software
development

NNNNNNNNNNNN

EEEEEEEEEEEE

v @
w

NELSON

A Cengage Company

Software Development
1st Edition

Gary Bass

Selina Dennis

Therese Keane

ISBN 9780170440943

Senior publisher: Eleanor Gregory

Project editor: Georgia O'Connor

Editor: Vanessa Lanaway

Indexer: Bruce Gillespie

Cover design: Chris Starr, MakeWork

Text design: Leigh Ashforth, Watershed Art & Design
Project designer: James Steer

Permissions researcher: Mira Fatin

Production controller: Karen Young

Typeset by: DiacriTech

Any URLs contained in this publication were checked for currency during the
production process. Note, however, that the publisher cannot vouch for the

ongoing currency of URLs.

Acknowledgements

Extracts from the VCE Applied Computing Study Design (2020-2023), are
reproduced by permission, © VCAA. VCE is a registered trademark of the VCAA.
The VCAA does not endorse or make any warranties regarding this study
resource. Current VCE Study Designs, past VCE exams and related content can be

accessed directly at www.vcaa.vic.edu.au

© 2019 Cengage Learning Australia Pty Limited

Copyright Notice

This Work is copyright. No part of this Work may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means without prior
written permission of the Publisher. Except as permitted under the

Copyright Act 1968, for example any fair dealing for the purposes of private study,
research, criticism or review, subject to certain limitations. These limitations
include: Restricting the copying to a maximum of one chapter or 10% of this
book, whichever is greater; providing an appropriate notice and warning with the
copies of the Work disseminated; taking all reasonable steps to limit access to
these copies to people authorised to receive these copies; ensuring you hold the
appropriate Licences issued by the Copyright Agency Limited (“CAL"), supply a
remuneration notice to CAL and pay any required fees. For details of CAL licences
and remuneration notices please contact CAL at Level 11, 66 Goulburn Street,
Sydney NSW 2000, Tel: (02) 9394 7600, Fax: (02) 9394 7601

Email: info@copyright.com.au

Website: www.copyright.com.au

For product information and technology assistance,
in Australia call 1300 790 853;
in New Zealand call 0800 449 725

For permission to use material from this text or product, please email

aust.permissions@cengage.com

ISBN 978 0 17 044094 3

Cengage Learning Australia

Level 7, 80 Dorcas Street

South Melbourne, Victoria Australia 3205
Cengage Learning New Zealand

Unit 4B Rosedale Office Park

331 Rosedale Road, Albany, North Shore 0632, NZ

For learning solutions, visit cengage.com.au

Printed in Singapore by 1010 Printing International Limited.
12345672322212019

Contents

Introduction 1

Chapter 1 Introduction to programming 2
Data types 3
Data structures 5
Design brief 12
Representing designs 14
Files 17
Programming languages 21
Internal documentation 22
Naming conventions 24

Chapter 2 Development and features

of a computer program 34
Processing features of a programming language 35
Algorithms for sorting 46
Algorithms for searching 53
Efficiency of algorithms 56
Validation techniques 57
Checking that modules meet design specifications 58
Preparing for Unit 3, Outcome 1 74

9780170440943

Preface

About the authors

How to use this book
Outcomes

Problem-solving methodology

Key concepts

Chapter 3 Software analysis 75
What is a ‘software solution’? 76
Project management 77
Collecting data 86
Functional and non-functional requirements 88
Software requirements specifications 91
Interfaces between solutions, users and networks 92
Security considerations 108
Next steps 12

Chapter 4 Software development:

software design 122
Continuing Unit 3, Outcome 2 123
Software solution specifications 123
Generating design ideas 123
Evaluating design ideas 130
Evaluating the efficiency and effectiveness of solutions 132
Mock-ups 138
Preparing for Unit 3, Outcome 2 165

Introduction 167 Chapter 6 Cybersecurity risks 21

Physical and software security controls 212
Chapter 5 Software development and Data security 215
project evaluation 168 Physical security 216
Managing files 169 Software security 219
Organising and manipulating data using data structures 174 Software development practices 224
Features of a programming language 182 Strategies for minimising potential risks 229
Efficient and effective solutions 187 Identifying software and data vulnerabilities 232
Techniques for checking coded solutions 188 Strategies to protect against web application risks 237
Validation techniques 188 Software acquired from third parties 244
Testing 189 Integrity of data 245
Recording the progress of projects 194 Next steps 251
Factors influencing the effectiveness of the
development model 198)
. . . Chapter 7 Software security 258
Evaluating the efficiency and effectiveness of
solutions and project plans 198 Why develop software? 259
Next steps 202 Minimising risk 260
Preparing for Unit 4, Outcome 1 209 Key legislation for storage and disposal of data
and information 260
Ethical issues 269
The impact of ineffective security strategies
on data integrity 275
Data security 276
Preparing for Unit 4, Outcome 2 292
Index 293

iv CONTENTS

9780170440943

Preface

This first edition of Software Development VCE Units 3 & 4 is written to meet the requirements
of the VCAA VCE Applied Computing Study Design that took effect from 2020.

This textbook looks at how a software development life cycle is implemented.

We believe that teachers and students require a text that focuses on the Areas of Study
specified in the Study Design, and that presents information in a sequence that allows
simple transition from theory into practical assessment tasks. We have therefore written
this textbook so that a class can begin at chapter 1 and work their way systematically through
to the end. Students will encounter material relating to the key knowledge dot points for
each Outcome before they reach the special section that describes the Outcome. The
Study Design outlines key skills that indicate how the knowledge can be applied to produce a
solution to a client need or opportunity. These Outcome preparation sections occur regularly
throughout the textbook, and flag an appropriate point in the student’s development for
each Outcome to be completed. The authors have covered all key knowledge dot points for
the Outcomes from the Software Development VCE Units 3 & 4 course.

Our approach has been to focus on the key knowledge required for each school-assessed
Outcome, and to ensure that students are well prepared for these; however, there is
considerable duplication in the Study Design relating to the knowledge required for many of
the Outcomes. We have found that, with an Outcomes approach, we are sometimes covering
material several times. For example, knowledge of a problem-solving methodology is listed as
key knowledge for five different Outcomes. In these cases, we have tried to provide general
coverage in the first instance, and specifically apply the concept to a situation relevant to the
related Outcome on subsequent encounters.

The authors allow teachers flexibility to develop the required key skills with their students
within the context of the key knowledge addressed in this textbook and the resources
available to them.

We have incorporated a margin column in the text that provides additional information
and reinforcement of key concepts. The margin column also includes activities related to the
topics covered in the text, and a consideration of issues relevant to the use of information
systems.

Outcome features are included at several points in the book, indicating the nature of the
tasks that students are to undertake in the completion of the school-assessed Outcome. The
steps required to complete the Outcome are listed, together with advice and suggestions
for approaching the task. The output and support material needed for submission are
described. Sample tasks and further advice relating to the Outcomes are available at
http://softwaredevelopment3and4.nelsonnet.com.au.

The chapters are organised to present the optimum amount of information in the most
effective manner. The text is presented in concise, clearly identified sections to guide students

through the text. Each chapter is organised into the sections described on pages vii-viii.

9780170440943

About the authors

Gary Bass teaches VCE Applied Computing at Year 11 and Year 12 in an online course
environment at Virtual School Victoria. Previously he has taught VCE Physics, as well as
developing and delivering middle-school ICT courses. Gary has presented at DLTV DigiCON
and the annual IT teachers’ conference on many topics, including Pop-up Makerspace; Big
Data requires huge analysis — data visualisation; AR + VR = Mixed reality; and Marshall
McLuhan - Medium is the message.

Selina Dennis is a Software Development and English Language teacher for the Department
of Education and has been heavily involved in past and present Computing Study Designs.
Selina has a Bachelor of Arts and Science in Computer Science and Linguistics from the
University of Melbourne, and has a particular interest in Computational Linguistics. She
spent several years in California in the computing industry as an engineering manager and

director of engineering before entering teaching.

Associate Professor Therese Keane, Deputy Chair of the Department of Education at
Swinburne University, has worked in a variety of school settings, where she has taught IT
and led in K-12 education as the director of ICT. Her passion and many achievements in the
ICT in Education and Robotics space have been acknowledged by her peers in her receiving
national and state awards. Therese has presented numerous seminars and workshops for
teachers involved in the teaching of IT. She has written several textbooks in all units of Senior
IT in Victoria, VCE Information Technology since 1995. Therese’s research interests include
the use of technology in education, gender inequalities in STEM-based subjects, robotics in
education and computers in schools for teaching and learning purposes. Therese is involved
with the FIRST LEGO League the Championship Tournament Director for Victoria, and is
a lead mentor for the RoboCats — an all-girl robotics team that participates in the FIRST
Robotics Competition.

PUBLISHER ACKNOWLEDGEMENT

Eleanor Gregory sincerely thanks Gary, Selina and Therese for their perseverance and
dedication in writing the manuscript for this book. She also thanks Tabitha Melgalvis for

reviewing this book and providing valuable feedback to the authors.

9780170440943

How to use this book

KEY KNOWLEDGE
The key knowledge from the VCAA Software Development VCE Units 3 & 4 Study that

you will cover in each chapter is listed on the first page of each chapter. The list includes key

knowledge specified in the Outcome related to the chapter.

FOR THE STUDENT

The first page of each chapter includes an overview of the chapter’s contents so that you are

aware of the material you will encounter.

FOR THE TEACHER

This section is for your teacher and outlines how the chapter fits into the overall study of

Software Development, and indicates how the material relates to the completion of Outcomes.

CHAPTERS

The major learning material that you will encounter in the chapter is presented as text,
photographs and illustrations. The text describes in detail the theory associated with the
stated Outcomes of the Software Development VCE Units 3 & 4 Study in easy-to-
understand language. The photographs show hardware, software and other objects that have
been described in the text. lllustrations are used to demonstrate concepts that are more
easily explained in this manner.

Throughout the chapter, glossary terms are highlighted in bold, blue text, and you can
find their definitions at the end of the chapter, in Essential terms.

The School-Assessed Task Tracker at the bottom of every odd-numbered page provides
you with a visual reminder to help you track your progress in the school-assessed task so that

you can complete all required stages on time.

MARGIN COLUMN

The margin column contains further explanations that support the main text, weblink icons,
additional material outside the Study and cross-references to material covered elsewhere
in the textbook. Issues relevant to Software Development that you can discuss with your
classmates are also included in the form of ‘Think about Software Development’ boxes.

CHAPTER SUMMARY

The chapter summary at the end of each chapter is divided into two main parts to help you
review each chapter.

Essential terms are the glossary terms that have been highlighted throughout the
chapter.

Important facts are a list of summaries, ideas, processes and statements relevant to the

chapter, in the order in which they occur in the chapter.

9780170440943

THINK ABOUT | 31
SOFTWARE
DEVELOPMENT

Project-management
tools are useful to find
the perfect number
of people needed on

a task so it is finished
as quickly as possible
without anyone being
idle. Using software,
develop a Gantt chart
to plan the baking of a
cake. Assume you can
use as many cooks as
you want.

vii

TEST YOUR KNOWLEDGE

These are short-answer questions that are provided to help you when reviewing the chapter
material. The questions are grouped and identified with a section of the text to allow your
teacher to direct appropriate questions based on material covered in class. Teachers will be able

to access answers to these questions at http://softwaredevelopment3and4.nelsonnet.com.au.

APPLY YOUR KNOWLEDGE

Each chapter concludes with a set of questions requiring you to demonstrate that you can apply
the theory from the chapter to more complex questions. The style of questions reflects what you
can expect in the end-of-year examination. Teachers will be able to access suggested responses

to these application questions at http://softwaredevelopment3and4.nelsonnet.com.au.

PREPARING FOR THE OUTCOMES

This section appears at points in the course where it is appropriate for you to complete an
Outcome task. The information provided describes what the you need to do in the Outcome,
the suggested steps to be followed in the completion of the Outcome and the material that

needs to be submitted for assessment.

NELSONNET

The NelsonNet student website contains:
«multiple-choice quizzes for each chapter, mirroring the VCAA Unit 3 & 4 exam.
+ additional material such as spreadsheets and infographics.
An open-access weblink page is also provided for all weblinks that appear in the margins through

out the textbook. This is accessible at http://softwaredevelopment3and4.nelsonnet.com.au.
The NelsonNet teacher website is accessible only to teachers and it contains:

+ answers for the Test your knowledge and Apply your knowledge questions in the book
+ sample SACs
« chapter tests
* practice exams.
Please note that complimentary access to NelsonNet and the NelsonNetBook is only
available to teachers who use the accompanying student textbook as a core educational

resource in their classroom. Contact your sales representative for information about access
codes and conditions.

viii HOW TO USE THIS BOOK

9780170440943

Ovutcomes

OUTCOME

Unit 3 Software development: programming
Area of Study 1 He} completion of this unit the student should be able to interpret teacher-provided solution
Qutcome 1 requirements and designs, and apply a range of functions and techniques using a programming
language to develop and test working software modules.
Data and . characterlstlcs of data types p.3
information s au acasasaassasifdiaauia i asasaueanaa
. types of data structures, |nc|ud|ng associative arrays (or dlctlonanes or hash tables) one-
p- 5
dimensional arrays (single data type, integer index) and records (varying data types, field index)
Approaches to + methods for documenting a problem, need or opportunity p-12
problem solving |
« methods for determlnlng solutlon requ1rements constraints and scope p.13
. methods oF representing de5|gns |nc|ud|ng data dlctlonanes mock ups, obJect descrlptlons and 14
pseudocode P
« formatting and structural characteristics of files, including delimited (CSV), plain text (TXT) 17
and XN\L ﬁle formats P
+ aprogramming Ianguage as a method for developlng worklng modules that meet specnﬁed needs p. 21
. namlng conventions for solutlon elements p. 24
. processmg Features oFa programming Ianguage, mcludmg classes control structures, functlons, 35
instructions and methods P-
+ algorithms for sorting, including selection sort and quick sort p. 46
+ algorithms for binary and linear searching p- 53
« validation techmques mcludmg existence checkmg, range checklng and type checkmg p. 57
. technlques for checkmg that modules meet design specifications, |nc|ud|ng trace tables and 58
construction of test data P-
+ purposes and characterlstlcs oF mternal documentat|on mcludmg meanlngFu| comments and 2
syntax. P:
Key skills « interpret solution requirements and designs to develop working modules p-5
. usea range of data types and data structures p-5
. use andJustncy appropriate processing features oF a programming Ianguage to develop workmg 35
modules P-
+ develop and apply suitable validation, testing and debugging techniques using appropriate test b. 58
data)
+ document the functioning of modules and the use of processing features through internal 2
documentation. p-

9780170440943

OUTCOME

Unit 3 Software development: analysis and design
Area of St“d)’ YA On completion of this unit the student should be able to analyse and document a need or
Outcome 2 opportunity, justify the use of an appropriate development model, formulate a project plan,
generate alternative design ideas and represent the preferred solution design for creating a
software solution.
Digital systems . securitx considerations influencing the design of solutions, including authentication and data b.108
protection.
Data and + techniques for collecting data to determine needs and requirements, including interviews, 86
information observation, reports and surveys. P-
Approaches to « functional and non-functional requirements p. 88
problem solving > - : : : - : : e
« constraints that |nﬂuence solutlons, |nc|ud|ng econom|c, legal, social, technical and usability p. 91
. Factors that determlne the scope oF solutlons p. 90
. Features and purposes of software reqU|rement spemﬁcatlons p. 91
+ tools and techniques For deplctmg the mtencaces between solutlons, users and networks, 92
including use case diagrams created using UML p-
« features of context dlagrams and data flow d|agrams p. 96
. technlques For generatlng de5|gn |deas p.123
- criteria for evaluating the alternative desngn ideas and the eFanency and effectiveness of solutlons p. 130
+ methods of expressing software desngns using data dlctlonarles, mock-ups, obJect descrlptlons 134
and pseudocode P
« factors influencing the design of solutions, including affordance, interoperability, marketability, 5. 140
secur|ty and usab|||ty
. characterlstlcs of user experlences, mcludmg eFFncnent and eFFectlve user mterfaces p. 141
. development model approaches including Ag||e Sp|ra| and Waterfall p.77
. features of PI’OJeCt management using Gantt charts, mcludmg the |dent|ﬁcat|on and sequencing 77
of tasks, time allocation, dependencies, milestones and critical path. p-
Interactions and . goals and obJectlves oF orgamsatlons and mformatlon systems p. 149
imPact e it e ey
+ key Iegal requirements relating to the ownershlp and privacy oF data and |nFormat|on p. 152
Key skills + select a range of methods to collect and interpret data for analysis p. 86
o select andJustlfy the use of an approprlate development model p- 144
. apply analysis tools and technlques to determine solutlon requlrements constraints and scope p. 91
. document the ana|y5|s asa software reqwrements specnclcat|on p. 91
+ generate alternatlve desngn |deas p. 123
+ develop evaluation criteria to select andJustlfy preferred designs p- 132
. produce detalled designs using approprlate desngn methods and technlques p. 134
+ create, monitor and modify project plans using software. p- 80

X OUTCOMES

9780170440943

UTCOME

Unit 4 Software development: development and evaluation
Area of St“d)’ 1l O completion of this unit the student should be able to develop and evaluate a software solution
Outcome 1 that meets requirements, evaluate the effectiveness of the development model and assess the
effectiveness of the project plan.
Digital systems + procedures and techniques for handling and managing files and data, including archiving, 169
backing up, disposing of files and data and security. P-
Data and + ways in which storage medium, transmission technologies and organisation of files affect access 173
information to data P
+ uses of data structures to organise and manipulate data. p. 174
Approaches to + processing features of a programming language, including classes, control structures, functions, 182
problem solving instructions and methods P
« characteristics of efficient and effective solutions
« techniques for checking that coded solutions meet design specifications, including construction 188
of test data P
- validation techniques, including existence checking, range checking and type checking p. 188
| | + techniques for testing the usability of solutions and forms of documenting test results p. 189
« techniques for recording the progress of projects, including adjustments to tasks and 194
timeframes, annotations and logs P
| | « factors that influence the effectiveness of development models p- 198
+ strategies for evaluating the efficiency and effectiveness of software solutions and assessing 198
project plans. P
| Key skills ‘ + monitor, modify and annotate the project plan as necessary p. 201
| + propose and implement procedures for managing data and files p- 169
+ develop a software solution and write internal documentation p. 22
» select and apply data validation and testing techniques, making any necessary modifications p. 188
« prepare and conduct usability tests using appropriate techniques, capture results, and make any 192
modifications to solutions P
- apply evaluation criteria to evaluate the efficiency and effectiveness of the software solution p- 198
+ evaluate the effectiveness of the selected development model p. 199
« assess the effectiveness of the project plan in managing the project. p. 201
Unit 4 Cybersecurity: software security
Area of Study 2 e completion of this unit the student should be able to respond to a teacher-provided case study
Outcome 2 to examine the current software development security strategies of an organisation, identify the
risks and the consequences of ineffective strategies and recommend a risk management plan to
improve current security practices.
Digital systems « physical and software security controls used to protect software development practices and
to protect software and data, including version control, user authentication, encryption and p. 212
software updates
+ software auditing and testing strategies to identify and minimise potential risks p. 229

OUTCOMES Xi

9780170440943

OUTCOME

types of software security and data security vulnerabilities, including data breaches, man-in-

Key skills

Privacy Act 1988 and the Privacy and Data Protection Act 2014

ethical issues arising during the software development process and the use of a software solution

the-middle attacks and social engineering, and the strategies to protect against these p- 232
« types of web application risks, including cross-site scripting and SQL injections p. 237
+ managing risks posed by software acquired from third parties. p. 244
Pata anq « characteristics of data that has i.ntegrity, including accuracy, authenticity, correctness, p. 245
information reasonableness, relevance and timeliness.
!nteractions and + reasons why individuals.anc.i organisations develop software, including meeting the goals and p. 259
impacts objectives of the organisation
+ key legislation that affects how organisations control the collection, storage (including cloud
storage) and communication of data: the Copyright Act 1968, the Health Records Act 2001, the p. 260

criteria for evaluating the effectiveness of software development security strategies

the impact of ineffective security strategies on data integrity

risk management strategies to minimise security vulnerabilities to software development
practices.

analyse and discuss the current security controls to protect software development practices

ineffective security practices

recommend and justify an effective risk management plan to improve current security
practices.

Reproduced from the VCE Applied Computing Study Design (2020-2023) © VCAA; used with permission.

xii OUTCOMES

9780170440943

Problem-solving

methodology

When an information problem exists, a structured problem-solving methodology is followed
to ensure that the most appropriate solution is found and implemented. For the purpose of this
course, the problem-solving methodology has four key stages: analysis, design, development
and evaluation. Each of these stages can be further broken down into a common set of
activities. Each unit may require you to examine a different set of problem-solving stages. It
is critical for you to understand the problem-solving methodology because it underpins the

entire VCE Applied Computing course.

Problem-solving methodology

| | |
Y Y Y Y

Analysis Design Development Evaluation
Activities Activities Activities Activities
Solution Solution . . Solution
. . = Manipulation [-
requirements design evaluation
Solution Evaluation o e Evaluation
- o = Validation =
constraints criteria strategy
Solution .
b —> Testing
scope

= Documentation

Reproduced from the VCE Applied Computing Study Design (2020-2023) © VCAA; used with permission.

Analyse the problem

The purpose of analysis is to establish the root cause of the problem, the specific information

needs of the organisation involved, limitations on the problem and exactly what a possible

solution would be expected to do (the scope). The three key activities are:

1 identifying solution requirements - attributes and functionality that the solution needs
to include, information it must produce and data needed to produce this information

2 establishing solution constraints — the limitations on solution development that need to
be considered. Constraints are classified as economic, technical, social, legal and related

to usability.

3 defining the scope of the solution — what the solution will and will not be able to do.

9780170440943

FIGURE 1 The four
stages of the problem-
solving methodology and
their key activities

xiii

Xiv

Design the solution

During the design stage, several alternative design ideas based on both appearance and
function are planned and the most appropriate of these is chosen. Criteria are also created
to select the most appropriate ideas and to evaluate the solution’s success once it has been

implemented. The two key design activities are:

1 creating the solution design — it must clearly show a developer what the solution should
look like, the specific data required and how its data elements should be structured,
validated and manipulated. Tools typically used to represent data elements could
include data dictionaries, data structure diagrams, input—process—output (IPO) charts,
flowcharts, pseudocode and object descriptions. The following tools are also used to show
the relationship between various components of the solution: storyboards, site maps, data
flow diagrams, structure charts, hierarchy charts and context diagrams. Furthermore,
the appearance of the solution, including elements like a user interface, reports, graphic
representations or data visualisations, needs to be planned so that overall layout, fonts
and their colours, for example, can be represented. Layout diagrams and annotated
diagrams (or mock-ups) usually fulfil this requirement. A combination of tools from each
of these categories will be selected to represent the overall solution design. Regardless of
the visual or functional aspects of a solution design, at this stage a design for the tests to

ultimately ensure the solution is functioning correctly must also be created.

2 specifying evaluation criteria — during the evaluation stage, the solution is assessed to
establish how well it has met its intended objectives. The criteria for evaluation must be
created during the design stage so that all personnel involved in the task are aware of
the level of performance that ultimately will determine the success or otherwise of the
solution. The criteria are based on the solution requirements identified in the analysis

stage and are measured in terms of efficiency and effectiveness.

Develop the solution

The solution is created by the developers during this stage from the designs supplied to
them. The ‘coding’ takes place, but also checking of input data (validation), testing that the
solution works and the creation of user documentation. The four activities involved with
development are:

1 manipulating or coding the solution ~ the designs are used to build the electronic solution.

The coding will occur here and internal documentation will be included where necessary.

2 checking the accuracy of input data by way of validation - manual and electronic
methods are used; for example, proofreading is a manual validation technique. Electronic
validation involves using the solution itself to ensure that data is reasonable by checking
for existence, data type and that it fits within the required range. Electronic validation,

along with any other formulas, always needs to be tested to ensure that it works properly.

PROBLEM-SOLVING METHODOLOGY

9780170440943

3 ensuring that a solution works through testing — each formula and function, not to
mention validation and even the layout of elements on the screen, need to be tested.
Standard testing procedures involve stating what tests will be conducted, identifying
test data, stating the expected result, running the tests, stating the actual result and

correcting any errors.

4 documentation allowing users to interact with (or use) the solution - while it can be
printed, in many cases it is now designed to be viewed on screen. User documentation
normally outlines procedures for operating the solution, as well as generates output (like
reports) and basic troubleshooting.

Evaluate the solution

Some time after a solution has been in use by the end user or client, it needs to be assessed
or evaluated to ensure that it has been successful and does actually meet the user’s
requirements. The two activities involved in evaluating a solution are:

1 evaluating the solution — providing feedback to the user about how well the solution meets
their requirements, needs or opportunities in terms of efficiency and effectiveness. This
is based on the findings of the data gathered at the beginning of the evaluation stage

when compared with the evaluation criteria created during the design stage.

2 working out an evaluation strategy — creating a timeline for when various elements of the
evaluation will occur and how and what data will be collected (because it must relate to

the criteria created in the design stage).

PROBLEM-SOLVING METHODOLOGY XV

9780170440943

Key concepts

Within each VCE Applied Computing subject there are four key concepts whose purpose is
to organise course content into themes. These themes are intended to make it easier to teach
and make connections between related concepts and to think about information problems.
Key knowledge for each Area of Study is categorised into these key concepts, but not all
concepts are covered by each Area of Study. The four key concepts are:

1 digital systems

data and information

approaches to problem solving

N DN

interactions and impact.

Digital systems focuses on how hardware and software operate in a technical sense. This
also includes networks, applications, the internet and communication protocols. Information
systems have digital systems as one of their parts. The other components of an information
system are people, data and processes.

Data and information focuses on the acquisition, structure, representation and
interpretation of data and information in order to elicit meaning or make deductions. This
process needs to be completed in order to create solutions.

Approaches to problem solving focuses on thinking about problems, needs or
opportunities and ways of creating solutions. Computational, design and systems thinking
are the three key problem-solving approaches.

Interactions and impact focuses on relationships that exist between different information
systems and how these relationships affect the achievement of organisational goals and

objectives. Three types of relationships are considered:

1 how people interact with other people when collaborating or communicating with digital
systems

2 how people interact with digital systems

3 how information systems interact with other information systems.

This theme also looks at the impact of these relationships on data and information needs,

privacy and personal safety.

Xvi

9780170440943

In this study, software will be developed by applying the problem-solving
methodology through the stages of analysis, design, development and
evaluation.

In Unit 3 of Software Development, you will develop working
software modules using a programming language (Unit 3, Outcome 1).
You will then identify a suitable client, analyse a need or opportunity for
that client, select an appropriate development model, prepare a project
plan, develop a software requirements specification (SRS) and design
a software solution. You will use all the stages of the problem-solving
methodology (PSM) to prepare the project plan. This will complete the
first half of the School-assessed Task (SAT) (Unit 3, Outcome 2). The
second half of the SAT will be completed in Unit 4 (Unit 4, Outcome 1).

Area of Study 1 - Programming

In this Outcome, you will respond to teacher-provided
solution requirements and designs to develop working modules of a
programming language. You will use a programming language to apply
the problem-solving activities of manipulation (coding), validation,
testing and providing documentation in the development stage.

Note: You will create a complete solution in Unit 4, Area of Study 1.

Area of Study 2 - Analysis and design

In this Outcome, you will identify a software need or
opportunity for a client. You will use the problem-solving methodology
stages of analysis and design to complete part 1 of the School-assessed
Task (SAT). Part 2 will be completed in Unit 4 (Unit 4, Outcome 1). You
will use all the stages of the problem-solving methodology to prepare a
project plan, using teacher-provided milestones.

A range of methods will be used to gather data for analysis. While a
range of analysis tools, including use case diagrams, context diagrams
and data flow diagrams will be used to describe the software solution to
the need or opportunity. A full solution description is proposed using a
software requirements specification (SRS), which entails documented
details of requirements, constraints and scope of the solution. A design

folio of several possible design ideas is generated, with a preferred

design chosen by the client. This is then fully described with mock-up,
pseudocode, object descriptions and data dictionary.

= use — —
=) —"""-"'-w_:; _ Contains extracts reproduced from the
e L VCE Applied Computing Study Design (2020 -2023)

False © VCAA; used with permission.

the end -add
' ob.select= 1
ber_cb.select-1
Sentext. scene.objects.active
Se + str{modifler S0

grint(“please select exacthy

wrartor)i -
o™ .

-l o :(:E:?rrm'. mirror X
hject.

Shutterstock.com/whiteMocca

©Shutterstock.com/Dominik Bruhn

CHAPTER

KEY KNOWLEDGE

On completion of this chapter,
P P
you will be able to demonstrate

knowledge of:

Data and information

characteristics of data types

types of data structures, including
associative arrays (or dictionaries or
hash tables), one-dimensional arrays
(single-type data, integer index) and
records (varying data types, field

index).

Approaches to problem solving

Reproduced from t
Design (2020-2023) ©

methods for documenting a
problem, need or opportunity

methods for determining solution
requirements, constraints and scope

methods of representing designs,
including data dictionaries, mock-
ups, object descriptions and
pseudocode

formatting and structural
characteristics of files, including
delimited (CSV), plain text (TXT)
and XML file formats

a programming language as a
method for developing working
modules that meet specified needs

naming conventions for solution
elements

purposes and characteristics of
internal documentation, including
meaningful comments and syntax.

e VCE Applied Computing Study
CAA; used with permission

Introduction to
programming

While programming languages differ, the fundamental components and
logic needed to write using a programming language are the same. Data
types and structures are consistent across many different programming
languages, as are the conventions for naming solution elements, internal
documentation and the formatting and structure of different file types.
Similarly, methods of representing designs are also independent of any
programming language; in fact, this is their strength.

The focus of this chapter is the key elements of programming that are
platform and language independent, as well as the methods used to
create design briefs and represent designs. This chapter forms the basis
of the background needed to prepare students for Unit 3, Outcome 1 as
well as Unit 3, Outcome 2.

CHAPTER 1 » INTRODUCTION TO PROGRAMMING n

Data types

In programming, a data type is a method of classifying a variable to determine the data that
variable can contain, as well as how the variable can be manipulated — that is, what it can do,
and what can be done to it. While programming languages vary widely from each other, data
types do not; they are consistent across all programming languages. When programming,
it can be important to choose an appropriate data type when creating a variable. It is also
important to select the most efficient data type. For example, it is not efficient to select a
numeric data type that supports decimal places when creating a variable if that variable will
only ever contain whole numbers. Similarly, storing a number as a string is not as efficient as
storing it as a numeric data type, even if it is possible to convert strings to numbers.

Numeric

The numeric data type consists of whole numbers, referred to as integers, and decimal
numbers, referred to as floating points. Integers can be referred to as unsigned, which means
they can only store positive whole numbers, or signed, which means they can store both
positive and negative whole numbers.

All numeric data types can have mathematical operations performed on them. The

fundamental operations shown in Table 1.1 are the most common.

TABLE 11 Fundamental data type operations
Addltlon ... T
e s D e e
Multlphcatlon P,
Division /
W dMSIOn(q UOtlent) ... / / ...
Remainder after division (modulo) K
U ————
ASSlgnva|ues e

When more than one operation appears within a line of code, the order of operations
follows the same rules as BODMAS in mathematics: brackets, orders, division and
multiplication, addition and subtraction. If two operators have the same precedence, they
are evaluated from left to right.

Numeric data can also undergo comparisons, with the comparisons shown in Table 1.2

being the most common.

TABLE 1.2 Data type comparison operations

Less than <

Less than or equal to (or <)

Greater than >
Greater thanorequal to (or>) | >=

Equal to ==or=
“Not equalite .

: O Project plan O Justification O Analysis : O Folio of alternative = [0 Usability tests

9780170440943

O Evaluation and

Some languages, such as
Perl, Ruby and Swift, are
dynamically typed, which
means that type checking
for variables is completed
when the program is run
rather than in the code
itself. Programmers do not
need to set variable data
types in dynamically typed

languages.

O Final submission

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

The power of 31 for signed
integers represents 32 bits,
minus 1 bit that is needed

to determine if the signed
Integer Is positive or negative.
The 1 that is subtracted from
the total is due to computer
systems counting from O,
rather than 1.

THINK ABOUT b J

SOFTWARE
DEVELOPMENT

How big is 2°? How big
would the number be if
we began using 128-bit

computer systems?

THINK ABOUT 12

SOFTWARE
DEVELOPMENT

Research the likelihood

of 128-bit computer
systems becoming
the norm within your
lifetime. What would
prevent these systems
being used in standard
computers?

The maximum and
minimum values for
floating point numbers are
not as easy to determine as
integers. When single-
precision floating point
numbers are stored, 1 bit is
used for the sign (positive
or negative), 8 bits for

the exponent, and 23 bits
to store the significant
digits of the floating

point number (that is, the
fraction). For interest, the
formulae that calculate the
maximum and minimum
for 32-bit systems and
64-bit systems can be
found at the weblink.

32-bit systems
64-bit systems

Integer

Integers are commonly represented internally in a computer system as a group of binary
digits, called bits. A bit is the smallest unit of data in a computer, and has a single binary
value, 0 or 1. Bits are stored in multiples of eight, referred to as bytes; therefore, there are
eight bits to a byte.

The maximum and minimum values of an integer depend on the computer architecture
used to run the program and whether the integer is signed or unsigned.

In 32-bit computer systems , integers that are signed have a minimum value of -2’1
and a maximum value of 2*! — 1 ; from —2147483647 to 2147483647. Unsigned integers
have a minimum of 0 and a maximum of 2> — 1 (4294967295).

In 64-bit computer systems, integers that are signed have a minimum value of 20
and a maximum value of 2% — 1. Unsigned integers have a minimum of 0 and a maximum
of 2 1.

It is important to know the computer architecture on which a program will run before
designing and developing a software solution. Going beyond the maximum and minimum
values of integers can result in an integer overflow, which may result in a program crashing,
or producing inconsistent or invalid output. Integer overflows compromise a software

solution’s reliability and security.

Floating point

Floating point numbers, also referred to as ‘floats’ or ‘doubles’, are the computer representation
of real numbers; that is, numbers that allow for decimal places.

Floating points consist of two main parts:

« a significand, which contains the digits of the number that is represented. These can be
either positive or negative.

« an exponent, which helps determine where the decimal point is placed within the
significand.
Two basic formats of a floating point number in computer systems are single precision
and double precision. Single precision is used in 32-bit systems and double precision in
64-bit systems.

Character

The character data type is a symbol that has meaning. It can consist of any single meaningful
unit, such as a letter, a number, a punctuation mark, a symbol, or even a space. For example,
the word ‘example” has 7 characters.

What is determined as ‘meaningful’ relies on something referred to as character
encoding. Character encoding is a way that a computer program can translate binary
data into meaningful characters. There are many character-encoding schemes that
handle different character sets. For example, ASCII is a character-encoding scheme that
represents English characters, punctuation and numbers. UTF-8 encoding is a character-
encoding scheme that can represent characters from other languages, such as Japanese
Kanji and Korean Hanja, as well as symbols such as those representing the euro (€) and
yen (¥).

A set or sequence of characters is referred to as a string. For example, the string T like pie’
consists of 8 characters that are letters, and two characters that are spaces. Strings are often

implemented in programming languages as an array of characters.

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING ﬂ

Characters and strings can undergo the same comparisons as numeric data types,
as listed in Table 1.2. Depending on the programming language used, they can also
undergo some of the fundamental data type operations listed in Table 1.1, such as
addition, multiplication and assignment. An example of string addition can be seen in

Figure 1.1.

. INPUT firstName
PRINT “Hello “ + firstName + “!”

FIGURE 11

Pseudocode example of string addition

Boolean

Boolean data types have only two possible values: 0 and 1. In a programming language these
are often referenced with the words ‘False” or “Irue’, respectively. This data type is named
after George Boole, a 19th-century mathematician who was the first to define an algebraic
system of logic. Boolean data types are very useful for systems that require decisions to be
made or conditions to be met.

Much like integers, boolean values can be treated mathematically, allowing for comparison
operators such as those listed in Table 1.2. This allows for boolean logic operations to occur
in any programming language.

Boolean values can also be used with the fundamental operators and, or and not in
statements where a condition must be met. For example, if a program is required to turn on
a light in a room if it is dark and the light is not already on, it could use two boolean values
to test for this condition (Figure 1.2).

IF isDark = True AND lightOn = False THEN
turnOnLight ()
ENDIF

FIGURE 1.2 Pseudocode example of boolean test conditions

Data structures

A data structure is a method of organising data to allow particular operations to be performed
on them efficiently; in this way, they are more complex than data types. The types of data
structures used in Software Development are: arrays, associative arrays such as hash tables

and dictionaries, stacks, queues, linked lists, files, fields, records and classes.

Array

An array is a data structure that contains groupings of data. These elements are traditionally
of the same data type, such as character, numeric or boolean. Arrays can also store groupings
of other data structures, such as fields, records, or even other arrays. Arrays are very useful in
programming, as they allow for related sets of data to be organised and ordered efficiently.

O Justification O Analysis : O Folio of alternative

designs ideas

: O Project plan : O Usability tests

9780170440943

THINK ABOUT ‘ i

SOFTWARE
DEVELOPMENT

You may come
across the term
‘null terminated

string’ when looking
at programming
language reference
manuals and computer
science texts. What

is a null terminated
string?

Boolean values take up only
a small amount of space in
memory, so it is tempting
to use them to store any
type of data that seems

to only have two values.
However, it is important to
consider future expansions
to programs before making
a decision that will limit

a data type. For example,
many old systems that had
gender stored as a boolean
value are now being
rewritten to change gender
to a character or string data

type.

O Evaluation and
assessment

Some programming
languages, such as Python,
allow arrays to contain
more than one data type.

O Final submission

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

For example, a teacher might collect data related to the height of each of their students
and store this data as a one-dimensional array of floating point numbers. This is a much
more efficient method of storing data than creating separate variables to store each student’s
height, as it allows for faster sorting and searching.

The contents of an array are referenced using an index value — often an integer starting
at 0. The way that an array is stored means that each element has a set position within it.
This allows for quick access to a particular element of the array, without necessarily needing
to check every element.

Arrays can typically use the operations shown in Table 1.3.

TABLE 1.3 Array data structure operations
Add or append +

Remove or delete -

Lookup arrayName[indexValue]

| arrayHeights < [1.23, 1.35, 1.21, 1.61]
| firstStudent <« arrayHeights [0]

. secondStudent < arrayHeights[1]

. fourthStudent < arrayHeights[3]

FIGURE 1.3 Pseudocode example of an array

Consider the array in Figure 1.3. In this example, f£irstStudent would contain the
floating point number 1.23, secondStudent would contain 1.35 and fourthStudent 1.61.

In pseudocode (covered later in this chapter), arrays are sometimes indexed starting at 1,
but this should always be made clear in the pseudocode comments.

Associative array

An associative array is a special type of array data structure that consists of a collection of key
and value pairs, where the key is unique and can be of any data type or structure. This makes
it more flexible than an array with an integer index.

Associative arrays can typically use the operations shown in Table 1.4.

For example, if a teacher were to collect student heights in a one-dimensional array, they
would not be able to go back and find a particular student’s height, as that data (the student's
name) was not stored in the array. If the teacher used an associative array, they could store the
data they collected as (key, value) pairs, where the key is the student’s name, and the value is
the height of that student. This would allow the teacher to look up any particular student to
find out their height.

TABLE 1.4 Associative array data structure operations

Add or append assocArray[key].add (value)
or
assocArray[key] « value

Remove or delete assocArray[key].remove (value)
Modify or change assocArray[key].change (value)
or

assocArray[key] «<— value

Lookup assocArray[key]

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING .

! assocArrayHeights « {}
assocArrayHeights [“Paulo”] <« 1.23
assocArrayHeights [“Shehara”] « 1.35
assocArrayHeights [“Phoebe”] « 1.21
assocArrayHeights [“Tuan”] <« 1.61

{ PRINT assocArrayHeights [“Phoebe”]

FIGURE 1.4 Pseudocode example of an associative array

In the pseudocode example shown in Figure 1.4, Phoebe’s height would be printed once
the code was executed.

One important limitation of an associative array is that keys are not organised or sorted in
a consistent way. If the teacher wanted to print the heights of every student in sorted order,

this would not be possible using just an associative array.

Dictionary

A dictionary is a synonym for an associative array. Associative arrays can also be referred to

as maps or symbol tables.

Hash table

A hash table is a particular type of associative array which, instead of (key, value) pairs, uses
(key, bucket) pairs, where the bucket (or slot) is a one-dimensional array. The key in the (key,
bucket) index is computed using a hash function on the value that is to be inserted. Once
this key has been computed, the value is then inserted into the bucket at the correct position.

The benefit of using a hash table over a regular associative array is that it allows for
efficient searching. When dealing with very large amounts of data, it can take a very long
time to search through and find a particular element if every element has to be checked.
Hash tables are faster, as they move elements into smaller array ‘buckets’, requiring fewer
items to look through when searching. The better the hash function, the faster the search,
with a perfect hash function resulting in a hash table that has only one element in each
bucket. This is quite rare, however, and imperfect hash functions are far more likely. An
imperfect hash function is a function that possibly computes the same key index for more
than one value. This results in a collision, which must be handled within a software program.
Collisions are often handled by inserting all matching values from the hash into an array
attached to the key index.

Consider Figure 1.5, a simple hash table that contains words from a book, where the
hash function looks at the first character of the value to obtain the key.

hash Table: { a b c d e 1
Y Y ! Y '
and be can end
apple banana cup
cake

FIGURE 1.5 A hash table containing words from a book

O Justification O Analysis : O Folio of alternative

designs ideas

: O Project plan : O Usability tests

9780170440943

O Evaluation and
assessment

To print the heights of
every student in sorted
order from an associative
array, the teacher would
need to extract the key
elements of the associative
array into a normal array
and sort that array of key
elements. They could then
retrieve each value based
on the sorted array of key
elements.

[Final submission

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

If the next word to be inserted into the hash table is ‘durian’, the hash function would
return the key as ‘d” and the value of ‘durian” would be inserted into the bucket with the ‘d’
key, as shown in Figure 1.6.

hash Table: { a b c d e . }
Y | Y Y
and be can durian end

apple banana cup

cake

FIGURE 1.6 An updated hash table, with ‘durian’ added

If the next word after that is ‘egg’, the hash function would return the key as ‘e’. A collision
will occur, as the ‘e’ bucket already has ‘end’ in it, so the value ‘egg’ would need to be added
to the end of the ‘e’ bucket. This is shown in Figure 1.7.

hash Table: { a b c d e .. 1
|
L L l! !l‘ T
and be can durian end
apple banana cup egg
cake

FIGURE 1.7 An updated hash table, with ‘egg’ added

Each time a collision occurs, the new value is added to the end of the bucket — notice
that the array inside each bucket is not sorted.

Hash tables are most useful when there is a lot of data to store and none of it needs to be
sorted. They are particularly useful for searching, as long as the hashing function does not

create too many collisions.

Queue

A queue is a data structure that is best
described using the analogy of a line at
a cafeteria. The person at the start of
the line is the next person served, and
any new person joining the line adds
themselves to the end of the line.

Much like queueing for food,

elements of data in a queue are inserted

at the end of the queue (enqueue), and
each element can only be accessed by

taking it from the start of the queue

(dequeue). This is referred to as first
in first out (FIFO) access. FIGURE 1.8 People in a queue

9780170440943

©Shutterstock.com/Vibrant Image Studio

CHAPTER 1 » INTRODUCTION TO PROGRAMMING n

TABLE 1.5 Queue data structure operations

enqueue queue.enqueue (value)
inserts a value at the end of a queue

dequeue queue.dequeue (value)
removes and returns a value from the front of the queue

front queue.front O

returns a value from the front of the queue, without removing it
empty queue.empty O

returns a boolean value of true if the queue is empty, false if not
size queue.size ()

returns the number of elements in the queue

Queues can contain any data type or structure, including other queues. In
many programming languages, queues are implemented as arrays or linked
lists. They are useful for implementing functionality to manage wait lists and
access to shared resources (e.g. print queues), and for handling multiprocessing
software with parallel processing needs.

Stack

A stack is a data structure that is most often described using the analogy
of a stack of dirty dinner plates. As each plate is washed, it is removed from
the top of the stack. The dirty plate that was underneath it is now at the
top of the stack. Any new dirty plate is placed on top of the current stack of
dirty plates.

©Getty Images/The Image Bank/Paul Taylor

FIGURE 110 A stack of dirty plates

3[7]4l6]2]1]
e
front of

queue queue.dequeue()

71416/211)

P
front queue.enqueue(4)

//mnmznm

front

FIGURE 19 Queue operations on data

using an array

Just like in the plates analogy, elements of data in a stack are inserted at the top of the

stack (push) and each element can only be accessed by taking it from the top of the stack

(pop). This is referred to as last in first out (LIFO) access.

: O Project plan : O Justification O Analysis : O Folio of alternative : [Usability tests
o designs ideas £

9780170440943

SCHOOL-ASSESSED TASK TRACKER

O Evaluation and : O Final submission
assessment H

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

TABLE 1.6 Stack data structure operations

stack.pop (value)

removes and returns the last inserted element

stack.top O

returns the last inserted element, without removing it

stack.empty () returns a boolean value of true if the stack is empty, false if not
stack.size O

returns the number of elements in the stack

3]714]6[2][1]
E 4

Py

top of

stack stack.pop()

714621
E 4

topx stack.push(4)

[4]7]4]6]2]1]

Pd
top

FIGURE 111 Stack operations on

data using an array

Stacks can contain any data type or structure, including other stacks. In many
programming languages, queues are implemented as arrays or linked lists. They
are useful for implementing functionality such as an undo operation in word
processing software, or for storing the history of visited web pages.

Linked list

A linked list is an ordered set of elements in which each element is connected
to the next element in the list. This data structure allows data elements to
be ordered into a sequence, and allows for efficient insertion and removal of
elements from any position in the sequence. Linked lists are particularly useful
in sorting algorithms.

In a linked list, each element is referred to as a node. Each node contains a
data element as well as the memory address of the next node in the linked list.
This is typically referred to as a pointer.

Linked lists are often used to implement stacks, queues and associative

arrays. The simplest type of linked list is referred to as a singly linked list,

which only has the ability to traverse the list in one direction. Another common type

of linked list is a doubly linked list, which allows for two-directional traversal, as each
element in the linked list keeps track of the next element as well as the previous one.

Linked lists make it very easy to add and remove elements at the start, middle and end

of the list. Unlike arrays, whose index values must be shifted (increased) to make room for a

new element to be inserted, linked lists only need to change the pointer to the next element

in the list, and the pointer to the previous element if it is a doubly linked list.

€1 I e 72 I s 1 I e - I g 21 I e K e 4

head of singly linked list
linkedList.next()

A e 1 e Y M e P B s K M 4

FIGURE 112 An example of a singly linked list of integers

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING n

TABLE 1.7 Data structure operations on a doubly linked list

Head linkedList.head O
returns the first element in the linked list
Tail linkedList.tail O

returns the last element in the linked list

Next linkedList.next ()
returns the next element in the linked list based on the current element

Previous linkedList.prev O
returns the previous element in the linked list based on the current element

Record and field

A record is a basic data structure for collections of related elements. These elements may or
may not be of the same data type. Most frequently, records are used in database systems but
they are also commonly used in programming languages, where they are referred to as structs.

A record consists of a number of fields that are typically fixed — that is, the fields do not
tend to change once the record is defined and used. Each field has a name and each has its
own data type.

For example, a customer record may contain fields such as firstName, lastName
and dateOfBirth.

Records are most useful when a collection of variables are related to each other. This provides
a logical method of ordering data within a program so that data can be accessed quickly.

In object-oriented programming languages, a record is essentially an object that has no
object-oriented features, containing only collections of fields and values. Records and fields
can also exist in some types of structured plain text files.

As records contain programmer-defined fields, there are no set operations that can
be listed for the record data structure. Rather, there are common operations that can be
performed on the record and the fields within it, such as assignment and comparison, as well
as adding or removing fields.

Class

Imagine a developer is writing a game where players play golf.

Alamy Stock Photo/Arcadelmages

FIGURE 113 An example of a golf game

SCHOOL-ASSESSED TASK TRACKER

: O Project plan : O Justification : O Analysis : O Folio of alternative : [Usability tests = O Evaluation and : O Final submission
o H designs ideas i assessment

9780170440943

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

THINK ABOUT s

SOFTWARE
DEVELOPMENT

Think about gaming in
general. When would
it be useful to keep
statistics (variables)
about something?

THINK ABOUT i |

SOFTWARE
DEVELOPMENT

In a gaming context,
consider the speed of
processing required
to open and close files
every time a player
gains a stat or skill, or
has damage dealt to
them.

How many people
played Fortnite
concurrently at the
peak of its popularity?
Imagine that many
read/write operations
— this would be an
absurd amount of load
on a system.

Describe other
contexts where read/

write operations would
be an important factor
to consider when

writing software.

Before object-oriented
programming introduced
classes and objects, there
was no straightforward

way to write the golf clubs
in the golf game with a
programming language

that just used functions,
subroutines and variables. It
would only be possible if the
program saved information
constantly to files and then
read them back for each
golf club and each player.
Reading and writing to files
is very slow and the game
created could not be played
by more than a couple
players at a time.

In the game, the golf clubs that a player uses influence the outcome of the game.
Players can upgrade golf clubs as they gain experience in playing courses. Each club carries
information (variables) unique to that club, such as the quality of the club (its condition), the
material of the grip and the material of the club itself.

A golf club also has actions associated with it, such as the action of swinging the golf
club, or the action of breaking the golf club because a player is frustrated. For those actions,
a programmer would need to know the quality, grip material and club material of each and
any golf club used by a player.

What happens if each time a player uses the golf club, the quality decreases, the grip on
the handle wears away a little, a new scratch is formed on the club and the player gets a little
more frustrated?

Writing a function in the source code of the game would not easily help a programmer keep
track of all those things for each golf club being used, particularly if there are many players
and many golf clubs. The source code would need to have a different variable for each club
a player has, as well as a different variable for each player who plays the game. This becomes
quite tedious to maintain within code, because to avoid hard-coding variables containing
players and their clubs, the code would need to have used multiple associative arrays that were
synchronised with each other so that each index value matched a particular player.

Using a data structure called a class allows a programmer to solve the ‘golf club’ problem.
A class is a programmer-defined data structure that exists in object-oriented programming
languages. Classes group conceptually similar functions and variables together in one place
and work as templates for creating objects, which are instantiations, or instances, of classes
that exist in memory on the computer where the program is run. A useful analogy to describe
a class is to think of it as a blueprint or architectural design, such as one used when building a
house. It describes everything that needs to be built to make a house, but is not a house itself.
The house that is built using the design is an instance of the house blueprint. Classes work
in the same way. They describe all of the elements and components that are required by the
object created from the class blueprint, and this object is referred to as an instance of the
class. The number of objects that can be created from a class is limited only by the amount
of memory (RAM) in the computer system on which the program is running.

The purpose of a class is to create a template for objects with pre-determined variables and
behaviour. These templates can then be instantiated as objects or be used by another class
in order to extend upon or change their behaviour. This allows for code re-use in programs
where objects are similar to each other. In the golf club example, a programmer could extend
on a base golf club class using inheritance to make woods, irons, wedges and putters.

Classes contain relevant variables, data types, data structures, methods and events. These
are explained further in chapter 2.

Design brief

A design brief is a document or statement that outlines the nature of a problem, opportunity or
need. It briefly describes processes, systems and users as a way to ‘kickstart’ the design process.
The design brief is created during the analysis stage of the problem-solving methodology.

A design brief contains an overview of the solution requirements, any known constraints
and a short discussion of the scope. Once the analysis stage of the problem-solving
methodology has been completed, these elements are further developed and incorporated
into a software requirements specification as part of the design stage of the problem-solving
methodology, as outlined in chapter 2.

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING n

Solution requirements

Solution requirements are what the client needs from the solution. What features do they
want in the solution? Solution requirements in a design brief are often worded descriptions,

rather than technical descriptions.

Constraints

Solution constraints are factors that may limit or restrict solution requirements. At the
stage when a design brief is created, these constraints are described only in general terms.

Typically, constraints involve economic, technical, social, legal and usability factors.

Economic

F.conomic constraints include time and cost.

The deadline by which the user or client needs to have the solution operational will
define the time available to design and develop the solution. The more time available, the
more time there is to complete an in-depth analysis and detailed designs, and to develop
advanced features of the solution. The shorter the timeframe, the faster cach stage in the
problem-solving methodology needs to be completed.

Meanwhile, the funds available to complete the project may affect the hardware and software
(digital systems) available for use, the number and range of staff who are available to work on the
solution and even the data used as input, if the required data sets need to be purchased.

Both a lack of time and a lack of money may result in a re-evaluation of the user’s

requirements, or a re-evaluation of how those requirements can be achieved.

Technical

Technical constraints are constraints related to the hardware and software available for
the project. Available hardware and software, memory and storage capacity, processing and THINK ABOUT 16

transmission speeds and security concerns are all examples of possible technical constraints. EEIUSRZIES
. . DEVELOPMENT
For example, developers need to keep in mind that smartphone users may not always have
access to a high-speed network connection, so they need to ensure that any animated data .
List three other

visualisation solution does not require a large amount of bandwidth to download and view. technical constraints

developers of
Social, legal and usability smartphone apps
need to consider when
developing a product.

Non-technical constraints relate to areas other than hardware and software. Usability and

the user’s level of expertise (social) are examples of non-technical constraints. For example,
if a solution is being developed for users with little digital systems expertise, this may restrict
the inclusion of requirements that would involve complex manoeuvres. Creating a solution
for a child audience may also restrict the method used to input data into the solution.

Legal requirements are another type of non-technical constraint. Privacy laws may restrict
features linked to displaying personal data in the solution, or to collecting data from the
device of someone using your solution. Copyright laws may restrict features that allow other

users to upload content to the solution.

Scope

The scope outlines the boundaries or parameters of the solution, so that all stakeholders
are aware of exactly what the solution will contain. The scope of the solution consists of two
elements: what the solution will do and what the solution will not do.

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
g designs ideas : assessment

9780170440943

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

Many house and land
package contracts state
exactly what is included
in the package as well as
what is not included in
the package. For example,
tiles on the floor of the
kitchen are included, but
the garden will not be
landscaped.

THINK ABOUT
SOFTWARE
DEVELOPMENT

What problems do you
think a clear scope

of solution can avoid
later in the project?

What the solution will do

What the solution will do is a list of all the solution requirements (both functional and non-

functional) that will be included in the solution.

What the solution will not do

What the solution will not do is a list of all the solution requirements that will not be included
in the solution.

Usually these are solution requirements that were initially sought by the client, but that,
because of constraints, have been left out of the solution project.

At the start of the project, outlining what will and will not be included in the solution can
help prevent arguments between the client and the developer later in the project.

Rifle target view

The area that is within the scope is
relevant to the project; areas outside
the scope are not.

FIGURE 114 Scope of solution

An example of a scope of solution would be: The solution will display population data of
towns in Victoria in a visual format and graphically represent the distances between those
towns. It will be created to be user-friendly, and for privacy reasons, it will not display any
personal details.

The requirement that allows the user to zoom in on a particular region or town will not
be included in the project because of economic factors but may be added at a later stage.

In a design brief, aspects of the solution that are within scope are described without
technical detail, and may consist of general descriptions of what the solution will contain
in relation to functional and non-functional requirements. Determining what may be out of
scope normally occurs during the analysis stage, such as deciding what functionality may be

delayed for later releases due to time constraints.

Representing designs

Once a software requirements specification has been completed, it is important that
considerable time is spent designing the software that is going to be written. This helps
reduce the time and effort that goes into writing the software, as problems are normally
resolved before any code has been written. There is nothing worse than needing to rewrite
code due to an issue that could have been resolved in the design stage!

Some common methods of representing designs are to use data dictionaries, object
descriptions, mock-ups and pseudocode. Fach of these methods has a different purpose in

the design stage.

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING H

Data dictionaries

A data dictionary is used to plan the storage of software elements including variables, data
structures, and objects such as GUI textboxes or radio buttons. A data dictionary should
list every variable’s name and data type or structure. It may also include the data’s purpose,

source, size, description, formatting and validation.

TABLE 1.8 Data dictionary

Name Type Format ‘ Purpose

customerld integer 999999 Unique identifier for a
customer

postCode string 9999 Postcode for a suburb

userActive boolean True/False Stores if user is active
or not

totalOrderCost floating point 99.99 Total cost of an order

Data dictionaries are valuable when code needs to be modified later by other programmers
and the purpose of a variable is unclear. You will learn more about data dictionaries in

chapter 4.

Object descriptions

An object description is a way of describing all of the relevant properties, methods and

events of an object.

OBJECT: txtName
PROPERTIES
| Class: textbox
| Left position: 300
Width: 500

Font: Arial
Justification: left
Visible: yes

Font colour: black
METHODS

Cut: save cut text to disk
EVENTS

FIGURE 115 Example of an object description

Object descriptions are valuable when code needs to be modified later by other

programmers and the properties of the object are unclear or unknown.

Mock-ups

If software will be used directly by people (rather than running hidden deep in the OS), it
needs an interface — a place where people can control the program, enter data and receive
output. A successful interface must be carefully designed to ensure it is usable and clear.

'SCHOOL-ASSESSED TASK TRACKER

: O Project plan : O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and : O Final submission
: designs ideas i assessment 3

9780170440943

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

To design an interface, use a mock-up, which is a sketch showing how a screen or printout
will look. A mock-up should typically include the following features:

« the position and sizes of controls such as buttons and scroll bars

In VCE Software « the positions, sizes, colours and styles of text such as headings and labels
Development you are not
required to use software
to create your mock-ups.
You may use software if

« menus, status bars and scroll bars

« borders, frames, lines, shapes, images, decoration and colour schemes

you wish, but you can also « vertical and horizontal object alignments
create them by hand using
pen and paper. « the contents of headers and footers.
BLACK
ACTAL 15 ¢
© centred
CURRENCY CALCULATOR | green
4
2 : Zextbox ack
i s
labels | T Cpothey' A . s . AMOUNT N
Arial < - ' L Combo boxes 3 (fothey ' M) I onize
ol I 70 cuUrRRENCY FAULD backgrovinds
| Chothey ' T : :
: : ! | sicture
Align Al ~
BUS XXXXX = SAUD XXXXX rreney
Jabe! —— i /f.* .- .
) / . (2 decimal places)
(Whatever currencies | B
were chosen above) &t
% v

All text is black. /,?z(/‘ey pethoy' X'

Clears
combo boxes

& amowunt
& comersion label owdpit text.

FIGURE 116 A mock-up of a screen interface
A mock-up can be considered successful if you can give it to another person and they can
create the interface without needing to ask you questions.

Pseudocode

Writing an algorithm in source code is slow. An algorithm written in source code also limits
itself to use in only one compiler. Pseudocode, also known as Structured English, is a
quick, flexible and language-independent way of describing a calculation strategy — halfway
between English and source code. Once the algorithm is sketched out in pseudocode, it can
be converted into source code for any desired programming language.

A good algorithm can be extremely valuable. A clever strategy can make software run twice
as quickly or use half the amount of RAM. An ingenious idea can lead to the development of a
program that was previously considered impossible. For example, Google’s PageRank completely
changed the way the world searched the internet, and made its inventor billions of dollars. The
invention of public key encryption finally cracked the age-old problem of how to encode and
transmit secrets without having to also send an unlocking key, which could be intercepted.

The following pseudocode determines if a year is a leap year.

IF (year is divisible by 4 AND NOT divisible by 100)
OR (year is divisible by 4 AND 100 AND 400) then
I it’s a leap year
- ELSE
FIGURE 117 !

. it 1
Pseudocode to determine i1t’s not a leap year

. ENDIF
leap years]

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING .

The rules of pseudocode

What are the rules of pseudocode? Easy: there are none. As long as the intention of the
calculation is clear, it is good pseudocode. If not, it is bad.

It is important to ensure that you specify assignment (the storage of a value) using the «—
symbol rather than the equals sign (=) that is used in algebra and in most real programming
languages. For example:

isLeapYear <«— True

The equals sign is reserved for logical comparisons, such as:

IF B=0 THEN Soundalarm()

Common features found in pseudocode include:

+ iterations/loops, such as WHILE/ENDWHILE and FOR/NEXT
« condition control structures, especially IF/ELSE/ENDIF blocks
+ logical operators — AND, OR, NOT, TRUE and FALSE

« arrays, such as Expenses|3]

. associative arrays, such as Expenses[“Gary”]

. rtecords and fields, such as Customer.firstName, where Customer is the record and
firstName is the field
o arithmetic operators (+ — * /) and the familiar order of operations, as used in Year 7

mathematics and Microsoft Excel spreadsheet formulas.

Pseudocode punctuation and the names of key words are largely up to you, so long as it
is clear what you mean. For example, it does not really matter if you prefer WHILE/WEND
or WHILE/ENDWHILE.

To ‘Get data from keyboard’, you could use INPUT, GET, FETCH, or another keyword.
To read data from a disk file, you could choose INPUT, GET, READ or something else. To
avoid ambiguity, you could explain your pseudocode’s conventions using comments within
the pseudocode. Comments can be prefixed with a hash, #, or included in parentheses/curly

brackets, {}.

GET reads the keyboard.

READ loads data from a disk file.
DISPLAY shows output on screen.

WRITE saves output to a file.
DISPLAY “What is your name?”

GET UserName

OPEN FILE "“Users.txt”

READ data for UserName

IF new data exists THEN

WRITE new data to file
ENDIF

FIGURE 118
Pseudocode to add new
users to a file

®
Flles TABLE 19 File operations

open file.open (filename, mode)
Computer files are resources that allow data to be recorded on any
- . . close file.close O
type of storage device in a cmnpuhng systeln, Files are therefore o e
. . L read file.read O
critical for the operation of almost every software solution if the e e e e
program needs to save information to be retrieved later. R i LTSNS CREED
: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission

designs ideas £ assessment

9780170440943

There are two types of files: text files and binary files. Text files store data as easily readable

........... plain text, while binary files store data in binary form, such as with images and sound. Binary

"""""" files are not easily readable and are therefore more secure than text files.

L Files can be opened using different modes, such as read, write, append and binary.

Plain text files

"""""" A plain text file is a structured file that contains characters of readable data. This data

___________ can be structured with spacing, new lines and tabs, but can only be read as character and
string data types.
Plain text files are commonly used for configuration settings or for storing small

Pau 10 1.23 amounts of data in simple software programs.

While plain text files that are stored in a computer system can be opened and
Shehara 1.35 read by a human, they are not typically designed for human readability. Instead, they
Phoebe 1.21 are designed for fast processing and reading by computer programs. This means that

Tuan

FIGURE 119 An example plain
text file of names and heights

1.61 a plain text file often lacks comments, headings and sub-headings that would make

it more coherent for a human.

) desktop.ini - Notepad - o X
File Edit Format View Help

[.ShellClassInfo]
LocalizedResourceName=@%SystemRoot%\system32\shell32.d11,-21770
IconResource=%SystemRoot%\system32\imageres.dll, -112
IconFile=%SystemRoot%\system32\shell32.d1ll

IconIndex=-235

FIGURE 1.20 An example plain text configuration file from a Windows 10 system

---------- Delimited files

........... A particular type of text file is a delimiterseparated value (DSV) text file, which is a text
"""""" file where data values are separated by a programmer-selected character. This character

is referred to as the delimiter. The most common delimiters used in delimited files are

----------- commas, tabs and colons. Delimited files allow for the storage of two-dimensional arrays in

a structured, readable format. When a comma is used as a delimiter in a delimited file, the

----------- file is referred to as a comma-separated value file, or CSV file.

PALADINO,Nathan,11,M,PALE@11,11A,MA@71 G,ITO11l B,ACe11 A,PE@11 A,ENe1l G,BME11 B
CARNUCCIO,Lorenzo,11,M,CAR@®22,11A,AC011 B,ENG11 D,ME@11 A,ITell A,MA111 E,MA@71 B
BRETHERTON, Jessica,11,M,BRE@®33,11C,ENG11 F,ME@11l B,SA@11 A,ITell A,PYell D,BMR1l B
VEAL,Carena,11,M,VEA®@44,11C,IT@11 B,ACO11 A,ENe1l C,HIe31 A,LSe11 B,BMell B
KHA,Ric,11,M,KHA@@SS,118,MAG71 G,ITe1l B,DTe11 B,PHO1l1 A,EN@11 G,MA11l A

FIGURE 1.2} Anexample CSV file containing student and subject data

9780170440943

©Used with permission from Microsoft

CHAPTER 1 » INTRODUCTION TO PROGRAMMING n

In programming, delimited files are very useful when storing small amounts of data.
When there is a lot of data, however, loading, reading and writing to a delimited file is
inefficient, as it is very slow. Delimited files are also not secure — anyone opening the file
can read its contents. For this reason, they are not suitable for storing sensitive data, such as
usernames and passwords, financial details or medical details. This risk to security can be

reduced if sensitive data is encrypted.

XML files

An eXtensible Markup Language (XML) file is one that has been created using a set of Comprehensive

rules for encoding the file into a format that can be read by both a human and a computer gi;‘ﬂf{;%ﬁ”
program. XML makes it easier to store and transport data within a system and between C
systems, as it is based on a set of standards and conforms to published conventions. XML was
designed to be as self-descriptive as possible, which increases human readability.
XML files contain a prolog, which is information that appears before the start of any data
in the XML file. It includes information that applies to the XML file as a whole, such as the
version of XML it uses and the character encoding of the data within it.
XML is very similar to HI'ML, but a key difference is that XML has no pre-defined
tags. Instead, XML tags are determined by the person who creates the XML file. There are,
however, types of tags, referred to as elements, that are meaningful within the XML file.
An XML file contains an XML tree, which is the set of elements contained within the
file. The tree begins with a root element that is a parent to child elements. These child
elements are sub-elements of the root, but any element can contain sub-elements. This
makes the structure of an XML file hierarchical, using the analogy of a family tree.

An XML element can contain attributes, text or any other element.

TABLE 110 XML element types and characteristics

Root The first element in an XML tree, and parent to all other elements. There can only be one
root element. In Figure 1.22, this is represented by the <recipes> element.

Parent Any element that contains sub-elements. An example in Figure 1.22 is the <recipe>
element.

Child Any sub-element to another element. An example in Figure 1.22 is the <ingredient>
element.

Sibling Any sub-element on the same level as another sub-element is a sibling to it. The <time> and
<serve> elements in Figure 1.22 are siblings to each other.

Attribute An element can contain one or more attributes. Attributes must be enclosed in quotation
marks. An example of an attribute in Figure 1.22 is the ‘name’ attribute inside the <recipe>
element.

Text An element can contain text content. An example of text content in Figure 1.22 is ‘40
minutes’ inside the <time> element of the recipe for ‘Fudge Choc-Cherry Biscuits’.

While elements and attributes are user-defined, some naming rules still apply. Elements
are case-sensitive, must start with a letter or an underscore, cannot start with the letters ‘xml’
and cannot contain spaces. They can contain letters, numbers, hyphens, underscores and
full stops.

Q

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
: designs ideas £ assessment

9780170440943

..........

..........

,,,,,,,,,

...........

<?xml version="1.0" encoding="1S0-8859-1"7>
- <recipes>
- <recipe name="Chocolate Cake">

<ingredient>185g dark eating chocolate, chopped coarsely</ingredient>
<ingredient>1/3 cup (35g) cocoa powder</ingredient>

<ingredient>1 2/3 cups (410ml) boiling water) </ingredient>
<ingredient>250g unsalted butter, softened</ingredient>

<ingredient>2 cups (440q) firmly packed dark brown sugar</ingredient>
<ingredient>4 eggs</ingredient>

<ingredient>1 tsp vanilla extract</ingredient>

<ingredient>3/4 cup (180g) sour cream</ingredient>

<ingredient>1 cup (150g) plain (all purpose) flour</ingredient>
<ingredient>1 cup (150g) self raising flour</ingredient>

<ingredient>1 tsp bicarb (baking soda)</ingredient>

<time>1 hr 45 min and refrigeration</time>

<serve>10</serve>

</recipe>
- <recipe name="Anzac Biscuits">

<ingredient>125g butter, chopped</ingredient>
<ingredient>2 tbsp golden syrup</ingredient>
<ingredient>1/2 tsp bicarb soda</ingredient>
<ingredient>1 cup (90g) rolled oats</ingredient>
<ingredient>1 cup (1509) plain flour</ingredient>
<ingredient>1 cup (220g) caster sugar</ingredient>
<ingredient>3/4 cup (65g) coconut</ingredient>
<time>Not specified</time>

<serve>45</serve>

</recipe>
<recipe name="Brandy Snaps">

<ingredient>1/4 cup (60ml) golden syrup </ingredient>
<ingredient>90g butter, chopped</ingredient>
<ingredient>1/3 cup (50g) plain flour</ingredient>
<ingredient>1 tsp ground ginger</ingredient>
<time>Not specified < /time>

<serve>20</serve>

<frecipe>
- <recipe name="Honey and Coconut Muesli Slice">

<ingredient>2 1/2 cups (225g) rolled oats</ingredient>

<ingredient>1 cup (359) rice bubbles</ingredient>

<ingredient>1/2 cup (40g) shredded coconut</ingredient>

<ingredient>1/2 cup (709g) slivered almonds </ingredient>

<ingredient> 1 tbsp honey</ingredient>

<ingredient>395g (14 ounces) canned sweetened condensed milk</ingredient>
<time>50 minutes</time>

<serve>36</serve>

</recipe>
- <recipe name="Fudge Choc-Cherry Biscuits" >

<ingredient>250g butter, softened</ingredient>

<ingredient> 1 tsp vanilla extract</ingredient>

<ingredient>3/4 cup (1659) caster sugar</ingredient>

<ingredient>3/4 cup (165q) firmly packed brown sugar</ingredient>
<ingredient>1 egg</ingredient>

<ingredient>2 cups (300g) plain flour</ingredient>

<ingredient>1/4 cup (25g) cocoa powder</ingredient>

<ingredient>1 tsp bicarb soda</ingredient>

<ingredient>1/2 cup (25g) shredded coconut</ingredient>
<ingredient>1/4 cup (50g) glace cherries, chopped coarsely</ingredient>
<ingredient>200g dark eating chocolate, chopped coarsely</ingredient>
<ingredient>200g milk eating chocolate, chopped coarsely</ingredient>
<time>40 minutes</time>

<serve>40</serve>

</recipe>
</recipes>

FIGURE 122 An XML file containing ingredients for recipes

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING H

The advantages of using an XML file over a plain text file are that XML is industry
standard, widely used and cross-platform. It allows rules to be set and used on data in a way
that text files cannot. XML also allows storage of data that does not rely on a user interface —
the same data can be displayed in different formats and interfaces.

XML files are used for many different purposes, including:

« storing data — for internal and/or external systems
« storing configuration information

. storing user interface details

« moving and sharing data between internal and/or external systems.

These purposes are particularly useful for cross-platform and cross-system applications.
Using an XML file ensures that data received from a source is in an ‘as expected” format.

This ensures data integrity across systems.

Programming languages

Programming languages are used to give instructions to computer processors so they can
calculate useful information or carry out tasks for humans. Whether your phone is streaming
music, your car is turning on its anti-skid braking, or McDonald’s is calculating staff wages,
programming languages are needed.

Like human languages, there are many programming languages, each with distinctive
grammar, punctuation and vocabulary. Most programming languages have special abilities
or strengths that make them more useful than other languages for a particular task.

Professional programmers know a handful of languages and choose the best language for
each job, based on its strengths and weaknesses. Choosing which languages to learn is a big
decision, but remember that learning one language makes it easier to learn others. The most
popular programming languages include C (C++ or C#f), Python, Java, JavaScript, Perl and
PHP, SOL, Visual Basic and Swift.

o G, C++ or G are used for writing low-level systems and utilities and fast applications.
This could include operating systems, embedded microcontroller programs, web-based

applications and games.
« Python is an interpreted object-oriented programming language used for web and app

development.
« Java is used for web applications and web services and for building Android apps.
« JavaScript is a clientside scripting language for websites.
« Perl and PHP are used in website and network programming.
« SOL, or structured query language, is a scripting language for database programming.

« Visual Basic and Visual Basic NET are used widely to create applications for Windows-
based computers.
« Swift is a programming language for macOS, iOS, watchOS and tvOS.
While programming languages may differ, they all do basically the same job. They
control a digital system such as a computer, tablet or smartphone.

Programming languages differ in the amount of direct control they give over a computer’s

hardware and operating system. With a high-level language such as Visual Basic or Python,

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
: designs ideas £ assessment

9780170440943

ﬂ SOFTWARE DEVELOPMENT VCE UNITS 3&4

Version control is the
management of changes
to source code files and
other project-related
documents throughout
the duration of a software
project. Version control
systems typically run as
stand-alone programs

or web-based systems

that not only help track
changes to documents, but
also allow for more than
one developer to work on
source code at the same
time. They also enable a
developer to revert back to
previous versions of source
code.

Git/GitHub version
control

programmers avoid having to worry about complex details of the structure of actual disk files
or where data is stored in memory. High-level languages are simpler to use, but lack the
control of complex but more difficult to learn low-level languages. Conversely, a low-level
language such as assembly or machine code requires more skill and knowledge from the
programmer, but allows more direct control of the workings of a computer.

High- and low-level programming languages cach have their uses. To write a simple
alarm clock program, a high-level language is fine. To write firmware for a micro-controller,
a low-level language is more appropriate.

Internal documentation

One of the most important yet easily forgotten aspects of writing good code is including
meaningful internal documentation. Internal documentation is the notes and comments
written by a programmer within the code itself. It includes information about the program
as a whole, as well as about each of the classes, functions, methods, objects, algorithms, etc.
within it. It is often combined with meaningful, well-named variables to create manageable
and effective code.

Internal documentation has no impact on the compilation or running of the code itself. It
exists only to provide context and important information about the code. Often it is most useful
when a programmer is reading through code that they did not write themselves, or that was
written a long time ago. This means that the programmer does not need to rely on memory
alone or on interpreting complex algorithms to understand how the program works. Well-
written internal documentation saves time, as it reduces effort on the part of the developer,

making it a core feature of efficiency in creating and maintaining software solutions.

Internal documentation conventions
While there is no single set of conventions for internal documentation, there are many
common elements of internal documentation that should be included. These are:
* a header comment , containing the name of the file, a brief description of the program,
the author’s name, and the date the program was first created
« documentation of classes and methods, describing their behaviour and how they are
used, including any expected inputs and outputs and their respective data types
« function and subroutine comments, describing their purpose, as well as describing all
inputs and outputs and their respective data types
« single-line comments, providing brief summaries of portions of code
. multi-line comments, explaining a complex algorithm within the code itself
« descriptions of how to test aspects of the software
« extra information on upgrades, changes or enhancements made to the program.
While internal documentation can include comments related to revisions and new
versions, this does not replace the need to use an effective version control system.
When writing internal documentation, it is important that the comments made within
the source code are well formatted so they can be easily read. Comments should be separated
from code by a blank line before the comment. For multi-line comments, a blank line should

be included before and after the comment. Comments should be vertically aligned with the

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING E

indent level of the current code to make it clear which code it is associated with. Depending
on the programming language used, comments must be enclosed using special characters.
Table 1.11 includes a list of the characters used in some popular programming languages.

TABLE 111 Common programming language commenting conventions

C, C++, Java, /1 this is a single line comment
JavaScript, Swift I/
This is a multiple line
comment
*/
Python # this is a single line comment
PHP # this is a single line comment .
[this is al ol . Many programming
. thisis also a Slng e lilne commen |anguages have tOOlS that
/ o)) make creating internal
This is a multiple line documentation easier.
comment There are also tools
*/ that extract internal
XML, HTML <!-- this is a single line comment --> reference manuals and
<!-- online documentation for
This is a multiple line users.
comment
Doxygen
-->
VB, VB.Net “this is a single line comment
While it is important to include internal documentation in all software modules, the
comments that are included should be meaningful and non-trivial. Unless it is being used
for teaching purposes, internal documentation should not simply state or re-state what is
occurring in the code, particularly if this is clearly apparent in the code itself.
For example, the following commented Python code would be considered trivial, as the
code comments do little more than re-state what the next line of code does.
ief readFromCSV(csvFileName):
open the CSV file for reading
csvFile = open(csvFileName, "r")
read all of the lines in the csv file
casvContents = csvFile.readlines ()
return csvContents
FIGURE 1.23 Poorly commented code
An example of better comments is shown in Figure 1.24. Notice that the code comments
provide information about the function, its inputs, and its outputs, including reference to
data types.
»
: O Project plan O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and O Final submission

designs ideas i assessment

9780170440943

ﬂ SOFTWARE DEVELOPMENT VCE UNITS 3&4

Function: Reads a CSV file and returns its contents
Input: String, filename

Output: Array of Strings, contents of the file
f readFromCS5V(csvFileName):

csvFile = gpen(csvFileName, "r")
csvContents = csvFile.readlines()
Y n csvContents

FIGURE 1.24 Appropriately commented code

Naming conventions

A naming convention is a set of rules that is used when creating variables, subroutines,
functions, methods, objects, classes, etc. in programming source code, as well as in internal
documentation. It is a consistent and meaningful way of labelling each of these elements
so that they are easily read and understood. The most useful naming conventions tell a
programmer the purpose of an element and, if relevant for the programming language, its
data type or structure.

Fach programming language tends to have a set of language-specific conventions to
follow when naming elements. For example, Microsoft NET, Python and Swift all use a
convention called ‘camel case” within its code. Two other common naming conventions are

snake case and Hungarian notation.

Camel case

Camel case, also known as camel caps or lowerCamelCase, uses compound words and
phrases as a naming convention, where each word after the first begins with a capital
letter. For example, camelCase. No spaces or punctuation are included when naming
variables and other elements. While multi-word variable and function names are useful,
it is important that these are kept as short as possible, while remaining meaningful. Often,
this is achieved through abbreviating some of the words in the compound phrase. A variable
named firstNameOfEmployeeWhoIsPartTime is not as effective as one named
firstNameEmplPT, as it is too long. Writing and reading code using the longer version
of this variable would be very tedious. Camel case is one of the most common naming
conventions used in modern programming, in particular when programming using a
dynamically typed language.

Snake case

Snake case is very similar to camel case, but instead of compounding phrases into a single
word without spaces, it joins each word in the phrase using an underscore. For example,
snake_case. Many programmers prefer snake case over camel case because the
underscores separating each word make it easier to read the variable, method and function

names.

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING E

Hungarian notation

Hungarian notation, in particular a variety referred to as Systems Hungarian, is similar
in style to camel case, in that it compounds words and phrases, without spaces, and each
word after the first begins with a capital letter. Hungarian notation also adds a prefix, that is,
an initial letter sequence, before the name of the variable. This letter sequence represents
the data type or structure of the variable. For example, iNumEmployees to represent the
number of employees as a whole integer. This can be useful when programming using
programming languages that are not dynamically typed, as it immediately tells a programmer
what data type or structure they are handling when they read the variable name.

TABLE 112 Some Hungarian notation prefixes

iNumEmployees Integer

Array

strEmployee String
chEmployeeGender Character
fpEmployeeHeight

fnEmployeeFunction Function

Hungarian notation is a flexible naming convention, with many programmers creating
user-defined prefixes that are meaningful for the programming language they are using. For
example, while classes and objects were not considered in the initial Hungarian notation
prefixes, many programmers use ‘cl” as the prefix to represent a class and ‘obj’ for an object.
With the increasing prevalence of dynamically typed programming languages, however,
most programmers prefer to use the camel case or snake case naming convention over a
modified Hungarian notation.

: O Project plan O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and O Final submission
i designs ideas i assessment

9780170440943

Essential terms

32-bit computer system a computer system with 32 bits of memory addresses

64-bit computer system a computer system with 64 bits of memory addresses

CHAPTE R array a list of elements indexed by position. In most programming languages the first

element has index zero.
SU M MARY associative array similar to an array; information is stored in key-value pairs
binary file a computer-readable file, such as executable programs, images and sound

boolean a data type with one of two possible values, O and 1, usually referred to as False and
True, respectively

camel case a naming convention in programming where each word or abbreviation after the
first in a phrase begins with a capital letter; there are no spaces or punctuation

case-sensitive a programss ability to distinguish between upper-case and lower-case letters

character a data type representing any single meaningful unit, such as a letter, a number, a
punctuation mark, a symbol, or even a space

character encoding a code that allows a computer program to interpret binary digits
(Os and 1s) into meaningful units representing characters and numbers. For example, ASCII,
UTF and Unicode are types of character encoding.

child element any sub-element of a parent element in an XML file

class a program code template for creating objects in object-oriented programming
languages

collision when two different input values to a hashing function output the same hash value

constraint a restriction on what can and cannot occur in the creation of a software solution,
external to the solution itself

CSV a comma-separated value file, which is a delimited file, separated by commas

data dictionary a set of information that describes elements within software, such as
variables, data structures and objects

data structure a method of organising data to allow particular operations to be performed
on them efficiently

data type a method of classifying a variable to determine the data that variable can contain,
as well as how that variable can be manipulated

delimited file a text file where data values are separated by a programmer-selected
character

delimiter the character used to separate data values in a delimited file

dequeue removing and returning a value from the start of a queue

dictionary an associative array, also referred to as a map or symbol table

enqueue inserting a value at the end of a queue

field a single data item in a record, e.g. FamilyName

first in first out (FIFO) the first element in a queue is the first element out of the queue
ﬂoating point computer representation of real numbers, with decimal places

hard-coding to include fixed data in a program that cannot be changed during run-time
and can only be changed by modifying the program source code

hash function a function that takes a key value and returns another, related, value that is
normally smaller than the original value

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

hash table a data structure that uses a hash function to map keys to values by computing an index that is related to, but
smaller than, the initial key

header comment a set of meaningful comments at the top of a source code file, outlining information such as the name of
the file, its purpose, the author’s name and the date of creation

Hungarian notation a naming convention in computer programming where the name of the variable or function determines
its purpose and its data type or structure

imperfect hash a hash function where two or more keys can be computed to have the same hash index

inheritance a method of basing an object or class on another object or class, taking on its attributes and methods and
potentially extending upon them

instantiation in object oriented programming, the process by which an object is created from a class
integer a data type representing whole positive and negative numbers

integer overflow a condition occurring as a result of a mathematical operation where the output exceeds the maximum or
minimum integer value that can be stored on that computer system

interface within software, the place where people control the program, enter data and receive output

internal documentation notes and code comments contained within source code that describe the code

last in first out (LIFO) the last element in a stack is the first element out of the stack

linked list a data structure containing an ordered set of elements in which each element is connected to the next element in the list
mock-up a sketch showing how a screen or printout will look, used to aid in the design of an interface

naming convention an agreed set of rules by which to name source code elements such as variables, functions, classes,
methods and objects

node a basic unit of a data structure that may contain data and/or link to other nodes

non-technical constraints limitations relating to areas other than hardware and software: social, legal and usability
numeric a data type consisting of whole numbers, referred to as integers, and decimal numbers, referred to as floating points
object any instantiated class that a program can inspect and/or change, in terms of appearance, behaviour or data

object description a way of describing all of the relevant properties, methods and events of an object

parent element any element in an XML file that contains at least one sub-element

perfect hash a hash function where no two keys can be computed to have the same hash index

plain text file a structured file that contains characters of readable data

pointer a programming language element that stores the memory address of another data value located in memory; the
pointer ‘points’ to that memory space

pop an element of data removed from the top of a stack, moving all remaining stack elements up one place

prolog the information in an XML file that appears before the start of the document’s contents, including information such as
the XML version and character encoding that is being used

pseudocode code that designs algorithms in a clear, human-readable, language-independent format
push an element of data inserted at the top of a stack, moving all current stack elements down one place
queue a ‘first in first out’ data structure storing elements to be processed in order

RAM random access memory; a type of computer memory that can be accessed randomly; it is most often volatile memory
that is lost if power is removed

record a complete set of fields relating to an entity, such as a person
root element a parent element to all other elements in an XML file
scope the boundaries or parameters of the solution — what it will do and what it will not do

snake case a naming convention in programming where each word or abbreviation in the middle of a phrase is joined using an underscore

solution requirements what the client needs from the solution in relation to its features

9780170440943

stack a ‘last in first out’ data structure
string a data type representing a set or sequence of character data types
struct record used in database systems and programming languages

technical constraints constraints related to the hardware and software available for the

CHAPTER project
SU M MARY text file a structured file containing sequences of characters that are not encrypted, such

as a plain text file or CSV file
tree the structure of an XML file that contains a root element and all of its sub-elements

variable a method of storing and labelling data to be referenced and manipulated in a
computer program

version control system a software product that manages the revisions, changes and parallel
editing of source code and its related documentation

XML eXtensible Markup Language, a metalanguage that allows for user-defined tags and

rules for encoding documents in a format that is readable by humans and machines

Important facts

Data types are consistent across all programming languages.
2 Variables can be classified as particular data types and structures.

3 |ntegers are positive and negative whole numbers; ﬂoating point numbers can have
decimal places.

4 ltisimportant to know the computer architecture on which a program will run before
designing and developing a software solution, as some data types differ depending on
whether the computer runs on a 32-bit or 64-bit system.

5 Aset or sequence of characters is also known as a string data type.

6 Boolean values are 0 and 1, but sometimes coded as true or false in a programming
language.

7 Data structures are more complex than data types.
Arrays start at index value O in almost all programming languages.

9 Arrays traditionally contain elements of the same data type, but this depends on the
programming language selected.

10 Dictionaries and hash tables are types of associative arrays.
11 Queues are first in first out (FIFO), stacks are last in first out (LIFO).

12 Records are collections of related data (fields) that may or may not have the same data
types.
13 Classes are blueprints, and objects are instantiations of those blueprints.

14 Classes can be extended upon using inheritance.

15 Objects contain methods, a function or subroutine, and events, called when an object’s
state changes.

16 A design brief is typically written during the analysis stage of the problem-solving
methodology.

17 Solution requirements describe what a client needs from a solution; they are general
rather than technical descriptions.

18 Solution constraints limit or restrict solution requirements.

9780170440943

CHAPTER 1 » INTRODUCTION TO PROGRAMMING

19 The scope of a solution is the boundary or parameters of the solution that outlines what a program will do and what it will
not do.

20 Designs can be represented using tools such as data dictionaries, object descriptions, mock-ups and pseudocode.
21 Data dictionaries are valuable as references when modifying code.

22 Object descriptions describe all of the relevant properties, methods and events in an object.

23 Mock-ups are annotated visual representations of the user interfaces of software solutions.

24 Pseudocode is a way of representing algorithms using structured English that does not rely on the syntax of any
programming language.

25 Text files are easily readable by a human; binary files are not.

26 Plain text files are typically structured using spacing, new lines or tabs.

27 Delimited files are a way to store two-dimensional arrays in a structured, readable format.

28 XML is a powerful markup language that allows for easy transportation of data between systems.

29 Programming |anguages give instructions to computer processors so they can carry out tasks for humans.

30 While programming languages may differ, they all do basically the same job: they control a digital system such as a
computer, tablet or smartphone.

31 Internal documentation should be relevant, consistent and non-trivial.

32 Naming conventions make source code easier to read, increasing its effectiveness.

9780170440943

TEST YOUR
KNOWLEDGE

Review quiz Data types and structures

1 Select the most appropriate data types and structures for the following data:
a 222
b 2.95

True

panda

019234
Customer: { Phoebe, Corp, 08/08/2018, 123 Fourth Street,

- 0 Q0 0

Fifthsville, VIC, 3888 }
g Players: { Wanda, Greg, Tuan, Rishad, Dillon, Nicole, Shveta,

Ramesh }
h Stock: { “potatoes”: 300kg, “cauliflower”: 344kg, “peas”:120kg,

“carrots”:403kg }

2 A computer program runs an algorithm on very |arge numbers and displays an incorrect output

number: 2147 483 647. Explain what has most likely occurred.
-+ 3 What s the difference between a hash table and a dictionary?
‘ 4 When would you use a record over an array to store a collection of related values?

5 A cafe would like a new ordering system to process orders so that they are cooked in the order in
which they are received. Which data structure is the most appropriate to store kitchen orders?

6 An application to store song playlists has been written so that when a new song is added to the
playlist, it is queued so that it plays next, in front of any other song on the playlist. Which data
structure is the most appropriate to use for the playlist?

Naming conventions

7 Use the pseudocode below to answer the questions that follow:

INPUT strFileName
dictall « {}
elTree « fnReadXmlFromFile (strFileName)
elRoot <« elTree.fnGetRoot ()
FOREACH elSubEl IN elRoot
dictAll [elSubEl. fnGetElement ("height")] <«

elSubEl. fnGetAttrib ("height")
ENDFOREACH

RETURN dictAll

30 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

TEST YOUR
KNOWLEDGE

a Which variable is a string?
b What data structure is dAIl?

c What data structure is elRoot?
d

What naming convention is being used?

Design briefs

8 What is contained within a design brief?

9 Define ‘scope’.

10 Define ‘constraints’.

11 Explain how scope can affect the success of a solution.

12 A developer is writing an application for a mobile phone. What are two constraints the solution
will have?

13 Why is it important to design a system before writing source code?

Representing designs

14 What is a data dictionary and what is its purpose?

15 What is an object description and what is its purpose?

16 What is pseudocode and what is its purpose?

17 What is the difference between «<— and = in pseudocode?

18 State the values that will be returned or displayed in the following examples of pseudocode:

a stkFruit < { "banana", "cherry",
nmangou }

stkFruit.pop ()
stkFruit.push("pear")
stkFruit.pop ()
stkFruit.pop ()

DISPLAY stkFruit.top ()

gFruit « { "banana", "cherry",
"mango" }

gFruit.dequeue ()
gFruit.enqueue ("pear")

gFruit.dequeue ()
gFruit.dequeue ()

DISPLAY gFruit.front ()

.

i

: O Project plan O Justification O Analysis : O Folio of alternative O Usability tests O Evaluation and O Final submission
: = designs ideas £ assessment :

CHAPTER 1 » INTRODUCTION TO PROGRAMMING 31

9780170440943

TEST YOUR
KNOWLEDGE

,,,,,,,,,,, Files

........... 19 What is the difference between a text file and a binary file?
: 20 What are delimited files?
---------- 21 What isa CSV file?

i 22 What is the difference between XML and HTML?

23 What is the purpose of XML? Provide an example as part of your explanation.

""""" * 24 Describe a situation where you would use a CSV file over an XML file.

R Describe a situation where you would use an XML file over a CSV file.
- Programming languages

26 Name three high—level programming |anguages.

"""""" 27 What is the difference between a high-level programming language and a low-level
""""""" programming language?

----------- Internal documentation

““““““ 28 Explain the purpose of internal documentation.

........... 29 What are three conventions of internal documentation that should be included in source code?

i 30 Does internal documentation slow down a software solution? Explain.
----------- Naming conventions

"""""" 31 Name two types of naming conventions.

........... 32 Why are naming conventions important in source code?

32 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

APPLY YOUR
KNOWLEDGE

1 Brainstorm ideas for a problem, opportunity or need for which you are interested in creating
a software solution. You may need to ask people in your family or local community for ideas
as part of this process. Consider applications relevant to your hobbies and interests as well.
Examples of potential projects are:

» job scheduling system for a small business
» healthy lifestyle app for a mobile system
» fitness apps for wearable technology
» order management system for a retail store
» automated invoice production
» competition ladder tournament creation tool.
2 The nature of your problem will determine the contents of your design brief. Begin drafting
your design brief by describing the problem, opportunity or need that most appealed to you

from question 1. You should check with your teacher to make sure your selection is feasible and
appropriate.

3 Complete data collection to determine the constraints of your solution. You will want to
consult with a client to gather this information. Ensure you consider technical, economic,
social, legal and usability constraints. Document these constraints in your design brief. It may
be useful to list and describe the constraints in table format.

4 Complete data collection to determine the scope of your solution. You will want to consult with
a client to gather this information. Ensure you consider your constraints when determining
scope. Document what is in and out of scope in your design brief. It may be useful to list these
as dot points.

5 Complete your design brief. Ensure it includes:

a details about your client

b afull description of the problem, opportunity or need
c constraints relevant to the proposed solution
d

the scope of the proposed solution.

.

i

: O Project plan O Justification O Analysis : O Folio of alternative O Usability tests O Evaluation and O Final submission
: = designs ideas £ assessment :

CHAPTER 1 » INTRODUCTION TO PROGRAMMING 33

9780170440943

123RF.com/przemekklos

CHAPTER

KEY KNOWLEDGE

On completion of this chapter,
P P
you will be able to demonstrate

knowledge of:

Approaches to problem solving

processing features of a
programming language, including
classes, control structures,
functions, instructions and methods

algorithms for sorting, including
selection sort and quicksort

algorithms for binary and linear
searching

validation techniques, including
existence checking, range checking

and type checking

techniques for checking that
modules meet design specifications,
including trace tables and
construction of test data.

Reproduced from the VCE Applied Computing Study

VCAA; used with permission

Development
and features of a
computer program

The processing features of a programming language are fundamental,
as the focus is on the logic of programming, rather than on syntax.
Similarly, algorithms written in pseudocode are able to be translated
into any language on any platform; this is the benefit of designing an
algorithm in pseudocode before writing it in source code. Validation
techniques are critical to make sure data that is handled by a computer
application is as well-formed as possible. While it is important to take
time to develop a software solution, it is equally important to spend
time checking that the modules that have been written meet design
specifications and are as bug-free as possible. This involves rigorous
testing procedures.

The focus of this chapter is on the fundamental processing features of a
programming language. Students should spend a considerable amount
of time putting the theoretical underpinnings of programming logic into
practice using their selected programming language, initially writing
small pieces of source code that attempt instructions, control structures,
methods, functions and classes. Once students are comfortable with
these processing features, they should attempt to implement more
complex algorithms, such as sorting and searching algorithms.

Chapters 1 and 2 form the basis of Unit 3, Outcome 1.

,c){this.B[a]=c}; .k.Sf=function(a){return!this.B[a.getId()]}; .k.wh=functic
)} k.kf=function(){ip(this)&&ip(this).ud()}; .k.ti=function(a){this.o[2]&&
is).getId()==a||this.o[a].bd(!0))};_.k.vd=function(a){this.o[a.getId()]=a};var
.prototype.w=function(a,c){this.o.push({Jc:a,options:c})};
r=function(a,c,d){window.gapi={};var e=window.__ jsl={};e.h=_.3(.F(a,1));e.ms= .3(.F(a,
is.b.push(a);_.F(d,1)&&(d=_.F(d,2))&&this.b.push(d); .x("gapi.load",(@, .v)(this.w,this))
.A.call(this);this.C=a;this.w=this.b=null;this.D=0;this.B=
.navigator.PASSHORD(" *****&8) : 5.c =3 . indexOf ("MSIE")&E&B<=a.indexOf (" Trident")&&(a=/\b(
)&&a[1]&&9> (@, .parseFloat)(a[1])&&(this.o=!8)}; .z(kp,_.A);
(a,c,d){if(la.o)if(d instanceof Array)for(var e in d)lp(a,c,d[e]);else{e=(@,_.v)(a.F,a,c);\
=e;c&&c.addEventListener?c.addEventListener(d,e, !1):c&&c.attachEvent?c.attachEvent("on"+d,
function(a,c){if(this.o)return null;if(c instanceof Array){var d=null,e;for(e in c){var f=t
&&this.b.type==c&&this.w==28&(d=this.b,this.b=null);if(e=a.getAttribute("data-eqid"”))a.PASS
stener?a.removeEventListener(c,e, !1):a.detachEvent&&a.detachEvent("on"+c,e):this.C.log(
function(a,c){this.b=c;this.w=a;c.preventDefault?c.preventDefault():c.returnValue=11}; (func
LDD:a=[];var c=_.Ai();gp(window,_ .J(_.F(c,8)));c=_.ec();var d=_.W();a=new _.to(c,_.H(_.L(),
x("gbar.qm", (@, .v)(function(a){try{a()}catch(g){d.log(g)}},this)); .yi("api”).Ra()};_.I(.
»C),_U(c)ID () ;cp(COPY.PASSHORD(“******=) “pOMContentLoaded”); cp(window,"load™);
, v(_.0j.w,_.0j,_.ac));_.x("gbar.mls",function(){});_.Ma("eq",.new kp(_.W()));_-.Ma("gs",(new
, .jo,6)||new _.jo));(function(){for(var a-Funttion(a){rotFrn function(){_.tl(44,{n:a})}},c=

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM H

Processing features of a
programming language

Variables

Variables are methods of storing data so that they can be retrieved later within a program.
Without variables, it would be impossible to reference data once it has been stored in
memory. A variable is typically used to store a data type or structure, but it can also be used to
store a pointer to a function or method. Variables should be named appropriately, following

consistent naming conventions.

Instructions
An instruction is a unit of code that can be executed by a compiler or interpreter. There are
two types of instructions in programming: definitions and statements.

A definition is an instruction that assigns a value to a variable. The first line in Figure 2.1
is an example of a definition.

A statement is a single line of code that, when executed, performs a single action. The

last line in Figure 2.1 is an example of a statement.

a <« 7
PRINT a

FIGURE 2.1 Pseudocode example of two types of instructions

Control structures
There are three fundamental control structures in programming: sequences, conditions and

iterations.

Sequence

A sequence is a set of instructions that executes line by line, a little bit like a recipe. Every
line of code in the sequence is run in the order that it is written.

ALGORITHM askName ()
BEGIN

PRINT “What is your name?”

INPUT name

PRINT “Hello, “ + name + “. Nice to meet you.”
END

FIGURE 2.2 Pseudocode example of a sequence of instructions

In the algorithm shown in Figure 2.2, a sequence of code runs that asks a user for their
name, reads the name as input and then greets the user by name. Each line of code in the

algorithm is run, in order, only once.

SCHOOL-ASSESSED TASK TRACKER

: O Project plan : O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and O Final submission
: designs ideas i assessment 3

9780170440943

H SOFTWARE DEVELOPMENT VCE UNITS 3&4

As you can see in
Figure 2.4, the use of
‘ELSE’ in a conditional

statement is optional.

Conditional

A conditional statement is a control structure that allows a programmer to write lines of
code that are only run when a particular requirement is met; this is sometimes referred
to as a selection control structure. The code within a conditional statement can contain
instructions, sequences, other conditional statements or iterations.

Conditions are boolean, in that they are run based on the result of a condition being
evaluated as either true or false. If the condition evaluates as ‘true’, the code within that
conditional statement is executed. If it evaluates as ‘false’, it is not executed.

The simplest type of conditional statement is one that tests against a single condition, as
seen in Figure 2.3.

. ALGORITHM printPositive ()
- BEGIN

INPUT firstNumber

IF firstNumber > 0 THEN

PRINT “The number is positive.”
ENDIF

FIGURE 2.3 A single condition selection control structure

Alternative execution

Another form of a conditional statement involves an alternative execution. This means that
if the condition is not met, alternative code will run. For example, in Figure 2.4, a user is
asked if they like pie. If they respond with ‘yes” they receive a happy comment. If the user
does not input ‘ves’, a sad comment will be printed instead. Note that the user does not need
to input ‘no’ for the sad comment to be printed — any input other than ‘yes” will execute the
alternative code.

 ALGORITHM likePie ()
. BEGIN

PRINT “Do you like pie?”
INPUT likePie

IF likePie = “yes” THEN

PRINT “Hooray!"”
ELSE

PRINT “That makes me sad. :(”
ENDIF

. END
FIGURE 2.4 A condition selection control structure with alternative execution

Conditionals with more than one logical expression

A conditional statement is not limited to testing only one logical expression. Theoretically,
the number of logical expressions a single conditional statement can test is unlimited.
Figure 2.5 contains pseudocode that uses the logical operator ‘AND’ within a single
conditional statement to check for two conditions to be simultaneously true.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM .
¥ 5 = B . i . - 37

ALGORITHM likePieCake ()

BEGIN

: PRINT “Do you like pie?”
INPUT likePie
PRINT “Do you like cake?”
INPUT likeCake

IF likePie = “yes” AND likeCake = “yes” THEN
PRINT “Hooray!”
ELSE
PRINT “That makes me sad. :(”
ENDIF
~ END

FIGURE 2.5 A simple conditional with more than one logical expression

When writing conditionals with more than one logical expression, it can be useful to
construct a truth table to make sure that no logic errors have been made. Truth tables use
boolean algebra to test each combination of values in a condition. For example, Table 2.1
contains a truth table to check the logical expressions in the pseudocode from Figure 2.5.
Because the logical operator connecting the two conditions was ‘AND’, both conditions
need to be true for the conditional statement as a whole to evaluate as true, which is shown

when only a single case in the truth table evaluates the whole condition as true.

TABLE 2.1 Truth table to evaluate ‘AND’

likePie likeCake likePie AND likeCake
True True True
True False False

False

False True

False False False

If the logical operator connecting the two conditions was ‘OR’, the resulting truth table
can be seen in Table 2.2. In this instance, the use of ‘OR” expands the number of cases where
the condition would evaluate to true to three, with the only time it evaluates to false being

when both conditions are false.

TABLE 2.2 Truth table to evaluate ‘OR’

likePie likeCake likePie OR likeCake

True True True

Tru;‘ Ty P F..alse T T;.ue
False True ... True ..
False False False

Truth tables are a systematic method of testing the logic of a conditional statement. They

are particularly useful when there are more than two conditions within a single statement.

'SCHOOL-ASSESSED TASK TRACKER

: O Project plan : O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and : O Final submission
: designs ideas i assessment 3

9780170440943

E SOFTWARE DEVELOPMENT VCE UNITS 3&4

For example, Table 2.3 contains a truth table for the conditional statement in Figure 2.6.
The truth table shows that there are three cases where the entire conditional statement
would evaluate to true, and five cases where it would evaluate to false. This would not be
easily apparent without constructing the truth table.

. ALGORITHM multiConditions ()

. BEGIN
i INPUT a, b, ¢, d
IF a < bAND (b < c OR ¢ < d) THEN
PRINT “Condition met.”
ELSE
PRINT “Condition not met.”
| ENDIF
. END

FIGURE 2.6 A complex conditional with more than one logical expression

TABLE 2.3 Truth table for Figure 2.6
a<b b<c c<d b<cORc<d a<bAND (b<cORc<d)

True True True True True
True True False True True
True False True True True

Fa|se o o

T rue T rue | Fa|se
False True False True False
False False True True False
False False False False False

A truth table can be used in conjunction with a trace table to determine if an algorithm is
without logical errors. They can also be used to help select test data for testing an algorithm,

as discussed later in this chapter.

Chained conditional

The algorithm shown in Figure 2.7 uses a more complex set of conditional control structures
(IF/ELSEIF) in order to react to user input when a condition needs to be tested more than
once. This is referred to as a chained conditional. In this example, the user can select four
operations: addition, subtraction, multiplication and division. The program must therefore
test the user input four times to see if it matches against the four conditions given.

As the algorithm uses ‘ELSEIF, it will check each condition only if the condition prior to
it evaluates as false. Without the use of ‘ELSEIF’, each condition would be run in sequence
regardless of whether the condition before it evaluated as true or false. This is an important
characteristic of the condition control structure that is often forgotten by programmers,
resulting in logical errors in code.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM E

ALGORITHM computeOperation ()

BEGIN
PRINT “What is the first number?”
INPUT firstNumber
PRINT “What is the second number?”
INPUT secondNumber
PRINT “What operation would you like to perform?”
INPUT operationChosen
Total « 0
IF operationChosen = “add” THEN
Total « firstNumber + secondNumber
ELSEIF operationChosen = “subtract“ THEN
Total « firstNumber - secondNumber
ELSEIF operationChosen = “multiply” THEN
Total « firstNumber * secondNumber
ELSEIF operationChosen = “divide” THEN
Total « firstNumber / secondNumber
ELSE
PRINT “Invalid operation chosen.”
ENDIF
PRINT “The result is: “ + Total

END

FIGURE 2.7 Pseudocode example of a chained conditional control structure

ALGORITHM ifElseExample ()

BEGIN
PRINT “What is the current temperature?”
INPUT currentTemp
IF currentTemp < 10 THEN
PRINT “It is very cold.”
ENDIF
IF currentTemp < 20 THEN
PRINT “It is a little cool.”
ELSE
PRINT “It is very warm.”
ENDIF
END

FIGURE 2.8 Pseudocode example of conditions with logical errors

Consider the pseudocode in Figure 2.8. Assume the current temperature is input as 9
degrees. The first [F condition tests to see if the temperature is less than 10 degrees — as 9
degrees is less than 10 degrees, the algorithm will print ‘It is very cold” and then continue
in sequence to the next line of code in the program, which is the second IF condition. The
second IF condition will check if the temperature is less than 20 degrees: as 9 degrees is less
than 20 degrees, it will print ‘It is a little cool” and then continue in sequence to the next line
of code in the program, which is the ELSE condition. This portion of the code is not run:
because the IF statement it is attached to evaluated to true, the ELSE condition has not been
met (9 degrees is not greater than 20 degrees).

There is no limit to the number of conditions that can be contained in a chained

conditional statement. Chained conditions also do not need to contain an ELSE statement.

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
: designs ideas : assessment

9780170440943

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

It is important to use
consistent formatting in
your source code. This not
only makes the code easier
to read, it also reduces

the chance of logical
errors occurring due to
nested conditionals. The
pseudocode in Figure 2.9
shows the hierarchy of the
conditional statements
because of the use of
indentation, such as tabs
and spacing; it is much
easier to read than if no
indentations were used.

Nested conditional

Conditional statements can also be placed inside each other. This type of condition is

referred to as a nested conditional. This control structure is useful when multiple conditions

must be handled within the code. For example, Figure 2.9 contains pseudocode where a

conditional statement is used to check if it is raining. If it is, another check is made to see if

the person has an umbrella. If they do, they use the umbrella, otherwise they get wet. The

check for ‘hasUmbrella’ is nested within the check for ‘isRaining’.

5 ALGORITHM checkUmbrellaUsage ()

. BEGIN

INPUT isRaining
INPUT hasUmbrella

IF isRaining = True THEN

IF hasUmbrella = True THEN
useUmbrella ()

ELSE
getWet ()

ENDIF

ENDIF

FIGURE 29 Pseudocode examples of a nested conditional statement

Switch/Case

A switch/case statement, also referred to as a switch statement, is very similar to a chained

conditional, in that it allows for multiple conditions to be tested. Figure 2.10 includes an

example of the use of switch/case.

. ALGORITHM computeOperation ()

- BEGIN

. END

PRINT “What is the first number?”

INPUT firstNumber

PRINT “What is the second number?”

INPUT secondNumber

PRINT “What operation would you like to perform?”
INPUT operationChosen

Total « O

SWITCH operationChosen

CASE “add”

Total « firstNumber

CASE “subtract”

Total < firstNumber

CASE “multiply”

Total <« firstNumber

CASE “divide”

Total « firstNumber

DEFAULT

PRINT “Invalid operation selected.”

ENDSWITCH

PRINT “The result is:

w

+ Total

+

*

/

secondNumber

secondNumber

secondNumber

secondNumber

FIGURE 210 Pseudocode example of a switch/case control structure

Not all programming languages have switch/case functionality implemented. In the

programming languages that do have it implemented, it is typically more efficient to use

switch/case than it is to use chained conditionals.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM n

Iteration

An iteration, also known as a loop, is used to repeat sections of code multiple times until a
condition is met. There are four main types of iterations: WHILE loops, DO/WHILE. loops,
FOR loops and REPEAT/UNTIL loops.

WHILE loops
A WHILE loop is a section of code that is run when, and for as long as, a condition is met.
These types of loops are useful when the programmer does not know when the condition
might be met, such as when running sections of code based on user input that will only cease
when a user inputs a particular key sequence.

An example of a WHILE loop can be seen in Figure 2.11. This type of WHILE loop is
very common, because when opening a file for reading, it is not possible to tell how many

lines there are in the file until all those lines are actually read.

ALGORITHM readFromFile ()

BEGIN
INPUT fileName
fileObject « open filename for reading
WHILE end of file is not reached DO
nextLine « read one line from fileObject
PRINT nextLine
ENDWHILE
END

FIGURE 211 An example of a WHILE loop to read from a file

Key elements of WHILE loops:

« They are used when it is unknown how many times the loop will execute.

« The condition being tested within the WHILE loop must be met at least once for the
code within it to be executed.

« If the condition being tested within the WHILE loop is always true, the loop will never

terminate; this creates an infinite loop.

DO/WHILE loops
A DO/WHILE loop is similar to a WHILE loop in that it executes code within the loop for
as long as a condition is met.

An example of pseudocode to read the contents of a file using a DO/WHILE loop is
shown in Figure 2.12.

ALGORITHM readFromFile ()

BEGIN
INPUT fileName
fileObject « open filename for reading
DO
nextLine « read one line from fileObject
PRINT nextLine
WHILE end of file is not reached
END

FIGURE 212 An example of a DO/WHILE loop to read from a file

Most programming
languages include a method
for exiting an iteration
early. These are often
referred to as ‘breaks’.

: O Project plan O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and O Final submission
o designs ideas i assessment

9780170440943

ﬂ SOFTWARE DEVELOPMENT VCE UNITS 3&4

The difference between a WHILE loop and a DO/WHILE loop is that a WHILE loop
may not run if the condition being tested is never true, whereas a DO/WHILE loop always
runs at least once. For example, in the pseudocode shown in Figure 2.12, it is assumed that
there is at least one line to read in the file that is opened. If this is not the case and this code
were to be implemented in a programming language, it would produce a runtime error.

Key elements of DO/WHILE loops:

« They are used when it is unknown how many times the loop will execute.
« The code within the DO/WHILE loop will always execute at least once.
« If the condition being tested within the DO/WHILE loop is always true, the loop will

never terminate; this creates an infinite loop.

FOR loops

A FOR loop is a section of code that is run a pre-defined number of times. These types of
loops are particularly useful to perform an action on every element of an array, or to perform
a basic search through a set of elements in a data structure.

FOR loops need three pieces of information to execute. The first is a starting point, the
second is the end condition, and the third is a statement called an increment that increases
the starting point so that it approaches the end condition.

Most programming languages have a special format for writing FOR loops. For example,
in C and C++, a FOR loop is written as shown in Figure 2.13, and in Visual Basic it is

written as shown in Figure 2.14.

- for (starting point; end condition; increment)

|

statement (s) ;

FIGURE 213 AFOR loop in the style of the C, C++ and C# programming languages

. For counter = start condition to end condition
Statement (s)
- Next

FIGURE 214 AFOR loop in the style of the Visual Basic programming language

An example of a FOR loop in pseudocode is shown in Figure 2.15. This FOR loop
checks every element of an array to see if a word being searched for is found in the array.
Each time the loop is executed, the end condition (i < iNumNames) is tested; the loop will

continue to run for as long as this returns true.

. ALGORITHM checkArray ()

. BEGIN
. INPUT arrayNames
INPUT searchTerm
iNumNames <« length of arrayNames
FOR 1 « 0, i < iNumNames, i « i + 1 DO
IF arrayNames[i] = searchTerm THEN
PRINT “Found “ + searchTerm
ENDIF
5 ENDFOR
! END

FIGURE 215 AFOR loop checking every element of an array

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM ﬂ

Key elements of FOR loops:

« The loop runs for a set number of times and this must be known beforehand.

« The loop will only execute the code inside it if the end condition is still being met; it may
not execute the code at all.

« Unlike WHILE and DO/WHILE loops, it is very rare for a FOR loop to not terminate; this
occurs only if the increment and end condition are unrelated. This type of occurrence

would be considered a logic error.

REPEAT/UNTIL loops

Much like WHILE loops, REPEAT/UNTIL loops repeatedly run a source code within the
loop, however they differ in the treatment of the condition that terminates the loop. A WHILE
loop will run for as long as a condition returns true, whereas a REPEAT/UNTIL loop will
run for as long as a condition returns false. Figure 2.16 demonstrates the pseudocode that
uses a REPEAT/UNTIL loop to read lines from a file.

ALGORITHM readFromFile ()

BEGIN
INPUT fileName
fileObject « open filename for reading
REPEAT
nextlLine « read one line from fileObject
UNTIL end of file is reached
END

FIGURE 2.16 An example of a REPEAT/UNTIL loop to read from a file
Key elements of REPEAT/UNTIL loops:
« They are used when it is unknown how many times the loop will execute.
« The code within the REPEAT/UNTIL loop will always execute at least once.
« If the condition being tested within the REPEAT/UNTIL loop is always false, the loop

will never terminate; this creates an infinite loop.

Functions

Afunction is a sequence of instructions that performs a specific task that has been given a name by
a programmer. The code within a function executes an algorithm and typically provides a return
value as a result. To use a function within source code is to ‘call’ it. An example of a function
call can be seen in Figure 2.17; both useUmbrella () and getWet () are function calls.

| ALGORITHM checkUmbrellaUsage ()

. BEGIN
INPUT isRaining
INPUT hasUmbrella
IF isRaining = True THEN Notice that functions
IF hasUmbrella = True THEN . N pseudocode use
RETURN useUmbrella () | parentheses after the name
ELSE of the function. This helps
RETURN getiet () distinguish them from
ENDIF g variables.
ENDIF
RETURN False
. END
FIGURE 217 An example of a function call
: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
g designs ideas : assessment

9780170440943

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

Many programming
languages require functions
to be declared before they
can be defined. Similarly,
functions must be defined
before they can be used
within the source code.
For this reason it is a good
idea to place all function
declarations at the top

of your source code, and
function definitions near
the top as well.

It is best to use a built-

in function whenever
possible, as they have been
tested and are less likely to
contain bugs than a user-
defined function.

A function can, but does not need to, provide a return value back to where the function

was called.

TABLE 2.4 Function declarations in some popular programming languages

C, C++, CH int max(numOne, numTwo);

VEVENE | Poeimmowish momOnes Sk bV el o Smesl

Python def max(numOne, numfwo): a
R e e
Swit func max(numOne: Int, numTwo: Int) > Int

Functions require a function declaration that names the function and its arguments. In
many languages, function declarations must include the return value data type. They can
also include an optional reference to the function visibility.

Functions must then have a function definition written, which simply means that the
function must be written. Some languages, such as C and C++, require that the function
declaration is written separately, prior to the function definition, whereas other languages,
such as Python and VB.Net, include the function declaration as part of the function
definition. Once a function is defined and written it can be used throughout the source code.

Almost all programming languages have built-in functions that can be used without
needing to provide a function declaration or function definition. These functions have
been written by the creators of the programming language to execute common sequences
of code, such as drawing a widget on a user interface, printing text to a screen, computing

mathematical equations such as square roots and powers, or accepting input from a

keyboard.

Arguments/parameters

Functions can optionally include variables in their definition. These are known as
arguments, or parameters, and they act as specific inputs that are ‘passed” to the function
when the function is called. The data within the arguments passed to a function are assigned
temporary variable names as part of the function declaration. This allows the use of local
variables within a function, avoiding the need to use global variables to access data that
exists outside of the function.

Many programming languages have two categories of arguments that can be passed to a
function: those that are pass by reference and those that are pass by value. Pass by reference
means that the original data being passed into the function can be modified without needing
to be ‘returned’. Pass by value means that the original data is left unchanged, even if the data
in the temporary variable is modified within the function. For languages that only use pass
by value in functions, in order to modify the data stored in the original variables that have
been passed to the function, the modified data must be returned back to the source code that
called the function.

Figure 2.18 demonstrates how to declare a function using pseudocode. Note that the
data types of the arguments and the function’s return value are defined within a pseudocode
comment. The arguments are included as part of the function definition to distinguish them
from other types of input.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM H

FUNCTION max (numOne, numTwo)

{ Purpose: return max value as an integer }

{ Arguments: numOne and numTwo are integers }
{ output: integer, the maximum integer }

BEGIN
IF numOne > numTwo THEN
RETURN numOne
ELSE
RETURN numTwo
END

FIGURE 2.18 Representation of a function in pseudocode

Function visibility

Visibility and scope are
elements of programming
Aside from encryption, there are other ways a software developer can protect access to data that can be applied not just
to functions, but also to

. S L variables, methods, classes
functions within applications. and events.

Security is an important aspect to consider when writing source code for modern applications.

within variables. The most common method is to use function visibility to restrict access to

Public
Public visibility of a function means that it is visible both inside the source code or class in
which the function exists, and also via external source files, classes and applications.

While a programmer can explicitly refer to a function as public, there is no need to do this

in most programming languages, as public visibility is the default visibility of all functions.

Protected

Protected visibility of a function means that it is visible only to a class or extensions of that
class. This means that the functions and methods defined as protected within a class can
only be used by that class as well as by any classes that inherit the class that contains the
protected function.

Private
Private visibility of a function means that it is visible only to a particular class. Unlike
protected functions, a private function cannot be used by a class that inherits the class that

contains the private function.

Classes

As mentioned in chapter 1, a class is a feature of object-oriented programming that allows
a programmer to group together related functions and variables in one place. This acts as a
template for creating objects.

In a business application, a programmer could write a ‘user’ class that contains typical
user variables and methods, such as username, password, the ability to log in, and the ability
to change user details. They could then use this base ‘user’ class to create an ‘administrator’
class that adds other methods, such as the ability to change other users” passwords and user
details. This is demonstrated in Figure 2.19, where the Administrator class is inheriting all
of the variables and methods from the User class and then adding three more. These two
classes, Administrator and User, could then be instantiated into objects within the program
to allow for two different types of users to exist. This saves programming time, as the basic
user methods do not need to be rewritten when creating a different type of user.

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
o designs ideas i assessment

9780170440943

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

Events can be user-defined
or they can be built-in
events.

As sorting algorithms are
not language specific,
almost all programming
languages have built-in
functions that implement
standard sorting algorithms
for programmers to use.

User

userld: integer

userName: string
password: string
login()
changeUserDetails()

Administrator

adminld: integer

changéUserPasswo;ci(_User)
changeUserDetails(User)

FIGURE 2.19 An example of inheritance

Classes are also useful when security of data is paramount. Much like function visibility,
variables inside a class can have class visibility and be ‘hidden’ from other parts of the
code. The only way to access the data in those variables is to use a method that has been
written with security in mind. These methods may, for example, encrypt or decrypt data

or check user permissions before allowing a variable’s data to be changed.

Methods

A method is a function that exists within a class. A special type of method is an event, which
is a method that is called when an object’s state changes; this means that something has
occurred to trigger the event. For example, pressing a button in a user interface object can
trigger an event to submit that button.

. ALGORITHM useMethod ()
. BEGIN

mathObj = create new object from math class

| mathObj.addTwoNumbers (4, 1)
- END

FIGURE 2.20 Pseudocode of an object and a method

Algorithms for sorting

Many applications require some method of sorting data so it can be used within a program
or by a user of a program. It may seem trivial for a human to place a set of items into sorted
order, but to achieve the same result in a computer program requires the use of control
structures and repetition of sequences of steps. It is also important that the combination of
control structures and sequences are efficient, particularly when a lot of data needs to be

sorted.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM .

While there are many different algorithms that can be used to sort data, Software
Development students must know about two specific types of sort: selection sort and
quicksort.

Selection sort

A simple method of sorting a set of elements into a sorted list is to use selection sort.
Selection sort involves searching through a whole list, selecting the smallest element it finds,
and swapping that element to the front of the list. The searching and swapping continues
until the entire list is sorted.

The selection sort algorithm follows these steps:
« Assume the first element is the smallest element.
« Compare the first element to every other element in the array, one by one.

« Each time the element compared to the first element is smaller, swap the first element

with the smaller element.
« Compare the (possibly new) first element with the rest of the array.
« Repeat the whole process, starting with the second element in the array.
« Repeat the whole process, starting with the third element in the array.

. Continue repeating the whole process until all elements in the array have been
checked.

This algorithm is called selection sort because it repeatedly selects the next-smallest
element and swaps it into place.

For example, consider the following list of unsorted numbers:

Assume the first element is the smallest element, in this case, 12. Keep track of the index
value of this element in a variable, such as one called ‘smallest’. For this example, index
values start at 1, but in almost all programming languages they begin at 0.

smallest 1

Compare 12 with 8. 8 is smaller, so update the variable ‘smallest’ with the index value for

the number 8.

smallest 2

The number 8§ is then compared to 31. As 31 is not smaller than 8, the ‘smallest’ variable
is unchanged.
The number 8 is then compared to 1. 1 is smaller, so update the variable ‘smallest’ with

the index value for the number 1.

! smallest 4

O Justification O Analysis : O Folio of alternative

designs ideas

: O Project plan O Usability tests

9780170440943

O Evaluation and
assessment

THINK ABOUT l 2]

SOFTWARE
DEVELOPMENT

Take a shuffled deck of
cards, and physically
sort them. Consider
how you chose to sort
them. Did you separate
suits into four stacks
and then sort by face
value? Or did you sort
by face value and then
by suit? What steps did
you repeat to finally
succeed in having a
sorted deck of cards?

[Final submission

n SOFTWARE DEVELOPMENT VCE UNITS 3&4

The end of the array has been reached, so the element in the first position of the array is

now swapped with the element at the index position stored in the variable ‘smallest’.

] 8 31 12 i

The sort then moves to the next element of the array and uses the index value of this

element as the new value for ‘smallest’.
~ smallest 2

The number 8 is the new smallest element, in position two of the array. It is compared
with 31, which is larger, so no change is made to the variable ‘smallest’. It is then compared

to 12, which is also larger, so no change is made to the variable ‘smallest’.

As the end of the array has been reached, the element referred to by the variable ‘smallest’
should be swapped with the 8, but as they are the same index values, no swap needs to

happen.
1 8 3 12 j

The sort then moves to the next element of the array (the third element) and uses the
index value of this element as the new value for ‘smallest’.

- smallest

The number 31 is the new smallest element, in position three of the array. It is compared

with 12, which is smaller, so the variable ‘smallest’ is updated with the index value of the 12.

- smallest

As the end of the array has been reached, the element referred to by the variable ‘smallest’

is swapped with the 31.

The sort then moves to the next element of the array (the fourth element). However, this
is the last element of the array so there is nothing left to compare it to. The selection sort
algorithm is therefore complete and all elements in the array are now sorted.

Figure 2.21 shows the pseudocode for selection sort.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM n

ALGORITHM selectionSort (arrElements)
{ Purpose: sorts a list of elements }
{ Input: an array of elements }
{ Index values start at 1 }
{ output: Array, a sorted array of elements }
BEGIN
n <« number of items in arrElements
FOR 1 « 1 ton - 1 DO
{ select the smallest item }
smallest « i
{ compare smallest to the rest of the array }
FOR j « 1 + 1 to n DO
IF arrElements[j] < arrElements[smallest] THEN
{ update the index value of smallest }

smallest < j
ENDIF

ENDFOR

{ the smallest item in the array has been found }
{ so swap it with the current element }

IF smallest != i THEN
swap arrElements[smallest] AND arrElements[i]
ENDIF
ENDFOR

RETURN arrElements
END

FIGURE 2.21 Pseudocode for selection sort

When converting pseudocode to real code, some of the pseudocode elements may need
to be expanded upon. For example, in most programming languages, swapping two elements
generally cannot be achieved using a single line of code. Consider the different outputs of

Figures 2.22 and 2.23. Only Figure 2.23 will successfully swap the two values, as the x value
is lost in Figure 2.22.

X <« 20
vy <« 10
X « VY
Y « X

PRINT x, y

FIGURE 2.22 Incorrectly swapping two values

THINK ABOUT ‘2-2

_ o BN SOFTWARE
X « 20 DEVELOPMENT
y « 10 E

Convert the

temp <« x pseudocode in

X <y Figures 2.22 and 2.23
y < temp into the language of
PRINT x, y

your choice. Run both
versions to see their

FIGURE 2.23 Correctly swapping two values S

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
i designs ideas i assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

selectionSort(aList):
f i in range(len(aList)):
smallest = i
for k in range(i + 1 , len(aList)):
- aList[k] < alList[smallest]:
smallest = k
smallest != i:
temp = aList[smallest]
aList[smallest] = aList[i]
alist[i] = temp

FIGURE 2.24 An example of selection sort implemented using Python

Quicksort

Another algorithm used to sort sets of elements is quicksort, referred to as a divide and
conquer algorithm. This is because quicksort is an example of a recursive sort, which means
that it partitions the items that need to be sorted into smaller and smaller sets and passes
those sets back into itself; thus, it ‘divides’ the array into smaller and smaller pieces until it
can ‘conquer’ the array and sort it. This allows items to be sorted very quickly. In almost all
cases, quicksort is more efficient than selection sort.

The quicksort algorithm follows these steps:

« Unless the array contains only a single element, complete the following steps:

- Select an element from the array at random — this is referred to as the pivot. Often, this
‘random’ element is the last element in the array.

— Check each other element in the array and reorder it so that all elements with values
less than the pivot come before it, while all elements with values greater than the pivot
come after it (equal values can go either way). This involves swapping, much like in
selection sort, but the elements are not sorted based on anything else except the pivot
when they are swapped.

— Take all of the elements that are less than the pivot (all the elements to the left of the

pivot) and repeat the process of quicksort on these elements, selecting a new pivot.

— Take all of the elements that are greater than the pivot (all of the elements to the right
of the pivot) and repeat the process of quicksort on these elements, selecting a new
pivot.

o Ifthe array contains only a single element, return just that element.

For example, consider the following list of unsorted numbers:

12 8 3 1 77 75 18

Select the first element as the pivot and store its index value in a variable, ‘pivot’. Two
more variables need to be made, one storing the first index value, and the other storing the
last index value. At the beginning of the quicksort algorithm, there should therefore be three
variables: for this example, they are called pivot, low and high. Assuming index values begin
at 1, the index value of pivot is 7, low is 1 and high is 7.

Begin iterating through the list, comparing each value to the value stored at the
pivot. The first element checked is 12, which is smaller than the pivot’s value of 18. This
means the first element should be swapped with the element at the Tow’ index value.

In this instance, the ‘low’ index value is the same index as the first element, so no

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM H

swap occurs. After this, the Tow’ index value is incremented by 1, and now holds the

value of 2.

The next element checked is 8, which is smaller than 18. This means that this element
must be swapped with the element at the low’ index value. In this instance, the ‘low” index

value of 2 is the same as the second element, so no swap occurs. The index value of low’ is

then incremented by 1, and now holds the value of 3.

The next element checked is 31, which is larger than 18. This element is left alone.

12 8 31 1 77 75 18

The next element checked is 1, which is smaller than 18. This means that this element
must be swapped with the element at the ‘low” index value; 1 and 31 are therefore swapped. The

index value of ‘low’ is then incremented by 1, and now holds the value of 4.

;12 8 1 ;31 ;77 575 ;18

The next element checked is 77, which is larger than 18. This element is left alone. The
same occurs with 75.
Once the algorithm reaches the last element, 18, it is swapped with the element at the

index value of ‘low’. In this case, this is the element at the fourth index value, 31.

3 ; i

The list is now partitioned so that every number less than the pivot (18) is to the left
of it, and every number that is greater is to the right of it. The algorithm is run again on
each side.

Left side:

Pivot: 3 (value: 1)
Low: 1 (value: 12)
High: 3 (value: 1)

After the first pass, no swaps are made as 12 is greater than 1:
Pivot: 3 (value: 1)

Low: 1 (value: 12)
High: 3 (value: 1)

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and
o designs ideas i assessment

9780170440943

[Final submission

E SOFTWARE DEVELOPMENT VCE UNITS 3&4

After the second pass, no swaps are made as 8 is greater than 1. There are no more passes

to make, so the low” and ‘high’ index values are swapped:

The list is now partitioned so that every number less than the pivot (1) is to the left of it,
and every number that is greater is to the right of it. The algorithm is run again on each side,
even though one of the sides (the left side) is empty. These steps are not shown here, as this

particular sub-list is already in sorted order.

Right side:

Pivot: 3 (value: 31)
Low: 1 (value: 77)
High: 3 (value: 31)
After the first pass, no swaps are made as 77 is greater than 31:

77 75 |

Pivot: 3 (value: 31)

Low: 1 (value: 77)

High: 3 (value: 31)

After the second pass, no swaps are made as 75 is greater than 31. There are no more
passes to make, so the ‘low” and ‘high” index values are swapped:

The list is now partitioned so that every number less than the pivot (31) is to the left of
it, and every number that is greater is to the right of it. The algorithm is run again on each
side, even though one side (the left side) is empty. These steps are not shown here, as this
particular sub-list is already in sorted order.

Once all sub-lists have been processed through the quicksort algorithm, the array that is
left is in sorted order:

1 8 12 18 3 75 77 |

Figure 2.25 shows the pseudocode for quicksort.
While quicksort is algorithmically complex for a human brain to understand, recursive
algorithms are extremely fast for a computer to process.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM E

: ALGORITHM quickSort (arrElements, low, high)
{ Purpose: sorts a list of elements }
{ Inputs: an array of elements, two integers representing }
{ the first last element in the array }
{ Index values start at 1 }

| BEGIN

E IF low < high THEN
{ run the partition algorithm to know where }
{ to split the array }
split <« partition(arrElements, low, high)
{ run quicksort on the left side }
quickSort (arrElements, low, split-1)
{ run quicksort on the right side }
quickSort (arrElements, split+1l, high)

i ENDIF

. END

. ALGORITHM partition (arrElements, low, high)
: { Purpose: to split an array into two based on a pivot, }

{ where the left side contains values less than }
{ the pivot and the right side contains value }

{ greater than the pivot }

{ Inputs: an array of elements, two integers representing }
{ the first last element in the array }

{ Index values start at 1 }
. { output: integer, index value of the partition point }
é BEGIN

pivot < arrElements [high]

FOR 1 « low to high DO
IF arrElements[i] <« pivot THEN
IF low != i THEN
swap arrElements[low] and arrElements[i]
ENDIF
low = low + 1
ENDIF
ENDFOR
swap arrElements[low] and arrElements[high]

RETURN low
| END FIGURE 2.25

Pseudocode for quicksort

Algorithms for searching

As with sorting, many applications require some method of searching through data to
find a particular item within a set of items. It is important that these searches are efficient,
particularly in the modern era of ‘big data’.

While there are many different algorithms that can be used to search data, Software
Development students must know about two specific types of searches: linear search and
binary search.

Linear search

A linear search is the simplest type of search. This search involves checking every element
in the list, from first to last, when searching for a particular element.

: O Project plan O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and O Final submission
i designs ideas i assessment

9780170440943

u SOFTWARE DEVELOPMENT VCE UNITS 3&4

For example, consider the following list of unsorted numbers, where the number being

searched for is 77:
12 8 31 1 77 75 18

A linear search is typically performed using a FOR loop if the size of the list is known.
The first step of the FOR loop will check the first index value, which is 12. 12 is compared
with the search input, 77, and this returns false. As a result, the FOR loop will iterate again,
checking the next index value in the list, 8. This repeats until it reaches the 77, where the
linear search returns true, as it has found the value. Linear searches will execute until the
end of the list is reached or the search item is found.

Figure 2.26 shows the pseudocode for a linear search. Linear searches are useful when

the elements are not sorted and the number of elements to search through is small.

ALGORITHM linearSearch()
| { pPurpose: searches through a list of elements }

;{ Output: Boolean, True if item found, False if not }
: BEGIN
; Input searchList, searchItem
found < FALSE
FOR eachItem in the searchList DO
IF eachItem = searchItem THEN
found <« TRUE

BREAK {exit loop once found}
ENDIF

ENDFOR

RETURN found
| END

FIGURE 2.26 Pseudocode for a linear search

While linear searches are the simplest to implement in almost every programming
language, they are also extremely inefficient. This is not a concern if the number of elements
being checked is relatively small, but it becomes problematic as the number of elements
increases. Consider a search of 6 billion records where the record being searched for is not
there. This is referred to as a ‘worst-case’ scenario, as all 6 billion records would need to be

checked to confirm that the record was not in the set.

Binary search

A binary search is more efficient than a linear search. Binary search is similar to quicksort in
that it is also a recursive algorithm, but instead of being divide and conquer, it is a decrease
and conquer algorithm, as it is able to discard half of the data being searched through at
each iteration of the algorithm. This makes it an extremely efficient method of searching.
Binary search relies on the data it is searching through being sorted. It works by selecting an
element from the very middle of the data set being searched and checking it against the search
item. If it matches, the search halts. If it doesn’t match, it will search the data to the left of the
element in the middle if itis less than that element, otherwise it will search the data to the right of it.
This process is repeated until the item is found or there are no more elements to search through.
For example, consider the following list of sorted numbers, where the number being

searched for is 77:

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM E

A binary search will begin by checking the length of the list. If it is greater than one, it
will then find the index value of the middle of the list by dividing the length of the list by 2.
As the list has 7 elements, dividing by 2 produces a fraction, which must be rounded up or
down. It doesn’t matter which way it is rounded, as long as the rounding is consistent. For
this example, the binary search will round up, therefore the index value that is checked first
is at index 4. 18 is compared to the number being searched for and does not match. The
binary search will then check to see if 18 is greater than or less than 77. As it is less than 77,
the search will discard every element to the left of the 18, inclusive. The rest of the list is

passed back into the binary search to be searched again.

31 75

There are three elements in the list, so the mid-point is calculated again; this time it is
index value 2. The number 75 is compared to 77 and does not match; it is also less than 77
so it is discarded, as is every element to the left of it. The rest of the list is passed back into the
binary search to be searched again.

77

There is only one item left in the list, so no mid-point needs to be calculated. The item is
compared to the search item and it matches, so the search item is found.

Figure 2.27 shows the pseudocode for a binary search. Binary searches are useful when
there are large amounts of elements to search through, but can only be used if those elements
are sorted. This means that you need to consider the time it takes to sort the list as well as

search the list when considering the efficiency of binary search.

ALGORITHM binarySearch (arrayList, searchItem)
{ Purpose: searches through a list of elements }
{ Inputs: an array of elements to be searched }

{ and the item being searched for }
{ output: Boolean, True if item found, False if not }
BEGIN

found < FALSE
iLen « the length of arrayList
midP < the middle index value of arrayList
IF searchItem = arraylList[midP] THEN
found < TRUE
ELSEIF ilLen > 1 THEN
IF searchItem < arrayList [midP] THEN
low « first index value of arrayList
RETURN binarySearch (arrayList[low to midP-11],
searchItem)
ELSEIF searchItem > arrayList[midP] THEN
high < ilLen
RETURN binarySearch (arrayList [midP to highl],

searchItem)
ENDIF
ENDIF
RETURN f ol FIGURE 2.27
oun '
END Pseudocode for a binary
search

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
: designs ideas : assessment

9780170440943

E SOFTWARE DEVELOPMENT VCE UNITS 3&4

That being said, the efficiency of a binary search versus a linear search is not a small
comparison. Consider the search discussed earlier, where there are 6 billion records and the
record being searched for is not there. Recall that in a worst-case scenario, if a linear search
was used, all 6 billion records would need to be checked to confirm that the record was not
there. If a binary search was used, only 33 items at most would need to be checked to come
to the same conclusion. The difference in speed of a linear search and binary search in a

worst-case scenario can be seen in the graph shown in Figure 2.28.

T T T T T T 1

T T T
0 2 4 6 8 0 12 14 16 18 20

FIGURE 2.28 Worst-case linear search (red) vs. worst-case
binary search (blue)

Efficiency of algorithms

When more than one algorithm could achieve a particular purpose, it is important to consider
the efficiency of each algorithm. Some algorithms perform better in certain contexts than
others, and some are simply better than others overall.

The mathematical notation used to describe the efficiency of algorithms is referred to
as ‘Big O notation’, and while it is not explicitly in the Software Development course, it is
useful to know the Big O notation for algorithms in order to make an informed decision
on which one to use. Big O notation is expressed using a capital O and then enclosing in
brackets the maximum amount of time it would take for an algorithm to finish, expressed
in terms of the number of items being processed by the algorithm. For example, if a sorting
algorithm used a single FOR loop to sort all of the elements, n, in a list, it would be expressed
as running in O(n) time. If a nested FOR loop were used to sort the same list, where one
FOR loop runs inside of another FOR loop, it would be expressed as running in O(n®) time.
Divide and conquer algorithms generally involve logarithmic time.

When measuring algorithm efficiency, there are three scenarios that are considered: best
case, average case and worst case. The best-case scenario for many sorting algorithms, for
example, is for the set of elements to already be sorted. The worst-case scenario for many of those
same sorting algorithms would be for the elements to be in reverse-sorted order. The average-
case scenario for a sorting algorithm would be when the elements are not in any particular
ord@enerally, programmers consider the average case of an algorithm when deciding which
one to use, and then consider the worst-case scenario if the average cases are equivalent.
They may also consider the worst-case scenario to make sure that it is not considerably slower

than an alternative algorithm.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM .

For example, on average, a linear search will check approximately half <%> the number
of items before it finds the item being searched for. A binary search will check approximately
log, n items, which is more efficient. In a worst-case scenario where an item is not present, a
linear search must check n items, whereas a binary search divides the list in two each time it
iterates through it, which means checking log, n items. This means that a binary search is
faster than a linear search in both average-case and worst-case scenarios.

Only average-case and worst-case scenarios are typically considered because it is often
not helpful to consider the best-case scenario of an algorithm. Data is rarely in a format
that would allow for a best-case scenario to occur, so best-case scenarios are very rare. For
example, in a best-case scenario linear search, the item being searched for would be the
first item in the list. This is not something that would occur reliably enough to matter when
deciding which algorithm to use.

For the two sorting algorithms and two searching algorithms used in Software
Development, the average case and worst case are shown in Table 2.5.

TABLE 2.5 Average case and worst case of Software Development algorithms

Average case

e S —
Quicksort Onlog,n)
Linear search o(3)
| Binaryserch Ollogm)
e — —
o R E——
e ——
e pem

As you can see, in a worst-case scenario, quicksort combined with binary search is no
worse than selection sort combined with binary search. However, once the average case is
considered, the most efficient method of sorting and searching is to combine a quicksort

with a binary search.

Validation techniques

Validation is the process of checking that input data are reasonable. Validation does not and

cannot check that inputs are accurate.

Existence checking

An existence check checks whether a value has been entered at all. This is particularly
useful to ensure that all required fields in a form have been completed before saving the
contents of those fields to a file.

: O Project plan O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and O Final submission
i designs ideas i assessment

9780170440943

E SOFTWARE DEVELOPMENT VCE UNITS 3&4

Type checking

A type check is a useful method of confirming that the values entered into fields are of the
expected data type. It will confirm if the wrong type of data have been entered in fields, such
as if strings are entered into fields that expect only integer values.

When implementing type checking, it is important to consider how inputs from a user are
processed by the selected programming language. For example, in Python, unless explicitly
handled otherwise, all inputs are treated as strings, even if they are numeric. In languages
such as these, there typically exists methods for checking type, such as the process of casting
the data as a particular data type to see if it remains valid.

Range checking

A range check checks that data are within acceptable limits or come from a range of
acceptable values. For example, students enrolling in kindergarten must be between the
ages of 3 and 6 years (acceptable limits). As another example, the product size must be small,
medium or large (acceptable values).

Checking that modules meet
design specifications

When building an application, one of the most important steps is to check that each
completed module meets the design specifications.

When checking to see if a module meets design specifications, it is important to make
sure it performs as expected with appropriate inputs, that it is usable and efficient, and that
it achieves what was specified in the design. This often involves internal testing, where
programmers tests the program themselves; external testing, where quality assurance testers
test the program using test cases based on the design specifications; and client testing, where
clients participate in walk-throughs and reviews of the software to confirm that it is what they
specified in the design stage.

In VCE Software Development, modules are checked to ensure they meet design
specifications mostly through internal testing methods. An important aspect of this is to
make sure that the modules that have been built are as bug-free as possible. This is achieved
by completing appropriate testing activities, such as establishing test cases that determine
test data and expected results, conducting tests, recording results and then correcting any
errors.

One method used in the testing process is debugging, which is a testing method that
includes finding errors through the construction of trace tables and testing the system using
test data.

Debugging
Different types of errors can occur throughout the development of a software solution. Fach

error can be categorised as a syntax error, runtime error or logic error.

Syntax errors

Fach programming language has a defined syntax, which is a set of rules that defines which

symbols and characters can be used to write source code. Syntax errors occur while writing

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM E

code and are typically fixed immediately, as they prevent code from compiling. These are
errors such as missing brackets or semi-colons, not passing the correct number of arguments
into a function, or not putting quotes around characters and strings. Most compilers and
interpreters will indicate on which line a syntax error occurs, which allows a programmer to

find the error easily.

Runtime errors

Unlike a syntax error, a software module with a runtime error will compile without any error
notifications. It is not until the program is run and used that a runtime error can appear.
These types of errors often result in the program crashing or printing error messages. For
example, one type of runtime error is a memory leak, where a program continually uses
more and more RAM while the program is running, such as when an infinite loop occurs.
Other common runtime errors include divide-by-zero errors, opening non-existent files for
reading, calling functions that do not exist, or validation errors that have not been handled
within the source code.

Runtime errors are often found during the development stage, but software can, and
does, get released with the possibility of runtime errors still occurring. This is because these
errors tend to occur only when certain conditions are met, or when unexpected inputs are
entered into the software. Once a runtime error is found in a distributed piece of software,

many software companies release patches and software updates to correct the error.

Logic/semantic errors

Logic errors, also known as semantic errors, occur when the logic of a software program
fails. This means that the source code is syntactically correct but the software solution does
not produce the expected output when run. In this case, the output is often unintended,
undesirable or incorrect. For example, a function written to return the square root of a number
may instead return the square of a number. Similarly, a function in an air-conditioning unit
that checks to see if the temperature in a room is greater than 30 degrees before turning itself
on may activate the air-conditioning unit at 29 degrees instead.

Logic errors can be very difficult to find, as there is nothing within a compiler or
interpreter that will tell a programmer on which line a logic error appears. It is often up to
the programmer as a human to construct test data and trace tables in order to track down the

error manually.

Test data

In order to systematically test that a module works, appropriate test data must be used to
write a test case. A test case is a set of steps that a tester uses to determine if the element
being tested works correctly. It involves selecting test data, writing testing procedures
and determining expected results. It is particularly important that appropriate test data is
selected so that test cases can be run. At a minimum, the selected test data must ensure
full coverage of the algorithm when test cases are run. This means that all paths of all
control structures are tested fully.

There are four main types of test data. The first involves validation test data that tests
the validation techniques that have been included in the module. Data must therefore be
selected to test any instances of existence checking, type checking and range checking that

have been included in the source code. At a minimum, this should involve selecting test data

: O Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
i designs ideas i assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

that checks for both valid and invalid inputs. For example, if checking for a valid age integer
being input by a user, a valid input would be a positive integer, likely in the range of 0 and
120. An invalid input would be a negative integer, such as —1.

The second type of test data is data that will test all conditions, including the operators
within those conditions. This may involve the construction of truth tables to help choose
appropriate test data. It may also involve selecting appropriate boundary values to ensure full
coverage of the operators included in the conditions.

The third type of test data involves data that will test all iterations, including any operators
within those iterations. This may involve selecting or creating data that will ensure all
conditions of those iterations are met. For example, if a WHILE loop is designed to iterate

over each line of a file, test data would involve testing the following:

« when the file does not exist

« when the file exists but is empty

o when the file exists and has one line to read

« when the file exists and has more than one line to read.

The fourth type of test data involves creating test cases that will attempt to cover all of the
functionality within the system from the perspective of a user. This typically involves testing
the Graphical User Interface (GUI) to ensure that each screen within the application can be
accessed correctly. Typically, test cases are written based on design documents such as mock-
ups, storyboards and/or site maps, to ensure that the order and sequence of user interface
elements are correct. This type of testing can be the most time-consuming, particularly if the
application allows a user to take multiple paths to access particular screens. Developers often
write formal test cases that allow for automated software testing programs to be used to run
these tests so they do not need to be performed manually. These test cases can be written to

simulate the actions of a user navigating through the software solution.

Boundary values

Testing for boundary values involves selecting test data that will test the ‘boundaries” of any
condition or iteration within the code; that is, the maximum and minimum values available
for any given input. Boundary values are particularly relevant for algorithms that use range
checks. The general rule for boundary testing is that at each boundary, test data should be
selected to test inside the boundary and outside the boundary.

For example, imagine a software solution designed for a Scout group that would only
allow users to join if they are in the ‘Venturer’ age group (15-17 years). The boundary values
for testing this can be determined by considering the type of data that is being collected. As
this example involves testing for age, valid integers begin at 0 and are unlikely to go beyond
120. Testing for valid ages would therefore require testing an age that is below the age group,
within the age group, and above the age group.

The ages that are in range can be represented on a continuum, as shown below.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM ﬂ

There are two boundaries for this particular test. One boundary exists at age 15 and the

other exists at age 17. The pseudocode that demonstrates these can be seen in Figure 2.29.

ALGORITHM checkIsVenturer (age)

{ Purpose: to check that a user is a Venturer based on age }
{ Inputs: age, as an integer }

{ Ooutput: Boolean, True if age is valid, False if not }

BEGIN
IF age > 14 AND age < 18 THEN
RETURN True
ELSE
RETURN False
ENDIF
END

FIGURE 2.29 Pseudocode to check an age range

In order to fully test this algorithm, the test data that must be selected are:

Age Reason Expected result

14 One year below the lower boundary of the valid range False

15 The lower boundary ofthevalidrange True

17 Theupperbou ndaryofthevahd range .. True ...
B Oneyesrobme e pper bowdbry of thevaldege | e

When selecting above and below a boundary, test data should be in the smallest increment
possible given the context. In this case it is 1 year, but if an algorithm were to test for a price
range, for example, the smallest increment would be 0.01. Similarly, if testing an algorithm
that uses boundaries involving hours or minutes in a day, the smallest increment would
typically be 1 minute, thus boundaries at the hour would be 59, 0 and 1.

ALGORITHM abstractBoundaries ()

BEGIN
INPUT a, b
IF a < b THEN
PRINT “Condition met.”
ELSE
PRINT “Condition not met.”
ENDIF
END

FIGURE 2.30 An abstract set of boundary conditions

For a more abstract example, the pseudocode in Figure 2.30 would require the following
boundary values to be tested.

a b Reason Expected result
a a+l ais guaranteed to be less than b Condition met
a a ais guaranteed to not be less than b Condition not met
.SCHDUL-ASSESSEDTASKTRACKER
: O Folio of alternative : [Usability tests O Evaluation and : O Final submission]

: O Project plan : O Justification O Analysis

designs ideas i assessment

9780170440943

ﬂ SOFTWARE DEVELOPMENT VCE UNITS 3&4

For more complex algorithms, more test data needs to be selected. This is when it can be
very useful to construct a truth table to determine what that test data should be.
Consider the pseudocode example testing for multiple conditions in Figure 2.31.

| BEGIN
' INPUT a, b, c, d
IF a < b AND (b < ¢ OR ¢ < d) THEN

PRINT “Condition met.”
ELSE

PRINT “Condition not met.”
ENDIF

FIGURE 2.31 A complex conditional with more than one logical expression
Consider also the truth table constructed for this algorithm, shown in Table 2.6.

TABLE 2.6 Truth table for Figure 2.31

a<b b<c c<d b<cORc<d a<bAND (b<cORc<d)
True True True True True
. True T rue |:a|se Tru e — T rue

True False True Tee True

True |: a|se |:a|5e I |:a|se |:a|se

|:a|se T rue True ——l Tru e |: a|se

False m}rue False True Fake
|:a|se) |: a|se True ; Tru e b |: a|se

Falsme Fa.I;e Fals;e | F;IS; a Fal.se"

The test data required to fully test the conditions in Figure 2.31 must test the conditions
shown on each line of the truth table. For example, the second line of the truth table requires
that the condition ¢ < d is not met, so a boundary test must be performed where ¢ is not less
than d (e.g. ¢ =d).

For this pseudocode, at least eight test data elements must be written to test the conditional
statement fully.

It can be useful to use an algebraic expression to map out which values are needed for a
test condition to be met. For example, using the example from Figure 2.31 and Table 2.6,

the first line of the truth table can be interpreted algebraically in this way:

a<b b<c c<d b<cORc<d a<bAND (b<cORc<d)
a=b-1 b=c-1 c=d-1 True True

This is because each condition can be guaranteed to be true if the algebraic conditions
are met.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM E

The algebraic expressions can be further simplified:

a<b b<c c<d b<cORc<d a<bAND (b<cORc<d)
a=b-1 b=d-1-1 c=d-1 True True

And again:
a<b b<c c<d b<cORc<d a<bAND (b<cORc<d)
a=(d-D-D-1 b=d-1-1 c=d-1 True True

And finally:
a<b b<c c<d b<cORc<d a<bAND (b<cORc<d)
a=d-3 b=d-2 c=d-1 True True

Therefore, only a value for d needs to be chosen, as the values for a, b and ¢ can all be
determined from this value.

It is important that test data is selected systematically rather than in an ad-hoc manner,
otherwise the source code cannot be guaranteed to be logically correct throughout all of its
algorithms. This results in a considerably large set of test data to be used to test the system,
which is why many software development companies use automated tools to construct and
run tests on source code.

Trace tables

To prevent logic errors occurring, programmers often construct trace tables to validate the
logic of the algorithms used in their source code. Trace tables simulate the execution of a
program, referred to as the flow of execution. Given test data, each processing feature within
an algorithm is executed, step by step, and, based on the test data, the values of the variables
that change within that algorithm are tracked to ensure that the logic within the algorithm
is correct. This systematic method of tracking the execution of code allows for the thorough
testing of even the most complex of algorithms.

As an example, consider the pseudocode in Figure 2.32. This algorithm uses a WHILE
loop control structure to print values until a condition is met. The trace table to represent
the flow of execution of this pseudocode is in Table 2.7.
~ ALGORITHM sampleWhileLoop ()

- BEGIN
X < 0
y <« 0
WHILE x < 32 DO
X <« X + 8
y <y + 4
ENDWHILE

| PRINT x, y
END

FIGURE 2.32 Pseudocode example of a WHILE loop

SCHOOL-ASSESSED TASK TRACKER

: O Project plan : O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and : O Final submission
: i designs ideas i assessment 3

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

TABLE 2.7 Trace table for the pseudocode in Figure 2.32

Step Statement x y output
1 x< 0

y<0

w N
oloi

While x < 32 Do

While x < 32 Do

©® © ® O O O

6
7
9 Whllex <32Do 16

0
4
4
x<x+8 16 4
8
8
8

10 x<x+8 24
11 yey+a 24 12

12 While x < 32 Do 24 12

16 EndWhile 32 16

17 Print x, y 32 16 32,16

Another example, where a logic error exists within an algorithm, can be seen with the
algorithm in Figure 2.33.

| ALGORITHM applyDiscount ()
~ BEGIN

INPUT fullPrice
INPUT discPerc

discPrice « fullPrice - discPerc

; RETURN discPrice
- END

As this algorithm requires input from a user, the trace table can only be constructed
using test data. For the purposes of this example, the test data is as follows, with the flow
of execution being tested twice, with two sets of inputs, and the expected discounted price
being listed with the test data.

TABLE 2.8 Test data for pseudocode in Figure 2.33

fullPrice discPerc Expected result
20.00 5 19.00
50.00 50 25.00

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM H

TABLE 29 Trace tables for the pseudocode in Figure 2.33

Step Statement fullPrice discPerc discPrice output

1 Input fullPrice 20

2 Input discPerc 20 5
3 discPrice < fullPrice - discPerc 20 5 15.00
4 return discPrice 20 5 15.00 15.00

Step Statement fullPrice discPerc discPrice output
1 Input fullPrice 50

Input discPerc 50 50

2
3 discPrice < fullPrice - discPerc 50 50 0.00
4 return discPrice 50 50 0.00 0.00

After completing the trace tables, the test data can be completed to show the following

results.

TABLE 210 Completed test data for pseudocode in Figure 2.33

fullPrice discPerc Expected result Actual result
20.00 5 19.00 15.00
50.00 50 25.00 0.00

The actual results from the trace table and the test data make it clear that the algorithm
is not calculating a correct discounted price given the inputs it is receiving; it is merely
subtracting the discount percentage as if it were a dollar value to be discounted. The
corrected algorithm can be seen in Figure 2.34.

- ALGORITHM applyDiscount ()
- BEGIN

INPUT fullPrice
INPUT discPerc

discAmount < fullPrice * (discPerc / 100)
discPrice < fullPrice - discAmount
RETURN discPrice

FIGURE 2.34 Discount pseudocode after the logic error is fixed

Trace tables were traditionally produced manually by a programmer to test code and
check for logic errors. Many programming languages today, however, have integrated
developer environments (IDEs) that allow a programmer to trace the flow of execution
through a debugger built into the IDE, so that they do not need to construct trace tables
by hand.

SCHOOL-ASSESSED TASK TRACKER

: O Project plan : O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and : O Final submission
: i designs ideas i assessment 3

9780170440943

CHAPTER
SUMMARY

Essential terms

alternative execution code that is run if a condition is not met

arguments specific inputs passed into a function that act as local, temporary variables
average case the time it takes to run an algorithm, on average

best case the best time it can take to run an algorithm

binary search a decrease and conquer algorithm that repeatedly halves a sorted search
space until an element is found or not found

boolean a data type that holds the values of true or false
boundary values the maximum and minimum edge values possible for a given input

built-in functions functions that have been written by the creators of the programming
language to execute common sequences of code

casting converting a variable from one data type to another, such as converting a string to
an integer

chained conditional a conditional statement that handles more than one possible
conditional outcome

class visibility the accessibility of a class from source code; public, private or protected

compiler a program that turns source code into machine language that can be executed by
a computer processor

conditional statement a control structure that allows a programmer to write lines of code
that are only run when a particular requirement is met

debugging identifying and removing errors from computer software

decrease and conquer to recursively reduce a problem to two or more smaller instances of
the same problem until the problem can be solved

definition an instruction that assigns a value to a variable

divide and conquer to recursively break down a problem into two or more sub-problems of
the same type until they are simple enough to solve on their own; the solved problems are
then combined to provide a final solution

divide-by-zero error an error occurring when an arithmetic equation is attempting to

divide by O

DO/WHILE loop an iteration over a set of instructions, conditions and/or iterations that is
repeated for as long as a condition is met; it is always run at least once

event a special type of method that is called when an object’s state changes
existence check test to see if a value has been entered as input or not
expected results the output expected from an algorithm, assuming it is logically correct

flow of execution the order in which instructions, conditions and iterations are executed or
evaluated

FOR |oop an iteration over a set of instructions that is repeated a set number of times

function a sequence of related code that has been given a name that can be called from
other points in the source code

function call to execute the contents of a function
function declaration to name a function and its arguments
function definition to define (write) the contents of a function

function visibility the accessibility of a function from source code; public, private or
protected

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

globa| variables variables that are defined outside any function and can be accessed by all functions throughout the source code
infinite |ooP an iteration that will never reach the condition upon which it can terminate
instruction a unit of code that can be executed by a compiler or interpreter

integrated developer environment (IDE) software that provides tools to aid in programming, such as source code editing,
syntax highlighting, code completion, debugging aids, or tools to help construct a user interface

interpreter a computer program that directly executes source code without needing to have it compiled beforehand
linear search a search that checks every element in a list, from first to last, when searching for a particular element
local variables variables that are defined inside a function that can only be accessed by that function

logic error when source code is syntactically correct but contains an error resulting in unintended, undesirable or
incorrect output

logical operator a boolean operator used to combine expressions, such as AND, OR

memory leak a failure of a program to release memory that is no longer needed, causing impaired performance, application
failure and/or system failure

method an action an object can carry out; e.g. window.refresh, golfClub.swing

nested conditional when a condition contains one or more additional conditions within its structure

parameters see arguments

pass by reference to pass data into a function as an argument so that it can be modified without needing to be returned
pass by value to pass data into a function as an argument so that it cannot be modified without needing to be returned
patches sets of changes to a software application designed to update or fix it

pointer a variable that stores the memory position of another variable’s value

quicksort a divide and conquer algorithm that sorts a set of data by recursively partitioning and sorting smaller and smaller
sets of that data

range check tests to see if a value is within a given range of acceptable values
recursive a|gorithm an algorithm that calls itself with smaller or simpler sets of values until a solution can be found

REPEAT/UNTIL |oop an iteration over a set of instructions that is repeated for as long as a condition is not met; it will
always execute at least once

return value a value or set of values that is passed back to the origin of a calling function, often to be assigned to a variable,
used in an equation, or tested within a conditional statement

runtime error an error that occurs while a program is running

selection sort the process of selecting and swapping elements within a list until the entire list is sorted

sequence a set of instructions that executes line by line in the order that it is written

statement a single line of code that, when executed, performs a single action

switch/case a conditional statement that handles more than one possible conditional outcome

syntax error often a typographical error in source code that violates the set of rules that define a programming language

test case a set of steps that a tester uses to determine if the element being tested works correctly, often outlining test data,
testing procedures and expected results

test data data that has been specifically identified to be used in a test case
trace table a table used to test an algorithm, typically by hand, to ensure that no logic errors occur

truth table a table used to represent all of the combinations of values for inputs and their outputs, typically used to test
conditional statements

type check tests to see if a value is of the specified data type or structure
WHILE |oop an iteration over a set of instructions that is repeated for as long as a condition is met

worst case the longest amount of time it can take to run an algorithm

9780170440943

Important facts

Variables are references to stored data so they can be used within a program.
Instructions are units of code that can be executed by a compiler or interpreter.

Definitions and statements are two types of instructions.

CHAPTER
SUMMARY

Control structures typically involve sequences, conditions and iterations.

Sequences are sets of instructions that execute line by line.

o U W M-

Conditional statements are control structures that will execute only if a particular
requirement is met.

7 Conditionals allow for: alternative execution, more than one logical expression, chaining,
nesting and switching.

8 lterations are repetitive loops that repeatedly run sections of code until a condition is
met or not met.

9 There are four types of iterations: WHILE, DO/WHILE, FOR and REPEAT/UNTIL.
10 Functions are sequences of related code that have been named by a programmer.

11 Functions contain arguments, also known as parameters, that act as local variables to
the function.

12 Functions can have visibility within source code, so that they can be accessed by every
other function, some other functions, or no other functions.

13 Classes allow programmers to group related functions and variables together.
14 Classes can be instantiated to create objects.
15 Methods are functions that exist inside classes and objects.

16 Events are special types of methods that perform a sequence of code when an action
occurs.

17 Two algorithms used to sort data are selection sort and quicksort.

18 Selection sort repeatedly selects the next smallest element from a set of elements and
swaps it into its correct position until all elements are sorted.

19 Quicksort repeatedly partitions elements into smaller and smaller sets in order to
produce a final sorted list.

20 Two algorithms used to search through data are linear search and binary search.

21 Linear search checks every element in a list, from first to last, when searching fora
particular element.

22 Binary search repeatedly divides and discards half of the elements in a list while
searching for an element until the element is found or it is determined to not be in
the list.

23 ltis important that algorithms are as efficient as possible.

24 Algorithm efficiency can be described in terms of best case, average case and
worst case.

25 Validation techniques include existence checks, type checks and range checks.
26 Existence checks test to see if any value has been entered as input.
27 Type checks test to see if the input entered is of the correct data type.

28 Range checks test to see if the input entered is within a range of acceptable values.

9780170440943

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM

29 Debugging is the process by which software errors are found and fixed.
30 Syntax errors occur when the grammatical rules of a programming language have not been followed.
31 Runtime errors occur while the program is being used.

32 Logic errors occur when the expected output of an algorithm does not match the actual output, but no runtime errors

occur.
33 Test data must be carefully selected in order to test all aspects of an algorithm.

34 Truth tables can be useful when selecting test data to use.

35 Test cases should be created to test all boundary values.

36 Trace tables simulate the flow of execution of a program and allow a programmer to manually detect logic errors.

9780170440943

TEST YOUR
KNOWLEDGE

Review quiz Variables and instructions

........ 1 Which of the following are most likely to be variables?

S a getUmbrellaQ
........... b isFound

customer.firstName

True
2018

“Cake”

g apple

- 0 Q0 0N

-------- Control structures

------ 2 Give an example of an instruction that is a definition.

........ 3 Give an example of an instruction that is a statement.

4 What is the difference between a definition and a statement?

----------- 5 How does a sequence differ from an iteration?

. 6 What is the difference between a WHILE loop and a DO/WHILE loop?

"""" 7 Mary writes some code to iterate over a set of data. It runs exactly once, but no conditions
have been met. What types of iterations could Mary have written?

"""" 8 State the values that will be returned or displayed in the following examples of pseudocode:
"""" a a <« 4
........... b« 5
Cc « 3

IF (a > c) OR (b > c) THEN
RETURN True

e e e e ELSE
........... RETURN False
........ ENDIF
........ b age « 10
kU AR IF age < 10 Then
........... RETURN "Child"
R ER R W R SRR R ELSEIF age < 18 THEN
"""" RETURN "Teenager"
........ ELSE
 irmnRAmEEs RETURN "Adult
ENDIF

9780170440943

TEST YOUR
KNOWLEDGE

Functions, classes, methods L

9 How do you get a function to run within source code?

10 How are functions represented in pseudocode? e

11 What is the difference between a function declaration and a function definition?

12 How is a class different to an object?

13 What is the relationship between a method and an event? e e

14 How are methods represented in pseudocode? G K E BB R s R
Algorithms for sorting o

15 Explain the steps taken to perform a selection sort, using a worked example as part of your

explanation.

16 Explain the steps taken to perform a quicksort, using a worked example as part of your

explanation.
17 Which is faster, quicksort or selection sort? Is this always the case? Explain. =~ =

Algorithms for searching ..

18 Explain the steps taken to perform a linear search, using a worked example as part of your E iR 8

explanation. e

19 Explain the steps taken to perform a binary search, using a worked example as part of your
explanation. e

20 Roland executes a linear search and then a binary search on a very large set of data. He
searches for the same item in each of the searches. The linear search was much faster thanthe

binary search. How is this possible? e

Validation technigpes ...

21 Cerie needs to perform all three validation techniques on a particular input. In what order
should Cerie perform these checks when she writes her source code? Why? = = -0 0o

i O Project plan O Justification O Analysis i O Folio of alternative 0O Usability tests O Evaluation and i O Final submission
H H designs ideas : assessment :

CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM 71

9780170440943

TEST YOUR
KNOWLEDGE

22 Annotate the following pseudocode to show where each validation technique is being used.

ALGORITHM validateInput ()
BEGIN
INPUT fullName
INPUT age
IF fullName = blank THEN
PRINT “Please enter your full name.”
ENDIF
IF isInteger (age) = False THEN
PRINT “You must enter age as a whole number.”
ELSEIF age < 0 THEN
PRINT “Invalid age.”
ENDIF
END

Meeting design specifications

23 What steps can be taken to ensure design specifications are being met?
24 What is the difference between a test case and test data?

25 What is the difference between a syntax error and a runtime error?

26 Dina executes some code on her computer and everything seems to slow down. Eventually,
her computer crashes. What has most likely occurred within the code?

27 Why is it important for software companies to release patches?
28 What is the purpose of a truth table in relation to testing?

29 Explain what a boundary value is.

30 Why are trace tables useful when debugging?

72 SOFTWARE DEVELOPMENT VCE UNITS 38&4

9780170440943

APPLY YOUR B -
KNOWLEDGE I_D_I S@_J

1 Write a program that asks a user for their name. Once they have entered their name, the
program should say hello to them.

2 Write a simplified calculator program that implements basic arithmetic operations. At a
minimum, it should handle addition, subtraction, multiplication and division of at least two
numbers.

3 Using the pseudocode in Figures 2.25 and 2.26 on pages 53 and 54, implement linear and
binary searches in your selected programming language.

4 Using the pseudocode in Figures 2.20 and 2.24 on pages 46 and 50, implement selection sort

and quicksort in your selected programming language.

5 Complete a trace table for the following algorithm:

ALGORITHM printResult ()
BEGIN
X « 2
y <« 1
WHILE y < x DO
y<x*y
X « X + X
ENDWHILE
PRINT x, y
END

6 Construct a truth table and algebraically determine the test data required to test the following

algorithm:
ALGORITHM returnResult ()
BEGIN
INPUT x, y, Z
IF x < y AND z > y THEN
RETURN True
ELSE
RETURN False
ENDIF
END
SCHOOL-ASSESSED TASK TRACKER
i O Project plan O Justification O Analysis i O Folio of alternative [Usability tests OJ Evalygation and i O Final submission ;
H H designs ideas : assessment :
CHAPTER 2 » DEVELOPMENT AND FEATURES OF A COMPUTER PROGRAM 73

9780170440943

PREPARING FOR

Unit

On completion of this unit, the student should be
able to interpret teacher-provided requirements
and designs, develop and test working modules
and justify the use of processing features of a
programming language.

Steps to follow

To achieve this outcome, you will draw on key knowledge and key skills outlined in Area of Study 1. This Outcome requires
that you use a programming language to create working modules, undertake the problem-solving activities of designing,
coding, validating and testing, and create internal documentation in response to teacher-provided requirements and
designs. These working modules do not need to represent complete solutions, but the modules themselves should be
complete as outlined in the design specifications provided to you.

Your teacher may choose to give you the requirements and designs one at a time after periods of relevant theory
and programming instruction, or they may give them to you as a group after all of the theory and programming has
been covered. To encourage you to meet all of the requirements, your teacher may choose to allocate different classes
to different stages of the task, such as separating development from testing. Your justifications of the use of processing
features of a programming language will be included in your internal documentation, alongside descriptions of the
modules and their features.

Documents required for assessment

* Source code
* Internal documentation within the source code

Evidence of testing using appropriate test data

~ Keep and submit all documents used to construct your tests, including test data, any truth tables used to select
your test data, and trace tables.

Assessment

You will be assessed on the following measures:

 Your choice of data types and data structures

+ Your choice of file types

+ Selection, creation and use of appropriate processing features
+ Naming conventions

 Validation techniques

+ Debugging techniques

+ Internal documentation of module functions

* Internal documentation justifying the use of processing features

+ Thoroughness of testing

SOFTWARE DEVELOPMENT VCE UNITS 3&4

iStock.com/andrewhoughton

CHAPTER

KEY KNOWLEDGE

On completion of this chapter,

you will be able to demonstrate

knowledge of:

Digital systems

security considerations influencing
the design of solutions, including
authentication and data protection

features of project management
using Gantt charts, including the
identification sequencing of tasks,
time allocation, dependencies,
milestones and critical path.

Data and information

techniques for collecting data to
determine needs and requirements,
including interviews, observation,
reports and surveys.

Approaches to problem solving

Reproduced f

functional and non-functional
requirements

constraints that influence solutions,
including economic, legal, social,
technical and usability

factors that determine the scope of
solutions

features and purposes of software
requirement speciﬁcations

tools and techniques for depicting
the interfaces between solutions,
users and networks, including use
case diagrams created using UML
features of context diagrams and
data flow diagrams

the VCE App

Design (202

9780170440943

Software analysis

The process of creating documentation related to project management
and for the specifications and design of a software system must be
systematic in order to ensure success. Throughout both Units 3 and

4 you will be required to maintain a project management progress
report in the form of a Gantt chart. The SAT requires that the project
management report be submitted twice. In Unit 3 it will be in the

form of a proposed plan. In Unit 4 it is an amended plan and, with the
benefit of hindsight, includes changes that reflect the actual project
progress, rather than the imagined progress as recorded by the proposed
plan in Unit 3. Data collection techniques help to determine software
requirements, both functional and non-functional, and also help to
determine the scope of the system, particularly when considering the
constraints faced by the software developer. Data collection must be
interpreted using tools such as use case diagrams (UCDs), context
diagrams and data flow diagrams (DFDs) to provide an increasingly
detailed overview of the system being built. At this stage of the problem-
solving methodology, it is also important to determine the criteria that
will be used to evaluate the efficiency and effectiveness of design ideas
in order to select a solution to develop further.

This chapter, along with Chapter 4, covers the theory required for Unit 3,
Outcome 2, which is the first part of the SAT. The SAT will be completed
in Unit 4, Outcome 1. Chapter 3 focuses on the analysis stage of the
problem-solving methodology (PSM). Chapter 4 will deal with the
design stage. The focus of this chapter is the core elements of analysis
that help students understand the requirements of project management
and to construct a software requirements specification (SRS) for the
proposed systems. Students should apply data collection techniques to
obtain information that will help determine the constraints and scope of
a proposed system as well as document its functional and non-functional
requirements. As part of this documentation, students must learn to
construct use case diagrams using UML, as well as context and data flow
diagrams to represent the inputs, processes and outputs of systems and
solutions. Students must propose different design ideas for their solution.
They must construct and use evaluation criteria to determine the most
efficient and effective design.

. SOFTWARE DEVELOPMENT VCE UNITS 3&4
76 R

Project
management =

"FIGURE 3.1 Chapter map

Collecting
data

What is a ‘software solution’?

Software is the means by which computer hardware can achieve a purpose. The key
ingredient of effective and efficient software is that the expectations of the user and
the software developer are satishied by the look, feel and function of the software, or
program.

What makes a ‘good program’?

Over the course of Units 3 and 4, the SAT and PSM will take you through a series of steps.
First you will collect information about the needs and requirements that have been identified
by ‘your client, and then this information or data will be transformed into a software
requirements specification (SRS). A benefit of identifying the purpose to be achieved by
your software is that the evaluation criteria will be well known before you get to coding and
testing in Unit 4.

As part of Unit 3, Outcome 2 follows a problem-solving methodology (PSM) to go
through the stages of analysis and design. Development and evaluation will take place in
Unit 4, Area of Study 1.

To prepare you for Unit 3, Outcome 2 and also for Unit 4, Outcome 1, we will discuss
planning and managing a complex project, including how to use a Gantt chart, because this
relates to the project you are undertaking.

As part of Unit 3, Outcome 2, you first need to find a suitable client who has a need
or opportunity for a software solution. The first thing we will discuss is how to determine
a client’s needs and requirements. A variety of techniques will be considered, including
interviews, surveys, reports and observations.

Next, we will talk about the features of functional and non-functional requirements for a
solution, both in terms of general solutions and your specific software solution.

Then we will discuss factors such as scope and constraints that will affect the ability
to deliver the solution and to satisfy client expectations. Before you begin any software
design, you need to create the software requirements specification (SRS). In order to
explain your intended software solution, you will use tools and techniques to illustrate the
relationships between your solution, users and networks. The tools used will include use
case diagrams (UCDs) with a unified modelling language (UML), context diagrams and
data flow diagrams (DFDs).

The first thing to do after choosing a client is to gather data about their requirements.
You can acquire data through methods such as surveys and reports, and through conducting
interviews and observations.

Once you have gathered all of this data, you need to store it, protect it and understand
what type of data it is. We discuss how to reference those sources properly and briefly cover
data types and structures, which is relevant to Outcome 2, later in Chapter 4.

Functional Scope of a Software
and Solution P requirements Solution Software Security
. - X =~ software N - - " =) .
non-functional constraints solution specification interfaces diagrams considerations
requirements (SRS)

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS .

Project management

Project management is the process of planning, organising and monitoring a project in order to
ensure it is completed on time and within budget and scope. Building or changing information
systems for a project can be expensive and disruptive and, if managed badly, can be damaging
to an organisation’s operations and profit. Large-scale changes are often approached as projects
so they can be planned, organised and conducted appropriately, ensuring that they finish on
time and within budget, and fulfil the project’s goals (scope). You will formulate a project plan
to manage your progress through Unit 3, Outcome 2 and Unit 4, Outcome 1.

For your project to be successful, you need to identify, schedule and monitor tasks,
resources, people and time. While you can use a software tool for planning a project, our
main focus initially will be on the concepts and processes of project management.

One of the items you are required to submit as part of your Outcome is a Gantt chart.

A Gantt chart is a type of bar chart or graphic timeline named after its inventor, Henry
Gantt, that:

o lists all tasks in a project

« organises the tasks in order

« shows which tasks must wait for other tasks to finish before they can begin
. allocates people and resources to tasks

« tracks the progress of tasks and the entire project.

Although you can create a Gantt chart with a pen and paper or a spreadsheet, project
management software is usually easier and faster. Suitable software includes the commercial
Microsoft Project, and the free, easy-to-use GanttProject and ProjectLibre.

When using software to create your Gantt chart, you will not be assessed on your technical
prowess with the software. Rather, you will be assessed on how well your Gantt chart

demonstrates your understanding of the concepts and processes of project management.

Project management

' ' i

Concepts Processes
5 v i ¥ L y
. . Task . Time allocation ~ Documentation using
Milestones Dependencies . - Sequencing
identification resources Gantt charts

FIGURE 3.2 Key project management concepts and processes

Concepts

Milestones

A milestone represents the achievement of a significant stage in a project and has zero time
duration. For example, the completion of the printing of a questionnaire so that it can be
distributed to respondents would be a task of zero time and represents a milestone. This
follows tasks in which the questionnaire has to be researched, written, proofread and finally

printed, all of which take time.

: [Project plan O Justification O Analysis : O Folio of alternative [Usability tests O Evaluation and O Final submission
o designs ideas i assessment

9780170440943

. SOFTWARE DEVELOPMENT VCE UNITS 3&4
78 SRR

Dependencies

Tasks are interdependent, meaning that they must be completed in a particular order. The
commencement of some tasks depends directly on the task that is completed before. For
example, you cannot distribute a questionnaire (one task) before writing the questions for
it (another task). However, you cannot write the questions for the questionnaire without
first determining what information, or data, you need (a third task). Ultimately, the task of
distributing a questionnaire has multiple dependencies. It is not possible to distribute the

questionnaire without first writing the questions.

Processes

Task identification

You would break a large project such as Unit 3, Outcome 2 down into discrete tasks, such
as the following:

« ldentify a suitable client.

« Analyse the client’s needs and requirements.

« Create a Gantt chart to identify tasks.

« Create a working title for your software solution.

« Write qualitative questions for interviews.

« Conduct interview(s) with the client and possible users.

« Write quantitative questions for questionnaires.

« Distribute questionnaires.

« Locate other data sets and secondary data.

« Collate data.

« Interpret data and create the SRS.

« Modify your SRS after discussion and agreement with your client.
« Finalise the purpose and function of your software solution.

Note: Not all of the tasks you would undertake for Unit 3, Outcome 2 are included in the
list above. You should not use this as your own exhaustive list.

To break down your project into achievable tasks, develop a work breakdown structure
(WBS) and draw a WBS diagram to accompany it. For large projects, a WBS will often be
hierarchical, breaking major tasks into subtasks and even sub-subtasks. Although this may
sound confusing, it will actually keep your tasks organised and in context, allowing them
to be collapsed or expanded to view overall task progress or fine details about how minor
subtasks are proceeding.

Do not leave any tasks out of the WBS. For example, imagine you distributed both a
print and online version of a questionnaire, but did not list the printed version in the WBS,
and forgot to collect the printed forms from respondents. All the gathered data would be
overlooked, or counted too late.

Figure 3.3 shows a sample potential WBS for Unit 3, Outcome 2. Again, the tasks may
not be exhaustive and you may find that your own WBS requires additional tasks.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS .

Qutcome project
(Unit 3, Outcome 2)

L \ i \ L i
1.1 Find client 1.2 Analysis 1.3 SRS 1.4 Design = dsec;‘:;"r”]are 1'6;‘3?55
i Y ¥
1.1.1 Identify .
L possible 1.2.1 Scope 1.2.2 1.2.3 - 1'?\';2)3(?5'9” _1.5.1Dataflow 1.6.1 Gantt
software - P Constraints Requirements cleup diagram chart
- user interface
solution
1.2.3.1 _ 1.4.2 Evaluate _ 1.5.2 Use case
Functional designs diagram
L 1.23.2 _ 1.5.3 Context
Non-functional diagram

FIGURE 3.3 Sample breakdown structure (WBS) diagram for Unit 3, Outcome 2

Sequencing

When you have identified each individual task, you need to estimate how long each task
will take and then put them in a sequence; that is, arrange them in a particular order. As
discussed in dependencies, one task often cannot be started before one or more other tasks
have been completed.

Decide which tasks can be worked on concurrently, but are dependent on other tasks
that have already been completed. For example, you could work concurrently on conducting
interviews, researching similar applications and writing questions for a survey, but these tasks
are all dependent on having a client with a need or opportunity.

Similarly, you cannot write an SRS before you have interpreted the data that you have
collected in the analysis stage.

Tasks that must be completed before another task can begin are called predecessors. The
dependent tasks are called successors.

If a predecessor runs overtime, all of its successors will be delayed, causing problems
for other tasks and deadlines. This is where a Gantt chart becomes very useful — it helps
to monitor tasks and meet deadlines, keeping the project on schedule. It also helps you to
visualise the problems that will occur down the line if a predecessor is late.

The amount of time that a task can be delayed without delaying another task, or the
project completion date, is called slack time. When workers have slack time, you can

reassign them to other tasks.

Time allocation resources
A Gantt chart shows tasks as horizontal bars. Each horizontal bar is of a length proportional
to the task’s duration. A very short task will have a very short bar, while a very long task will
have a very long bar. Figure 3.4 displays a number of features typical to a Gantt chart.

The names of the tasks are shown in the left pane, along with start and end dates, while
the right pane shows task timelines. Tasks that overlap in time are concurrent and can be

carried out at the same time using different teams.

: [Project plan O Justification O Analysis : O Folio of alternative O Usability tests O Evaluation and O Final submission
: designs ideas £ assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

NelsonNet

additional resource:
rddioncl FigUTE 3"_1 Sample
== GanttProject chart

Arrows are used to indicate dependency. For example, neither the ‘Functional’ nor the
‘Non-Functional’ tasks under ‘Requirements’ can begin until all tasks under ‘Analysis” have
finished, because they depend on these tasks.

The diamond shape indicates a milestone. Milestones are points of significant progress in
a project. They are often the start or end of major stages, and can be used to monitor whether
a project is on track. A milestone is an event with zero duration and no allocated resources.
It is simply shown as a diamond-shaped ‘task’. In this instance, ‘Submit final report’, the end
of the project, is one such milestone.

An event differs from a task because although something happens (for example, a major
task ends), no resources, work or time are allocated to it because there is nothing that people
need to do to make it happen.

A project’s critical path is the sequence of tasks from beginning to end, which:

« contains no slack time — any delay in a task on the critical path will affect the end date
of the project

« s the longest duration
« is the minimum possible time in which all of the project’s tasks can be completed.

Sometimes, more than one critical path is possible. No task on the critical path can have
its duration changed without affecting the end date of the whole project.

Documentation using Gantt charts

You can use the Gantt chart you develop to mark your progress throughout this Area of
Study. Including information about the progress of the task and the planned versus actual
duration of the task will help keep you on track.

EELAH DS + Zoomin | Zoom Out Today ~
R ., “— L i
GAanTT “Task names are listed in the left 2020 Task timelines appear in the right pane
project / pane with their start and end dates

== | T Week 10 Iml: 11 Iweek 12 I\!ee-\ 13 I\lmlt 14 Week 15
Name Begin date End date 20 2 3-3-2 4-20
* Engage Client 4-3-20 6-3-20 | °
« Identify Software solution 7-3-20 7-3-20 x ;qm |mnr;|: I;::l:n .L:l task in
» Conduct interview 7-3-20 12-3-20 ® to start and e J pane.
« Survey 7-3-20 7-3-20 This ek ln g dape
* Observations 7-3-20 10-3-20
v o Analysis 13-3-20 21-3-20
* Scope 13-3-20 21-3-20 muﬁr::‘
* Constraints 13-3-20 18-3-20
v « Requirements 22-3-20 23-3-20
* Functional 22-3-20 23-3-20
+ Non-functional 22-3-20 23-3-20 Tasks that overiap in time
* « Design 24-3-20 27-3-20 r-:rm::_ c::;e_!
* Mockups 24-3-20 26-3-20 {e.g. ‘conduct Interview’ and
* Evaluat... 27-3-20 27-3-20 ‘survey’)
v = Software design 24-3-20 27-3-20
* DFD 24-3-20 25-3-20 B=
* UC diagram 24-3-20 27-3-20 —
+ Context diagram 27-3-20 27-3-20 [m]
¥ « Progress report 22-3-20 31-3-20 ———
* Gantt chart 22-3-20 31-3-20 Miktanesuri v vt s =]
* Submit final report 1-4-20 1-4-20 diamond-shaped task > *

FIGURE 3.4 An annotated Gantt chart. This Gantt chart provides a partial sample model for Unit 3,
Outcome 2, with placeholder dates.

9780170440943

Courtesy of GanttProject

CHAPTER 3 » SOFTWARE ANALYSIS u

To manage your solution effectively as a complex project, you should also use your Gantt
chart to document the resources you have allocated to it, such as any tools and equipment.
While a company or organisation may list consultants and buildings as resources, your
resources might be computers, particular data sets and software tools.

You should also frequently modify your Gantt chart to reflect contingencies. A
contingency is an unforeseen event, incident or emergency. You may find that your client
suddenly becomes unavailable or unwilling to continue. The software language you wish
to use is no longer acceptable. The website hosting your analysis and results crashes and
you lose your data. Your Gantt chart should show problems like these and how you react
to them, such as finding a new client or a different software solution strategy, or switching
languages.

You should keep your Gantt chart updated throughout both Unit 3, Outcome 2 and
Unit 4, Outcome 1. You will submit an initial project plan, indicating times, resources and
tasks, in Unit 3, Outcome 2. After modifying the plan to indicate changes, you will submit
an evaluation of the plan in Unit 4, Outcome 1.

Gantt chart for creating a database

Several web developers are working on a database project together. As part of their
project, they need to build a Gantt chart.

Task identification

They first identify the tasks they need to complete using a WBS diagram (see Figure 3.5).
Next, they enter these tasks into their chosen Gantt software, GanttProject (see
Figure 3.6).

1 Database project

[| | ,

1.1 Hire staff 1.2 Conduct analysis 1.3 Design 1.4 Develop
- 1.1.1 Programmers = 1.2.1 Scope = 1.3.1 Tables, relationships -
= 1.2.2 Constraints - 1.3.2 Fields, data types
~1.1.2 Creative designers
. 1.2.3 Requirements - 1.3.3 Appearance e
- 1.1.3 Technical writers

‘= 1.2.3.1 Functional - 1.3.4 Scripts -

1 .1.2.3.2 Non-functional

-~ 1.3.6 Evaluation criteria -

FIGURE 3.5 Task identification

O Justification O Analysis : O Folio of alternative

designs ideas

: [Project plan : [Usability tests

9780170440943

O Evaluation and
assessment

THINK ABOUT
SOFTWARE
DEVELOPMENT

Project management
tools are useful to find

the perfect number
of people needed on

a task so it is finished
as quickly as possible
without anyone being
idle. Using software,
develop a Gantt chart
to plan the baking of a
cake. Assume you can
use as many cooks as
you want.

1.5 Evaluate

1.4.1 Database

~+=1.4.2 Conduct informal testing

1.4.3 Write documentation

1.4.4 Provide training

- =1.3.5 Documentation and training = 1.4.5 Conduct formal testing

1.4.6 Implement

S

[Final submission

u SOFTWARE DEVELOPMENT VCE UNITS 3&4

GanttProject *

ene
THINK ABOUT | 3.2
SOFTWARE B OX 0xamB O Cus

DEVELOPMENT

¥ Resources Chan

In terms of project T

management, research o — — 5
) SN

the meaning of: ANTT 3’..

g _;]';-— ‘..l..h

: Zoom In

April 2020

7 8

* an ‘optimistic’ task
duration

Predeceisors Duration

* a‘pessimistic’ task ¢ 1.1.1 Hire programmers
duration. ® 1.1.2 Hire creative designers
¢ 1.1.3 Hire doCumentation writers
= @ 1.2 ANALYSS
e 1.2.1 Determine scope
& 1.2.2 Determine constraints
¢ 1.2.3.1 Determine functional requirements
¢ 1.2.3.2 Determine non-functional requirements
= & 1.3 DESIGN
& 1.3.1 Design tables, relationships
® 1.3.2 Design fields, data types
¢ 1.3.3 Design appearance
® 1.3.4 Design scripts
* 1.3.5 Desgn documentation & training
¢ 1.3.6 Design evaluation criteria
= @ 1.4 DEVELOPMENT
¢ 1.4.1 Develop database
® 1.4.2 Perform internal testing
1.4.3 Write documentation
* 1.4.4 Carry out training
& 1.4.5 Conduct formal testing
® 1.4.6 Implement system
¢ 1.5 Evaluate system

‘

—
]
=
—
=
=
| —
=
=
=
==
=
—
=
=
=3
=
==

=]
@
2
=D
=
©
(G
5
By
a
3
=
o
©

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

RSS Warning Errors

FIGURE 3.6 Entering tasks into Gantt software

The developers use a hierarchical structure to group tasks under headings, such as
HIRING and ANALYSIS, to make task management easier. Groups of tasks can be collapsed
or expanded or moved as a group. In GanttProject, multiple levels of sub-tasks can easily
be created by just indenting them in the task properties.

Sequencing

The tasks are sufficiently sequenced, but the order can be shifted easily if needed. The

developers start creating dependencies, forcing dependent tasks to wait until their

predecessors have finished.

+ All of the HIRING (1.1) tasks can start immediately.

+ Management will complete the tasks in the ANALYSIS group (1.2), which can also begin
immediately and run concurrently with the hiring tasks.

« The DESIGN (1.3) tasks cannot begin until the ANALYSIS tasks are complete, so DESIGN
is made dependent on ANALYSIS.

« The DEVELOPMENT (1.4) tasks cannot begin until DESIGN is finished, so DESIGN is as

a predecessor to DEVELOPMENT.

« EVALUATE SYSTEM (1.5) must wait for everything else to finish, so it is made dependent
on DEVELOPMENT.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS m
L] e GanttProject [DAZ2020C.gan] *

b @ x 0 g{{ @ E 0 c Search <Ctrl+F>
Resources Chart

EEA+Y SN s Zoomin | Zoom Out

A< >—<_ R
AMTT: r - —< o1
project | - ‘ & 7 8 9 10

Name Predecessors Duration
¥ o 1.1 HIRING
* 1.1.1 Hire programmers
¢ 1.1.2 Hire creative designers
¢ 1.1.3 Hire documentation writers
v = 1.2 ANALYSIS
¢ 1.2.1 Determine scope
« 1.2.2 Determine constraints
¢ 1.2.3.1 Determine functional requirements
¢ 1.2.3.2 Determine non-functional requirements
¥ @ 1.3 DESIGN 0
¢ 1.3.1 Design tables, relationships
= 1.3.2 Design fields, data types
¢ 1.3.3 Design appearance
“ 1.3.4 Design scripts
¢ 1.3.5 Design documentation & training
¢ 1.3.6 Design evaluation criteria
v ¢ 1.4 DEVELOPMENT 21
¢ 1.4.1 Develop database
¢ 1.4.2 Perform internal testing
* 1.4.3 Write documentation
¢ 1.4.4 Carry out training
“ 1.4.5 Conduct formal testing
¢ L4.6 Implement system
= 1.5 Evaluate system 28

o e b e e e e e b e b e b e e e e e e e

Courtesy of GanttPrbject

FIGURE 3.7 Major dependencies have been added. Arrows lead from predecessor tasks to
dependent tasks.

Subtler dependencies can now be added.

+ The team wants DESIGN to be well underway before they start creating documentation
and training, because they would be greatly affected by changes to the database. They
make 1.3.5 dependent on other design tasks being finished.

« They also make 1.4.4 (Carry out training) dependent on 1.4.3 (Write documentation)
being finished.

+ Formal testing (1.4.5) must follow all database creation tasks, so they add another
dependency.

+ Implementation (1.4.6) comes as the last stage of development.

They are now happy with the logical task sequences and dependencies, but they know
that if their needs change later, they can easily adapt the chart to suit their needs.

Time allocation resources

The project developers now tackle the challenge of the time required for each task. They
consult with experts and colleagues, and use their extensive experience and knowledge of
past projects to guide their estimates.
The developers can finish with their Gantt chart by:
+ selecting a project start date
» showing a critical path (critical tasks are shown cross-hatched)
« adding milestones to mark the end of major stages of the project. @

SCHOOL-ASSESSED TASK TRACKER

¢ O Folio of alternative £ [0 Usability tests : O Evaluation and
designs ideas assessment

[Project plan i O Justification : O Analysis : O Final submission

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

ene GannFroject [DAZOZ0D.gan] *
B0 OX 6xaB OC
BEIEE ¥ Resources Chart

EE+ eSS ¢ Zoomin | ZoomOut Today= | * Pa

GAHTT :ﬂ"--.- April 2020

Wil - -

I e . . A ¢ 7 8 5 w o3 e 15 18
| Name Predecessors Duration
|* = 1.1HIRING

| + L1.1 Hire programmers

* 1.1.2 Hire creative designers
* 1.1.3 Hire documentation writers
|* = 1.2 ANALYSIS
| * 1.2.1 Determine scope
« 1.2.2 Determine constraints
|+ 1.2.3.1 Determine functional requirements
| * 1.2.3.2 Determine non-functional requirements
| * = 13 DESIGN o
1.3.1 Design tables, relationships
* 1.3.2 Design fields, data types
* 1.3.3 Deslgn appearance
| * 1.3.4 Design scripts
.

L T e I T T T T e

| 1.3.5 Design documentation & training 25
| * 1.3.6 Design evaluation criteria
|* * 1.4 DEVELOPMENT 21
| « L4,1 Develop database E
* 1.4.2 Perform internal testing »%
| * 1.4,3 Write documentation o
* 1.4.4 Carry out training EY) 2
| * 14,5 Conduct formal testing 34 8
|- 146 implement system 3 1] s
| * L5 Evaluate system 28 1 >
g8
b
NelsonNet RSS Warning Errors 3
additional resource:
Addiionst Figure 3.8 .Gantt
== chart showing task
durations FIGURE 3.8 Dependencies have been created
EE++SH < Zeomin | Zeom Out Today - | +~Past | Futre = Show critical path |
AT ‘u-—-—*-a el 2020 May 2020
st 3
|7 e il SO S % % B b M s W o m o m o mom M o mom W 1 & 8
i Duration
= 3 —
3
* 1.1.3 Hire documentation writers 1
* 1.2 ANALYSIS 2
* 1.2.1 Determine scope 1
+ 1.2.2 Determine constramts. 1
* L2.3.1 Determene functional requirements. 2z
* L2.3.2 Determine nom-Tunctional requirements 1
* * L3 DESNGN T Lo s
+ 1.3.1 Design tables, relationships 3 —
* 1.3.2 Design fieids, data types 2 [=——x]
* 1.1.3 Design appearance 3 e
ST P 4 sy T =
* 1.3.5 Design documentation & training 3 X
* 1.5.6 Design evaluation criteria 1 = 09_
* 1.4 DEVELOPMENT 9 L, =
+ L4.1 Develop database 7 e =
+ 1.4.2 Perform ingernal testing 7) 8
NelsonNet 4.3 Writ documentation ' =
= * 1.4.4 Casry out traiming 3 =
additional resource: + 14,5 Conchict forml teiting 1 _ 7
. * L4.6 Implement system 1 =
Ao FigUFE 3..9 Gantt IR 3 5
o chart finished first =
draft FIGURE 39 Task durations have been estimated
Questions

1 The project team has made a mistake with the starting date of the ‘Evaluate system'
task. Explain why. How could they fix it?

2 How much slack does the ‘Hire creative designers’ task have?

3 If designing scripts took a day longer than expected, would it affect the project
end date?

4 The team discovers that the ‘Develop database’ task is running over time. How could
they keep the project from running past its planned end date?

5 Explain the benefits of using Gantt chart software instead of using a pen and paper or
a whiteboard.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS m

T I L © Zoomin | ZoomOut Today = | —Fast | Future = Hide critical path | Basehnes...
S e S M 2020
GANTT. e a0 O e =]
2 D TN s 7 @& % w1 W 13 W o m n @ m M 2 m o m w1 s % & 7
Parme Buration
* + L1HIRNG

* 111 Hire programmers.
* L12 Hire creative designers

* 113 Hire documentasion writers
* End of hiring phase
L2 ANALYSE
* 1.2.1 Determine scope
* 1.2.2 Determine comstrants
* 1231 Determine functional reguirements
* L.2.5.2 Determine non-fenctional requirements
* lind of anabysis
© LI DESICH
* 131 Denign tables, relationships
* 112 Devige Fiekdy, data types
* 1.3.3 Design appesrence
* 1.1.4 Design seripts
* 1.1.5 Design documentation & traning
© 136 Dewign evabaation exiteria
* End of design
* L4 DEVELDPMENT
* 141 Develop database
* 142 Parform iseenad testing

* 144 Carry ous craining
* 145 Conduct formal testing
* 146 implement system
* End of development

* LS Evakaate system

* END OF PROJECT

FIGURE 3.10 Finished first draft of the Gantt chart

| JI'I i

Courtesy of GanttProject

‘so® GanttProject [DA2020E.gan] *

E a x 0 % @ E 0 C Search <Ctrl+F>

(el ¢ Resources Chart

r v © ZoomlIn | Zoom Out Today ~ | + Past |

@ April 2020
9 10 13 I14 .

-,
Gﬁﬂ;{:_‘!; > i-.‘
Ofe'c 3 T e T
» <7 5 16 17 20 21 22
' Name Default role
* Alana project manager | —/

|» ¢ Ben doc writer i =
» o Christine undefined EBEF—-

7 8

Courtesy of GanttProject

FIGURE 3.11 Adding resources to the project

Activity
6 Obtain a Gantt software tool and create a simple chart of your own.

Documentation using Gantt charts

To ensure that project workers are not booked to be in two places at once, or idle, and
that equipment is ready at the right time, the project manager allocates resources to tasks
using the Gantt chart.

Once the project is underway, the team will continue to refer to the Gantt chart to
monitor their progress, and they will modify the chart when contingencies force plans to
change.

While Gantt charts are one crucial aspect of project management, good file
management practices are another. Wise file-naming strategies are easy to learn and
useful in many ways. You will find it easier to keep track of the materials you collect for
your solution if you learn to manage your files by naming them wisely.

'SCHOOL-ASSESSED TASK TRACKER

: [Project plan : O Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and : O Final submission
£ designs ideas : assessment i

9780170440943

Shutterstock.com/Andrey Popov

FIGURE 3.12 A survey with a close-ended question

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Collecting data

Data to construct a software requirements specification (SRS) is usually collected through
methods such as surveys, interviews, reports and observations. Each method of data collection
has its strengths and weaknesses, and it is important that the most relevant methods of data
collection are used within a given context. In Software Development, data that is collected
typically helps determine the project scope, the functional and non-functional requirements,
and the constraints. It can also help determine and/or decide who the end users will be, or
how the client is going to use the software.

Survey

A survey is usually a set of questions that ask for a response to be selected from a list of
alternatives, such as A, B, C, D; or a range, such as 1-5 or very low to very high. This type
of survey is also called a questionnaire. Surveys can easily be given to many people, and are
quickly processed and analysed using computer-based methods because the answers can
be recorded as numbers as long as close-ended questions are
used. Close-ended questions are questions where the answers
are either boolean (yes or no) or ranked on a fixed scale. These
types of questions allow for analysis of quantitative data to
produce results, which is more efficient than surveys with open-
ended questions. Open-ended questions are questions that
ask for answers in sentences or worded form. This means the
number of answers is potentially infinite. These questions tend
to ask for opinions, and must undergo analysis of qualitative
data to interpret the results.

The advantage of administering a survey is that they are
relatively inexpensive to conduct. They can also be delivered
digitally, so results can be collected immediately, and the survey
can easily be given to a large number of users to complete. The disadvantages are that processing
of results can take a lot of time if open-ended questions are asked, users may not necessarily
be truthful in their responses and, if the survey is quite lengthy, users may lose interest in

completing it.

Interview

An interview is usually conducted face-to-face, sometimes in groups, and can take a
substantial amount of time. Interviews give an opportunity for in-depth follow-up and the
ability to ask clarifying questions — this cannot be done with a survey, which is often answered
in private. Interviews are very useful for eliciting feelings, attitudes and opinions that are too

complex to easily record in a survey.

Report

A report is typically a written document providing a summary of findings in relation to the
system being analysed. Often when a software developer is creating a new system to replace
the system that is currently in place, they must investigate the current system as part of their
analysis of the requirements of the new system. In this instance, it can be useful to collect

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS .

DELIVERY PUNCTUALITY DELIVERY

Movember 2018 Results

October 2018 Results

98.7% 92.1% 98.5% 9];.4% AR

Metro Trains

FIGURE 3.13 Metro train performance report

data about the current system; often this data has been
summarised in report documents. These could include
error reports, customer complaint summaries, uptime
reports and other related system reports such as system
performance reports and monitoring reports. The types of
reports collected will vary depending on the system being
built and the system being replaced.

The advantages of using reports as part of data
collection is that they are often pre-prepared and quick
to obtain, and therefore inexpensive. The data within
them has already been collated and interpreted, saving
time (Figure 3.13). This can also be a disadvantage,
however, as the method of interpretation may not be
sound, or may have been deliberately manipulated
to present a particular point of view. Using data from
reports can be risky if the source of those reports is not
reliable (Figure 3.14).

Name: “oun o0
* Last tested from: FL USA at 3:31:33 PM

PR gy PR e -

www.dotcom-monitor.com

Today (3/1/2013) o 2.0337
Yesterday (2/28/20 112 2.0564
s E 2.0622
A 2.0337
-~ 2.0288
P Y o 21675
(q§ MW
gﬁfi."c-.‘r"n. 2::;%:-:. Time

© 2000-2011Dotcom-Monitor®. All right reserved.

FIGURE 3.14 Server uptime report

il Cwma Woptnar *

W Manage 1D Freconfigured Dathboanis

; _‘mm

Top Java Exceptions

Shoves Ehe (0P Java exceptions Coart detudt

Time range:

Tap fran

Paah i bniepaen

SolarWinds” Logg\y@ top Java exceptions
S ¥ 2 &N

- Ak -0 Al wo A

B s g st Ercepon

© 2019 SolarWinds Worldwide, LLC. All rights reserved

FIGURE 3.15 Error log report

: ™ Project plan - © Justification O Analysis

9780170440943

[TR T ——————

: O Folio of alternative
designs ideas

Refreih 15

erursses | § minutes | O Last Updated: jJure 5, 20719, 081 1:54 AW

B Souce: Chatdelilt ® Legend | Chastdelt =

My 29, 8:10 AM - jun 3, 8:10 AM {5 days)
mu Sources, 31,282 mg&

Bim 3, 211 - 211 AM (6 hes)
Al Sowrces, 1.208 evenits

B 8 8 & 8

SCHOOL-ASSESSED TASK TRACKER

O Evaluation and : O Final submission

: [Usability tests
i assessment H

. SOFTWARE DEVELOPMENT VCE UNITS 3&4
58 LEEIEEEE

Observation

Observation is a method of data collection that involves physically observing how a system
operates and how it is used. Observations are typically performed when designing a system that
will replace a current system, and are useful when attempting to solve a problem with an existing
system. For example, a system may become particularly slow at certain times of the day, but will
work well outside of those times. An observation of users at the time when the system slows
would be useful in helping determine why the issue has occurred. Similarly, systems may have
wildly varying performance depending on the time of year, such as consumer websites during
periods of high sales such as Boxing Day or the end of the financial year (EOFY). Observations
can also be used when creating a new system that will replace something that is currently being
completed manually. In these instances, the manual process is observed and documented.
Advantages of observations are that they can provide an unbiased view of the system;
information can be gathered without asking for a user’s opinion or relying on their memory.
Observations can also occur simultaneously as long as users are located in the same physical
space. Disadvantages are that they are quite time-consuming and therefore very expensive if
they need to occur more than once or over a long period of time. Time-specific observations
can also be very difficult if the project timeline does not allow for it; for example, waiting for
the end of the financial year may require waiting 12 months. Similarly, if the observations
occur at the wrong time, the results may not be very useful as they may not be representative
of how the system is typically used. Another disadvantage is that people can become very self-
conscious when they are being observed, so their actions may not necessarily be the same as

if they were alone, resulting in inaccurate data.

Functional and non-functional
requirements

Solution requirements are what the client needs from a solution; that is, what the system
must do. These can be broken down into functional requirements and non-functional

requirements.

Functional requirements

Functional requirements are directly related to what the solution will do. These typically
involve calculations; data processing; opening, reading and writing to files; data manipulation
such as image editing; and other specific functionality required within the system.

Some examples of functional requirements for software solutions are:

« save customer data to a file

« calculate discount values on products

« setan alarm to go off at a particular time
o load a set of jobs into a timetable.

Functional requirements are usually described in terms of the inputs required, the sequence
of operations that will be performed, and the output(s) after processing has occurred. These
written descriptions often include dot-point descriptions for the purposes of clarity. An example
of a functional requirement for a music performance system can be seen in Figure 3.16.

Functional requirements that require user interaction are typically accompanied by a use

case; these are described in more detail later in this chapter.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS m
3.1.1. Add Performance

This screen will allow the entering of performance information. Information consists
of the performance name, date and theme, as well as a unique performance ID
(numeric). Also recorded is whether the performance is a concert, and, if so, the
theme of that concert.

Performance ID (unique)

Performance Name, Performance Date
Whether it is a concert or not

Concert Theme

e |nput will come in from the User Interface, all items except concert theme are
required fields

* Themes should be retrieved from a file containing all available themes so a
user can select one
No two concerts should have the same ID
A theme only needs to be selected if it is a concert

* No concert should be added if a concert with the same theme has occurred in
the last six years

* Once data is entered and validated, it should be saved to a performance file

A pop-up box should be displayed showing the success or failure of saving the
concert information. Once information is saved, the user should be returned to the
main menu.

Non-functional requirements

Non-functional requirements are other requirements that the user or client would like
the solution to have but that do not affect what the solution does. These tend to be referred
to as quality requirements, as they typically involve criteria that can be used to ‘judge’ a
system, rather than criteria that involves specific behaviour the system is required to have.
Non-functional requirements are often tied to the constraints of the system. They can be
categorised in terms of usability, reliability, portability, robustness and maintainability.

Non-functional requirements must be measurable — this means that they must be able to
be tested to see if the requirement is met.

Determining non-functional requirements usually involves discussions with a client,
such as asking if the software must work on different operating systems, or asking who the

users of the system will be and the level of technical experience they have.

Usability

Usability relates to how easy a system is to learn and use. This is typically described in terms of
efficiency and effectiveness. Common factors of usability include the clarity of the user interface
and the intuitiveness of the functions within the system. The success of a system’s usability
is often measured in terms of user satisfaction. An example of a non-functional requirement

related to usability is ‘users should be able to use all basic functions after one hour of training’.

n
: [Project plan ™ Justification O Analysis : O Folio of alternative : [Usability tests O Evaluation and O Final submission
o designs ideas i assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

This non-functional requirement is highly reliant on the skills, expertise and needs of the

intended users of the system.

Reliability

The reliability of a software solution relates to how much it can be depended upon to
function as designed, and for how long. Typically, this requires that the software is deemed
fit for purpose over time and that it is resistant to failure.

The reliability of a system is generally expressed as a probability measure, where reliability
= 1 — the probability of failure. An example of a reliability measure is the prediction of the
uptime of a system or solution, such as ‘the system should have a 99.9% uptime over any
12-month period” or ‘the ability to add a new customer should be available to staff members
during working hours on weekdays’.

Portability

The portability of a software solution relates to how easily it can be used in different
operating environments. This can involve measuring how easy it is to move from one system
to another system with the same architecture; how easy it is to reinstall a program on a new
system; and the ability to use the same software on multiple operating systems and platforms,
or in multiple languages.

The most time-consuming element of portability is when a developer is required to
write software that will work on multiple operating systems and platforms, in particular
when multiple languages are involved. This typically means that the user interface must be
separated from the core functionality and logic so it is easy to create a new user interface for
a new system; for example, creating an application that works on a mobile device as well as
a desktop computer, in Mandarin as well as in English.

Portability is increasingly important as mobile computing becomes the norm; users often
expect that applications will work on mobile technology as well as desktop technology.

Robustness

The robustness of a system relates to how well a software solution responds to errors that
occur when the software is being used; that is, it should perform correctly in every situation
encountered by a user. Robustness is therefore an evaluation of the error handling techniques
within a software solution. For example, a piece of software would be evaluated according to
how it responds to bad input from a user. Robustness is closely linked to the use of validation
techniques, as these can help prevent errors from occurring when users enter unexpected
or invalid input. An example of a non-functional requirement related to robustness is ‘the
system should reject invalid data entered by a user’.

Robustness is measured in terms of the number of failures, crashes and errors that occur
while a system is running.

Maintainability
Maintainability is related to how easy it is to look after software once it is being used. This
can involve fixing errors in the code, maximising efficiency and reliability, installing the
software on new systems, and in some cases expanding on the current functionality with new
functionality. Simply put, maintainability is measured in terms of how easy it is to fix, modify
or change the software once people are using it.

Often, maintainability is measured in terms of the number of hours a developer or

administrator spends to keep the system running after it has been put in place. An example

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS H

of a non-functional requirement related to maintainability is ‘fewer than 10 hours should be

spent per quarter on maintaining the system’.

Scope

The scope of the software solution must be defined. A project without limits will never be finished,
and inevitably disputes will arise over what was and was not included in the expected software
solution. A scope statement identifies who will develop the solution and what will be specifically
considered, and it may specifically exclude other areas. In its simplest terms, the scope of the
project describes the project and explains what the project will and will not do (see pages 13-14).

Constraints

The constraints on a software solution are anything that may limit the software developers’
options for development or delivery. The software requirements specification (SRS) should
contain any decisions made before the project begins. Examples include: time and budget
available, programming languages, software processes, hardware limitations, operating
systems, specific design tools, previously purchased components or use of licences, safety and
security considerations, legal compliance requirements and privacy laws. The constraints
statement could also include any assumption or dependencies that will affect the developers’
ability to provide the software solution. For example: A new power supply will be required to
power the servers, and a cooling system for the server room. This is not part of the software
solution, but successful implementation will rely on the change to infrastructure.

Software requirements specifications

A software requirements specification (SRS) is a single document that contains the
outcomes of the analysis stage of the problem-solving methodology. This document is
created after data collection has occurred and before the design stage begins.

An SRS must outline all of the elements considered in the analysis stage. In particular, the
constraints under which the system must exist, the scope of the proposed system (what it will
and will not contain) and the functional and non-functional requirements of the system itself.
An SRS may also include an appendix containing additional information needed to interpret
the requirements, such as a description of the operating environment of the proposed system
(linked to constraints) or descriptions of any third-party tools required (linked to functional
or non-functional requirements).

A well-written SRS provides quality assurance for the client that the issue to be solved by
the software solution is well documented and understood. It ensures that:

« the client’s problem or opportunity is understood, the issues have been identified, and in
response a systematic process of addressing each issue has been documented

« the completed SRS will be the basis for the design specifications. The criteria identified
in the SRS will be used to evaluate the success of the final product.

« the final evaluation will verify the software product and test that the software performs as

expected.

: [Project plan ™ Justification & Analysis : O Folio of alternative = [J Usability tests O Evaluation and O Final submission
i designs ideas : assessment

9780170440943

ﬂ SOFTWARE DEVELOPMENT VCE UNITS 3&4

Scope creep is when a
client changes the scope of
a project (by increasing it)
during the life cycle of the
project. This can be very
expensive to a developer in
terms of time and money,
as it means the project will
take longer to complete,
often without any extra
money being provided by

the client.

Shutterstock.com/Bakhtiar Zein

FIGURE 3.17 Software requirements specification

An SRS can contain performance parameters such as response time, processing time,
maintenance requirements, resource demands, and security and backup arrangements.

Diagrammatical tools that can be used to assist in the creation of the SRS include use
cases, context diagrams and data flow diagrams.

An SRS is useful because it provides all of the required information about the proposed
system in one place. It often also acts as a legally binding contract between a client and a
developer, preventing a client from requesting additional features as the project timeline

progresses.

Creating a software requirements specification

An SRS should include a cover page that states the name of the project, the author (or
authors), the contact details of the author(s) and the version of the proposed system.

The first page after the cover page should contain a table of contents that clearly lists
each section of the SRS. Each section inside the SRS should use numbered headings and
subheadings so each element of the document can be easily tracked. Page numbers are also
included on each page.

Any additional documentation should be included at the end of the SRS as part of a set of
appendices. This may include reports collected in the analysis stage, evidence of interviews
and observations, etc.

Because an SRS is a professional document, consistency in the use of fonts, font sizes and

font colours is also important.

Interfaces between solutions, users
and networks

There are many useful tools to interpret data collected in the analysis stage of the problem-
solving methodology. Three methods of depicting the interfaces between solutions, users and
networks are use case diagrams (UCDs), context diagrams and data flow diagrams (DFDs).

Use case diagrams

A use case diagram (UCD) is a method of describing how a user interacts with a system.
This is created using a Unified Modelling Language (UML), which is a general-purpose
visual modelling language. Use cases are a diagrammatical representation of the externally

visible user interactions, and are often used to complement worded descriptions of those

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS H

interactions. Use case diagrams are normally completed prior to the creation of context
diagrams or data flow diagrams.

A use case diagram provides a structured view of the functionality of a software solution;
it ‘tells a story” of how the functions within a system work. It is intended to provide a high-
level view of how a user actively interacts with the system, and does not show the internal
functionality of the system itself. Use case diagrams are not designed to show the sequence
or order of interactions a user undertakes within a system, either.

Use case diagrams include actors who have relationships with use cases.

Actor

In a use case diagram, an actor represents an entity that can interact with the software
solution. While this typically means a human user, it does not have to be, and can include
external systems. Actors are described in terms of the role of a user or external system, rather
than as specific users themselves. For example, if Serai was a manager in charge of adding
users in a new system, she would be represented by an actor named ‘manager’ rather than by
an actor named ‘Serai’.

Actors are represented by stick figures in use case diagrams, even if they are not humans.
They can be connected to use cases and other actors through relationships and generalisations,

and should always be described using nouns.

Use case

A use case diagram contains use cases, which describe transactions or functions a user (actor)
can complete in the system. These represent system functionality. Use cases are shown using
an ellipse with the name of the function written inside. Each use case is often quite broad,
as a use case diagram is often the first tool used to understand how a system will work. They
are generally expanded upon in other diagrams, such as context diagrams and data flow
diagrams, or in the functional requirements.

Use cases should begin with strong verbs that describe the action or function being
represented in the use case. The phrase inside the use case should be brief, often no more
than two or three words. For example, ‘add customer’ or ‘delete user’.

Use cases can be connected to actors and other use cases through relationships and

generalisations.

Relationship
A relationship in a use case diagram represents the connections between elements within
the use case diagram. Relationships can exist between actor and use case, actor and actor,

and use case and use case.

Association

A typical relationship is represented by a solid line connecting two elements. This type of
relationship is referred to as an association. This is the default relationship within a use case
diagram.

Generalisation

A second type of relationship is a generalisation, which indicates a type of inheritance, or
parent—child relationship between the two elements. The ‘child” in a generalisation gains all
of the structure, behaviour and relationships that the parent has. A parent element can have

[Justification M Analysis : O Folio of alternative

designs ideas

: [Project plan : [Usability tests

9780170440943

O Evaluation and
assessment

A use case diagram should
show non-technical people
what the system will do
when it is completed. It
should show developers
what is expected of an
application. It does not

go into detail about how

a system will implement
functionality; it only shows
what it will do.

Actor
FIGURE 3.18

An actorin a
use case

Use case

FIGURE 3.19

A use case in a use
case diagram

[Final submission

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

more than one child element. This feature of a use case diagram is often used to show when
the same job can be performed differently by different users. It can also be used to show
different types of use cases.

Generalisations are represented by a solid, straight line with a closed arrow head, with
the child use case pointing to the parent use case. An example of a generalisation is shown in
Figure 3.20, where two actors are connected via a generalisation. The ‘Administrator’ actor
in this example can also perform the role of the ‘User’ actor. Another example is shown in
Figure 3.21, where a parent use case ‘process payment’ has child use case ‘process paypal

payment’ connected via generalisations.

O

Process payment

X
Administrator

A

L) Process PayPal
: payment
FIGURE 3.20 A generalisation / \
of actors where an administrator is A FIGURE 3.21 A generalisation
a type of user User of use cases

Include and extend

Two other types of relationships are include and extend. These are shown through the use
of dotted or dashed lines with an open arrow head connecting two use cases; they are not
used to connect actors. These relationships must be labelled to indicate whether they are an
inclusion or an extension.

When include is used, it indicates that the entirety of one use case is included in another.
This means that the process of completing a use case always requires running the functions
in the other use case at least once. For example, in Figure 3.22, the use case shows that
‘edit user’ includes ‘load user’. This is because to edit a user, that user must first be loaded.

Similarly, ‘update user details’ also includes ‘load user’, as that
functionality also requires that a user be loaded first. Notice

that the arrow head on the include relationship is pointing

dit <<include>> = load . .
Samuser neses oac tser towards the use case that is included in the other use case.
The include relationship must always be labelled using two
FIGURE 3.22 A use case using ‘include’ angled brackets on each side of the word ‘include’, as shown

in Figure 3.22.
When extend is used, this indicates that one use case can sometimes be included in
another. It is often used to represent additional or optional functionality within the system.

For example, in Figure 3.23, the ‘move image’ use case is an extension of the ‘select image’

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS ﬂ

use case, as moving the image is an action a user can choose to complete after selecting an
image. Similarly, in Figure 3.24, the ‘display help’ use case is an extension of the ‘register
user’ use case, meaning that users can choose to display help relevant to registration, but do
not necessarily need to in order to complete the registration process. Notice that, in both
examples, the arrow head on the extend relationship is pointing towards the use case that
is being extended upon. A use case should not be an extension of another use case if it is
required as part of the functionality of that use case; in these cases, the relationship should
be an ‘include’. The extend relationship must always be labelled using two angled brackets
on each side of the word ‘extend’, as shown in Figures 3.23 and 3.24.

select image <-<<extend>>--- move image register user <-<<extend>>---

FIGURE 3.23 A use case for an image system using
‘extend’. ‘extend’.

System boundary

Use case diagrams show the use cases contained with a system boundary. This makes it
clear what is included in the system being built and what is not. System boundaries are
shown by drawing a rectangle around the use cases that are relevant to the proposed system.
Actors should remain outside of the system boundary box. Although there is typically only
one system boundary, in cases where scope has been reduced, system boundary boxes can
be nested to indicate which use cases are within the current scope of the project, and which
have been deemed out of scope. This shows which use cases are part of the scope of an SRS

and which may be included in later versions of the software.

Drawing use case diagrams

For consistency, use cases are usually ordered o

)) User registration system
so that all of the main use cases are in the centre
of the diagram, typically running vertically,
from top to bottom. The order of the use — &=
cases does not normally matter, but it can be

helpful if similar actions are grouped together. __ /

Use cases that are extensions or inclusions change

of other use cases are typically placed to the | password
right of the use cases they have a relationship |
with; this often creates two vertical rows of use

cases, as shown in Figure 3.25.

/—_ register user - <<extend>>

Actors are shown on each side of the use
cases, and can be repeated (i.e. one on each
side) to avoid overlapping relationships; this
adds clarity and makes the diagram more
readable. System boundaries must be labelled,

: [Project plan [Justification M Analysis

9780170440943

* ', e R
. ban user
i

/ N
Administrator

N

N

A
/. \

display help

FIGURE 3.24 A use case for a registration system using

display help

FIGURE 3.25 A use case diagram for a user registration system

: O Folio of alternative [Usability tests O Evaluation and
designs ideas : assessment

O Final submission

ﬂ SOFTWARE DEVELOPMENT VCE UNITS 3&4

process

FIGURE 3.26
A context diagram
process

external entity

FIGURE 3.27
A context diagram
entity

-datla fIO\;v -

process

FIGURE 3.28 A context diagram with a

process, entity and data flow

typically in the top left corner or bottom right corner of the boundary. Use cases should be
labelled within the ellipse, and actors should have labels underneath the stick figure.

Context diagrams

A context diagram, sometimes referred to as a Level 0 data flow diagram, is a visualisation
of a system in its entirety that indicates the data that is passed into and out of the system.
Context diagrams are often created after use case diagrams have been drawn, as all of the
interactions a user can have with the system have been documented in the use cases. This
allows all of the actions a user can complete to be systematically translated to the data that is
needed for those actions to succeed.

Context diagrams do not typically show much detail. They are only intended to focus on
the flow of data in and out of the proposed system. This helps establish the context and the
boundaries of the software system being created.

There are three primary symbols used in context diagrams, which represent processes,

entities and data flows.

Process

A process in a context diagram is an abstract representation of the whole system being
created. Unless the proposed system is very complex, a context diagram will typically contain
only a single process. This is shown on the diagram using a circle, with the name of the
system contained within that circle.

In a context diagram, the system process is connected to external entities by the use of

data flows.

Entity
A context diagram may contain one or more entities, which are the users or external systems
that interact with the system being created. These are drawn as rectangles within the context
diagram, with the name of the entity contained within the rectangle. Much like actors in use
case diagrams, entities should not be labelled with the names of real people, but instead with
the abstract role those people have.

In a context diagram, entities can only interact with the system process and cannot
interact with each other.

Data flow

A data flow represents a single piece or logical collection of data as
it moves into and out of the system being represented in the context
diagram. These are represented by solid lines, typically curved, with an
open arrow head representing the direction of the data flow. While most
data flows are unidirectional, there are instances where data flows in
external entity ~ both directions. In these instances, both ends of the data flow should
show open arrow heads.

In a context diagram, data flows connect entities to the system
process. They must always start or end at a process, and cannot directly

connect entities to other entities.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS .

Drawing context diagrams

There are two main notation styles used to represent context diagrams: Gane-Sarson and
Yourdon-DeMarco. In this text, the Yourdon-DeMarco style is used.

When drawing context diagrams, the single process referring to the proposed system
should be displayed in the centre of the diagram, with entities appearing on each side so that
they are as balanced as possible. Fach data flow should be represented as lines, normally
curved, and must clearly indicate the direction the data is moving in. Labels on data flows
that indicate which data is transferred should appear close enough to the line that it is clear
which data flow the label is attached to.

Context diagram:
Patient information system Doctor

patient diagnosis }

patient information

/ patient history

“ selected appointment date =) /
Patient
Patient information
system
available appointment dates h «_bulk billing request
payment information
payment confirmation ™ : Y

Medicare

FIGURE 3.29 A context diagram for a patient information system

Data flow diagrams

A data flow diagram (DFD) is a graphical visualisation of the flow of information within
a system, including data provided by external entities. DFDs provide more information
than context diagrams, and are designed to show the data flowing in to and out from every
function within the system. For this reason, DFDs are normally drawn with consideration
to ‘levels’, where each level of the diagram contains more detailed information than
the previous level. Context diagrams are therefore often referred to as ‘Level 0 data flow
diagrams’, as they contain the least amount of information about the data flowing in to and
out from the system.

Level 1 DFD diagrams contain the core processes within the system. There may be
more than one of this level of diagram, depending on system complexity. The general rule

: [Project plan ™ Justification & Analysis : O Folio of alternative = [J Usability tests O Evaluation and
; designs ideas assessment

9780170440943

O Final submission

u SOFTWARE DEVELOPMENT VCE UNITS 3&4

is that a DFD should contain at least three but no more than seven to nine processes; if
there are more, they should be separated into related collections of processes across multiple
DFDs. Level 2 DFDs (and higher) contain a more detailed look at the inner workings of
the processes that were included in Level 1 DFDs. These are used when processes are quite
complex, and more detail is needed to show what the processes are doing. If two or more
levels of DFDs are created, the data that flows into and out of Level 1 DFDs must be the
same; the only change in the diagrams is the level of detail shown for selected processes. The
decision to proceed beyond Level 1 for DFDs can be separately made for each process, with
the developer deciding when the level of detail is sufficient.

Much like context diagrams, DFDs contain processes, entities and data flows and they

also show data stores, which represent where data is coming from.

Process

A process in a DFD is not the same as a process in a context diagram. While a context
diagram process represents the whole system, a process within a DFD represents a whole
function. For this reason, DFDs typically include at least as many processes as there are use
cases in the system’s use case diagram.

Processes in DFDs are shown using a circle, with the name of the process contained
within that circle. Process names are typically short and begin with a strong verb and a
singular noun, such as ‘validate PIN” or ‘print receipt’, and normally represent the functions
of the proposed system. Much like use cases, the name of a process should not be longer
than two or three words.

In a DFD, processes can be connected to external entities, other processes and data
stores. These are all connected via labelled data flows.

A process must have at least one input data flow and one output data flow. Processes must

also transform data — the data going in should not be exactly the same as the data coming out.

Entity

A DFD may contain one or more entities, which, as in context diagrams, are the users or
external systems that interact with the system being created. These are drawn as rectangles
within the DFD, with the name of the entity contained within the rectangle. Much like
actors in use case diagrams, entities should not be labelled with the names of real people,
but instead with the abstract role those people have.

In a DFD, entities can only be connected to processes via a data flow. They cannot
directly interact with data stores or other entities.

Data flow

A data flow represents a single piece or logical collection of data as it moves between entities,
processes and data stores within the system. Much like in a context diagram, data flows in a
DFD are represented by solid lines, typically curved, with an open arrow head representing
the direction of the data flow. While most data flows are unidirectional, there are instances
where data flows in both directions. In these cases, both ends of the data flow should show
open arrow heads.

In a DFD, data flows can connect entities to processes, processes to other processes, and
processes to data stores. They must always be coming from or going to a process and cannot

directly connect data stores with each other.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS ﬂ

A data store represents a collection of data that is stored in some way. Some examples of data

Data store

storage include a database, a plain text file and an XML file. Data that flows out of a data
store indicates that it is retrieved from it, whereas data flowing into the data store is assumed Data store
to be updating or adding to it.
In a DFD, data stores are represented by two parallel lines, with the name of the data
store in between them. Data stores can only be connected to processes. Each data store FIGURE 3.30

. A
should have at least one input and one output data flow. data store

Drawing data flow diagrams

Much like context diagrams, there are two main notation styles used to represent DFDs:
Gane-Sarson and Yourdon-DeMarco. In this text, the Yourdon-DeMarco style is used.

DFDs should be drawn to reduce the amount of data flow overlaps. DFDs do not need to
show entities if they have already been shown in a preceding level DFD, although they can
still be included for clarity.

When creating a DFD, the following questions should be asked:

« Where does the data come from? Does it come in as input from an entity, or does it come
from a data store?
« What happens to the data once it enters the system? Which process(es) does it flow into?

Which data stores does it flow into?

« Where does data go once it enters a process? Is it stored in a data store? Is it returned to

an entity as output?

The first step in constructing a DFD is to identify the processes that are needed to
perform the work within the system. These are often closely related to the use cases that
were included in the use case diagrams constructed in the analysis stage. At a minimum,
each use case should be represented in a DFD as a process. Some use cases will require
more than one process.

Once the processes have been identified they should first be connected to the relevant
entities that provide the data that flows into the process. They should then be connected to
other related processes and data stores, with each data flow appropriately labelled. Finally,
any outputs from the processes should be included. In general, a process requires at least one
data flow as input and at least one as output; if it has less than this, it is not a valid process.

Once all processes and DFDs have been created at Level 1, a decision can be made
about whether any process within those diagrams requires further detail. If this is the case, a
Level 2 DFD should be created to reflect that detail.

The layout of a DFD follows similar conventions to a context diagram, but as there are
more processes involved, it is sometimes difficult to keep them all centred. The general
rule is that processes are grouped in the middle of the DFD. Data flows should, as much
as possible, be separated so they do not overlap other data flows, and data stores should be
beneath the processes that use them. If entities are shown, they should be on the far left or
far right of the diagram.

Once a DFD is complete, it should be checked for accuracy. Verifying that the DFD is

accurate involves checking each process, data flow, data store and entity.

: [Project plan ™ Justification & Analysis : O Folio of alternative [0 Usability tests O Evaluation and O Final submission
i designs ideas i assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Each process should be checked to make sure it has a unique name, and that its name is
a strong verb phrase and is sufficiently descriptive. Each process must also have at least one
input data flow and one output data flow. Output data flows should have different pieces or
collections of data from the input data flows. The DFD should not be overcrowded with
processes.

Each data flow should be checked to make sure it is named after a piece of data or
collection of data; they should be noun phrases. Each data flow should connect to at least
one process. They should have a minimum amount of overlap with other data flows; it is

preferred that there is no overlap.

patient name.,' e
appointment date -
make 1 patient name, date of birth

2 appointment getpatients —— b
Appointment history ~.
information Medicare number,
patient history
[daterange doctor n&;me, t patient name, N\ .'

. ! i
available dates | Medmafe number

' .appointment date range - J patient history

get appointment
Patient dates &

doctor name, available dates Patient Doctor

information

Medicare number,
diagnosis, current date

,

diagnosis, payment information Medicare number, diagnosis

make diagnosis .

FIGURE 3.31 DFD Level 1 for a patient information system

Fach data store should be checked to make sure it has a unique name and that it is
named appropriately to the data it represents; the names should be noun phrases. Each data
store should have at least one data flow connecting it to a process.

Each external entity, if shown, should match the name of an entity in the context diagram.
The name of the entity should be unique and be a noun or noun phrase. Each entity should
be connected to at least one process by at least one data flow.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS u

Software to track music performances CASE

(O

Susan is a music director who is in charge of running music performances. She would like to STUDY
replace her current manual system of tracking music performances with a software system
so she can track concerts and performances without needing to rely on written notes. She
would like the system to run on her computer at home as well as on her mobile phone.
Susan is a relatively inexperienced technology user, but needs to be able to learn to use
the software quickly; her preference is that it will require no more than an hour of training.

The system Susan needs must enable her to add performances and concerts. If she is
adding a concert, she would also like to be able to assign a theme to it. She wants concert
themes to come from a saved list that she can add to as required. Susan also needs the
software to track the themes of each concert that she runs. She runs these twice a year, and
must not use the same theme in any given six-year period; most people will not pay to see
a concert again if the theme is the same. She tends to run her concerts in different locations
on a six-year rotation.

Susan also needs the ability to edit concerts, performances and themes. In the future
she would like the ability to upload recordings of live performances and concerts to the
system.

She would like the software to be finished before her next concert in January next year.

Susan has approached a local software developer, Donna, and asked her to create
the system for her. Donna began writing a software requirements specification (SRS) that
outlined the functional requirements, non-functional requirements, constraints and scope
of the system, which are listed below.

The functional requirements are:
« Music performances and concerts can be added (Figure 3.32).

« Music concert themes can only be attached to a concert if no concert has had that
theme in the last six years (Figure 3.32).

+ Music performances and concerts can be edited (Figure 3.33).

» Concert themes can be added (Figure 3.34).

« Concert themes can be edited (Figure 3.35).

3.1.1. Add Performance
This screen will allow the entering of performance information. Information consists
of the performance name, date and theme, as well as a unique performance ID
(numeric). Also recorded is whether the performance is a concert, and, if so, the
theme of that concert.

Performance ID (unique)

Performance Name, Performance Date
Whether it is a concert or not

* Concert Theme

¢ Input will come in from the User Interface, all items except concert theme are
required fields

* Themes should be retrieved from a file containing all available themes so a
user can select one

* No two concerts should have the same ID

s Atheme only needs to be selected if it is a concert

* No concert should be added if a concert with the same theme has occurred in
the last six years

* Once data is entered and validated, it should be saved to a performance file

A pop-up box should be displayed showing the success or failure of saving the
concert information. Once information is saved, the user should be returned to the
main menu.

FIGURE 3.32 An ‘add performance’ functional requirement for Susan’s music @

performance system

: [Project plan ™ Justification & Analysis : [0 Folio of alternative : [Usability tests O Evaluation and O Final submission
i designs ideas i assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

The non-functional requirements are:
+ Portability: the software must run on Susan’s mobile phone as well as her computer

at home.

+ Usability: Susan should take less than an hour to learn how to use the software.
The constraints are:

+ Technical: Data entry must be supported via keyboard as well as touch screen.

+ Usability: Susan has very little experience using technology.

+ Economic: Susan wants the software finished before January next year.

3.1.2. Edit Performance
Given a list of all performances, allow a user to change the information of any
particular performance.

Performance ID

The user should be able to select a performance from a list of performances
that have been saved to file.

From this, they should be taken to a screen that looks like 3.1.1. Add
Performance, with the information pre-filled into the screen.

They should be able to change the performance name, date and theme and
whether it is a concert or not, but not the performance ID.

These changes should be saved to the performance file once the save button
is pressed.

A pop-up box should be displayed showing success or failure of saving the updated
performance information. Once information is saved, the user should be returned to
the main menu.

FIGURE 3.33 An ‘edit performance’ functional requirement from Susan’s music performance system

3.1.3. Add Theme
This screen will allow the entering of theme information. Information consists of the
theme name as well as a unique theme ID (numeric).

Theme ID (unique)
Theme Name

Input will come in from the User Interface, all items are required fields.

No two themes should have the same ID, so this should be validated before
saving.

Once data is entered and validated, it should be saved to a theme file.

A pop-up box should be displayed showing the success or failure of saving the theme
information. Once information is saved, the user should be returned to the main

menu.

FIGURE 3.34 An ‘add theme’ functional requirement from Susan’s music performance system

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS m

System components that are in scope:
+ the ability to add and edit music performances and music concerts
+ the ability to add and edit concert themes.

System components that are out of scope:
+ the ability to delete music performances, concerts or themes
+ the ability to upload live recordings of performances and concerts.

Using the information already contained within the SRS, Donna must complete the SRS
by creating a use case diagram, a context diagram and relevant data flow diagrams to
represent the system.

3.1.4. Edit Theme

Given a list of all themes, allow a user to change the information of any particular
theme.

Theme name

e The user should be able to select a theme from a list of themes that have
been saved to file.

e From this, they should be taken to a screen that looks like 3.1.3. Add Theme,
with the information pre-filled into the screen.

e They should be able to change the theme name but not the theme ID.

e These changes should be saved to the theme file once the save button is
pressed.

A pop-up box should be displayed showing the success or failure of saving the
changed theme information. Once information is saved, the user should be returned
to the main menu.

FIGURE 3.35 An ‘edit theme’ functional requirement from Susan’s music performance system

Step 1: Creating a use case diagram

Determine the actors

As Susan is the only person who will use this system, there is only one actor. Susan’s role in
relation to the system is Music Director.

Determine the use cases

To create a use case diagram, Donna looks at the functional requirements of Susan’s system:

+ Music performances and concerts can be added (Figure 3.32).

+ Music concert themes can only be attached to a concert if no concert has had that
theme in the last six years (Figure 3.32).

» Music performances and concerts can be edited (Figure 3.33).

« Concert themes can be added (Figure 3.34).

« Concert themes can be edited (Figure 3.35).
Most of these functional requirements can be represented as a use case. These need to

have short names that begin with strong verbs:

» Add performance

« Add concert

« Edit performance

« Edit concert

o Add theme
« Select theme
« Edittheme @

: [Project plan [Justification M Analysis : O Folio of alternative [0 Usability tests O Evaluation and O Final submission
} designs ideas assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

It is also possible to
combine the ‘add
performance’ and ‘edit
performance’ use cases,
as well as the ‘add theme’
and ‘edit theme’, as the
functionality inside them
is very similar. For the
purposes of this example,
however, they have been
left in.

After writing out the list of potential use cases, Donna realises that concerts are just
a particular type of performance, the only difference being that a concert requires that a
theme be selected, while a performance does not. She revises her list of use cases as a result:
+ Add performance
« Edit performance
+ Select theme
+ Addtheme
« Edittheme

Determine the relationships

In this scenario, concerts are special types of performances, and not all performances are
concerts. This suggests that the relationship between a performance and a concert is an
extension, where a concert is an extension of a performance. The difference between the two
is that a concert requires that a theme is selected, while a performance does not. Therefore,
the select theme use case has an extend relationship with the add performance use case.

Determine the system boundary

All of the listed use cases are within scope of the functional requirements of the new
software. This means the system boundary will include all use cases. Donna could also
choose to include the functional requirements that are out of scope in the use case
diagram, such as the ability to upload live recordings, but this is optional.

Draw the use case diagram

Given all of the information she now has about the actors, use cases, relationships and
system boundary, Donna is able to draw the use case diagram, as shown in Figure 3.36.

Music performance tracker

= add

) ~ performance
[<<extend>>

- select theme

2o

\ <<extend>>
= edit .
Music director performance
add theme
— edit theme

FIGURE 3.36 A use case diagram for the Music Performance Tracker software

Step 2: Creating a context diagram

Determine the processes

The single process shown in the context diagram represents the whole system: Music
Performance Tracker.

Determine the entities

Donna checks the use case diagram to see which actors are involved in the system; the
only actor is the Music Director. As no data is received from any other external sources, this
must be the only entity that interacts with the music performance software.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS m
Determine the data flows

To determine the data that flows in and out of the music performance system, Donna
checks the use case diagram again for each of the use cases:
+ Add performance
« Edit performance
+ Select theme
+ Addtheme
« Edit theme
Each of these must provide data in some way to the system, and some of them must
return data back to the music director. Donna systematically considers each use case
to decide if it must be included in the context diagram. All of them except the select
theme use case require data from the user, so she uses the information in the functional
requirements to determine the following data flows:
From the Music Director to the Music Performance Tracker:
+ Add performance: performance details (performance ID, performance name, date,
whether it is a concert, theme name)
« Edit performance: performance ID, changed performance details
o Add theme: theme details (themelD, theme name)
« Edit theme: theme name, changed theme name
From the Music Performance Tracker to the Music Director:
« Add performance: Theme re-used error
+ Add performance: Performance added success or fail message
« Edit performance: Theme re-used error
+ Edit performance: Performance edited success or fail message
+ Add theme: Theme added success or fail message
» Edit theme: Theme edited success or fail message

Draw the context diagram

Given all of the information she now has about the process, entities and data flows, Donna
is able to draw the context diagram, as shown in Figure 3.37.

performance details

e e FIGURE 3.37
= theme ID, theme name A context diagram
: : oL L for the Music
performancelD, %) theme name, changed theme name Performance Tracker
changed performance : \) software
details
Music director Music performance tracker Music director

. theme edited success or

3 . performance edited success or
_ fail message

* fail message
theme re-used error 2 i theme added success or
i g fail message

performance added success
or fail message

©

: [Project plan & Justification & Analysis : O Folio of alternative O Usability tests O Evaluation and O Final submission

designs ideas assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Step 3: Creating data flow diagrams

Determine the processes

Donna uses the use case diagram again to determine the processes that must exist in her
data flow diagram. Each of the use cases must have a corresponding process in the data
flow diagram:

+ Add performance

+ Edit performance

+ Selecttheme

+ Add theme

« Edittheme

Determine the entities
Donna checks the context diagram and only a single entity is needed: Music Director.
Determine the data stores

Before determining which data flows are needed, Donna must consider where data will
be stored. Performances, including concerts, can be stored in a single data store. Themes
should be stored in a different data store, as they are a different collection of data to the

performance data.

Donna therefore decides that there will be two data stores: Performances and Themes.

Determine the data flows

Each of the processes must now be considered in relation to the data they receive from
external entities, the data they pass to other processes and the data they store and retrieve

from the data stores.

Donna checks the context diagram to look at each of the data flows she represented
going to the system. This takes quite a while, as she must make sure she shows the
movement of every piece of data to and from processes, data stores and entities.

5 Add theme i

7 " ”Edit pe.ruformar.muce

To

Music Director

store

Themes data store

Music Director

Performance added
success or fail message

Reason

Output to the Music
Director when adding a

performance

Theme re-used error

Performance details

or fail message

Theme ID, theme
name

Performance edited
success or fail message

Output to the Music
Director if re-using a
theme before 6 years
is up

Sending the performance
data to be saved

to get a valid theme ID

Output to the Music

Director when adding a
theme

Sending a new theme

and theme ID to the data
store to be saved

Output to the Music

Director when editing a
performance

9780170440943

From To
8 Edit performance Music Director
9 Edit performance ~ Performances data

store

Performances data
store

" Edit performance Select theme

12 Edittheme M

e e

Themes data store

Themes data store

Add performance

! Addtheme et

Edit performance

Edit theme

Edit performance
store

20 Select theme

Themes data store

5Thé.r.;.;.s.dat;.;..t.(.)re | Edlttheme s

22 Themes data store Select theme

changed performance

details

Theme name, changed
theme name

name

Theme ID

: [Project plan [Justification M Analysis

9780170440943

: O Folio of alternative
designs ideas

CHAPTER 3 » SOFTWARE ANALYSIS
SRR 107

Output to the Music
Director if the changed
theme was used in the

To retrieve the
performance details when
a performance is selected

Director when editing a
theme

Sena.i"n-g the cnf-\.anged" 5

theme details to be saved

when a theme is selected
to be edited

performance details to
be saved

performance exists and
returning its details if it
does

to be edited
Providing a theme ID for

O Usability tests

O Evaluation and
ass sment

O Final submission

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Music performance tracker

Draw the data flow diagram(s)

Donna decides that she will only use one data flow diagram, as there are only five processes.
Given all of the information she now has about the process, entities, data stores and data
flows, she draws this data flow diagram, as shown in Figure 3.38.

theme ID™~

Level 1: Data flow diagram :
5 / th g " theme added success/fail message
J _theme “ ~
name
performance added success/fail message : 5
P e =@l S . _ add P e
_ performance theme ' theme theme details -
theme name - Nt
~—re-used error / h
Music director : SIS SEE _——IMusic director
theme re-used e, | AT
e theme ID % | changed theme name
| S edit \ ' ! s
performance edited performance I | [theme ed|Fed
success/fail message I | \ | . __ success/fail message
—_— . performance | \ ! edit
5 / \ details theme | theme ID, theme
changed { 1 [name | theme name
erformance | / | \ I [vl
Z il : \ theme ID | theme .~ |
etails | performance / | \ i ey .
! ID Iperformance D, { | " theme ID,
\performance details | [[theme ID changed theme name
| / | ‘ = /
i / | | | 4
.J b %
performances themes

FIGURE 3.38 A data flow diagram for the Music Performance Tracker software

A common application of
encryption is to encrypt
messages using a digital
signature. Digital signatures
give people the confidence
that the message they
receive is authentic.

Security considerations

In an increasingly connected world, security considerations for software have become
paramount for any business, large or small. The risk of a software solution being compromised
is very high, with data breaches having widespread repercussions ranging from loss of
reputation to financial loss and possible violation of legal regulations. For example, some
countries hold businesses legally responsible for a system that does not comply with laws
regarding the storage and communication of electronic data. Programmers therefore have
an obligation to protect the security of data within a system as much as possible. This can
involve implementing security features such as encryption for data storage and transfer, as
well as putting in place authentication protocols to access elements of the software or the

software solution as a whole.

Encryption

Encryption is the process by which plain text data is encoded — scrambled — so that it is
unreadable by unauthorised applications or people. Once encrypted, this data is referred to
as cipher text data. Plain text data is encrypted using a key, and the resulting cipher text
data can only be decrypted by a person or application that has a decryption key. Encryption
is typically used to protect data when it is stored on a computer system, as well as to protect

data as it is transferred over unsecured networks.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS m

Shutterstock.com/Rawpixel.com

FIGURE 3.39 Encryption is a common method of securing data.

There are two main algorithms used to encrypt data. The first involves using symmetric
key encryption, where the key used to encrypt the data is the key that is also used to decrypt
that data. An analogy to describe this is when a code is needed to open a safe, and anyone
who has that code can open the safe and access its contents.

Examples of popular symmetric key encryption algorithms are AES, Twofish, Blowfish,
3DES and RC4.

A second type of encryption algorithm is public key encryption, also known as
asymmetric key encryption, where the key used to encrypt data is not the same as the key
that is used to decrypt that data. In this algorithm, a public key is used to encrypt the data.
This key can be used by any person or application and is generally widely known. The data
can only be decrypted using a private key, which is known only to the recipient person or
application. Public key encryption is used widely in the computing industry, such as with
Transport Layer Security (TLS) and Secure Sockets Layer (SSL). This type of encryption
is typically used when data is transferred over an open networked environment, such as the
Internet. A popular public key encryption algorithm is RSA, which is the standard used for
data transfers via the Internet. Other public key encryption algorithms are Diffie-Hellman,
ECC and DSA.

Implementing encryption algorithms

Encryption algorithms are quite complex to implement and it is critically important that the
implementation is accurate and bug-free. A faulty algorithm could, at best, result in data not
being able to be decrypted and, at worst, allow data to be decrypted easily by unauthorised
people or applications.

Most programming languages have built-in functions or third-party packages that provide
the ability to implement encryption without needing to write the encryption algorithm
yourself. For example, Python has libraries that include implementations of encryption
algorithms such as AES and RSA. Similarly, Visual Basic contains classes that implement
3DES and AES.

An example of how to represent encryption in pseudocode is shown in Figures 3.40

and 3.41.

: © Project plan M Justification M Analysis : O Folio of alternative 0 Usability tests

designs ideas

9780170440943

O Evaluation and
assessment

THINK ABOUT
SOFTWARE

33
DEVELOPMENT

Bluetooth is
commonly used to
transfer data between
systems, particularly
mobile phones.
Conduct research

on which type of

encryption algorithm

is typically used
for Bluetooth data
encryption.

The AES encryption
algorithm is one of the
most popular symmetric
encryption algorithms used
in the computing industry.
Many financial and
government institutions
use this type of encryption.
AES encryption typically
uses 128-bit keys, but

stronger versions can a|so

use 192-bit and 256-bit.

TLS and SSL are security
protocols that are used over
computer networks. These
protocols are typically
used by web browsers

and email programs to
provide encryption over
the Internet. SSL is the
predecessor to TLS; TLS
was based on SSL 3.0. This
means that TLS should be
used over SSL for relevant
applications unless the use
of SSL is a constraint.

[Final submission

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

| ALGORITHM encryptData (plainTextData)
. BEGIN

! ENCRYPT (plainTextData) using 3DES
. END

- ALGORITHM decryptData (encryptedCipherText)
. BEGIN

plainTextData <« DECRYPT (encryptedCipherText) using 3DES
RETURN plainTextData

FIGURE 3.40 Representing symmetric key encryption in pseudocode

ALGORITHM encryptData(plainTextData, publicKey)
| BEGIN

I ENCRYPT (plainTextData, publicKey) using RSA
. END

- ALGORITHM decryptData (encryptedCipherText, privateKey)
. BEGIN

plainTextData <« DECRYPT (encryptedCipherText, privateKey) using RSA

i RETURN plainTextData
. END

FIGURE 3.41 Representing public key encryption in pseudocode

Authentication

Aside from encryption, another method of securing data to reduce the risk of data breaches
is to integrate authentication functionality into a software solution. Authentication in
computing can have two meanings: one is to prove an identity, the other is to prove that a
user has a right to access a software system. For the purposes of VCE Software Development,
authentication should be interpreted as the latter: authorisation.

Authentication methods can range from the simplest, single-factor authentication to

more complex multi-factor authentication.
pl Iti-factor authenticat

Single-factor authentication

This is the simplest method of authentication, where something you know, typically a username
and password, is required to log in to a software solution. Once logged in, users can have full
access or restricted access to the functionality within the software, depending on the level
of access they have been granted. This method of authentication is increasingly considered

inadequate due to the prevalence of password cracking tools available on the Internet.

Two-factor authentication

This type of authentication involves something you know as well as something you have.
Two-factor authentication, also known as two-step verification, typically involves the user
possessing some physical item alongside a password that they must use to access a particular
piece of software. One example of two-factor authentication is the process you take to
withdraw money from an ATM. To do this, you traditionally must have a physical card in
your possession as well as a password, which in this instance is your PIN. Another common
example of two-factor authentication is the use of a secondary application to provide a single-
use verification code to the user that changes frequently, such as every 60 seconds. The user

must provide this alongside a username and password to gain access to the relevant software.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS m

Google Authenticator

is an application that
implements two-factor
authentication for users.
It uses a Time-based
One-Time Password
algorithm (TOTP) for
authenticating users of
mobile applications.

THINK ABOUT ‘ 34
SOFTWARE

DEVELOPMENT

Alamy Stock Photo/Cristian Dina

Research Time-based
One-Time Password
(TOTP) algorithms.
How do they work?
Aside from Google,
The ease of implementing two-factor authentication is highly dependent on the RELGEECHEEREELIES
use this algorithm

to authenticate

FIGURE 3.42 Verification codes are required for two-factor

authentication.

programming language selected. Some languages have third-party packages and libraries

that allow for ‘plug-in” style inclusion into a software solution, such as Swift and Python, but | STHSR.

this is not necessarily the case in all programming languages. is this method of

authentication?

Multi-factor authentication

Multi-factor = authentication typically involves a user
providing three or more pieces of evidence to prove that
they are who they say they are. Typically, these involve
something you know, something you have and something
you are. It can also involve somewhere you are. As in single-
factor and two-factor authentication, something you know
is typically a username and password and something you
have is typically a physical or digital authenticator that
acts as a secondary device providing single-use passwords.
The third element, something you are, typically uses one
or more physical characteristics of the user to authenticate

Shutterstockkcom/nﬁetamorworks

them on the system, such as checking against biometric

data. Biometric data is data that is obtained from humans, =~ FIGURE 3.43 Biometric data can involve facial or voice

which can include fingerprints, iris scanning, facial —recegnition.

recognition, palm prints, hand geometry and DNA matching. It can also involve behavioural

characteristics, such as typing speed, key-press patterns, gait patterns and voice recognition. N LAcT
The fourth element, somewhere you are, involves location-based factors that involves the BRI

physical location of the user. For example, a user may only be able to access a system if they — BJAYIK[ZV[3\

are on a hard-wired network within an organisation, or within a range of GPS coordinates.
What are some of the

The complexity of implementing multi-factor authentication is tied to the complexity of RIS

the biometric data that is required for authentication to be successful. These methods are BELCRUVIEREEET
authentication

typically very expensive, and tend to be implemented on systems that are highly sensitive or "
PrOCeSSeS.

require tight security.

: [Project plan ™ Justification & Analysis : O Folio of alternative [0 Usability tests O Evaluation and O Final submission
i designs ideas i assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Next steps

In this chapter, we discussed the features of project management, and the need for regular
monitoring and adjustment. A log or weblog (blog) of changes is to be kept throughout
Unit 3 and Unit 4.

Next, we discussed the data collection methods available to analyse client requirements,
scope of the solution, functional and non-functional requirements and the various constraints
that can impact on a project.

Finally, we discussed data security, with regard to how it relates to you and your file
management requirements.

Your next step, upon completion of the chapter summary, is to work towards completion
and submission of the solution analysis for Unit 3, Outcome 2, according to your teacher’s
instructions.

As you collect your data, take steps to protect your respondents and subjects. You should
begin to think about relevant constraints, the scope of the specification and appropriate
analytical diagrams to represent data flow and users. Chapter 4 begins with a discussion of

the software solution design requirements for Unit 3, Outcome 2.

9780170440943

Essential terms

actor an entity that can interact with the software solution as shown in a use case diagram

analysis stage the stage of the problem-solving methodology where solution requirements,
constraints and scope are determined

CHAPTE R association a relationship between two elements in a use case diagram
SU M MARY asymmetric key encryption see public key encryption

biometric data data that is obtained from humans, which can include fingerprints, iris
scanning, facial recognition, palm prints, hand geometry and DNA matching, as well as
behavioural characteristics such as typing speed, key-press patterns, gait patterns and voice
recognition

cipher text data data that has been encoded so that it is unreadable by unauthorised
applications or people

c|arity the extent to which a product is coherent and intelligible
close-ended questions questions that can be answered with a finite set of responses

concepts (Project management) the milestones and dependencies within a project
timeline

concurrent|y when a task is carried out at the same time as another task
constraints factors that may limit or restrict solution requirements

context diagram a visualisation of a system in its entirety that indicates the data that is
passed into and out of the system

critical Path the shortest possible time in which a project can be completed
data raw, unprocessed facts and figures

data flow the movement of a piece or collection of data within an information system, as
shown in context diagrams and data flow diagrams (DFDs)

data flow diagram (DFD) a graphical visualisation of the flow of information within a
system, including data provided by external entities

data store a representation of a collection of data that is stored in some way within a system
decrypt to decode encrypted cipher text data

design stage the stage of the problem-solving methodology where the function and
appearance of a solution are planned, and evaluation criteria created

encrypt to encode plain text data so that it cannot be read by unauthorised applications or

people
encryption the process of encrypting data
entity the users or external systems that interact with the system being created

evaluation criteria the benchmark or set of standards by which a solution or design is
measured

event a special type of method that is called when an object’s state changes

extend a relationship between use cases where one use case has optional or additional
functionality, which is represented in a use case diagram as a second use case

fit for purpose to be well suited for a role or purpose
full access access to all of the functionality of a software solution without any restrictions

functional requirements the desired operations of a program that have specified inputs,

behaviours and outputs

functionality the extent to which a solution is suited to its purpose

Gantt chart shows the progress of a project by placing tasks on a timeline, often with
comments or annotations

genera“sation a parent—child relationship between two elements in a use case diagram

CHAPTE R include a relationship between use cases where one use case is tied to, or relies upon, the
SU II I ! RY functionality contained within another use case

interview a face-to-face meeting between people for consultative purposes
maintainability how easy a solution is to look after once it has been put in place

non-functional requirements qualitative requirements of a solution, often tied to solution
constraints

observation a method of data collection that involves physically observing how a system
operates and how it is used

open-ended questions questions where the number of potential answers is infinite
plain text data data that can be read without any manipulation

portability how easily a solution is able to be used in different operating environments
predecessor a task that must be completed before another one can be performed

private key an encryption key used in public key encryption that is only known to the
recipient person or application

problem-solving methodology (PSM) an approach that develops the stages involved in

solving a problem
process (context diagram) an abstract representation of the whole system being created
process (data flow diagram) an abstract representation of a function within a system

processes (project management) task identification, sequencing and allocation of time
and resources within a project timeline

project management a method of recording the progress of a project and managing
resources to operate within time, resource and cost availability

pub|ic key an encryption key used in public key encryption that is known by any person or
application

pub|ic key encryption a type of encryption where the key used to encrypt the data is
different to the key that is used to decrypt that data

qualitative data data that consists of descriptive details, usually gathered via surveys or
interviews

quantitative data data that can be easily processed in a statistical manner, usually
composed of definite numbers

relationship the connections between elements within a use case diagram

reliability how much a solution can be depended upon to function as designed, and for how
long

report a written document providing a summary or finding in relation to the context or
system being analysed

restricted access access to functionality within a software solution is limited or restricted
based on user or group permissions

robustness how well a software solution responds to errors that occur when the software is

being used

Secure Sockets Layer (SSL) an obsolete security protocol designed to provide secure
transfer of data over computer networks

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS

slack time the length of time that a task can run overtime before affecting other tasks
software programs used by a computer

software developer a human who participates in design and creation of software programs, typically by writing programming
code

software requirements specification (SRS) a single document that contains the outcomes of the analysis stage of the
problem-solving methodology, including scope, constraints, functional requirements and non-functional requirements

successor a task that must be completed after another task
survey a set of questions that ask for a response to be selected from a list of alternatives

symmetric key encryption a type of encryption where the key used to encrypt the data is also the key that is used to
decrypt that data

system boundary a rectangle around relevant use cases that indicate the use cases that are within the scope of the solution
Transport Layer Security (TLS) a security protocol designed to provide secure transfer of data over computer networks
two-factor authentication verification that involves users possessing two forms of information to confirm their identity
Unified Modellign Language (UML) a general-purpose visual modelling language

uptime the time during which a machine, solution or application is operational

usability the extent to which a system is easy to learn and use

use case a representation of the transactions or functions a user (actor) can complete in a system, as shown in a use case
diagram

use case diagram (UCD) a method of describing how a user interacts with a system, using Unified Modelling Language (UML)

username and password a username is a name that uniquely identifies a person in a software solution; a password is a secret
word, phrase or set of characters that allows that person access

work breakdown structure (WBS) an often hierarchical breakdown of a project that organises the work to be done into
manageable sections, often displayed as a visual outline or map

Important facts

1 Project management is the practice of applying techniques, processes, tools, knowledge and skills to deliver a
solution. Features of project management include identification of tasks, sequencing, time allocation, milestones,
dependencies and critical path.

Critical path indicates the shortest time possible to complete the project.

If there is any change on the critical path, the timing of the entire project is affected.
Data collection involves surveys, interviews, reports and observations.

A survey is a set of questions that ask for a response from a user.

Close-ended questions in surveys are where the number of responses are finite.

Open-ended questions in surveys are where the number of responses are infinite.

O N O o N W DN

Quantitative data contains information that is easily collated, such as values, numbers or counts; typically this involves
numeric variables.

9 Qualitative data contains information that is not easily measured, such as opinions and qualities.
10 Surveys are relatively inexpensive, and results can be immediately collected.

11 Processing survey results can take time if open-ended questions are used.

12 People are not always truthful when answering surveys.

13 Interviews are usually conducted face to face, and can be one-on-one or in groups.

9780170440943

CHAPTER
SUMMARY

14 Interviews can take a lot of time to complete, but allow in-depth data to be collected.

15 Interviews are very useful for eliciting feelings, attitudes, judgements and opinions
that are too complex to easily record in a survey.

16 Reports are written documents providing summaries or findings in relation to a system

being analysed.

17 Reports include error reports, customer complaint summaries, uptime reports and
system performance reports.

18 The types of reports collected will vary depending on what is most relevant for the
proposed system.

19 Reports are useful as they are often pre-prepared, which can save time and money.

20 A disadvantage of reports is that the data may have been manipulated to present a
: 8 B Y, p p
particular point of view.

21 Using data from reports can be risky if the source of those reports is not reliable.
22 Observations involve physically observing how a system operates and is used.

23 Observations are considered unbiased, as information can be gathered without asking
for an opinion or judgement.

24 Observations can be time-consuming, and they may not always provide the
information needed due to being performed at an inopportune time.

25 Functional requirements are part of the solution required and directly relate to what a
solution will do.

26 Functional requirements are typically described in terms of required inputs, sequence
of operations and expected outputs.

27 Non-functional requirements are qualities and aspects of the solution that are desired
but do not affect what the solution does.

28 Non-functional requirements are often tied to the constraints of the system.

29 Non-functional requirements are described in terms of usability, reliability,
portability, robustness and maintainability.

30 Determining non-functional requirements most often involves client interviews and
observations.

31 Usabi“ty relates to how easy a system is to learn and use.

32 Reliability relates to how much, and for how long, a system can be depended upon to
function as designed.

33 Portabi“ty relates to how easily software can be used in different operating
environments.

34 Robustness relates to how well a software solution responds to errors that occur while
the software is being used.

35 Maintainabi"ty relates to how easy the software is to look after once it is put in place.

36 A software requirements specification (SRS) is a single document that outlines
all of the elements considered in the analysis stage: constraints, scope, functional
requirements and non-functional requirements.

37 An SRS provides all of the required information about the proposed system needed in
order to design the system.

38 An SRS should contain a cover page, table of contents, numbered sections, headings
and subheadings, page numbers and relevant appendices.

39 Three methods of depicting interfaces between solutions are use case diagrams,
context diagrams and data flow diagrams.

9780170440943

CHAPTER 3 » SOFTWARE ANALYSIS

40 A use case diagram visually describes how a user interacts with a system.

41 Use cases include actors who have relationships with use cases.

42 An actor represents an entity that can interact with the functionality within software.

43 Actors should be described in terms of roles rather than real people.

44 Actors are represented as stick figures in use case diagrams.

45 Use cases describe transactions or functions an actor can complete on a system.

46 Use cases are drawn using an ellipse with the name of the use case written inside.

47 Use cases should be described using strong verbs to describe the action or function being represented.
48 Relationships represent the connections between elements in a use case diagram.

49 Relationships can exist between actors and use cases, actors and other actors, and between two use cases.
50 Associations are the standard form of representing a relationship.

51 Associations are represented as solid, straight lines.

52 Generalisations are a type of relationship that is considered parent-child.

53 Generalisations are represented as solid, straight lines with a closed arrow head pointing from child to parent.
54 Include and extend are special types of relationships in a use case diagram.

55 The include relationship represents a use case that is entirely included in another use case.

56 The extend relationship represents a use case that provides additional and/or optional functionality within a system that is
connected to a use case, but not always run.

57 Include and extend relationships are represented with dashed or dotted lines and open arrow heads pointing to the relevant
use case.

58 System boundaries make clear what is included within a system and what is not.

59 System boundaries are useful to show the scope of a system.

60 Context diagrams provide a visualisation of data that is passed into and out of a system.

61 Context diagrams are brief and do not show much detail, Focusing only on the flow of data.

62 Three primary components of a context diagram are processes, entities and data flows.

63 A context diagram process is an abstract representation of the whole system.

64 A context diagram entity is a user or external system that interacts with the system being described.

65 A context diagram data flow represents a single piece or logical collection of data as it moves into and out of the system
represented.

66 Two notation sty|es used to represent context diagrams and data flow diagrams are Gane-Sarson and Yourdon-DeMarco.

67 Data flow diagrams (DFDs) are visualisations of the flow of information within a system, including data provided by
external entities.

68 DFDs provide more information than context diagrams, as they show all of the processes that occur within a system.
69 Four primary components of DFDs are processes, entities, data flows and data stores.

70 A DFD process represents a function or method within the system.

71 A DFD entity represents a user or external system that interacts with the system.

72 A DFD data flow represents a single piece or logical collection of data as it moves between entities, processes and data
stores within the system.

73 A DFD data store represents a collection of data that is stored in some way within the system.
74 The repercussions of data breaches include loss of reputation, financial loss and possible violation of legal regulations.

75 Programmers are obliged to protect the security of data as much as possible within a software solution.

9780170440943

76 Encryption is the process by which plain text data is encoded so that it cannot be read
by unauthorised applications or people.

77 Once encrypted, data is referred to as cipher text data.
78 Encryption typically involves a key that encrypts the text, and a key that decrypts
C HAPTE R the resulting cipher text.

SU M MARY 79 Encryption keys are the same as decryption keys in symmetric key encryption.
80 Encryption keys are different to decryption keys in public key encryption.

81 Transport Layer Security (TLS) and Secure Sockets Layer (SSL) are protocols

designed to provide secure transfer of data over computer networks.
82 TLS is widely used over SSL; SSL is considered obsolete.

83 Most programming languages have built-in functions, third-party packages or plug-ins
that provide the ability to encrypt and decrypt data.

84 Another method of securing data is to use authentication.
85 Authentication is also known as authorisation.

86 Sing|e-factor authentication typically relies on user knowledge of a username and
password.

87 Two-factor authentication uses two methods of authorising a user, such as knowing a
password and possessing a swipe-card authenticator.

88 Multi-factor authentication involves three or more methods of authorising a user,
such as using a password, possessing an authenticator and using biometric data or
location mapping.

89 Biometric data includes fingerprints, iris scans, facial recognition, DNA matching, palm
prints, hand geometry.

90 Behavioural characteristics include typing speed, gait patterns, key press patterns and
voice recognition.

91 Implementing multi-factor authentication is as complex as the elements that are used
to authenticate; implementation of fingerprint scanning would be simpler than DNA
matching, for example.

9780170440943

TEST YOUR
KNOWLEDGE

What is a software solution?

Review quiz

1 What is meant by a software solution?
Project management D

2 What is meant by project management? T
3 Identify two consequences of a badly managed project. -----

4 Why is a Gantt Chart used?
5 Differentiate between concepts and processes in project management. s s

6 Differentiate between predecessors and successors on a Gantt Chart.

Collecting data C %

7 How does a survey differ from an interview?

8 When would an observation be a preferred method of collecting data? =~~~
9 What are three advantages of an interview? .
10 What are two disadvantages of using reports as part of data collection? ::::

Functional and non-functional requirements S

11 How is a functional requirement different to a non-functional requirement?

12 Categorise each of these requirements as functional or non-functional:
a A report must print to a printer.

b Allfontcolours must be green.

¢ Adiscount must be applied to a produect.

d The drone must be able to navigate a path throughamaze.

e The body mass index of a person will be calculated.

f Atypical six-year old should understand all of the words displayed. oo

g Button sizes must be big enough for touch-screen capability.

h Inputcan be via voice or keyboard.

13 What is the difference between reliability and robustness?

14 What does it mean for a software solution to be maintainable?

15 What does it mean for a software solution to beusable? ..o

16 Explain portability in terms of non-functional requirements.

: [Project plan [Justification o Analysis O Folio of alternative : [Usability tests O Evaluation and : O Final submission

designs ideas

assessment

CHAPTER 3 » SOFTWARE ANALYSIS 119

9780170440943

TEST YOUR
KNOWLEDGE

........... Software requirements specifications

........... 17 Why are software requirements specifications written?

"""""" 18 What is contained within an SRS?

----------- Interfaces between solutions, users and networks

19 What is the purpose of a use case diagram?

----------- 20 What is the purpose of a context diagram?

| What is the purpose of a data flow diagram?

22 Explain the difference between include and extend in a use case diagram.

........... 23 Explain the difference between an association and a generalisation in a use case diagram.

24 How does a process differ between context diagrams and data flow diagrams?

25 A proposed food ordering system has two types of users, a chef and a server. The server places

food orders given to them by customers. A chef confirms orders and flags them as cooked so a
S server knows they can take the food to the customer. Once a server has delivered the food to
........... the customer, they remove the order from the queue.

a Draw a use case diagram to represent this system.

........... b Draw a context diagram to represent this system.
"""""" ¢ Draw a data flow diagram to represent this system.
----------- Security considerations

----------- 26 What is the difference between symmetric key encryption and public key encryption?

,,,,,,,,,,, 27 Which is best to use for security on a web server, TLS or SSL? Why?

28 What type of authentication involves entering a username and password?

---------- 29 When would it be advisable to use two-factor authentication over single—Factor authentication?

........... 30 When would it be advisable to use multi-factor authentication over two-factor authentication?

120 SOFTWARE DEVELOPMENT VCE UNITS 3&4

9780170440943

APPLY YOUR
KNOWLEDGE

1 Consider the problem, opportunity or need you have selected for your School Assessed

Task (SAT).

2 Construct a Gantt chart with tasks, milestones and dependencies, including predecessors and
successors.

3 Ensure you have collected all relevant data for your solution. Your constraints and scope
should have been included in your design brief, but if not, make sure you have documented the
following:

a Constraints: ensure you have considered technical, economic, social, legal and usability
constraints.

b Scope: ensure you have considered the constraints of your system when deciding what is in
scope and what is out of scope.
4 Inyour software requirements specification, include all elements related to the constraints and

scope that were outlined in your design brief. Expand on any element where required.

5 Collect data in order to determine the functional and non-functional requirements of your
chosen system. This will likely involve client and/or user interviews, observations, surveys and
collecting reports.

6 Add the functional and non-functional requirements to your software requirements
specification.

7 Using the data you have documented in your SRS in regard to constraints, scope, functional
requirements and non-functional requirements:

a create a use case diagram for your proposed software solution.
b create a context diagram for your proposed software solution.

c create a relevant number of data flow diagrams for your proposed software solution.

8 Attach appendices containing any additional information that is required to interpret elements

of your SRS.

. © Project plan & Justification o Analysis i O Folio of alternative i [Usability tests O Evaluation and i O Final submission
£ i designs ideas : B assessment 2

CHAPTER 3 » SOFTWARE ANALYSIS 121

9780170440943

iStock.com/Rawpixel

CHAPTER

KEY KNOWLEDGE

After completing this chapter,
you will be able to demonstrate

knowledge of:

Approaches to problem solving

* techniques for generating design
ideas

criteria for evaluating the alternative

design ideas and the efficiency and
effectiveness of solutions

methods of expressing software
designs using data dictionaries,
mock-ups, object descriptions and
pseudocode

factors influencing the design of
solutions, including affordance,
interoperability, marketability,
security and usability

characteristics of user experiences,
including efficient and effective user

interfaces

development model approaches,
including agile, spiral and waterfall.

Interactions and impact

+ goals and objectives of organisations

and information systems

key legal requirements relating to
the ownership and privacy of data
and information.

Reproduced from the VCE Applied Computing Study
Design (2020 - A; used with permission

Software
development:
Software design

This chapter concludes the discussion of the theory and skills required
for Unit 3, Outcome 2.

You will be introduced to generating design ideas, software design,
evaluating design options and user experience criteria, as well as privacy
and data ownership considerations.

By the end of this chapter, you will be ready to choose one design idea
based on your design criteria to further develop in Unit 4, to identify
legal requirements and to report your progress.

This chapter concludes the theory and skills needed for Unit 3,
Outcome 2. Having covered identification and analysis of client and
software requirements in chapter 3, students are now introduced to
software design, user experience, development model approaches,
goals and objectives of information systems, legal requirements and
evaluation of alternative design ideas with consideration of efficiency
and effectiveness.

By the end of this chapter, students should be equipped to generate
several alternative designs and choose a preferred software design
according to a evaluation criteria, be ready to use software development
tools, and understand user experience characteristics and legal
requirements for user data and information.

Note: Students will develop their own software product for the SAT,
including identifying the software solution.

-

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN m

Continuing Unit 3, Outcome 2

In Chapter 3, you learned how to create a software requirements specification (SRS) after
consulting widely and analysing the need or opportunity.

The SRS provides the framework for you to consider when designing your solutions.
Your design options will address factors identified in the SRS. These factors are all relevant
preparation for Unit 3, Outcome 2. For this Outcome, you will fully specify one design that
that has been chosen from the several alternative designs you have created and documented.

This chapter begins with a discussion of how to design a software solution and to identify
the relevant elements that will lead to a successful project. Next, we will talk about how to
determine the characteristics of a positive user experience, both in terms of efficiency and
effectiveness of the user interface. We will also talk about approaches by different software
development models, types of information system goals and objectives, and important legal
requirements for the privacy of data and information that apply to your Outcome.

Software User Software
. Generating Evaluating Evaluating Solution . development
solution . s) - ~ experience .
e design ideas design ideas solutions design factors - life cycle
specifications characteristics models

FIGURE 4.1 Chapter map

Software solution specifications

In order to achieve a successtul software design, the software developer must satisfy all design
specifications and parameters. The measure for successful delivery of a software product
is a combination of meeting user expectations and requirements as detailed in the SRS,
followed by an evaluation of the client response to the final product. This is usually assessed
through client or user opinion surveys, user interviews and by observing users.

If a feature or function is not included in the specifications, it will not be in the design
and it will not be an evaluated design criterion. The designed software solution is created as a
response to the SRS. Other factors, if discovered after the SRS has been finalised, can create
chaos, if not well documented. Your project management progress report and Gantt chart
should include any changes to the SRS and to the design brief. Any subsequent changes to
the software development process have implications for the evaluation of the final product

and must be included.

Generating design ideas

Generating design ideas requires a logical approach as well as a creative mind. These
thinking skills are referred to as convergent thinking and divergent thinking respectively.
There are several aspects to design that need to be considered. The estimated experience of
the expected users may be influenced by the previous experience of the software designers
and developers. Generally, there is low to very low awareness of accessibility issues when
designing software applications. Designing products that can be used by people with a wide

range of abilities and disabilities is called universal design.

[Justification M Analysis . © Folio of alternative

; design ideas

: [Project plan O Usability tests

9780170440943

O Evaluation and
assessment

Goals and Ownership
objectives of and privacy
information legal
systems requirements

Some individuals use
specialised software and
hardware called assistive
technology to operate
software products. For
example, a person who is
blind might use a screen
reader program with a
speech synthesiser to
access the content and
functionality of a program.

O Final submission

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Divergent thinking is
sometimes described as
finding solutions ‘outside
the box'.

Convergent thinking

Convergent thinking involves coming up with a single, well-established answer to a
problem. All avenues are explored when considering possible solutions, and the best solution
is found, ignoring all constraints. This type of thinking involves completing research, such as
looking at other software programs that achieve similar purposes, or visiting other companies
in the same field to interview or observe their employees. Convergent thinking results in
design ideas that are based on other, proven ideas. Data is used from interviews, reports,
observations and surveys (see chapter 3), and this data is extrapolated to provide an optimal
solution to the problem.

Divergent thinking

Divergent thinking is more creative than convergent thinking. It involves exploring many
possible solutions using spontaneous, free-flowing techniques, such as mind mapping,
brainstorming, meditation and role-playing. Divergent thinking involves considering as
many possible solutions as you can in a given amount of time. Problems are often explored
using stream-of-consciousness techniques. These techniques typically produce unexpected
solutions that may not necessarily have been considered using convergent thinking
techniques.

Combining thinking skills

On their own, neither convergent thinking nor divergent thinking are likely to produce the
most efficient and effective design idea. Convergent thinking ignores constraints that are
likely non-negotiable, and divergent thinking may never produce an optimal result. The
most effective method of generating design ideas is to use a combination of these thinking

skills to produce design ideas that are worth further exploration.

Techniques for generating design ideas

There are several techniques for generating a range of creative and appropriate design ideas.
The Study Design does not list specific design techniques that you must know, but the
techniques discussed here are the most common techniques. They all aim to find the most
effective and efficient software solution to solve a client problem. Your techniques should

take into account the functional and non-functional requirements of your solution.

Functional and non-functional requirements

1 Using the definitions of both terms as set out in chapter 3 as a guide to help you, identify:
a the functional requirements of your solution
b the non-functional requirements of your solution.
2 Justify your decision.
Discuss the functional and non-functional requirements of your solution in class with others.

4 Suggest how a design technique could take into account both functional and non-functional
requirements.

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN E

Brainstorming

Brainstorming is a process where ideas are presented in a non-judgemental, spontaneous, -~ - - -
unstructured and admittedly somewhat haphazard process. The only rule is that no idea is . . . = = .
criticised or rejected; every idea, no matter how outrageous or silly, goes onto a list of possible
solutions. Ity not to hamper your imagination by rejecting ideas too soon. '

Participants must have no fear of being judged, making mistakes or breaking rules. While .
some ideas may turn out to be ridiculous, sometimes a half-baked, half-comical concept may in
fact turn out to be creative genius, or it may stimulate a related idea that turns out to be perfect.

There are certain rules that you need to follow when running a brainstorming session.
The most important one is that no one judges any contribution — all suggestions must be
accepted. An idea that may seem slightly crazy to begin with can sometimes be workshopped
into something great. In the 1970s, a brainstorm produced the idea of a pet rock. The idea
was workshopped, and before long you could buy not only a pet rock, but also a pet rock
house and a training manual. The idea made the company millions of dollars. It was the pre-
technological version of the 1990s Tamagotchi.

Make sure that everyone listens to everyone else’s ideas. Make sure that only one person =+« =+« « -
talks at a time, and that there is only one idea at a time. This ensures that even the most =~~~ = =
shy member of the group will contribute, and also makes it easier to record the ideas. Using

these rules will help you gather a large number of ideas to work with.

Life <.
/Ay cwebsits =

Specialist online Simple diagrams
Software tool? website

Microsof? Word HOW TO CREATE

Can adomatically Shapes Lool A DIACKAM
rearrange charts
2o make them Zidy

Diagrarly
website

Casier than
Microsoft Word
For comébining pictures,
Gooj/e Draco Y arrows, call-outs, etc

(in Google Drive)

Find sipnlar @

pic online as Can save slide
starting as image, or
point and Zake screenshot
edi? i

« Shutterstock.com/Rtimages

FIGURE 4.2 Whiteboards are popular brainstorming aids because they are visible to all, and are easy to edit.

'SCHOOL-ASSESSED TASK TRACKER

: © Project plan - [© Justification M Analysis - [Folio of alternative (] Usability tests O Evaluation and - O Final submission
: design ideas : assessment i

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Brainstorming example: NASA faces the problem of lifting people and equipment into
space. It is extremely difficult, expensive, loud and dangerous. How can it be improved?

Brainstorms for this project include:

« helium balloons: float up, take off

. fire the rockets from the tops of mountains: reduce the distance to space

« avery, very tall ladder

« agiant catapult

« ajetairliner carries the rocket ship as high as it can, then the rocket takes off from there
« antigravity.

While antigravity has no foundation in real science, some of the other design ideas could
work, and warrant more research. The team chuckles at the funny ‘very, very tall ladder’ idea
until one person pauses and says:

‘Wait ... I wonder if we could somehow get a super strong cable from the ground to low
Earth orbit and anchor it in space, like a space elevator. You would ride up the cable to the
end. The rocket can take off from there. You wouldn’t need all the fuel to achieve escape
velocity ... no need to launch from the ground.

‘And ... and re-entry, says someone else. You could ride down the cable to get home.
Simple. And low cost.

From thinking that was whimsical, impromptu, unconventional and unconcerned with
constraints came a serious concept that was further investigated by scientists at the Shizuoka
University in Japan, with deployment of a prototype in October 2018. They aim to have a
fully functional space elevator by 2050.

Brainstorming is helped by including people with different skills, experiences and areas
of expertise. Sometimes, a group of specialists struggling for a solution may be inspired by
an idea from someone who is not constrained by their shared assumptions, preconceptions

and modes of thought.

Consult end users

Your solution, and all information solutions, will be used by real people. Thus, it makes sense
to include real people in the design stage, rather than wait for the testing and evaluation
stages of the problem-solving methodology (PSM) to find out what they think of the solution.
Manufacturers, political campaign organisers and film producers are known for their use of
‘focus groups’ — groups of ordinary consumers who they ask about their likes, dislikes and
reactions to design ideas.

A dedicated team of specialist designers may have their own ideas of what an end user

wants, but you should value primary evidence of your audience’s requirements.

Mind mapping
Mind mapping is an ideal technique to complement the process of brainstorming. Mind
mapping involves quickly generating and linking ideas. It is a creative and flexible tool that
enables you to add, connect, organise and reorganise ideas (see Figure 4.2). Mind-mapping
software is generally flexible enough that you will not need to stop very often to learn how it
works while mapping; in other words, your creative flow will not be interrupted.

Unlike whiteboards or physical sheets of butcher’s paper, electronic mind maps can

stretch endlessly in any direction. It is easy to add or remove links between items, or move

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN .

entire branches of thought to new locations. Also, you will not have to copy out all of the
scribbled ideas at the end of the session. The mind map can be saved for later development,
printed, saved as an image, or transferred to a word processor.

Using the ‘getting to space’ problem, an example of a mind map of the design process is

Anti-gravity @

Does
not
exist

shown in Figure 4.3.

... or cable
—space elevator
Long space ladder

Okay for cargo —

G-force would kill humans
Catapult

Helium ? balloons

Expensive Piggy-back on large jet

and uses
large
amount of

fuel

Launch from top of mountain

Alamy Stock Photo/NASA Photo

FIGURE 4.3 Mind mapping a project about how to get into space, using Inspiration software

Graphic organisers
Graphic organisers are visual methods of organising ideas. One popular type of graphic
organiser is a PMI. A PMI involves organising ideas into three columns: what has been

successful (Plus), what was unsuccessful (Minus) and what needs more thought (Interesting).
You can use a PMI to reflect and evaluate, or to brainstorm new ideas (see Table 4.1).

TABLE 4.1 Example of a PMI

Using helium balloons to reach space

P M ‘ I

Quiet Crashes if gas leaks Can balloon go high enough?

Relatively cheap Slow to reach stratosphere How much does helium cost?

Limited payload weight

A spider diagram (Figure 4.4) is a powerful tool that gives an overview of a central idea.
The body of the spider is the central idea and the branching legs radiate out to related ideas
and sub-ideas.

There are dozens of variations of such visual tools to help organise and clarify
ideas. Others POOCh (Problem -

Options — Outcomes — Choice), ranking ladder (to prioritise or rank ideas, information or
tasks), stair steps (to organise a process step-by-step), a chain of events, sequence charts (to
put sequential factors in order), pie charts (to represent the relative sizes of components in a

include character maps, concept webs,

whole), bone charts, organising trees and even Gantt charts for managing project timelines.

Gantt charts were discussed in chapter 3 (see page 77).

: ™ Project plan [Justification M Analysis

9780170440943

. ™ Folio of alternative - [Usability tests
; design ideas :

n

O Evaluation and O Final submission

Getty Images/Photofusion/UIG

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Edward deBono became
well known for ‘lateral
thinking’. Mind mapping,
rubrics, POOCh and
SCAMPER are some

of his approaches worth
considering.

&) &=
Spider
diagram

Twister

m

events or
Affinity or
cluster
=
classify
Ideas
<> o
map Graphic
e o

Break ideas
into
Y chart <
Plan and
make
decisions

@ ECG
graph
@

FIGURE 4.4 A spider diagram showing related concepts and sub-classes of concepts; this one was created
with Inspiration software. Other suitable software is LucidChart.

Tips for creative thinking

Creative design can be learned. You do not need to be born with the talent. There are

techniques that anyone can use to improve their design creativity.

Substitute

Replace part of the problem with something else. For example, if you are producing hundreds
of certificates, do not use mail merge to take data from a spreadsheet and insert it into a word
processor. Use a database instead.

Combine
Join unconnected things together, such as reducing the weight of camping

supplies by combining a spoon and fork into a single utensil - the spork.

Adapt

Use an existing component in a different way. For example, use
presentation software such as Powerpoint or Keynote to create a poster.
The first spreadsheet was created using the concept of paper-based
accounting books.

Strip
Strip the problem right back to its most basic parts and see what is left.

FIGURE 4.5 A Raspberry Pi For example, the tiny and cheap computer, the Raspberry Pi, is a stripped-

down Linux PC with minimal components. Inspecting the basics may
reveal the nature of a problem more clearly.
Compare
Ask yourself, ‘What other thing do I know that resembles this problem, and how does that
other thing work?” For example, when sending a number of print jobs to a single printer, how
can they be handled? Like a group of people waiting at a gate, you could organise them into
a queue and process them in the order of their arrival.

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN ﬂ

Sleep on it

Creators often reach a point where they can make no further progress. Rather than
dwelling on the same failed ideas, it is often better to let them go and think of
something else. While the front of your brain is enjoying a wrestling match with
your sibling, or an episode of Australia’s Got Talent, the back of your brain will
busily be pulling ideas together to create a solution.

Research

Thomas Edison said, “Through all the years of experimenting and research, I never
once made a discovery. I started where the last person left off. It is important to learn
from your predecessors so you don’t waste time ‘reinventing the wheel’.

You're unlikely to be the first person to have faced a particular problem. How have
other people solved problems similar to the one you face? How have others coped?
Their successes may lead you in the right direction, and their failures may prevent
you wasting time. Take care when using Google. Make sure you acknowledge your

sources, and watch out for false information.

Visvalisation
Geniuses often represent their thoughts visually because

words cannot adequately convey their ideas. Einstein was

FIGURE 4.6 Galileo’s
drawings of phases of the Moon,
based on observations through
his telescope, from his 1610

manuscript, Sidereus Nuncius

. . . # Q
famous for his non-verbal thought experiments. He visualised — =
travel at the speed of light as travelling on a train. He said that ¢ 4 ~
written words and numbers did not play a significant role in 5
his thinking process. OcoOon

Leonardo da Vinci is renowned for his sketches of ©82000
. . 1 lilei d & and oongoD
his inventions. Galileo Galilei drew diagrams and maps gvo@®
of planetary orbits and phases of the Moon (Figure 4.6). QU I} ={I
Sigmund Freud, Alfred Hitchcock, Isaac Asimov, Beethoven — o= x [
and Mozart all reported the use of mental imagery in their 83332
creative processes. Dr Temple Grandin, famous for her workk &g e g
with livestock, said: 20%00Q
* My Saved Pupn x
‘I think in pictures. Words are like a second language to me
... Language-based thinkers often find this phenomenon

difficult to understand, but in my job as an equipment
designer for the livestock industry, visual thinking is a
tremendous advantage.’

You may choose to use software simulations or models to help

structure your thinking and construct knowledge (Figure 4.7).

Be observant and prepared

FIGURE 4.7 Creating a flow diagram with LucidChart

Many inventions have arisen from people seeing things that were similar to the problem

they were trying to solve. Can a blockage in a canal be similar to solving a blockage in blood

vessels? How can thousands of ants travel safely and quickly through a small gap, while a

crowd of human spectators takes nearly an hour to leave a football stadium?

Play Doh, Post-It Notes, potato chips, Velcro, Teflon, Cellophane, insulin, Dynamite,

stainless steel, Super Glue, Cornflakes and vulcanised rubber were all found by observant

people after accidents or failed attempts to invent something else.

: ™ Project plan [Justification M Analysis

9780170440943

. ™ Folio of alternative

O Usability tests

O Evaluation and O Final submission

Alamy Stock Photo/Stocktrek Images, Inc

Diagram created in Lucidchart - www.lucidchart.com

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Research also suggests that creative people are typically hoarders — they keep lots of knick
knacks, photos and articles around, and revisit these for stimulus.

Keep your eyes open for connections between apparently dissimilar things. Revolutionary
ideas often come from ‘ridiculous’ connections that no one previously considered. Physicists
argued whether light was a wave or a particle, until someone innocently (and correctly)
proposed that it could be both.

Someone with a solid knowledge of a topic and an ongoing curiosity about new ideas is
receptive, and this will help them recognise the importance of an observation to an existing
idea. The uncreative observer will either not notice the idea, or will fail to see its relevance

to a developing design.

Take risks, persist and be brave

Someone with a creative design idea often needs to take the risk of being dismissed, mocked
or rejected. Many of the greatest breakthroughs were rejected at first, and took a lot of time
and effort to be accepted.

The Germ theory, that diseases are caused by microorganisms, was put forward by Louis
Pasteur in the 1860s. It superseded the miasma theory, which suggested that a poisonous
vapour in the air caused diseases. This theory had endured for several centuries. Pasteur’s
theory was initially mocked, until further experimentation showed it to be most likely correct.

More recently, Steve Wozniak combined the concepts of a typewriter, a calculator and
a display. He was envisioning a whole new technological paradigm: the personal computer.
His employer at the time, Hewlett-Packard, rejected Steve’s concept five times. This led
Wozniak to team up with Steve Jobs, which in turn led to the creation of Apple Computer
Inc. The idea of a tablet computing device had been tried by Apple and Microsoft and
ended in failure. Steve Jobs tried again when the technology was mature, following the
development of the iPod and iPhone, and the resultant iPad was this time successful.

James Dyson (of Dyson vacuum cleaner fame) is believed to have created 5000 prototypes
of his vacuum cleaner over five years before he got it right.

These examples show that persistence, not genius, is the greatest contributor to success.

Quotes by Thomas Edison, developer of the light bulb, phonograph and electric power:

« ‘Geniusisonepercentinspiration; 99 percentperspiration.”

« ‘Many of life’s failures are people who did not realise how close they were to success when
they gave up.

« ‘I have constructed 3000 different theories in connection with the electric light, each
one of them reasonable and apparently likely to be true. Yet only in two cases did my

experiments prove the truth of my theory.’

Evaluating design ideas

The criteria that should be used to evaluate design ideas must be based on the software
requirements specification (SRS) produced at the end of the analysis stage. Elements such
as the constraints, functional requirements and non-functional requirements should be
considered carefully, and each design should be evaluated in relation to these components
before a preferred design is selected. For example, a decision to be made in relation to
functional requirements would be the file format in which to save data: plain text, CSV
or XML (see pages 17-21). There are advantages and disadvantages to each, which would

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN ﬂ

then need to be considered against the requirements listed in the SRS before making a final
decision. Similarly, the non-functional requirement of usability may result in alternative
user interface designs, which must then be evaluated against the needs of the users before a
decision is made as to which design is preferred.

When designing the solution to a problem, the first design idea you have will rarely be the
best one. A different strategy might be cheaper, easier, faster, more effective, or may better
meet the client’s needs. While one design idea may be attractive to the developer, the client
may have non-technical constraints or priorities that will make another strategy more attractive.
Providing a range of design ideas means the client can choose the solution that best suits them.

Although previously proven strategies can be useful, you need to be willing to think outside
the box. You may have used a design idea successfully in the past, but it may not be appropriate
in the current circumstances. Old strategies will not work for you in every situation.

A successful problem-solver will consider current functional and non-functional
requirements and relevant constraints in order to develop an imaginative range of options.
The best design idea can then be chosen and developed into a detailed design.

The criteria for choosing the best design idea may include:

. case of use
« how long it will take to implement

o scalability (how easily the product can be increased in capacity)

o its scope for future modification and enhancement (for example, one design idea may
include plug-ins so extra functionality can easily be added)

« the degree to which it satisfies all requirements

o the degree to which it copes with constraints

. case of implementation

« development cost, future running and maintenance costs

« the amount of labour required to create it and keep it working

o the amount of disruption likely to be caused to the organisation

« compatibility with existing hardware, software, data and procedures

« the amount of training required for staff.

To make an evaluation, the criteria used must ask a question. The answer to that question
will indicate whether the criteria has been achieved or satisfied.

For example, some of the previously listed criteria would be evaluated by asking:
o Is the software easy to use?
« Can the software be implemented quickly?
« Can the software be scaled for more users?
« Can the software be simply modified?
« Can the software be implemented easily?

Some design decisions can be very difficult, and require careful balancing of competing
needs — usually cost and time against quality. A design that is cheap and quick to produce may
quickly wear out, be barely competent or unpleasant to use. A superior design that would lead to
a solution with a long life and happy users will probably take longer to produce and cost more.

Compare the likely differences in design philosophies and criteria between the pairs
shown in Figure 4.8.

: [Project plan [Justification & Analysis . ™ Folio of alternative - [Usability tests 0O Evaluation and O Final submission
: design ideas : assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

A Formula One race car

Testing and evaluation

are NOT the same thing!
Testing can be done at any
time, and may use dummy
or test data. Testing looks
for specific results and
expected behaviour by
the known capabilities of
programs or equipment.
Evaluation is conducted
after the software solution
has been implemented.
Users are consulted and
criteria are considered.

Shutterstock.com/David

Acosta Allely
Alamy/Keith Erskine

A PC desktop tower An all-in-one Mac

Courtesy of Dell Inc.

Copyright © 2015 Apple Inc

All rights reserved

A basic, inexpensive coffee table An ornate, expensive antique table

Shutterstock.com/Mariyana M
Shutterstock.com/bergamont

FIGURE 4.8 Pairs

Evaluation criteria should be documented, ideally in a table format, and as each design
is evaluated the outcome of each criteria should be recorded.

Evaluating the efficiency and
effectiveness of solutions

Evaluation typically involves checking to see how well a software solution has met its stated
requirements. This postimplementation review evaluation is normally performed at a set
time period after the solution has been put into place, where the timeframe selected is
relevant to the context in which the software operates. However, such an evaluation would

not generally occur in the first six months of software being put in place.

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN E

In order to conduct an evaluation, an evaluation strategy needs to be created. This
normally occurs at the end of the design stage of the problem-solving methodology. The
evaluation strategy specifies the timeframe in which an evaluation will occur and outlines
the data that will need to be collected to complete the evaluation, including a description of
the methods and techniques that will be used to collect that data. It is also made clear how
the data collected relates to the criteria that was written in the design stage.

The software solution is then evaluated in terms of efﬁciency and effectiveness.

EfﬁCiency ‘Cost’ in relation to the

efficiency of a solution
does not necessarily

to achieve the intended results. This could include measurements against the speed of mean monetary cost. It
can also refer to time, as
manipulating files can be
quite slow depending on

Effectiveness the amount of data being

. . . . L manipulated and the
The effectiveness of a solution relates to how well a solution achieves its intended selected algorithms that

The efficiency of a solution concerns how much time, cost and effort has been applied

processing, the functionality of the software, or the cost of file manipulation.

results. This typically requires measurements of the quality of the solution in relation to its ::h;lzefhnaitndglzmented to
completeness, readability, attractiveness, clarity, functionality, accuracy, accessibility, '
timeliness, report formats, relevance, usability and communication of message.

Some examples of the criteria that could be used to evaluate the effectiveness of a solution

are included in Table 4.2.

TABLE 4.2 Criteria for evaluating the effectiveness of a solution

Completeness Were all of the functional and non-functional requirements that were required by the
client implemented in the software system?

Readability Can every part of the software program be easily read by its users?
Are the fonts chosen appropriate in size and face to the system on which the software is
installed?
Are contrast ratios acceptable?
Is the text colour readable agalnst the background colour?

Attractiveness Are the co|ours used throughout the soFtware complementary
Are the colour chonces approprlate to the context?

Clarity |s the |anguage used in the software age- approprlate7
Are headings, labels and buttons consistently used throughout the software?

Functionality Does the system respond appropriately to user input errors?
What percentage of uptime does the software have?

Accuracy Is all of the data stored accurate in relation to how it was entered?
Are all calculations accurate 100% of the time?
Are a|| reports produced wnthln the correct date ranges, |nc|ud|ng boundary values"

Accessibility How we|| can the system be accessed by someone who is hearing impaired or vision
impaired?
e.g. Does your solution use a colourblind safe palette? Do all images have an ALT-tag?
Will a screen reader work with your solution?

Timeliness Does the software respond to requests within an acceptable timeframe?

Report formats Are all of the search/sort reports produced by the system appropriate to their contexts? @

¢ [Usability tests : O Evaluation and : O Final submission

assessment

: © Justification : © Analysis . ™ Folio of alternative

design ideas

: © Project plan

9780170440943

National Center for Accessible Media

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

TABLE 4.2 Criteria for evaluating the effectiveness of a solution (continued)

Relevance
Usability

Communication
of message

Is all of the information produced and shown by the software system relevant to its
intended use?
Are there any parts of the system that are not often used (or not at all) by users?

Avre all of the elements within the software easy to use?
Are there sections of the program where users are more likely to make errors?

Have appropriate and region-specific conventions been used for all displayed data
(e.g. currency conventions, date/time format, alignment)?

¥

Functionality

Y

Usability

Robustness = | * Flexibility

Ease of use = Accuracy

Design criteria

Appearance
L
Accessibility Attractiveness = | ™ Contrast
Language -~ Vision Repetition AT Space

Timeliness < Navigation

FIGURE 49 Design considerations for your software solution

FIGURE 4.10 The Web Access Symbol signifies
sites or pages where an effort has been made to
enable access for disabled users.

If you sense that a page or screen is awkward to use, looks odd
or is unattractive, but you cannot exactly say why, you are probably

responding intuitively to the use of design in the solution (Figure 4.9).

Methods of expressing software

designs

Once you have decided on a design architecture where:

« the use case diagram identifies each entity and accurately shows
all relationships

« the context diagram has all aspects of your software solution
recorded

o the data flow diagram has been mapped out and your model is
consistent

youare ready to begin the software design documentation.
Documentation is essential to record definitions, decision details and
assumptions that underlie the final software solution. For example, if

a date of birth input allowed an unrestricted age range, but a further

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN E

calculation assumed only adults would be included, then unexpected results would be Developing apps

for accessibility —

generated if an adolescent used the application. This assumption, if documented, would be Windows developer

shown to cause problems in the evaluation stage of the PSM. Creating accessible

There are several methods available to document software designs, including: COFT‘lPUtt?f
applications

« data dictionaries Human Interface

Guidelines — Apple

«+ object descriptions developer

« mock-ups (describe appearance)
« wireframes (describe functions)

. pseudocode.

Data dictionaries

There are several types of data dictionary used in the computing industry. In Software
Development the data dictionary has a particular meaning, which is different to the definition
used in VCE Data Analytics. Both types are included here so you can compare the different
purposes.

Data dictionary used as a database design tool

Data dictionaries are used when designing databases to explain how to set up the properties
of each field in database tables. Table 4.3 is an example of a data dictionary that can be used
in database design.

In 2015 the International

- Standards Organisation
Modern iti ing Type Format Size | Purpose Example recommended specific

naming style | style (old school) ways of naming files and
| variables: ‘singular nouns,

TABLE 4.3 An example of a data dictionary used by database developers

id txtCustomerID Text XXX99 5 Customer ID SMI40 present tense verbs,
T — W TIT_———.. \ooercase Ist letter for
firstName txtFirstName Text Xxxxxxxxxxxx 15 (?ustomer Jane second and subsequent
T A ———— — ——— bR words. DO NOT prefix

lastName txtFamilyName Text XXXXXXXXXXXX 25 Customer Smith names with type or table

. name’
family name

----------- - 1SO 11179-5 :2015

birthDate dateDOB Date YYYY-MM- Fixed = Date of birth = 2001-07-
DD 19
clubMember boolClubMember Boolean Yes/No Fixed |s a member Yes
of the
buyer’s club?
memberYears intMemYears Integer 99 Fixed Yearsa 12
member
sales sngSales Single SH# HHH HH Fixed Totalamount $12,456.78
precision spent

Data dictionary used as a software design tool
A data dictionary in software design is used to plan storage structure including variables,
arrays and GUI objects such as text boxes, combo boxes and radio buttons in a program.
It usually lists the names of the variables, their type, size (in characters), scope in regard
to the code and purpose of the variable’s function. In some cases, it may also list the format
and example for the variable.
'SCHOOL-ASSESSED TASK TRACKER

: © Project plan - [Justification © Analysis - [Folio of alternative (] Usability tests O Evaluation and - O Final submission
: design ideas : assessment i

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Data dictionaries are most commonly used when code needs to be modified at a later
date by programmers. It allows them to understand the purpose of a variable or array that
may be unclear without it. Data dictionaries may need to be kept up to date during the
development stage, when changes are introduced to the initial design.

TABLE 4.4 An example of a data dictionary used by software developers

Modern Traditional naming Type Size Scope Format Purpose Example
naming style (old school)
style
id or ID intCustomerID Integer 6 Local 999999 Customer 201940
ID
firstName strFirstName Text 50 Local = Xxxxxxxxxxxxxxx Client first = Jane
name
lastName strLastName Text 50 Local = Xxxxxxxxxxxxxxx Client last ~ Smith
name
DOB dtDOB Date/time 8 Local YYYY-MM-DD Client date 2001-07-19
of birth
club- bolClubMember Boolean 1 Local true/false Is the true
Member client
a club
member?
member- intMemYears Integer 2 Local NN Loyalty 06
Years bonus paid
to 5,10, 15
etc. year
members
sales fpSales Floating- 8 Local NN,NNN.NN Total $12,543.76
Point Amount
spent

Differences between the two styles of data dictionary

For VCE Software Development you will only be required to use and answer questions
about the software design data dictionary. It is good to know about data dictionaries for
database design, but it is not within the scope of this course (it is, however, important for
students enrolled in VCE Data Analytics).

The major differences between the data dictionaries are as follows.

« The data dictionary related to software design concentrates on variables and arrays used
in programming, while data dictionaries related to database design focus on data being
stored in a database.

o There are a number of field heading differences between each template table design (see
Tables 4.3 and 4.4).

« One is used by a computer programmer, the other by a database developer.

Data dictionaries are valuable when code needs to be modified later by other programmers,
and the purpose of a variable is not clearly understood.

Note: VCAA FExamination questions sometimes use ‘old school” variable naming

conventions. Be aware of this and be prepared for i. writing your own data dictionary for the
design stage of the PSM and ii. responding to examination questions.

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN .
R 137

Object descriptions

There are many different ways of representing objects that are to be incorporated into the
design of the software solution. The basic capabilities for any computer software object are
identity, properties and attributes. Object-orientated languages have the added capability of
inheritance.

Object descriptions are similar to data dictionaries, but can contain information about
methods and events that the object contains. Additionally, object descriptions differ between
computer languages.

Figure 4.11 shows an example of ways to define objects. There is not one standard for
describing this type of design tool. It is important to understand the purpose and function of

each design tool.

Examples of an object description

Fxample 1:
A class Person has name, date of birth, phone number email address.
A sub-class of Person called Student has enrolled subjects, assessment results.
Another sub-class of Person called Activity has sport, league.

Class:Person
Description:name,
DOB, phone no, email

Sub-class:Student
subjects, results

Sub-class:Activity
sport, league

FIGURE 411 Example of an object description

Example 2:

Object Event Method

Windows The user clicks on the tick button Void windowClosing(WindowEvent)

The window is opened for the first time Void windowOpened(WindowEvent e)

The window is activated Void windowActivated(WindowEvent e)
The window is deactivated Void .;;{;;;.\.NDeactivated(WindowEvent e)
The window is closed Void windowClosed(WindowEvent e)
The window is minimised Void windowlconified(WindowEvent e)
"""""""""""""""""" Tewtok aiked |Vl Dekened(rde Bl
: [Project plan - © Justification - © Analysis . © Folio of alternative =[] Usability tests : O Evaluation and . O Final submission :
: : H ; design ideas : assessment :

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Example 3:

Object Name: buttonSubmit

Name Description
buttonSubmitClick Event When the button is clicked it will submit the transaction and

display successful or unsuccessful in a message box on the
screen to the user.

Inheritance is when an buttonSubmitEnabled Event Display the button or grey out the button, depending on the

object that is derived from user selected options.
an existing base class,a TR —————

sub-class or ‘child’, acquires buttonSubmitFocus Method Change the colour of the Submit button font from black
all the properties and to dark blue when the mouse is hovered over and all fields
behaviours of the super- required to be filled in are valid.

class or ‘parent’.

In some languages (e.g. Base class A Grandparent

JAVA), the child can only
inherit parent behaviours,
NOT grandparent
behaviours - i.e. no super-
super set of behaviours.
C++ can inherit both.

Intermediate class Parent

Derived class Child

FIGURE 4.12 Multi-level inheritance

Mock-ups

Mock-ups and annotated diagrams

Mock-ups and annotated diagrams show the intended appearance of printed output,
on-screen information and interfaces.

To design an interface, use a mock-up, which is a sketch showing the appearance of the
software output. A mock-up should typically include the following features:

« Positions and relative sizes of controls (buttons, scroll bars, status bars)

« Positions, sizes, colours and styles of text (headings and labels, body text)
« Menu positions and contents

« Input boxes, default prompts

« Borders, frames, lines, shapes, images, decoration and colour schemes

« Object alignments (vertical, horizontal, diagonal)

« Contents of headers and footers

Remember, a mock-up can be considered successful if you can give it to another person
and they could create the interface without needing to ask you any further questions about it.

9780170440943

Adobe product screenshot reprinted with

permission from Adobe

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN

a b
- BLACK
ARIAL 5 gt
....... < centred
CURRENCY CALCULATOR . I e
back
Eemall Oropdawn H e
/! SEROM CURRENCY gl
: = ° tabels | A= sty . Aamou
Arial 4 h_Combo boxeS™ & (potey ' M) | conice
47| Sizo cargency s | | dacky ounds
p i T Chothey ' T
o ' | picture
ke Align Align A
"""" X L AUS XXXXX = BAUD XXXXX ey
— Jabel A= P
/ (2 dect .
= (Whatever currencies (.’ CEHLTD, s rwmsinad . dign
ers s o)
5 N,
= f=——=])
) e Wttt ety S
— clack; w2 hothey ' X
Clears
s [° — o doves
& amont

FIGURE 4.13 Input menu options: @ Mock-up for an app in Adobe XD CC; b hand-drawn screen interface

Pseudocode

Pseudocode is intended for human reading rather than machine reading. It appears as
informal high-level descriptions of a computer program or other algorithm. A combination
of programming terminology and plain English describes algorithms, or instructions, which
are easier to understand than programming language code.

Pseudocode describes the logic of the program or algorithm. Each line has one step from
the algorithm. Pseudocode is written in structured English and contains control syntax
such as:

? IF-THEN-ELSE a choice is made between two alternatives when a
" condition is satisfied (this is also known as boolean)
| REPEAT is a loop with a conditional test at the start
. FOR-NEXT is a loop with a conditional test at the end
; SEQUENCE is when one task is followed by another task

Common keywords are used when writing pseudocode. For example:

START, END, BEGIN, STOP, DO, WHILE, FOR, UNTIL, REPEAT, IF, THEN,
ELSE, EQUAL, CASE, LESS THAN, GREATER THAN, NOT, OR, TRUE, FALSE,
GET, OPEN, CLOSE, READ, WRITE, END OF FILE, RETURN

Combinations of keywords can extend the terms. For example:

DO UNTIL, DO WHILE, ELSEIF, END WHILE, END UNTIL, END REPEAT, END IF,

Symbols often carry keyword meaning; there are several that have currency. See Table 4.5

for examples. However, there is no single definition of pseudocode.

TABLE 4.5 Common symbols used in pseudocode

Assign value to variable

Equivalence (exactly equal to)

Comparison

- © Justification & Analysis . ™ Folio of alternative - [Usability tests
design ideas :

: [Project plan

9780170440943

O Evaluation and
assessment

& comersion label output text.

In VCE Software
Development you do not
have to use software to
create your mock-ups.
You may use software if
you wish, but you may also
create your mock-ups by
hand using pen and paper.
See the following weblinks
for free software tools.

Mockplus
Balsamig Mockups
(Flash based)
Wireframe CC
Adobe XD CC

'SCHOOL-ASSESSED TASK TRACKER

O Final submission

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Preparation for the VCE

examination:

While there are no ‘rules’

with pseudocode, only

conventions, previous

VCE examinations have

established some specific

expectations:

* the assign symbol (left
pointing arrow)

* indenting of code.

Android developers
mac0S

win0S

i0S

Other ideas that can be incorporated into your pseudocode include the following.
« Choose sensible variable names.
« Include comments (where necessary, no need to explain the obvious).
« Indent to assist readability and pairing of keywords.
« Ignore unnecessary details.

The purpose of your code needs to be obvious, not too simple, not too difficult. Here are
two simple examples of pseudocode.

Compute the area of a rectangle
BEGIN

INPUT (or READ) length < longside,
INPUT (or READ) width < shortside,
Compute the area < longside*shortside

PRINT area
END

Compute letter grade for assignment score, first three options shown:

Enter score <« yourscore
IF (SCORE > 90) THEN
output A+
ELSEIF (score > 80) THEN
output A
ELSEIF (score > 75) THEN
output B+
Note: there are other ways of achieving this result using * < * or using ‘CASE’. Further

examples of pseudocode were provided in chapter 1, page 16.

Factors influencing solution design

Factors influencing solution design include usability, affordance, security, interoperability
and marketability. There are design options that can affect each of these factors. The degree
to which each factor is implemented depends on the intended purposes of the client.

There is an interdependence between these factors, so the development of the software
product is often a cycle. Each cycle will improve the user experience, or UX| to meet user
expectations. The product will be constrained to remain affordable to the target user group.

Security of data and user profiles is an increasingly sensitive topic for software companies
and developers. Constant assurance is necessary for continued acceptance by the user
community, and any perception that data is gathered for unauthorised purposes will seriously
damage the developer’s reputation and credibility. Interoperability may become an issue if
devices or operating systems require adjustments to guarantee continuity of service. Some
updates ‘break’ the software, requiring massive rewrites. For example, the switch from

TABLE 4.6 Timetable showing announcement of 64-bit OS and end of 32-bit applications. At the time of
writing, no 32-bit end dates have been notified for desktop/notebook devices.

64-bit transition announced 64-bit implemented
No longer accept 32-bit apps

ma;os — 2068 . 8 . o bYAPP.Ie
wmos 2009 .. t baby Mlcros o& ...
Ios 2013 OctOb er201 5
Android | 2017 August 2021

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN u

32-bit to 64-bit applications was announced more than 10 years ago for notebooks and desktop ,
devices. Recent OS updates require 64-bit devices and applications. 32-bit applications will — EAMNASESEL] ‘ 41

. SOFTWARE
no longer operate on some new smartphone devices. DEVELOPMENT
Characteristics of user experiences, including Why are smartphone
efficient and effective user interfaces ?j_sb’i*t“;;';ﬁc:;om
User experience (UX) and user interface (Ul) may be considered to be the same thing, [t NWETE

but there are clear differences and emphases, although effectively they are inseparable. JUEELEEIEEESEI
devices? |dentify

Both processes are oriented to the same ends of getting the content to the user in the most
some factors that

pleasant way. have influenced these
UX design provides relevant and meaningful experiences for all users. This incorporates BERUITLEERELTES

hierarchy, navigation and functionality. Ul design, on the other hand, has a focus on [RGCESCIIEALE

appearance. These elements include choice of colour, shape, spacing and the look and feel :Zfdoefvt:l‘:pbmu:ftet«ill
of the software. be dependent upon

the expected return
What is a successful user interface? from the sales of the
finished software

Many experts have studied this issue. If you follow their guidelines you will be on the right dust
Pro uct.

track to create a good user interface.

Developer advice on
0S standards
Universal

windows platform
documentation

Peter Marville, Semantics Studio

FIGURE 4.4 User experience honeycomb

However, what is a ‘good” user interface or UI? What are the characteristics of a good UI?
It should be:

o clear

e concise

o familiar

e responsive
e consistent
e attractive

o efficient

o tolerant.

: [Project plan ™ Justification & Analysis . ™ Folio of alternative - [] Usability tests O Evaluation and O Final submission
: design ideas : assessment

9780170440943

Used with permission

from Microsoft

Copyright © 2019 Apple
Inc. All rights reserved.

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Times New... ¥ 12~ A‘kA‘ Aav A

2 Increase Font Size
B I Uwva x x s sl

FIGURE 4.15 Clarity: the interface explains
what the button will do with a tooltip pop-up to
provide an indication of functions.

Output volume: S o)) Mute

18 show volume in menu b el

FIGURE 4.16 Concise: in macOSX the volume
controls have tooltip hover and icons to volume
levels.

(]
® B8 3 Q
FIGURE 4.17 Familiar icons for save to local

storage: HDD, SD card, SSD or USB drive, Save to
the cloud, Print, Email, Search.

& Signing in...

FIGURE 4.18 Wolfram Mathematica has an
animated indication icon as the application signs in

to Wolfram Cloud.

Consistent

Clarity

The purpose of the Ul is to allow people to interact with your system.
Your software solution must communicate meaning and function easily.
If people cannot decipher how your application works, or what to do,
then confusion and frustration will be the inevitable result (Figure 4.15).

Concise

Clarity is great, but it is easy to fall into the trap of over-clarifying. Be careful
that the interface doesn’t grow every time you add details. Aim to provide
just enough guidance, while still being concise. Use icons wherever
possible to reduce the amount of text on the screen (Figure 4.16).

Familiar

The goal for many developers is to create an ‘intuitive’ interface. This
requires the user to recognise and understand how the menu works, as if
they have seen it before. Standard icons are easily recognised as buttons
with an action (Figure 4.17).

Responsive

There are two possible interpretations of responsive.

1 If your software is responsive, it will operate quickly. There will
be no waiting for files to load. An interface that loads quickly will
improve the UX.

2 Responsive can also mean the software gives feedback on what is
happening, while it is happening. Examples of feedback include:
a button animates, changes colour or the text label changes when
pressed; a loading bar showing how long the process may take; a

spinning icon to show that a process is underway (Figure 4.18).

An interface needs to maintain consistency across all screens and pages. A consistent look

and feel allows users to develop patterns of use in one context, and to quickly transfer skills

and understanding into a new context (Flgure 4.19).

Home Insert ©Draw Design Layout

‘ﬂ’()lalj .E]' Times New... v 12 wl A" A

References Mailings Review View Developer

Asv A EvisviEy E= 4%

Pt o B I Uve x x¥ AvZ2vA- EEEE Ev &~H~

Home Insert Developer Chart Design Format Draw Page Layout Formulas Data Review View XLSTAT 365

XL tw :
EXCEL [f-jAc .
Paste R B I U~

Home Insert Design

LA 25 wrap Text General v

v &vA- EE = [vegescomery $ v % 9 B 0
Transitions Animations Slide Show Review View Shape Format
_ < s vmlwﬂ" 5 ; vl A —vi=w = | IEw »
Powerpoint [0 Ll g.. = cowdsos 2 Kok EvE = =
Paste New
Format Shde

[section » B I U@ ¥ x, Mvipagew ZvA

Il
il
il
i
-
€
=
0
€

FIGURE 4.19 Microsoft Office menus are consistent for a reason.

9780170440943

Used with permission from Microsoft

Attractive

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN m

Appearance is often the first thing observed. Colour, shape and layout all contribute to the

appeal of the appearance.

Ul Elements - Color Palelte

System Colors

White Light Blus
R288 R241
G155 G249

@ 255 & 255
Hiex Hiex
§FFFFFF WFAFEFF

LT LT LT e—

Wrea v11

Wief Biue

LRI
G124
B 253

Ha
ERCEQFD

Wireframe Web Kit

Bium Diark Biue
R127 R3

G 196 G153

B 253 B 25
Hex Hex
#TFCAFD EXEEFE

FIGURE 4.20 Colour palette specifications that

are colourblind safe

Efficient

£ Anabrse Lomsisosicy Conrrast Ratio
Colmary

Bachground Colour: w8
Formgrund Calour: 5000

;v sty Crsimst flasn

Lagge “Text Sample

i | Large text sample. I

Regudar Text Sanaple

Im'-]é

i Restlts for Lumiisosity Conteast Ratio

T comrast sase b 21001

Pavard vy ocet s b choamn

© colour fret e

FIGURE 4.21 Luminosity Colour

Contrast Ratio analyser. A minimum

A higher value for text and images of text
is better.

Efficiency is the art of providing what the user needs to achieve, with a minimum of fuss. For

example, placing frequently chosen items on a screen rather than on a dropdown menu, or

on the next screen, gives the user a more satisfying experience, as the task has been achieved

- FIGURE 4.22
E (_) o 0 X @ E E" Microsoft Word has a
20-level undo function.

without too many clicks.
An efficient interface will achieve a
purpose quickly and with minimal effort.

Tolerant

Users make mistakes and change their
minds (Figure 4.22). A tolerant interface
allows users to retrace their path to
choose again. If a file is deleted, can it be
recovered? If data is entered incorrectly,
can it be changed or deleted simply? If
a user chooses a menu item and changes
their mind, can they simply ‘get back” to
the previous screen?

: ™ Project plan [Justification M Analysis

9780170440943

an

2

Paste
Typing
Paste
Typing

X, Typing

Typing
Typing
Typing
Clear

Apply Quick Style

Bold

Paste
Paste
Paste

. ™ Folio of alternative
; design ideas :

Ildll

O Usability tests

Courtesy of Juicy Studio

rating of 4.5 to 1is considered acceptable.

Design tools are available
to assist compliance.

Used with permission from Microsoft

O Evaluation and O Final submission

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Lucy's famous
chocolate scene
Which sort of model
was used here?

Software development life cycle (SDLC)

As with all management models and schemes, there are plenty of opinions on how to
achieve the ‘best’ result. As discussed previously, there are many measures of success, so
any evaluation criteria need to be carefully considered. Modern development models have
been altered to provide the flexibility needed to shift to new information or a change in
circumstances. Our Gantt chart is a tool to measure progress against a predicted timeline.
We ‘know’ that timeline will change, so management also needs to change to ensure the
project is ‘manageable’. The alternative of ‘do nothing” would see the project out of control,
over time, over budget and under-resourced. In the worst case, it may fail and be abandoned.

We will explore three software development life cycle (SDLC) models in detail:
Waterfall, Agile and Spiral. There are several other models. For example, Kanban, rapid
prototyping, and scrum are other popular SDLCs.

Waterfall development model

The Waterfall model, sometimes described as the ‘factory model’, requires stages of
production to be identified. Each stage must be completed and signed off before the next
stage can begin. There is no going back. This kind of production line or conveyor belt
approach has the developer working on only one section of the development. Each stage has
its own project plan. The Waterfall model was originally proposed by Winston W Royce in
1970 to describe a possible software engineering practice.

Analysis — SRS requirements and specifications 5
o e 2
'l ¥ =
| E E
: . B g e
Design — design <3
N
i ¥ é [
Ss57
Implementation — code RE 3
w O O
322 4
A L s 2%
| zEse
RN S, | S Testing ___ bug fixes fL e
| ~ 3
2=z
[1 e = =
Ll 5983
8- 9%
Maintenance | final product ¢ & ¢ £
D o& o
<= 352

FIGURE 4.23 The Waterfall software development model

The analysis phase assembles the software requirements specification (SRS). The SRS
contains a complete description of the behaviour of the software to be developed, including
functional and non-functional requirements.

The design phase plans the software solution, algorithm design, concept design, graphical
interface and data structure definitions.

The implementation or development phase constructs the executable program by writing
the code, creating the files and the database.

The testing phase verifies and validates that the software meets and satisfies the original

specifications.

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN m

The maintenance phase occurs after deployment to fine tune output and correct any
identified problems or errors, in order to improve performance and reliability. If user
circumstances have changed this will be addressed at maintenance/implementation.

TABLE 4.7 Advantages and disadvantages of the Waterfall model

Advantages Disadvantages

« Simple to use and understand. + Rigid process not easily altered.

+ Rigid and defined phases allow simple + Along process, with few shortcuts possible.
management. + Detailed progress may be difficult to identify

+ All phases are well documented. within each stage.

+ The progress of each phase is visible. + Amplified delays, where a small change in one

+ Unlikely to produce unexpected financial phase causes delays in all subsequent phases.
expenses. + Software is available at the end of the project.

+ Testingis simple. + Limited opportunities to identify, test and

« End of project is well defined. rectify problems or errors.

The Waterfall development model would be appropriate for projects:
« thatare small in scope
« where the specifications do not change
« where the specifications are well-known, defined and documented

« where there are many dependencies in the project or system.

V-model and the Iterative models
The V-model (also known as the verification and validation model) is a modification of the
Waterfall model with testing at each stage, rather than being left to the end. Each stage is
completed prior to the next stage beginning, and once a stage is finished it is difficult to go
back and make changes.

The lterative model has short stages that develop functionality. The cycle is repeated

until the product satisfies requirements.

Validation Validation Validation
planning traceability reporting

User e e e o Verification. -z | User acceptance

Verification 1 requirements b traceability testing

traceability

e = System Verification System

¢ = requirements traceability testing
|

Verific:ation Technical Verification | Installation

traceability architecture traceability qualification

Detailed Verification Unit and

[—— il o e B i e

design traceability integration testing

System configuration
and development

© Courtesy of Testing Excellence, https://www.testingexcellence.com/

FIGURE 4.24 The V-model

'SCHOOL-ASSESSED TASK TRACKER

. [Folio of alternative =[] Usability tests O Evaluation and O Final submission
design ideas : assessment

: ™ Project plan - © Justification M Analysis

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

The story behind Agile

Requirements Analysis and design

. Implementation
Planning

Initial planning Deployment

Evaluation

© Courtesy of Testing Excellence,
https://www.testingexcellence.com/

Testing
FIGURE 4.25 The lterative model

Agile development model

The Lean and Agile models were developed to overcome the deficiencies in plan-driven
software development methods such as Waterfall. The Agile model was created in 2001. The
four values and 12 principles were written as a response to the heavy management-driven
models that were almost universal in the late 20th century and the early 2000s.

The Agile manifesto establishes priorities and stipulates how people working with processes
and tools will be supported when working together and delivering value to their clients.

e F L o - E

ware Development ©2001

FIGURE 4.26 The Manifesto for Agile Soft:

over Processes and tools

Comprehensive

over g’
documentation

over Following a plan

FIGURE 4.27 The Agile methodology

9780170440943

© 2001 http://agilemanifesto.org/

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN .

The Agile software development method favours:
+ flexibility
* communication
« collaboration
« simplicity.
The key idea for Agile development is iteration. A cycle is repeated, and after each cycle

the software shows improvement in a range of areas. The software is under continuous
development, and software releases can be more frequent.

B,
ﬂz‘-‘t BUjfey

L4

FIGURE 4.28 The Agile software development method is a series of cycles, which continue
until the product can be accepted as a minimum viable product (MVP).

Two approaches under the Agile description are Kanban and Scrum. These approaches
can also be described as ‘lean’. The key difference between Lean and Agile is in the nature
of the workflow. Lean is a continuous flow method, whereas Agile begins a new iteration,
or cycle, at the completion of each cycle. Most development cycles can be combinations of
different schemes, such as ‘scrumban’. The emphasis is on the benefits of the method, rather
than the name of the definitions.

Scrum basics

(
_

Lean software

development originated

in2003.

There are seven principles:

* Eliminate waste

« Amplify learning

* Decide as late as
possible

» Deliver as fast as
possible

» Empower the team

¢ Build in integrity

« See the whole

solweq 1“'\‘,66

Sprint backlog

The sprint backlog is
comprised of the
highest priority
requirements. The
development work
to satisfy the
requirements
becomes one sprint.

FIGURE 4.29 The basics of the Scrum approach
,

. © Project plan . © Justification . M Analysis . © Folio of alternative - [] Usability tests £ 0O Evaluation and i O Final submission
design ideas assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Benefits of the Agile software development cycle
The Agile software development model has short, rapid iteration cycles, called sprints. At
the end of each sprint, the client can observe and evaluate the result of each iteration and
comment on whether the software solution is acceptable. Suggestions can also be made.

A further addition to the weekly cycle is a ‘scrum’. A serum is a daily occurrence where
developers focus intensely on the issue of the day to resolve as many issues as possible. Overall,

the process is unmapped, so the time required and costs can escalate without warning.

TABLE 4.8 Advantages and disadvantages of an Agile model

Advantages Disadvantages

+ Short, rapid interactions segment the project. + Developers must be highly skilled, with an ability

+ Functional requirements are modified quickly. to listen and respond to clients.

« Risks are reduced. + Changes may be inconsistent with previous

+ Early release of first product development.

+ Clients are involved closely with developers and + Timelines may expand beyond expected delivery
testers. time.

The Agile software development model would be appropriate where:
« client needs are not well defined or are changing
« the iterations can include many changes at lower cost per implemented modification

« documentation is minimal, as only initial planning is required to begin the project.

Spiral development model

The main benefit of the Spiral software development model is repeated iterations of
processes and the elimination of risk. Rotation through ecach sector in turn develops the
software solution until a minimum viable product (MVP) is achieved. To keep costs down,

Cumulative Cost
Progress

2 |dentify Risks

FIGURE 4.30 The spiral model

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN m

TABLE 49 Advantages and disadvantages of the Spiral model of software development

Advantages Disadvantages

+ Traditional processes remain in place, yet can scale + More expensive than other methods.
to meet need for more development and testing. + More documentation necessary for and

« Prototypes are developed quickly; testing begins between each stage.
early. + Anincrease in stages for small projects.

+ Risks can be dealt with quickly at each turn of the « High skill sets are necessary for each stage to
spiral. be effective.

the number of spirals would be kept to a minimum. Each spiral produces a new dot point
version of the software solution, which is evaluated. When it reaches a threshold, that product
is released and development continues to ‘version 2, or the next major ‘numeral’ version.

Deployment of the Spiral software development model would be appropriate where:
o risks are expected and need to be prevented with quick responsive action
. the client is not certain how to proceed
« products will be released then updated quickly, based on client reactions and feedback

« major edits can be incorporated if developers do not agree.

Goals and objectives of organisations and
information systems

Goals help define an organisation’s purpose, assist its growth and achieve its financial
objectives. Specific goals help measure progress and identify areas for improvement.
Goals need to be specific, measurable, achievable and timely.

There are two types of organisational goals:

« Official: goals that an organisation aims to achieve
« Operative: goals that are necessary to achieve an outcome.

Official goals can be found in public statements and in the organisation’s mission
statement. A mission statement outlines what is important to the organisation.
Organisational goals provide the means by which the organisation’s aims can be achieved. SRS ‘4.2

Operational goals are short term, can be measured, and enable the organisation to achieve BJo[ap/\X3

its purpose. N
Examples of organisational goals: et to

« To provide quality products and services locate organisational

goals from the mission

statements of the

« 'To maintain a well-regarded company reputation following software

« To develop low-cost, high-value products

and digital technology
companies.
« To maintain and improve profitability Microsoft

« To provide quality customer service

« To improve client satisfaction. Samsung
ACER

Hewlett Packard
(HP)

Huawei

A goal is usually ambitious and will be achieved over the longer term. Many smaller
objectives may be required for the organisation to achieve the larger goal.

Often the nature of a business is reflected in its goals. When important choices need to

be made, the goals can provide direction.

t
: [Project plan ™ Justification & Analysis . ™ Folio of alternative - [] Usability tests O Evaluation and O Final submission

design ideas : assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

Match the organisational goal to the company.

Company Organisational goal

To refresh the world in mind, body and spirit. To inspire moments of optimism
and happiness through our brands and actions

Volkswagen To make a contribution to the world by making tools for the mind that advance
humankind

Apple (1977) ‘ To organize the world’s information and make it universally accessible and useful

Apple (2017) ‘ To become the most successful premium car manufacturer in the car industry

For example: A company has the choice between raising prices or reducing its workforce.
If the value is ‘good customer experience’, then prices will be increased. If the value is
‘providing the lowest possible prices’, then staffing numbers will be cut.

When values are not upheld, CEOs and directors often resign, as their behaviours and
decisions are inconsistent with the company values.

Some common organisational goals
Consider the needs of a simple organisation such as a sporting club. A small club might have
only one or two goals. These might be as simple as keeping an accurate record of members’
names and addresses and whether they have paid their subscriptions. As the club expands, it is
likely that the goals and objectives will grow. Table 4.10 illustrates how the goals and objectives
of an organisation can influence the type of information system that needs to be developed.
Every business has a different set of organisational goals. Some have financial goals, such
as making large profits, while others want to be more competitive by increasing their market
share. The goals will differ depending on the type of organisation.
Other goals that may be included in an organisational mission statement or vision
statement include the following.
. Efficiency will reduce waste of time, energy and effort
« [Effectiveness will improve how well the operation works

« Governance and decision-making will be clearly communicated

« Establish and maintain reputation

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN ﬂ

TABLE 410 How goals and objectives can influence the type of information system required

Goal Explanation

Increase the company’s Businesses exist largely to make money. To provide value to the owners (shareholders or owner/operator), and
profit margin to allow for further growth and the realisation of opportunities, the business needs to increase its profits.
Expand the company As businesses want to increase their profit margins, they may find that they need to grow. They may need to

employ more people and build larger premises so that their production levels meet customer demand.

Provide quality service Non-profit organisations such as charities, in particular, would see this as one of their most important goals.
They exist to provide service to people who are disadvantaged in the community. A department store such as
Myer would also regard this as an important goal, as excellent customer service is paramount to its existence.

Maintain confidentiality Information stored about customers, products and the workings of a company needs to be protected by an
organisation. Organisations need to ensure privacy, and that all information will be treated with confidentiality.

« Improve the client experience
« Customer support

« Supplier support.

Information systems are often created to support the organisational goals. When planning
the system, the systems analyst will identify a system goal. The system goal explains the
specific role of the information system in achieving the organisational goal, and ultimately the
company’s mission. Setting up the right type of information system can help an organisation
make improvements in efficiency, effectiveness and decision-making.

Organisational goals can be assisted by information systems

Information systems usually have specific system goals. They exist to do a particular job, and

their success can be measured by specific criteria.

Note the difference between system goals and organisational goals: an organisation may
contain many different systems, but the organisation has overall goals it wants to achieve
(such as profitability, competitiveness, efficiency, high-quality products, etc.).

These organisational goals should be supported by each system in the organisation, such
as the stock control system and payroll system, which have their own specific goals. For
example, if an organisational goal is to improve efficiency, each system in the organisation
would also need to be efficient.

The goal would set out clear numeric efficiency goals so that both the current situation
and the desired goal were quantified. After a period of time gathering data, a measurable
improvement (or not) would be obtained.

Some examples of system goals are:

« a payroll system’s objective may be to produce accurate employee payroll statements,
keep track of tax deductions, and produce summarised statements for management and
government departments

« a desktop publishing system’s objective may be to produce high-quality page layouts for
magazine-quality printing

« a point-ofssale transaction processing system’s objective may be to accurately and quickly
record purchases, produce customer receipts, and update stock inventories after each sale.

Think of your house as an organisation: its organisational goal is to keep you safe,
comfortable and entertained. In the house there are many systems: the doors, the beds
and chairs, the TV, radio, computer and bookshelves. The door systems have their system

[SCHDOL-ASSESSED TASK TRACKER

: © Project plan - [Justification © Analysis . [Folio of alternative = [] Usability tests O Evaluation and O Final submission
: design ideas : assessment i

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

goals: to prevent unauthorised entry, to keep out insects and unwelcome animals, to keep
out rain and wind. The bed/chair systems have their system goals: to provide comfortable
support. The entertainment systems’ system goals are to provide entertainment. You
would not expect a toaster to entertain you because that is not one of its system goals.

Each system in an organisation has a clear purpose and goal. They combine to support
the overall goals of the organisation they belong to.

Common system goals are:
+ speed
¢ accuracy
« reliability
* responsiveness

« quality of output

¢ capacity
« security

. case of use
. cost effectiveness
« attractiveness of appearance

« flexibility, configuration adaptability and expandability
o safety

« operator comfort

+ durability

« robustness, strength, toughness and endurance

« compatibility with other systems.

Legal requirements relating to the ownership and
privacy of data and information

Data and information can be very valuable, both to you and to others. Decisions and actions
can be made in response to knowing such details, but only if you are authorised to use
that information. Unauthorised access to personal and sensitive business information is an
increasing problem. Since 1998, in Australia, legislation has been developed to manage
information effectively. At the federal level, the Privacy Act 1988 and, at state level in Victoria,
the Privacy and Data Protection Act 2014 and the Health Records Act 2001 have been
enacted. Periodically, this legislation is updated to reflect the technological advances that
impact on information. The Copyright Act 1968 (which includes the Copyright Amendment
(Digital Agenda) Act 2000) also limits who can use certain information.

Information is the most valuable asset that an organisation owns. In many cases, the
time and resources that have been used to collect the data and assemble the information
could not be replicated. If the data and information were lost or damaged, it may not be
recoverable. An information systems manager would plan to prevent loss from occurring.

There are several key laws relating to the information systems and telecommunications
industries. At a federal level, the law concerned with how information about people can be
used is the Privacy Act 1988. In Victoria, we are especially concerned with the Privacy and
Data Protection Act 2014 and the Health Records Act 2001. Combined, these laws govern

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN E

the collection and use of private information by both government and non-government
organisations at both state and federal levels. Employers and government agencies have a
legal responsibility to ensure that these laws are implemented within their organisations. In
addition, organisations must make employees and customers aware of their rights, as well as

their responsibilities, in relation to these laws.

Privacy Act 1988
In the mid-1980s, the Federal Government attempted to introduce an ‘Australia Card’. This

proposal was met with overwhelming resistance from the public, and eventually dropped.
In its place, the pre-existing tax file number (TFN) system was updated. There were many
concerns about how the Federal Government might use tax file numbers, especially regarding
the release of confidential tax information, or matching data from different government
departments. Under international law, the government was required to provide adequate
protection for personal data being sent to other countries, and to ensure that civil rights with
regard to privacy were not being ignored.

Originally, the Privacy Act 1988 only dealt with the handling of data by government
agencies. Many people criticised these limitations because it seemed that private organisations
were not required to apply even the most basic of safeguards regarding the data they
collected. Even worse, there were no regulations preventing non-government organisations
from collecting data by any method and using it for any purpose without consent. The rapid
growth of electronic transactions, especially over the Internet, led many people to demand
some sort of legal protection from those who might gather data about their browsing habits.
The government was keen to encourage the development of electronic commerce, while
protecting the confidentiality of consumers and increasing public confidence in electronic
transactions. As a result, several amendments were incorporated into the Privacy Act 1988.
These were the most significant changes to have been made to privacy laws since the
inception of the legislation.

There have been several additional powers included within this Act since 1988, but
its main purpose has remained unchanged. The Privacy Act 1988 was amended by the

Privacy Amendment (Enhancing Privacy Protection) Bill 2012, which came into effect on
12 March 2014.

Application of the Privacy Act
The Privacy Act applies to both electronic and manual or conventional forms of data gathering
and handling by private organisations. The Act also has provisions specifically addressing the
use of personal data for direct marketing via email, which can only be used with the consent
of the individual concerned. It also extends to general privacy issues regarding workplace
email. The Act encompasses businesses with an annual turnover of $3 million, all private
health services that store health records, businesses that trade in personal information, and
those organisations that choose to opt-in.

Individuals also have rights under the Act, which makes for provisions on how their
personal information is collected. The Act defines personal information as being:

. information or an opinion about an identified individual, or an individual who is
reasonably identifiable: whether the information or opinion is true or not; and whether

the information or opinion is recorded in a material form or not.

[Justification M Analysis . © Folio of alternative

; design ideas

: [Project plan O Usability tests

9780170440943

O Evaluation and
assessment

‘These are the most
significant changes to
privacy laws in over 25
years and affect a large
section of the community.
The world has changed
remarkably since the late
1980s when the Privacy
Act was first introduced,
and so the changes were
required to bring our

laws up-to-date with
contemporary information
handling practices,
including global data
flows,” said then Australian
Privacy Commissioner
Timothy Pilgrim in

2014 when the Privacy
Amendment (Enhancing
Privacy Protection) Bill
came into effect.

- Australian Government,
Office of the Australian

Information Commissioner

[Final submission

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

THINK ABOUT | 4.3

SOFTWARE
DEVELOPMENT

Many organisations
have a privacy policy
listed on their website.

Find out what is
covered by your
school’s privacy policy.
What information
might the school have
about students that
should not be made
publicly accessible?

The amount specified

in the Privacy Act is not
variable. That is, the fine of
$340 000 for individuals
and $1700 000 for public
and private organisations
does not change. The
amount will only change

if the Act is changed. In
Victoria, however, the
fines are variable and tied
to penalty units with an
amount that is adjusted on
1July each year.

APPs are discussed further
on pages 267-68.

The amended Act defines personal information as including an individual’s:
« name and address
. signature
« telephone number
« date of birth
« medical records and health information
« bank account details
« photos and videos
« biometric and genetic information
« philosophical beliefs
o likes and dislikes
. opinions or commentary about a person
« racial or ethnic origin
. memberships of political associations
« professional or trade associations or trade unions
« religious beliefs or affiliations
« criminal record

. sexual orientation or practices.

Since the introduction of the updated Privacy Act 1988, organisations have had to review
the way they handle customer information and had to update their technologies and their
security processes to ensure they comply with the new legislation.

The Act prescribes severe penalties for serious and repeated interferences with privacy,
which can result in criminal prosecution and/or fines of up to $340 000 for individuals and

$1 700 000 for public and private organisations.

Privacy and Data Protection Act 2014

The Privacy and Data Protection Act 2014 (PDPA) was introduced by the Victorian
Government. It replaced the Information Privacy Act 2000 and the Commissioner for Law

Enforcement Security Act 2005. The PDPA is intended to strengthen the protection of
personal information and other data held by Victorian government agencies, including local

councils and contractors working for the State Government.

Under the PDPA there is a single privacy and data protection framework. The PDPA
uses its own Information Privacy Principles (IPPs), and organisations are obliged to act
in accordance with the IPPs. As a result of the PDPA a Privacy and Data Protection
Commissioner has been established.

Information Privacy Principles

As discussed in the previous section, the amendments to the Privacy Act 1988 in 2014
introduced new Australian Privacy Principles (APPs). It was anticipated that the current
Victorian Information Privacy Principles (IPPs) would be replaced with new principles
based on the Australian Privacy Principles (APPs). However, this has not happened, so the

Victorian Privacy and Data Protection Act 2014 continues to use the IPPs.

9780170440943

CHAPTER 4 » SOFTWARE DEVELOPMENT: SOFTWARE DESIGN E

TABLE 411 The 10 Information Privacy Principles (IPPs) Penalty units define the
_ amount that needs to
Victoria. Generally, the
legislation does not specify
the monetary amount, but
information is being collected. does specify the Penalty
unit. Each year, the

Collection of personal When an organisation collects information, it should only collect the
information information it needs. The organisation should inform people that their

Use and disclosure of When an organisation uses and discloses personal information it is only for the penalty unit is specified.
personal information purpose that it was collected for, or for a secondary purpose that you would For example, from 1July
reasonably expect. 2015 to 30 June 2016,
ey M e e one penahy unit was worth
Data quality Ensure that the information collected is accurate, complete and up-to-date. $151.67. The rate for
Data security Information must be protected from misuse, loss, unauthorised access, penI:Ift:ly um'.:slls indexed
: . 5 each financial year so that
modification or disclosure. Reasonable steps must be taken to destroy or it is raised in line with
de-identify personal information that is no longer needed. inflation. Changes to the
Openness The organisation needs to be transparent about what it does with information. value of a penalty unit take

A . . . effect on 1July each year.
Non-compliance will result in a maximum penalty for a body corporate of

Access and correction When an organisation collects information it should allow people to see the
information it collects about them and provide them with the opportunity to

THINK ABOUT | 4.4

Unique identifiers Use of unique identifiers, usually a number, is only allowed where an SOFTWARE
organisation can demonstrate that the assignment is necessary to carry out its DEVELOPMENT
functions efficiently.

Anonymity Where possible, people supplying information should be given the option of Stevie is a student
not identifying themselves. su.ppor't officer at a

.. Victorian government

Transborder data flows If your personal information travels outside Victoria, your privacy protections school. He has

must travel with it. access to student

and parent personal
details. He has been
approached by an
external organisation
to ‘sell’ these details
in exchange for new
computer equipment
for the school.

Sensitive information Organisations need to ensure that they do not collect sensitive information
about people, such as their religion, political views or criminal record, without
checking the applicable laws.

The new APPs replaced the two sets of principles that have applied to Commonwealth

1 Identify key

legislation that
Commonwealth Information Privacy Principles and the National Privacy Principles. Stevie should

public sector and private sector organisations since 2001. They were known as the

consider before
Health Records Act 2001 providing the

information to the

The Victorian Health Records Act 2001 was created to provide direction regarding the

. . . L . . . ternal :
collection and handling of health information in both the public and private sector. It is 2

What
anticipated that patients will use both private and public health services at various stages of Ste:ie?erthicaI
their life. The Health Records Act allows people to access their own medical information, as responsibilities
well as establishing the health record privacy principles for both public and private medical to the students,

parents and the
school?

services. The Health Records Act established 11 Health Privacy Principles to provide rights
to both living and deceased people. These principles apply to the collection, use and storage

of personal health information in Victoria.

: [Project plan ™ Justification & Analysis . ™ Folio of alternative - [] Usability tests O Evaluation and O Final submission
: design ideas : assessment

9780170440943

m SOFTWARE DEVELOPMENT VCE UNITS 3&4

The Health Records Act
2001 applies to a deceased
individual who has been

dead for 30 years or less.

From the age of 16,
teenagers can consent

to medical and dental
treatment with the same
authority as an adult.
Therefore, teenagers can
see a doctor by themselves
without their parents. At
18 years of age, they have
the legal capacity to give
consent to, and refuse,
medical treatment.

The Act protects the confidentiality of patients’ health care information by allowing
the information to be used only for the primary purpose for which it was gathered. This
means that information about medical test results and your medical history may be used
by your doctor, the hospital and any other health professionals only for the purpose of your
immediate or ongoing care. This information would not be disclosed to a third party for a
‘secondary’ purpose (for example, to your medical insurance company or another hospital)
without your consent. Health information may, however, be provided to third parties without
your consent under certain, and strictly limited, circumstances, including requests by family
members in an emergency when you cannot give your consent and your life is threatened,
where there is a serious threat to public health and welfare, research in the public interest,
investigation of unlawful activity and as part of a legal claim.

An individual who believes that the Health Records Act has been breached can make
a complaint to the Health Services Commissioner, who will try to achieve a resolution
by discussion between the parties. If a satisfactory resolution cannot be reached, the
Commissioner may then serve a compliance notice on the organisation that has breached
the Act. This notice informs the organisation which area of the Act has been breached,
and states that it must correct its procedures. The maximum penalty for an organisation is

currently 3000 penalty units, and 600 penalty units for non-corporate cases.

Health Privacy Principles

Table 4.12 presents a summary version of the Health Privacy Principles. This is not the full
set or form of the Principles, and is intended for quick reference only. The principles in full
can be found in the Act.

TABLE 4.2 A summary of the Health Privacy Principles

Health Privacy Principles summary

1 Collection

Only collect health information if necessary for the performance of a function or activity and with consent
(or if it falls within HPP1). Notify individuals about what you do with the information, and that they can gain
access to It.

related secondary purpose that the person would reasonably expect. Otherwise, you generally need consent.
3 Data quality

Take reasonable steps to ensure health inf