage
and communication of data: the
Copyright Act 1968, the Health
Records Act 2001, the Privacy Act
1988 and the Privacy and Data
Protection Act 2014

• ethical issues arising during the
software development process and
the use of a software solution

• criteria for evaluating the
e�ectiveness of software
development security strategies

• the impact of ine�ective security
strategies on data integrity

• risk management strategies to
minimise security vulnerabilities to
software development practices.

Reproduced from the VCE Applied Computing Study

Design (2020–2023) © VCAA; used with permission.

Software security

FOR THE STUDENT

Students should be able to analyse and evaluate software development
security strategies within an organisation and recommend a risk
management plan to improve current practices.

FOR THE TEACHER

This chapter is based on Unit 4, Area of Study 2 and, together with
chapter 6, provides the key knowledge required to complete Unit 4,
Outcome 2. At the end of chapters 6 and 7, students should be able to:

• respond to a teacher-provided case study to examine the current
software development security strategies of an organisation

• identify the risks and the consequences of ine�ective strategies

• recommend a risk management plan to improve current security
practices.

258

259
CHAPTER 7 » SOFTWARE SECURIT Y

Why develop software?
Sometimes, software needs to be written to speci�c criteria rather than being purchased off

the shelf. Although open source software is freely available, a developer is often needed to

customise the program to a particular purpose. Sometimes software is needed to perform

speci�c tasks that off-the-shelf software cannot do. This can affect both individuals and

organisations. Sometimes the goals and objectives of organisations are not being met, and

software needs to be developed to meet these.

Goals and objectives of organisations
Organisations tend to go through many changes over time. These changes are generally the

result of a strategic plan. A strategic plan is a process for identifying long-term goals within

an organisation. For example, a school is an organisation. A school needs to establish a

strategic plan outlining how it intends to maintain or increase enrolments, introduce new

courses and perhaps erect a new building. This type of planning looks beyond the day-to-day

running of the organisation and concentrates on future developments. These plans could

range anywhere from two to 25 years.

Once an organisation has developed a strategic plan, a mission statement is developed

based on the organisation’s purpose, visions and values. As you read in in chapter 4, the

mission statement is the basis for establishing a set of common goals that will help

accomplish the organisation’s aims. These are known as organisational goals (see chapter 4).

For example, a school may establish targeted goals, such as the introduction of a vocational

education course within two years, or the completion of a new science and technology

centre in the next �ve years. To achieve these goals, the organisation needs to develop a list

of objectives. Objectives are small, achievable tasks that need to be undertaken in order

to accomplish a big task. Objectives are measurable. For example, an objective may be to

increase student enrolments by 10 per cent within 12 months.

Identifying organisational
goals is important to
understanding how and why
organisations operate.

THINK ABOUT

SOFTWARE

DEVELOPMENT

7.1

1 Can you think
of any type of
organisation that
would need a
strategic plan? For
what purpose?

2 Using the Internet,
search for two
examples of a
mission statement.

A mission statement
concentrates on the
present, whereas a vision
statement focuses on
the future. A mission
statement explains the
company’s reason for
existence. It describes the
company, what it does
and its overall intention.
A vision statement
describes the organisation
as it would appear in a
future successful position.

statement

Who are we?

Mission

statement
Vision

What do we want
to become?

Goals

How do we
achieve the

mission statement?

Objectives

Activities to be
accomplished to

achieve goals

Organisational goals
and objectives will often
relate to improving the
e�ciency or e�ectiveness
of operations.

A systems analyst

FIGURE 7.1 The relationship between mission statement, vision statement, goals and objectives

Organisations are increasingly dependent on the use of software to achieve their goals

and objectives. When planning the software, the systems analyst will identify a goal. This

explains the speci�c role of the software in achieving the organisational goal and, ultimately,

the company’s mission. Setting up the right type of software can help an organisation make

improvements in ef�ciency, effectiveness and decision-making.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests

performs both the analysis
and the design of the
software. As well as being
a good planner, a systems
analyst must be a good
communicator. As part of
the analysis, the systems
analyst is responsible for
talking with users and
translating their needs into
a design, which is then
passed on to programmers
to build.

☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

9780170440943

260

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Minimising risk
Threats to data and information occur every day. Data can be compromised through

activities such as theft (such as by disgruntled workers or criminals who will make money

selling the data), loss of devices (such as accidentally leaving laptops somewhere), neglect

(not erasing data when recycling computer hardware) and not following appropriate data-

handling procedures and policies. Collecting, storing, sending, encrypting, gathering and

disposing of data all involves risk. To protect data and information, organisations need to

manage this risk by putting security measures into place, such as:

• securing computers, servers and wireless networks

• utilising anti-virus and anti-spyware protection, and �rewalls

• storing data backups off-site and ensuring that backups occur routinely

• securing passwords

• ensuring staff are familiar with digital systems policies and procedures

• becoming familiar with their legal obligations.

Key legislation for storage and

THINK ABOUT

SOFTWARE

DEVELOPMENT

7.2

Why is this legislation
contentious? Why
is privacy protection
important?

The last known amendment
to this Act was passed in
December 2017. The Act
implemented a number
of amendments that
were supported by both
creators and users of
copyright content. Among
these amendments were:
extending the exception
for exams to include online
exams; allowing libraries
to make ‘preservation
copies’ of ‘original versions’
such as manuscripts; and
simplifying and updating
the provisions that allow
accessible format versions
to be produced for people
with disabilities.

disposal of data and information
There are several key laws relating to the information systems and telecommunications

industries. At a federal level, the Copyright Act 1968 protects the rights of creators of

creative and artistic works. Other key legislation includes the Privacy Act 1988 (see chapter

4), which governs how information about people can be used. In Victoria, we are especially

concerned with the Privacy and Data Protection Act 2014 (see chapter 4) and the Health

Records Act 2001 (see chapter 4). Combined, these laws govern the collection and use

of private information by both government and non-government organisations, at both

state and federal levels. Employers and government agencies have a legal responsibility to

ensure that these laws are implemented within their organisations. Organisations must also

make employees and customers aware of their rights and their responsibilities in relation

to these laws.

This section examines the key laws affecting the storage and disposal of data and

information held by organisations.

Copyright Act 1968
The Copyright Act 1968 is a federal law that recognises that any original creative or artistic

work is the property of the person who created it. Any person wishing to use another person’s

work must obtain permission and/or pay for a licence. The Copyright Act protects the creator

of an original work from unauthorised reproduction, conversion, adaptation, transmission or

publication of their intellectual property (IP), which includes:

• original literary, dramatic, musical and artistic works

• websites

• software

• electronically recorded music, �lms and books.

261
CHAPTER 7 » SOFTWARE SECURIT Y

The Copyright Act 1968 was amended by the Copyright Amendment (Digital Agenda)

Act 2000, the Copyright Amendment Act 2006 and the Australia–United States Free Trade
Agreement (AUSFTA).

Copyright protection exists automatically, as soon as intellectual property is created

and recorded in a way that can be seen or heard (for example, written, recorded, �lmed or

put online). However, the Copyright Act does not cover ideas, concepts, styles, techniques,
information, names, titles, slogans, people or images of people. You do not have to register

for copyright as you do for patents or trademarks. You do not need to use a copyright symbol

or statement, although they are recommended.

You have the right to protect your own original works using technological devices such as

encryption or copy protection.

Without permission from the copyright holder, it is illegal to:

• digitise a non-digital work, such as ripping a CD to MP3, or converting a DVD to an MKV �le

• make or import devices or software to bypass copy protection

• remove or tamper with a copyright notice

• share copyrighted material online

• keep or share programs recorded from TV

• publish unauthorised screenshots from some web pages or software.

There are a few limited exceptions that allow IP to be used for education, review, satire

or fair use. For most copyright-related criminal convictions, an individual may face a �ne of

up to $117 000 and/or up to �ve years imprisonment. An organisation may face a �ne of up

to $585 000. The possible term of imprisonment is up to �ve years. It is important to note

that employees who infringe copyright by pirating software on work computers are liable, but

their employers can also be required to share some of that liability.

INSIDE LAW: Dallas Buyers Club and Vi l lage cases explained

28 April, 2016 by Sonia Borella

Two of Australia’s top media and entertainment lawyers – Sonia Borella and Dan Pearce
from national law �rm Holding Redlich – explore two recent developments in combating
piracy.

Rights holders have been active recently in taking steps to counter unauthorised
downloading of their �lms. We catch up on the �nal outcome in the Dallas Buyer’s Club
claim and review the �rst claim under the recently introduced anti-piracy legislation.

Enforcing rights in copyright material has its obstacles but compensation is not
unattainable – lessons from the Dallas Buyers Club case.

The owners of the �lm ‘Dallas Buyers Club’ have not proceeded with their claim for
payments in connection with the unauthorised downloading of the program, but the action
is still an important case for rights owners.

By way of background, in October 2014, a preliminary discovery application was �led in
the Federal Court of Australia (Court) by the rights holders in the �lm Dallas Buyers Club
(Film), naming six Australian ISPs as respondents.

The purpose of the application was to obtain the details of customers associated with
4726 IP addresses that were used to download and share copies of the Film using the peer-
to-peer �le-sharing service BitTorrent. The intention was to then issue letters of demand to
those customers for the infringement of the copyright in the Film, seeking compensation.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

CASE

STUDY

9780170440943

262

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

On 7 April 2015, the Court delivered its decision on preliminary discovery in favour of
the rights holders in the Film, and ordered that various ISPs, including members of the iiNet
Group and Dodo, provide to Dallas Buyers Club LLC (or parent company Voltage Pictures
LLC) the names and addresses of customers who are alleged to have used BitTorrent to
share the Film.

But the order was conditional – the communications to be sent to alleged infringers
needed to �rst be approved by the Court in order to prevent ‘speculative invoicing’ against
alleged infringers without a proper legal basis.

Due to the nature of the preliminary proceedings, there was no decision as to whether
copyright in the Film had been infringed, but the Court did ‘not regard as fanciful the
proposition that end-users sharing movies on-line using BitTorrent are infringing the
copyright in those movies’.

The ISPs claimed in opposing the discovery that naming individual users would be
economically pointless, as the compensation for the infringement would be in the order of
$15.00. Representatives of Voltage Pictures LLC reportedly said that bringing proceedings
against alleged infringers has value beyond the compensation recovered.

Further, in the case of multiple downloaders, the Court said it must be considered at
least plausible that a copyright owner may be able to obtain aggravated damages under
section 115(4) of the Copyright Act 1968 (Cth). The ability to obtain aggravated damages
exists partly because of the need to provide deterrence.

The rights holders in the Film proposed to demand of the alleged infringers a sum
including:
a the cost of legitimately purchasing the Film
b a licensing fee relating to each infringer’s uploading activities
c punitive damages, based on the alleged infringers other illegal downloading activity,

and
d a claim for damages, for the costs incurred by the rights holders in the Film in bringing

the application.
On 14 August 2015 the Court handed down its decision, which imposed certain

limitations on and requirements of the rights holders in the Film.
Of particular concern to the Court was whether the payment demands by the rights

holders were reasonable in a copyright infringement context.
The Court found that it was reasonable to demand the sum equal to the cost of purchasing

the Film, given that sharing the Film online was undoubtedly copyright infringement, and
reasonable compensation would be equivalent to the cost for the alleged infringer to have
seen the Film legitimately.

The Court also found that the rights holders in the Film had expended signi�cant
resources and legal costs in obtaining the infringing IP addresses, and therefore that the
claim for damages was also reasonable.

The Court did not regard the demands for sums equal to a licensing fee and punitive
damages as reasonable.

The Court concluded that it would only order the ISPs to hand over the customer details
sought if the rights holders in the Film provided the Court with a written undertaking that
they will restrict the demands to those which the Court has ruled as permissible.

The Court also ordered that this undertaking be secured by the lodging of a $600 000
bond.

The rights holders in the Film then said the bond amount they would pay would only be
in the amount of $60 000 for access to 472 names initially, and that the costs sought would
only be for an individual licence fee as well as damages for legal costs incurred.

The Court then gave the rights holders until February 2016 to appeal the Decision, after
which time the proceedings would be terminated.

The drawn-out battle came to an anti-climactic end when the rights holders in the Film
decided not to proceed any further, and failed to lodge an appeal within the time limit
imposed by the Court.

submission

CHAPTER 7 » SOFTWARE SECURIT Y

263

The rights owners in the Film had to overcome several obstacles but fell at the �nal
hurdle. They had the capacity to claim compensation for the permissible demands,
including the purchase price of the Film and the costs expended in obtaining the IP
addresses.

However, at their election, the matter did not progress any further, which begs the
question as to whether, for copyright owners, these sorts of applications can be brought
cost effectively.

This case has a lesson for infringers in putting them on notice and acting as a potential
deterrent.

It also provides a roadmap of sorts for copyright owners as to the best way to approach
these sorts of situations, including an indication as to the types of restrictive undertakings
a court may impose to prevent things like speculative invoicing taking place.

It would seem that if copyright owners are prepared to act in accordance with any
condition the court may impose, that their enforcing of their intellectual property rights
and the process involved in holding infringers to account for online piracy is now more
transparent following this decision.

Australian Government passes Bill aimed at reducing instances of online
piracy, but is legislation the answer?

In June 2015, the Australian Government passed the Copyright Amendment (Online
Infringement) Bill 2015 (Bill), the purpose of which is to prevent unauthorised access to
certain websites, including the BitTorrent website, The Pirate Bay, and to ultimately reduce
instances of copyright infringement.

For rights holders such as �lm and television production companies, the Bill provides a
legal avenue to protect their rights, through an application being made to the Court for an
order requiring ISPs to block access to websites.

Importantly, the website in question accessed by alleged infringers must have the
principal purpose of copyright infringement.

While this may act as a deterrent for online piracy, it will not of itself prevent illegal
downloaders from continuing to download from the websites in question. Further, in
practice, the individual activity of the downloader will only be changed once the Court
orders that the ISP take reasonable steps to block the website in question, following an
initial application to the Court by the rights holder.

Although not necessarily a complete solution to the problem of online piracy in
Australia, the Bill is a step in the right direction, and provides rights holders with a legal
avenue available to protect their original copyright material.

Village Roadshow (Village) is amongst the �rst to utilise the newly introduced anti-
piracy legislation, in recently �ling an application with the Court for an order to be made
to compel the ISP in question to block piracy website, SolarMovie. The basis of the claim
is that this website’s primary purpose is the facilitation of copyright infringement. Although
these types of claims have been successful in other overseas jurisdictions, this is a test case
for the Australian anti-piracy laws, and it will be interesting to see whether Village will be
successful in holding the operators of the infringing website accountable for the damage
they are causing to its industry.

– Dan Pearce

Where to from here?

The combination of increased avenues for Australian consumers to access television and
�lm content legally, together with the implementation of new deterrent legislation, and
possibly more cases like Dallas Buyers Club tackling this issue, will hopefully go some way
to reducing the number of instances of online piracy in Australia.

© Intermedia, IF Magazine. ‘Inside law: Dallas Buyers Club and Village cases explained’ 28 April, 2016 by Sonia Borella. Accessed from

https://www.if.com.au/inside-law-dallas-buyers-club-and-village-cases-explained/

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

9780170440943

264

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Since the AUSFTA was implemented on 1 January 2005, copyright generally applies for

the life of the creator plus 70 years. The copyright holder may not necessarily be the author,

performer, or director if someone else (e.g. a recording company) paid for these works to be

produced. Employers usually hold copyright over material that their employees create, as do

�lm, game and music producers. Sometimes the performer may own a share in the copyright

held by these organisations. Copyright can even be sold.

According to the Australian Copyright Council, ‘copyright is infringed if copyright

material is used without permission, in one of the ways exclusively reserved to the copyright

owner’. This means that someone may not use a whole or a part of a work, including changing

or adding to it, without seeking permission from its copyright owners. For example, a student

producing a video for their local sporting club must seek permission to use any music or

video clips if they are not the student’s own original work. Similarly, someone who imports

then sells copyrighted items from overseas without permission is considered to be in breach

of copyright.

There have always been some provisions for ‘fair use’ of copyright material, such as by

schools (for research or study purposes), libraries, reviewers (e.g. book and �lm critics) and

government bodies.

When the Copyright Amendment (Digital Agenda) Act 2000 came into effect in early 2001,

Further information
on Australian
copyright laws,
including information
sheets on a wide
variety of copyright-
related questions, can
be obtained from the
Australian Copyright
Council

the Copyright Act was updated to cover work published electronically. The main purpose of

the amendment was to extend the Copyright Act to cover works that were produced, stored or

transmitted digitally. This includes the use of web-based materials, digital sound and video

recordings (including free-to-air broadcasts, CDs, DVDs and MP3s) and circumvention

of technologically based copyright protection measures. These provisions were further

extended by the AUSFTA in 2005.

In 2006, the Copyright Act was further updated to provide more direction for users, such

as strengthening the owner’s rights to their digital material. In addition, it makes provision

for users to access some legitimate copyright material without breaking the law, such as time-

shift recordings, although users are not permitted to store their recordings.

New exemptions relating to personal use of recorded works have allowed consumers the

right to make copies of works they have purchased and transfer them into other formats for

personal use. This means that it is legal to copy music from CDs that you own into an MP3

format to be used on a personal music player. People are also able to transfer tapes and vinyl

records to an electronic format. Consumers are also permitted to record television and radio

programs to watch or listen to at a later time (time shifted). Again, this is only for personal

use, and these recordings cannot be distributed to others. Enforcement measures include

on-the-spot �nes and proceeds of crime remedies.

In 2015, further amendments were made to the Copyright Act to incorporate online

infringements. The Amendment to the Copyright Act was intended to disrupt large-scale
websites that operate outside Australia and distribute (or facilitate the distribution of)

infringing material to Australian consumers. It enables copyright owners to apply to the

Federal Court of Australia (the Federal Court) to block access to an online location that

meets certain conditions.

Making and distributing copies of games, music and software, even if it is not for any

personal �nancial gain, is illegal in Australia. These acts are commonly referred to as piracy.

©
 S

p
o
ti
fy

;
©

 N
e
tf

lix
;
©

 S
ta

n

CHAPTER 7 » SOFTWARE SECURIT Y

Copyright and music, computer games and computer software

Copyright legislation means that what you can copy or reproduce in other formats is highly

restricted. In terms of music, as noted previously, when you buy a CD you have the right to

make a backup copy, or even to rip a copy to MP3 format to play on your personal music

player. You are permitted to download music from the Internet via peer-to-peer transfers, but

only if you have the permission of the copyright holder. There may be speci�c terms and

conditions for online music stores that allow you to make a certain number of copies for

personal use, but these vary between distributors.

Computer games fall into several categories because they incorporate the program

code, as well as audio and video works that may be licensed from other copyright holders.

Generally, you are permitted to make a backup copy of the game itself, but not any of the

artistic works that may also be on the media, such as video or audio, without seeking the

permission of the relevant copyright holders. You may lend a legitimate copy of a game to

someone to play, but it is illegal to play an infringing copy. Under the AUSFTA, any devices

speci�cally designed to bypass copyright protection measures are considered to be illegal.

Computer software is treated as a ‘literary work’ under the Copyright Act. As with games,
you are permitted to make a backup copy of the software only, but not of any associated

video or audio works unless the licence allows this. You are not, however, permitted to bypass

copy protection features in order to make your backup. If your original media are destroyed,

the Copyright Act allows you to make another backup from the �rst backup. Naturally, it is
illegal to make multiple backup copies and distribute them to other people. The speci�c

software licence will tell you how many times you are allowed to have the program installed

simultaneously.

Copyright and cloud computing

Many copyright owners are using cloud computing services to deliver copyright material to

users, such as iTunes, Spotify, Net�ix and Stan. These subscriptions or pay-per-use services

provide on-demand access to large libraries of properly licensed music, �lms, books and

other content.

265

THINK ABOUT

SOFTWARE

DEVELOPMENT

7.3

1 Why have personal
music players,
such as iPods,
necessitated a
rethink about
Australian
copyright laws?

2 Explain what is
meant by ‘fair use’.

3 What do you and
your classmates
see as ‘fair use’ for
music purchased
online or in a shop?

4 What are the
arguments for and
against a ‘fair use’
amendment to the
Copyright Act?

FIGURE 7.2 Copyright material can be delivered to users using services such as iTunes, Spotify,
Netflix and Stan.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

9780170440943

266

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Conversely, individuals tend to engage with cloud computing services to store copyright

material they have copied or ‘ripped’ themselves, such as music �les copied from a CD. The

advantages of storing these copies on remote servers is that it means content from multiple

computers and devices, including mobile devices, can be accessed easily. The issue, however,

is that the copyright holders of the material may object to this use.

Penalties for infringing copyright

Cable TV broadcasters
transit signals in an
encrypted way so that they
can charge a fee for viewing
their content. Decrypting
television broadcasts refers
to signal theft of pay TV
without permission from
the original broadcaster.

We now know that the infringement of copyright includes activities such as selling or playing

pirated software, games and music, decrypting television broadcasts, removing copyright

protection and importing copyright material without authorisation. Most of these actions can

be tried in court as civil actions. In general, copyright infringements that involve some kind

of commercial dealing are criminal offences. For civil actions, the damages vary depending

on the level of infringement and compensation

Privacy Act 1988
The Privacy Act 1988 was introduced in chapter 4 (see page 153). This chapter will investigate

how the act applies to the collection, storage and communication of data.

What is included in the Privacy Act ?

The Privacy Act includes the following:

• Thirteen Australian Privacy Principles (APPs) that apply to the handling of personal

information by most Australian and Norfolk Island government agencies and some

private sector organisations

• Credit reporting provisions that apply to the handling of credit-related personal

information that credit providers are permitted to disclose to credit reporting bodies

• The collection, storage, use, disclosure, security and disposal of individuals’ tax �le numbers

• The handling of health information for health and medical research purposes in certain

circumstances, where researchers are unable to seek individuals’ consent

• An Information Commissioner who approves and registers enforceable APP codes that

have been developed

• The option for a small business operator, who would otherwise not be subject to the

Australian Privacy Principles (APPs), to opt-in to being covered by the APPs

Who is covered under the Privacy Act ?

The Privacy Act gives an individual control over the way their personal information is

handled. The Privacy Act allows individuals to:

• know why their personal information is being collected, how it will be used and who it

will be disclosed to

• have the option of not being identi�ed, or of using of a pseudonym in certain circumstances

• ask for access to their own personal information (including health information)

• discontinue receiving unwanted direct marketing

• ask for incorrect personal information to be corrected

• make a complaint about an entity covered by the Privacy Act, if personal information has

been mishandled.

267
CHAPTER 7 » SOFTWARE SECURIT Y

Australian Privacy Principles

As part of the Privacy Act, the Australian Privacy Principles (APPs) were devised to set out
the standards, rights and obligations for collecting, handling, holding, accessing, using,

disclosing and correcting personal information.

The Australian Privacy Principles generally apply to Federal Government agencies. They

do not apply to local councils, or State or Territory Governments. Some states have their own

privacy laws, such as Victoria’s Privacy and Data Protection Act 2014.

The APPs oversee the handling of personal information by:

• Australian and Norfolk Island government agencies

• all private health service providers

• businesses that have an annual turnover of $3 million or those that trade personal

information.

TABLE 7.1 The Australian Privacy Principles

APP 1

APP 2

APP 3

APP 4

APP 5

APP 6

APP 7

APP 8

APP 9

Open and transparent management of personal information
Ensures that APP entities manage personal information in an open and transparent way.
This includes having a clearly expressed and up-to-date APP privacy policy.

Anonymity and pseudonymity
Requires APP entities to give individuals the option of not identifying themselves, or of
using a pseudonym. Limited exceptions apply.

Collection of solicited personal information
Outlines when an APP entity can collect personal information that is solicited. It applies
higher standards to the collection of ‘sensitive’ information.

Dealing with unsolicited personal information
Outlines how APP entities must deal with unsolicited personal information.

Notification of the collection of personal information
Outlines when and in what circumstances an APP entity that collects personal information
must notify an individual of certain matters.

Use or disclosure of personal information

Outlines the circumstances in which an APP entity may use or disclose personal
information that it holds.

Direct marketing
An organisation may only use or disclose personal information for direct marketing
purposes if certain conditions are met.

Cross-border disclosure of personal information
Outlines the steps an APP entity must take to protect personal information before it is
disclosed overseas.

Adoption, use or disclosure of government related identifiers
Outlines the limited circumstances when an organisation may adopt a government related
identifier of an individual as its own identifier, or use or disclose a government related
identifier of an individual.

APP 10 Quality of personal information

An APP entity must take reasonable steps to ensure the personal information it collects
is accurate, up-to-date and complete. An entity must also take reasonable steps to ensure
the personal information it uses or discloses is accurate, up-to-date, complete and relevant,
having regard to the purpose of the use or disclosure.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

9780170440943

268

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 7.1 The Australian Privacy Principles (continued)

APP 11 Security of personal information

An APP entity must take reasonable steps to protect personal information it holds from
misuse, interference and loss, and from unauthorised access, modification or disclosure.
An entity has obligations to destroy or de-identify personal information in certain
circumstances.

APP 12 Access to personal information
Outlines an APP entity’s obligations when an individual requests to be given access to
personal information held about them by the entity. This includes a requirement to provide
access unless a specific exception applies.

APP 13 Correction of personal information
Outlines an APP entity’s obligations in relation to correcting the personal information it
holds about individuals.

© Office of the Australian Information Commissioner— www.oaic.gov.au. Summary of the Australian Privacy Principles accessed from

https://www.oaic.gov.au/agencies-and-organisations/guides/app-quick-reference-tool. Released under CC BY 3.0 AU,
link to license: https://creativecommons.org/licenses/by/3.0/au/deed.en

Credit reporting provisions

There have been changes to the credit-reporting provisions of the Privacy Act 1988 and to

the way credit-related personal information is collected. The Privacy Act also encompasses

a code of practice for credit reporting. The credit-reporting provisions for consumer credit

include the simpli�cation of the language used in reports, and improved privacy protections.

The process to lodge a complaint has also been simpli�ed.

Privacy and Data Protection Act 2014
The Privacy and Data Protection Act 2014 (PDPA) was covered in chapter 4, pages 154–55.

Health Records Act 2001
The Health Records Act 2001 was covered in chapter 4, pages 155–57.

Storing health records in the cloud

The advantages of storing health records in the cloud include the fact that this gives health

care professionals access to health records and data to assist with accurate patient diagnosis

and medications. The sharing capabilities of the technology also enable accurate analysis of

medical histories to assist with:

• diagnosis

• minimising duplication and unnecessary testing

• long-term monitoring of chronic diseases.

The improved sharing of records also enables medical professionals to communicate and

collaborate and offer a team approach to looking after the patient.

However, data breaches are a major risk of cloud computing. Health records are

comprehensive and highly sensitive, making them a desirable target, especially for identity

fraud, theft and blackmail. Other threats include loss of data, denial-of-service attacks and

cyber attacks.

While there is protection for storing health records, complexities arise from both

Commonwealth and state legislation. For example, Commonwealth Government agencies

and private sector health service providers must comply with the Australian Privacy Principles

(APPs) (see Table 7.1) set out in the Privacy Act 1988 (Cth). The Privacy Act recognises

CHAPTER 7 » SOFTWARE SECURIT Y

health information as a form of ‘sensitive information’. However, state-based public

sector agencies must comply with state- or territory-speci�c legislation regarding privacy,

con�dentiality and data management – in this case, the Health Records Act. Confusingly,
laws vary between states and territories, and there is also signi�cant overlap between federal

and state/territory laws.

Ethical issues

Although software provides numerous bene�ts, negative effects, both intended and

unintended, can impinge upon people’s rights. Therefore, those who design, control and use

software must consider the real and potential negative effects of the software, and eliminate

or lessen them as much as possible. Sometimes even this may not be enough to justify the

proposed collection or creation of data. It is important to take into account legal objections

and ethical considerations when creating or acquiring data. The purpose for collection needs

to be clear. It also needs to be articulated in the participant information statements and the

consent forms provided to the people from whom information will be sought.

Ethics refers to behaving in ways that are based on our morals and accepted standards.

These standards may be common in a particular society or speci�c to a single organisation.

They apply to questionable activities over and above any legal requirements. Ethics often

provide us with a set of guidelines for appropriate behaviour. Choosing to ignore these

guidelines is not necessarily a crime, but it can lead to being sacked by an employer or being

shunned by society. For example, the impact of violent video games on children has long

been debated. Some people have voiced their concerns that video game writers should not

include animated violence in their games because it can have a negative impact on children.

A system of classi�cation exists for games, similar to television and �lm classi�cations, which

outlines the content that is permissible within each of the classi�cation categories, and what

content is prohibited.

269

FIGURE 7.3 Classification markings ensure that consumers and parents can make informed choices.

These examples demonstrate how ethics hinge on society’s values and standards. In this

example, there are two competing principles. Some people would argue that protecting

children from possibly harmful video games is the right thing to do. Others would argue that

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

©
 C

o
m

m
o
n

w
e
a
lt

h
 o

f
A

u
st

ra
lia

 2
0

18
.

A
u

st
ra

lia
n

 G
o
ve

rn
m

e
n

t:
 D

e
p
a
rt

m
e
n

t
o
f

th
e
 C

o
m

m
u

n
ic

a
ti

o
n

s
a
n

d
 t

h
e

A
rt

s.
 R

e
le

a
se

d
 u

n
d
e
r

C
C
 B

Y
 4

.0
In

te
rn

a
ti

o
n

a
l,

lin
k

to
 l
ic

e
n

se
:
h

tt
p
s:

//

cr
e
a
ti

ve
co

m
m

o
n

s.
o
rg

/
lic

e
n

se
s/

b
y/

4
.0

/

9780170440943

270

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

This may be of particular
concern when deciding
what must be removed to
su�ciently de-identify
data to protect all its
potential users. It is also
important when reporting
personal information
anonymously or using
pseudonyms in a newspaper
report, for example.

it is more important to maintain freedom of expression. Often, questions of ethics become

debates over which of the two principles is more important. This kind of con�ict can be

problematic, especially when the consequences of action are open to debate or interpretation.

Ethics are the moral guidelines that govern, among other things, the use of data collection.

Often ethical principles/guidelines have an accompanying law, but the ethical principle is

usually broader, and the law applies only to certain circumstances or applications of the

principle.

For example, it is ethical to obtain permission to publish photos of people on websites or

in promotional material. It is important to state the purpose for taking the photo and how it

is intended to be used. Ethically, it is wrong to use a photo for a different purpose from that

for which it was originally collected. Similarly, when using data-collection tools such as

surveys, interviews and questionnaires, it is important to reassure participants that the data

provided, within the limits of the law, will remain anonymous, and that their individual

comments will not be able to be identi�ed by others. This is not just to put participants’

minds at rest, it is also to ensure that their privacy is in fact protected (and that non-participants

in the larger group that the sample is supposed to represent are not put at unacceptable risk

of suffering as a result of mistaken identi�cation).

Ethical issues in software development and use
Working in an organisation with ethical, legal or social tensions can be uncomfortable.

In particular, a lack of clarity in the policy documents an organisation uses to govern the

development and use of software can lead to tensions.

The relationship between software developers and end users

A complete software development process requires the identi�cation of all people who will

or might be affected, and a risk analysis must be undertaken to address all legal, social,

political and ethical issues.

Often these issues arise after the software has been used for a while. These issues can

cause con�icts between developers and users. For example, there may be con�icts about:

• privacy of personal information collected

• backup copies of software

• the results of the program not meeting the expected standard

• bugs in the program

• monitoring of users’ activities and sending the information back to the developers

• monitoring of work activities by the IT department

• security �aws in the software

• ergonomic issues arising from the use of the product

• the reliability of the software

• the lack of consideration given to users with disabilities

• installing advertising and other software along with the main software

• the backup system not being con�gured to work properly

• forcing the user to register or else the program will stop working after a time

• programs that are unsuitable for use by children

submission

CHAPTER 7 » SOFTWARE SECURIT Y

• use of company time and equipment for private purposes, such as email and Internet

browsing

• use of impersonal voice recognition and automated answering systems.

Software developers must take into account a variety of legal obligations and ethical

considerations. Some of these considerations have an effect on the development of the

program, and others affect the way the program is used. Even if there are no laws already in

place, there can be other considerations that could result in harm for users and others.

Intellectual property and copyright
Most software developers adhere to copyright laws. Using code developed by other

programmers without paying for it, using it without obtaining permission, or modifying it

but still keeping the major features can leave the programmer open to prosecution under

the Copyright Act. This legal obligation can also apply to the content of a program, such as

images, sounds and text, and the interface design. Copyright is usually enforceable in other

countries through international copyright treaties.

Websites are very good sources of material that can easily be copied, often illegally. Although

copying and using images, HTML and JavaScript code and Java Applets is easy to do, this

should not be done without due acknowledgement of the source. Often a payment is required.

The intellectual property rights of a program do not reside with the software developer

if the developer was employed by an organisation when doing the work. Therefore, code,

materials and technical knowledge that is owned by the organisation cannot be used if the

programmer is developing a similar program for another organisation, or for themselves.

These situations are often covered by non-disclosure rules that are written into the terms or

contracts of employment. For example, the employment contract might state:

‘All intellectual property rights are vested in the employer for any inventions, new

programs or new systems developed in the course of employment. Moral rights

remain vested in the author or creator of any new invention/program/system or

other forms of intellectual property.’

There are many websites that can be used to obtain software that has not been purchased.

Downloading of this software is illegal. Programs and their accompanying crack can be

downloaded. A crack eliminates copyright protection schemes such as time and number

of use restrictions, need for registration, need for serial numbers and activation numbers.

Cracked software and software that is illegally available for free is often referred to as ‘warez’.

Some types of software are allowed to be copied often for marketing purposes, such as

open source, shareware, freeware and demonstration software. Shareware, freeware and

demonstration software are still copyrighted, but public domain software is not. Open-source

software is a special category.

Open source

Open source refers to programs where the source code is available free for use and can

be modi�ed. Open-source code is usually created as a collaborative and combined effort

by many programmers, who improve upon the code and share the changes with people in

the open-source community. A larger group of programmers not concerned with ownership

or �nancial gain will develop the program further. Programmers freely work to �nd and

eliminate bugs in the program code and publish the result online.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests

271

Warez is used most
commonly as a noun; a
plural form of ware (short
for computer software).

Shareware di�ers from
open-source software,
in which the source code
is available for anyone
to look at and make
changes. Shareware is free
of charge and is usually
available to use for a period
of time before it costs
money to use. The code
is not available to change.
Freeware is distributed
at no cost to the user;
however, the source code is
not made available.

THINK ABOUT

SOFTWARE

DEVELOPMENT

7.4

Open source produces
various types of
software. Can you
list five open-source
titles and provide a
description of what
each can be used for?

Open source

☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

9780170440943

272

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Copyright Amendment (Digital Agenda) Act 2000

The Australian
Copyright Council

In one case, the Federal
Court stated that the fact
that two pieces of software
perform the same function
does not, by itself, mean
that there is any similarity
between the two sets of
instructions.

What you can and can’t do
with software is set out in
the terms and conditions
of your licence. There is
no general right to copy
software for personal
use. Developers should
familiarise themselves
with the licences under
which they distribute their
software.

The Australian Government has enacted changes to the Australian Copyright Act called the

Copyright Amendment (Digital Agenda) Act 2000. Detailed explanations about copyright

can be found at the Australian Copyright Council website (see weblink).

Under copyright law, computer programs are de�ned as literary works – ‘a set of statements

or instructions to be used directly or indirectly in a computer in order to bring about a

certain result.’ This de�nition can include but is not limited to pseudocode, �owcharts,

a program in a book, part of a program, a website or part of a website. It can also include

machine code, and various languages. Other material associated with software may also be

separately protected by copyright, such as text, databases, visual art (including charts, maps

and plans), video (such as instructional videos, commercials and computer video games),

music and sound recordings.

However, copyright does not protect the function of the program. For example, a

programmer may develop a similar functioning program using a different set of instructions.

Copyright protects the form in which the idea is expressed in a particular program, but not

the idea for the program.

Copyright is infringed when a person uses or sells a program or a substantial part of

a program without obtaining permission from the copyright owner. Licensing agreements

usually specify what the licensee can do with the program. Circumventing copyright

protection technology is not permitted unless it is classed as a ‘permitted purpose’ activity.

There are a limited number of situations that do not count as copyright infringement.

In these situations, the copyright holder does not need to be contacted for permission. The

basic principle of these situations is that copying does not infringe the copyright holder’s

ability to earn income and control the distribution and use of the program. Some examples

where copyright is not being infringed include:

• making a backup copy of a computer program either to use in place of the original copy,

or to store as a backup for use if the original or an earlier backup is lost, destroyed or

rendered unusable

• copying software as part of a normal process of backing up �les for security purposes

• making a backup copy of a computer program if there are no technological locks to

prevent copying on the program

• when a programmer needs to ‘pull apart’ a program to �nd out how it works so that an

‘inter-operable’ product can be produced that works with the original program

• testing the program for security purposes, or for �nding faults if there is no other way of

doing so

• ‘fair dealing’ for research, study, criticism or review, news reporting and giving legal

advice.

A program that is no longer available commercially still has copyright held by the owner

or by whoever buys the assets of the company.

When is copyright infringed?
Copyright is infringed when a person other than the copyright owner uses a ‘substantial part’

of the material in any of the ways reserved for the copyright owner without their permission.

For example, if software users make copies, install software on multiple devices or make

submission

CHAPTER 7 » SOFTWARE SECURIT Y

software available for downloading, this can infringe copyright. A person may infringe

copyright by importing, selling or otherwise commercially dealing an infringing copy of

computer software.

Software developers can take measures to protect their software, such as copy protection,

password access and other types of technically based restrictions. There are two main types

of technology prevention measures: those that con�ne access to the material, and those that

limit or prevent copying of the material.

There are also provisions in the Copyright Act that give copyright owners the right to take

legal action against people who make, supply, distribute or import devices to circumvent

technology prevention measures.

Software developers can also protect their work by embedding details about the material, the

copyright owner and related data. For example, details can be embedded in the metadata of a

sound �le, or watermarking and other data embedded into an image or video �le. If someone

tries to remove this data, a case can be made that the copyright was intentionally infringed.

Software developers should also consider the type of licence they will release alongside

their software. The use of the software can range from restrictive uses to open source. The

type of licence will depend on whether it is a commercial venture or if the software developer

is comfortable freely distributing the software.

Software can be distributed through various app stores. Each store will have its own terms

and conditions. The software developer will need to agree to these before their software can

be sold on that platform. The licence will extend to revenue, acceptable software content

and function, and how many copies of the app can be installed at a particular time, how

many devices an app can be installed on and similar restrictions. Conversely, it is important

for software users to be aware of the terms and conditions that outline how the software can

be used, as well as consumers’ rights in relation to factors such as making backup copies,

re-downloading, and installing the software on multiple devices.

‘Safe’ programs
Programmers are legally obliged to produce programs that work properly. If a user can link a

problem or consequence resulting from the use of a program to the work of a programmer,

then the programmer will be liable for the damage caused. Program licences often state that

the producer of the program is not liable if the user has used the program in a way that was

not intended. However, if the program had bugs that caused a problem, the programmer

may be liable.

Ethically, computer programmers must ensure that no damage or harm can come from

the use of the program. This means the programmer must take into account who the users are,

and must take no shortcuts in testing the program. This is an important consideration, given

that programmers can write programs for all types of occupations and workplaces, including

nuclear power plants, chemical factories, medical facilities and �nancial institutions.

Programmers have an ethical obligation to design, build and test programs that will

bene�t the user. Programming computers to have a bene�cial impact is not easy, and is not

always a conscious developmental goal. Programmers are often bound by �nancial and time

constraints. The obligations to produce the best program possible and to remove all bugs are

important. There have been cases where bridges have fallen down and planes have crashed

due to programming bugs such as faulty code or badly designed features.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests

273

THINK ABOUT

SOFTWARE

DEVELOPMENT

7.5

Conduct an online
search for ‘history’s
worst software bugs’
to find more examples.

☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

9780170440943

274

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

‘Bad’, hidden and malicious software

There are several illegal or unethical features that programmers can design into programs.

For example, they can program the software to:

• have a back door so that people can bypass security features to gain access to a system

• contain hidden functions that can monitor the use of a program or a computer

• gain access to data on a computer system

• make connections to the Internet and report back to the author.

Some programs will install spyware or adware – these are usually attached to software that

is installed via the Internet. The user is generally unaware of the spyware or adware, as it is

attached to a program or �le the user wanted to download.

Writing viruses and other such programs can also be classi�ed as unethical. Other

situations that might be considered problematic include:

• websites being programmed to store ‘cookies’ on computers, which record the activities

of the person who visits the site

• programming games with features that challenge normal behaviour and values, such as

excessive violence and other features that are discriminatory to particular genders or races

• installing camera surveillance and email monitoring, which can raise some ethical

problems, especially if the employees are not informed.

CASE

STUDY

Programming bugs with BIG effects

1 In 2005 a car maker announced a recall of tens of thousands of one model of its
cars following reports of vehicle warning lights going on for no reason and engines
stalling unexpectedly. The issue was caused by a programming error in the smart car’s
controlling computer code. It had a software bug.

2 In the 1980s a radiation therapy device malfunctioned and delivered lethal doses of
radiation at some installations. Based upon an existing design, the Therac-25 was an
‘improved’ therapy system that could deliver two different kinds of radiation: either
a low-power electron beam (beta particles) or X-rays. One ‘improvement’ was the
replacement of the older Therac-20’s electromechanical safety interlocks with more
reliable software control. But the operating system had been written by a programmer
with no formal training. Because of a subtle bug based on the speed of response of
the equipment, a quick-�ngered typist could accidentally trick the Therac-25 so the
electron beam would �re in high-power mode but with the metal X-ray target out of
position. At least �ve patients died and others were seriously injured as a result of this
malfunction.

3 The �rst Internet worm infected thousands of computers in less than a day by taking
advantage of a buffer over�ow. The faulty code was part of the input/output network
library routine called gets() in the Unix operating system, which is designed to get a line
of text. Unfortunately, it has no limit to its input, and a large input allows the worm to
take over any machine it can connect to by inputting a full program and then running it.
Programmers responded by attempting to remove the gets() function from all working
code.

4 A Mariner 1 rocket deviated from its designated path on launch, and mission control
had to destroy the rocket over the Atlantic Ocean. The investigation discovered that
a formula written on paper in pencil had not been accurately copied into computer
code, causing the computer to miscalculate the rocket's path. The bug had not been
discovered during testing of the software.

submission

CHAPTER 7 » SOFTWARE SECURIT Y

The impact of ineffective security

275

strategies on data integrity
Organisations that fail to secure the data and information they hold, and suffer losses or

breaches as a result, may be subject to penalties or prosecution. For example, if private

personal information is lost, damaged or exposed, organisations may be prosecuted under

the Privacy Act. If tax records are lost, organisations may be penalised or prosecuted by
the Australian Taxation Of�ce. However, the consequences of failing to protect stored and

communicated data go much further.

In some cases, data loss may mean an organisation is unable to pay wages to its staff or

pay its suppliers. The need to recreate lost or damaged data, and repair or replace damaged,

destroyed or stolen equipment, can result in further costs, labour and disruptions. If normal

business is disrupted, the organisation will also lose income.

Data security failures may result in organisations losing their trade secrets to competitors.

Depending on the level of publicity involved in the breach, the organisation may also sustain

damage to its reputation, reducing customer loyalty. Its stock market value may also decline.

In 2011, Sony’s PlayStation Network incurred a major security failure that became one

of the most famous security breaches in history. The infographic in Figure 7.5 outlines the

security failure, how it unfolded and how it could have been avoided.

The highly destructive Stuxnet worm was released in 2005, but was not discovered as a

threat until 2010. The effects of the damage over those intervening �ve years are unknown.

After a security breach in 2009, Heartland Payment Systems (credit card processors) in

the USA lost 50 per cent of their market value. They also accrued $139.4 million in breach-

related expenses, including legal fees, forensic costs, �nes and other settlement costs. It took

them more than a year to recover from the associated stock market plunge.

Costs, labour
and disruptions to
recreate data and

repair or replace
equipment

Loss of
income

Loss of

customer
loyalty

Penalties and

prosecution

Consequences
of security

failure

Loss of trade
secrets to

competitors

Inability to

pay staff and
suppliers

Decline in

stock market
value

Loss of

productivity

FIGURE 7.4 Consequences to organisations of data security failure

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final

In
fo

g
ra

p
h

ic
 W

o
rl

d
,
a
n

 i
n

fo
g
ra

p
h

ic
 a

g
e
n

cy
.
L
in

k
to

 w
e
b
si

te
:
w

w
w

.I
n

fo
g
ra

p
h

ic
W

o
rl

d
.c

o
m

276

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

FIGURE 7.5 The Playstation Network hack: download this infographic

in full size from the NelsonNet student website

Data security
For a business, a loss of data can be anywhere from minor to fatal. For example, if a company

lost records of its accounts payable, it would have no record of what had been paid and

what still needed to be paid. If a retail store lost track of stock lists, it would have no way of

knowing if stock levels indicated a rise in shoplifting or if staff had been making mistakes

during transactions.

Failing to protect their data and information can cause businesses to lose trade secrets

to competitors and can damage their reputations as trustworthy organisations. They may

also face prosecution by the Australian Tax Of�ce if their tax records are lost, as well as

prosecution under the Privacy Act 1988 if they violate the Act and personal information is

lost, damaged or exposed as a result.

They may also lose income if the business cannot carry on because of the loss, and may

�nd they are unable to pay wages. It is vital that businesses protect personal and corporate

data from accidental or deliberate loss, damage or theft. This is an ongoing responsibility.

9780170440943

In
fo

g
ra

p
h

ic
 W

o
rl

d
,
a
n

 i
n

fo
g
ra

p
h

ic
 a

g
e
n

cy
.
L
in

k
to

 w
e
b
si

te
:
h

tt
p
:/

/
w

w
w

.I
n

fo
g
ra

p
h

ic
W

o
rl

d
.c

o
m

audience as possible.

CHAPTER 7 » SOFTWARE SECURIT Y

Just as businesses can lose their data and privacy, individuals can also lose theirs.

Unfortunately, malicious behaviour such as identity theft and doxing do happen. There

are also a multitude of other data security threats that, while not malicious, are nevertheless

real and dangerous. However unlikely an attack may seem, it is best to employ data security

measures. Data security takes two main forms: physical and software.

Physical security
Physically protecting your data is a logical and effective �rst step.

• If you use a laptop or tablet and store your data on it, make sure you keep it in a secure

place when it is not in use, such as in a cabinet or locked storage. Otherwise, store it out

of sight.

• Do not let other people use your devices unless you know them well.

• If a friend or family member needs to use one of your devices, make sure they cannot

access important data.

• Keep your doors and windows locked to prevent theft of your hardware.

• If you use a desktop computer, keep it switched off when you are not using it.

• Consider using surge-protector power outlets for all of your devices to protect the data

stored on them.

Physical protection

Physical protection includes locks, guards, surveillance cameras, keys and access devices of

various types such as smart cards, ID cards and biometric devices.

Human protection

Human protection involves checking the background and other aspects of people who

have access to important networks and information. The worst types of security breaches

are often inside jobs performed or permitted by people with access to information and

networks.

Security and access factors

In some organisations, sensitive data and information of a personal, �nancial, military,

industrial, legal or governmental nature may be stored and processed. The need for

security and control of access may play a large part in the design of a system, especially the

communication of the information across a network. For example, special consideration may

need to be focused on the encryption of data. There have been problems with the security of

credit card numbers used for online shopping because the security arrangements have been

inadequate. Banks have been very careful moving to online banking because they have not

been fully satis�ed with the security of the �nancial information �owing online between the

bank and the customer.

Some companies hire skilled hackers to attempt to break into their systems in order to

identify security problems. Better monitoring and security hardware and software may be

required as a result.

Security of and access to data need to be protected, and this should be addressed at the

design phase. One technique is to make some �les ‘read only’, so that users can access them

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

277

Doxing involves researching
a person, sometimes known
only by a handle (nickname
or screenname) and then
publishing their personal
information, such as their
full name, address, phone
number, workplace and
date of birth, online to
identify them to as large an

9780170440943

278

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

but cannot change the contents of the data. The access permissions required by various

persons in the organisation need to be determined early, and should eventually be put under

the control of a system manager or data administrator.

Other forms of protecting data include using:

• logon names and passwords to access different levels of the information system, and to

keep unauthorised people from having access to data when there is no need for it

• encryption, which is the coding of data, so those who are unauthorised cannot read it

• biometric security methods, such as �ngerprint and retina scanning

• keeping logs of activities – which �les were used, when and how, and which computer

was used.

Physical security also needs to be speci�ed:

• surveillance cameras

• keys for locks

• smart cards

• tracking of staff movement with radio devices

• guards to monitor and watch staff.

Software security
Software security is extremely important to individuals and their data. Threats can come

from anywhere at any time, and they can be both deliberate and accidental. Threats can

come across a network and do not rely on physical access to equipment.

Use strong passwords

Ideally, passwords should be at least eight characters in length and should include a

combination of numbers and both uppercase and lowercase letters. Depending on the

software, you may also be able to include special characters such as punctuation. Try not to

use the same password on every login. If you do, and a hacker gets into one of your accounts,

they will then have access to all of them.

Passwords that contain common words are easily guessed, so should be avoided.

Examples of weak passwords:

• 12345

• nothing00

• password

Examples of strong passwords:

• tYjkL321pC

• n0ts4y1ng!

• w5df8k9fg

It is also a good idea not to use the same ‘Secret question’ information on every account.

While it may be convenient to always use your mother’s maiden name or the name of your

�rst dog, if a hacker �nds this out, it will be very easy for them to take over all of your

accounts using the ‘Forgot password’ feature.

S
h

u
tt

e
rs

to
ck

.c
o
m

/
A

n
d
re

y
B

u
rm

a
ki

n

CHAPTER 7 » SOFTWARE SECURIT Y

279

FIGURE 7.6 Use strong passwords, and do not let other people

know your password.

For some logins, you can use two-factor authentication. For instance, a login to my.gov.au

requires a password, followed by the entry of a secret code that has been sent to the user’s

mobile phone, or generated using the myGov Access app. Two-factor identi�cation relies on

identifying people because they both know something (a password) and possess something

(such as the linked mobile phone).

Use login passwords

You should use login passwords on your laptop, tablet, desktop computer and any other

electronic device that contains personal or sensitive information. If your device is lost or

stolen, you do not want someone else to be able to switch it on and immediately gain access

to everything you have stored on it.

Use biometric identification

While passwords are currently the only way to control access to remote computers and

resources, biometric identi�cation can be used to control computers and resources when the

user is physically present. Biometric data cannot be lost, stolen, guessed or discovered easily.

Biometric signatures are unique, and include �ngerprints, iris patterns (the coloured part of

the eye) and retinal patterns (the blood vessels at the back of the eye). Biometric identi�cation

has long been used at Los Angeles Airport. For years, non-US citizens underwent �ngerprint

scans to enter the country. Now, the airport is using iris scan technology as well facial

recognition technology.

a b c

FIGURE 7.7 Biometric data: While most types of biometric data are not yet relevant to you for personal use,
a iris pattern, b retinal pattern and c fingerprints are relevant.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

S
h

u
tt

e
rs

to
ck

.c
o
m

/
vv

e
tc

1

S
ci

e
n

ce
 S

o
u

rc
e

S
h

u
tt

e
rs

to
ck

.c
o
m

/
A

rt
u

rs
 B

u
d
ke

vi
cs

9780170440943

280

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Always log out

When you are not using a computer anymore, make sure you log out and turn off the

monitor. Leaving the computer logged in to your user account leaves your data vulnerable

to anyone who walks past and sees that the computer is still logged on.

Log out of websites when you are not using a personal device. In fact, it is better to log

out of websites even when you are using your own personal devices, but people rarely do this,

which makes it easier to steal data and identities from people whose devices have been stolen.

Encrypt data

Encryption is the process of coding data so that any person who does not have the means

to decode the data cannot understand it (see also chapter 3). Files on disks can easily be

encrypted and decrypted using modern programs. Since it is very easy to intercept messages

sent through the Internet and other networks, encryption is becoming very important for

network security.

The simplest encryption method is symmetric key encryption. The sender and receiver

of the coded message have the same key; a number that is used by the encryption method to

encode and decode the message. The encryption works by substituting a letter for another

letter. For example, if the substitution letter is the next letter of the alphabet then the key is

1; if the substitution letter was 2 behind, the key would be –2. Both the sender and receiver

need to know the key.

Encryption methods come in various strengths depending on the size of the keys. When

the bit length of the key is large, it is hard to break the code. A 40-bit key can generate 240

= 1 099 511 627 776 different keys. A 128-bit key can generate 2 = more than 3 × 10128 38

combinations.

Files can be secretly sent along communications lines by inserting and hiding them in

another �le, such as a graphics �le. This is called steganography. The data is mixed with

the non-essential parts of the original �le and can only be separated from the original using

a special program. The appropriate graphics software can still view the graphics �le, and

cannot detect the data that has been mixed into the �le.

Previous encryption methods required a secret unlocking key to be sent with the encrypted

data. If the data were intercepted, the key could also be captured and the data unlocked.

Modern encryption uses public key encryption, which does not need a key to be sent to

unlock it.

Public key encryption is the basis of SSL and TLS, which is used to encrypt the web

traf�c between servers and browsers. If intercepted in transit, the traf�c is unreadable.

Wireless signals also use public key encryption to prevent snooping and unauthorised use of

wireless networks.

The bigger the numbers used for public key encryption, the harder the encrypted data is

to decode. For greatest safety, choose the largest encryption key you can (128-bit or 256-bit

is the current recommendation).

Use a firewall

A �rewall will prevent unauthorised access to your data and information, and will deny

network access to outsiders. Essentially, it will separate the Internet and other networks from

the computer or LAN on which it is installed. A �rewall examines the content of incoming

data packets and determines whether they should be allowed to pass through.

281
CHAPTER 7 » SOFTWARE SECURIT Y

Use antivirus software

Most current antivirus programs handle a whole lot more than just viruses. Many kinds of

malware are around these days (see Table 7.2), so most antivirus programs are equipped to

handle at least a few of these.

TABLE 7.2 Common types of malware

Malware

Viruses

Description

• Damaging code that attaches to executable files and travels with them
• Payload is triggered by human actions, such as running programs
• True viruses are now rare, but the name persists as a generic term for malware

Worms

Spyware

Trojans

• Copy themselves and travel with no human intervention or need to attach to other files
• Most travel via email or over local area networks

• Monitors the behaviour and reports browser activity to the spyware’s operator
• Can hijack browsers to send users to unwanted sites, or show targeted advertising based

on a user’s browsing history

• Any malware that enters a system by pretending to be desirable
• Often use ‘social engineering’ to trick people into downloading or installing them

Payload is a term that describes the destructive potential of malware. Table 7.3 lists some

known malware payloads.

TABLE 7.3 Known malware payloads

Payload

Keylogger

Distributed
denial-of-service
(DDoS) attack code

Destructive potential

Can record users’ keystrokes, including passwords, credit card information and
bank account logins, and send the data to the malware operator

Makes a computer vulnerable to remote control by its operator, along with
thousands of other infected machines, to participate in a DDoS attack on a
remote victim. A computer that might seem sluggish to its user might actually
be sending millions of information requests that can render the victim’s
computer unable to operate. DDoS attacks are often used to blackmail victims
into paying protection money, or to attack political or religious enemies.

Adware

Spam server

Ransomware

Inserts unwanted advertising into visited websites
Not deliberately destructive, but often poorly programmed and can dramatically
slow computers down or cause crashes

Sends thousands of spam emails using the victim’s computer. If discovered,
innocent computer owners are identified while the spam operator remains
undetected.

Encrypts documents on the victim’s computer so they are inaccessible to the
computer owner
The malware operator then demands payment from the victim to receive the key
to unlock their documents

Root kit

Deleting files or
damaging operating
systems

☑ Project plan

9780170440943

Particularly nasty malware that actively hides from the operating system and
works invisibly in the background, often turning a computer into a remote-
controlled ‘zombie’

This petty vandalism, once common, is now rare. Cyber attacks are now
dominated by large, organised crime syndicates and governments.

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

9780170440943

282

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

Even the most careful computer user cannot guard against worms or ‘drive-by downloads’

that can lead to infection simply by visiting an infected website. However, keep the following

points in mind.

• Use a reputable, reliable anti-malware scanner.

• Always have it running and scanning opened and downloaded �les for known threats.

• Keep your virus de�nitions up to date.

• Be aware of false positives. Sometimes a scanner can report a virus that does not exist.

Free online scanners sometimes report false positives to scare users into buying their

products.

• Similarly, be aware of false negatives. Some scanners may be unable to detect existing

viruses. This may occur if your virus de�nitions are out of date, and with newly released

‘zero-day’ threats.

Back up your files

Data backups are the �nal defence against total data loss. Backups form an essential step

in data management. Regular backups protect against a number of risks, including human

error, computer crashes and software faults. Critical data �les or data that are used regularly

should be backed up frequently.

It is not unusual for someone to accidentally delete an important �le or edit a document

and later realise that some important information was removed. Maintaining a backup

system can help minimise loss of data by an authorised user. Important �les that have been

inadvertently lost can be retrieved from the backup media.

or month). A di�erential backup copies only those �les that have been changed since the last

full backup. Restoration of data would involve restoring �les from the full backup and then

A full backup copies all of the �les from a device to a storage medium. This can take

considerable time, and is usually performed at regular interals (such as once a week, fortnight

from the differential backup. An incremental backup is similar to a differential backup, except

that it uses more than two backup media, while a differential backup uses only two media. An

incremental backup only copies �les that have been changed since the last incremental backup.

It is the most complicated strategy from which to restore �les, since it requires restoration from a

full backup and then from a series of incremental backups. It is a good practice to clearly label

all backup media so that you know when the backup was made and what is on it.

Location of backup files

Once you have created backups, where do you put them? Ideally, your backups should be

stored in a location that is safe from theft and damage caused by extremes of temperature

or disasters. Most small businesses have a �reproof and waterproof safe in which valuable

company documents are stored. This might also be used to store backups. It is preferable,

however, to store backups at a remote location, perhaps even in the cloud. This means that if

there is a large natural disaster, such as a huge �ood or an earthquake, the backups will be safe.

One last point to remember is to ensure that backups actually work when you want to

restore the data. It is important to test the effectiveness of your backup �les by running a

disaster recovery simulation. If �les cannot be restored from the backup or the system refuses

to recognise them, it is better to discover this before a real emergency.

Cloud-computing companies provide offsite storage, processing and computer resources

to individuals and organisations. These companies are typically third party and they store

data to a remote database in real-time. The Internet provides the connection between this

283
CHAPTER 7 » SOFTWARE SECURIT Y

database and the user’s computer. The advantages of cloud storage include the ability to

access data from any location that has Internet access, eliminating the need to carry a USB

or hard drive to retrieve and store data. The ability to share �les with other people and

collaborate simultaneously, such as by using Google Docs, is also an advantage. Finally, if

something were to happen to the computer, such as a �re or natural disaster, and the data on

it was destroyed, the data would still be saved offsite in the cloud.

Google Docs allows users to upload documents, spreadsheets and presentations to

Google’s servers. Users can edit �les using a Google application and work on them at the

same time as others, enabling them to read or make edits simultaneously.

Network security
Network security should be a high priority of all network users. Network design, network

management and network security are all important to the integrity and ef�ciency of

computer systems.

Threats to networks can arise from inside or outside the organisation, and can be malicious

or unintentional. They can be directed by a person or not, and can be a physical threat to

equipment or a threat to software or data. Misuse by current employees for their own purposes

can be a major threat to a system. Increasingly, remote access can also be a threat, as the devices

are outside the major protection features of the system and may be non-standard and unprotected

equipment. Table 7.4 lists some of the main threats, and ways of preventing them.

TABLE 7.4 Main threats to networks, and ways of preventing them

Threat

Virus

Type

Software

Behaviour

A program replicates
within the computer and
can perform malicious
behaviour such as
deleting files

Worm Software A program that
propagates through
the network, usually by
sending itself through
email

Trojan horse Software Replicates within
the computer and

propagates through the
network. Can transmit
data back to sender and/
or allow system access
to sender.

Definition

Attached to other
software and
activated when
software is run

A single piece of
software, often an
email attachment

Often part of,
or attached to, a
useful program
but has hidden

malicious parts
to it

Prevention

Limit downloads and
unauthorised software. All
data and software sources
need to be determined to be
safe before use by scanning
with a virus checker.

Limit connections and
use a firewall to check for
suspicious activity by a
program

User training to detect
unusual activity, especially
unusual requests and
activity. Use a firewall to
detect unusual activity.

Countermeasures

Installation of an
up-to-date virus
checker that will
remove the virus

Isolate infected
computers from the
network and then
proceed to clean

Installation of an
up-to-date virus
checker

All sources need to be
determined to be safe

Isolate infected
computers from the
network and then
proceed to clean

Alert users to the
concerns associated
with downloading some
types of applications

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

9780170440943

284

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

TABLE 7.4 Main threats to networks, and ways of preventing them (continued)

Threat Type

Scanning Human

Behaviour

Attempting to break
into a system by trying
di�erent passwords

Definition

Using software
to try multiple
passwords until
successful, or
to try to guess a
person’s password

Phishing Human Involves sending an
email to a user falsely
claiming to be an
established enterprise in
an attempt to scam the
user into surrendering
private information

Deceptive
attempt to obtain
sensitive personal
information by
disguising as a
trustworthy/
legitimate
organisation

Physical
spying

Human Find passwords and
system information
through spying

Watches the entry
of passwords;
often pretends to
be a technician
or part of
organisation

Spyware
(also called
Adware)

Software Software that
monitors the actions
of a user and sends this
information back to the
sender and can cause
advertisements to pop
up

Denial of
Service

Human System crashes often
and network runs slow
as other computers,
often taken over by
trojans, are activated to
send multiple requests
to a site or network

Unintentional actions and technical failures

Malfunction
of hardware
and software

Human error

Loss of data and
equipment

Equipment breaks
down

Have backup of equipment,
software and data for
immediate use
Test software and hardware
thoroughly

Data loss or corruption,
system misbehaves,
unauthorised access

Incorrect data
entered or
incorrect user
behaviour, or bad
passwords used or
not changed

Train users in correct
operational procedures and
limit access

Have a recovery plan
to replace equipment,
and the reinstallation
of software. Data
recovery is essential.

Track person
responsible, modify
access, passwords
and procedures. Use
recovery plan.

Spyware is
sometimes

Prevention Countermeasures

Set a time and limit the
number of attempts to
log on.

Change passwords regularly.

Don’t click on URLs that
are listed in emails or SMS
messages.

Change all passwords
and trace hacker with
the use of login and
activity records.

Educate and conduct
training sessions
with mock phishing
scenarios. Deploy a
web filter to block
malicious websites.
Convert HTML email
into text only email
messages or disable
HTML email messages.

Limit access to o�ces and
sta�.
Use biometrics with
passwords.
Information needs to be
encrypted.

installed as part
of other software,
often without the
knowledge of the
user

Overload a system
so it crashes
by continually
sending many page
requests to a site,
or many requests
for login or other
services

Check the fine print
carefully when downloading
free software. Check special
sites that have information
about spyware products.

Little prevention until attack
occurs

Change all passwords,
review physical
security, review
personal reliability,
trace spy with the use
of login and activity
records

Periodically scan
your computer with
software that detects
known spyware.

Trace source of extra
tra�c and reject
requests, and/or
disconnect computer
from network

©
 N

e
tf

li
x

CHAPTER 7 » SOFTWARE SECURIT Y

285

TABLE 7.4 Main threats to networks, and ways of preventing them (continued)

Threat Type

Physical and accidental threats

Fire, water

Behaviour

Smoke, fire and water
damage

Power loss
and power
surges

War and
terrorist
attack

Equipment fails and
may not restart

Physical damage

Definition

Loss of hardware,
software and data

Loss of data and
the inability to use
equipment

Loss of hardware,
software and data

Prevention Countermeasures

Keep water supply and
drainage systems away from
equipment

Extra power lines from
di�erent sources, power
surge protection

Secure facilities and keep
main system o�-site

Execute the disaster
plan; extinguish the
fire. Keep backups of
data o�-site.

Standby power
supplies, UPS system

Have a recovery plan
to replace equipment,
reinstall software and
recover data

Netflix customers urged to be vigilant as ’high quality’

email scam circulates

By Jenny Noyes, 29 January 2019, Jenny Noyes/SMH

Customers of streaming service Net�ix are being urged to exercise caution when checking
and responding to emails from the company, as a scam email that looks almost identical to
a legitimate customer service message circulates.

The email purports to come from Net�ix – with the spelling ‘NETFLlX’ using a lower-
case L instead of an I, and the subject line ‘We've temporarily suspended your account until
you verify your details.’

CASE

STUDY

FIGURE 7.8 Screen shot of a Netflix email phishing scam picked up in January 2019

In the body of the email, the customer is informed their account has been ‘suspeneded
[sic]’ due to ‘issues in the automatic veri�cation process’ and warned that if they don't
update their details their account will be deleted.

After the customer clicks on the ‘update your details’ button, they are redirected to a
site that looks just like a real Net�ix login page, where they can ‘log in’ and then enter their
full credit card details.

☑ Project plan

9780170440943

☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

9780170440943

286

S O F T W A R E D E V E L O P M E N T V C E U N I T S 3 & 4

The scam was picked up by mail security service MailGuard, which detects abnormalities
in email messages and blocks fraudulent emails from reaching clients' inboxes.

People could easily go through the entire process without realising they have been
swindled, said MailGuard CEO Craig McDonald, who described the scam as ‘very well
executed with high quality graphical elements in the email message and phishing page’.

‘It’s easy to imagine that it could potentially trick a lot of unsuspecting people.’
While the scam is well executed, Mr McDonald said it is not necessarily unusual – and

it’s not the �rst scam to target Net�ix users in the past month.
A similar scam targeting Net�ix customers with the claim their account had been

‘suspended’ due to issues with their billing information was detected by MailGuard’s email
�lters in December.

The Sydney Morning Herald has approached Net�ix for comment.
Phishing scams are the most prevalent fraud reported to the ACCC’s Scamwatch, which

has received more than 20 reports of Net�ix-related scam emails in January so far.
‘We frequently detect similar email scams that are near-perfect clones of email templates

from other reputable organisations,’ Mr McDonald said.
‘By targeting popular brands, recipients are more likely to have a relationship with the

company being impersonated. That’s an instant foot in the door.’
The increasing sophistication of such email scams requires a high level of vigilance from

email users and organisations alike, he said.
‘Prevention has now become critical for anyone dealing with cybercrime, and

organisations must implement a multi-layered defence to help minimise the risks associated
with cyber security attacks.’

As for individuals, the following red �ags can help to identify and avoid being sucked
in by a potential scam email:
• Generic greetings, such as ’Dear customer’
• A sense of urgency: ‘Ensure your invoice is paid by the due date to avoid unnecessary

fees’
• Bad grammar or misuse of punctuation, incorrect spelling and poor-quality or distorted

graphics
• An instruction to click a link to perform an action
• Obscure sending addresses that don’t match the real company’s domain URL

• If you’ve identi�ed a scam email, report it to Scamwatch

• If in doubt, type the web address (URL) directly into your browser rather than clicking

the link, or better still, phone the company

9780170440943

7
Essential terms

CHAPTER

SUMMARY

backup making a second copy of your files

cloud Internet-based data storage and/or processing

copyright the legal right of the creator of a work to determine how that work is used

di�erential backup making a second copy of the data that has changed since the last
backup

encryption coding data so that any person who does not have the means to decode that
data cannot understand it

ethics principles of right and wrong that are accepted by an individual or a social group;
ethical behaviour often guides policy makers within organisations

full backup making a second copy of your entire data set

goal an anticipated result or aim, which is specific, measurable, achievable and timely

incremental backup making a second copy of the data that was created since the last
backup, using more than two media

mission statement statement setting out an organisation’s purpose or what it is trying to
achieve; the mission of most companies is to make a profit, while non-profit organisations
tend to define their key mission as providing a service to their members

objectives small, achievable tasks undertaken to accomplish a big task

open source source code that is available free and can be modified

organisational goal how an organisation intends to go about achieving its mission

payload the destructive potential of malware

piracy the illegal making and distributing of copies of games, music and software

public key encryption encrypting data using two keys, a public key and a private key

vision statement a statement describing the organisation as it would appear in a future
successful position

Important facts

1 The Privacy Act 1988 (Cth) was amended by the Privacy Amendment (enhancing
Privacy Protection) Bill in 2012. This came into e�ect in 2014. As part of this Act, the
Australian Privacy principles (APPs) replaced the National Privacy Principles and the
Information Privacy principles.

2 As part of the Privacy Act, the Australian Privacy Principles (APPs) were devised to
set out the standards, rights and obligations for collecting, handling, holding, accessing,
using, disclosing and correcting personal information. There are 13 APPs.

3 The Privacy and Data Protection Act 2014 (PDPA) was introduced by the Victorian
Government. It replaced the Information Privacy Act 2000 and the Commissioner for Law
Enforcement Security Act 2005.

4 The other key Victorian law relating to privacy is the Health Records Act 2001. This Act
governs the collection and handling of confidential medical records.

5 Open source refers to programs where the source code is available free for use and can
be modified. Open-source code is usually created as a collaborative and combined e�ort
by many programmers who improve upon the code and share the changes with people in
the open-source community.

287

9780170440943

7 6 The Copyright Act 1968 (Cth) outlines the laws related to copyright. A breach of the
Copyright Act 1968 (Cth) could result in fines or imprisonment. Computer software is
treated as a ‘literary work’ under the Copyright Act.

CHAPTER

SUMMARY

7 Most programmers adhere to copyright laws. Using code developed by other
programmers without paying for it or without obtaining permission, or modifying it but
still keeping the major features, can leave the programmer open to prosecution under
copyright laws. This legal obligation also applies to the content of a program, such as
images, sounds and text, and the interface design.

8 Copyright is infringed when a person uses or sells a program or a substantial part of a
program without obtaining permission. Licensing agreements usually specify what the
licensee can do with the program.

9 Program and information system developers have to ensure that they take into account
a variety of legal obligations and ethical considerations. Some have an e�ect on the
development of the program and others on the way the program is used. Even if there
are no laws already in place, there can be other considerations that developers need to
be aware of that could result in harm for users and others.

10 Data can be compromised through activities such as theft (perhaps often perpetrated
by disgruntled workers or criminals who will make money selling the data), loss of
devices (such as accidentally leaving laptops somewhere), neglect (not erasing data when
recycling computer hardware) and not following appropriate data handling procedures
and policies.

11 Threats to data and information can be accidental, deliberate, technical and events-
based.

12 There are other illegal or unethical features that programmers can design into programs,
which are often called spyware, trojans or adware: these leave a back door to a
program open so that people can bypass security features to gain access to a system;
insert hidden functions that can monitor the use of a program or a computer; gain
access to data on a computer system; or make connections to the Internet and report
back to the author.

13 The writing of viruses and other such programs, even if not set loose on the
Internet, can also be classified as unethical. Other situations that might be considered
problematic include websites that are programmed to store ‘cookies’ on computers that
record the activities of the people who visit the site, or the programming of games with
features that challenge normal behaviour and values, such as excessive violence and
other features that are discriminatory to women and particular races.

14 Backups form an essential step in data management. Regular backups protect against
a number of risks, including human error, computer crashes and software faults. Critical
data files or data that are used regularly should be backed up frequently. Backups
should be regular, tested, documented and stored o�-site.

288

9780170440943

TEST YOUR

KNOWLEDGE

Goals and objectives of organisations and information

systems

1 Explain the di�erence between an organisational goal and a mission statement.

2 What is a vision statement?

3 How are values important to the content of mission and vision statements?

4 Where does the purpose of mission and vision overlap?

5 Why are mission and vision statements important for organisational goals and objectives?

6 Explain why an organisation must comply with legal requirements.

Legal requirements

7 Briefly summarise the role and scope of the three key laws a�ecting privacy of information.

8 Why have these laws been introduced?

9 If you believe that the privacy of your information has been breached by the Australian
Taxation O�ce, to whom can you complain?

10 What are the penalties for breaches of the Privacy and Data Protection Act 2014?

11 List three reasons why people illegally download files.

12 Identify a situation where downloading a file may be legal.

13 Name the Act outlining laws about copyright in Australia.

14 Define ‘copyright’.

15 What is the definition of a program, according to the Australian Copyright Act?

16 What does copyright protect?

17 How can copyright be infringed?

18 What copying is allowed in the Copyright Act?

19 Explain how the concepts of copyright and intellectual property are related.

20 Outline how artists may be disadvantaged by illegal downloading and streaming.

21 Explain what ‘phishing’ means.

22 Name the Act that outlines the laws relating to the storage of medical records in Victoria.

23 Why are some programs called ‘bad’ or ‘malicious’?

24 What are the privacy principles in the Privacy Act?

Qz Review quiz

☑ Project plan ☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

CHAPTER 7 » SOFTWARE SECURITY 289

9780170440943

TEST YOUR

KNOWLEDGE

Data security

25 List some of the consequences of data loss for a business.

26 List four di�erent ways to physically protect data.

27 List four di�erent ways to limit threats to software.

28 Describe three di�erent ways to back-up files.

290 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

APPLY YOUR

KNOWLEDGE

The Melbourne Robotics Centre (MRC) is an organisation that runs professional designing,
building and programming classes specifically aimed at school-aged children. The company o�ers
classes after school on most weeknights and on weekends in various locations around Melbourne.
Children from many suburbs participate in this extracurricular activity. The MRC is a not-for-
profit organisation set up specifically to broaden children’s interest in science, technology and
engineering, with approximately five full-time sta� and 30 casual sta�. The MRC has a website,
where it advertises its classes and locations. Pictures taken of students during the classes are used
in the company’s advertising. The website and its associated back-end database is developed by
a programmer who has modified open-source software for the MRC. The MRC collects vast
amounts of data on the students, such as their date of birth, home address, medical conditions,
living arrangements in relation to custody, and their parents’ names and occupations. The MRC
relies on all its sta� to update the data and its website, even though sta� are not aware of all the
legislation.

1 Can you identify the goals and objectives of the organisation?

2 If you were to write an organisational goal for the Melbourne Robotics Centre (MRC), what
would it be?

3 Why did this organisation need to develop software specific to its needs?

4 Why does the company need to store data on their clients?

5 What key legislation should the sta� be aware of specifically related to collecting, storing and
communicating data?

6 What does the MRC need to do to ensure it is compliant with the Privacy Act 1988?

7 What measures are needed for the MRC to protect the integrity of data and information?

8 Can you identify the possible legal and ethical consequences for ine�ective security practices?

9 Can you recommend a backup solution for the MRC?

10 How does the MRC protect itself from security threats?

11 Does the MRC require all the data it collects?

12 What data should be collected on the children and their parents? Apply your knowledge

☑ Project plan ☑ Justification ☑ Analysis ☑ Folio of alternative

designs ideas
☑ Usability tests ☑ Evaluation and

assessment

SCHOOL-ASSESSED TASK TRACKER

☑ Final submission

CHAPTER 7 » SOFTWARE SECURITY 291

9780170440943

PREPARING FOR

Unit

4 OUTCOME 2

Respond to a teacher-provided case study to examine the current software development security
strategies of an organisation, identify the risks and the consequences of ine�ective strategies and
recommend a risk management plan to improve current security practices.

To achieve this Outcome, you will draw on knowledge and skills outlined in Unit 4, Area of
Study 2 – Cybersecurity: Software security. This Area of Study is covered in chapters 6 and 7 of
this textbook.

Steps to follow

1 Read the teacher-provided case study.

2 Analyse and discuss the current security controls to protect software development practices.

3 Propose and apply criteria to evaluate the e�ectiveness of current software development
security practices.

4 Identify and evaluate threats to the security of software development.

5 Identify and discuss possible legal and ethical consequences of ine�ective security strategies.

6 Recommend a risk management plan and justify strategies to improve current software and
data security practices.

Documents required for assessment

Submit your responses to the provided case study to your teacher. This could be in the format of
written responses to structured questions, a written report or a multimedia report. (This will be
determined by the requirements provided by your teacher.)

Assessment

This task is marked out of 100 and is worth 10 per cent of your study score. Your performance will
be assessed using one of the following.

→A case study with structured questions

→A report in written format

→A report in multimedia format

292 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

Index

32-bit computer systems 4
64-bit computer systems 4

acceptance testing 188
access of data, factors affecting 173–4
accessibility/accessibility testing 133, 158,

188, 192
accidental threats 245–6
accuracy (data) 133, 248–9

clarity 248–9
completeness 248
correctness 248

adapt (creative design) 128
adware 274, 281
AES encryption 109

Australian Privacy Principles (APPs) 154,
266, 267–8

authentic data, characteristics 249
authentication 110

multi-factor 111
single-factor 110
two-factor 110–11, 279

authenticity (data) 249
challenges to 249

availability (access) 216
average-case scenarios 56, 57

accuracy (project plan) 202
actors 93, 94

Agile software development model 144,

146–8, 224
advantages and disadvantages 148
applications 148
differences from Lean software

development 147
iteration cycles 147, 148
Kanban approach 147
manifesto 146
Scrum approach 147

algorithms 175
ef�ciency 56–7
for searching 53–6, 156, 175, 176–7
for sorting 46–53, 175, 177–82

alternative execution 36
analysis phase (SRS) 91, 144
‘AND’ 36, 37, 38
annotated diagrams 138
antivirus software 224, 236, 281–2
Apache Subversion (SVN), case study 226
appender virus 221, 222
archiving 173
arguments 44–5
arrays 4, 5–6, 136, 174–5
assistive technology 123
association (relationship) 93
associative arrays 6–8, 175–6
asymmetric key encryption 109
Atlassian, case study 225
attractiveness (interface) 133, 143
Australia–United States Free Trade

Agreement (AUSFTA) 261, 264

back door 214, 221, 274
backups 171–2, 272, 282

location of 282–3
bad bots 241, 242
‘bad’ software 274
baiting 236

bathtub curve 172
best-case scenarios 56
Big O notation 56, 57
binary �les 18

chained conditional 38–9, 40
character data type 4–5
character encoding 4, 19
checking coded solutions, techniques

for 188

checking that modules meet design
speci�cations 58–65

Chief Information Security Of�cer
(CISO) 212

child element 19, 93, 94, 138
cipher text data 108
clarity (data) 248–9

classes 11–12, 45–6, 138

clarity (usability) 89, 133, 142
class visibility 46

classi�cation markings for games 269
close-ended questions 86
cloud computing 268, 282, 283

and copyright 265–6
cloud storage 171, 172, 282–3

health records 268

binary search 53, 54–6, 178
binary selection 185
biometric data 111, 279
black box testing 188
black hat hackers 213
blogs 197
Boolean condition 36
Boolean data type 5
bot attacks

source by country 242

cold site recovery plan 246
collecting data 86–8
collision 7
combine (creative design) 128
combining thinking skills 124
commenting conventions 22–4
communication of message 134
compare (creative design) 128
comparison sort algorithm 179
compatibility testing 190
compiler 35

botnet zombies 240, 242
bots 241–2

strategies to reduce the occurrence of
243–4

boundary values 60, 61–3, 188, 191
brainstorming 125
branching selection 185
brute force 221
bubble sort 177–9
buckets 7
buffer over�ow 243–4
built-in functions 44, 186–7
buttons and links, testing 191

Australian Copyright Council 264
Australian Cyber Security Centre (ACSC)

223, 226

C (C++ or C#) 21, 237
calculations, checking 191–2
camel case 24
case-sensitive elements 19
casting 58
CDs 172

completeness (data) 248
completeness (project plan) 202
completeness (software solution) 133
component testing 190

computer programs (copyright law
de�nition) 272

computer software see software
concepts (project management) 77–8

dependencies 78
milestones 77

classi�cation markings 269
and copyright 265

comprehensive management plan 169
computer games

concise (interface) 142
concurrent tasks 79
condition test data 60
conditionals with more than one logical

expression 36–8, 62
conditions 36–40

293

entities (data �ow diagrams) 98, 100

con�dentiality (information) 215
consistency (data) 248, 249
consistency checks 18
consistent (interface) 142
constraints (software solution) 13, 91
consulting end users 126
content (functionality) (data) 248
content scraping 242–3
context diagrams 96–7, 98

data �ows 96
drawing 97
entities 96
for patient information system 97
processes 96
Susan’s music performance system

104–5

convergent thinking 123, 124
copyright 261–4

control structures 35–43, 184–6
statements 186

and intellectual property 260, 261, 271
and music and computer games 265
personal use exemptions 264
piracy case studies 261–3
when is copyright infringed? 272–3
when is copyright not infringed? 272

Copyright Act 1968 (Cth) 13, 152,
260–4

and cloud computing 265–6
and computer software 265, 272–3
infringement penalties 266

Copyright Amendment Act 2006
(Cth) 261

Copyright Amendment (Digital Agenda)
Act 2000 (Cth) 152, 261, 264, 272

Copyright Amendment (Online
Infringement) Bill 2015 (Cth) 263

correctness (data) 248
counted loop 185
creating documents 169–70
creative design, tips for 128–30
credit reporting provisions 268
critical path 80
cross-site request forgery (CSRF) 240
cross-site scripting (XSS) 237–8
crypto mining / crypto jacking 220
CSV �le 18
cyber attackers 247
cybercrime 223
cybercriminals 213
cybersecurity risks 212–56
cyberterrorists 214

Dallas Buyers Club (Film), piracy case
study 261–3

data 76, 123
data accuracy 133, 248–9
data breaches 232–3, 268

response summary 234

294 INDEX

9780170440943

data collection 86–7
data dictionaries 15, 135

as a database design tool 135
differences between styles 136
as a software design tool 135–6

design phase (SRS) 75, 144
development phase (SRS) 144
dictionary 7

see also associative arrays

data �ow diagrams (DFD) 76, 92, 97–100
data �ows 98, 100
data store 99, 100
drawing 99–100
entities 98, 100
level 0 DFD 96, 97
level 1 DFD 97–9, 100
level 2 DFD 98
processes 98, 100
Susan’s music performance system

106–8

differential backup 282
digital signatures 108
disaster recovery plan (DRP) 171, 246,

247
disposing of a drive 173
disposing of �les 173
distributed denial of service attack

(DDoS) 21, 240–1, 281

data �ows (context diagrams) 96
data �ows (data �ow diagrams) 98, 100
data integrity 216, 245–51

characteristics 248–51

data security 215–16, 276–86
failure, consequences on organisations

275

threats to 245–7

divergent thinking 123, 124
divide and conquer algorithm 50, 54
divide-by-zero errors 59
DNS cache poisoning 221
DO/WHILE loops 41–2
documentation

internal 22–4

impact of ineffective security strategies
on 275–6

data stores (data �ow diagrams) 99, 100
data structures 5–12, 174–82

searching and sorting 46–56, 175,
176–82

data types 3–5
data vulnerabilities 232–6
databases

design, data dictionary use 135
Gantt chart for creating, case study 81–5
standard request for records from 239

DDoS 221, 240–1, 281
debugging 58–9
decrease and conquer algorithm 54
decrypt 109
de�nitions 35
deleting �les 173
deliberate threats 246

types 174–6

delimited �les 18–19
delimiter 18
denial of inventory 242
denial-of-service attack (DoS) 216, 221,

284

detection, prevention and recovery
actions 247

dependencies 78
dequeue 8
design brief 12–14, 123

evaluating 130–2
generating 123–30

design consideration, for your software
solution 134

design ideas

software design 134–8
using Gantt charts 80–1

documenting
test results 193
your testing 192–3

documents
creating 169
naming 170

DOM-based XSS 238
DoS 216, 221, 284
doubly linked list 10, 11
drive failure rate 172
drive reliability 172
DVDs 172
dynamic features, testing 192

economic constraints 13
effective and ef�cient user interfaces

141–3
effectiveness, evaluation of 199, 200
effectiveness of a solution 133, 187

criteria for evaluating 133–4
factors in�uencing 198

ef�ciency, evaluation of 199, 200
ef�ciency of algorithms 56–7
ef�ciency of a solution 133, 187
ef�cient and effective user interfaces

141–3
‘ELSEIF’ 38–9
encrypt 109
encryption 108–10, 227, 280
encryption algorithms 108–9

implementing 109–10
end users

consulting 126

enqueue 8

relationship with software developers
270–1

entities (context diagrams) 96

9780170440943

ethical issues 269–70
‘bad’, hidden and malicious

software 274

‘safe’ programs 273

intellectual property and copyright
271–3

evaluating design ideas 130–2
evaluating the ef�ciency and effectiveness

of solutions 132–4
evaluation 198–200

of the client response 123
of project plans 201–2
of the software solutions 200–1
vs testing 132, 198
what it does not do 198–9
what to evaluate? 199
when to evaluate? 200–1

see also software requirements
speci�cation (SRS)

in software development and use
270–1, 273

evaluation criteria 76, 132, 199, 202
evaluation methods 199, 200
event-based threats 246

existence checks 57, 189
expected results 58
exploit 212
exponent 4

detection, prevention and recovery
actions 247

events 46, 80

storing and retrieving within a directory
structure 170–1

�rewalls 224, 280
�st in �rst out (FIFO) access 8
�t for purpose 89
�oating point numbers 3, 4
�ow diagrams 129
�ow of execution 63
focus groups 126
FOR loops 41, 42–3
form (appearance) (data) 248–9
format checks 189
full access 110
full backup 282
function call 43

hidden software 274
high-level languages 21–2
hoaxes 221
honeynets 246
honeypots 246
hot site recovery plan 246
human error 284
human protection 277
Hungarian notation 25

function declarations 44
function de�nitions 44
function visibility 44, 45, 46
functional requirements 88

Susan’s music performance system 101
functionality 88, 133
functionality testing 188
functions 43–5, 186–7

pseudocode representation 45
fusion drives 174

extend (relationship) 94–5
external buttons, testing 191
external entities 96, 98, 100
external links to your product,

testing 191

familiar (interface) 142
feed fetchers 241
�elds 11, 176

Gane-Sarson notation style 97, 99
Gantt charts 77, 79

adjustments and annotations 194–5
for creating a database, case study 81–5
documentation using 80–1
features 79–80

�le access, factors affecting
173–4

�le management 169–74
archiving 173
backups 171–2, 272, 282–3
cloud storage 171, 172, 268,

282–3

storing and retrieving �les within a
directory structure 170–1

�le management plan 169
�le operations 17
�le organisation and storage media

173–4

creating documents 169–70
disposing of �les 173

�le recovery 173
�le sharing 283
�les 17–21

naming conventions 135

time allocation resources 79–80
generalisations (relationship) 93–4
generating design ideas 123–30

techniques for 124–30
gift card balance checking 242
global variables 44
goals of organisations 148–52, 259

see also system goals
goals of the software 259
good bots 241
‘good program’, what makes a? 76
Google Docs 283
graphic organisers 127–8

hackers 213

Graphical User Interface (GUI) 60, 182
grey hat hackers 213

hacking 213, 275, 276
hard-coding 12
hash function 7, 175
hash tables 7–8, 175
HDD 172, 174
header comment 22
Health Privacy Principles 155, 156–7

Health Records Act 2001 (Vic) 152,
155–7, 260
breaches and penalties 156

IF/ELSEIF 38–9
imperfect hash 7
impersonation 247
implementation phase (SRS) 144
include (relationship) 94
incremental backup 282
indexed arrays 174–5
in�nite loop 41, 42, 43, 59, 186
informal testing 190
Information Privacy Principles (IPPs)

154–5

Health Privacy Principles 155, 156–7
storing health records in the cloud

268–9

information systems, and organisational
goals 150, 151–2

inheritance 12, 46, 93, 138
inputs, inspecting 191
insecure cryptographic storage 240
insertion sort, case study 180–2
insiders 213
installation testing 190
instantiations 12
instructions 35

and syntax 182–4
integer over�ow 4
integers 3, 4
integrated developer environments

(IDEs) 65
integration tests 188, 190
integrity of data 216, 245–51, 275–6
intellectual property (IP), and copyright

260, 261, 271
interface 15–16
interfaces between solutions, users and

networks 76, 92–108
context diagrams 92, 96–7
data �ow diagrams (DFD) 76, 92,

97–100
use case diagrams (UCD) 76, 92–6

internal buttons, testing 191
internal documentation 22

conventions 22–4
International Standards Organisation,

recommended speci�c ways of naming
�les and variables 135

interpreter 35
interviews 86
iteration structure 41–3, 185

INDEX 295

Privacy and Data Protection Act 2014

iteration test data 60
Iterative model 145, 146

Java 21
JavaScript 21

Kanban approach (Agile development
model) 147

key (associative array) 175
keyloggers 247, 281
‘known-knowns, known-unknowns and

unknown-unknowns’ 212, 214

last in �rst out (LIFO) access 9
layering of zones (physical security) 217
Lean software development 147
legacy systems 201
legal requirements

relating to ownership and privacy of data
information 13, 152–7

for storage and disposal of data and
information 260–9

licensing agreements 265, 272
Likert scale 201
linear search 53–4, 177
linked lists 9, 10–11, 180
links, internal and external,

testing 191
loading times 192
local variables 44
log out 280
logic bombs 222
logic errors 43, 59
logical operators 36, 37
login passwords 279
low-level languages 22
LucidChart 128, 129

mail bombing 221
maintainability 90, 202
maintenance phase (SRS) 145
malfunctions 284
malware/malicious software 212, 219, 220,

221–3, 247, 274
payloads 281
security procedures 224
types of 281

man-in-the-middle attacks (MITM) 221,
233–5

managing �les 169–74
Melbourne Robotics Centre (MRC) 290
memory leak 59
mental imagery 129
methods 46, 186
milestones 77
mind mapping 126–7
minimum viable product (MVP)

147, 148
mission statement 149, 151, 259

296 INDEX

9780170440943

mobile site recovery plan 246
mock-ups 15–16, 138–9
module testing 188
MTBF (Mean Time Between Failures)

172
multi-factor authentication 111
multi-level inheritance 138
multiple branching selection 185
music, and copyright 265

naming conventions
for �les and variables 135
in programming source code 24–5

naming documents 170
nested conditional 40
nesting 186

network security 283

node 10

Net�ix customers, email scam, case study
285–6

main threats and ways of preventing
them 283–5

non-functional requirements 88–90
Susan’s music performance system

102–3
non-technical constraints 13
Noti�able Data Breaches (NDB)

scheme 232
numeric data type 3–4

object descriptions 15, 137–8
objective results (evaluation) 199
objectives 123

of organisations 149, 150, 259

objects 12
observations 87–8, 129–30
of�ce environment, security 218
of�cial goals 149
one change at a time, tested 188
online banking 219–20
online piracy 261–3
open source 271
open-ended questions 86
Open Web Application Security Project

(OWASP) Testing Guide 229–30, 232
operating system �lename limitations 169
operative goals 149
‘OR’ 37, 38
organisational goals 148–9, 259

assisted by information systems 151–2
common 149–50

organisations, consequences of data
security failure on 275

in�uence on type of information system
required 150

OWASP Testing Guide 229–30, 232
ownership of data information, legal

requirements 13, 152–7

parameters 44–5
parent element 19, 93–4, 138
pass by reference 44
pass by value 44
password dictionary 221
passwords

login passwords 279
strong and weak 278–9

patches 59
patient information system

context diagram 97
DFD level 1 100

payload 281

performance testing 188
Perl 21
pharming 236

penetration testing (pen test) 232
perfect hash 7

phishing 220, 236, 285–6
PHP 21, 237
physical and accidental threats 285
physical protection 277
physical security 216–18, 277–8

indicative zone names and de�nitions
for physical access 217

layering zones 217
secure building with IT resources 218

piggyback entry 218, 236
piracy 264

case studies 261–3
Government passes bill aimed at

reducing online piracy 263
plain text data 108
plain text �les 18
PlayStation Network hack 275, 276
PMI 127
pointer 10, 35
pop 9
portability 90
post-test loop 185
power losses/surges 285
pre-test loop 185
predecessor tasks 79
pretexting 236
price scraping 242
priorities quadrant 197

Privacy Act 1988 (Cth) 152, 153, 232,
260, 266–8, 276
application 153–4
Australian Privacy Principles 154, 266,

267–8
credit reporting provisions 268
and health information 268–9
penalties 154

Privacy Amendment (Notifiable Breaches)
Act 2017 (Cth) 232

what is included? 266
who is covered? 266

9780170440943

(Vic) 152, 154, 260, 267, 268
Information Privacy Principles 154–5
penalties 155

privacy of data and information, legal
requirements 13, 152–7, 266–9

private key 109
private visibility of a function 45
problem-solving methodology (PSM)

xiii–xv, 76
process (context diagrams) 96
process (data �ow diagrams) 98, 100
processes (project management) 77,

78–85

sequencing 79
task identi�cation 78–9
time allocation resources 79–80

programming bugs, case study 274
programming languages 21–2

choice of 182–3

documentation using Gantt charts
80–5

selection sort 49
sequence of instructions 35
symmetric key encryption 110
to check an age range 61
types of instructions 35
WHILE loop 63

public key 109

Python 21

Rumsfeld, Donald 212, 213
runtime errors 42, 59

public key encryption 109, 280
public visibility of a function 45
push 9

qualitative data 86
quantitative data 86
queues 8–9
quick sort 47, 50–3, 179–80
quid pro quo attacks 236

RAID �le storage 172
RAM 12

processing features 35–46, 182–7
programming source code, naming

conventions 24–5
project logs 195

conditional formatting 195–6
template 196
value of 196–7

range checks 58, 189
ransomware 213, 220, 228, 281
readability 133, 202

checklist 191

‘safe’ programs 273
scam statistics 223
Scamwatch website 223

scanning (threat) 284
scope creep 92
scope of the software solution 13–14, 90–1
script kiddies 213
scrubbed data 173
Scrum approach (Agile development

model) 147
scrums 148
search algorithm (searching) 53–6, 175,

176–7
secure building with IT resources 218
Secure Sockets Layer (SSL) 109
security

project management 77–85
concepts 77–9
processes 77, 78–85
review report 202

project plans
adjustments to tasks and timeframes 194
annotations 194–5
ef�ciency tips 197–8
evaluation 201–2
keeping logs 194–7

prolog 19
protected visibility of a function 45
Protective Security Policy Framework

(PSPF) 216
pseudocode 6, 16–17, 139–40

array and non-array versions 175
binary search 55, 178
chained conditional control structures 39
common keywords and symbols used

in 139
conditional control structures 40
converting to real code 49
discount algorithm with/without logic

error 64, 65
insertion sort 181
linear search 54
of an object and a method 46
public key encryption 109
quick sort 53, 179
representation of a function 45
rules 17

reasonableness checks 189, 249–50
recording the progress of projects 194

adjustments to tasks and timeframes 194
annotations 194–5
ef�ciency tips 197–8
evaluating project plans 201–2
keeping logs 194–7

records (data structures) 11, 176
recursive algorithm 52, 54
re�ected attacks (XSS) 238

relationship (use case diagram) 93
association 93
generalisation 93–4
include and extend 94–5

relevance (data) 134, 250
reliability 89–90
REPEAT/UNTIL loops 41, 43
report formats 133
reports, as part of data collection 86–7
representing designs 14–17
research (creative design) 129
responsive (interface) 142
restricted access 110
restricting URL access 244
retrieving and storing �les within a

directory structure 170–1
return value 43
risk appetite 231
risk minimisation 260
risk taking, persistence and bravery

(creative design) 130
risk tolerance 231
robustness 90
root element 19
rootkit 221, 281

and access factors 277–8
data integrity 245–51
data security 215–16, 275, 276–86
effect of ineffective security strategies on

data integrity 275–6
network security 283–6
physical security 216–18, 277–8
software acquired from third parties

244–5
software and data vulnerabilities 232–6
and software development practices

224–8
software security 218–24, 278–83
strategies for minimising potential risks

229–32
strategies to protect against web

application risks 237–44
of the web 212
what are the likely threats? 214
who are the attackers? 213–14

security attacks 218
detection and prevention 223–4
how do these attacks occur? 219–21
malware 212, 219, 220, 221–3

security clearance levels 215
security considerations 108–11
security software development life cycle

(secSDLC) 224
selection sort 47–50, 180
selection structure 185
semantic errors 59
sequence/sequential structure 35, 184–5
sequencing (processes) 79
server room, locked 218
session hijacking 243
shareware 271
shoulder sur�ng 247
signed integers 3, 4
signi�cand 4
single-factor authentication 110

INDEX 297

unsigned integers 3, 4

SIngle source of truth (SSOT) 171
singly linked list 10
slack time 79

use strong passwords 278–9
software solution

sleep on it (creative design) 129
smishing 247
snake case 24
sniffers 221
social constraints 13
social engineering attacks 236, 247

protection against 236
software 76

acquired from third parties 244–5
copyright 265, 271–3
distribution with app stores 273
open-source 271

Swift 21

software solution speci�cations 123
software testing processes 188
software to track music performances, case

study 101–8

design considerations 134
ef�ciency and effectiveness 132–4, 187
evaluation 200–1
factors in�uencing design 140–1
project management 77–85
security considerations 108–11
testing your 191–2
usability 189–90
what is it? 76

reasons for developing 259
‘safe’ programs 273

software auditing 230–1
software design documentation 134–8
software developers 76

ethical issues 273

software updates 227–8
software vulnerabilities 232–6, 245
solution design, factors in�uencing 140–1
solution requirements (design brief) 13
sort algorithm (sorting) 46–53, 175,

177–82
and intellectual property 271
protection of their work 273
relationship with end users 270–1

software development and use, ethical
issues 270–1, 273

software development life cycle (SDLC)
144–9, 224
Agile development model 144, 146–8,

224

software development practices 224
how to protect software and data? 225–8
strategies for minimising potential risks

229–32

security testing strategies 229–30
spiral development model 144, 148–9
Waterfall development model 144–6,

224

spam 241, 247, 249
spam �lters 224, 247
spam servers 281
spear phishing 221, 236
spider diagrams 127, 128
spies 213

swiss cheese virus 221, 222
switch/case conditional 40, 185
symmetric key encryption 108–9, 280
syntax 182–4
syntax errors 58–9
system boundary 95
system goals 151–2
system testing 190
systems analyst 258

tailgating 218, 236
task identi�cation 78–9
technical constraints 13
teenagers, and consent 156
test cases 58, 59, 60
test data 38, 58, 59–60, 63, 190–1

boundary values 60, 61–3, 188, 191
test results, documenting 193
testing 144, 145, 149, 189–94

documenting 192–3
types of 188, 190

spiral software development model 144,
148–9
advantages and disadvantages 149
applications 149

split infection virus 221, 222
spoo�ng 221
sprints 147, 148
spying, physical 284
spyware 236, 274, 281, 284
SQL 21

software licence 265, 272, 273
software requirements speci�cation (SRS)

76, 86, 91–2, 123, 130, 200–1
analysis phase 91, 144
collecting data 86–8
constraints 13, 91
creating 92
design phase 75, 144–9
functional and non-functional

requirements 88–90

software security 218–19, 278–83
incident/attack types across businesses

219
security attacks 219–24
technical threats 221

298 INDEX

9780170440943

interfaces between solutions, users and
networks 76, 92–101

scope 13–14, 90–1
software to track music performances,

case study 101–8
testing phase 144, 145

usability of solutions 189–90
vs evaluation 132, 198
vs validation 182

testing phase (SRS) 144
testing table 192, 193
testing your software solution 191–2
text �les 18
threats

SQL injection 238–40
SSD 172, 174
stable sort 180
stacking 186
stacks 9–10
statements 35
storage media, and �le organisation 173–4
stored attacks (XSS) 238
storing and retrieving �les within a

directory structure 170–1
strings 4
strip the problem right back to its most

basic parts (creative design) 128
subjective results (evaluation) 199
subroutines 186

categories of 214
‘known-knowns, known-unknowns and

unknown-unknowns’ 212, 214
to data integrity 245–7
to network security 283–5

time allocation resources 79–80
Time-based One-time Password (TOTP)

algorithm 111
timeliness 133, 251
tolerant interface 143
trace tables 38, 58, 63–5
Transport Layer Security (TLS) 109
trojans 222, 281, 283
truth tables 37–8, 60, 62–3
two-factor authentication 110–11, 279
two-factor recovery process 247
type checks 58, 189

unacceptable security risks, determining
231

subscription software 244–5
substitute (creative design) 128
Subversion, case study 226
successor tasks 79
surveys 86
Susan’s music performance system, case

study 101–8

undo function 143
uni�ed modelling language (UML) 76, 92
Unit 3 Outcome 1, preparing for 74
Unit 3 Outcome 2, preparing for 165–6
Unit 4 Outcome 1 (U4O1), preparing for

209–10
unit tests 188
universal design 123

9780170440943

uptime 90
URL access, restricting 244
usability 89, 134

V-model 145

of software solutions 189–90
usability constraints 13
usability testing 190, 192–3

conducting 193
planning 192

use case diagrams (UCD) 76,
92–6
actors 93
drawing 95–6
relationship 93–5
Susan’s music performance system

103–4
system boundary 95
use cases 88, 91

use cases 88, 91
user acceptance testing 188, 190
user authentication 226–7
user-de�ned functions 186
user experience (UX), characteristics

141–3
user interface (UI) 141

what is a ‘good’ UI? 141–3
username and password 110

validation, vs testing 182
validation checks 188–9
validation techniques 57–8, 188–9
validation test data 59–60
variables 3, 35, 135, 136

naming conventions 135
VCAA programming requirements 184
version control 22, 171, 188, 225
Village Roadshow, piracy case study 263
virus damage repair 213
viruses 221–2, 274, 281, 283
vision statement 151, 259
Visual Basic 21
visualisation 129

WannaCry cryptoworm 228
warez 271
warm site recovery plan 246
Waterfall software development model

144–6, 224
advantages and disadvantages 145
applications 145
modi�ed models 145–6
phases 144–5

WBS diagram 78, 79, 81

web application risks 237–44
web scraping 241, 242–3
weblogs 194, 197
what the solution will do (scope) 14
what the solution will not do (scope) 14
WHILE loop 41, 63
white box testing 188
white hat hackers 213
whiteboards 125
wiped data 173
work breakdown structure (WBS)

78–9
worms 222, 281, 283
worst-case scenarios 56, 57

XML element types and characteristics 19
XML �les 19–21
XML injection 241
XML tree 19
XPath injection 241

Yourdon-DeMarco notation style
97, 99

zero-day attacks 212
zombies 240, 242, 281

INDEX 299

Table of Contents

Preface 6
About the authors 7
How to use this book 8
Outcomes 10
Problem-solving methodology 14
Key concepts 17
Unit 3: Introduction 18
Chapter 1: Introduction to programming 19
Chapter 2: Development and features of a computer program 51
Chapter 3: Software analysis 92
Chapter 4: Software development: software design 139
Unit 4: Introduction 184
Chapter 5: Software development and project evaluation 185
Chapter 6: Cybersecurity risks 228
Chapter 7: Software security 275

	Preface
	About the authors
	How to use this book
	Outcomes
	Problem-solving methodology
	Key concepts
	Unit 3: Introduction
	Chapter 1: Introduction to programming
	Chapter 2: Development and features of a computer program
	Chapter 3: Software analysis
	Chapter 4: Software development: software design
	Unit 4: Introduction
	Chapter 5: Software development and project evaluation
	Chapter 6: Cybersecurity risks
	Chapter 7: Software security

