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Introduction and
overview

Cambridge Specialist Mathematics VCE Units 1&2 Second Edition provides a complete
teaching and learning resource for the VCE Study Design to be first implemented in 2023.
It has been written with understanding as its chief aim, and with ample practice offered
through the worked examples and exercises. The work has been trialled in the classroom, and
the approaches offered are based on classroom experience and the responses of teachers to
earlier editions of this book and the requirements of the new Study Design.

The course is designed as preparation for Specialist Mathematics Units 3 and 4.

Specialist Mathematics Units 1 and 2 provide an introductory study of topics in proof,
logic, sequences, algorithms and pseudocode, graph theory, algebra, functions, statistics,
complex numbers, and vectors and their applications in a variety of practical and theoretical
contexts. Techniques of proof are discussed in Chapter 6 and the concepts discussed there are
employed in the following chapters and in Specialist Mathematics Units 3 and 4.

Chapter 1 provides an opportunity for students to revise and strengthen their algebra; and this
is revisited in Chapter 3, where polynomial identities and partial fractions are introduced.

We have also written online appendices to support teachers and students to better develop
their programming capabilities using both the programming language Python and the
inbuilt capabilities of students’ CAS calculators. Additional material on kinematics has
also been placed in an online appendix.

Five extensive revision chapters are placed at key stages throughout the book. These provide
technology-free multiple-choice and extended-response questions.

The first four revision chapters contain material suitable for student investigations, a feature
of the new course. The Study Design suggests that ‘[a]n Investigation comprises one to two
weeks of investigation into one or two practical or theoretical contexts or scenarios based
on content from areas of study and application of key knowledge and key skills for the
outcomes’. We have aimed to provide strong support for teachers in the development of these
investigations.

The TI-Nspire calculator examples and instructions have been completed by Peter Flynn,
and those for the Casio ClassPad by Mark Jelinek, and we thank them for their helpful
contributions.



Overview of the print book
1 Graded step-by-step worked examples with precise explanations (and video versions)

encourage independent learning, and are linked to exercise questions.
2 Section summaries provide important concepts in boxes for easy reference.
3 Additional linked resources in the Interactive Textbook are indicated by icons, such as

skillsheets and video versions of examples.
4 Questions that suit the use of a CAS calculator to solve them are identified within

exercises.
5 Chapter reviews contain a chapter summary and technology-free, multiple-choice, and

extended-response questions.
6 Revision chapters provide comprehensive revision and preparation for assessment,

including new practice Investigations.
7 The glossary includes page numbers of the main explanation of each term.
8 In addition to coverage within chapters, print and online appendices provide additional

support for learning and applying algorithms and pseudocode, including the use of Python
and TI-Nspire and Casio ClassPad for coding.

Numbers refer to descriptions above.

5 6 7 8

2

3

1

4
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Overview of the
downloadable PDF
textbook
9 The convenience of a downloadable PDF

textbook has been retained for times when
users cannot go online.

10 PDF annotation and search features are
enabled.

10 10

Overview of the Interactive Textbook
The Interactive Textbook (ITB) is an online HTML version of the print textbook powered
by the HOTmaths platform, included with the print book or available as a separate purchase.

11 The material is formatted for on screen use with a convenient and easy-to-use navigation
system and links to all resources.

12 Workspaces for all questions, which can be enabled or disabled by the teacher, allow
students to enter working and answers online and to save them. Input is by typing, with
the help of a symbol palette, handwriting and drawing on tablets, or by uploading images
of writing or drawing done on paper.

13 Self-assessment tools enable students to check answers, mark their own work, and rate
their confidence level in their work. This helps develop responsibility for learning and
communicates progress and performance to the teacher. Student accounts can be linked to
the learning management system used by the teacher in the Online Teaching Suite, so that
teachers can review student self-assessment and provide feedback or adjust marks.

14 All worked examples have video versions to encourage independent learning.
15 Worked solutions are included and can be enabled or disabled in the student ITB

accounts by the teacher.
16 An expanded and revised set of Desmos interactives and activities based on embedded

graphics calculator and geometry tool windows demonstrate key concepts and enable
students to visualise the mathematics.

17 The Desmos graphics calculator, scientific calculator, and geometry tool are also
embedded for students to use for their own calculations and exploration.

18 Revision of prior knowledge is provided with links to diagnostic tests and Year 10
HOTmaths lessons.

19 Quick quizzes containing automarked multiple-choice questions have been thoroughly
expanded and revised, enabling students to check their understanding.

20 Definitions pop up for key terms in the text, and are also provided in a dictionary.
21 Messages from the teacher assign tasks and tests.



xii Introduction and overview

INTERACTIVE TEXTBOOK POWERED BY THE HOTmaths
PLATFORM
A selection of features is shown. Numbers refer to the descriptions on pages xi–xii.
HOTmaths platform features are updated regularly

14

20

11

19 11 16 17

21

15

WORKSPACES AND SELF-ASSESSMENT

12

13
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Overview of the Online Teaching Suite powered by the
HOTmaths platform
The Online Teaching Suite is automatically enabled with a teacher account and is integrated
with the teacher’s copy of the Interactive Textbook. All the teacher resources are in one place
for easy access. The features include:

22 The HOTmaths learning management system with class and student analytics and reports,
and communication tools.

23 Teacher’s view of a student’s working and self-assessment which enables them to modify
the student’s self-assessed marks, and respond where students flag that they had diffculty.

24 A HOTmaths-style test generator.
25 An expanded and revised suite of chapter tests, assignments and sample investigations.
26 Editable curriculum grids and teaching programs.
27 A brand-new Exam Generator, allowing the creation of customised printable and online

trial exams (see below for more).

More about the Exam Generator
The Online Teaching Suite includes a comprehensive bank of VCAA exam questions,
augmented by exam-style questions written by experts, to allow teachers to create custom
trial exams.

Custom exams can model end-of-year exams, or target specific topics or types of questions
that students may be having difficulty with.

Features include:

� Filtering by question-type, topic and degree of difficulty
� Searchable by key words
� Answers provided to teachers
� Worked solutions for all questions
� VCAA marking scheme
� Multiple-choice exams can be auto-marked if completed online, with filterable reports
� All custom exams can be printed and completed under exam-like conditions or used as

revision.
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1
Reviewing
algebra

Objectives
I To revise the index laws.

I To express numbers using scientific notation.

I To solve problems with linear equations and simultaneous linear equations.

I To use substitution and transposition with formulas.

I To add and multiply algebraic fractions.

I To solve literal equations.

I To solve simultaneous literal equations.

Algebra is the language of mathematics. Algebra helps us to state ideas more simply. It also
enables us to make general statements about mathematics, and to solve problems that would
be difficult to solve otherwise.

We know by basic arithmetic that 9 × 7 + 2 × 7 = 11 × 7. We could replace the number 7
in this statement by any other number we like, and so we could write down infinitely many
such statements. These can all be captured by the algebraic statement 9x + 2x = 11x, for any
number x. Thus algebra enables us to write down general statements.

Formulas enable mathematical ideas to be stated clearly and concisely. An example is the
well-known formula for compound interest. Suppose that an initial amount P is invested at an
interest rate R, with interest compounded annually. Then the amount, An, that the investment
is worth after n years is given by An = P(1 + R)n.

In this chapter we review some of the techniques which you have met in previous years.
Algebra plays a central role in Specialist Mathematics at Years 11 and 12. It is important that
you become fluent with the techniques introduced in this chapter and in Chapter 4.



2 Chapter 1: Reviewing algebra

1A Indices
This section revises algebra involving indices.

Review of index laws

For all non-zero real numbers a and b and all integers m and n:

am × an = am+n� am ÷ an = am−n� (am)n = amn� (ab)n = anbn�(a
b

)n
=

an

bn� a−n =
1
an�

1
a−n = an� a0 = 1�

Rational indices
If a is a positive real number and n is a natural number, then a

1
n is defined to be the nth root

of a. That is, a
1
n is the positive number whose nth power is a. For example: 9

1
2 =
√

9 = 3.

If n is odd, then we can define a
1
n when a is negative. If a is negative and n is odd, define a

1
n

to be the number whose nth power is a. For example: (−8)
1
3 = −2.

In both cases we can write:

a
1
n =

n√a with
(
a

1
n

)n
= a

In general, the expression ax can be defined for rational indices, i.e. when x =
m
n

, where m
and n are integers, by defining

a
m
n =

(
a

1
n

)m

To employ this definition, we will always first write the fractional power in simplest form.

Note: The index laws hold for rational indices m and n whenever both sides of the equation
are defined (for example, if a and b are positive real numbers).

Simplify each of the following:

x2 × x3a
x4

x2b x
1
2 ÷ x

4
5c (x3)

1
2d

Example 1

Solution Explanation

a x2 × x3 = x2+3 = x5 am × an = am+n

b
x4

x2 = x4−2 = x2 am

an = am−n

c x
1
2 ÷ x

4
5 = x

1
2−

4
5 = x−

3
10

am

an = am−n

d (x3)
1
2 = x

3
2 (am)n = amn
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Evaluate:

125
2
3a

(1000
27

) 2
3

b

Example 2

Solution Explanation

a 125
2
3 =

(
125

1
3
)2

= 52 = 25 125
1
3 =

3√125 = 5

b
(1000

27

) 2
3

=

((1000
27

) 1
3
)2

=

(10
3

)2
=

100
9

(1000
27

) 1
3

=
3

√
1000
27

=
10
3

Simplify
4
√

x2y3

x
1
2 y

2
3

.

Example 3

Solution Explanation
4
√

x2y3

x
1
2 y

2
3

=
(x2y3)

1
4

x
1
2 y

2
3

=
x

2
4 y

3
4

x
1
2 y

2
3

(ab)n = anbn

= x
2
4−

1
2 y

3
4−

2
3

am

an = am−n

= x0y
1
12

= y
1
12 a0 = 1

Summary 1A
� Index laws

am × an = am+n• am ÷ an = am−n• (am)n = amn• (ab)n = anbn•(a
b

)n
=

an

bn• a−n =
1
an•

1
a−n = an• a0 = 1•

� Rational indices
a

1
n = n
√

a• a
m
n =

(
a

1
n

)m
•

Exercise 1A

1Example 1 Simplify each of the following using the appropriate index laws:

x3 × x4a a5 × a−3b x2 × x−1 × x2c
y3

y7d

x8

x−4e
p−5

p2f a
1
2 ÷ a

2
3g (a−2)4h
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(y−2)−7i (x5)3j (a−20)
3
5k

(
x−

1
2
)−4

l

(n10)
1
5m 2x

1
2 × 4x3n (a2)

5
2 × a−4o

1
x−4p(

2n−
2
5
)5
÷ (43n4)q x3 × 2x

1
2 × −4x−

3
2r

(ab3)2 × a−2b−4 ×
1

a2b−3s
(
22 p−3 × 43 p5 ÷ (6p−3)

)0t

2Example 2 Evaluate each of the following:

25
1
2a 64

1
3b

(16
9

) 1
2

c 16−
1
2d(49

36

)− 1
2

e 27
1
3f 144

1
2g 64

2
3h

9
3
2i

(81
16

) 1
4

j
(23

5

)0
k 128

3
7l

3 Use your calculator to evaluate each of the following, correct to two decimal places:

4.352a 2.45b
√

34.6921c (0.02)−3d 3√0.729e
4√2.3045f (345.64)−

1
3g (4.568)

2
5h

1

(0.064)−
1
3

i

4 Simplify each of the following, giving your answer with positive index:

a2b3

a−2b−4a
2a2(2b)3

(2a)−2b−4b
a−2b−3

a−2b−4c

a2b3

a−2b−4 ×
ab

a−1b−1d
(2a)2 × 8b3

16a−2b−4e
2a2b3

8a−2b−4 ÷
16ab

(2a)−1b−1f

5 Write
2n × 8n

22n × 16
in the form 2an+b.

6 Write 2−x × 3−x × 62x × 32x × 22x as a power of 6.

7 Simplify each of the following:

2
1
3 × 2

1
6 × 2−

2
3a a

1
4 × a

2
5 × a−

1
10b 2

2
3 × 2

5
6 × 2−

2
3c(

2
1
3
)2
×

(
2

1
2
)5

d
(
2

1
3
)2
× 2

1
3 × 2−

2
5e

8Example 3 Simplify each of the following:
3√
a3b2 ÷

3√
a2b−1a

√
a3b2 ×

√
a2b−1b 5√

a3b2 ×
5√
a2b−1c

√
a−4b2 ×

√
a3b−1d

√
a3b2c−3 ×

√
a2b−1c−5e 5√

a3b2 ÷
5√
a2b−1f

√
a3b2

a2b−1c−5 ×

√
a−4b2

a3b−1 ×
√

a3b−1g
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1B Standard form
Often when dealing with real-world problems, the numbers involved may be very small or
very large. For example:

� The distance from Earth to the Sun is approximately 150 000 000 kilometres.
� The mass of an oxygen atom is approximately 0.000 000 000 000 000 000 000 026 grams.

To help deal with such numbers, we can use a more convenient way to express them. This
involves expressing the number as a product of a number between 1 and 10 and a power of 10
and is called standard form or scientific notation.

These examples written in standard form are:

� 1.5 × 108 kilometres
� 2.6 × 10−23 grams

Multiplication and division with very small or very large numbers can often be simplified by
first converting the numbers into standard form. When simplifying algebraic expressions or
manipulating numbers in standard form, a sound knowledge of the index laws is essential.

Write each of the following in standard form:

3 453 000a 0.00675b

Example 4

Solution
3 453 000 = 3.453 × 106a 0.00675 = 6.75 × 10−3b

Find the value of
32 000 000 × 0.000 004

16 000
.

Example 5

Solution

32 000 000 × 0.000 004
16 000

=
3.2 × 107 × 4 × 10−6

1.6 × 104

=
12.8 × 101

1.6 × 104

= 8 × 10−3

= 0.008

Significant figures
When measurements are made, the result is recorded to a certain number of significant
figures. For example, if we say that the length of a piece of ribbon is 156 cm to the nearest
centimetre, this means that the length is between 155.5 cm and 156.5 cm. The number 156
is said to be correct to three significant figures. Similarly, we may record π as being 3.1416,
correct to five significant figures.
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When rounding off to a given number of significant figures, first identify the last
significant digit and then:

� if the next digit is 0, 1, 2, 3 or 4, round down
� if the next digit is 5, 6, 7, 8 or 9, round up.

It can help with rounding off if the original number is first written in scientific notation.

So π = 3.141 592 653 . . . is rounded off to 3, 3.1, 3.14, 3.142, 3.1416, 3.14159, etc.
depending on the number of significant figures required.

Writing a number in scientific notation makes it clear how many significant figures have been
recorded. For example, it is unclear whether 600 is recorded to one, two or three significant
figures. However, when written in scientific notation as 6.00 × 102, 6.0 × 102 or 6 × 102, it is
clear how many significant figures are recorded.

Evaluate
5
√

a
b2 if a = 1.34 × 10−10 and b = 2.7 × 10−8.

Example 6

Solution
5
√

a
b2 =

5√
1.34 × 10−10

(2.7 × 10−8)2

=
(1.34 × 10−10)

1
5

2.72 × (10−8)2

= 1.45443 . . . × 1013

= 1.45 × 1013 to three significant figures

Many calculators can display numbers in scientific notation. The format will vary from
calculator to calculator. For example, the number 3 245 000 = 3.245 × 106 may appear as
3.245e6 or 3.24506.

Using the TI-Nspire
Insert a Calculator page, then use con > Settings > Document Settings and change the
Exponential Format field to Scientific. If you want this change to apply only to the current
page, select OK to accept the change. Select Current to return to the current page.

Using the Casio ClassPad
The ClassPad calculator can be set to express decimal answers in various forms,
including scientific notation with a fixed number of significant figures. Go to SettingsO
and select Basic Format. You can then choose from the various number formats available.

Note: The number format Normal 2 only defaults to scientific notation for numbers
greater than or equal to 1010, or less than or equal to 10−10.
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Summary 1B
� A number is said to be in scientific notation (or standard form) when it is written as a

product of a number between 1 and 10 and an integer power of 10.
For example: 6547 = 6.547 × 103 and 0.789 = 7.89 × 10−1

� Writing a number in scientific notation makes it clear how many significant figures
have been recorded.

� When rounding off to a given number of significant figures, first identify the last
significant digit and then:

• if the next digit is 0, 1, 2, 3 or 4, round down
• if the next digit is 5, 6, 7, 8 or 9, round up.

Exercise 1B

1Example 4 Express each of the following numbers in standard form:

47.8a 6728b 79.23c 43 580d
0.0023e 0.000 000 56f 12.000 34g 50 millionh
23 000 000 000i 0.000 000 0013j 165 thousandk 0.000 014 567l

2 Express each of the following in scientific notation:

a X-rays have a wavelength of 0.000 000 01 cm.
b The mass of a hydrogen atom is 0.000 000 000 000 000 000 000 001 67 g.
c Visible light has wavelength 0.000 05 cm.
d One nautical mile is 1853.18 m.
e A light year is 9 461 000 000 000 km.
f The speed of light is 29 980 000 000 cm/s.

3 Express each of the following as an ordinary number:

a The star Sirius is approximately 8.128 × 1013 km from Earth.
b A single red blood cell contains 2.7 × 108 molecules of haemoglobin.
c The radius of an electron is 2.8 × 10−13 cm.

4 Write each of the following in scientific notation, correct to the number of significant
figures indicated in the brackets:

456.89 (4)a 34567.23 (2)b 5679.087 (5)c
0.04536 (2)d 0.09045 (2)e 4568.234 (5)f

5Example 5 Find the value of:
324 000 × 0.000 0007

4000
a

5 240 000 × 0.8
42 000 000

b

6Example 6 Evaluate the following correct to three significant figures:
3
√

a
b4 if a = 2 × 109 and b = 3.215a

4
√

a
4b4 if a = 2 × 1012 and b = 0.05b



8 Chapter 1: Reviewing algebra

1C Solving linear equations and simultaneous
linear equations
Many problems may be solved by first translating them into mathematical equations and then
solving the equations using algebraic techniques. An equation is solved by finding the value
or values of the variables that would make the statement true.

Linear equations are simple equations that can be written in the form ax + b = 0. There are a
number of standard techniques that can be used for solving linear equations.

Solve
x
5
− 2 =

x
3

.a Solve
x − 3

2
−

2x − 4
3

= 5.b

Example 7

Solution
Multiply both sides of the equation
by the lowest common multiple
of 3 and 5:

x
5
− 2 =

x
3

x
5
× 15 − 2 × 15 =

x
3
× 15

3x − 30 = 5x

3x − 5x = 30

−2x = 30

x =
30
−2

∴ x = −15

a Multiply both sides of the equation
by the lowest common multiple
of 2 and 3:

x − 3
2
−

2x − 4
3

= 5

x − 3
2
× 6 −

2x − 4
3
× 6 = 5 × 6

3(x − 3) − 2(2x − 4) = 30

3x − 9 − 4x + 8 = 30

3x − 4x = 30 + 9 − 8

−x = 31

x =
31
−1

∴ x = −31

b

Simultaneous linear equations
The intersection point of two straight lines can
be found graphically; however, the accuracy
of the solution will depend on the accuracy of
the graphs.

Alternatively, the intersection point may be
found algebraically by solving the pair of
simultaneous equations. We shall consider two
techniques for solving simultaneous equations.

(1, –2)

x + 2y = –3

x

2x
 –

 y
 =

 4

O

1

1 2 3–1–1–2–3

–2

–3

–4

2

3

4

y
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Solve the equations 2x − y = 4 and x + 2y = −3.

Example 8

Solution Explanation
Method 1: Substitution

2x − y = 4 (1) Using one of the two equations, express
one variable in terms of the other variable.x + 2y = −3 (2)

From equation (2), we get x = −3 − 2y.

Substitute in equation (1): Then substitute this expression into the
other equation (reducing it to an equation
in one variable, y). Solve the equation for y.

2(−3 − 2y) − y = 4

−6 − 4y − y = 4

−5y = 10

y = −2

Substitute the value of y into (2): Substitute this value for y in one of the
equations to find the other variable, x.x + 2(−2) = −3

x = 1

Check in (1): A check can be carried out with the other
equation.

LHS = 2(1) − (−2) = 4

RHS = 4

Method 2: Elimination

2x − y = 4 (1)

x + 2y = −3 (2)

To eliminate x, multiply equation (2) by 2
and subtract the result from equation (1).

When we multiply equation (2) by 2, the
pair of equations becomes:

2x − y = 4 (1)

2x + 4y = −6 (2′)

Subtract (2′) from (1):

−5y = 10

y = −2

Now substitute for y in equation (2) to
find x, and check as in the substitution
method.

If one of the variables has the same
coefficient in the two equations, we can
eliminate that variable by subtracting one
equation from the other.

It may be necessary to multiply one of
the equations by a constant to make the
coefficients of x or y the same in the two
equations.

Note: This example shows that the point (1,−2) is the point of intersection of the graphs of
the two linear relations.
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Using the TI-Nspire
Method 1: Using a Calculator application
Simultaneous linear equations can be solved in a Calculator application.

� Use menu > Algebra > Solve System of Equations > Solve System of Linear Equations.

� Complete the pop-up screen.
� Enter the equations as shown to give the

solution to the simultaneous equations
2x − y = 4 and x + 2y = −3.

� Hence the solution is x = 1 and y = −2.

Method 2: Using a Graphs application
Simultaneous linear equations can also be solved graphically in a Graphs application.

� Equations of the form a · x + b · y = c can be entered directly using menu > Graph
Entry/Edit > Relation. (Alternatively, you can use menu > Graph Entry/Edit >

Equation Templates > Line > Line Standard a · x+b · y=c.)

Note: If the entry line is not visible, press tab . Pressing enter will hide the entry line.
If you want to add more equations, use H to add the next equation.

� The intersection point can be found using menu > Analyze Graph > Intersection.
� Move the cursor to the left of the intersection point (lower bound) and click. Then

move the cursor to the right of the intersection point (upper bound). Click to paste the
coordinates to the screen.

Note: Alternatively, use menu > Geometry > Points & Lines > Intersection Point(s) and
click on both graphs.
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Using the Casio ClassPad
To solve the simultaneous equations algebraically:

� Open theMapplication and turn on the keyboard.
� In Math1 , tap the simultaneous equations icon~.
� Enter the two equations as shown.
� Type x, y in the bottom-right square to indicate the

variables.
� Tap EXE .

There are two methods for solving simultaneous equations graphically.

Method 1
In theMapplication:

� Enter the equation 2x − y = 4 and tap EXE .
� Enter the equation x + 2y = −3 and tap EXE .
� Select$ from the toolbar to insert a graph

window. An appropriate window can be set by
selecting Zoom > Quick > Quick Standard.

� Highlight each equation and drag it into the
graph window.

� To find the point of intersection, go to Analysis >

G-Solve > Intersection.

Method 2
For this method, the equations need to be rearranged
to make y the subject. In this form, the equations are
y = 2x − 4 and y = − 1

2 x − 3
2 .

� Open the menum; select Graph & Table .
� Tap in the working line of y1 and enter 2x − 4.
� Tap in the working line of y2 and enter − 1

2 x − 3
2 .

� Tick the boxes for y1 and y2.
� Select$ from the toolbar.
� Go to Analysis > G-Solve > Intersection.
� If necessary, the view window settings can be

adjusted by tapping6 or by selecting Zoom >

Quick > Quick Standard.
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Summary 1C
� An equation is solved by finding the value or values of the variables that would make

the statement true.
� A linear equation is one in which the variable is to the first power.
� There are often several different ways to solve a linear equation. The following steps

provide some suggestions:

1 Expand brackets and, if the equation involves fractions, multiply through by the
lowest common denominator of the terms.

2 Group all of the terms containing a variable on one side of the equation and the
terms without the variable on the other side.

� Methods for solving simultaneous linear equations in two variables by hand:

Substitution
• Make one of the variables the subject in one of the equations.
• Substitute for that variable in the other equation.

Elimination
• Choose one of the two variables to eliminate.
• Obtain the same or opposite coefficients for this variable in the two equations.

To do this, multiply both sides of one or both equations by a number.
• Add or subtract the two equations to eliminate the chosen variable.

Exercise 1C

1Example 7a Solve the following linear equations:

3x + 7 = 15a 8 −
x
2

= −16b 42 + 3x = 22c
2x
3
− 15 = 27d 5(2x + 4) = 13e −3(4 − 5x) = 24f

3x + 5 = 8 − 7xg 2 + 3(x − 4) = 4(2x + 5)h
2x
5
−

3
4

= 5xi

6x + 4 =
x
3
− 3j

2Example 7b Solve the following linear equations:
x
2

+
2x
5

= 16a
3x
4
−

x
3

= 8b

3x − 2
2

+
x
4

= −8c
5x
4
−

4
3

=
2x
5

d

x − 4
2

+
2x + 5

4
= 6e

3 − 3x
10

−
2(x + 5)

6
=

1
20

f

3 − x
4
−

2(x + 1)
5

= −24g
−2(5 − x)

8
+

6
7

=
4(x − 2)

3
h
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3Example 8 Solve each of the following pairs of simultaneous equations:

3x + 2y = 2

2x − 3y = 6

a 5x + 2y = 4

3x − y = 6

b 2x − y = 7

3x − 2y = 2

c

x + 2y = 12

x − 3y = 2

d 7x − 3y = −6

x + 5y = 10

e 15x + 2y = 27

3x + 7y = 45

f

1D Solving problems with linear equations
Many problems can be solved by translating them into mathematical language and using
an appropriate mathematical technique to find the solution. By representing the unknown
quantity in a problem with a symbol (called a pronumeral or a variable) and constructing
an equation from the information, the value of the unknown can be found by solving
the equation.

Before constructing the equation, each variable and what it stands for (including the units)
should be stated. All the elements of the equation must be in units of the same system.

For each of the following, form the relevant linear equation and solve it for x:

a The length of the side of a square is (x − 6) cm. Its perimeter is 52 cm.
b The perimeter of a square is (2x + 8) cm. Its area is 100 cm2.

Example 9

Solution
a Perimeter = 4 × side length

Therefore

4(x − 6) = 52

x − 6 = 13

x = 19and so

b The perimeter of the square is 2x + 8.

The length of one side is
2x + 8

4
=

x + 4
2

.

Thus the area is( x + 4
2

)2
= 100

As the side length must be positive, this gives the linear equation

x + 4
2

= 10

Therefore x = 16.
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An athlete trains for an event by gradually increasing the distance she runs each week over
a five-week period. If she runs an extra 5 km each successive week and over the five weeks
runs a total of 175 km, how far did she run in the first week?

Example 10

Solution
Let the distance run in the first week be x km.

Then the distance run in the second week is x + 5 km, and the distance run in the third
week is x + 10 km, and so on.

The total distance run is x + (x + 5) + (x + 10) + (x + 15) + (x + 20) km.

∴ 5x + 50 = 175

5x = 125

x = 25

The distance she ran in the first week was 25 km.

A man bought 14 books at a sale. Some cost $15 each and the remainder cost $12.50 each.
In total he spent $190. How many $15 books and how many $12.50 books did he buy?

Example 11

Solution
Let n be the number of books costing $15.
Then 14 − n is the number of books costing $12.50.

∴ 15n + 12.5(14 − n) = 190

15n + 175 − 12.5n = 190

2.5n + 175 = 190

2.5n = 15

n = 6

He bought 6 books costing $15 and 8 books costing $12.50.

Summary 1D
Steps for solving a word problem with a linear equation
� Read the question carefully and write down the known information clearly.
� Identify the unknown quantity that is to be found.
� Assign a variable to this quantity.
� Form an expression in terms of x (or the variable being used) and use the other relevant

information to form the equation.
� Solve the equation.
� Write a sentence answering the initial question.
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Exercise 1DSkill-
sheet

1Example 9 For each of the cases below, write down a relevant equation involving the variables
defined, and solve the equation for parts a, b and c.

a The length of the side of a square is (x − 2) cm. Its perimeter is 60 cm.
b The perimeter of a square is (2x + 7) cm. Its area is 49 cm2.
c The length of a rectangle is (x − 5) cm. Its width is (12 − x) cm. The rectangle is

twice as long as it is wide.
d The length of a rectangle is (2x + 1) cm. Its width is (x − 3) cm. The perimeter of the

rectangle is y cm.
e n people each have a meal costing $p. The total cost of the meal is $Q.
f S people each have a meal costing $p. A 10% service charge is added to the cost.

The total cost of the meal is $R.
g A machine working at a constant rate produces n bolts in 5 minutes. It produces

2400 bolts in 1 hour.
h The radius of a circle is (x + 3) cm. A sector subtending an angle of 60◦ at the centre

is cut off. The arc length of the minor sector is a cm.

2Example 10 Bronwyn and Noel have a women’s clothing shop in Summerland. Bronwyn manages
the shop and her sales are going up steadily over a particular period of time. They are
going up by $500 per week. If over a five-week period her sales total $17 500, how
much did she earn in the first week?

3Example 11 Bronwyn and Noel have a women’s clothing shop in Summerland. Sally, Adam and
baby Lana came into the shop and Sally bought dresses and handbags. The dresses
cost $65 each and the handbags cost $26 each. Sally bought 11 items and in total she
spent $598. How many dresses and how many handbags did she buy?

4 A rectangular courtyard is three times as long as it is wide. If the perimeter of the
courtyard is 67 m, find the dimensions of the courtyard.

5 A wine merchant buys 50 cases of wine. He pays full price for half of them, but gets a
40% discount on the remainder. If he paid a total of $2260, how much was the full price
of a single case?

6 A real-estate agent sells 22 houses in six months. He makes a commission of $11 500
per house on some and $13 000 per house on the remainder. If his total commission
over the six months was $272 500, on how many houses did he make a commission
of $11 500?

7 Three boys compare their marble collections. The first boy has 14 fewer than the second
boy, who has twice as many as the third. If between them they have 71 marbles, how
many does each boy have?
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8 Three girls are playing Scrabble. At the end of the game, their three scores add up
to 504. Annie scored 10% more than Belinda, while Cassie scored 60% of the combined
scores of the other two. What did each player score?

9 A biathlon event involves running and cycling, where the cycling component takes
up the most time. Kim can cycle 30 km/h faster than she can run. If Kim spends
48 minutes running and a third as much time again cycling in an event that covers a total
distance of 60 km, how fast can she run?

10 The mass of a molecule of a certain chemical compound is 2.45 × 10−22 g. If each
molecule is made up of two carbon atoms and six oxygen atoms and the mass of an
oxygen atom is one-third that of a carbon atom, find the mass of an oxygen atom.

11 Mother’s pearl necklace fell to the floor. One-sixth of the pearls rolled under the fridge,
one-third rolled under the couch, one-fifth of them behind the bookcase, and nine were
found at her feet. How many pearls are there?

12 Parents say they don’t have favourites, but everyone knows that’s a lie. A father
distributes $96 to his three children according to the following instructions: The middle
child receives $12 less than the oldest, and the youngest receives one-third as much as
the middle child. How much does each receive?

13 Kavindi has achieved an average mark of 88% on her first four maths tests. What mark
would she need on her fifth test to increase her average to 90%?

14 In a particular class, 72% of the students have black hair. Five black-haired students
leave the class, so that now 65% of the students have black hair. How many students
were originally in the class?

15 Two tanks are being emptied. Tank A contains 100 litres of water and tank B contains
120 litres of water. Water runs from Tank A at 2 litres per minute, and water runs from
tank B at 3 litres per minute. After how many minutes will the amount of water in the
two tanks be the same?

16 Suppose that candle A is initially 10 cm tall and burns out after 2 hours. Candle B is
initially 8 cm tall and burns out after 4 hours. Both candles are lit at the same time.
Assuming ‘constant burning rates’:

a When is the height of candle A the same as the height of candle B?
b When is the height of candle A half the height of candle B?
c When is candle A 1 cm taller than candle B?

17 A motorist drove 320 km in
10
3

hours. He drove part of the way at an average speed
of 100 km/h and the rest of the way at an average speed of 90 km/h. What is the
distance he travelled at 100 km/h?
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18 Jarmila travels regularly between two cities. She takes
14
3

hours if she travels at her
usual speed. If she increases her speed by 3 km/h, she can reduce her time taken by
20 minutes. What is her usual speed?

1E Solving problems with simultaneous linear equations
When the relationship between two quantities is linear, we can find the constants which
determine this linear relationship if we are given two sets of information satisfying the
relationship. Simultaneous linear equations enable this to be done.

Another situation in which simultaneous linear equations may be used is where it is required
to find the point of the Cartesian plane which satisfies two linear relations.

There are two possible methods for paying gas bills:

Method A A fixed charge of $25 per quarter + 50c per unit of gas used
Method B A fixed charge of $50 per quarter + 25c per unit of gas used

Determine the number of units which must be used before method B becomes cheaper
than method A.

Example 12

Solution

C1 = charge ($) using method ALet

C2 = charge ($) using method B

x = number of units of gas used

C1 = 25 + 0.5xThen

C2 = 50 + 0.25x

100

50

25

C2 = 0.25x + 50

C1 = 0.5x + 25

25 50 75 100125150O

Units

D
ol

la
rs

C

x

From the graph we see that method B is cheaper if the number of units exceeds 100.

The solution can be obtained by solving simultaneous linear equations:

C1 = C2

25 + 0.5x = 50 + 0.25x

0.25x = 25

x = 100
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If 3 kg of jam and 2 kg of butter cost $29, and 6 kg of jam and 3 kg of butter cost $54, find
the cost per kilogram of jam and butter.

Example 13

Solution
Let the cost of 1 kg of jam be x dollars and the cost of 1 kg of butter be y dollars.

3x + 2y = 29 (1)Then

6x + 3y = 54 (2)and

6x + 4y = 58 (1′)Multiply (1) by 2:

−y = −4Subtract (1′) from (2):

y = 4

6x + 3(4) = 54Substitute in (2):

6x = 42

x = 7

Jam costs $7 per kilogram and butter costs $4 per kilogram.

Summary 1E
Steps for solving a word problem with simultaneous linear equations
� Read the question carefully and write down the known information clearly.
� Identify the two unknown quantities that are to be found.
� Assign variables to these two quantities.
� Form expressions in terms of x and y (or other suitable variables) and use the other

relevant information to form the two equations.
� Solve the system of equations.
� Write a sentence answering the initial question.

Exercise 1E

1Example 12 A car hire firm offers the option of paying $108 per day with unlimited kilometres, or
$63 per day plus 32 cents per kilometre travelled. How many kilometres would you
have to travel in a given day to make the unlimited-kilometres option more attractive?

2 Company A will cater for your party at a cost of $450 plus $40 per guest. Company B
offers the same service for $300 plus $43 per guest. How many guests are needed before
Company A’s charge is less than Company B’s?

3Example 13 A basketball final is held in a stadium which can seat 15 000 people. All the tickets have
been sold, some to adults at $45 and the rest for children at $15. If the revenue from the
tickets was $525 000, find the number of adults who bought tickets.
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4 A contractor employed eight men and three boys for one day and paid them a total
of $2240. Another day he employed six men and eighteen boys for $4200. What was
the daily rate he paid each man and each boy?

5 The sum of two numbers is 212 and their difference is 42. Find the two numbers.

6 A chemical manufacturer wishes to obtain 700 litres of a 24% acid solution by mixing a
40% solution with a 15% solution. How many litres of each solution should be used?

7 Two children had 220 marbles between them. After one child had lost half her marbles
and the other had lost 40 marbles, they had an equal number of marbles. How many did
each child start with and how many did each child finish with?

8 An investor received $31 000 interest per annum from a sum of money, with part
of it invested at 10% and the remainder at 7% simple interest. She found that if she
interchanged the amounts she had invested she could increase her return by $1000 per
annum. Calculate the total amount she had invested.

9 Each adult paid $30 to attend a concert and each student paid $20. A total of 1600
people attended. The total paid was $37 000. How many adults and how many students
attended the concert?

10 Twelve teams play in a soccer league. Every team plays against each of the other teams
once. In each game, the winner gets 3 points and the loser gets 0 points; in the case of
a draw, the two teams get 1 point each. At the end of the season, the total number of
points given to all teams was 180. How many games finished in a draw?

1F Substitution and transposition of formulas
An equation that states a relationship between two or more quantities is called a formula;
e.g. the area of a circle is given by A = πr2. The value of A, the subject of the formula, may
be found by substituting a given value of r and the value of π.

Using the formula A = πr2, find the value of A correct to two decimal places if r = 2.3 and
π = 3.142 (correct to three decimal places).

Example 14

Solution

A = πr2

= 3.142(2.3)2

= 16.62118

∴ A = 16.62 correct to two decimal places
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The formula A = πr2 can also be transposed to make r the subject.

When transposing a formula, follow a similar procedure to solving a linear equation.
Whatever has been done to the variable required is ‘undone’.

a Transpose the formula A = πr2 to make r the subject.
b Hence find the value of r correct to three decimal places if A = 24.58 and π = 3.142

(correct to three decimal places).

Example 15

Solution

A = πr2

A
π

= r2

r =

√
A
π

a r =

√
A
π

=

√
24.58
3.142

= 2.79697 . . .

r = 2.797 correct to three decimal places

b

Summary 1F

� A formula relates different quantities: for example, the formula A = πr2 relates the
radius r with the area A of the circle.

� The variable on the left is called the subject of the formula: for example, in the formula
A = πr2, the subject is A.

� To calculate the value of a variable which is not the subject of a formula:
Method 1 Substitute the values for the known variables, then solve the resulting
equation for the unknown variable.
Method 2 Rearrange to make the required variable the subject, then substitute values.

Exercise 1F

1Example 14 Substitute the specified values to evaluate each of the following, giving the answers
correct to two decimal places:

a v if v = u + at and u = 15, a = 2, t = 5

b I if I =
PrT
100

and P = 600, r = 5.5, T = 10

c V if V = πr2h and r = 4.25, h = 6
d S if S = 2πr(r + h) and r = 10.2, h = 15.6

e V if V =
4
3
πr2h and r = 3.58, h = 11.4

f s if s = ut +
1
2

at2 and u = 25.6, t = 3.3, a = −1.2

g T if T = 2π
√
`

g
and ` = 1.45, g = 9.8
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h f if
1
f

=
1
v

+
1
u

and v = 3, u = 7

i c if c2 = a2 + b2 and a = 8.8, b = 3.4
j v if v2 = u2 + 2as and u = 4.8, a = 2.5, s = 13.6

2Example 15 Transpose each of the following to make the symbol in brackets the subject:

v = u + ata (a) S =
n
2

(a + `)b (`)

A =
1
2

bhc (b) P = I2Rd (I)

s = ut +
1
2

at2e (a) E =
1
2

mv2f (v)

Q =
√

2ghg (h) −xy − z = xy + zh (x)

ax + by
c

= x − bi (x)
mx + b
x − b

= cj (x)

3 The formula F =
9C
5

+ 32 is used to convert temperatures given in degrees Celsius (C)
to degrees Fahrenheit (F).

a Convert 28 degrees Celsius to degrees Fahrenheit.
b Transpose the formula to make C the subject and find C if F = 135◦.

4 The sum, S , of the interior angles of a polygon with n sides is given by the formula
S = 180(n − 2).

a Find the sum of the interior angles of an octagon.
b Transpose the formula to make n the subject and hence determine the number of

sides of a polygon whose interior angles add up to 1260◦.

5 The volume, V , of a right cone is given by the formula V =
1
3
πr2h, where r is the radius

of the base and h is the height of the cone.

a Find the volume of a cone with radius 3.5 cm and height 9 cm.
b Transpose the formula to make h the subject and hence find the height of a cone with

base radius 4 cm and volume 210 cm3.
c Transpose the formula to make r the subject and hence find the radius of a cone with

height 10 cm and volume 262 cm3.

6 For a particular type of sequence of numbers, the sum (S ) of the terms in the sequence
is given by the formula

S =
n
2

(a + `)

where n is the number of terms in the sequence, a is the first term and ` is the last term.

a Find the sum of such a sequence of seven numbers whose first term is −3 and whose
last term is 22.

b What is the first term of such a sequence of 13 numbers whose last term is 156 and
whose sum is 1040?

c How many terms are there in the sequence 25 + 22 + 19 + · · · + (−5) = 110?
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1G Algebraic fractions
The principles involved in addition, subtraction, multiplication and division of algebraic
fractions are the same as for simple numerical fractions.

Addition and subtraction
To add or subtract, all fractions must be written with a common denominator.

Simplify:
x
3

+
x
4

a
2
x

+
3a
4

b

5
x + 2

−
4

x − 1
c

4
x + 2

−
7

(x + 2)2d

Example 16

Solution
x
3

+
x
4

=
4x + 3x

12

=
7x
12

a
2
x

+
3a
4

=
8 + 3ax

4x
b

5
x + 2

−
4

x − 1
=

5(x − 1) − 4(x + 2)
(x + 2)(x − 1)

=
5x − 5 − 4x − 8
(x + 2)(x − 1)

=
x − 13

(x + 2)(x − 1)

c
4

x + 2
−

7
(x + 2)2 =

4(x + 2) − 7
(x + 2)2

=
4x + 1

(x + 2)2

d

Multiplication and division
Before multiplying and dividing algebraic fractions, it is best to factorise numerators and
denominators where possible so that common factors can be readily identified.

Simplify:
3x2

10y2 ×
5y

12x
a

2x − 4
x − 1

×
x2 − 1
x − 2

b

x2 − 1
2x − 2

×
4x

x2 + 4x + 3
c

x2 + 3x − 10
x2 − x − 2

÷
x2 + 6x + 5

3x + 3
d

Example 17

Solution

a
3x2

10y2 ×
5y

12x
=

x
8y
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b
2x − 4
x − 1

×
x2 − 1
x − 2

=
2(x − 2)

x − 1
×

(x − 1)(x + 1)
x − 2

= 2(x + 1)

c
x2 − 1
2x − 2

×
4x

x2 + 4x + 3
=

(x − 1)(x + 1)
2(x − 1)

×
4x

(x + 1)(x + 3)

=
2x

x + 3

d
x2 + 3x − 10

x2 − x − 2
÷

x2 + 6x + 5
3x + 3

=
(x + 5)(x − 2)
(x − 2)(x + 1)

×
3(x + 1)

(x + 1)(x + 5)

=
3

x + 1

More examples
The following two examples involve algebraic fractions and rational indices.

Express
3x3

√
4 − x

+ 3x2
√

4 − x as a single fraction.

Example 18

Solution
3x3

√
4 − x

+ 3x2
√

4 − x =
3x3 + 3x2

√
4 − x

√
4 − x

√
4 − x

=
3x3 + 3x2(4 − x)

√
4 − x

=
12x2

√
4 − x

Express (x − 4)
1
5 − (x − 4)−

4
5 as a single fraction.

Example 19

Solution

(x − 4)
1
5 − (x − 4)−

4
5 = (x − 4)

1
5 −

1

(x − 4)
4
5

=
(x − 4)

1
5 (x − 4)

4
5 − 1

(x − 4)
4
5

=
x − 5

(x − 4)
4
5
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Summary 1G
� Simplifying algebraic fractions
• First factorise the numerator and denominator.
• Then cancel any factors common to the numerator and denominator.

� Adding and subtracting algebraic fractions
• First obtain a common denominator and then add or subtract.

� Multiplying and dividing algebraic fractions
• First factorise each numerator and denominator completely.
• Then complete the calculation by cancelling common factors.

Exercise 1GSkill-
sheet

1Example 16 Simplify each of the following:
2x
3

+
3x
2

a
3a
2
−

a
4

b
3h
4

+
5h
8
−

3h
2

c

3x
4
−

y
6
−

x
3

d
3
x

+
2
y

e
5

x − 1
+

2
x

f

3
x − 2

+
2

x + 1
g

2x
x + 3

−
4x

x − 3
−

3
2

h
4

x + 1
+

3
(x + 1)2i

a − 2
a

+
a
4

+
3a
8

j 2x −
6x2 − 4

5x
k

2
x + 4

−
3

x2 + 8x + 16
l

3
x − 1

+
2

(x − 1)(x + 4)
m

3
x − 2

−
2

x + 2
+

4
x2 − 4

n

5
x − 2

+
3

x2 + 5x + 6
+

2
x + 3

o x − y −
1

x − y
p

3
x − 1

−
4x

1 − x
q

3
x − 2

+
2x

2 − x
r

2Example 17 Simplify each of the following:
x2

2y
×

4y3

x
a

3x2

4y
×

y2

6x
b

4x3

3
×

12
8x4c

x2

2y
÷

3xy
6

d
4 − x

3a
×

a2

4 − x
e

2x + 5
4x2 + 10x

f

(x − 1)2

x2 + 3x − 4
g

x2 − x − 6
x − 3

h
x2 − 5x + 4

x2 − 4x
i

5a2

12b2 ÷
10a
6b

j
x − 2

x
÷

x2 − 4
2x2k

x + 2
x(x − 3)

÷
4x + 8

x2 − 4x + 3
l

2x
x − 1

÷
4x2

x2 − 1
m

x2 − 9
x + 2

×
3x + 6
x − 3

÷
9
x

n
3x

9x − 6
÷

6x2

x − 2
×

2
x + 5

o
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3 Express each of the following as a single fraction:
1

x − 3
+

2
x − 3

a
2

x − 4
+

2
x − 3

b
3

x + 4
+

2
x − 3

c

2x
x − 3

+
2

x + 4
d

1
(x − 5)2 +

2
x − 5

e
3x

(x − 4)2 +
2

x − 4
f

1
x − 3

−
2

x − 3
g

2
x − 3

−
5

x + 4
h

2x
x − 3

+
3x

x + 3
i

1
(x − 5)2 −

2
x − 5

j
2x

(x − 6)3 −
2

(x − 6)2k
2x + 3
x − 4

−
2x − 4
x − 3

l

4Example 18 Express each of the following as a single fraction:
√

1 − x +
2

√
1 − x

a
2

√
x − 4

+
2
3

b
3

√
x + 4

+
2

√
x + 4

c

3
√

x + 4
+
√

x + 4d
3x3

√
x + 4

− 3x2
√

x + 4e
3x3

2
√

x + 3
+ 3x2

√
x + 3f

5Example 19 Simplify each of the following:

(6x − 3)
1
3 − (6x − 3)−

2
3a (2x + 3)

1
3 − 2x(2x + 3)−

2
3b (3 − x)

1
3 − 2x(3 − x)−

2
3c

1H Literal equations
A literal equation in x is an equation whose solution will be expressed in terms of
pronumerals rather than numbers.

For the equation 2x + 5 = 7, the solution is the number 1.

For the literal equation ax + b = c, the solution is x =
c − b

a
.

Literal equations are solved in the same way as numerical equations. Essentially, the literal
equation is transposed to make x the subject.

Solve the following for x:

px − q = ra ax + b = cx + db
a
x

=
b
2x

+ cc

Example 20

Solution
px − q = r

px = r + q

∴ x =
r + q

p

a ax + b = cx + d

ax − cx = d − b

x(a − c) = d − b

∴ x =
d − b
a − c

b Multiply both sides by 2x:

a
x

=
b
2x

+ c

2a = b + 2xc

2a − b = 2xc

∴ x =
2a − b

2c

c
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Simultaneous literal equations
Simultaneous literal equations are solved by the same methods that are used for solving
simultaneous equations, i.e. substitution and elimination.

Solve each of the following pairs of simultaneous equations for x and y:

y = ax + c

y = bx + d

a ax − y = c

x + by = d

b

Example 21

Solution
Equate the two expressions for y:

ax + c = bx + d

ax − bx = d − c

x(a − b) = d − c

x =
d − c
a − b

Thus

y = a
(d − c
a − b

)
+ cand

=
ad − ac + ac − bc

a − b

=
ad − bc
a − b

a We will use the method of elimination,
and eliminate y.

First number the two equations:

ax − y = c (1)

x + by = d (2)

Multiply (1) by b:

abx − by = bc (1′)

Add (1′) and (2):

abx + x = bc + d

x(ab + 1) = bc + d

∴ x =
bc + d
ab + 1

Substitute in (1):

y = ax − c

= a
(bc + d
ab + 1

)
− c

=
ad − c
ab + 1

b

Summary 1H
� An equation for the variable x in which all the coefficients of x, including the constants,

are pronumerals is known as a literal equation.
� The methods for solving linear literal equations or simultaneous linear literal equations

are exactly the same as when the coefficients are given numbers.
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Exercise 1H

1Example 20 Solve each of the following for x:

ax + n = ma ax + b = bxb

ax
b

+ c = 0c px = qx + 5d

mx + n = nx − me
1

x + a
=

b
x

f

b
x − a

=
2b

x + a
g

x
m

+ n =
x
n

+ mh

−b(ax + b) = a(bx − a)i p2(1 − x) − 2pqx = q2(1 + x)j

x
a
− 1 =

x
b

+ 2k
x

a − b
+

2x
a + b

=
1

a2 − b2l

p − qx
t

+ p =
qx − t

p
m

1
x + a

+
1

x + 2a
=

2
x + 3a

n

2 For the simultaneous equations ax + by = p and bx − ay = q, show that x =
ap + bq
a2 + b2

and y =
bp − aq
a2 + b2 .

3 For the simultaneous equations
x
a

+
y
b

= 1 and
x
b

+
y
a

= 1, show that x = y =
ab

a + b
.

4Example 21 Solve each of the following pairs of simultaneous equations for x and y:

ax + y = c

x + by = d

a ax − by = a2

bx − ay = b2

b

ax + by = t

ax − by = s

c ax + by = a2 + 2ab − b2

bx + ay = a2 + b2

d

(a + b)x + cy = bc

(b + c)y + ax = −ab

e 3(x − a) − 2(y + a) = 5 − 4a

2(x + a) + 3(y − a) = 4a − 1

f

5 Write s in terms of a only in the following pairs of equations:

s = ah

h = 2a + 1

a s = ah

h = a(2 + h)

b as = a + h

h + ah = 1

c

as = s + h

ah = a + h

d s = h2 + ah

h = 3a2

e as = a + 2h

h = a − s

f

s = 2 + ah + h2

h = a −
1
a

g 3s − ah = a2

as + 2h = 3a

h
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1I Using a CAS calculator for algebra

Using the TI-Nspire
This section demonstrates the basic algebra commands of the TI-Nspire. To access these
commands, open a Calculator application ( con > New > Add Calculator) and select
menu > Algebra. The three main commands are solve, factor and expand.

1: Solve
This command is used to solve equations, simultaneous equations and some inequalities.

An approximate (decimal) answer can be obtained by pressing ctrl enter or by including
a decimal number in the expression.

The following screens illustrate its use.

2: Factor
This command is used for factorisation.

Factorisation over the rational numbers is obtained by not specifying the variable,
whereas factorisation over the real numbers is obtained by specifying the variable.

The following screens illustrate its use.
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3: Expand
This command is used for expanding out expressions.

By specifying the variable, the expanded expression will be ordered in decreasing powers
of that variable. Symbolic expressions can only be expanded for an appropriate domain.

Using the Casio ClassPad
This section explores theMapplication.

The Interactive menu is easiest to use with the stylus
and the soft keyboards Math1 , Math2 and Math3 .

Solve
The solve command can be used to solve equations
and inequalities. It can be accessed from the menu
Interactive > Equation/Inequality or by tapping the
icon` from the Math1 or Math3 keyboard.

The variables x, y and z are found on the hard
keyboard. Other variables should be entered using the

Var keyboard. Variables are shown in bold italics.

Note: The abc keyboard is used for typing text. If you use the abc keyboard for
variables, then you must type a × x, for example, because ax will be treated as a
single variable.

Examples:

� To solve ax + b = 0 for x, first tap` in the
Math1 keyboard. Enter ax + b = 0, x as shown.

(The variables and the comma are found in the
Var keyboard.) Then tap EXE .

� Solve x2 + x − 1 = 0 for x. Note that ‘= 0’ has been
omitted in this example. It is not necessary to enter
the right-hand side of an equation if it is zero.

� Solve abt − w + t = wt for w.
� Solve x3 − x2 − x + 1 = 0 for x. Note that ‘, x’ has

been omitted in this example. This is because the
default setting is to solve for the variable x.
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Note: Alternatively, the solve command can be accessed from the Interactive menu.
To solve ax + b = 0 for x, enter the equation ax + b = 0 and highlight it with the
stylus. Go to Interactive > Equation/Inequality > solve. The default setting is to
solve for the variable x. Tap OK .

More examples:

� Solve 2x +
√

2 < 3 for x.

Note: For the square root, use5from Math1 .
The inequality signs (<, >, ≤, ≥) are in Math3 .

� To simplify the answer, tapt in the toolbar.

� To solve a pair of simultaneous equations, tap~
from the Math1 keyboard and enter the equations
and variables as shown.

� For more than two equations, tap~until the
required number of equations is displayed.

Factor
To factorise is to write an expression as a product
of simpler expressions. The factor and rFactor
commands are accessed from the menu Interactive >

Transformation > factor.

Examples:

� To factorise x3 − 2x over the rational numbers,
use factor.

� To factorise over the real numbers, use rFactor.

More examples:

� Factorise a2 − b2.
� Factorise a3 − b3.

� Factorise
2

x − 1
+

1
(x − 1)2 + 1.

� Factorise 2x4 − x2 over the rationals.
� Factorise 2x4 − x2 over the reals.

The factor command can also be used to give the
prime decomposition (factors) of integers.



1I 1I Using a CAS calculator for algebra 31

Expand
An expression can be expanded out by using
Interactive > Transformation > expand.

Examples:

� Expand (a + b)3.
� Expand (a + b)2.

Approximate
Switch mode in the status bar to Decimal. If an answer is given in Standard (exact) mode,
it can be converted by highlighting the answer and tappingu in the toolbar.

Combining fractions
The combine command returns the answer as a single
fraction with the denominator in factorised form.

Examples:

� Enter and highlight
1

x − 1
+

1
x + 1

. Then select

Interactive > Transformation > combine.

� Enter and highlight
y

x − y
+

y
x + y

. Then select

Interactive > Transformation > combine.

Exercise 1I

This exercise provides practice in some of the skills associated with a CAS calculator. Other
exercises in this chapter can be attempted with CAS, but it is recommended that you also use
this chapter to develop your ‘by hand’ skills.

1 Solve each of the following equations for x:
a(a − x)

b
−

b(b + x)
a

= xa 2(x − 3) + (x − 2)(x − 4) = x(x + 1) − 33b

x + a
x + b

= 1 −
x

x − b
c

x + a
x − c

+
x + c
x − a

= 2d

2 Factorise each of the following:

x2y2 − x2 − y2 + 1a x3 − 2 − x + 2x2b
a4 − 8a2b − 48b2c a2 + 2bc − (c2 + 2ab)d

3 Solve each of the following pairs of simultaneous equations for x and y:

axy + b = (a + c)y

bxy + a = (b + c)y

a x(b − c) + by − c = 0

y(c − a) − ax + c = 0

b
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Assign-
ment

Nrich

Chapter summary

� Indices
am × an = am+n• am ÷ an = am−n• (am)n = amn• (ab)n = anbn•(a
b

)n
=

an

bn• a−n =
1
an• a0 = 1• a

1
n = n
√

a•

� A number is expressed in standard form or scientific notation when written as a product
of a number between 1 and 10 and an integer power of 10; e.g. 1.5 × 108

� Linear equations
First identify the steps done to construct an equation; the equation is then solved by
‘undoing’ these steps. This is achieved by doing ‘the opposite’ in ‘reverse order’.
e.g.: Solve 3x + 4 = 16 for x.

Note that x has been multiplied by 3 and then 4 has been added.

3x = 12Subtract 4 from both sides:

x = 4Divide both sides by 3:

� An equation that states a relationship between two or more quantities is called a formula;
e.g. the area of a circle is given by A = πr2. The value of A, the subject of the formula,
may be found by substituting a given value of r and the value of π.
A formula can be transposed to make a different variable the subject by using a similar
procedure to solving linear equations, i.e. whatever has been done to the variable required
is ‘undone’.

� A literal equation is solved using the same techniques as for a numerical equation:
transpose the literal equation to make the required variable the subject.

Technology-free questions

1 Simplify the following:

(x3)4a (y−12)
3
4b 3x

3
2 × −5x4c (x3)

4
3 × x−5d

2 Express the product 32 × 1011 × 12 × 10−5 in standard form.

3 Simplify the following:
3x
5

+
y

10
−

2x
5

a
4
x
−

7
y

b
5

x + 2
+

2
x − 1

c

3
x + 2

+
4

x + 4
d

5x
x + 4

+
4x

x − 2
−

5
2

e
3

x − 2
−

6
(x − 2)2f

4 Simplify the following:
x + 5

2x − 6
÷

x2 + 5x
4x − 12

a
3x

x + 4
÷

12x2

x2 − 16
b

x2 − 4
x − 3

×
3x − 9
x + 2

÷
9

x + 2
c

4x + 20
9x − 6

×
6x2

x + 5
÷

2
3x − 2

d
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5 The human body can produce 2.5 million red blood cells per second. If a person donates
500 mL of blood, how long will it take to replace the red blood cells if a litre of blood
contains 5 × 1012 red blood cells?

6 The Sun is approximately 1.5 × 108 km from Earth and a comet is approximately
3 × 106 km from Earth. How many times further from Earth than the comet is the Sun?

7 Swifts Creek Soccer Team has played 54 matches over the past three seasons. They
have drawn one-third of their games and won twice as many games as they have lost.
How many games have they lost?

8 An online bookshop sells three types of books: crime, science fiction and romance.
In one week they sold a total of 420 books. They sold 10% more crime than science
fiction, while sales of romance constituted 50% more than the combined sales of crime
and science fiction. How many of each type of book did they sell?

9 The volume, V , of a cylinder is given by the formula V = πr2h, where r is the radius of
the base and h is the height of the cylinder.

a Find the volume of a cylinder with base radius 5 cm and height 12 cm.
b Transpose the formula to make h the subject and hence find the height of a cylinder

with a base radius of 5 cm and a volume of 585 cm3.
c Transpose the formula to make r the subject and hence find the radius of a cylinder

with a height of 6 cm and a volume of 768 cm3.

10 Solve for x:

xy + ax = ba
a
x

+
b
x

= cb

x
a

=
x
b

+ 2c
a − dx

d
+ b =

ax + d
b

d

11 Simplify:
p

p + q
+

q
p − q

a
1
x
−

2y
xy − y2b

x2 + x − 6
x + 1

×
2x2 + x − 1

x + 3
c

2a
2a + b

×
2ab + b2

ba2d

12 A is three times as old as B. In three years’ time, B will be three times as old as C.
In fifteen years’ time, A will be three times as old as C. What are their present ages?

13 a Solve the following simultaneous equations for a and b:

a − 5 =
1
7

(b + 3) b − 12 =
1
5

(4a − 2)

b Solve the following simultaneous equations for x and y:

(p − q)x + (p + q)y = (p + q)2

qx − py = q2 − pq

14 A man has to travel 50 km in 4 hours. He does it by walking the first 7 km at x km/h,
cycling the next 7 km at 4x km/h and motoring the remainder at (6x + 3) km/h. Find x.
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15 Simplify each of the following:

2n2 × 6nk2 ÷ (3n)a
8c2x3y
6a2b3c3 ÷

1
2 xy

15abc2b

16 Solve the equation
x + 5
15
−

x − 5
10

= 1 +
2x
15

.

Multiple-choice questions

1 For non-zero values of x and y, if 5x + 2y = 0, then the ratio
y
x

is equal to

−
5
2

A −
2
5

B
2
5

C 1D
5
4

E

2 The solution of the simultaneous equations 3x + 2y = 36 and 3x − y = 12 is

x =
20
3

, y = 8A x = 2, y = 0B x = 1, y = −3C

x =
20
3

, y = 6D x =
3
2

, y = −
3
2

E

3 The solution of the equation t − 9 = 3t − 17 is

t = −4A t =
11
2

B t = 4C t = 2D t = −2E

4 If m =
n − p
n + p

, then p =

n(1 − m)
1 + m

A
n(m − 1)

1 + m
B

n(1 + m)
1 − m

C
n(1 + m)

m − 1
D

m(n − 1)
m + 1

E

5
3

x − 3
−

2
x + 3

=

1A
x + 15
x2 − 9

B
15

x − 9
C

x + 3
x2 − 9

D −
1
9

E

6 9x2y3 ÷ (15(xy)3) is equal to
9x
15

A
18xy

5
B

3y
5x

C
3x
5

D
3
5x

E

7 Transposing the formula V =
1
3

h(` + w) gives ` =

hw
3V

A
3V
h
− wB

3V − 2w
h

C
3Vh

2
− wD

1
3

h(V + w)E

8
(3x2y3)2

2x2y
=

9
2

x2y7A
9
2

x2y5B
9
2

x6y7C
9
2

x6y6D
9
2

x2y4E

9 If X is 50% greater than Y and Y is 20% less than Z, then

X is 30% greater than ZA X is 20% greater than ZB X is 20% less than ZC
X is 10% less than ZD X is 10% greater than ZE
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10 The average of two numbers is 5x + 4. One of the numbers is x. The other number is

4x + 4A 9x + 8B 9x + 4C 10x + 8D 3x + 1E

11
4

(x + 3)2 +
2x

x + 1
is equal to

8x
(x + 3)2(x + 1)

A
2(3x2 + x + 18)
(x + 3)2(x + 1)

B
3x2 + 13x + 18
(x + 3)2(x + 1)

C

2(3x2 + 13x + 18)
(x + 3)2(x + 1)

D
2(x3 + 6x2 + 11x + 2)

(x + 3)2(x + 1)
E

Extended-response questions

1 Jack cycles home from work, a distance of 10x km. Benny leaves at the same time and
drives the 40x km to his home.

a Write an expression in terms of x for the time taken for Jack to reach home if he
cycles at an average speed of 8 km/h.

b Write an expression in terms of x for the time taken for Benny to reach home if he
drives at an average speed of 70 km/h.

c In terms of x, find the difference in times of the two journeys.
d If Jack and Benny arrive at their homes 30 minutes apart:

i find x, correct to three decimal places
ii find the distance from work of each home, correct to the nearest kilometre.

2 Sam’s plastic dinghy has sprung a leak and water is pouring in the hole at a rate of
27 000 cm3 per minute. He grabs a cup and frantically starts bailing the water out at a
rate of 9000 cm3 per minute. The dinghy is shaped like a circular prism (cylinder) with
a base radius of 40 cm and a height of 30 cm.

a How fast is the dinghy filling with water?
b Write an equation showing the volume of water, V cm3, in the dinghy after t minutes.
c Find an expression for the depth of water, h cm, in the dinghy after t minutes.
d If Sam is rescued after 9 minutes, is this before or after the dinghy has completely

filled with water?

3 Henry and Thomas Wong collect basketball cards. Henry has five-sixths the number of
cards that Thomas has. The Wright family also collect cards. George Wright has half as
many cards again as Thomas, Sally Wright has 18 fewer than Thomas, and Zeb Wright
has one-third the number Thomas has.

a Write an expression for each child’s number of cards in terms of the number
Thomas has.

b The Wright family owns six more cards than the Wong family. Write an equation
representing this information.

c Solve the equation from part b and use the result to find the number of cards each
child has collected.
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4 The gravitational force between two objects, F N, is given by the formula

F =
6.67 × 10−11m1m2

r2

where m1 and m2 are the masses (in kilograms) of the two objects and r is the distance
(in metres) between them.

a What is the gravitational force between two objects each weighing 200 kg if they are
12 m apart? Express the answer in standard form (to two significant figures).

b Transpose the above formula to make m1 the subject.
c The gravitational force between a planet and an object 6.4 × 106 m away from the

centre of the planet is found to be 2.4 × 104 N. If the object has a mass of 1500 kg,
calculate the approximate mass of the planet, giving the answer in standard form
(to two significant figures).

5 A water storage reservoir is 3 km wide, 6 km long and 30 m deep. (The water storage
reservoir is assumed to be a cuboid.)

a Write an equation to show the volume of water, V m3, in the reservoir when it is
d metres full.

b Calculate the volume of water, VF m3, in the reservoir when it is completely filled.

The water flows from the reservoir down a long pipe to a hydro-electric power station in
a valley below. The amount of energy, E J, that can be obtained from a full reservoir is
given by the formula

E = kVFh

where k is a constant and h m is the length of the pipe.

c Find k, given that E = 1.06 × 1015 when h = 200, expressing the answer in standard
form correct to three significant figures.

d How much energy could be obtained from a full reservoir if the pipe was 250 m
long?

e If the rate of water falling through the pipe is 5.2 m3/s, how many days without rain
could the station operate before emptying an initially full reservoir?

6 A new advertising symbol is to consist of three concentric
circles as shown, with the outer circle having a radius of
10 cm. It is desired that the three coloured regions cover
the same area. Find the radius of the innermost circle in the
figure shown.

Yellow

Blue
Red

7 Temperatures in Fahrenheit (F) can be converted to Celsius (C) by the formula

C =
5
9

(F − 32)

Find the temperature which has the same numerical value in both scales.
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8 A cyclist goes up a long slope at a constant speed of 15 km/h. He turns around and
comes down the slope at a constant speed of 40 km/h. Find his average speed over a
full circuit.

9 A container has a cylindrical base and a
hemispherical top, as shown in the figure. The
height of the container is 20 cm and its capacity
is to be exactly 2 litres. Let r cm be the radius of
the base.

a Express the height of the cylinder, h cm, in
terms of r.

b i Express the volume of the container in
terms of r.

ii Find r and h if the volume is 2 litres.

20 cm

r cm

10 a Two bottles contain mixtures of wine and water. In bottle A there is two times as
much wine as water. In bottle B there is five times as much water as wine. Bottle A
and bottle B are used to fill a third bottle, which has a capacity of 1 litre. How much
liquid must be taken from each of bottle A and bottle B if the third bottle is to contain
equal amounts of wine and water?

b Repeat for the situation where the ratio of wine to water in bottle A is 1 : 2 and the
ratio of wine to water in bottle B is 3 : 1.

c Generalise the result for the ratio m : n in bottle A and p : q in bottle B.

11 A cylinder is placed so as to fit into a cone as
shown in the diagram.
The cone has a height of 20 cm and a base radius
of 10 cm. The cylinder has a height of h cm and a
base radius of r cm.

r cm

h cm

20 cm

a Use similar triangles to find h in terms of r.
b The volume of the cylinder is given by the formula

V = πr2h. Find the volume of the cylinder in terms
of r.

c Use a CAS calculator to find the values of r and h for
which the volume of the cylinder is 500 cm3. h cm

r cm20 cm

10 cm
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Number systems
and sets

Objectives
I To understand and use set notation, including the symbols ∈, ⊆, ∪, ∩, ∅ and ξ.

I To be able to identify sets of numbers, including the natural numbers, integers,
rational numbers, irrational numbers and real numbers.

I To understand and use interval notation.

I To know and apply the rules for working with surds, including:

B simplification of surds
B rationalisation of surds.

I To know and apply the definitions of factor, prime number, highest common factor
and lowest common multiple.

I To be able to solve problems with sets.

This chapter introduces set notation and discusses numbers and their properties. Set notation
is used widely in mathematics and in this book it is employed where appropriate. In fact,
students who study mathematics at university will come to learn that all of mathematics is
built upon the theory of sets.

In this chapter we discuss natural numbers, integers and rational numbers, and then continue
on to consider the algebra of surds and the real numbers in general. We will use numbers and
their properties to illustrate proof techniques in Chapter 6.

In the final section of this chapter, we solve various problems using sets. Here, the words
‘and’ and ‘or’ play a special role in the process of combining sets. The ideas introduced in
this section provide some background for our study of logic in Chapter 7.



2A Set notation 39

2A Set notation
A set is a name given to any collection of things or numbers. There must be a way of
deciding whether any particular object is a member of the set or not. This may be done by
referring to a list of the members of the set or a statement describing them.

For example: A = {−3, 3} = { x : x2 = 9 }

Note: { x : . . . } is read as ‘the set of all x such that . . . ’.

� The symbol ∈ means ‘is a member of’ or ‘is an element of’.

For example: 3 ∈ {prime numbers} is read ‘3 is a member of the set of prime numbers’.

� The symbol < means ‘is not a member of’ or ‘is not an element of’.

For example: 4 < {prime numbers} is read ‘4 is not a member of the set of prime numbers’.

� Two sets are equal if they contain exactly the same elements, not necessarily in the same
order. For example: if A = {prime numbers less than 10} and B = {2, 3, 5, 7}, then A = B.

� The set with no elements is called the empty set and is denoted by ∅.

� The universal set will be denoted by ξ. The universal set is the set of all elements which
are being considered.

� If all the elements of a set B are also elements of a set A, then the set B is called a
subset of A. This is written B ⊆ A. For example: {a, b, c} ⊆ {a, b, c, d, e, f , g} and
{3, 9, 27} ⊆ {multiples of 3}. We note also that A ⊆ A and ∅ ⊆ A.

Venn diagrams are used to illustrate sets.
For example, the diagram on the right
shows two subsets A and B of a universal
set ξ such that A and B have no elements
in common. Two such sets are said to
be disjoint.

A
ξ

B

The union of two sets
The set of all the elements that are members of set A or set B (or both) is called the union
of A and B. The union of A and B is written A ∪ B.

Let ξ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3} and B = {1, 2, 9, 10}.

Find A ∪ B and illustrate on a Venn diagram.

Example 1

Solution
A ∪ B = {1, 2, 3, 9, 10}

The shaded area illustrates A ∪ B.

4

3
91

2 10

5 6 7 8
ξ

BA
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The intersection of two sets
The set of all the elements that are members of both set A and set B is called the intersection
of A and B. The intersection of A and B is written A ∩ B.

Let ξ = {prime numbers less than 40}, A = {3, 5, 7, 11} and B = {3, 7, 29, 37}.

Find A ∩ B and illustrate on a Venn diagram.

Example 2

Solution
A ∩ B = {3, 7}

The shaded area illustrates A ∩ B.

2 17 19 23 31 13

29

3711

5 3

7

ξ

BA

The complement of a set
The complement of a set A is the set of all elements of ξ that are not members of A. The
complement of A is denoted by A′.

If ξ = {students at Highland Secondary College} and A = {students with blue eyes}, then A′ is
the set of all students at Highland Secondary College who do not have blue eyes.

Similarly, if ξ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and A = {1, 3, 5, 7, 9}, then A′ = {2, 4, 6, 8, 10}.

Let ξ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A = {odd numbers} = {1, 3, 5, 7, 9}

B = {multiples of 3} = {3, 6, 9}

a Show these sets on a Venn diagram.
b Use the diagram to list the following sets:

i A′ ii B′ iii A ∪ B iv the complement of A ∪ B, i.e. (A ∪ B)′ v A′ ∩ B′

Example 3

Solution
a

2 4

5
7

61

8 10
ξ

3
9

6
5

7

1 3
9

B

A

b From the diagram:

i A′ = {2, 4, 6, 8, 10}
ii B′ = {1, 2, 4, 5, 7, 8, 10}
iii A ∪ B = {1, 3, 5, 6, 7, 9}
iv (A ∪ B)′ = {2, 4, 8, 10}
v A′ ∩ B′ = {2, 4, 8, 10}
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Finite and infinite sets
When all the elements of a set may be counted, the set is called a finite set. For example, the
set A = {months of the year} is finite. The number of elements of a set A will be denoted |A|.
In this example, |A| = 12. If C = {letters of the alphabet}, then |C| = 26.

Sets which are not finite are called infinite sets. For example, the set of real numbers, R, and
the set of integers, Z, are infinite sets.

Summary 2A
� If x is an element of a set A, we write x ∈ A.
� If x is not an element of a set A, we write x < A.
� The empty set is denoted by ∅ and the universal set by ξ.
� If every element of B is an element of A, we say B is a subset of A and write B ⊆ A.
� The set A ∪ B is the union of A and B, where x ∈ A ∪ B if and only if x ∈ A or x ∈ B.
� The set A ∩ B is the intersection of A and B, where x ∈ A ∩ B if and only if x ∈ A

and x ∈ B.
� The complement of A, denoted by A′, is the set of all elements of ξ that are not in A.
� If two sets A and B have no elements in common, we say that they are disjoint and

write A ∩ B = ∅.

Exercise 2A

1Example 1

Example 2

Example 3

Let ξ = {1, 2, 3, 4, 5}, A = {1, 2, 3, 5} and B = {2, 4}.
Show these sets on a Venn diagram and use the diagram to find:

A′a B′b A ∪ Bc (A ∪ B)′d A′ ∩ B′e

2 Let ξ = {natural numbers less than 17}, P = {multiples of 3} and Q = {even numbers}.
Show these sets on a Venn diagram and use it to find:

P′a Q′b P ∪ Qc (P ∪ Q)′d P′ ∩ Q′e

3 Let ξ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, A = {multiples of 4} and B = {even numbers}.
Show these sets on a Venn diagram and use this diagram to list the sets:

A′a B′b A ∪ Bc (A ∪ B)′d A′ ∩ B′e

4 Let ξ = {p, q, r, s, t, u, v, w}, X = {r, s, t, w} and Y = {q, s, t, u, v}.
Show ξ, X and Y on a Venn diagram, entering all members. Hence list the sets:

X′a Y ′b X′ ∩ Y ′c X′ ∪ Y ′d X ∪ Ye (X ∪ Y)′f

Which two sets are equal?

5 Let ξ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, X = {factors of 12} and Y = {even numbers}.
Show ξ, X and Y on a Venn diagram, entering all members. Hence list the sets:

X′a Y ′b X′ ∪ Y ′c (X ∩ Y)′d X ∪ Ye (X ∪ Y)′f

Which two sets are equal?
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6 Draw this diagram six times.
Use shading to illustrate each of the following sets:

a A′ b B′ c A′ ∩ B′

d A′ ∪ B′ e A ∪ B f (A ∪ B)′

BA

7 Let ξ = {different letters in the word GENERAL},

A = {different letters in the word ANGEL},

B = {different letters in the word LEAN}

Show these sets on a Venn diagram and use this diagram to list the sets:

A′a B′b A ∩ Bc A ∪ Bd (A ∪ B)′e A′ ∪ B′f

8 Let ξ = {different letters in the word MATHEMATICS}

A = {different letters in the word ATTIC}

B = {different letters in the word TASTE}

Show ξ, A and B on a Venn diagram, entering all the elements. Hence list the sets:

A′a B′b A ∩ Bc (A ∪ B)′d A′ ∪ B′e A′ ∩ B′f

9 Let C = {1, 2, 3, 4, 5}.

a How many subsets of C have exactly two elements?
b How many subsets of C have exactly three elements?
c Your answers to parts a and b should be the same. Can you give a reason why this is

to be expected?

2B Sets of numbers
The elements of {1, 2, 3, 4, . . . } are called natural numbers, and the elements of
{ . . . ,−2,−1, 0, 1, 2, . . . } are called integers.

The numbers of the form
p
q

, with p and q integers, q , 0, are called rational numbers.

The real numbers which are not rational are called irrational. Some examples of irrational
numbers are

√
2,
√

3, π, π + 2 and
√

6 +
√

7. These numbers cannot be written in the form
p
q

,
for integers p, q; the decimal representations of these numbers do not terminate or repeat.

� The set of natural numbers is denoted by N.
� The set of integers is denoted by Z.
� The set of rational numbers is denoted by Q.
� The set of real numbers is denoted by R.

It is clear that N ⊆ Z ⊆ Q ⊆ R, and this may
be represented by the diagram on the right.

Z QN R
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We can use set notation to describe subsets of the real numbers.

For example:

� { x : 0 < x < 1 } is the set of all real numbers strictly between 0 and 1
� { x : x ≥ 3 } is the set of all real numbers greater than or equal to 3
� { 2n : n ∈ Z } is the set of all even integers.

The set of all ordered pairs of real numbers is denoted by R2. That is,

R2 =
{
(x, y) : x, y ∈ R

}
This set is known as the Cartesian product of R with itself.

Rational numbers
Every rational number can be expressed as a terminating or recurring decimal.

To find the decimal representation of a rational number
m
n

, perform the division m ÷ n.

For example, to find the decimal representation of
3
7

, divide 3.0000000 . . . by 7.

0. 4 2 8 5 7 1 4 . . .

7 3. 30 20 60 40 50 10 30 . . .

Therefore
3
7

= 0.4̇28571̇.

Theorem

Every rational number can be written as a terminating or recurring decimal.

Proof Consider any two natural numbers m and n. At each step in the division of m by n,
there is a remainder. If the remainder is 0, then the division algorithm stops and the
decimal is a terminating decimal.

If the remainder is never 0, then it must be one of the numbers 1, 2, 3, . . . , n − 1.
(In the above example, n = 7 and the remainders can only be 1, 2, 3, 4, 5 and 6.)
Hence the remainder must repeat after at most n − 1 steps.

Further examples:
1
2

= 0.5,
1
5

= 0.2,
1
10

= 0.1,
1
3

= 0.3̇,
1
7

= 0.1̇42857̇

Theorem

A real number has a terminating decimal representation if and only if it can be written as
m

2α × 5β

for some m ∈ Z and some α, β ∈ N ∪ {0}.
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Proof Assume that x =
m

2α × 5β
with α ≥ β. Multiply the numerator and denominator

by 5α−β. Then

x =
m × 5α−β

2α × 5α
=

m × 5α−β

10α

and so x can be written as a terminating decimal. The case α < β is similar.

Conversely, if x can be written as a terminating decimal, then there is m ∈ Z and
α ∈ N ∪ {0} such that x =

m
10α

=
m

2α × 5α
.

The method for finding a rational number
m
n

from its decimal representation is demonstrated
in the following example.

Write each of the following in the form
m
n

, where m and n are integers:

0.05a 0.4̇28571̇b

Example 4

Solution

a 0.05 =
5

100
=

1
20

b We can write

0.4̇28571̇ = 0.428571428571 . . . (1)

Multiply both sides by 106:

0.4̇28571̇ × 106 = 428571.428571428571 . . . (2)

Subtract (1) from (2):

0.4̇28571̇ × (106 − 1) = 428571

∴ 0.4̇28571̇ =
428571
106 − 1

=
3
7

Real numbers
The set of real numbers is made up of two important subsets: the algebraic numbers and the
transcendental numbers.

An algebraic number is a solution to a polynomial equation of the form

anxn + an−1xn−1 + · · · + a1x + a0 = 0, where a0, a1, . . . , an are integers

Every rational number is algebraic. This is because a rational number
p
q

, where p and q are

integers, is the solution of the equation qx − p = 0.

The irrational number
√

2 is algebraic, as it is a solution of the equation x2 − 2 = 0.
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It can be shown that π is not an algebraic number; it is a transcendental number. The proof is
too difficult to be given here.

A proof that
√

2 is irrational is presented in Chapter 6.

Interval notation
Among the most important subsets of R are the intervals. The following is an exhaustive list
of the various types of intervals and the standard notation for them. We suppose that a and b
are real numbers with a < b.

(a, b) = { x : a < x < b } [a, b] = { x : a ≤ x ≤ b }

(a, b] = { x : a < x ≤ b } [a, b) = { x : a ≤ x < b }

(a,∞) = { x : a < x } [a,∞) = { x : a ≤ x }

(−∞, b) = { x : x < b } (−∞, b] = { x : x ≤ b }

Intervals may be represented by diagrams as shown in Example 5.

Illustrate each of the following intervals of real numbers:

[−2, 3]a (−3, 4]b (−2, 4)c (−3,∞)d (−∞, 2]e

Example 5

Solution Explanation
a [−2, 3]

−4 −3 −2 −1 0 1 2 3 4 5

The square brackets indicate that the
endpoints are included; this is shown with
closed circles.

b (−3, 4]

−4 −3 −2 −1 0 1 2 3 4 5

The round bracket indicates that the left
endpoint is not included; this is shown
with an open circle. The right endpoint
is included.

c (−2, 4)

−4 −3 −2 −1 0 1 2 3 4 5

Both brackets are round; the endpoints are
not included.

d (−3,∞)

−4 −3 −2 −1 0 1 2 3 4 5

The symbol∞ indicates that the interval
continues indefinitely (i.e. forever) to
the right; it is read as ‘infinity’. The left
endpoint is not included.

e (−∞, 2]

−4 −3 −2 −1 0 1 2 3 4 5

The symbol −∞ indicates that the interval
continues indefinitely (i.e. forever) to the
left; it is read as ‘negative infinity’. The
right endpoint is included.

Note: The ‘closed’ circle (•) indicates that the number is included.
The ‘open’ circle (◦) indicates that the number is not included.
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The following are subsets of the real numbers for which we have special notation:

� Positive real numbers: R+ = { x : x > 0 }
� Negative real numbers: R− = { x : x < 0 }
� Real numbers excluding zero: R \ {0}

Summary 2B
� Sets of numbers

Natural numbers: N• Integers: Z•

Rational numbers: Q• Real numbers: R•

� For real numbers a and b with a < b, we can consider the following intervals:

(a, b) = { x : a < x < b } [a, b] = { x : a ≤ x ≤ b }

(a, b] = { x : a < x ≤ b } [a, b) = { x : a ≤ x < b }

(a,∞) = { x : a < x } [a,∞) = { x : a ≤ x }

(−∞, b) = { x : x < b } (−∞, b] = { x : x ≤ b }

Exercise 2B

1 a Is the sum of two rational numbers always rational?
b Is the product of two rational numbers always rational?
c Is the quotient of two rational numbers always rational (if defined)?

2 a Is the sum of two irrational numbers always irrational?
b Is the product of two irrational numbers always irrational?
c Is the quotient of two irrational numbers always irrational?

3Example 4 Write each of the following in the form
m
n

, where m and n are integers:

0.45a 0.2̇b 0.2̇7̇c
0.12d 0.3̇6̇e 0.2̇85714̇f

4 Give the decimal representation of each of the following rational numbers:
2
7

a
5

11
b

7
20

c
4
13

d
1

17
e

5Example 5 Illustrate each of the following intervals of real numbers:

[−1, 4]a (−2, 2]b (−∞, 3]c (−1, 5)d (−2,∞)e

6 Write each of the following sets using interval notation:

{ x : x < 3 }a { x : x ≥ −3 }b { x : x ≤ −3 }c
{ x : x > 5 }d { x : −2 ≤ x < 3 }e { x : −2 ≤ x ≤ 3 }f
{ x : −2 < x ≤ 3 }g { x : −5 < x < 3 }h
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2C Surds

A quadratic surd is a number of the form
√

a, where a is a rational number which is not
the square of another rational number.

Note:
√

a is taken to mean the positive square root.

In general, a surd of order n is a number of the form n
√

a, where a is a rational number
which is not a perfect nth power.

For example:

√
7,
√

24,

√
9
7

,

√
1
2

are quadratic surds�
√

9,
√

16,

√
9
4

are not surds�

3√7, 3√15 are surds of order 3�
4√100, 4√26 are surds of order 4�

Quadratic surds hold a prominent position in school mathematics. For example, the solutions
of quadratic equations often involve surds:

x =
1 +
√

5
2

is a solution of the quadratic equation x2 − x − 1 = 0.

Some well-known values of trigonometric functions involve surds. For example:

sin 60◦ =

√
3

2
, sin 15◦ =

√
6 −
√

2
4

Exact solutions are often required in Mathematical Methods Units 3 & 4 and Specialist
Mathematics Units 3 & 4.

Properties of square roots
The following properties of square roots are often used.

For positive numbers a and b:

�
√

ab =
√

a
√

b e.g.
√

50 =
√

25 ×
√

2 = 5
√

2

�

√
a
b

=

√
a
√

b
e.g.

√
7
9

=

√
7
√

9
=

√
7

3

Properties of surds
Simplest form
If possible, a factor which is the square of a rational number is ‘taken out’ of a square
root. When the number under the square root has no factors which are squares of a rational
number, the surd is said to be in simplest form.
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Write each of the following in simplest form:
√

72a
√

28b
√

700
117

c
√

99
64

d

Example 6

Solution
√

72 =
√

36 × 2 = 6
√

2a
√

28 =
√

4 × 7 = 2
√

7b√
700
117

=

√
700
√

117
=

√
7 × 100
√

9 × 13

=
10
3

√
7
13

c
√

99
64

=

√
99
√

64
=

√
9 × 11

8

=
3
√

11
8

d

Like surds
Surds which have the same ‘irrational factor’ are called like surds.

For example: 3
√

7, 2
√

7 and
√

7 are like surds.

The sum or difference of two like surds can be simplified:

� m
√

p + n
√

p = (m + n)
√

p

� m
√

p − n
√

p = (m − n)
√

p

Express each of the following as a single surd in simplest form:
√

147 +
√

108 −
√

363a
√

3 +
√

5 +
√

20 +
√

27 −
√

45 −
√

48b
√

50 +
√

2 − 2
√

18 +
√

8c

Example 7

Solution
√

147 +
√

108 −
√

363

=
√

72 × 3 +
√

62 × 3 −
√

112 × 3

= 7
√

3 + 6
√

3 − 11
√

3

= 2
√

3

a
√

3 +
√

5 +
√

20 +
√

27 −
√

45 −
√

48

=
√

3 +
√

5 + 2
√

5 + 3
√

3 − 3
√

5 − 4
√

3

= 0
√

3 + 0
√

5

= 0

b

√
50 +

√
2 − 2

√
18 +

√
8

= 5
√

2 +
√

2 − 2 × 3
√

2 + 2
√

2

= 8
√

2 − 6
√

2

= 2
√

2

c
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Rationalising the denominator
In the past, a labour-saving procedure with surds was to rationalise any surds in the
denominator of an expression. This is still considered to be a neat way of expressing final
answers.

For
√

5, a rationalising factor is
√

5, as
√

5 ×
√

5 = 5.

For 1 +
√

2, a rationalising factor is 1 −
√

2, as
(
1 +
√

2
)(

1 −
√

2
)

= 1 − 2 = −1.

For
√

3 +
√

6, a rationalising factor is
√

3 −
√

6, as
(√

3 +
√

6
)(√

3 −
√

6
)

= 3 − 6 = −3.

Rationalise the denominator of each of the following:

1

2
√

7
a

1

2 −
√

3
b

1
√

3 −
√

6
c

3 +
√

8

3 −
√

8
d

Example 8

Solution
1

2
√

7
×

√
7
√

7
=

√
7

14
a

1

2 −
√

3
×

2 +
√

3

2 +
√

3
=

2 +
√

3
4 − 3

= 2 +
√

3

b

1
√

3 −
√

6
×

√
3 +
√

6
√

3 +
√

6
=

√
3 +
√

6
3 − 6

= −
1
3
(√

3 +
√

6
)

c
3 +
√

8

3 −
√

8
=

3 + 2
√

2

3 − 2
√

2
×

3 + 2
√

2

3 + 2
√

2

=
9 + 12

√
2 + 8

9 − 8

= 17 + 12
√

2

d

Expand the brackets in each of the following and collect like terms, expressing surds in
simplest form:(

3 −
√

2
)2a

(
3 −
√

2
)(

1 +
√

2
)

b

Example 9

Solution(
3 −
√

2
)2

=
(
3 −
√

2
)(

3 −
√

2
)

= 3
(
3 −
√

2
)
−
√

2
(
3 −
√

2
)

= 9 − 3
√

2 − 3
√

2 + 2

= 11 − 6
√

2

a
(
3 −
√

2
)(

1 +
√

2
)

= 3
(
1 +
√

2
)
−
√

2
(
1 +
√

2
)

= 3 + 3
√

2 −
√

2 − 2

= 1 + 2
√

2

b
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Using the TI-Nspire
Expressions on the screen can be selected using the up arrow N. This returns the
expression to the entry line and modifications can be made.

For example:

� Evaluate
23 · 22

5
· 2

8
5 as shown.

Note: The fraction template can be accessed
using ctrl ÷ .

� To find the square root of this expression,
first type ctrl x2 . Then move upwards
by pressing the up arrow N, so that the
expression is highlighted.

� Press enter to paste this expression into the
square root sign.

� Press enter once more to evaluate the square
root of this expression.

Using the Casio ClassPad
Expressions on the screen can be selected using the
stylus. Highlight and drag the expression to the next
entry line, where modifications can be made.

For example:

� Using templates from the Math1 keyboard, enter the

expression
23 × 22

5
× 2

8
5 .

� Tap EXE to evaluate.
� In the next entry line, tap5from the Math1

keyboard.
� Highlight the expression and drag to the square

root sign.
� Tap EXE to evaluate.

Note: Alternatively, highlight the expression and select
Edit > Copy. Then tap the cursor in the desired
position and select Edit > Paste.
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Exercise 2CSkill-
sheet

1Example 6 Express each of the following in terms of the simplest possible surds:
√

8a
√

12b
√

27c
√

50d
√

45e
√

1210f
√

98g
√

108h
√

25i
√

75j
√

512k

2Example 7 Simplify each of the following:
√

8 +
√

18 − 2
√

2a
√

75 + 2
√

12 −
√

27b
√

28 +
√

175 −
√

63c
√

1000 −
√

40 −
√

90d
√

512 +
√

128 +
√

32e
√

24 − 3
√

6 −
√

216 +
√

294f

3 Simplify each of the following:
√

75 +
√

108 +
√

14a
√

847 −
√

567 +
√

63b
√

720 −
√

245 −
√

125c
√

338 −
√

288 +
√

363 −
√

300d
√

12 +
√

8 +
√

18 +
√

27 +
√

300e 2
√

18 + 3
√

5 −
√

50 +
√

20 −
√

80f

4Example 8 Express each of the following with rational denominators:
1
√

5
a

1
√

7
b −

1
√

2
c

2
√

3
d

3
√

6
e

1

2
√

2
f

1
√

2 + 1
g

1

2 −
√

3
h

1

4 −
√

10
i

2
√

6 + 2
j

1
√

5 −
√

3
k

3
√

6 −
√

5
l

1

3 − 2
√

2
m

5Example 9 Express each of the following in the form a + b
√

c:
2

3 − 2
√

2
a

(√
5 + 2

)2b
(
1 +
√

2
)(

3 − 2
√

2
)

c
(√

3 − 1
)2d

√
1
3
−

1
√

27
e

√
3 + 2

2
√

3 − 1
f

√
5 + 1
√

5 − 1
g

√
8 + 3
√

18 + 2
h

6 Expand and simplify each of the following:(
2
√

a − 1
)2a

(√
x + 1 +

√
x + 2

)2b

7 Since 8 =
√

64 and 3
√

7 =
√

63, it is easy to see that 8 > 3
√

7. Using the same idea,
order these numbers from smallest to largest: 7, 3

√
5, 5
√

2, 4
√

3.

8 For real numbers a and b, we have a > b if and only if a − b > 0. Use this to state the
larger of:

5 − 3
√

2 and 6
√

2 − 8a 2
√

6 − 3 and 7 − 2
√

6b
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9 For positive real numbers a and b, we have a > b if and only if a2 − b2 > 0. Use this to
state the larger of:

2
√

3
and

3
√

2
a

√
7

3
and

√
5

2
b

√
3

7
and

√
5

5
c

√
10
2

and
8
√

3
d

10 Find the values of b and c for a quadratic function f (x) = x2 + bx + c such that the
solutions of the equation f (x) = 0 are:
√

3, −
√

3a 2
√

3, −2
√

3b 1 −
√

2, 1 +
√

2c
2 −
√

3, 2 +
√

3d 3 − 2
√

2, 3 + 2
√

2e 4 − 7
√

5, 3 + 2
√

5f

11 Express
1

√
2 +
√

3 +
√

5
with a rational denominator.

12 a Show that a − b =
(
a

1
3 − b

1
3
)(

a
2
3 + a

1
3 b

1
3 + b

2
3
)
.

b Express
1

1 − 2
1
3

with a rational denominator.

13 Evaluate
1

√
4 +
√

5
+

1
√

5 +
√

6
+ · · · +

1
√

24 +
√

25
.

2D Natural numbers
Factors and composites
The factors of 8 are 1, 2, 4 and 8.

The factors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24.

The factors of 5 are 1 and 5.

A natural number a is a factor of a natural number b if there exists a natural number k
such that b = ak.

A natural number greater than 1 is a prime number if its only factors are itself and 1.

The prime numbers less than 100 are:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

53 59 61 67 71 73 79 83 89 97

A natural number m is a composite number if it can be written as a product m = a × b,
where a and b are natural numbers greater than 1 and less than m.
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Prime decomposition
Expressing a composite number as a product of powers of prime numbers is called prime
decomposition. For example:

3000 = 3 × 23 × 53

2294 = 2 × 31 × 37

This is useful for finding the factors of a number. For example, the prime decomposition
of 12 is given by 12 = 22 × 3. The factors of 12 are

1, 2, 22 = 4, 3, 2 × 3 = 6 and 22 × 3 = 12

This property of natural numbers is described formally by the following crucial theorem.

Fundamental theorem of arithmetic

Every natural number greater than 1 either is a prime number or can be represented
as a product of prime numbers. Furthermore, this representation is unique apart from
rearrangement of the order of the prime factors.

Give the prime decomposition of 17 248 and hence list the factors of this number.

Example 10

Solution
The prime decomposition can be found by repeated division,
as shown on the right.

The prime decomposition of 17 248 is

17 248 = 25 × 72 × 11

Therefore each factor must be of the form

2α × 7β × 11γ

where α = 0, 1, 2, 3, 4, 5, β = 0, 1, 2 and γ = 0, 1.

2 17 248

2 8624

2 4312

2 2156

2 1078

7 539

7 77

11 11

1

The factors of 17 248 can be systematically listed as follows:

1 2 22 23 24 25

7 2 × 7 22 × 7 23 × 7 24 × 7 25 × 7

72 2 × 72 22 × 72 23 × 72 24 × 72 25 × 72

11 2 × 11 22 × 11 23 × 11 24 × 11 25 × 11

7 × 11 2 × 7 × 11 22 × 7 × 11 23 × 7 × 11 24 × 7 × 11 25 × 7 × 11

72 × 11 2 × 72 × 11 22 × 72 × 11 23 × 72 × 11 24 × 72 × 11 25 × 72 × 11
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Highest common factor

The highest common factor of two natural numbers a and b is the largest natural number
that is a factor of both a and b. It is denoted by HCF(a, b).

For example, the highest common factor of 15 and 24 is 3. We write HCF(15, 24) = 3.

Note: The highest common factor is also called the greatest common divisor.

Using prime decomposition to find HCF
Prime decomposition can be used to find the highest common factor of two numbers.

For example, consider the numbers 140 and 110. Their prime factorisations are

140 = 22 × 5 × 7 and 110 = 2 × 5 × 11

A number which is a factor of both 140 and 110 must have prime factors which occur in both
these factorisations. The highest common factor of 140 and 110 is 2 × 5 = 10.

Next consider the numbers

396 000 = 25 · 32 · 53 · 11 and 1 960 200 = 23 · 34 · 52 · 112

To obtain the highest common factor, we take the lower power of each prime factor:

HCF(396 000, 1 960 200) = 23 · 32 · 52 · 11

a Find the highest common factor of 528 and 3168.
b Find the highest common factor of 3696 and 3744.

Example 11

Solution
528 = 24 × 3 × 11

3168 = 25 × 32 × 11

∴ HCF(528, 3168) = 24 × 3 × 11

= 528

a 3696 = 24 × 3 × 7 × 11

3744 = 25 × 32 × 13

∴ HCF(3696, 3744) = 24 × 3

= 48

b

Using the TI-Nspire
� The prime decomposition of a natural number

can be obtained using menu > Algebra >

Factor as shown.
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� The highest common factor of two numbers
(also called their greatest common divisor)
can be found by using the command gcd( )
from menu > Number > Greatest Common
Divisor, or by just typing it in, as shown.

Note: Nested gcd( ) commands may be used to find the greatest common divisor of
several numbers.

Using the Casio ClassPad
� To find the highest common factor of two numbers,

go to Interactive > Calculation > gcd/lcm > gcd.
� Enter the required numbers in the two lines

provided, and tap OK .

Lowest common multiple

� A natural number a is a multiple of a natural number b if there exists a natural
number k such that a = kb.

� The lowest common multiple of two natural numbers a and b is the smallest natural
number that is a multiple of both a and b. It is denoted by LCM(a, b).

For example: LCM(24, 36) = 72 and LCM(256, 100) = 6400.

Using prime decomposition to find LCM
Consider again the numbers

396 000 = 25 · 32 · 53 · 11 and 1 960 200 = 23 · 34 · 52 · 112

To obtain the lowest common multiple, we take the higher power of each prime factor:

LCM(396 000, 1 960 200) = 25 · 34 · 53 · 112

Using the TI-Nspire
The lowest common multiple of two numbers
(also called their least common multiple) can be
found by using the command lcm( ) from menu

> Number > Least Common Multiple, or by just
typing it in, as shown.
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Using the Casio ClassPad
� To find the lowest common multiple of two numbers,

go to Interactive > Calculation > gcd/lcm > lcm.
� Enter the required numbers in the two lines

provided, and tap OK .

Summary 2D
� A natural number a is a factor of a natural number b if there exists a natural number k

such that b = ak.
� A natural number greater than 1 is a prime number if its only factors are itself and 1.
� A natural number m is a composite number if it can be written as a product m = a × b,

where a and b are natural numbers greater than 1 and less than m.
� Every composite number can be expressed as a product of powers of prime numbers;

this is called prime decomposition. For example: 1300 = 22 × 52 × 13
� The highest common factor of two natural numbers a and b is the largest natural

number that is a factor of both a and b. It is denoted by HCF(a, b).
� The lowest common multiple of two natural numbers a and b is the smallest natural

number that is a multiple of both a and b. It is denoted by LCM(a, b).

Exercise 2D

1Example 10 Give the prime decomposition of each of the following numbers:

60a 676b 228c 900d 252e
6300f 68 640g 96 096h 32 032i 544 544j

2Example 11 Find the highest common factor of each of the following pairs of numbers:

4361, 9281a 999, 2160b 5255, 716 845c
1271, 3875d 804, 2358e

3 a List all the factors of 18 and all the factors of 36.
b Why does 18 have an even number of factors and 36 an odd number of factors?
c Find the smallest number greater than 100 with exactly three factors.

4 A woman has three children and two of them are teenagers, aged between 13 and 19.
The product of their three ages is 1050. How old is each child?
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5 By using prime decomposition, find a natural number n such that 222 × 552 = 102 × n2.

6 Find the smallest natural number n such that 60n is a square number.
Hint: First find the prime decomposition of 60.

7 The natural number n has exactly eight different factors. Two of these factors are 15
and 21. What is the value of n?

8 Let n be the smallest of three natural numbers whose product is 720. What is the largest
possible value of n?

9 When all eight factors of 30 are multiplied together, the product is 30k. What is the
value of k?

10 A bell rings every 36 minutes and a buzzer rings every 42 minutes. If they sound
together at 9 a.m., when will they next sound together?

11 The LCM of two numbers is 25 × 33 × 53 and the HCF is 23 × 3 × 52. Find all the
possible numbers.

2E Problems involving sets
Sets can be used to help sort information, as each of the following examples demonstrates.
Recall that, if A is a finite set, then the number of elements in A is denoted by |A|.

Two hundred and eighty students each travel to school by either train or tram or both.
Of these students, 150 travel by train, and 60 travel by both train and tram.

a Show this information on a Venn diagram.
b Hence find the number of students who travel by:

i tram
ii train but not tram
iii just one of these modes of transport.

Example 12

Solution
a

90 60 130

TRAIN
|ξ| = 280

TRAM
ξ

13090 60

b i |TRAM| = 130 + 60 = 190
ii |TRAIN ∩ (TRAM)′| = 90
iii |TRAIN ∩ (TRAM)′| + |(TRAIN)′ ∩ TRAM| = 90 + 130 = 220
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An athletics team has 18 members. Each member competes in at least one of three events:
sprints (S ), jumps (J) or hurdles (H). Every hurdler also jumps or sprints. The following
additional information is available:

|S | = 11, |J| = 10, |J ∩ H′ ∩ S ′| = 5, |J′ ∩ H′ ∩ S | = 5 and |J ∩ H′| = 7

a Draw a Venn diagram.
b Find:

i |H| ii |S ∩ H ∩ J| iii |S ∪ J| iv |S ∩ J ∩ H′|

Example 13

Solution
a Assign a variable to the number

of members in each region of the
Venn diagram.

The information in the question can
be summarised in terms of these
variables:

S

H

p

q

r

y

x w

z

J
ξ

p

r

q

x w

y z

x + y + z + w = 11 as |S | = 11 (1)

p + q + z + w = 10 as |J| = 10 (2)

x + y + z + w + p + q + r = 18 as all members compete (3)

p = 5 as |J ∩ H′ ∩ S ′| = 5 (4)

x = 5 as |J′ ∩ H′ ∩ S | = 5 (5)

r = 0 as every hurdler also jumps or sprints (6)

w + p = 7 as |J ∩ H′| = 7 (7)

From (4) and (7): w = 2.
Equation (3) now becomes

5 + y + z + 2 + 5 + q = 18

y + z + q = 6 (8)∴

Equation (1) becomes

y + z = 4

Therefore from (8): q = 2.
Equation (2) becomes

5 + 2 + z + 2 = 10

z = 1∴

y = 3∴

The Venn diagram can now be
completed as shown.

S

H

5

2

0

3

5 2

1

J
ξ

5

0

2

5 2

3 1

b i |H| = 6 ii |S ∩ H ∩ J| = 1 iii |S ∪ J| = 18 iv |S ∩ J ∩ H′| = 2
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Exercise 2ESkill-
sheet

1Example 12 There are 28 students in a class, all of whom take either History or Economics or both.
Of the 14 students who take History, five also take Economics.

a Show this information on a Venn diagram.
b Hence find the number of students who take:

i Economics ii History but not Economics iii just one of these subjects.

2 a Draw a Venn diagram to show three sets A, B and C in a universal set ξ. Enter
numbers in the correct parts of the diagram using the following information:

|A ∩ B ∩C| = 2, |A ∩ B| = 7, |B ∩C| = 6,

|A ∩C| = 8, |A| = 16, |B| = 20, |C| = 19, |ξ| = 50

b Use the diagram to find:

i |A′ ∩C′| ii |A ∪ B′| iii |A′ ∩ B ∩C′|

3 In a border town in the Balkans, 60% of people speak Bulgarian, 40% speak Greek and
20% speak neither. What percentage of the town speak both Bulgarian and Greek?

4 At an international conference there were 105 delegates. Seventy spoke English,
50 spoke French and 50 spoke Japanese. Twenty-five spoke English and French,
15 spoke French and Japanese and 30 spoke Japanese and English.

a How many delegates spoke all three languages?
b How many spoke Japanese only?

5 A restaurant serves lunch to 350 people. It offers three desserts: profiteroles, gelati and
fruit. Forty people have all three desserts, 70 have gelati only, 50 have profiteroles only
and 60 have fruit only. Forty-five people have fruit and gelati only, 30 people have gelati
and profiteroles only and 10 people have fruit and profiteroles only. How many people
do not have a dessert?

6Example 13 Forty travellers were questioned about the various methods of transport they had used
the previous day. Every traveller used at least one of the following methods: car (C),
bus (B), train (T ). Of these travellers:

� eight had used all three methods of transport
� four had travelled by bus and car only
� two had travelled by car and train only
� the number (x) who had travelled by train only was equal to the number who had

travelled by bus and train only.

If 20 travellers had used a train and 33 had used a bus, find:

a the value of x

b the number who travelled by bus only
c the number who travelled by car only.
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7 Let ξ be the set of all integers and let

X = { x : 21 < x < 37 }, Y = { 3y : 0 < y ≤ 13 }, Z = { z2 : 0 < z < 8 }

a Draw a Venn diagram representing these sets.

b i Find X ∩ Y ∩ Z. ii Find |X ∩ Y |.

8 A number of students bought red, green and black pens. Three bought one of each
colour. Of the students who bought two colours, three did not buy red, five did not
buy green and two did not buy black. The same number of students bought red only as
bought red with other colours. The same number bought black only as bought green
only. More students bought red and black but not green than bought black only. More
bought only green than bought green and black but not red. How many students were
there and how many pens of each colour were sold?

9 For three subsets B, M and F of a universal set ξ,

|B ∩ M| = 12, |M ∩ F ∩ B| = |F′|, |F ∩ B| > |M ∩ F|,

|B ∩ F′ ∩ M′| = 5, |M ∩ B′ ∩ F′| = 5, |F ∩ M′ ∩ B′| = 5, |ξ| = 28

Find |M ∩ F|.

10 A group of 80 students were interviewed about which sports they play. It was found that
23 do athletics, 22 swim and 18 play football. If 10 students do athletics and swim only,
11 students do athletics and play football only, six students swim and play football only
and 46 students do none of these activities on a regular basis, how many students do
all three?

11 At a certain secondary college, students have to be proficient in at least one of the
languages Italian, French and German. In a particular group of 33 students, two are
proficient in all three languages, three in Italian and French only, four in French and
German only and five in German and Italian only. The number of students proficient in
Italian only is x, in French only is x and in German only is x + 1. Find x and then find
the total number of students proficient in Italian.

12 At a certain school, 201 students study one or more of Mathematics, Physics and
Chemistry. Of these students: 35 take Chemistry only, 50% more students study
Mathematics only than study Physics only, four study all three subjects, 25 study
both Mathematics and Physics but not Chemistry, seven study both Mathematics
and Chemistry but not Physics, and 20 study both Physics and Chemistry but not
Mathematics. Find the number of students studying Mathematics.
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Assign-
ment

Nrich

Chapter summary

Sets
� Set notation

x ∈ A x is an element of A

x < A x is not an element of A

ξ the universal set

∅ the empty set

A ⊆ B A is a subset of B

A ∪ B the union of A and B consists of all elements that are in either A or B or both

A ∩ B the intersection of A and B consists of all elements that are in both A and B

A′ the complement of A consists of all elements of ξ that are not in A

|A| the number of elements in a finite set A

� Sets of numbers
N Natural numbers Z Integers

Q Rational numbers R Real numbers

Surds
� A quadratic surd is a number of the form

√
a, where a is a rational number which is not

the square of another rational number.
� A surd of order n is a number of the form n

√
a, where a is a rational number which is not a

perfect nth power.
� When the number under the square root has no factors which are squares of a rational

number, the surd is said to be in simplest form.
� Surds which have the same ‘irrational factor’ are called like surds. The sum or difference

of two like surds can be simplified:

m
√

p + n
√

p = (m + n)
√

p and m
√

p − n
√

p = (m − n)
√

p

Natural numbers
� A natural number a is a factor of a natural number b if there exists a natural number k

such that b = ak.
� A natural number greater than 1 is a prime number if its only factors are itself and 1.
� A natural number m is a composite number if it can be written as a product m = a × b,

where a and b are natural numbers greater than 1 and less than m.
� Every composite number can be expressed as a product of powers of prime numbers; this

is called prime decomposition. For example: 1300 = 22 × 52 × 13
� The highest common factor of two natural numbers a and b is the largest natural number

that is a factor of both a and b. It is denoted by HCF(a, b).
� The lowest common multiple of two natural numbers a and b is the smallest natural

number that is a multiple of both a and b. It is denoted by LCM(a, b).
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Technology-free questions

1 Express the following as fractions in their simplest form:

a 0.07̇ b 0.4̇5̇ c 0.005 d 0.405 e 0.26̇ f 0.17̇14285̇

2 Express 504 as a product of powers of prime numbers.

3 Express each of the following with a rational denominator:

2
√

3 − 1
√

2
a

√
5 + 2
√

5 − 2
b

√
3 +
√

2
√

3 −
√

2
c

4 Express
3 + 2

√
75

3 −
√

12
in the form a + b

√
3, where a, b ∈ Q \ {0}.

5 Express each of the following with a rational denominator:

6
√

2

3
√

2 − 2
√

3
a

√
a + b −

√
a − b

√
a + b +

√
a − b

b

6 In a class of 100 students, 55 are girls, 45 have blue eyes, 40 are blond, 25 are
blond girls, 15 are blue-eyed blonds, 20 are blue-eyed girls, and five are blue-eyed
blond girls. Find:

a the number of blond boys
b the number of boys who are neither blond nor blue-eyed.

7 A group of 30 students received prizes in at least one of the subjects of English,
Mathematics and French. Two students received prizes in all three subjects. Fourteen
received prizes in English and Mathematics but not French. Two received prizes in
English alone, two in French alone and five in Mathematics alone. Four received prizes
in English and French but not Mathematics.

a How many received prizes in Mathematics and French but not English?
b How many received prizes in Mathematics?
c How many received prizes in English?

8 Fifty people are interviewed. Twenty-three people like Brand X, 25 like Brand Y and
19 like Brand Z. Eleven like X and Z. Eight like Y and Z. Five like X and Y . Two like
all three. How many like none of them?

9 Three rectangles A, B and C overlap (intersect). Their areas are 20 cm2, 10 cm2 and
16 cm2 respectively. The area common to A and B is 3 cm2, that common to A and C is
6 cm2 and that common to B and C is 4 cm2. How much of the area is common to all
three if the total area covered is 35 cm2?

10 Express
√

112 −
√

63 −
224
√

28
in simplest form.

11 If

√
7 −
√

3
x

=
x

√
7 +
√

3
, find the values of x.
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12 Express
1 +
√

2
√

5 +
√

3
+

1 −
√

2
√

5 −
√

3
in the form a

√
5 + b

√
6.

13 Simplify
√

27 −
√

12 + 2
√

75 −

√
48
25

.

14 Using the result that
(√

a +
√

b
)2

= a + b + 2
√

ab, determine the square root of 17 + 6
√

8.

15 A, B and C are three sets and ξ = A ∪ B ∪C.
The number of elements in the regions of the
Venn diagram are as shown. Find:

a the number of elements in A ∪ B

b the number of elements in C

c the number of elements in B′ ∩ A.

32

7 15 3

0

0

A B C

ξ

0

15 3

32

7

Multiple-choice questions

1
4

3 + 2
√

2
expressed in the form a + b

√
2 is

12 − 8
√

2A 3 + 2
√

2B
3
17
−

8
17

√
2C

3
17

+
8
17

√
2D 12 + 8

√
2E

2 The prime decomposition of 86 400 is

25 × 32 × 5A 26 × 33 × 52B 27 × 33 × 5C 27 × 33 × 52D 26 × 33 × 53E

3 (
√

6 + 3)(
√

6 − 3) is equal to

3 − 12
√

6A −3 − 6
√

6B −3 + 6
√

6C −3D 3E

4 For the Venn diagram shown, ξ is the set of natural numbers less than 20, A is the set of
natural numbers less than 10, and B is the set of natural numbers less than 20 that are
divisible by 3. The set B′ ∩ A is
A {3, 6, 9}
B {12, 15, 18}
C {10, 11, 13, 14, 16, 17, 19}
D {1, 2, 4, 5, 7, 8}
E {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18}

1

11 10 13 14 16 17 19

2
7

3
6
9

12

4 5 8 15 18

B

A

ξ

5 (3,∞) ∩ (−∞, 5] =

(−∞, 3)A (−∞, 5]B (3, 5]C RD [3, 5]E

6 A bell is rung every 6 minutes and a gong is sounded every 14 minutes. If these occur
together at a particular time, then the smallest number of minutes until the bell and the
gong are again heard simultaneously is

10A 20B 72C 42D 84E
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7 If X is the set of multiples of 2, Y the set of multiples of 7, and Z the set of multiples
of 5, then X ∩ Y ∩ Z can be described as

the set of multiples of 2A the set of multiples of 70B the set of multiples of 35C
the set of multiples of 14D the set of multiples of 10E

8 In a class of students, 50% play football, 40% play tennis and 30% play neither. The
percentage that plays both is

10A 20B 30C 50D 40E

9
√

7 −
√

6
√

7 +
√

6
=

5 + 2
√

7A 13 + 2
√

6B 13 − 2
√

42C 1 + 2
√

42D 13 − 2
√

13E

10 There are 40 students in a class, all of whom take either Literature or Economics or
both. Twenty take Literature and five of these also take Economics. The number of
students who take only Economics is

20A 5B 10C 15D 25E

11 The number of factors that the integer 2p3q5r has is
(p + q + r)!

p! q! r!
A pqrB p + q + rC

(p + 1)(q + 1)(r + 1)D p + q + r + 1E

12 The number of pairs of integers (m, n) which satisfy the equation m + n = mn is

1A 2B 3C 4D more than 4E

Extended-response questions

1 a Show that
(√

x +
√

y
)2

= x + y + 2
√

xy.
b Substitute x = 3 and y = 5 in the identity from part a to show that

√
3 +
√

5 =
√

8 + 2
√

15

c Use this technique to find the square root of:

i 14 + 2
√

33 (Hint: Use x = 11 and y = 3.) ii 15 − 2
√

56 iii 51 − 36
√

2

2 In this question, we consider the set
{
a + b

√
3 : a, b ∈ Q

}
. In Chapter 18, the set C of

complex numbers is introduced, where C =
{
a + b

√
−1 : a, b ∈ R

}
.

a If
(
2 + 3

√
3
)

+
(
4 + 2

√
3
)

= a + b
√

3, find a and b.
b If

(
2 + 3

√
3
)(

4 + 2
√

3
)

= p + q
√

3, find p and q.

c If
1

3 + 2
√

3
= a + b

√
3, find a and b.

d Solve each of the following equations for x:

i
(
2 + 5

√
3
)
x = 2 −

√
3 ii (x − 3)2 − 3 = 0 iii (2x − 1)2 − 3 = 0

e Explain why every rational number is a member of
{
a + b

√
3 : a, b ∈ Q

}
.
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3 A Pythagorean triple (x, y, z) consists of three natural numbers x, y, z such that
x2 + y2 = z2. For example: (3, 4, 5) and (5, 12, 13) are Pythagorean triples.
A Pythagorean triple is in simplest form if x, y, z have no common factor. Up to
swapping x and y, all Pythagorean triples in simplest form may be generated by:

x = 2mn, y = m2 − n2, z = m2 + n2 where m, n ∈ N

For example, if m = 2 and n = 1, then x = 4, y = 3 and z = 5.

a Find the Pythagorean triple for m = 5 and n = 2.
b Verify that, if x = 2mn, y = m2 − n2 and z = m2 + n2, where m, n ∈ N, then

x2 + y2 = z2.

4 The factors of 12 are 1, 2, 3, 4, 6, 12.

a How many factors does each of the following numbers have?

i 23 ii 37

b How many factors does 2n have?
c How many factors does each of the following numbers have?

i 23 · 37 ii 2n · 3m

d Every natural number greater than 1 may be expressed as a product of powers of
primes; this is called prime decomposition. For example: 1080 = 23 × 33 × 5.
Let x be a natural number greater than 1 and let

x = pα1
1 pα2

2 pα3
3 . . . p

αn
n

be its prime decomposition, where each αi ∈ N and each pi is a prime number.
How many factors does x have? (Answer to be given in terms of αi.)

e Find the smallest number which has eight factors.

5 a Give the prime decompositions of 1080 and 25 200.
b Use your answer to part a to find the lowest common multiple of 1080 and 25 200.
c Carefully explain why, if m and n are integers, then mn = LCM(m, n) × HCF(m, n).
d i Find four consecutive even numbers such that the smallest is a multiple of 5, the

second a multiple of 7, the third a multiple of 9 and the largest a multiple of 11.
ii Find four consecutive natural numbers such that the smallest is a multiple of 5,

the second a multiple of 7, the third a multiple of 9 and the largest a multiple
of 11.

6 Consider the universal set ξ as the set of all students enrolled at Sounion Secondary
College. Let B denote the set of students taller than 180 cm and let A denote the set of
female students.

a Give a brief description of each of the following sets:

i B′ ii A ∪ B iii A′ ∩ B′

b Use a Venn diagram to show (A ∪ B)′ = A′ ∩ B′.
c Hence show that A ∪ B ∪C = (A′ ∩ B′ ∩C′)′, where C is the set of students who

play sport.
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7 Use Venn diagrams to illustrate:

a |A ∪ B| = |A| + |B| − |A ∩ B|

b |A ∪ B ∪C| = |A| + |B| + |C| − |A ∩ B| − |B ∩C| − |A ∩C| + |A ∩ B ∩C|

8 a The Venn diagram shows the
set ξ of all students enrolled at
Argos Secondary College.
Set R is the set of all students
with red hair. Set B is the set
of all students with blue eyes.
Set F is the set of all female
students.

5

4 3

1 2

6

7
8

R B

F

ξ

The numbers on the diagram are to label the eight different regions.

i Identify the region in the Venn diagram which represents male students who have
neither red hair nor blue eyes.

ii Describe the gender, hair colour and eye colour of students represented in
region 1 of the diagram.

iii Describe the gender, hair colour and eye colour of students represented in
region 2 of the diagram.

b It is known that, at Argos Secondary College, 250 students study French (F),
Greek (G) or Japanese (J). Forty-one students do not study French. Twelve students
study French and Japanese but not Greek. Thirteen students study Japanese and
Greek but not French. Thirteen students study only Greek. Twice as many students
study French and Greek but not Japanese as study all three. The number studying
only Japanese is the same as the number studying both French and Greek.

i How many students study all three languages?
ii How many students study only French?

9 There are three online news services (A, B and C) based in a certain city. In a sample of
500 people from this city, it was found that:

� nobody subscribes to both A and C

� a total of 100 people subscribe to A

� 205 people subscribe only to B

� of those who subscribe to C, exactly half of them also subscribe to B

� 35 people subscribe to A and B but not C

� 35 people don’t subscribe to any of the news services at all.

a Draw a Venn diagram showing the number of subscribers for each possible
combination of A, B and C.

b How many people in the sample were subscribers of C?
c How many people in the sample subscribe to A only?
d How many people are subscribers of A, B and C?



3
Sequences
and series

Objectives
I To explore sequences of numbers and their recurrence relations.

I To recognise arithmetic sequences, and to find their terms, recurrence relations and
numbers of terms.

I To calculate the sum of the terms in an arithmetic series.

I To recognise geometric sequences, and to find their terms, recurrence relations and
numbers of terms.

I To calculate the sum of the terms in a geometric series.

I To work with sequences defined by a recurrence relation of the form tn = rtn−1 + d,
where r and d are constants.

I To calculate the sum of the terms in an infinite geometric series.

I To apply sequences and series to solving problems.

The following are examples of sequences of numbers:

1, 3, 5, 7, 9, . . .a 10, 7, 4, 1, −2, . . .b 0.6, 1.7, 2.8, . . . , 9.4c
1
3

,
1
9

,
1
27

,
1
81

, . . .d 0.1, 0.11, 0.111, 0.1111, 0.11111, . . .e

Each sequence is a list of numbers, with order being important. Sequence c is an example of
a finite sequence, and the others are infinite sequences.

For some sequences of numbers, we can give a rule for getting from one number to the next:

a rule for sequence a is: add 2� a rule for sequence b is: subtract 3�

a rule for sequence c is: add 1.1� a rule for sequence d is: multiply by
1
3

�

In this chapter, we will develop algebraic techniques for studying sequences like these.
We will also look at various applications of sequences.
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3A Introduction to sequences
The numbers of a sequence are called its terms. The nth term of a sequence is denoted by the
symbol tn. So the first term is t1, the 12th term is t12, and so on.

Recurrence relations
A sequence may be defined by a rule which enables each subsequent term to be found from
the previous term. This type of rule is called a recurrence relation, a recursive formula or
an iterative rule. For example:

� The sequence 1, 3, 5, 7, 9, . . . may be defined by t1 = 1 and tn = tn−1 + 2.

� The sequence
1
3

,
1
9

,
1

27
,

1
81

, . . . may be defined by t1 =
1
3

and tn =
1
3

tn−1.

Use the recurrence relation to find the first four terms of the sequence

t1 = 3, tn = tn−1 + 5

Example 1

Solution

t1 = 3

t2 = t1 + 5 = 8

t3 = t2 + 5 = 13

t4 = t3 + 5 = 18

The first four terms are 3, 8, 13, 18.

Find the recurrence relation for the following sequence:

9,−3, 1,−
1
3

, . . .

Example 2

Solution

−3 = −
1
3
× 9 i.e. t2 = −

1
3

t1

1 = −
1
3
× (−3) i.e. t3 = −

1
3

t2

The sequence is defined by t1 = 9 and tn = −
1
3

tn−1.

A sequence may also be defined explicitly by a rule that is stated in terms of n. For example:

� The rule tn = 2n defines the sequence of even numbers: t1 = 2, t2 = 4, t3 = 6, . . .
� The rule tn = 2n − 1 defines the sequence of odd numbers: t1 = 1, t2 = 3, t3 = 5, . . .
� The rule tn = 2n−1 defines the sequence of powers of 2: t1 = 1, t2 = 2, t3 = 4, . . .
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For an infinite sequence, there is a term tn of the sequence for each natural number n.
Therefore we can consider an infinite sequence to be a function whose domain is the natural
numbers. For example, we can write t : N→ R, tn = 2n + 3.

Find the first four terms of the sequence defined by the rule tn = 2n + 3.

Example 3

Solution

t1 = 2(1) + 3 = 5

t2 = 2(2) + 3 = 7

t3 = 2(3) + 3 = 9

t4 = 2(4) + 3 = 11

The first four terms are 5, 7, 9, 11.

Find a rule for the nth term of the sequence 1, 4, 9, 16 in terms of n.

Example 4

Solution

t1 = 1 = 12

t2 = 4 = 22

t3 = 9 = 32

t4 = 16 = 42

∴ tn = n2

At a particular school, the number of students studying Specialist Mathematics increases
each year. There are presently 40 students studying Specialist Mathematics.

a Set up the recurrence relation if the number is increasing by five students each year.
b Write down an expression for tn in terms of n for the recurrence relation found in a.
c Find the number of students expected to be studying Specialist Mathematics at the

school in five years’ time.

Example 5

Solution
a tn = tn−1 + 5

b t1 = 40

t2 = t1 + 5 = 45 = 40 + 1 × 5

t3 = t2 + 5 = 50 = 40 + 2 × 5

Therefore tn = 40 + (n − 1) × 5

= 35 + 5n
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c Five years from now implies n = 6:

t6 = 40 + 5 × 5 = 65

Sixty-five students will be studying Specialist Mathematics in five years.

The height of a sand dune is increasing by 10% each year. It is currently 4 m high.

a Set up the recurrence relation that describes the height of the sand dune.
b Write down an expression for tn in terms of n for the recurrence relation found in a.
c Find the height of the sand dune seven years from now.

Example 6

Solution
a tn = tn−1 × 1.1

b t1 = 4

t2 = 4 × 1.1 = 4.4

t3 = 4 × (1.1)2 = 4.84

Therefore tn = 4 × (1.1)n−1

c Seven years from now implies n = 8:

t8 = 4 × (1.1)7 ≈ 7.795

The sand dune will be 7.795 m high in seven years.

Using a calculator with explicitly defined sequences

Use a calculator to generate the first 10 terms of the sequence of numbers defined by the
rule tn = 3 + 4n.

Example 7

Using the TI-Nspire
Sequences defined in terms of n can be investigated in a Calculator application.

� To generate the first 10 terms of the sequence
defined by the rule tn = 3 + 4n, complete
as shown. The assignment symbol := is
accessed using ctrl t.

Note: Assigning (storing) the resulting list as tn enables the sequence to be graphed.
If preferred, the variable tn can be entered as tn using the subscript template ��,
which is accessed via t.
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Using the Casio ClassPad
� Open the menum; select Sequence .
� Ensure that the Explicit window is activated.
� Tap the cursor next to anE and enter 3 + 4n.

Note: The variable n can be entered by tapping onB
in the toolbar. Alternatively, it can be obtained
from the Var or abc keyboard.

� Tap# to view the sequence values.
� Tap8 to open the Sequence Table Input window

and complete as shown below; tap OK .

� Tapr to see the sequence of numbers.

Using a calculator with recursively defined sequences

Use a calculator to generate the sequence defined by the recurrence relation

tn = tn−1 + 3, t1 = 1

and plot the graph of the sequence against n.

Example 8

Using the TI-Nspire
� In a Lists & Spreadsheet page, name the first two

lists n and tn respectively.
� Enter 1 in cell A1 and enter 1 in cell B1.

Note: If preferred, the variable tn can be entered
as tn using the subscript template ��, which
is accessed via t.

� Enter = a1 + 1 in cell A2 and enter = b1 + 3 in
cell B2.
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� Highlight the cells A2 and B2 using shift and
the arrows.

� Use menu > Data > Fill and arrow down to row 10.
� Press enter to populate the lists.

� To graph the sequence, open a Graphs application
( ctrl I > Add Graphs).

� Graph the sequence as a scatter plot using menu >

Graph Entry/Edit > Scatter Plot. Enter the list
variables as n and tn in their respective fields.

� Set an appropriate window using menu >

Window/Zoom > Zoom – Data.

Note: It is possible to see the coordinates of the points: menu > Trace > Graph Trace.
The scatter plot can also be graphed in a Data & Statistics page.

� Alternatively, the sequence can be graphed directly
in the sequence plotter ( menu > Graph Entry/Edit
> Sequence > Sequence).

� Enter the rule u1(n) = u1(n − 1) + 3 and the initial
value 1. Change nStep to 10.

� Set an appropriate window using menu >

Window/Zoom > Zoom – Fit.
� Use ctrl T to show a table of values.

Using the Casio ClassPad
� Open the menum; select Sequence .
� Ensure that the Recursive window is activated.
� Select the setting& as shown below.
� Tap the cursor next to an+1 and enter an + 3.

Note: The symbol an can be found in the dropdown
menu in the toolbar as shown below.

� Enter 1 for the value of the first term, a1.
� Tick the box. Tap# to view the sequence values.
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� Tap! to view the graph.
� Taprand then6. Set the View Window as

shown below.

� Select Analysis > Trace and use the cursor I to view
each value in the sequence.

Note: Selecting$ instead of!will produce a line graph, where successive sequence
points are connected by line segments.

Summary 3A
A sequence may be defined by a rule which enables each subsequent term to be found
from the previous term. This type of rule is called a recurrence relation and we say that
the sequence has been defined recursively. For example:

� The sequence 1, 3, 5, 7, 9, . . . is defined by t1 = 1 and tn = tn−1 + 2.

� The sequence
1
3

,
1
9

,
1

27
,

1
81

, . . . is defined by t1 =
1
3

and tn =
1
3

tn−1.

Exercise 3A

1Example 1 In each of the following, a recursive definition for a sequence is given. List the first
five terms.

t1 = 3, tn = tn−1 + 4a t1 = 5, tn = 3tn−1 + 4b t1 = 1, tn = 5tn−1c
t1 = −1, tn = tn−1 + 2d tn+1 = 2tn + tn−1, t1 = 1, t2 = 3e

2Example 2 For each of the following sequences, find a recurrence relation:

3, 6, 9, 12, . . .a 1, 2, 4, 8, . . .b 3,−6, 12,−24, . . .c
4, 7, 10, 13, . . .d 4, 9, 14, 19, . . .e

3Example 3 Each of the following is a rule for a sequence. In each case, find t1, t2, t3, t4.

tn =
1
n

a tn = n2 + 1b tn = 2nc tn = 2nd

tn = 3n + 2e tn = (−1)n n3f tn = 2n + 1g tn = 2 × 3n−1h
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4Example 4 For each of the following sequences, find a possible rule for tn in terms of n:

3, 6, 9, 12, . . .a 1, 2, 4, 8, . . .b 1,
1
4

,
1
9

,
1

16
, . . .c

3,−6, 12,−24, . . .d 4, 7, 10, 13, . . .e 4, 9, 14, 19, . . .f

5 Consider the sequence for which tn = 3n + 1. Find tn+1 and t2n.

6Example 5 Hamish collects football cards. He currently has 15 and he adds three to his collection
every week.

a Set up the recurrence relation that will generate the number of cards Hamish has in
any given week.

b Write down an expression for tn in terms of n for the recurrence relation found in a.
c Find the number of cards Hamish should have after another 12 weeks.

7Example 6 Isobel can swim 100 m in 94.3 s. She aims to reduce her time by 4% each week.

a Set up the recurrence relation that generates Isobel’s time for the 100 m in any
given week.

b Write down an expression for tn in terms of n for the recurrence relation found in a.
c Find the time in which Isobel expects to be able to complete the 100 m after another

8 weeks.

8 Stephen is a sheep farmer with a flock of 100 sheep. He wishes to increase the size of
his flock by both breeding and buying new stock. He estimates that 80% of his sheep
will produce one lamb each year and he intends to buy 20 sheep to add to the flock each
year. Assuming that no sheep die:

a Write a recurrence relation for the expected number of sheep at the end of each year.
(For this question, it will help to take the initial term t0 = 100.)

b Calculate the number of sheep at the end of each of the first five years.

9 Alison invests $2000 at the beginning of the year. At the beginning of each of the
following years, she puts a further $400 into the account. Compound interest of 6% p.a.
is paid on the investment at the end of each year.

a Write down the amount of money in the account at the end of each of the first
three years.

b Set up a recurrence relation to generate the sequence for the investment. (Let t1 be
the amount in the account at the end of the first year.)

c With a calculator or spreadsheet, use the recurrence relation to find the amount in the
account after 10 years.

10Example 7 For each of the following, use a CAS calculator to find the first six terms of the
sequence and plot the graph of these terms against n:

tn = 3n − 2a tn = 5 − 2nb tn = 2n−2c tn = 26−nd
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11Example 8 For each of the following, use a CAS calculator to find the first six terms of the
sequence and plot the graph of these terms against n:

tn = (tn−1)2, t1 = 1.1a tn =
2
3

tn−1, t1 = 27b

tn = 2tn−1 + 5, t1 = −1c tn = 4 − tn−1, t1 = −3d

12 a For a sequence for which tn = 2n−1, find t1, t2 and t3.

b For a sequence for which un =
1
2

(n2 − n) + 1, find u1, u2 and u3.
c What do you notice?
d Find t4 and u4.

13 Assume that Sn = an2 + bn, for constants a, b ∈ R. Find S1, S2, S3 and Sn+1 − Sn.

14 For the sequence defined by t1 = 1 and tn+1 =
1
2

(
tn +

2
tn

)
, find t2, t3 and t4.

The terms of this sequence are successive rational approximations of a real number.
Can you recognise the number?

15 The Fibonacci sequence is defined by F1 = 1, F2 = 1 and Fn+2 = Fn+1 + Fn for n ∈ N.
Use the rule to find F3, F4 and F5. Show that Fn+2 = 2Fn + Fn−1 for all n ∈ N \ {1}.

3B Arithmetic sequences
A sequence in which each successive term is found by adding a fixed amount to the previous
term is called an arithmetic sequence. That is, an arithmetic sequence has a recurrence
relation of the form tn = tn−1 + d, where d is a constant.

For example: 2, 5, 8, 11, 14, 17, . . . is an arithmetic sequence.

The nth term of an arithmetic sequence is given by

tn = a + (n − 1)d

where a is the first term and d is the common difference between successive terms, that is,
d = tk − tk−1, for all k > 1.

Find the 10th term of the arithmetic sequence −4,−1, 2, 5, . . . .

Example 9

Solution
a = −4, d = 3

tn = a + (n − 1)d

∴ t10 = −4 + (10 − 1) × 3

= 23
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If 41 is the nth term in the arithmetic sequence −4,−1, 2, 5, . . . , find the value of n.

Example 10

Solution
a = −4, d = 3

tn = a + (n − 1)d = 41

∴ −4 + (n − 1) × 3 = 41

3(n − 1) = 45

n − 1 = 15

n = 16

Hence 41 is the 16th term of the sequence.

The 12th term of an arithmetic sequence is 9 and the 25th term is 100. Find a and d, and
hence find the 8th term.

Example 11

Solution Alternative
An arithmetic sequence has rule

tn = a + (n − 1)d

Since the 12th term is 9, we have

9 = a + 11d (1)

Since the 25th term is 100, we have

100 = a + 24d (2)

To find a and d, we solve the two equations
simultaneously.

Subtract (1) from (2):

91 = 13d

∴ d = 7

From (1), we have

9 = a + 11(7)

∴ a = −68

Therefore

t8 = a + 7d

= −68 + 7 × 7

= −19

The 8th term of the sequence is −19.

Alternatively, you can find the common
difference d using

d =
tm − tn
m − n

and then find the first term a using

a = tn − (n − 1)d
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A national park has a series of huts located at regular intervals along one of its mountain
trails. The first hut is 5 km from the start of the trail, the second is 8 km from the start, the
third 11 km and so on.

a How far from the start of the trail is the sixth hut?
b How far is it from the sixth hut to the twelfth hut?

Example 12

Solution
The distances of the huts from the start of the trail form an arithmetic sequence with a = 5
and d = 3.

For the sixth hut:

t6 = a + 5d

= 5 + 5 × 3 = 20

The sixth hut is 20 km from the start of
the trail.

a For the twelfth hut:

t12 = a + 11d

= 5 + 11 × 3 = 38

The distance from the sixth hut to the
twelfth hut is t12 − t6 = 38 − 20 = 18 km.

b

Arithmetic mean
The arithmetic mean of two numbers a and b is defined as

a + b
2

.

If the numbers a, c, b are consecutive terms of an arithmetic sequence, then

c − a = b − c

2c = a + b

c =
a + b

2
∴

That is, the middle term c is the arithmetic mean of a and b.

Summary 3B
� An arithmetic sequence has a recurrence relation of the form tn = tn−1 + d, where d

is a constant. Each successive term is found by adding a fixed amount to the previous
term. For example: 2, 5, 8, 11, . . .

� The nth term of an arithmetic sequence is given by

tn = a + (n − 1)d

where a is the first term and d is the common difference between successive terms,
that is, d = tk − tk−1, for all k > 1.

Exercise 3B

1 For the arithmetic sequence where tn = a + (n − 1)d, find the first four terms given that:

a = 0, d = 2a a = −3, d = 5b
a = d = −

√
5c a = 11, d = −2d
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2 aExample 9 If an arithmetic sequence has a first term of 5 and a common difference of −3, find
the 13th term.

b If an arithmetic sequence has a first term of −12 and a common difference of 4, find
the 10th term.

c For the arithmetic sequence with a = 25 and d = −2.5, find the ninth term.
d For the arithmetic sequence with a = 2

√
3 and d =

√
3, find the fifth term.

3 Find the rule of the arithmetic sequence whose first few terms are:

3, 7, 11a 3,−1,−5b −
1
2

,
3
2

,
7
2

,
11
2

c 5 −
√

5, 5, 5 +
√

5d

4Example 10 In each of the following, tn is the nth term of an arithmetic sequence:

a If 54 is the nth term in the sequence 6, 10, 14, 18, . . . , find the value of n.
b If −16 is the nth term in the sequence 5, 2,−1,−4, . . . , find the value of n.
c Find n if t1 = 16, t2 = 13 and tn = −41.
d Find n if t1 = 7, t2 = 11 and tn = 227.

5Example 11 For an arithmetic sequence with fourth term 7 and thirtieth term 85, find the values of a
and d, and hence find the seventh term.

6 If an arithmetic sequence has t3 = 18 and t6 = 486, find the rule for the sequence, i.e.
find tn.

7 For the arithmetic sequence with t7 = 0.6 and t12 = −0.4, find t20.

8 The number of laps that a swimmer swims each week follows an arithmetic sequence.
In the 5th week she swims 24 laps and in the 10th week she swims 39 laps. How many
laps does she swim in the 15th week?

9 For an arithmetic sequence, find t6 if t15 = 3 + 9
√

3 and t20 = 38 −
√

3.

10Example 12 A small company producing wallets plans an increase in output. In the first week it
produces 280 wallets. The number of wallets produced each week is to be increased
by 8 per week until the weekly number produced reaches 1000.

a How many wallets are produced in the 50th week?
b In which week does the production reach 1000?

11 An amphitheatre has 25 seats in row A, 28 seats in row B, 31 seats in row C, and so on.

a How many seats are there in row P?
b How many seats are there in row X?
c Which row has 40 seats?

12 The number of people who go to see a movie over a period of a week follows an
arithmetic sequence. On the first day only three people go to the movie, but on the sixth
day 98 people go. Find the rule for the sequence and hence determine how many attend
on the seventh day.
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13 An arithmetic sequence contains 10 terms. If the first is 4 and the tenth is 30, what is the
eighth term?

14 The number of goals kicked by a team in the first six games of a season follows an
arithmetic sequence. If the team kicked 5 goals in the first game and 15 in the sixth,
how many did they kick in each of the other four games?

15 The first term of an arithmetic sequence is a and the mth term is 0. Find the rule for tn
for this sequence.

16 Find the arithmetic mean of:

8 and 15a
1

2
√

2 − 1
and

1

2
√

2 + 1
b

17 Find x if 3x − 2 is the arithmetic mean of 5x + 1 and 11.

18 If a, 4a − 4 and 8a − 13 are successive terms of an arithmetic sequence, find a.

19 If tm = n and tn = m, prove that tm+n = 0. (Here tm and tn are the mth and nth terms of an
arithmetic sequence.)

20 If a, 2a and a2 are consecutive terms of an arithmetic sequence, find a (a , 0).

21 Show that there is no infinite arithmetic sequence whose terms are all prime numbers.

3C Arithmetic series
The sum of the terms in a sequence is called a series. If the sequence is arithmetic, then the
series is called an arithmetic series.

The symbol Sn is used to denote the sum of the first n terms of a sequence. That is,

Sn = a + (a + d) + (a + 2d) + · · · +
(
a + (n − 1)d

)
Writing this sum in reverse order, we have

Sn =
(
a + (n − 1)d

)
+

(
a + (n − 2)d

)
+ · · · + (a + d) + a

Adding these two expressions together gives

2Sn = n
(
2a + (n − 1)d

)
Therefore

Sn =
n
2

(
2a + (n − 1)d

)
Since the last term ` = tn = a + (n − 1)d, we can also write

Sn =
n
2

(
a + `

)
That is, the sum of the first n terms of an arithmetic sequence is equal to n times the mean of
the first and last terms.
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For the arithmetic sequence 2, 5, 8, 11, . . . , calculate the sum of the first 14 terms.

Example 13

Solution
a = 2, d = 3, n = 14

Sn =
n
2

(
2a + (n − 1)d

)
∴ S14 =

14
2

(
2 × 2 + 13 × 3

)
= 301

For the arithmetic sequence 27, 23, 19, 15, . . . ,−33, find:

the number of termsa the sum of the terms.b

Example 14

Solution
a = 27, d = −4, ` = tn = −33

tn = a + (n − 1)d

−33 = 27 + (n − 1)(−4)

−60 = (n − 1)(−4)

15 = n − 1

n = 16

There are 16 terms in the sequence.

a a = 27, ` = tn = −33, n = 16

Sn =
n
2

(
a + `

)
∴ S16 =

16
2

(
27 − 33

)
= −48

The sum of the terms is −48.

b

For the arithmetic sequence 3, 6, 9, 12, . . . , calculate:

a the sum of the first 25 terms b the number of terms in the series if Sn = 1395.

Example 15

Solution
a = 3, d = 3, n = 25

Sn =
n
2

(
2a + (n − 1)d

)
∴ S25 =

25
2

(
2(3) + (24)(3)

)
= 975

a a = 3, d = 3, Sn = 1395

Sn =
n
2

(
2a + (n − 1)d

)
= 1395

n
2

(
2(3) + (n − 1)(3)

)
= 1395

n(6 + 3n − 3) = 2790

3n + 3n2 = 2790

3n2 + 3n − 2790 = 0

n2 + n − 930 = 0

(n − 30)(n + 31) = 0

Therefore n = 30, since n > 0.
Hence there are 30 terms in the series.

b
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A hardware store sells nails in a range of packet sizes. Packet A contains 50 nails,
packet B contains 75 nails, packet C contains 100 nails, and so on.

a Find the number of nails in packet J.
b Lachlan buys one each of packets A to J. How many nails in total does Lachlan have?
c Assuming he buys one of each packet starting at A, how many packets does he need to

buy to have a total of 1100 nails?

Example 16

Solution
a = 50, d = 25

tn = a + (n − 1)d

For packet J, we take n = 10:

t10 = 50 + 9 × 25

= 275

a a = 50, d = 25

Sn =
n
2

(
2a + (n − 1)d

)
∴ S10 =

10
2

(
2 × 50 + 9 × 25

)
= 1625

b

Packet J contains 275 nails. Packets A to J contain 1625 nails.

c a = 50, d = 25, Sn = 1100

Sn =
n
2

(
2a + (n − 1)d

)
= 1100

n
2

(
2(50) + (n − 1)(25)

)
= 1100

n(100 + 25n − 25) = 2200

25n2 + 75n − 2200 = 0

n2 + 3n − 88 = 0

(n + 11)(n − 8) = 0

Thus n = 8, since n > 0. If Lachlan buys one each of the first eight packets (A to H),
he will have exactly 1100 nails.

The sum of the first 10 terms of an arithmetic sequence is 48 3
4 . If the fourth term is 3 3

4 ,
find the first term and the common difference.

Example 17

Solution

t4 = a + 3d = 3 3
4

a + 3d =
15
4

(1)∴

S10 =
10
2

(
2a + 9d

)
= 48 3

4

10a + 45d =
195

4
(2)∴



82 Chapter 3: Sequences and series 3C

Solve equations (1) and (2) simultaneously:

40a + 120d = 150(1) × 40:

40a + 180d = 195(2) × 4:

60d = 45

d =
3
4

∴

Substitute in (1) to obtain a + 3
(3
4

)
=

15
4

and therefore a =
3
2

.

The first term is 1 1
2 and the common difference is

3
4

.

Summary 3C
The sum of the first n terms of an arithmetic sequence

Sn = a + (a + d) + (a + 2d) + · · · +
(
a + (n − 1)d

)
is given by

Sn =
n
2

(
2a + (n − 1)d

)
or Sn =

n
2

(
a + `

)
, where ` = tn

Exercise 3CSkill-
sheet

1Example 13 For each arithmetic sequence, find the specified sum:

8, 13, 18, . . .a find S12 −3.5,−1.5, 0.5, . . .b find S10

1
√

2
,
√

2,
3
√

2
, . . .c find S15 −4, 1, 6, . . .d find S8

2 Greg goes fishing every day for a week. On the first day he catches seven fish and each
day he catches three more than the previous day. How many fish did he catch in total?

3 Find the sum of the first 16 multiples of 5.

4 Find the sum of all the even numbers between 1 and 99.

5Example 14 For the arithmetic sequence −3, 1, 5, 9, . . . , 49, find:

the number of termsa the sum of the terms.b

6 For the arithmetic sequence 24, 20, 16, 12, . . . ,−52, find:

the number of termsa the sum of the terms.b

7 For the arithmetic sequence
1
2

, 2,
7
2

, 5, . . . , 17, find:

the number of termsa the sum of the terms.b
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8Example 15 For the sequence 4, 8, 12, . . . , find:

a the sum of the first 9 terms
b the value of n such that Sn = 180.

9 There are 110 logs to be put in a pile, with 15 logs in the bottom layer, 14 in the next,
13 in the next, and so on. How many layers will there be?

10 The sum of the first m terms of an arithmetic sequence with first term −5 and common
difference 4 is 660. Find m.

11 Evaluate 54 + 48 + 42 + · · · + (−54).

12Example 16 Dora’s walking club plans 15 walks for the summer. The first walk is a distance
of 6 km, the last walk is a distance of 27 km, and the distances of the walks form an
arithmetic sequence.

a How far is the 8th walk?
b How far does the club plan to walk in the first five walks?
c Dora’s husband, Alan, can only complete the first n walks. If he walks a total

of 73.5 km, how many walks does he complete?
d Dora goes away on holiday and misses the 9th, 10th and 11th walks, but completes

all other walks. How far does Dora walk in total?

13 Liz has to proofread 500 pages of a new novel. She plans to read 30 pages on the first
day and to increase the number of pages she reads by five each day.

a How many days will it take her to complete the proofreading?

She has only five days to complete the task. She therefore decides to read 50 pages on
the first day and to increase the number she reads by a constant amount each day.

b By how many should she increase the number of pages she reads each day if she is to
meet her deadline?

14 An assembly hall has 50 seats in row A, 54 seats in row B, 58 seats in row C, and so on.
That is, there are four more seats in each row.

a How many seats are there in row J?
b How many seats are there altogether if the back row is row Z?

On a particular day, the front four rows are reserved for parents (and there is no other
seating for parents).

c How many parents can be seated?
d How many students can be seated?

The hall is extended by adding more rows following the same pattern.

e If the final capacity of the hall is 3410, how many rows were added?
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15 A new golf club is formed with 40 members in its first year. Each following year, the
number of new members exceeds the number of retirements by 15. Each member pays
$120 p.a. in membership fees. Calculate the amount received from fees in the first
12 years of the club’s existence.

16Example 17 For the arithmetic sequence with t2 = −12 and S12 = 18, find a, d, t6 and S6.

17 The sum of the first 10 terms of an arithmetic sequence is 120, and the sum of the first
20 terms is 840. Find the sum of the first 30 terms.

18 If t6 = 16 and t12 = 28, find S14.

19 For an arithmetic sequence, find tn if:

t3 = 6.5 and S8 = 67a t4 =
6
√

5
and S5 = 16

√
5b

20 For the sequence with tn = bn, where b ∈ R, find:

tn+1 − tna t1 + t2 + · · · + tnb

21 For a sequence where tn = 15 − 5n, find t5 and find the sum of the first 25 terms.

22 An arithmetic sequence has a common difference of d and the sum of the first 20 terms
is 25 times the first term. Find the sum of the first 30 terms in terms of d.

23 The sum of the first n terms of a particular sequence is given by Sn = 17n − 3n2.

a Find an expression for the sum of the first (n − 1) terms.
b Find an expression for the nth term of the sequence.
c Show that the sequence is arithmetic and find a and d.

24 Three consecutive terms of an arithmetic sequence have a sum of 36 and a product
of 1428. Find the three terms.

25 a Prove that the sum of the first n odd numbers 1, 3, 5, . . . , 2n − 1 is equal to n2.
b In 1615, Galileo proved that

1
3

=
1 + 3
5 + 7

=
1 + 3 + 5
7 + 9 + 11

= · · ·

Let Sn be the sum of the first n odd numbers.

i Prove that S2n − Sn = 3Sn.
ii Hence prove Galileo’s result.

26 Show that the sum of the first 2n terms of an arithmetic sequence is n times the sum of
the two middle terms.

27 Find the sum of the numbers between 1 and 120 inclusive that are multiples of 2 or 3.
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28 Find all arithmetic sequences consisting of four positive integers whose sum is 100.

29 How many triangles have three angles that are positive integers in an arithmetic
sequence?

3D Geometric sequences
A sequence in which each successive term is found by multiplying the previous term by a
fixed amount is called a geometric sequence. That is, a geometric sequence has a recurrence
relation of the form tn = rtn−1, where r is a constant.

For example: 2, 6, 18, 54, . . . is a geometric sequence.

The nth term of a geometric sequence is given by

tn = arn−1

where a is the first term and r is the common ratio of successive terms, that is, r =
tk

tk−1
,

for all k > 1.

Find the 10th term of the geometric sequence 2, 6, 18, . . . .

Example 18

Solution
a = 2, r = 3

tn = arn−1

∴ t10 = 2 × 310−1

= 39 366

For a geometric sequence, the first term is 18 and the fourth term is 144. Find the
common ratio.

Example 19

Solution
a = 18, t4 = 144

t4 = 18 × r4−1 = 144

18r3 = 144

r3 = 8

∴ r = 2

The common ratio is 2.
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For a geometric sequence 36, 18, 9, . . . , the nth term is
9
16

. Find the value of n.

Example 20

Solution

a = 36, r =
1
2

tn = 36 ×
(1
2

)n−1
=

9
16(1

2

)n−1
=

9
576(1

2

)n−1
=

1
64(1

2

)n−1
=

(1
2

)6

n − 1 = 6

∴ n = 7

The third term of a geometric sequence is 10 and the sixth term is 80. Find the common
ratio and the first term.

Example 21

Solution

t3 = ar2 = 10 (1)

t6 = ar5 = 80 (2)

Divide (2) by (1):

ar5

ar2 =
80
10

r3 = 8

r = 2∴

Substitute in (1):

a × 4 = 10

a =
5
2

∴

The common ratio is 2 and the first term is
5
2

.
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Georgina draws a pattern consisting of a number of equilateral triangles. The first triangle
has sides of length 4 cm and the side length of each successive triangle is one and a half
times the side length of the previous one.

a What is the side length of the fifth triangle?
b Which triangle has a side length of 45 9

16 cm?

Example 22

Solution

a = 4, r =
3
2

tn = arn−1

∴ t5 = ar4 = 4 ×
(3
2

)4

= 20 1
4

The fifth triangle has a side length
of 20 1

4 cm.

a a = 4, r =
3
2

, tn = 45 9
16

tn = arn−1 = 45 9
16

4 ×
(3
2

)n−1
=

729
16(3

2

)n−1
=

729
64

=

(3
2

)6

Therefore n − 1 = 6 and so n = 7.
The seventh triangle has a side length
of 45 9

16 cm.

b

Geometric mean
The geometric mean of two positive numbers a and b is defined as

√
ab.

If positive numbers a, c, b are consecutive terms of a geometric sequence, then

c
a

=
b
c

c =
√

ab∴

Summary 3D
� A geometric sequence has a recurrence relation of the form tn = rtn−1, where r is a

constant. Each successive term is found by multiplying the previous term by a fixed
amount. For example: 2, 6, 18, 54, . . .

� The nth term of a geometric sequence is given by

tn = arn−1

where a is the first term and r is the common ratio of successive terms, that is,

r =
tk

tk−1
, for all k > 1.
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Exercise 3D

1 For a geometric sequence tn = arn−1, find the first four terms given that:

a = 3, r = 2a a = 3, r = −2b
a = 10 000, r = 0.1c a = r = 3d

2Example 18 Find the specified term in each of the following geometric sequences:
15
7

,
5
7

,
5
21

, . . .a find t6 1,−
1
4

,
1
16

, . . .b find t5
√

2, 2, 2
√

2, . . .c find t10 ax, ax+1, ax+2, . . .d find t6

3 Find the rule for the geometric sequence whose first few terms are:

3, 2,
4
3

a 2,−4, 8,−16b 2, 2
√

5, 10c

4Example 19 Find the common ratio for the following geometric sequences:

a the first term is 2 and the sixth term is 486

b the first term is 25 and the fifth term is
16
25

5Example 20 A geometric sequence has first term
1
4

and common ratio 2. Which term of the sequence
is 64?

6 If tn is the nth term of the following geometric sequences, find n in each case:

2, 6, 18, . . .a tn = 486 5, 10, 20, . . .b tn = 1280

768, 384, 192, . . .c tn = 3
8
9

,
4
3

, 2, . . .d tn =
27
4

−
4
3

,
2
3

,−
1
3

, . . .e tn =
1

96

7Example 21 The 12th term of a geometric sequence is 2 and the 15th term is 54. Find the 7th term.

8 A geometric sequence has t2 =
1

2
√

2
and t4 =

√
2. Find t8.

9 The number of fish in the breeding tanks of a fish farm follow a geometric sequence.
The third tank contains 96 fish and the sixth tank contains 768 fish.

How many fish are in the first tank?a How many fish are in the 10th tank?b

10Example 22 An algal bloom is growing in a lake. The area it covers triples each day.

a If it initially covers an area of 10 m2, what is the area it will cover after one week?
b If the lake has a total area of 200 000 m2, how long before the entire lake is covered?

11 A ball is dropped from a height of 2 m and continues to bounce so that it rebounds to
three-quarters of the height from which it previously falls. Find the height it rises to on
the fifth bounce.
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12 An art collector has a painting that is increasing in value by 8% each year. If the
painting is currently valued at $2500:

a How much will it be worth in 10 years?
b How many years before its value exceeds $100 000?

13 The Tour de Moravia is a cycling event which lasts for 15 days. On the first day the
cyclists must ride 120 km, and each successive day they ride 90% of the distance of the
previous day.

a How far do they ride on the 8th day?
b On which day do they ride 30.5 km?

14 A child negotiates a new pocket-money deal with her unsuspecting father in which
she receives 1 cent on the first day of the month, 2 cents on the second, 4 cents on the
third, 8 cents on the fourth, and so on, until the end of the month. How much would the
child receive on the 30th day of the month? (Give your answer to the nearest thousand
dollars.)

15 The first three terms of a geometric sequence are 4, 8, 16. Find the first term in the
sequence which exceeds 2000.

16 The first three terms of a geometric sequence are 3, 9, 27. Find the first term in the
sequence which exceeds 500.

17 The number of ‘type A’ apple bugs present in an orchard is estimated to be 40 960, and
the number is reducing by 50% each week. At the same time it is estimated that there
are 40 ‘type B’ apple bugs, whose number is doubling each week. After how many
weeks will there be the same number of each type of bug?

18 Find the geometric mean of:

5 and 720a 1 and 6.25b
1
√

3
and
√

3c x2y3 and x6y11d

19 The fourth, seventh and sixteenth terms of an arithmetic sequence also form consecutive
terms of a geometric sequence. Find the common ratio of the geometric sequence.

20 Consider the geometric sequence 1, a, a2, a3, . . . . Suppose that the sum of two
consecutive terms in the sequence gives the next term in the sequence. Find a.

21 A bottle contains 1000 mL of pure ethanol. Then 300 mL is removed and the bottle is
topped up with 300 mL of pure water. The mixture is stirred.

a What is the volume of ethanol in the bottle if this process is repeated five times
in total?

b How many times should the process be repeated for there to be less than 1 mL of
ethanol in the bottle?
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22 The rectangle shown has side lengths a and b.

a Find the side length of a square with the same
perimeter. Comment.

b Find the side length of a square with the same area.
Comment.

a

b

3E Geometric series
The sum of the terms in a geometric sequence is called a geometric series. An expression
for Sn, the sum of the first n terms of a geometric sequence, can be found using a similar
method to that used for arithmetic series.

Sn = a + ar + ar2 + · · · + arn−1 (1)Let

rSn = ar + ar2 + ar3 + · · · + arn (2)Then

Subtract (1) from (2):

rSn − Sn = arn − a

Sn(r − 1) = a(rn − 1)

Therefore

Sn =
a(rn − 1)

r − 1

For values of r such that −1 < r < 1, it is often more convenient to use the equivalent formula

Sn =
a(1 − rn)

1 − r

which is obtained by multiplying both the numerator and the denominator by −1.

Find the sum of the first nine terms of the sequence
1
3

,
1
9

,
1

27
,

1
81

, . . . .

Example 23

Solution

a =
1
3

, r =
1
3

, n = 9

∴ S9 =

1
3

(
1 −

( 1
3
)9
)

1 − 1
3

=
1
2

(
1 −

(1
3

)9)
≈ 0.499975
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For the geometric sequence 1, 3, 9, . . . , find how many terms must be added together to
obtain a sum of 1093.

Example 24

Solution
a = 1, r = 3, Sn = 1093

Sn =
a(rn − 1)

r − 1
= 1093

1(3n − 1)
3 − 1

= 1093

3n − 1 = 1093 × 2

3n = 2187∴

A CAS calculator can be used to find n = 7.

Seven terms are required to give a sum of 1093.

In the 15-day Tour de Moravia, the cyclists must ride 120 km on the first day, and each
successive day they ride 90% of the distance of the previous day.

a How far do they ride in total to the nearest kilometre?
b After how many days will they have ridden half that distance?

Example 25

Solution
a = 120, r = 0.9

Sn =
a(1 − rn)

1 − r

∴ S15 =
120

(
1 − (0.9)15)
1 − 0.9

= 952.93

They ride 953 km.

a a = 120, r = 0.9, Sn = 476.5

Sn =
a(1 − rn)

1 − r
= 476.5

120
(
1 − (0.9)n)
1 − 0.9

= 476.5

1 − 0.9n =
476.5 × 0.1

120

1 − 0.9n = 0.3971

0.9n = 1 − 0.3971

∴ 0.9n = 0.6029

A CAS calculator can be used to find
n ≈ 4.8. Thus they pass the halfway mark
on the fifth day.

b
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Summary 3E
The sum of the first n terms of a geometric sequence

Sn = a + ar + ar2 + · · · + arn−1

is given by

Sn =
a(rn − 1)

r − 1
or Sn =

a(1 − rn)
1 − r

Exercise 3ESkill-
sheet

1Example 23 Find the specified sum for each of the following geometric series:

5 + 10 + 20 + · · ·a find S10 1 − 3 + 9 − · · ·b find S6

−
4
3

+
2
3
−

1
3

+ · · ·c find S9

2 Find:

2 − 6 + 18 − · · · + 1458a −4 + 8 − 16 + · · · − 1024b
6250 + 1250 + 250 + · · · + 2c

3Example 24 For the geometric sequence 3, 6, 12, . . . , find how many terms must be added together to
obtain a sum of 3069.

4 For the geometric sequence 24,−12, 6, . . . , find how many terms must be added together
to obtain a sum of 16 1

8 .

5Example 25 Gerry owns a milking cow. On the first day he milks the cow, it produces 600 mL of
milk. On each successive day, the amount of milk increases by 10%.

a How much milk does the cow produce on the seventh day?
b How much milk does it produce in the first week?
c After how many days will it have produced a total in excess of 10 000 mL?

6 On Monday, William spends 20 minutes playing the piano. On Tuesday, he spends
25 minutes playing, and on each successive day he increases the time he spends playing
in the same ratio.

a For how many minutes does he play on Friday?
b How many minutes in total does he play from Monday to Friday?
c On which day of the following week will his total time playing pass 15 hours?

7 A ball dropped from a height of 15 m rebounds from the ground to a height of 10 m.
With each successive rebound, it rises to two-thirds of the height of the previous
rebound. What total distance will it have travelled when it strikes the ground for the
10th time?
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8 An insurance broker makes $15 000 commission on sales in her first year. Each year,
she increases her sales by 5%.

a How much commission would she make in her fifth year?
b How much commission would she make in total over 5 years?

9 For a geometric sequence with nth term tn:

if t3 = 20 and t6 = 160, find S5a if t3 =
√

2 and t8 = 8, find S8.b

10 a How many terms of the geometric sequence where t1 = 1, t2 = 2, t3 = 4, . . . must be
taken for Sn = 255?

b Let Sn = 1 + 2 + 4 + · · · + 2n−1. Find { n : Sn > 1 000 000 }.

11 Find 1 − x2 + x4 − x6 + x8 − · · · + x2m, where m is even.

12 A sheet of A4 paper is about 0.05 mm thick. The paper is torn in half, and each half is
again torn in half, and this process is repeated for a total of 40 times.

a How high will the stack of paper be if the pieces are placed one on top of the other?
b How many times would the process have to be repeated for the stack to first reach the

moon, 384 400 km away?

13 Which would you prefer: $1 million given to you every week for a year, or 1c in the first
week, 2c in the second, 4c in the third, and so on, until the end of the year?

14 For a particular geometric sequence, the sum of the first 50 terms is 60 and the sum of
the first 100 terms is 80. Find the common ratio for this geometric sequence.

3F Applications of geometric sequences
Compound interest
One application of geometric sequences is compound interest. Compound interest is interest
calculated at regular intervals on the total of the amount originally invested and the amount
accumulated in the previous years.

For example, assume that $1000 is invested at 10% per annum, compounded annually. Then
the value of the investment increases by 10% each year.

1 After 1 year, the investment will have grown to $1000 × 1.1 = $1100.
2 After 2 years, the investment will have grown to $1100 × 1.1 = $1000 × 1.12 = $1210.
3 After 3 years, the investment will have grown to $1210 × 1.1 = $1000 × 1.13 = $1331.

The value of the investment after n years will be $1000 × 1.1n.
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Compound interest

Suppose that $P is invested at an interest rate of R% per annum, compounded annually.
Then the value of the investment after n years, $An, is given by

An = Prn, where r = 1 +
R

100

Marta invests $2500 at 7% p.a. compounded annually.

a Find the value of her investment after 5 years.
b Find how long it takes until her investment is worth $10 000.

Example 26

Solution
The value after n years is An = Prn, where P = 2500 and r = 1.07.

A5 = Pr5

= 2500(1.07)5

= 3506.38

The value of the investment after
5 years is $3506.38.

a An = Prn = 10 000

2500(1.07)n = 10 000

1.07n = 4

log10
(
1.07n) = log10 4

n log10(1.07) = log10 4

n =
log10 4

log10(1.07)

∴ n ≈ 20.49

By the end of the 21st year, the
investment will be worth over $10 000.

b

Note: For part b, the number of years can also be found by trial and error or by using a
CAS calculator.

Compound interest using a recurrence relation
Example 26 can also be solved using a spreadsheet. Let $An be the value of the investment at
the end of the nth year. These values can be found recursively by

A0 = 2500 and An = 1.07 × An−1

To find the values using a spreadsheet:

� In cell A1, enter the value 0.
� In cell A2, enter the formula = A1 + 1.
� In cell B1, enter the initial value 2500.
� In cell B2, enter the formula = 1.07 ∗ B1.
� Fill down in columns A and B.

At the end of year 5, the amount is $3506.38. By filling
down further in columns A and B, you can find the year
that the amount reaches $10 000.

Year Amount

A B

1 0 2500.00

2 1 2675.00

3 2 2862.25

4 3 3062.61

5 4 3276.99

6 5 3506.38
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Depreciation
Depreciation occurs when the value of an asset reduces as time passes. For example, suppose
that a new car is bought for $20 000, and that its value depreciates by 10% each year.

1 After 1 year, the car’s value will have fallen to $20 000 × 0.9 = $18 000.
2 After 2 years, the car’s value will have fallen to $20 000 × 0.92 = $16 200.
3 After 3 years, the car’s value will have fallen to $20 000 × 0.93 = $14 580.

The value of the car after n years will be $20 000 × 0.9n.

Depreciation

Suppose that an asset has initial value $P and that its value depreciates at a rate of R% per
annum. Then the value of the asset after n years, $Dn, is given by

Dn = Prn, where r = 1 −
R

100

A machine bought for $15 000 depreciates at the rate of 12 1
2 % per annum.

a What will be the value of the machine after 9 years?
b After how many years will its value drop below 10% of its original cost?

Example 27

Solution
The value after n years is Dn = Prn, where P = 15 000 and r = 1 − 0.125 = 0.875.

D9 = Pr9

= 15 000 × (0.875)9

= 4509.87

The value of the machine after
9 years is $4509.87.

a We want to find the smallest value of n for
which Dn < 0.1P.

Dn = Prn < 0.1P

15 000 × (0.875)n < 0.1 × 15 000

0.875n < 0.1

A calculator gives the solution n > 17.24.
The value will drop below 10% of the
original cost during the 18th year.

b

Regular payments
We now look at situations where compound interest is combined with equal payments at
regular intervals of time. Examples include superannuation contributions, loan repayments
and annuities. We will focus on yearly payments, but regular payments are also often made
weekly, monthly or quarterly.

In the following two examples, we find the solutions using geometric series. Alternatively,
the solutions can be found using a spreadsheet. In the next section, we will see another more
general approach that can also be used in these situations.
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Regular deposits into a savings account

Sophie plans to retire in 15 years. She decides to deposit $6000 into a bank account at the
start of each year until her retirement. The interest rate is 6% p.a. compounded annually.
What will be the account balance when Sophie retires at the end of the 15th year?

Example 28

Solution

� The first $6000 is in the bank for 15 years and so contributes 6000(1.06)15.
� The second $6000 is in the bank for 14 years and so contributes 6000(1.06)14.
� The third $6000 is in the bank for 13 years and so contributes 6000(1.06)13....
� The final $6000 is in the bank for one year and so contributes 6000(1.06)1.

The final amount in the account is

6000(1.06)15 + 6000(1.06)14 + 6000(1.06)13 + · · · + 6000(1.06)1

This is a geometric series with a = 6000(1.06), r = 1.06 and n = 15.

S15 =
a(r15 − 1)

r − 1
=

6000(1.06)
(
1.0615 − 1

)
1.06 − 1

= 148 035.17

Sophie will have $148 035.17 in her bank account. She has contributed $90 000.

In general, if $P is deposited at the start of each year into an account earning compound
interest of R% p.a., then the account balance after n years, $An, is given by

An =
Pr(rn − 1)

r − 1
, where r = 1 +

R
100

Loan repayments

Luke borrows $50 000 and undertakes to repay $6000 at the end of each year. Interest
of 10% p.a. is charged on the unpaid debt.

a How much does he owe after the 8th repayment?
b How long does it take to pay off the loan?

Example 29

Solution
Let $Dn be the amount still owing after the nth repayment.

a � Amount owing after the 1st repayment:

D1 = 50 000 × 1.1 − 6000

� Amount owing after the 2nd repayment:

D2 = D1 × 1.1 − 6000

=
(
50 000 × 1.1 − 6000

)
× 1.1 − 6000

= 50 000 × 1.12 − 6000(1 + 1.1)
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� Amount owing after the 3rd repayment:

D3 = D2 × 1.1 − 6000

=
(
50 000 × 1.12 − 6000(1 + 1.1)

)
× 1.1 − 6000

= 50 000 × 1.13 − 6000(1 + 1.1 + 1.12)

Following this pattern, the amount owing after the 8th repayment is

D8 = 50 000 × 1.18 − 6000
(
1 + 1.1 + 1.12 + · · · + 1.17)

= 50 000 × 1.18 − 6000
(1.18 − 1

0.1

)
= 50 000 × 1.18 − 60 000 × (1.18 − 1)

= 38 564.11

After the 8th repayment, he owes $38 564.11.

b After the nth repayment, the amount owing is

Dn = 50 000 × 1.1n − 60 000 × (1.1n − 1)

= 60 000 − 10 000 × 1.1n

We want to find when the debt is zero:

60 000 − 10 000 × 1.1n = 0

1.1n = 6

Using a calculator gives n ≈ 18.8. It takes 19 years to pay off the loan.

In general, if $P is borrowed at an interest rate of R% p.a. and a repayment of $Q is made at
the end of each year, then the amount owing after n years, $Dn, is given by

Dn = Prn −
Q(rn − 1)

r − 1
, where r = 1 +

R
100

Loan repayments using a recurrence relation
Example 29 can be solved using a spreadsheet. Let $Dn

be the amount owing at the end of the nth year. Then

D0 = 50 000 and Dn = 1.1 × Dn−1 − 6000

To find the values using a spreadsheet:

� In cell A1, enter the value 0.
� In cell A2, enter the formula = A1 + 1.
� In cell B1, enter the initial value 50 000.
� In cell B2, enter the formula = 1.1 ∗ B1 − 6000.
� Fill down in columns A and B.

After 8 years, the debt is $38 564.11. By filling down
further, you can find the year that the debt reaches zero.

Year Owing

A B

1 0 50 000.00

2 1 49 000.00

3 2 47 900.00

4 3 46 690.00

5 4 45 359.00

6 5 43 894.90

7 6 42 284.39

8 7 40 512.83

9 8 38 564.11
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Summary 3F
� Compound interest

Suppose that $P is invested at an interest rate of R% per annum, compounded annually.
Then the value of the investment after n years, $An, is given by

An = Prn, where r = 1 +
R

100

� Depreciation
Suppose that an asset has initial value $P and that its value depreciates at a rate of R%
per annum. Then the value of the asset after n years, $Dn, is given by

Dn = Prn, where r = 1 −
R

100

� Situations involving regular payments can be investigated by:

• finding a pattern in the calculation of the first few values and then using a
geometric series

• finding the recurrence relation for the values and using a spreadsheet.

Exercise 3F

1Example 26 $5000 is invested at 6% p.a. compounded annually.

a Find the value of the investment after 6 years.
b Find how long it will take for the original investment to double in value.

2 How much would need to be invested at 8.5% p.a., compounded annually, to yield a
return of $8000 after 12 years?

3 The profits of a cosmetics company have been increasing by 15% per annum since its
formation. The profit in the first year was $60 000.

a Find a formula for the profit in the nth year.
b In which year did the annual profit first exceed $1 200 000?
c Find a formula for the total profit over the first n years.

4Example 27 A car bought for $65 000 depreciates at the rate of 15% per annum.

a What will be the value of the car after 3 years?
b After how many years will its value drop below 50% of its original cost?

5 What annual compound interest rate would be required to triple the value of an
investment of $200 in 10 years?

6 The value of a car is $40 000 when new. If its value depreciates by 15% each year, after
how many years will its value be less than $10 000?
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7Example 28 At the beginning of each year, an investor deposits $25 000 into a fund that pays 5% p.a.
compounded annually. How much is the investment worth after 10 years?

8 I wish to accumulate $100 000 over 20 years at 10% p.a. compounded annually. What
should be the amount of my annual payments?

9 Chen pays $20 000 into an investment fund at the start of each year, and the fund earns
compound interest at a rate of 6% p.a.

a How much is the investment worth at the end of 10 years?
b After how many years will the value of the investment be over $200 000?

10Example 29 Daniel borrows $100 000 and undertakes to repay $10 000 at the end of each year.
Interest of 5% p.a. is charged on the unpaid debt.

a How much does he owe after the 10th repayment?
b How long does it take to pay off the loan?

11 Grace lends $50 000 on the condition that she is repaid the money in 15 equal yearly
installments. If she receives interest at the rate of 4% p.a., what is the amount of each
installment?

12 Andrew invests $1000 at 20% simple interest for 10 years. Bianca invests her $1000
at 12.5% compound interest for 10 years. At the end of 10 years, whose investment is
worth more?

13 By sampling, it is estimated that there are 20 000 trout in a lake. Assume that the
trout population, left untouched, would increase by 15% per annum. It is known that
2000 trout per year are removed by fishing.

a How many trout are there in the lake after:

i 1 year ii 2 years iii 3 years?

b Write a recurrence relation that gives the number of trout in the lake after n years in
terms of the number of trout in the lake after n − 1 years.

c Write a formula for the number of trout in the lake after n years in terms of n.
d Find the number of trout in the lake after 15 years.

14 When Emma retired from work at the start of January, she invested a lump sum of
$300 000 at an interest rate of 10% p.a. compounded annually. She now uses this
account to pay herself an annuity of $40 000 at the end of December every year.

a What is the amount left in the account at the end of:

i the first year ii the second year iii the third year?

b Write a recurrence relation that gives the account balance after n years in terms of the
account balance after n − 1 years.

c Write a formula for the account balance after n years in terms of n.
d For how many years will Emma be able to pay herself an annuity of $40 000 before

the account balance becomes too low?



100 Chapter 3: Sequences and series

3G Recurrence relations of the form tn = rtn−1 + d
Throughout this chapter, we have studied two useful types of sequences:

� Arithmetic sequences are defined by recurrence relations of the form tn = tn−1 + d.
� Geometric sequences are defined by recurrence relations of the form tn = rtn−1.

In the previous section, we studied sequences based on regular payments, where each step
involves a percentage increase or decrease together with a fixed-amount increase or decrease.

In this section, we consider a generalisation of all these types of sequences. We shall study
sequences defined by a recurrence relation of the form

tn = rtn−1 + d

where r and d are constants.

Note: The case where r = 1 corresponds to an arithmetic sequence.
The case where d = 0 corresponds to a geometric sequence.

Find the first four terms of the sequence defined by the recurrence relation

tn = 2tn−1 + 1, t1 = 10

Example 30

Solution

t1 = 10

t2 = 2 × 10 + 1 = 21

t3 = 2 × 21 + 1 = 43

t4 = 2 × 43 + 1 = 87

The sequence 5, 13, 37, . . . is generated by a recurrence relation of the form

sn = rsn−1 + d, s1 = 5

Find the values of r and d.

Example 31

Solution
From the first three terms of this sequence, we have a system of linear equations:

13 = 5r + d (1)

37 = 13r + d (2)

Subtract (1) from (2):

24 = 8r

r = 3

Substitute in equation (1):

d = −2
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Finding the nth term of the sequence
We can derive a general formula for the nth term of a sequence defined by a recurrence
relation of the form tn = rtn−1 + d.

For a sequence defined by a recurrence relation of the form tn = rtn−1 + d, where r , 1,
the nth term is given by

tn = rn−1t1 +
d(rn−1 − 1)

r − 1

where t1 is the first term.

Proof Use the recurrence relation to obtain an equation for each term from tn down to t2:

tn = rtn−1 + d

tn−1 = rtn−2 + d

tn−2 = rtn−3 + d
...

t3 = rt2 + d

t2 = rt1 + d

Now multiply the equations by increasing powers of r:

tn = rtn−1 + d (multiply by r0)

rtn−1 = r2tn−2 + rd (multiply by r1)

r2tn−2 = r3tn−3 + r2d (multiply by r2)
...

...

rn−3t3 = rn−2t2 + rn−3d (multiply by rn−3)

rn−2t2 = rn−1t1 + rn−2d (multiply by rn−2)

Add these equations:

tn + rtn−1 + r2tn−2 + · · · + rn−3t3 + rn−2t2

= rtn−1 + r2tn−2 + r3tn−3 + · · · + rn−2t2 + rn−1t1 + d + rd + r2d + · · · + rn−3d + rn−2d

Cancelling gives

tn = rn−1t1 + d + rd + r2d + · · · + rn−3d + rn−2d

Hence

tn = rn−1t1 +
d(rn−1 − 1)

r − 1

Note: You should check that this formula for tn satisfies the recurrence relation
tn = rtn−1 + d.
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Find a formula for the nth term of the sequence defined by the recurrence relation

tn = 2tn−1 + 1, t1 = 10

Example 32

Solution
We will use the general formula

tn = rn−1t1 +
d(rn−1 − 1)

r − 1

Here r = 2 and d = 1. Hence

tn = 2n−1 × 10 +
1 × (2n−1 − 1)

2 − 1

= 10 × 2n−1 + 2n−1 − 1

= 11 × 2n−1 − 1

Note: You can check this formula for the first four terms of the sequence, which were
found in Example 30.

Consider the sequence defined by the recurrence relation

tn =
1
2

tn−1 + 8, t1 = 5

a Find a formula for the nth term of the sequence.
b Determine the first four terms of the sequence.
c Describe what happens to tn for large values of n.

Example 33

Solution
We will use the general formula

tn = rn−1t1 +
d(rn−1 − 1)

r − 1

Here r =
1
2

and d = 8. Hence

tn =

(1
2

)n−1
× 5 +

8
(( 1

2
)n−1
− 1

)
1
2 − 1

= 5
(1
2

)n−1
− 16

((1
2

)n−1
− 1

)
= −11

(1
2

)n−1
+ 16

= 16 −
11

2n−1

a t1 = 16 − 11 = 5

t2 = 16 −
11
2

=
21
2

= 10 1
2

t3 = 16 −
11
4

=
53
4

= 13 1
4

t4 = 16 −
11
8

=
117
8

= 14 5
8

b
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c We use the formula for tn from part a:

tn = 16 −
11

2n−1

As n becomes very large, the number
11

2n−1 becomes very small and so tn → 16.

Consider a sequence defined by a recurrence relation of the form tn = rtn−1 + d, where r , 1.
Then the general formula that we obtained for tn can be rewritten into a rule of the form

tn = Arn−1 + B

for constants A and B. The following example shows how this observation can be used.

The sequence 5, 16, 38, . . . is defined by a recurrence relation tn = rtn−1 + d. Determine a
formula for the nth term of this sequence by recognising that it can be written in the form
tn = Arn−1 + B, for constants A and B.

Example 34

Solution
From the first three terms, we have

t1 = A + B = 5 (1)

t2 = Ar + B = 16 (2)

t3 = Ar2 + B = 38 (3)

Subtract equation (1) from both (2) and (3):

A(r − 1) = 11 (4)

A(r2 − 1) = 33 (5)

Divide (5) by (4):

r2 − 1
r − 1

= 3

(r + 1)(r − 1)
r − 1

= 3

r + 1 = 3

r = 2

A = 11From (4):

B = −6From (1):

The formula for the nth term is

tn = 11 × 2n−1 − 6
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At the start of the year, a lake in a national park is estimated to contain 10 000 trout.
Experience with this lake shows that, if left to natural factors, the trout numbers in the
lake will increase on average by 20% per year. On this basis, the park authorities give
permission for 1800 trout to be taken from the lake each year by anglers.

a Write down a recurrence relation that can be used to model the number of trout in the
lake at the start of each year. (Apply the percentage increase before the fixed decrease.)

b Using this model, how many trout will the lake contain after 10 years?
c When will the population of trout in the lake exceed 20 000?
d Suppose instead that the park authorities allow 2200 trout to be fished from the lake

each year.

i Write down a recurrence relation that can be used to model the number of trout in
the lake at the start of each year.

ii Give an expression for the number of trout in the lake at the start of the nth year.
iii When will trout disappear from the lake?

e Suppose instead that the park authorities allow 2000 trout to be fished from the lake
each year. Describe what will happen.

Example 35

Solution
a Let Pn be the number of trout in the lake at the start of the nth year. Then

Pn+1 = 1.2Pn − 1800, P1 = 10 000

b We can use the general formula for the nth term of the sequence:

Pn = 1.2n−1 × 10 000 +
(−1800)(1.2n−1 − 1)

1.2 − 1

= 10 000 × 1.2n−1 − 9000(1.2n−1 − 1)

= 1000 × 1.2n−1 + 9000

After 10 years:

P11 = 1000 × 1.210 + 9000

≈ 15 192

c We want to find the smallest value of n for which Pn > 20 000:

Pn > 20 000

1000 × 1.2n−1 + 9000 > 20 000

1000 × 1.2n−1 > 11 000

1.2n−1 > 11

Using your calculator gives n > 14.152 . . . .
By the start of the 15th year, the population of trout will be over 20 000.
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d i Let Qn be the number of trout in the lake at the start of the nth year. Then

Qn+1 = 1.2Qn − 2200, Q1 = 10 000

ii The general formula gives

Qn = 1.2n−1 × 10 000 +
(−2200)(1.2n−1 − 1)

1.2 − 1

= 10 000 × 1.2n−1 − 11 000(1.2n−1 − 1)

= 11 000 − 1000 × 1.2n−1

iii We want to find the smallest value of n for which Qn ≤ 0:

Qn ≤ 0

11 000 − 1000 × 1.2n−1 ≤ 0

1.2n−1 ≥ 11

n ≥ 15

Trout will disappear from the lake during the 14th year.

e Let Rn be the number of trout in the lake at the start of the nth year. Then

Rn+1 = 1.2Rn − 2000, R1 = 10 000

This gives

R2 = 1.2 × 10 000 − 2000 = 10 000

R3 = 1.2 × 10 000 − 2000 = 10 000

We can see that Rn = 10 000 for all n. The model predicts that the trout population will
stay at 10 000.

First-order linear recurrence relations
In general, a first-order linear recurrence relation has the form tn = f (n) tn−1 + g(n),
where f and g are functions. In this section, we consider the special case that f and g are
constant functions. However, we look at two examples where the function g is not constant
in Exercise 3G (Questions 11 and 12).

Summary 3G
� Let t1, t2, t3, . . . be a sequence defined by a recurrence relation of the form

tn = rtn−1 + d

where r and d are constants. Then the nth term of the sequence is given by

tn = rn−1t1 +
d(rn−1 − 1)

r − 1
(provided r , 1)
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Exercise 3GSkill-
sheet

1Example 30 Calculate the first four terms of the sequence defined by each of the following
recurrence relations:

tn = 3tn−1 + 4, t1 = 6a sn = 6sn−1 + 2, s1 = 1b
tn+1 = 3tn − 4, t1 = 6c un+1 = 4un + 1, u1 = 2d

2 a The sequence 2, 6, 26, . . . is defined by the recurrence relation tn = 5tn−1 + d,
with t1 = 2. Find the value of d.

b The sequence 500, 650, 875, . . . is defined by the recurrence relation tn = rtn−1 − 100,
with t1 = 500. Find the value of r.

c The sequence 1000, 100,−80, . . . is defined by the recurrence relation
Tn = 0.2Tn−1 + d, with T1 = 1000. Find the value of d.

d The sequence a, 22, 90, . . . is defined by the recurrence relation sn = 4sn−1 + 2,
with s1 = a. Find the value of a.

3 aExample 31 The sequence 2, 5, 11, . . . is defined by the recurrence relation tn = rtn−1 + d,
with t1 = 2. Find the values of r and d.

b The sequence 512, 192, 32, . . . is defined by the recurrence relation vn = rvn−1 + d,
with v1 = 512. Find the values of r and d.

c The sequence a, 10, 55, . . . is defined by the recurrence relation tn+1 = 5tn + d,
with t1 = a. Find the values of a and d.

d The sequence 200, 500, 1400, . . . is defined by the recurrence relation tn+1 = rtn + d,
with t1 = 200. Find the values of r and d.

4 A sequence is defined recursively by a1 = k and an = 5an−1 + 3.

a Find a2 and a3 in terms of k.
b Find the sum of the first four terms of the sequence in terms of k.

5Example 32 For each of the following recurrence relations, determine an expression for the nth term
of the sequence in terms of n:

tn = 2tn−1 − 6, t1 = 7a tn = 2tn−1 − 2, t1 = 1b

tn+1 =
1
2

tn + 10, t1 = 20c tn+1 =
1
2

tn + 14, t1 = 20d

tn+1 =
1
2

tn − 10, t1 = 20e tn+1 =
1
2

tn +
1
2

, t1 = 1f

6Example 33 Consider the sequence defined by the recurrence relation

tn =
1
2

tn−1 + 5, t1 = 6

a Find a formula for the nth term of the sequence.
b Determine the first four terms of the sequence.
c Describe what happens to tn for large values of n.
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7 Consider the sequence defined by the recurrence relation

tn = −
1
2

tn−1 + 5, t1 = 6

a Find a formula for the nth term of the sequence.
b Determine the first four terms of the sequence.
c Describe what happens to tn for large values of n.

8Example 34 The sequence 7, 31, 103, . . . is defined by a recurrence relation tn = rtn−1 + d. Determine
a formula for the nth term of this sequence by recognising that it can be written in the
form tn = Arn−1 + B, for constants A and B.

9 The sequence 16, 5,− 1
2 , . . . is defined by a recurrence relation tn = rtn−1 + d. Determine

a formula for the nth term of this sequence by recognising that it can be written in the
form tn = Arn−1 + B, for constants A and B.

10 The sequence t1, t2, t3, . . . is defined by a recurrence relation of the form tn = rtn−1 + d.
The nth term of this sequence is given by the formula tn = 3 × 2n − 4.

a Find the values of r and d.
b Determine the smallest value of n for which tn > 1000.
c Determine an expression for tn+1 − tn. Hence show that tn+1 > tn for all n ∈ N.

11 Using first principles, find a formula for the nth term of the sequence defined by the
recurrence relation tn = tn−1 + 2n, with t1 = 5.

12 Using first principles, find a formula for the nth term of the sequence defined by the
recurrence relation tn = tn−1 + 2n + 1, with t1 = 5.

13 A sequence satisfies the recurrence relation an = 4an−1 − 1.

a Given that a2 = 43, find a1 and a3.
b Find a formula for an in terms of n.

14 Consider the sequence defined by s1 = 1 and 2sn + sn−1 = 6.

a Determine a formula for the nth term of the sequence.
b Determine the first five terms of the sequence.
c Plot the graph of this sequence (sn against n) for the first five terms.
d Describe the behaviour of the sequence as n becomes large.

15 Wild deer are causing a problem in a nature reserve. When counted at the start of the
year, there were 1356 deer in the reserve. Under normal conditions, the deer population
grows at a rate of 22% per year. To reduce deer numbers in the reserve, the rangers
recommend that hunters be allowed to take 250 deer from the reserve at the end of
each year.

a Write down a recurrence relation to describe this situation. Let Nn represent the
number of deer in the nature reserve at the start of the nth year.

b What impact does allowing hunters to take 250 deer per year have on the growth of
the deer population?
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16Example 35 The change in population of a country town is dependent on births, deaths and the
arrival of new residents. The birth rate is 9% per annum and the death rate is 0.5% per
annum. A constant number of 250 new residents move into the town each year. At the
start of 2010, the number of residents of this town was 3000.

a Set up a recurrence relation to describe the population of the town at the start of
each year. (Apply the percentage change before the fixed increase.)

b Find a formula for the population of the town at the start of the nth year.
c Determine the population of the town at the start of 2020.
d In which year does the population of the town pass 5050?

17 A farmer decides to keep a herd of goats. The herd is started with 200 goats. Each year,
3% of the goats die through old age, 20% produce one offspring and 5% produce two
offspring. The farmer sells 20 goats at the end of each year.

a Set up a recurrence relation to describe the herd size at the start of each year.
b Find a formula for the herd size at the start of the nth year.
c Determine the herd size after 10 years.

18 You borrow $15 000 from the bank. You plan to pay off the loan at $400 per month.
Interest at a rate of 8.4% per annum is charged monthly on the amount still owing.

a Write down a recurrence relation of the form An+1 = rAn − d, A1 = a, that can be
used to describe the amount, $An, that you owe at the start of the nth month.

b Write down an expression for An in terms of n.
c How long will it take you to pay off the loan?

19 Consider the sequence t1, t2, t3, . . . defined by the recurrence relation

tn = 0.6tn−1 + 60, t1 = 32

a Find a rule for tn in terms of n.
b Find tn+1 − tn in terms of n. Hence prove that the sequence is increasing. (That is,

show that tn+1 ≥ tn for all n ∈ N.)
c Determine the smallest value of n for which tn+1 − tn ≤ 0.001.
d Prove that tn ≤ 150 for all n ∈ N.
e Prove that tn → 150 as n→ ∞.
f Now consider the sequence s1, s2, s3, . . . defined by the recurrence relation

sn = 0.6sn−1 + d, s1 = 32

What is the value of d if sn → 200 as n→ ∞?
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3H Zeno’s paradox and infinite geometric series
A runner wants to go from point A to point B. To do this, he would first have to run half the
distance, then half the remaining distance, then half the remaining distance, and so on.

2
1A B

4
1

8
1

The Greek philosopher Zeno of Elea, who lived about 450 bc, argued that since the runner
has to complete an infinite number of stages to get from A to B, he cannot do this in a finite
amount of time, and so he cannot reach B. In this section we see how to resolve this paradox.

Infinite geometric series
If a geometric sequence has a common ratio with magnitude less than 1, that is, if −1 < r < 1,
then each successive term is closer to zero. For example, consider the sequence

1
3

,
1
9

,
1
27

,
1
81

, . . .

In Example 23 we found that the sum of the first 9 terms is S9 ≈ 0.499975. The sum of the
first 20 terms is S20 ≈ 0.49999999986. We might conjecture that, as we add more and more
terms of the sequence, the sum will get closer and closer to 0.5, that is, Sn → 0.5 as n→ ∞.

An infinite series t1 + t2 + t3 + · · · is said to be convergent if the sum of the first n terms, Sn,
approaches a limiting value as n→ ∞. This limit is called the sum to infinity of the series.

If −1 < r < 1, then the infinite geometric series a + ar + ar2 + · · · is convergent and the
sum to infinity is given by

S∞ =
a

1 − r

Proof We know that

Sn =
a(1 − rn)

1 − r
=

a
1 − r

−
arn

1 − r

As n→ ∞, we have rn → 0 and so
arn

1 − r
→ 0. Hence Sn →

a
1 − r

as n→ ∞.

Resolution of Zeno’s paradox Assume that the runner is travelling at a constant speed
and that he takes 1 minute to run half the distance from A to B. Then he takes 1

2 minute to run
half the remaining distance, and so on. The total time taken is

1 +
1
2

+
1
4

+
1
8

+
1

16
+ · · ·

This is an infinite geometric series, and the formula gives S∞ =
a

1 − r
=

1
1 − 1

2

= 2.

This fits with our common sense: If the runner takes 1 minute to cover half the distance, then
he will take 2 minutes to cover the whole distance.
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Find the sum to infinity of the series
1
2

+
1
4

+
1
8

+ · · · .

Example 36

Solution

a =
1
2

, r =
1
2

and so S∞ =

1
2

1 − 1
2

= 1

Note: This result is illustrated by the unit square shown.
Divide the square in two, then divide one of the
resulting rectangles in two, and so on. The sum
of the areas of the rectangles equals the area of
the square.

2
1

4
1

8
1

16
1

32
1

A square has a side length of 40 cm. A copy of the square is made so that the area of the
copy is 80% of the original. The process is repeated so that each time the area of the new
square is 80% of the previous one. If this process is repeated indefinitely, find the total
area of all the squares.

Example 37

Solution
The area of the first square is 402 = 1600 cm2.

We have a = 1600 and r = 0.8, giving

S∞ =
1600

1 − 0.8
= 8000 cm2

Express the recurring decimal 0.3̇2̇ as the ratio of two integers.

Example 38

Solution

0.3̇2̇ = 0.32 + 0.0032 + 0.000032 + · · ·

We have a = 0.32 and r = 0.01, giving

S∞ =
0.32
0.99

=
32
99

0.3̇2̇ =
32
99

i.e.

Exercise 3HSkill-
sheet

1Example 36 Find:

1 +
1
5

+
1
25

+
1

125
+ · · ·a 1 −

2
3

+
4
9
−

8
27

+ · · ·b
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2Example 37 An equilateral triangle has perimeter p cm. The midpoints of
the sides are joined to form another triangle, and this process
is repeated. Find the perimeter and area of the nth triangle,
and find the limits as n→ ∞ of the sum of the perimeters and
the sum of the areas of the first n triangles.

3 A rocket is launched into the air so that it reaches a height of 200 m in the first second.
Each subsequent second it gains 6% less height. Find how high the rocket will climb.

4 A man can walk 3 km in the first hour of a journey, but in each succeeding hour walks
half the distance covered in the preceding hour. Can he complete a journey of 6 km?
Where does this problem cease to be realistic?

5 A frog standing 10 m from the edge of a pond sets out to jump towards it. Its first jump
is 2 m, its second jump is 1 1

2 m, its third jump is 1 1
8 m, and so on. Show that the frog

will never reach the edge of the pond.

6 A stone is thrown so that it skips across the surface of a lake. If each skip is 30%
less than the previous skip, how long should the first skip be so that the total distance
travelled by the stone is 40 m?

7 A ball dropped from a height of 15 m rebounds from the ground to a height of 10 m.
With each successive rebound it rises two-thirds of the height of the previous rebound.
If it continues to bounce indefinitely, what is the total distance it will travel?

8Example 38 Express each of the following periodic decimals as the ratio of a pair of integers:

0.4̇a 0.03̇b 10.3̇c 0.03̇5̇d 0.9̇e 4.1̇f

9 A geometric series has first term a and common ratio
a − b

a
, where a > 0.

a Show that the geometric series is convergent if 0 < b < 2a.
b Find the sum to infinity of this series.

10 For each of the following, state the condition under which the geometric series is
convergent and find the sum to infinity in this case:

1 + x + x2 + x3 + · · ·a a + a(2a − 1) + a(2a − 1)2 + · · ·b

3x − 1
x

+ 1 +
x

3x − 1
+ · · ·c

3x2 − 1
x2 + 1 +

x2

3x2 − 1
+ · · ·d

11 The sum of the first four terms of a geometric series is 30 and the sum to infinity is 32.
Find the first two terms.

12 Find the third term of a geometric sequence that has a common ratio of −
1
4

and a sum to
infinity of 8.

13 Find the common ratio of a geometric sequence with first term 5 and sum to infinity 15.

14 For any number x > 2, show that there is an infinite geometric series such that a = 2 and
the sum to infinity is x.
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Assign-
ment

Nrich

Chapter summary

� The nth term of a sequence is denoted by tn.
� A recurrence relation enables each subsequent term to be found from previous terms.

A sequence specified in this way is said to be defined recursively.

t1 = 1, tn = tn−1 + 2e.g.

� A sequence may also be defined by a rule that is stated in terms of n.

tn = 2n − 1e.g.

Arithmetic sequences and series
� An arithmetic sequence has a rule of the form

tn = a + (n − 1)d

where a is the first term and d is the common difference (i.e. d = tk − tk−1 for all k > 1).
� The sum of the terms in an arithmetic sequence is called an arithmetic series.
� The sum of the first n terms of an arithmetic sequence is given by

Sn =
n
2

(
2a + (n − 1)d

)
or Sn =

n
2
(
a + `

)
, where ` = tn

Geometric sequences and series
� A geometric sequence has a rule of the form

tn = arn−1

where a is the first term and r is the common ratio (i.e. r =
tk

tk−1
for all k > 1).

� The sum of the terms in a geometric sequence is called a geometric series.
� For r , 1, the sum of the first n terms of a geometric sequence is given by

Sn =
a(rn − 1)

r − 1
or Sn =

a(1 − rn)
1 − r

� For −1 < r < 1, the sum Sn approaches a limiting value as n→ ∞, and the series is said to
be convergent. This limit is called the sum to infinity and is given by

S∞ =
a

1 − r

Applications of geometric sequences
� Compound interest Suppose that $P is invested at an interest rate of R% per annum,

compounded annually. Then the value of the investment after n years, $An, is given by

An = Prn, where r = 1 +
R

100

� Depreciation Suppose that an asset has initial value $P and that its value depreciates at a
rate of R% per annum. Then the value of the asset after n years, $Dn, is given by

Dn = Prn, where r = 1 −
R

100
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Recurrence relations of the form tn = rtn−1 + d
� Let t1, t2, t3, . . . be a sequence defined by a recurrence relation of the form tn = rtn−1 + d,

where r and d are constants. Then the nth term of the sequence is given by

tn = rn−1t1 +
d(rn−1 − 1)

r − 1
(provided r , 1)

Note that this formula for tn can be written in the form tn = Arn−1 + B, where A and B are
constants.

Technology-free questions

1 Find the first six terms of the following sequences:

t1 = 3, tn = tn−1 − 4a t1 = 5, tn = 2tn−1 + 2b

2 Find the first six terms of the following sequences:

tn = 2na tn = −3n + 2b

3 Nick invests $5000 at 5% p.a. compound interest at the beginning of the year. At the
beginning of each of the following years, he puts a further $500 into the account.

a Write down the amount of money in the account at the end of each of the first
two years.

b Set up a recurrence relation to generate the sequence for the investment.

4 The 4th term of an arithmetic sequence is 19 and the 7th term is 43. Find the 20th term.

5 For the arithmetic sequence with t5 = 0.35 and t9 = 0.15, find t14.

6 For the arithmetic sequence with t6 = −24 and t14 = 6, find S10.

7 For the arithmetic sequence −5, 2, 9, . . . , find { n : Sn = 402 }.

8 The 6th term of a geometric sequence is 9 and the 10th term is 729. Find the 4th term.

9 One thousand dollars is invested at 3.5% p.a. compounded annually. Find the value of
the investment after n years.

10 A sequence is defined by the recurrence relation tn = 2tn−1 − 3 and t1 = 4. Find a
formula for the nth term of the sequence in terms of n.

11 The first term of a geometric sequence is 9 and the third term is 4. Find the possible
values for the second and fourth terms.

12 The sum of three consecutive terms of a geometric sequence is 24 and the sum of the
next three terms is also 24. Find the sum of the first 12 terms.
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13 Find the sum of the first eight terms of the geometric sequence with first term 6 and
common ratio −3.

14 Find the sum to infinity of 1 −
1
3

+
1
9
−

1
27

+ · · · .

15 The numbers x, x + 4, 2x + 2 are three successive terms of a geometric sequence. Find
the value of x.

Multiple-choice questions

1 The first three terms of the sequence defined by the rule tn = 3n + 2 are

1, 2, 3A 2, 4, 6B 5, 7, 9C 5, 8, 11D 5, 8, 10E

2 If t1 = 3 and tn+1 = tn + 3, then t4 is

4A 12B 9C 15D 14E

3 For the arithmetic sequence 10, 8, 6, . . . , we have t10 =

−8A −10B −12C 10D 8E

4 For the arithmetic sequence 10, 8, 6, . . . , we have S10 =

10A 0B −10C 20D −20E

5 If 58 is the nth term of the arithmetic sequence 8, 13, 18, . . . , then n =

12A 11B 10C 5D 3E

6 The sixth term of the geometric sequence 12, 8,
16
3

, . . . is

16
3

A
128
27

B
64
81

C
128
81

D
256
81

E

7 For the sequence 8, 4, 2, . . . , we have S6 =

1
4

A 15 1
2B 15 7

8C 15D 15 3
4E

8 For the sequence 8, 4, 2, . . . , we have S∞ =

1
2

A 0B 16C 4D ∞E

9 If $2000 is invested at 5.5% p.a. compounded annually, the value of the investment after
6 years is

$13 766.10A $11 162.18B $2550.00C $2613.92D $2757.69E

10 If S∞ = 37.5 and r =
1
3

, then a equals

2
3

A 12.5B 16 2
3C 25D 56.25E
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11 A sequence satisfies the recurrence relation tn = 4tn−1 − 5. If t2 = 19, then t3 =

17A 71B 84C 214D 279E

12 A sequence is generated by the rule tn+1 = 1
2 tn + 2, for n ∈ N. If the third term of the

sequence is 12, then the first term is

6A 10B 20C 24D 36E

13 The first five terms of the sequence defined by the recurrence relation tn = 2tn−1 − 6,
with t0 = 6, are

6, 0, 0, 0, 0A 6, 6, 6, 6, 6B 6, 12, 6, 12, 6C
6, 0,−6,−12,−18D 6, 12, 18, 30, 54E

Extended-response questions

1 A do-it-yourself picture-framing kit is available in various sizes. Size 1 contains 0.8 m
of moulding, size 2 contains 1.5 m, size 3 contains 2.2 m, and so on.

a Form the sequence of lengths of moulding.
b Is the sequence of lengths of moulding an arithmetic sequence?
c Find the length of moulding contained in the largest kit, size 12.

2 A firm proposes to sell coated seeds in packs containing the following number of seeds:
50, 75, 100, 125, . . . .

a Is this an arithmetic sequence?
b Find a formula for the nth term.
c Find the number of seeds in the 25th size packet.

3 A number of power poles are to be placed in a straight line between two towns,
A and B, which are 32 km apart. The first is placed 5 km from town A, and the last
is placed 3 km from town B. The poles are placed so that the intervals starting from
town A and finishing at town B are

5, 5 − d, 5 − 2d, 5 − 3d, . . . , 5 − 6d, 3

There are seven poles. How far is the fifth pole from town A, and how far is it from
town B?

4 A firm makes nylon thread in the following deniers (thicknesses):

2, 9, 16, 23, 30, . . .

a Find the denier number, Dn, of the firm’s nth thread in order of increasing thickness.

A request came in for some very heavy 191 denier thread, but this turned out to be one
stage beyond the thickest thread made by the firm.

b How many different thicknesses does the firm make?
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5 A new house appears to be slipping down a hillside. The first year it slipped 4 mm, the
second year 16 mm, and the third year 28 mm. If it goes on like this, how far will it slip
during the 40th year?

6 Anna sends 16 Christmas cards the first year, 24 the second year, 32 the next year, and
so on. How many Christmas cards will she have sent altogether after 10 years if she
keeps increasing the number sent each year in the same way?

7 Each time Lee rinses her hair after washing it, the result is to remove a quantity of
shampoo from her hair. With each rinse, the quantity of shampoo removed is one-tenth
of that removed by the previous rinse.

a If Lee washes out 90 mg of shampoo with the first rinse, how much will she have
washed out altogether after six rinses?

b How much shampoo do you think was present in her hair at the beginning?

8 A prisoner is trapped in an underground cell, which is inundated by a sudden rush of
water. The water comes up to a height of 1 m, which is one-third of the height of the
ceiling (3 m). After an hour another inundation occurs, and the water level in the cell

rises by
1
3

m. After a second hour another inundation raises the water level by
1
9

m.
If this process continues for 6 hours, write down:

a the amount the water level will rise at the end of the sixth hour
b the total height of the water level then.

If this process continues, do you think the prisoner, who cannot swim, will drown?
Why?

9 After an undetected leak in a storage tank, the staff at an experimental station were
subjected to 500 curie hours of radiation the first day, 400 the second day, 320 the third
day, and so on. Find the number of curie hours they were subjected to:

a on the 14th day
b during the first five days of the leak.

10 A rubber ball is dropped from a height of 81 m. Each time it strikes the ground, it
rebounds two-thirds of the distance through which it has fallen.

a Find the height that the ball reaches after the sixth bounce.
b Assuming that the ball continues to bounce indefinitely, find the total distance

travelled by the ball.

11 In payment for loyal service to the king, a wise peasant asked to be given one grain
of rice for the first square of a chessboard, two grains for the second square, four
for the third square, and so on for all 64 squares of the board. The king thought that
this seemed fair and readily agreed, but was horrified when the court mathematician
informed him how many grains of rice he would have to pay the peasant. How many
grains of rice did the king have to pay? (Leave your answer in index form.)
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12 a In its first month of operation, a cement factory, A, produces 4000 tonnes of cement.
In each successive month, production rises by 250 tonnes per month. This growth in
production is illustrated for the first five months in the table shown.

Month number (n) 1 2 3 4 5

Cement produced (tonnes) 4000 4250 4500 4750 5000

i Find an expression, in terms of n, for the amount of cement produced in the
nth month.

ii Find an expression, in terms of n, for the total amount of cement produced in the
first n months.

iii In which month is the amount of cement produced 9250 tonnes?
iv In month m, the amount of cement produced is T tonnes. Find m in terms of T .
v The total amount of cement produced in the first p months is 522 750 tonnes.

Find the value of p.

b A second factory, B, commences production at exactly the same time as the first.
In its first month it produces 3000 tonnes of cement. In each successive month,
production increases by 8%.

i Find an expression for the total amount of cement produced by this factory after
n months.

ii Let QA be the total amount of cement produced by factory A in the first n months
and QB the total amount of cement produced by factory B in the first n months.
Find an expression in terms of n for QB − QA and find the smallest value of n for
which QB − QA ≥ 0.

13 An endangered species of bird has a total population of 350 and lives only in a certain
area known as the Old Swamp. Scientists who are monitoring the situation decide to
relocate 30 birds per year from the Old Swamp to the New Swamp. The initial bird
populations of the Old Swamp and the New Swamp are thus 320 and 30 respectively,
and it is assumed that each population increases by 15% per year.

a Find the bird population of each area after one year, just after the second set of
30 birds has been relocated.

b The size, Pn, of the bird population at the Old Swamp after n years (just after
30 birds have been relocated for that year) is given by the recurrence relation

P0 = 320 and Pn = 1.15Pn−1 − 30, for n ∈ N

Write down a similar recurrence relation for the size, Qn, of the bird population at the
New Swamp after n years.

c Find expressions for Pn and Qn in terms of n.
d Hence, or otherwise, predict:

i the bird populations of the Old Swamp and the New Swamp after five years
ii the number of years (to the nearest whole number) that pass before the bird

populations of the two areas are most nearly equal.
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14 The following diagrams show the first four steps in forming the Sierpiński triangle.

Step 1 Step 2 Step 3 Step 4

The diagrams are produced in the following way:

Step 1 Start with an equilateral triangle of side length 1 unit.

Step 2 Subdivide it into four smaller congruent equilateral triangles and colour the
central one blue.

Step 3 Repeat Step 2 with each of the smaller white triangles.

Step 4 Repeat again.

a How many white triangles are there in the nth diagram (that is, after Step n)?
b What is the side length of a white triangle in the nth diagram?
c What fraction of the area of the original triangle is still white in the nth diagram?
d Consider what happens as n approaches infinity.

15 The Sierpiński carpet is formed from a unit square in a way similar to the Sierpiński
triangle. The following diagrams show the first three steps.

Step 1 Step 2 Step 3

a How many white squares are there in the nth diagram (that is, after Step n)?
b What is the side length of a white square in the nth diagram?
c What fraction of the area of the original square is still white in the nth diagram?
d Consider what happens as n approaches infinity.
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Objectives
I To understand equality of polynomials.

I To use equating coe�cients to solve problems.

I To solve quadratic equations by various methods.

I To use quadratic equations to solve problems involving rates.

I To resolve rational algebraic expressions into partial fractions.

I To find the coordinates of the points of intersection of straight lines with parabolas,
circles and rectangular hyperbolas.

In this chapter we first consider equating coefficients of polynomial functions, and then apply
this technique to establish partial fractions.

In Chapter 1 we added and subtracted algebraic fractions such as

2
x + 3

+
4

x − 3
=

6(x + 1)
x2 − 9

In this chapter we learn how to go from right to left in similar equations. This process is
sometimes called partial fraction decomposition. Another example is

4x2 + 2x + 6
(x2 + 3)(x − 3)

=
2

x2 + 3
+

4
x − 3

This is a useful tool in integral calculus, and partial fractions are applied this way in
Specialist Mathematics Units 3 & 4.

This chapter also includes further study of quadratic functions: solving quadratic equations,
using the discriminant, applying quadratic functions to problems involving rates and using
quadratic equations to find the intersection of straight lines with parabolas, circles and
rectangular hyperbolas.
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4A Polynomial identities
Polynomials are introduced in Mathematical Methods Units 1 & 2.

� A polynomial function is a function that can be written in the form

P(x) = anxn + an−1xn−1 + · · · + a1x + a0

where n is a natural number or zero, and the coefficients a0, . . . , an are real numbers
with an , 0.

� The leading term, anxn, of a polynomial is the term of highest index among those terms
with a non-zero coefficient.

� The degree of a polynomial is the index n of the leading term.
� A monic polynomial is a polynomial whose leading term has coefficient 1.
� The constant term is the term of index 0. (This is the term not involving x.)

Note: The constant function P(x) = 0 is called the zero polynomial; its degree is undefined.

Two polynomials are equal if they give the same value for all x. It can be proved that, if two
polynomials are equal, then they have the same degree and corresponding coefficients are
equal. For example:

� If ax + b = cx2 + dx + e for all x, then c = 0, d = a and e = b.
� If ax2 + bx + c = dx2 + ex + f for all x, then a = d, b = e and c = f .
� If x2 − x − 12 = x2 + (a + b)x + ab for all x, then a + b = −1 and ab = −12.

This process is called equating coefficients.

If (a + 2b)x2 − (a − b)x + 8 = 3x2 − 6x + 8 for all x, find the values of a and b.

Example 1

Solution
Assume that

(a + 2b)x2 − (a − b)x + 8 = 3x2 − 6x + 8 for all x

Then by equating coefficients:

a + 2b = 3 (1)

−(a − b) = −6 (2)

Solve as simultaneous equations.

Add (1) and (2):

3b = −3

b = −1∴

Substitute into (1):

a − 2 = 3

a = 5∴
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Express x2 in the form c(x − 3)2 + a(x − 3) + d.

Example 2

Solution

x2 = c(x − 3)2 + a(x − 3) + dLet

= c(x2 − 6x + 9) + a(x − 3) + d

= cx2 + (a − 6c)x + 9c − 3a + d

This implies that

c = 1 (1)

a − 6c = 0 (2)

9c − 3a + d = 0 (3)

a = 6From (2):

9 − 18 + d = 0From (3):

d = 9i.e.

Hence x2 = (x − 3)2 + 6(x − 3) + 9.

Find the values of a, b, c and d such that

x3 = a(x + 2)3 + b(x + 1)2 + cx + d for all x

Example 3

Solution
Expand the right-hand side and collect like terms:

x3 = a(x3 + 6x2 + 12x + 8) + b(x2 + 2x + 1) + cx + d

= ax3 + (6a + b)x2 + (12a + 2b + c)x + (8a + b + d)

Equate coefficients:

a = 1 (1)

6a + b = 0 (2)

12a + 2b + c = 0 (3)

8a + b + d = 0 (4)

Substituting a = 1 into (2) gives

6 + b = 0

b = −6∴

Substituting a = 1 and b = −6 into (3) gives

12 − 12 + c = 0

c = 0∴
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Substituting a = 1 and b = −6 into (4) gives

8 − 6 + d = 0

d = −2∴

Hence x3 = (x + 2)3 − 6(x + 1)2 − 2.

Show that 2x3 − 5x2 + 4x + 1 cannot be expressed in the form a(x + b)3 + c.

Example 4

Solution
Suppose that

2x3 − 5x2 + 4x + 1 = a(x + b)3 + c

for some constants a, b and c.

Then expanding the right-hand side gives

2x3 − 5x2 + 4x + 1 = a(x3 + 3bx2 + 3b2x + b3) + c

= ax3 + 3abx2 + 3ab2x + ab3 + c

Equating coefficients:

a = 2 (1)

3ab = −5 (2)

3ab2 = 4 (3)

ab3 + c = 1 (4)

From (1) and (2), we have a = 2 and b = −
5
6

. But then 3ab2 =
25
6

, which contradicts (3).

We have obtained a contradiction. Therefore we have shown that 2x3 − 5x2 + 4x + 1 cannot
be expressed in the form a(x + b)3 + c.

Summary 4A
� A polynomial function can be written in the form

P(x) = anxn + an−1xn−1 + · · · + a1x + a0

where n is a natural number or zero, and the coefficients a0, . . . , an are real numbers
with an , 0. The leading term is anxn (the term of highest index) and the constant
term is a0 (the term not involving x).

� The degree of a polynomial is the index n of the leading term.
� Equating coe�cients

Two polynomials are equal if they give the same value for all x. If two polynomials are
equal, then they have the same degree and corresponding coefficients are equal.
For example: if x2 − x − 12 = x2 + (a + b)x + ab, then a + b = −1 and ab = −12.
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Exercise 4A

1 If ax2 + bx + c = 10x2 − 7 for all x, find the values of a, b and c.

2Example 1 If (2a − b)x2 + (a + 2b)x + 8 = 4x2 − 3x + 8 for all x, find the values of a and b.

3 If (2a − 3b)x2 + (3a + b)x + c = 7x2 + 5x + 7 for all x, find the values of a, b and c.

4 If 2x2 + 4x + 5 = a(x + b)2 + c for all x, find the values of a, b and c.

5Example 2 Express x2 in the form c(x + 2)2 + a(x + 2) + d.

6 Express x3 in the form (x + 1)3 + a(x + 1)2 + b(x + 1) + c.

7Example 3 Find the values of a, b and c such that x2 = a(x + 1)2 + bx + c.

8 aExample 4 Show that 3x3 − 9x2 + 8x + 2 cannot be expressed in the form a(x + b)3 + c.
b If 3x3 − 9x2 + 9x + 2 can be expressed in the form a(x + b)3 + c, then find the values

of a, b and c.

9 Show that constants a, b, c and d can be found such that

n3 = a(n + 1)(n + 2)(n + 3) + b(n + 1)(n + 2) + c(n + 1) + d

10 a Show that no constants a and b can be found such that

n2 = a(n + 1)(n + 2) + b(n + 2)(n + 3)

b Express n2 in the form a(n + 1)(n + 2) + b(n + 1) + c.

11 a Express a(x + b)2 + c in expanded form.
b Express ax2 + bx + c in completed-square form.

12 Prove that, if ax3 + bx2 + cx + d = (x − 1)2(px + q), then b = d − 2a and c = a − 2d.

13 If 3x2 + 10x + 3 = c(x − a)(x − b) for all values of x, find the values of a, b and c.

14 For any number n, show that n2 can be expressed as a(n − 1)2 + b(n − 2)2 + c(n − 3)2,
and find the values of a, b and c.

15 If x3 + 3x2 − 9x + c can be expressed in the form (x − a)2(x − b), show that either c = 5
or c = −27, and find a and b for each of these cases.

16 A polynomial P is said to be even if P(−x) = P(x) for all x. A polynomial P is said to
be odd if P(−x) = −P(x) for all x.

a Show that, if P(x) = ax4 + bx3 + cx2 + dx + e is even, then b = d = 0.
b Show that, if P(x) = ax5 + bx4 + cx3 + dx2 + ex + f is odd, then b = d = f = 0.
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4B Quadratic equations
A polynomial function of degree 2 is called a quadratic function. The general quadratic
function can be written as P(x) = ax2 + bx + c, where a , 0.

Quadratic functions are studied extensively in Mathematical Methods Units 1 & 2. In this
section we provide further practice exercises.

A quadratic equation ax2 + bx + c = 0 may be solved by factorising, by completing the square
or by using the general quadratic formula

x =
−b ±

√
b2 − 4ac

2a

The following example demonstrates each method.

Solve the following quadratic equations for x:

a 2x2 + 5x = 12 b 3x2 + 4x = 2 c 9x2 + 6x + 1 = 0

Example 5

Solution Explanation

a 2x2 + 5x − 12 = 0 Rearrange the quadratic equation.

(2x − 3)(x + 4) = 0 Factorise.

2x − 3 = 0 or x + 4 = 0 Use the null factor theorem.

Therefore x =
3
2

or x = −4.

b 3x2 + 4x − 2 = 0 Rearrange the quadratic equation.

x2 +
4
3

x −
2
3

= 0 Divide both sides by 3.

x2 +
4
3

x +

(2
3

)2
−

(2
3

)2
−

2
3

= 0 Add and subtract
(b
2

)2
to ‘complete

the square’.(
x +

2
3

)2
−

4
9
−

2
3

= 0(
x +

2
3

)2
=

10
9

x +
2
3

= ±

√
10
3

x = −
2
3
±

√
10
3

Therefore x =
−2 +

√
10

3
or x =

−2 −
√

10
3

.
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c If 9x2 + 6x + 1 = 0, then

x =
−6 ±

√
62 − 4 × 9 × 1
2 × 9

=
−6 ±

√
0

18

= −
1
3

Use the general quadratic formula

x =
−b ±

√
b2 − 4ac

2a

Alternatively, the equation
can be solved by noting that
9x2 + 6x + 1 = (3x + 1)2.

Using the TI-Nspire
Use menu > Algebra > Solve as shown.

Using the Casio ClassPad
� Select` from the Math1 or Math3 keyboard.
� Enter the expression 2x2 + 5x − 12.
� Tap EXE .

The discriminant: real solutions

The number of solutions to a quadratic equation ax2 + bx + c = 0 can be determined by the
discriminant ∆, where ∆ = b2 − 4ac.

� If ∆ > 0, then the equation has two real solutions.
� If ∆ = 0, then the equation has one real solution.
� If ∆ < 0, then the equation has no real solutions.

Note: In parts a and b of Example 5, we have ∆ > 0 and so there are two real solutions.
In part c, we have ∆ = 62 − 4 × 9 × 1 = 0 and so there is only one real solution.

The discriminant: rational solutions

For a quadratic equation ax2 + bx + c = 0 such that a, b and c are rational numbers:

� If ∆ is a perfect square and ∆ , 0, then the equation has two rational solutions.
� If ∆ = 0, then the equation has one rational solution.
� If ∆ is not a perfect square and ∆ > 0, then the equation has two irrational solutions.

Note: In part a of Example 5, we have ∆ = 121, which is a perfect square.
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Consider the quadratic equation x2 − 4x = t. Make x the subject and give the values of t for
which real solution(s) to the equation can be found.

Example 6

Solution

x2 − 4x = t

x2 − 4x + 4 = t + 4 (completing the square)

(x − 2)2 = t + 4

x − 2 = ±
√

t + 4

x = 2 ±
√

t + 4

For real solutions to exist, we must have t + 4 ≥ 0, i.e. t ≥ −4.

Note: In this case the discriminant is ∆ = 16 + 4t. There are real solutions when ∆ ≥ 0.

Using the TI-Nspire
Use menu > Algebra > Solve as shown.

Using the Casio ClassPad
� Select` from the Math1 or Math3 keyboard.
� Enter the equation x2 − 4x = t, using the

Var keyboard to enter the variable t.
� Tap EXE .

a Find the discriminant of the quadratic x2 + px −
25
4

in terms of p.

b Solve the quadratic equation x2 + px −
25
4

= 0 in terms of p.

c Prove that there are two solutions for all values of p.

d Find the values of p, where p is a non-negative integer, for which the quadratic equation
has rational solutions.

Example 7

Solution
Here we have a = 1, b = p and c = −

25
4

.

a ∆ = b2 − 4ac = p2 + 25

b The quadratic formula gives x =
−b ±

√
b2 − 4ac

2a
=
−p ±

√
p2 + 25

2
.
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c We have ∆ = p2 + 25 > 0, for all values of p. Thus there are always two solutions.

d If there are rational solutions, then ∆ = p2 + 25 is a perfect square. Since p is an integer,
we can write p2 + 25 = k2, where k is an integer with k ≥ 0.

Rearranging, we have

k2 − p2 = 25

∴ (k − p)(k + p) = 25

We can factorise 25 as 5 × 5 or 1 × 25.

Note: We do not need to consider negative factors of 25, as p and k are non-negative,
and so k + p ≥ 0. Since p is non-negative, we also know that k − p ≤ k + p.

The table on the right shows the values of k and p
in each of the two cases.

Hence p = 0 and p = 12 are the only values for
which the solutions are rational.

k − p k + p k p

5 5 5 0

1 25 13 12

A rectangle has an area of 288 cm2. If the width is decreased by 1 cm and the length
increased by 1 cm, the area would be decreased by 3 cm2. Find the original dimensions of
the rectangle.

Example 8

Solution
Let w and ` be the width and length, in centimetres, of the original rectangle.

w` = 288 (1)Then

The dimensions of the new rectangle are w − 1 and ` + 1, and the area is 285 cm2.

(w − 1)(` + 1) = 285 (2)Thus

Rearranging (1) to make ` the subject and substituting in (2) gives(
w − 1

) (288
w

+ 1
)

= 285

288 −
288
w

+ w − 1 = 285

w −
288
w

+ 2 = 0

w2 + 2w − 288 = 0

Using the general quadratic formula gives

w =
−2 ±

√
22 − 4 × (−288)

2
= −18 or 16

But w > 0, and so w = 16. The original dimensions of the rectangle are 16 cm by 18 cm.
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Solve the equation x − 4
√

x − 12 = 0 for x.

Example 9

Solution

For
√

x to be defined, we must have x ≥ 0.

Let x = a2, where a ≥ 0.

The equation becomes

a2 − 4
√

a2 − 12 = 0

a2 − 4a − 12 = 0

(a − 6)(a + 2) = 0

∴ a = 6 or a = −2

But a ≥ 0. Hence a = 6 and so x = 36.

Summary 4B
� Quadratic equations can be solved by completing the square. This method allows us to

deal with all quadratic equations, even though some have no solutions.
� To complete the square of x2 + bx + c:

• Take half the coefficient of x (that is,
b
2

) and add and subtract its square
b2

4
.

� To complete the square of ax2 + bx + c:

• First take out a as a factor and then complete the square inside the brackets.

� The solutions of the quadratic equation ax2 + bx + c = 0, where a , 0, are given by the
quadratic formula

x =
−b ±

√
b2 − 4ac

2a

� The discriminant ∆ of a quadratic polynomial ax2 + bx + c is

∆ = b2 − 4ac

For the equation ax2 + bx + c = 0:

• If ∆ > 0, there are two solutions.
• If ∆ = 0, there is one solution.
• If ∆ < 0, there are no real solutions.

� For the equation ax2 + bx + c = 0, where a, b and c are rational numbers:

• If ∆ is a perfect square and ∆ , 0, there are two rational solutions.
• If ∆ = 0, there is one rational solution.
• If ∆ is not a perfect square and ∆ > 0, there are two irrational solutions.
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Exercise 4BSkill-
sheet

1Example 5 Solve the following quadratic equations for x:

x2 − 2x = −1a x2 − 6x + 9 = 0b 5x2 − 10x = 1c
−2x2 + 4x = 1d 2x2 + 4x = 7e 6x2 + 13x + 1 = 0f

2 The following equations have the number of solutions shown in brackets. Find the
possible values of m.

x2 + 3x + m = 0 (0)a x2 − 5x + m = 0 (2)b mx2 + 5x − 8 = 0 (1)c
x2 + mx + 9 = 0 (2)d x2 − mx + 4 = 0 (0)e 4x2 − mx − m = 0 (1)f

3Example 6 Make x the subject in each of the following and give the values of t for which real
solution(s) to the equation can be found:

2x2 − 4t = xa 4x2 + 4x − 4 = t − 2b
5x2 + 4x + 10 = tc tx2 + 4tx + 10 = td

4 aExample 7 Solve the quadratic equation x2 + px − 16 = 0 in terms of p.
b Find the values of p, where p is an integer with 0 ≤ p ≤ 10, for which the quadratic

equation in a has rational solutions.

5 a Show that the solutions of the equation 2x2 − 3px + (3p − 2) = 0 are rational for all
integer values of p.

b Find the value of p for which there is only one solution.
c Solve the equation when:

i p = 1 ii p = 2 iii p = −1

6 a Show that the solutions of the equation 4(4p − 3)x2 − 8px + 3 = 0 are rational for all
integer values of p.

b Find the value of p for which there is only one solution.
c Solve the equation when:

i p = 1 ii p = 2 iii p = −1

7Example 8 A pole 10 m long leans against a wall. The bottom of the
pole is 6 m from the wall. If the bottom of the pole is
pulled away x m so that the top slides down by the same
amount, find x.

x m

x m

8 m

6 m

10 m
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8 A wire of length 200 cm is cut into two parts and each part is bent to form a square. If
the area of the larger square is 9 times the area of the smaller square, find the length of
the sides of the larger square.

9Example 9 Solve each of the following equations for x:

x − 8
√

x + 12 = 0a x − 8 = 2
√

xb

x − 5
√

x − 14 = 0c 3√
x2 − 9 3

√
x + 8 = 0d

3√
x2 − 3
√

x − 6 = 0e x − 29
√

x + 100 = 0f

10 Find constants a, b and c such that

3x2 − 5x + 1 = a(x + b)2 + c

for all values of x. Hence find the minimum value of 3x2 − 5x + 1.

11 Show that the graphs of y = 2 − 4x − x2 and y = 24 + 8x + x2 do not intersect.

12 Solve the quadratic equation (b − c)x2 + (c − a)x + (a − b) = 0 for x.

13 Given that the two solutions of the equation 2x2 − 6x − m = 0 differ by 5, find the value
of m.

14 For the equation (b2 − 2ac)x2 + 4(a + c)x = 8:

a Prove that this equation always has real solutions.
b Find the conditions for which there is only one solution.

15 The equation
1
2

+
1

x + k
=

1
x

has no solutions. Find the possible values of k.

16 Find the smallest positive integer p for which the equation 3x2 + px + 7 = 0 has
solutions.

4C Applying quadratic equations to rate problems
A rate describes how a certain quantity changes with respect to the change in another
quantity (often time). An example of a rate is ‘speed’. A speed of 60 km/h gives us a measure
of how fast an object is travelling. A further example is ‘flow’, where a rate of 20 L/min is
going to fill an empty swimming pool faster than a rate of 6 L/min.

Many problems are solved using rates, which can be expressed as fractions. For example, if
you travel 9 km in 2 hours, then your speed can be expressed in fraction form as:

speed =
distance travelled

time taken
=

9 km
2 hours

=
9
2

km/h

When solving rate problems, it is often necessary to add two or more fractions with different
denominators, as shown in the following examples.
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Express
6
x

+
6

x + 8
as a single fraction.a Solve the equation

6
x

+
6

x + 8
= 2 for x.b

Example 10

Solution
6
x

+
6

x + 8
=

6(x + 8)
x(x + 8)

+
6x

x(x + 8)

=
6x + 48 + 6x

x(x + 8)

=
12(x + 4)
x(x + 8)

a Since
6
x

+
6

x + 8
=

12(x + 4)
x(x + 8)

, we have

12(x + 4)
x(x + 8)

= 2

12(x + 4) = 2x(x + 8)

6(x + 4) = x(x + 8)

6x + 24 = x2 + 8x

x2 + 2x − 24 = 0

(x + 6)(x − 4) = 0

Therefore x = −6 or x = 4.

b

A car travels 500 km at a constant speed. If it had travelled at a speed of 10 km/h less, it
would have taken 1 hour more to travel the distance. Find the speed of the car.

Example 11

Solution Explanation
Let x km/h be the speed of the car.

The journey takes
500

x
hours.

If the car’s speed were 10 km/h less, then
the speed would be x − 10 km/h.

The journey would take
500

x − 10
hours.

We can now write:
500

x − 10
=

500
x

+ 1

500
x − 10

=
500 + x

x

500x = (500 + x)(x − 10)

500x = 500x − 5000 + x2 − 10x

0 = x2 − 10x − 5000

Thus

x =
10 ±

√
100 + 4 × 5000

2

= 5
(
1 ±
√

201
)

The speed is 5
(
1 +
√

201
)
≈ 75.887 km/h.

For an object travelling at a constant
speed in one direction:

speed =
distance travelled

time taken

and so

time taken =
distance travelled

speed

We can summarise the two possible car
journeys in the following table:

Speed
(km/h)

Distance
(km)

Time
(h)

x 500
500

x

x − 10 500
500

x − 10
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A tank is filled by two pipes. The smaller pipe alone will take 24 minutes longer than the
larger pipe alone, and 32 minutes longer than when both pipes are used. How long will
each pipe take to fill the tank alone? How long will it take for both pipes used together to
fill the tank?

Example 12

Solution
Let C cubic units be the capacity of the tank, and let x minutes be the time it takes for the
larger pipe alone to fill the tank.

Then the average rate of flow for the larger pipe is
C
x

cubic units per minute.

Since the smaller pipe alone takes x + 24 minutes to fill the tank, the average rate of flow

for the smaller pipe is
C

x + 24
cubic units per minute.

The average rate of flow when both pipes are used together is the sum of these two rates:
C
x

+
C

x + 24
cubic units per minute

Expressed as a single fraction:

C
x

+
C

x + 24
=

C(x + 24) + Cx
x(x + 24)

=
2C(x + 12)
x(x + 24)

The time taken to fill the tank using both pipes is

C ÷
2C(x + 12)
x(x + 24)

= C ×
x(x + 24)

2C(x + 12)

=
x(x + 24)
2(x + 12)

Therefore the time taken for the smaller pipe alone to fill the tank can be also be expressed

as
x(x + 24)
2(x + 12)

+ 32 minutes.

x(x + 24)
2(x + 12)

+ 32 = x + 24Thus

x(x + 24)
2(x + 12)

= x − 8

x(x + 24) = 2(x + 12)(x − 8)

x2 + 24x = 2x2 + 8x − 192

x2 − 16x − 192 = 0

(x − 24)(x + 8) = 0

But x > 0, and hence x = 24.

It takes 24 minutes for the larger pipe alone to fill the tank, 48 minutes for the smaller pipe
alone to fill the tank, and 16 minutes for both pipes together to fill the tank.
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Exercise 4CSkill-
sheet

1 aExample 10 Express
6
x
−

6
x + 3

as a single fraction.

b Solve the equation
6
x
−

6
x + 3

= 1 for x.

2 Solve the equation
300
x + 5

=
300

x
− 2 for x.

3 The sum of the reciprocals of two consecutive odd numbers is
36
323

. Form a quadratic
equation and hence determine the two numbers.

4Example 11 A cyclist travels 40 km at a speed of x km/h.

a Find the time taken in terms of x.
b Find the time taken when his speed is reduced by 2 km/h.
c If the difference between the times is 1 hour, find his original speed.

5 A car travels from town A to town B, a distance of 600 km, in x hours. A plane,
travelling 220 km/h faster than the car, takes 5 1

2 hours less to cover the same distance.

a Express, in terms of x, the average speed of the car and the average speed of
the plane.

b Find the actual average speed of each of them.

6 A car covers a distance of 200 km at a speed of x km/h. A train covers the same
distance at a speed of x + 5 km/h. If the time taken by the car is 2 hours more than that
taken by the train, find x.

7 A man travels 108 km, and finds that he could have made the journey in 4 1
2 hours less

had he travelled at an average speed 2 km/h faster. What was the man’s average speed
when he made the trip?

8 A bus is due to reach its destination 75 km away at a certain time. The bus usually
travels with an average speed of x km/h. Its start is delayed by 18 minutes but, by
increasing its average speed by 12.5 km/h, the driver arrives on time.

a Find x. b How long did the journey actually take?

9 Ten minutes after the departure of an express train, a slow train starts, travelling at an
average speed of 20 km/h less. The slow train reaches a station 250 km away 3.5 hours
after the arrival of the express. Find the average speed of each of the trains.

10 When the average speed of a car is increased by 10 km/h, the time taken for the car to
make a journey of 105 km is reduced by 15 minutes. Find the original average speed.

11 A tank can be filled with water by two pipes running together in 11 1
9 minutes. If the

larger pipe alone takes 5 minutes less to fill the tank than the smaller pipe, find the time
that each pipe will take to fill the tank.
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12Example 12 At first two different pipes running together will fill a tank in
20
3

minutes. The rate that
water runs through each of the pipes is then adjusted. If one pipe, running alone, takes
1 minute less to fill the tank at its new rate, and the other pipe, running alone, takes
2 minutes more to fill the tank at its new rate, then the two running together will fill the
tank in 7 minutes. Find in what time the tank will be filled by each pipe running alone at
the new rates.

13 The journey between two towns by one route consists of 233 km by rail followed by
126 km by sea. By a second route the journey consists of 405 km by rail followed
by 39 km by sea. If the time taken for the first route is 50 minutes longer than for the
second route, and travelling by rail is 25 km/h faster than travelling by sea, find the
average speed by rail and the average speed by sea.

14 A sea freighter travelling due north at 12 km/h sights a cruiser straight ahead at an
unknown distance and travelling due east at unknown speed. After 15 minutes the
vessels are 10 km apart and then, 15 minutes later, they are 13 km apart. (Assume that
both travel at constant speeds.) How far apart are the vessels when the cruiser is due
east of the freighter?

15 Cask A, which has a capacity of 20 litres, is filled with wine. A certain quantity of wine
from cask A is poured into cask B, which also has a capacity of 20 litres. Cask B is
then filled with water. After this, cask A is filled with some of the mixture from cask B.

A further
20
3

litres of the mixture now in A is poured back into B, and the two casks
now have the same amount of wine. How much wine was first taken out of cask A?

16 Two trains travel between two stations 80 km apart. If train A travels at an average
speed of 5 km/h faster than train B and completes the journey 20 minutes faster, find the
average speeds of the two trains, giving your answers correct to two decimal places.

17 A tank is filled by two pipes. The smaller pipe running alone will take 24 minutes
longer than the larger pipe alone, and a minutes longer than when both pipes are
running together.

a Find, in terms of a, how long each pipe takes to fill the tank.
b Find how long each pipe takes to fill the tank when:

i a = 49 ii a = 32 iii a = 27 iv a = 25

18 Train A leaves Armadale and travels at constant speed to Bundong, which is a town
300 km from Armadale. At the same time, train B leaves Bundong and travels at
constant speed to Armadale. They meet at a town Yunga, which is between the two
towns. Nine hours after leaving Yunga, train A reaches Bundong, and four hours after
leaving Yunga, train B reaches Armadale.

a Find the distance of Yunga from Armadale.
b Find the speed of each of the trains.
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4D Partial fractions
A rational function is the quotient of two polynomials. If P(x) and Q(x) are polynomials,

then f (x) =
P(x)
Q(x)

is a rational function; e.g. f (x) =
4x + 2
x2 − 1

.

� If the degree of P(x) is less than the degree of Q(x), then f (x) is a proper fraction.
� If the degree of P(x) is greater than or equal to the degree of Q(x), then f (x) is an

improper fraction.

By convention, we consider a rational function for its maximal domain. For example, the

function f (x) =
4x + 2
x2 − 1

is defined for x ∈ R \ {−1, 1}.

A rational function may be expressed as a sum of simpler functions by resolving it into what
are called partial fractions. For example:

4x + 2
x2 − 1

=
3

x − 1
+

1
x + 1

This technique can help when sketching the graphs of rational functions or when performing
other mathematical procedures such as integration.

Proper fractions
For proper fractions, the technique used for obtaining partial fractions depends on the type
of factors in the denominator of the original algebraic fraction. We only consider examples
where the denominators have factors that are either degree 1 (linear) or degree 2 (quadratic).

� For every linear factor ax + b in the denominator, there will be a partial fraction of

the form
A

ax + b
.

� For every repeated linear factor (cx + d)2 in the denominator, there will be partial

fractions of the form
B

cx + d
and

C
(cx + d)2 .

� For every irreducible quadratic factor ax2 + bx + c in the denominator, there will be a

partial fraction of the form
Dx + E

ax2 + bx + c
.

Note: A quadratic expression is said to be irreducible if it cannot be factorised over R.
For example, both x2 + 1 and x2 + 4x + 10 are irreducible. You can use the
discriminant to test whether a quadratic expression is irreducible.

To resolve an algebraic fraction into its partial fractions:

Step 1 Write a statement of identity between the original fraction and a sum of the
appropriate number of partial fractions.

Step 2 Express the sum of the partial fractions as a single fraction, and note that the
numerators of both sides are equivalent.

Step 3 Find the values of the introduced constants A, B, C, . . . by substituting appropriate
values for x or by equating coefficients.
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Resolve
3x + 5

(x − 1)(x + 3)
into partial fractions.

Example 13

Solution Explanation
Method 1
Let

3x + 5
(x − 1)(x + 3)

=
A

x − 1
+

B
x + 3

(1)

for all x ∈ R \ {1,−3}.

Express the right-hand side as a single fraction:

3x + 5
(x − 1)(x + 3)

=
A(x + 3) + B(x − 1)

(x − 1)(x + 3)

3x + 5
(x − 1)(x + 3)

=
(A + B)x + 3A − B

(x − 1)(x + 3)
∴

3x + 5 = (A + B)x + 3A − B∴

Equate coefficients:

A + B = 3

3A − B = 5

Solving these equations simultaneously gives

4A = 8

and so A = 2 and B = 1.

Therefore
3x + 5

(x − 1)(x + 3)
=

2
x − 1

+
1

x + 3

Since the denominator has two linear
factors, there will be two partial

fractions of the form
A

x − 1
and

B
x + 3

.

Method 2
From equation (1) we can write:

3x + 5 = A(x + 3) + B(x − 1) (2)

Substitute x = 1 in equation (2):

8 = 4A

∴ A = 2

Substitute x = −3 in equation (2):

−4 = −4B

∴ B = 1

We know that equation (2) is true for
all x ∈ R \ {1,−3}.

But if this is the case, then it also has
to be true for x = 1 and x = −3.

Note: You could substitute any
values of x to find A and B
in this way, but these values
simplify the calculations.
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Resolve
2x + 10

(x + 1)(x − 1)2 into partial fractions.

Example 14

Solution
Since the denominator has a repeated linear factor and a single linear factor, there are three
partial fractions:

2x + 10
(x + 1)(x − 1)2 =

A
x + 1

+
B

x − 1
+

C
(x − 1)2

2x + 10
(x + 1)(x − 1)2 =

A(x − 1)2 + B(x + 1)(x − 1) + C(x + 1)
(x + 1)(x − 1)2∴

This gives the equation

2x + 10 = A(x − 1)2 + B(x + 1)(x − 1) + C(x + 1)

2(1) + 10 = C(1 + 1)Let x = 1:

12 = 2C

∴ C = 6

2(−1) + 10 = A(−1 − 1)2Let x = −1:

8 = 4A

∴ A = 2

10 = A − B + CLet x = 0:

10 = 2 − B + 6

∴ B = −2

Hence
2x + 10

(x + 1)(x − 1)2 =
2

x + 1
−

2
x − 1

+
6

(x − 1)2

Note: In Exercise 4D, you will show that it is impossible to find A and C such that

2x + 10
(x + 1)(x − 1)2 =

A
x + 1

+
C

(x − 1)2

Using the TI-Nspire
Use menu > Algebra > Expand as shown.

Note: You can access the fraction template
using ctrl ÷ .



138 Chapter 4: Additional algebra

Using the Casio ClassPad

� InM, enter and highlight
3x + 5

(x − 1)(x + 3)
.

� Go to Interactive > Transformation > expand
and select the Partial Fraction option.

� Enter the variable and tap OK .

Resolve
x2 + 6x + 5

(x − 2)(x2 + x + 1)
into partial fractions.

Example 15

Solution
Since the denominator has a single linear factor and an irreducible quadratic factor
(i.e. cannot be reduced to linear factors), there are two partial fractions:

x2 + 6x + 5
(x − 2)(x2 + x + 1)

=
A

x − 2
+

Bx + C
x2 + x + 1

x2 + 6x + 5
(x − 2)(x2 + x + 1)

=
A(x2 + x + 1) + (Bx + C)(x − 2)

(x − 2)(x2 + x + 1)
∴

This gives the equation

x2 + 6x + 5 = A(x2 + x + 1) + (Bx + C)(x − 2) (1)

Subsituting x = 2:

22 + 6(2) + 5 = A(22 + 2 + 1)

21 = 7A

∴ A = 3

Note: The values of B and C could now be found by substituting x = 0 and x = 1 in
equation (1). Instead we will show the method of equating coefficients.

We can rewrite equation (1) as

x2 + 6x + 5 = A(x2 + x + 1) + (Bx + C)(x − 2)

= A(x2 + x + 1) + Bx2 − 2Bx + Cx − 2C

= (A + B)x2 + (A − 2B + C)x + A − 2C
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Since A = 3, this gives

x2 + 6x + 5 = (3 + B)x2 + (3 − 2B + C)x + 3 − 2C

Equate coefficients:

3 + B = 1 and 3 − 2C = 5

∴ B = −2 ∴ C = −1

Check: 3 − 2B + C = 3 − 2(−2) + (−1) = 6

Therefore
x2 + 6x + 5

(x − 2)(x2 + x + 1)
=

3
x − 2

+
−2x − 1

x2 + x + 1

=
3

x − 2
−

2x + 1
x2 + x + 1

Improper fractions
Improper algebraic fractions can be expressed as a sum of partial fractions by first dividing
the denominator into the numerator to produce a quotient and a proper fraction. This proper
fraction can then be resolved into its partial fractions using the techniques just introduced.

Express
x5 + 2
x2 − 1

as partial fractions.

Example 16

Solution
Dividing through:

x2 − 1
x3 + x)
x5 + 2
x5 − x3

x3 + 2
x3 − x

x + 2

Therefore
x5 + 2
x2 − 1

= x3 + x +
x + 2
x2 − 1

By expressing
x + 2
x2 − 1

=
x + 2

(x − 1)(x + 1)
as partial fractions, we obtain

x5 + 2
x2 − 1

= x3 + x −
1

2(x + 1)
+

3
2(x − 1)



140 Chapter 4: Additional algebra

Using the TI-Nspire
Use menu > Algebra > Expand as shown.

Using the Casio ClassPad

� InM, enter and highlight
x5 + 2
x2 − 1

.

� Go to Interactive > Transformation > expand and
choose the Partial Fraction option.

� Enter the variable and tap OK .

Summary 4D
� A rational function may be expressed as a sum of simpler functions by resolving it into

partial fractions. For example:

4x + 2
x2 − 1

=
3

x − 1
+

1
x + 1

� Examples of resolving a proper fraction into partial fractions:

• Single linear factors
3x − 4

(2x − 3)(x + 5)
=

A
2x − 3

+
B

x + 5

• Repeated linear factor
3x − 4

(2x − 3)(x + 5)2 =
A

2x − 3
+

B
x + 5

+
C

(x + 5)2

• Irreducible quadratic factor
3x − 4

(2x − 3)(x2 + 5)
=

A
2x − 3

+
Bx + C
x2 + 5

� A quadratic polynomial is irreducible if it cannot be factorised over R.
For example, the quadratics x2 + 5 and x2 + 4x + 10 are irreducible.

� If f (x) =
P(x)
Q(x)

is an improper fraction, i.e. if the degree of P(x) is greater than or equal

to the degree of Q(x), then the division must be performed first.
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Exercise 4DSkill-
sheet

1Example 13 Resolve the following rational expressions into partial fractions:
5x + 1

(x − 1)(x + 2)
a

−1
(x + 1)(2x + 1)

b
3x − 2
x2 − 4

c

4x + 7
x2 + x − 6

d
7 − x

(x − 4)(x + 1)
e

2Example 14 Resolve the following rational expressions into partial fractions:
2x + 3

(x − 3)2a
9

(1 + 2x)(1 − x)2b
2x − 2

(x + 1)(x − 2)2c

3Example 15 Resolve the following rational expressions into partial fractions:
3x + 1

(x + 1)(x2 + x + 1)
a

3x2 + 2x + 5
(x2 + 2)(x + 1)

b
x2 + 2x − 13

2x3 + 6x2 + 2x + 6
c

4Example 16 Resolve
3x2 − 4x − 2
(x − 1)(x − 2)

into partial fractions.

5 Show that it is not possible to find values of A and C such that

2x + 10
(x + 1)(x − 1)2 =

A
x + 1

+
C

(x − 1)2

6 Express each of the following as partial fractions:
1

(x − 1)(x + 1)
a

x
(x − 2)(x + 3)

b
3x + 1

(x − 2)(x + 5)
c

1
(2x − 1)(x + 2)

d
3x + 5

(3x − 2)(2x + 1)
e

2
x2 − x

f

3x + 1
x3 + x

g
3x2 + 8

x(x2 + 4)
h

1
x2 − 4x

i

x + 3
x2 − 4x

j
x3 − x2 − 1

x2 − x
k

x3 − x2 − 6
2x − x2l

x2 − x
(x + 1)(x2 + 2)

m
x2 + 2

x3 − 3x − 2
n

2x2 + x + 8
x(x2 + 4)

o

1 − 2x
2x2 + 7x + 6

p
3x2 − 6x + 2

(x − 1)2(x + 2)
q

4
(x − 1)2(2x + 1)

r

x3 − 2x2 − 3x + 9
x2 − 4

s
x3 + 3

(x + 1)(x − 1)
t

2x − 1
(x + 1)(3x + 2)

u
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4E Simultaneous equations
In this section, we look at methods for finding the coordinates of the points of intersection of
a linear graph with different non-linear graphs: parabolas, circles and rectangular hyperbolas.
We also consider the intersections of two parabolas. These types of graphs are studied further
in Mathematical Methods Units 1 & 2.

Find the coordinates of the points of intersection of the parabola with equation
y = x2 − 2x − 2 and the straight line with equation y = x + 4.

Example 17

Solution
Equate the two expressions for y:

x2 − 2x − 2 = x + 4

x2 − 3x − 6 = 0

∴ x =
3 ±

√
9 − 4 × (−6)

2

=
3 ±
√

33
2

y = x + 4   

y = x2 − 2x − 2

x
A

4

−4
−2

O

y

B

The points of intersection are A
(3 −

√
33

2
,

11 −
√

33
2

)
and B

(3 +
√

33
2

,
11 +

√
33

2

)
.

Using the TI-Nspire
� Use menu > Algebra > Solve System of

Equations > Solve System of Equations
as shown.

� Use the touchpad to move the cursor up to
the solution and see all the solutions.

Using the Casio ClassPad
The exact coordinates of the points of intersection can be obtained in theMapplication.

� To select the simultaneous equations template, tap~from the Math1 keyboard.
� Enter the two equations and the variables x, y in the spaces provided. Then tap EXE .

� Tapqfrom the icon panel
and I on the touch screen to
view the entire solution.
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Find the points of intersection of the circle with equation (x − 4)2 + y2 = 16 and the line
with equation x − y = 0.

Example 18

Solution
Rearrange x − y = 0 to make y the subject.

Substitute y = x into the equation of the circle:

(x − 4)2 + x2 = 16

x2 − 8x + 16 + x2 = 16

2x2 − 8x = 0

2x(x − 4) = 0

∴ x = 0 or x = 4

The points of intersection are (0, 0) and (4, 4).

x
(4, 0)

(4, 4)

O

y

Find the point of contact of the straight line with equation
1
9

x + y =
2
3

and the curve with
equation xy = 1.

Example 19

Solution
Rewrite the equations as y = −

1
9

x +
2
3

and y =
1
x

.

Equate the expressions for y:

−
1
9

x +
2
3

=
1
x

−x2 + 6x = 9

x2 − 6x + 9 = 0

(x − 3)2 = 0

∴ x = 3

The point of intersection is
(
3,

1
3

)
.

x
y = − x +

9
1

y = x
1

3
2

O

y

Using the TI-Nspire
Use menu > Algebra > Solve System of
Equations > Solve System of Equations as shown.

Note: The multiplication sign between x and y
is required, as the calculator will consider
xy to be a single variable.
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Using the Casio ClassPad
� InM, select the simultaneous equations template

by tapping~from the Math1 keyboard.
� Enter the two equations and the variables x, y in the

spaces provided; tap EXE .

Find the coordinates of the points of intersection of the graphs of y = −3x2 − 4x + 1
and y = 2x2 − x − 1.

Example 20

Solution

−3x2 − 4x + 1 = 2x2 − x − 1

−5x2 − 3x + 2 = 0

5x2 + 3x − 2 = 0

(5x − 2)(x + 1) = 0

∴ x =
2
5

or x = −1

Substitute in y = 2x2 − x − 1:

When x = −1, y = 2.

When x =
2
5

, y = 2 ×
4
25
−

2
5
− 1 = −

27
25

.

x

y

y = −3x2 −4x + 1 y = 2x2 −x −1

1−1

−1

O

1

2

−2

The points of intersection are (−1, 2) and
(2
5

,−
27
25

)
.

Exercise 4ESkill-
sheet

1Example 17 Find the coordinates of the points of intersection for each of the following:

y = x2

y = x

a y − 2x2 = 0

y − x = 0

b y = x2 − x

y = 2x + 1

c

2Example 18 Find the coordinates of the points of intersection for each of the following:

x2 + y2 = 178

x + y = 16

a x2 + y2 = 125

x + y = 15

b x2 + y2 = 185

x − y = 3

c

x2 + y2 = 97

x + y = 13

d x2 + y2 = 106

x − y = 4

e
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3Example 19 Find the coordinates of the points of intersection for each of the following:

x + y = 28

xy = 187

a x + y = 51

xy = 518

b x − y = 5

xy = 126

c

4 Find the coordinates of the points of intersection of the straight line with equation
y = 2x and the circle with equation (x − 5)2 + y2 = 25.

5 Find the coordinates of the points of intersection of the curves with equations

y =
1

x − 2
+ 3 and y = x.

6 Find the coordinates of the points A and B where the line with equation x − 3y = 0
meets the circle with equation x2 + y2 − 10x − 5y + 25 = 0.

7 Find the coordinates of the points of intersection of the line with equation
y
4
−

x
5

= 1

and the circle with equation x2 + 4x + y2 = 12.

8 Find the coordinates of the points of intersection of the curve with equation

y =
1

x + 2
− 3 and the line with equation y = −x.

9 Find the point where the line 4y = 9x + 4 touches the parabola y2 = 9x.

10 Find the coordinates of the point where the line with equation y = 2x + 3
√

5 touches the
circle with equation x2 + y2 = 9.

11 Find the coordinates of the point where the straight line with equation y =
1
4

x + 1

touches the curve with equation y = −
1
x

.

12 Find points of intersection of the curve y =
2

x − 2
and the line y = x − 1.

13Example 20 Find the coordinates of the points of intersection of the graphs of the following pairs of
quadratic functions:

y = 2x2 − 4x + 1

y = 2x2 − x − 1

a y = −2x2 + x + 1

y = 2x2 − x − 1

b

y = x2 + x + 1

y = x2 − x − 2

c y = 3x2 + x + 2

y = x2 − x + 2

d

14 One solution to the simultaneous equations 5x + 4y = 11 and 2x2 + axy + 4y2 = 24
is x = 1 and y = b. Find the values of a and b, and then find the other solution to the
simultaneous equations.
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Assign-
ment

Nrich

Chapter summary

Polynomials
� A polynomial function can be written in the form

P(x) = anxn + an−1xn−1 + · · · + a1x + a0

where n ∈ N ∪ {0} and the coefficients a0, . . . , an are real numbers with an , 0.
� The degree of a polynomial is the index n of the leading term (the term of highest index

among those terms with a non-zero coefficient).
� Equating coe�cients

Two polynomials are equal if they give the same value for all x. If two polynomials are
equal, then they have the same degree and corresponding coefficients are equal.
For example: if x2 − x − 12 = x2 + (a + b)x + ab, then a + b = −1 and ab = −12.

Quadratics
� A quadratic function can be written in the form y = ax2 + bx + c, where a , 0.
� A quadratic equation ax2 + bx + c = 0 may be solved by:

• Factorising
• Completing the square
• Using the general quadratic formula x =

−b ±
√

b2 − 4ac
2a

� The number of solutions of a quadratic equation ax2 + bx + c = 0 can be found from the
discriminant ∆ = b2 − 4ac:

• If ∆ > 0, then the equation has two real solutions.
• If ∆ = 0, then the equation has one real solution.
• If ∆ < 0, then the equation has no real solutions.

Partial fractions
� A rational function has the form f (x) =

P(x)
Q(x)

, where P(x) and Q(x) are polynomials.

For example: f (x) =
2x + 10

x3 − x2 − x + 1

� Some rational functions may be expressed as a sum of partial fractions:

• For every linear factor ax + b in the denominator, there will be a partial fraction of

the form
A

ax + b
.

• For every repeated linear factor (cx + d)2 in the denominator, there will be partial

fractions of the form
B

cx + d
and

C
(cx + d)2 .

• For every irreducible quadratic factor ax2 + bx + c in the denominator, there will be a

partial fraction of the form
Dx + E

ax2 + bx + c
.

For example:
2x + 10

(x + 1)(x − 1)2 =
A

x + 1
+

B
x − 1

+
C

(x − 1)2 , where A = 2, B = −2 and C = 6
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Technology-free questions

1 If (3a + b)x2 + (a − 2b)x + b + 2c = 11x2 − x + 4 for all x, find the values of a, b and c.

2 Express x3 in the form (x − 1)3 + a(x − 1)2 + b(x − 1) + c.

3 Prove that, if ax3 + bx2 + cx + d = (x + 1)2(px + q), then b = 2a + d and c = a + 2d.

4 Prove that, if ax3 + bx2 + cx + d = (x − 2)2(px + q), then b = −4a +
1
4

d and c = 4a − d.

5 Solve the following quadratic equations for x:

x2 + x = 12a x2 − 2 = xb −x2 + 3x + 11 = 1c
2x2 − 4x + 1 = 0d 3x2 − 2x + 5 = te tx2 + 4 = txf

6 Solve the equation
2

x − 1
−

3
x + 2

=
1
2

for x.

7 Express each of the following as partial fractions:
−3x + 4

(x − 3)(x + 2)
a

7x + 2
x2 − 4

b
7 − x

x2 + 2x − 15
c

3x − 9
x2 − 4x − 5

d
3x − 4

(x + 3)(x + 2)2e
6x2 − 5x − 16
(x − 1)2(x + 4)

f

x2 − 6x − 4
(x2 + 2)(x + 1)

g
−x + 4

(x − 1)(x2 + x + 1)
h

−4x + 5
(x + 4)(x − 3)

i

−2x + 8
(x + 4)(x − 3)

j

8 Express each of the following as partial fractions:
14(x − 2)

(x − 3)(x2 + x + 2)
a

1
(x + 1)(x2 − x + 2)

b
3x3

x2 − 5x + 4
c

9 Find the coordinates of the points of intersection for each of the following:

y = x2

y = −x

a x2 + y2 = 16

x + y = 4

b x + y = 5

xy = 4

c

10 Find the coordinates of the points of intersection of the line with equation 3y − x = 1
and the circle with equation x2 + 2x + y2 = 9.

11 A motorist makes a journey of 135 km at an average speed of x km/h.

a Write an expression for the number of hours taken for the journey.
b Owing to road works, on a certain day his average speed for the journey is reduced

by 15 km/h. Write an expression for the number of hours taken on that day.
c If the second journey takes 45 minutes longer than the first, form an equation in x

and solve it.
d Find his average speed for each journey.
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Multiple-choice questions

1 If x2 is written in the form (x + 1)2 + b(x + 1) + c, then the values of b and c are

b = 0, c = 0A b = −2, c = 0B b = −2, c = 1C
b = 1, c = 2D b = 1, c = −2E

2 If x3 = a(x + 2)3 + b(x + 2)2 + c(x + 2) + d, then the values of a, b, c and d are

a = 0, b = −8, c = 10, d = −6A a = 0, b = −6, c = 10, d = −8B
a = 1, b = −8, c = 10, d = −6C a = 1, b = −6, c = 12, d = −8D
a = 1, b = −8, c = 12, d = −6E

3 The quadratic equation 3x2 − 6x + 3 = 0 has

two real solutions, x = ±1A one real solution, x = −1B
no real solutionsC one real solution, x = 1D
two real solutions, x = 1 and x = 2E

4 The quadratic equation whose solutions are 4 and −6 is

(x + 4)(x − 6) = 0A x2 − 2x − 24 = 0B 2x2 + 4x = 48C
−x2 + 2x − 24 = 0D x2 + 2x + 24 = 0E

5 If
7x2 + 13

(x − 1)(x2 + x + 2)
is expressed in the form

a
x − 1

+
bx + c

x2 + x + 2
, then

a = 5, b = 0, c = −13A a = 5, b = 0, c = −10B a = 5, b = 2, c = −3C
a = 7, b = 2, c = 3D a = 7, b = 3, c = 13E

6
4x − 3

(x − 3)2 is equal to

3
x − 3

+
1

x − 3
A

4x
x − 3

−
3

x − 3
B

9
x − 3

+
4

(x − 3)2C

4
x − 3

+
9

(x − 3)2D
4

x − 3
−

15
(x − 3)2E

7
8x + 7

2x2 + 5x + 2
is equal to

2
2x + 1

−
3

x + 2
A

2
2x + 1

+
3

x + 2
B

−4
2x + 2

−
1

x + 1
C

−4
2x + 2

+
1

x + 1
D

4
2x + 2

−
1

x + 1
E

8
−3x2 + 2x − 1
(x2 + 1)(x + 1)

is equal to

2
x2 + 1

+
3

x + 1
A

2
x2 + 1

−
3

x + 1
B

5
x2 + 1

+
2

x + 1
C

3
x2 + 1

−
2

x + 1
D

3
x2 + 1

+
2

x + 1
E
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9 The line x + y = 2k touches the circle x2 + y2 = k, where k > 0. The value of k is
1
√

2
A

√
2B

1
2

C 2D 2
√

2E

10 The simultaneous equations y = x2 + x and y = bx − 1 have exactly one real solution,
where b > 0. The value of b is

5
2

A 3B
7
2

C 2D
√

2E

11 If (bx + c)(2x − 5) = 12x2 + kx − 10 for all values of x, then k =

−10A −26B 24C 32D 36E

Extended-response questions

1 A quadratic equation with integer coefficients x2 + bx + c = 0 has a solution x = 2 −
√

3.

a Find the values of b and c.
Hint: Use the result that, for m, n rational, if m + n

√
3 = 0, then m = 0 and n = 0.

b Find the other solution to this quadratic equation.
c Now consider a quadratic equation with integer coefficients x2 + bx + c = 0 that has a

solution x = m − n
√

q, where q is not a perfect square. Show that:

i b = −2m

ii c = m2 − n2q

Hence show that:

iii x2 + bx + c =
(
x − (m − n

√
q)

)(
x − (m + n

√
q)

)
2 A train completes a journey of 240 km at a constant speed.

a If the train had travelled 4 km/h slower, it would have taken two hours more for the
journey. Find the actual speed of the train.

b If the train had travelled a km/h slower and still taken two hours more for the journey
of 240 km, what would have been the actual speed? (Answer in terms of a.) Discuss
the practical possible values of a and also the possible values for the speed of
the train.

c If the train had travelled a km/h slower and taken a hours more for the journey
of 240 km, and if a is an integer and the speed is an integer, find the possible values
for a and the speed of the train.

3 Two trains are travelling at constant speeds. The slower train takes a hours longer to
cover b km. It travels 1 km less than the faster train in c hours.

a What is the speed of the faster train, in terms of a, b and c?
b If a, b, c and the speeds of the trains are all rational numbers, find five sets of values

for a, b and c. Choose and discuss two sensible sets of values.
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4 A tank can be filled using two pipes. The smaller pipe alone will take a minutes longer
than the larger pipe alone to fill the tank. Also, the smaller pipe will take b minutes
longer to fill the tank than when both pipes are used.

a In terms of a and b, how long will each of the pipes take to fill the tank?
b If a = 24 and b = 32, how long will each of the pipes take to fill the tank?
c If a and b are consecutive positive integers, find five pairs of values of a and b such

that b2 − ab is a perfect square. Interpret these results in the context of this problem.

5 In each of the following, use the discriminant of the resulting quadratic equation:

a Find the possible values of k for which the straight line y = k(1 − 2x) touches but
does not cross the parabola y = x2 + 2.

b Find the possible values of c for which the line y = 2x + c intersects the circle
x2 + y2 = 20 in two distinct points.

c Find the value of p for which the line y = 6 meets the parabola y = x2 + (1− p)x + 2p
at only one point.

6 Assume that (x − α)(x − β) = x2 − px + 3 for all x, where α, β and p are real numbers.

a Find in terms of p:

i (α − 2p) + (β − 2p)
ii (α − 2p)(β − 2p)

b The quadratic equation x2 + mx + n = 0 has solutions x = α − 2p and x = β − 2p.
Express m and n in terms of p.

7 The line px − qy = 1 touches the parabola y = ax2, where p, q and a are positive real
numbers.

a Show that a =
p2

4q
.

b Determine the coordinates of the point P where the line touches the parabola in terms
of p and q.

c Denote the x-axis intercept of the line by X and the y-axis intercept of the line by Y .

Prove that PX2 = XY2 =
p2 + q2

p2q2 .

d Now assume that p = q = 1. The line has equation x − y = 1.

i Give the equation of the parabola.
ii Give the coordinates of the point P where the line touches the parabola.
iii Find the distance PX.
iv The line −x− y = 1 also touches the parabola. Find the coordinates of the point Q

where this line touches the parabola. Sketch the graphs of the parabola and the
two lines on the one set of axes.
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8 The line px + qy = 1 touches the circle x2 + y2 = a2, where p, q and a are positive real
numbers.

a Show that a2 =
1

p2 + q2 .

b Determine the coordinates of the point P where the line touches the circle in terms
of p and q.

c Now assume that p = q = 1. The line has equation x + y = 1.

i Give the equation of the circle.
ii Give the coordinates of the point P where the line touches the circle.
iii The line −x + y = 1 also touches the circle. Find the coordinates of the point Q

where this line touches the circle. Sketch the graphs of the circle and the two
lines on the one set of axes.

9 a The circle, C1, with equation x2 − 6x + y2 − 8y + 24 = 0 is touched by the lines with
equations y = m1x and y = m2x, where m1 < m2.

i Write the equation of circle C1 in the form (x − h)2 + (y − k)2 = r2. State the
coordinates of the centre of the circle and the radius of the circle.

ii Sketch the graph of C1 and show the lines y = m1x and y = m2x touching C1 at
the points P1 and P2 respectively.

iii Find the values of m1 and m2.
iv Find the coordinates of the points P1 and P2.

b The circle, C2, with centre (3, 4) and radius a is touched by the line y = 2x.

i Find a2 and state the equation of circle C2.
ii Find the coordinates of the point where the line y = 2x touches circle C2.
iii The line y = m3x also touches circle C2. Find the value of m3.

c Circle C3 has centre (h, k) and radius 1, where h and k are positive real numbers. The
lines y = 2x and y = 1

2 x touch C3 at the points Q1 and Q2 respectively.

i Determine the values of h and k.
ii Determine the coordinates of the points Q1 and Q2.
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Revision of
Chapters 1–4

5A Technology-free questions
1 Express each of the following as a product of powers of prime numbers:

2002a 555b 7007c 10 000d

2 Simplify
5m − 2p

4m2 + mp − 3p2 −
1

4m − 3p
.

3 Expand each of the following and collect like terms:(√
3 +
√

2
)(√

3 − 1
)

a
(
5
√

3 −
√

6
)(

2
√

6 + 3
√

3
)

b(
2
√

x − 3
)2c

(√
x − 2 − 3

)2d

4 Rewrite each fraction with an integer denominator:
1

√
2 − 3

a
3

√
5 − 1

b
2

2
√

2 − 1
c

3
√

5 −
√

3
d

1
√

7 −
√

2
e

1

2
√

5 −
√

3
f

5 For each of the following, state the condition under which the geometric series is
convergent and find the sum to infinity in this case:

a4 − a3 + a2 − · · ·a
1
a
−

b
a2 +

b2

a3 − · · ·b

2x + 1
x
− 1 +

x
2x + 1

− · · ·c 1 −
1

4x − 2
+

1
(4x − 2)2 − · · ·d

6 a If the equations x2 + x − 1 = 0 and x2 + bx + 1 = 0 have a common solution, show
that b = ±

√
5.

b Find the common solution when:

i b =
√

5 ii b = −
√

5
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7 Find constants a, b and c such that (n + 1)(n − 7) = a + bn + cn(n − 1) for all n.

8 Prove that, if n = HCF(a, b), then n divides a − b.

9 Write down the prime factorisation of each of the following numbers, and hence
determine the square root of each number:

576a 1225b 1936c 1296d

10 Solve the equation
x + b
x − c

= 1 −
x

x − c
for x.

11 Solve the equation
1

x − a
+

1
x − b

=
2
x

for x.

12 Of the first 1000 natural numbers, find the sum of those that:

a are not divisible by 3
b are divisible by neither 2 nor 3.

13 Find two sets of values of λ, a, b such that, for all values of x,

x2 − 4x − 8 + λ(x2 − 2x − 5) = a(x − b)2

14 If the sum of the first k terms of the geometric sequence 3, 6, 12, 24, . . . is equal to 189,
find the value of k.

15 For each of the following recurrence relations, determine a formula for the nth term of
the sequence in terms of n:

tn =
1
2

tn−1, t1 = 2a tn = tn−1 −
5
2

, t1 = 2b tn =
1
2

tn−1 −
5
2

, t1 = 2c

16 A frog’s first jump is 4 m, the second is 2 m, the third is 1 m, and so on. If the frog
continues to jump indefinitely, how far will it get?

17 A triangle is such that the lengths of its sides form the first three terms in a geometric
sequence. Given that the length of the longest side is 36 cm and the perimeter is 76 cm,
find the length of the shortest side.

18 Three consecutive terms a − d, a, a + d of an arithmetic sequence have a sum of 36.
If the first term is increased by 1, the second by 4 and the third by 43, then the three new
terms are in geometric sequence. Find the values of a and d.

19 Find the points of intersection of the graphs of y = 2x2 − 4x − 2 and y = −2x2 − 4x + 2.

20 Solve the following equation for x:
4

x2 − x − 2
+

3
x2 − 4

=
2

x2 + 3x + 2

21 A train travels at a constant speed of 55 km/h for 2 hours and then at a constant speed
of 70 km/h for 3 hours. Find the train’s average speed over the 5-hour journey.
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22 Simplify

√
2

√
3 +
√

2
.

23 Resolve each of the following into partial fractions:
2x

3(x − 2)(x + 2)
a

2x + 5
(x + 2)(x + 3)

b
5x2 + 4x + 4

(x + 2)(x2 + 4)
c

2(x2 − 2x − 1)
(x + 1)(x − 1)2d

2x2 − 3x + 1
x3 − 3x2 + x − 3

e
3x2 − x + 6

(x2 + 4)(x − 2)
f

5B Multiple-choice questions
1 Five is seven less than three times one more than x. Written in algebraic form, this

sentence becomes

5 = 7 − 3(x + 1)A 3x + 1 = 5 − 7B (x + 1) − 7 = 5C
5 = 7 − 3x + 1D 5 = 3x − 4E

2
3

x − 3
−

2
x + 3

is equal to

1A
x + 15
x2 − 9

B
15

x − 9
C

x − 3
x2 − 9

D −
1
6

E

3 The sum of the odd numbers from 1 to m inclusive is 100. The value of m is

13A 15B 17C 19D 21E

4 If the sum of the first n terms of a geometric sequence is 2n+1 − 2, then the nth term is

2n−1A 2nB 2n − 1C 2n−1 + 1D 2n + 1E

5 If A = {1, 2, 3, 4}, B = {2, 3, 4, 5, 6} and C = {3, 4, 5, 6, 7}, then A ∩ (B ∪C) is equal to

{1, 2, 3, 4, 5, 6, 7}A {1, 2, 3, 4, 5, 6}B {2, 3, 4}C
{3, 4}D {2, 3, 4, 5, 6, 7}E

6 The recurring decimal 0.7̇2̇ is equal to
72

101
A

72
100

B
72
99

C
72
90

D
73
90

E

7
−4

x − 1
−

3
1 − x

+
x

x − 1
is equal to

1A −1B
7x

x − 1
C

1
1 − x

D none of theseE

8
x + 2

3
−

5
6

is equal to

x − 3
6

A
2x + 4

6
B

2x − 1
6

C
2x − 5

6
D

x − 3
3

E
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9 If a = 1 +
1

1 + b
, then b equals

1 −
1

a − 1
A 1 +

1
a − 1

B
1

a − 1
− 1C

1
a + 1

+ 1D
1

a + 1
− 1E

10 When the repeating decimal 0.3̇6̇ is written in simplest fractional form, the sum of the
numerator and denominator is

15A 45B 114C 135D 150E

11 If
2x − y
2x + y

=
3
4

, then
x
y

equals

2
7

A
7
2

B
3
4

C
4
3

D cannot be determinedE

12 The sum to infinity of the series
1
2
−

1
4

+
1
8
−

1
16

+ · · · is

2A 1B
1
2

C
1
3

D
2
3

E

13 If
3

3 + y
= 4, then y equals

1
4

A −
9
4

B
9
4

C 0D −
4
9

E

14 The coordinates of the point where the lines with equations 3x + y = −7 and 2x + 5y = 4
intersect are

(3,−16)A (−3, 2)B (3,−2)C (−2, 3)D no solutionE

15 If
m + 2

4
−

2 − m
4

=
1
2

, then m is equal to

1A −1B
1
2

C 0D −
1
2

E

16 The number 46 200 can be written as

2 × 3 × 5 × 7 × 11A 22 × 32 × 52 × 7 × 11B 2 × 32 × 5 × 72 × 11C
23 × 3 × 52 × 7 × 11D 22 × 3 × 53 × 7 × 11E

17 If the three numbers y, y − 1 and 2y − 1 are consecutive terms of an arithmetic sequence,
then y equals

−1A 1B 0C 2D −2E

18 If the positive integers n + 1, n − 1, n − 6, n − 5, n + 4 are arranged in increasing order
of magnitude, then the middle number is

n + 1A n − 1B n − 6C n − 5D n + 4E

19 An arithmetic sequence has 3 as its first term and 9 as its fourth term. The eleventh
term is

23A 11B 63C 21D none of theseE
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20 The expression
4

n + 1
+

3
n − 1

is equal to

7n − 1
1 − n2A

1 − 7n
1 − n2B

7n − 1
n2 + 1

C
7

n2 − 1
D

7
n

E

21
(√

7 + 3
)(√

7 − 3
)

is equal to

−2A 10B
√

14 − 19C 2
√

7 − 9D 45E

22 If
13x − 10

2x2 − 9x + 4
=

P
x − 4

+
Q

2x − 1
, then the values of P and Q are

P = 1 and Q = 1A P = −1 and Q = 1B P = 6 and Q = 1C
P = −6 and Q = 1D P = 1 and Q = −6E

23 The first term of a geometric sequence is a and the infinite sum of the geometric
sequence is 4a. The common ratio of the geometric sequence is

3A 4B
3
4

C −
3
4

D −
4
3

E

24 If
5x

(x + 2)(x − 3)
=

P
x + 2

+
Q

x − 3
, then

P = 2 and Q = 3A P = 2 and Q = −3B P = −2 and Q = 3C
P = −2 and Q = −3D P = 1 and Q = 1E

25 If the natural number n is a perfect square, then the next perfect square is

n + 1A n2 + 1B n2 + 2n + 1C n2 + nD n + 2
√

n + 1E

26 Which of the following is not a rational number?

0.4A
3
8

B
√

5C
√

16D 4.125E

27 If
1
x

=
a
b

and
1
y

= a − b, then x + y equals

2
a

A
a2 − b2

a
B

ba − b2 + a
a(a − b)

C
2a

a2 − b2D
−2b

a2 − b2E

28 9x2 − 4mx + 4 is a perfect square when m equals

5A ±12B 2C ±1D ±3E

29 If x = (n + 1)(n + 2)(n + 3), for some positive integer n, then x is not always divisible by

1A 2B 3C 5D 6E

30 The numbers −4, a, b, c, d, e, f , 10 are consecutive terms of an arithmetic sequence.
The sum a + b + c + d + e + f is equal to

6A 10B 18C 24D 48E

31 If both n and p are odd numbers, which one of the following numbers must be even?

n + pA npB np + 2C n + p + 1D 2n + pE
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32 The sum of the first 10 terms of the sequence 4, 9, 14, 19, . . . is

61A 250B 265C 290D 520E

33 A geometric sequence has first term 3 and common ratio 4. The twentieth term is
3

420A 3 × 420B 3 × 419C
3

419D 3 + 420E

34 In an arithmetic sequence, the first term is 9 and the sixteenth term is 144. The
common difference is

2A 4B 6C 9D 10E

35 Which of the following generates the sequence −5, 13,−23, 49,−95, 193, . . . ?

tn = 3 − 2tn−1, t1 = −5A tn = 3 + 2tn−1, t1 = −5B
tn = 2 − 3tn−1, t1 = −5C tn = 2 − 2tn−1, t1 = −5D
tn = 2 + 3tn−1, t1 = −5E

36 A study is conducted on a particular species of small marsupial. The number of animals
at the start of the study is 12 500. Each year on average, there are 15 offspring per
100 animals, and 11% of the animals die. The number, Pn, of animals after n years can
be modelled by the formula

Pn = 12 500 × 1.04nA Pn = 12 500 × 0.15n − 0.11B
Pn = 12 500 × 0.11n + 0.15C Pn = 12 500 × 0.04n+1 − 0.11D
Pn = 12 500 − 0.04nE

37 If LCM(12, n) = 60 and HCF(12, n) = 6, then n =

10A 15B 20C 30D 60E

38 If x2 is written in the form (x − 2)2 + b(x − 2) + c, then the values of b and c are

b = 2, c = 0A b = −4, c = −4B b = 4, c = 4C
b = 2, c = 2D b = 0, c = 2E

5C Extended-response questions
1 The diagram represents a glass containing milk. When the

height of the milk in the glass is h cm, the diameter, d cm, of
the surface of the milk is given by the formula

d =
h
5

+ 6

a Find d when h = 10.
b Find d when h = 8.5.
c What is the diameter of the bottom of the glass?
d The diameter of the top of the glass is 9 cm. What is the

height of the glass?

d cm

h cm
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2 At the beginning of 2012, Andrew and John bought a small catering business. The
profit, $P, in a particular year is given by

P = an + b

where n is the number of years of operation and a and b are constants.

a Given the table, find the values of a and b.

Year 2012 2016

Number of years of operation (n) 1 5

Profit (P) −9000 15 000

b Find the profit when n = 12.
c In which year was the profit $45 000?

3 The formula A = 180 −
360
n

gives the size of each interior angle, A◦, of a regular
polygon with n sides.

a Find the value of A when n equals:

i 180 ii 360 iii 720 iv 7200
b As n becomes very large:

i What value does A approach?
ii What shape does the polygon approach?

c Find the value of n when A = 162.
d Make n the subject of the formula.
e Three regular polygons, two of which are octagons, meet at a point so that they fit

together without any gaps. Describe the third polygon.

4 The figure shows a solid consisting of three parts – a cone, a cylinder
and a hemisphere – all of the same base radius.

a Find, in terms of w, s, t and π, the volume of each part.
b i If the volume of each of the three parts is the same, find the

ratio w : s : t.
ii If also w + s + t = 11, find the total volume in terms of π.

w

s

t

5 The following information is given about a universal set ξ and subsets A, B and C of ξ.

|ξ| = 200� |A| = 70� |B| = 120� |C| = 90�

|A ∩ B| = 50� |A ∩C| = 30� |B ∩C| = 40� |A ∩ B ∩C| = 20�

Use this information to determine each of the following:

|A ∪ B|a |A ∪ B ∪C|b
|A′ ∩ B ∩C|c |A ∩ B′ ∩C′|d
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6 a In the diagram, OPQ is a sector of radius R.
A circle with centre C1 and radius r1 is
inscribed in this sector.

i Express OC1 in terms of R and r1.

ii Show that
r1

OC1
=

1
2

and hence

express r1 in terms of R.

R
QO

P

60°

r3

r2

r1

r1
r2r3

C3

C2

C1

b Another circle, centre C2, is inscribed in the sector as shown.

i Express OC2 in terms of r2 and R.
ii Express r2 in terms of R.

c Circles with centres at C3, C4, C5, . . . are constructed in a similar way. Their radii are
r3, r4, r5, . . . respectively. It is known that r1, r2, r3, . . . is a geometric sequence.

i Find the common ratio.
ii Find rn.
iii Find the sum to infinity of the sequence, and interpret the result geometrically.
iv Find in terms of R and π, the sum to infinity of the areas of the circles with radii

r1, r2, r3, . . . .

7 Two companies produce the same chemical.

� For Company A, the number of tonnes produced increases by 80 tonnes per month.
� For Company B, production increases by 4% per month.

Each company produced 1000 tonnes in January 2018.
(Let n be the number of months of production. Use n = 1 for January 2018.)

a Find, to the nearest tonne where appropriate:

i the production of Company A in the nth month
ii the production of each company in December 2019 (i.e. for n = 24)
iii the total production of Company A over n months (starting with n = 1 for

January 2018)
iv the total production of each company for the period from January 2018 to

December 2019 inclusive.

b Find in which month of which year the total production of Company A passed
100 000 tonnes.
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8 The square shown has each side of length 1 unit.

a The perimeter of the square is denoted by P1. What is the value
of P1?

1

1

1

1

b A new figure is formed by joining two squares of side
length 1

2 to this square, as shown. The new perimeter is
denoted by P2. What is the value of P2?

1

1

1

1
2

1
21

2
1
2

1
2

1
2

c What is the perimeter, P3, of this figure? 1

1

1
1
2

1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

d It is known that P1, P2, P3, . . . are the terms of an arithmetic sequence with first
term P1. What is the common difference?

e i Find P4.
ii Find Pn in terms of Pn−1.
iii Find Pn in terms of n.
iv Draw the diagram of the figure corresponding to P4.

9 The number 15 can be expressed as a sum of consecutive positive integers in four ways:

15 = 15, 15 = 7 + 8, 15 = 4 + 5 + 6, 15 = 1 + 2 + 3 + 4 + 5

a Show that 10 can only be expressed as a sum of consecutive positive integers in
two ways.

b How many ways can 100 be expressed as a sum of consecutive positive integers?
c How many ways can 15 be expressed as the sum of any sequence of consecutive

integers?

10 A piece of wire 28 cm long is cut into
two parts: one to make a rectangle
three times as long as it is wide, and the
other to make a square.

3x cm

x cm

a What is the perimeter of the rectangle in terms of x?
b What is the perimeter of the square in terms of x?
c What is the length of each side of the square in terms of x?

Let A be the sum of the areas of the two figures.

d Show that A = 7(x2 − 4x + 7).

e Sketch the graph of A = 7(x2 − 4x + 7) for 0 ≤ x ≤
7
2

.

f Find the minimum value that A can take and the corresponding value of x.
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11 a i For the equation
√

7x − 5 −
√

2x =
√

15 − 7x, square both sides to show that this
equation implies

8x − 10 =
√

14x2 − 10x

ii Square both sides of this new equation and simplify to form the equation

x2 − 3x + 2 = 0 (1)

iii The solutions to equation (1) are x = 1 and x = 2. Test these solutions for the
equation

√
7x − 5 −

√
2x =

√
15 − 7x

and hence show that x = 2 is the only solution to the original equation.
b Use the techniques of part a to solve the equations:

i
√

x + 2 − 2
√

x =
√

x + 1 ii 2
√

x + 1 +
√

x − 1 = 3
√

x

12 Let n be a natural number less than 50 such that n + 25 is a perfect square.

a Show that there exists an integer a such that n = a(a + 10).
b Any natural number less than 100 can be written in the form 10p + q, where p and q

are digits. For this representation of n, show that q = p2.
c Give all possible values of n.

13 In a vegetable garden,
carrots are planted in rows
parallel to the fence. Fence

row 1
row 2

row 3
row 4

rabbit
burrow

0.5 m 1.5 m 1.5 m 1.5 m

a Calculate the distance between the fence and the 10th row of carrots.
b If tn represents the distance between the fence and the nth row, find a formula for tn

in terms of n.
c Given that the last row of carrots is less than 80 m from the fence, what is the largest

number of rows possible in this vegetable garden?
d A systematic rabbit has its burrow

under the fence as shown in the
diagram. The rabbit runs to the first
row, takes a carrot and returns it to
the burrow. The rabbit then runs to
the second row, takes a carrot and
returns it to the burrow.

Fence

rabbit
burrow Trip 1

Trip 2

row 1
row 2

The rabbit continues in this way until it has 15 carrots. Calculate the shortest
distance the rabbit has to run to accomplish this.
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14 In its first month of operation, a soft-drink manufacturer produces 50 000 litres of soft
drink. In each successive month, the production rises by 5000 litres per month.

a i The quantity of soft drink, tn litres, produced in the nth month can be determined
by a rule of the form

tn = a + (n − 1)d

Find the values of a and d.
ii In which month will the factory double its original production?
iii How many litres in total will be produced in the first 36 months of operation?

b Another soft-drink manufacturer sets up a factory at the same time as the first. In the
first month, the production is 12 000 litres. The production of this factory increases
by 10% every month.

i Find a rule for qn, the quantity of soft drink produced in the nth month.
ii Find the total amount of soft drink produced in the first 12 months.

c If the two factories start production in the same month, in which month will the
production of the second factory become faster than the production of the first
factory?

15 The diagram shows a straight road OD, where OD = 6 km.

2 km

x kmO

A

X D

6 km

A hiker is at A, which is 2 km from O. The hiker walks directly to X and then walks
along the road to D. The hiker can walk at 3 km/h off-road, but at 8 km/h along
the road.

a If OX = 3 km, calculate the total time taken for the hiker to walk from A to D via X
in hours and minutes, correct to the nearest minute.

b If the total time taken was 1 1
2 hours, calculate the distance OX in kilometres, correct

to one decimal place.

16 A car leaves town A at 10 a.m. and arrives in town B at 11:15 a.m. During the first hour
of the journey, the car travels at a constant speed of 80 km/h. The average speed of the
car between 10:15 a.m. and 11:15 a.m. is 2 km/h less than the average speed for the
whole journey.

a Find the distance travelled by the car from town A to town B.
b Find the average speed of the car between 10:15 a.m. and 11:15 a.m.
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17 a There is a two-digit number such that, if you add the digit 1 at the front and
the back to obtain a four-digit number 1 1 , then the new four-digit number
is 21 times larger than the original two-digit number. Find this two-digit number.

b Find a five-digit number such that the six-digit number obtained by
adding a 1 at the back, 1 , is three times larger than the six-digit
number obtained by adding a 1 at the front, 1 .

18 Find the possible integer values of k if:

a the quadratic equation x2 + kx − 16 = 0 has integer solutions
b the quadratic equation x2 + kx + 20 = 0 has integer solutions
c the quadratic equation x2 + 12x + k = 0 has integer solutions (k positive).

19 a Show that x2 + (1 − x)2 = 2
[(

x −
1
2

)2
+

1
4

]
.

b Hence show that, if 0 ≤ x ≤ 1, then
1
2
≤ x2 + (1 − x)2 ≤ 1

c A quadrilateral has one vertex on each side of a unit square (that is, a square of side
length 1). Show that the side lengths a, b, c and d of the quadrilateral satisfy

2 ≤ a2 + b2 + c2 + d2 ≤ 4

20 Consider the quadratic expression x2 + bx + c, where b and c are real numbers.

a Given that the equation x2 + bx + c + 1 = 0 has only one solution, find c in terms of b.
b Given that the expression x2 + bx + c − 3 can be factorised as (x − k)(x − 2k), for

some non-zero real number k, find c in terms of b.
c If the conditions of both parts a and b are satisfied, find the possible values of b

and c.

21 a Find positive integers m and n such that
√

9 − 4
√

5 =
√

m − n.

b Hence find integers b and c such that x =
√

9 − 4
√

5 is a solution of the quadratic
equation x2 + bx + c = 0.

22 Seventy-six photographers submitted work for a photographic exhibition in which they
were permitted to enter not more than one photograph in each of three categories: black
and white (B), colour prints (C), transparencies (T ). Eighteen entrants had all their work
rejected, while 30 B, 30 T and 20 C were accepted.

� From the exhibitors, as many showed T only as showed T and C.
� There were three times as many exhibitors showing B only as showing C only.
� Four exhibitors showed B and T but not C.

a Write the last three sentences in symbolic form.
b Draw a Venn diagram representing the information.

c i Find |B ∩C ∩ T |. ii Find |B ∩C ∩ T ′|.
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23 It is estimated that there are 600 black swans in a particular wildlife sanctuary. Assume
that the swan population, left untouched, would increase by 5% per annum. However, at
the end of each year 24 swans are removed from the wildlife sanctuary and transferred
to a nearby national park.

a How many swans will there be in the wildlife sanctuary after:

i 1 year ii 2 years iii 3 years?

b Write a recurrence relation that gives the number of swans in the sanctuary after
n years in terms of the number of swans in the sanctuary after n − 1 years.

c Write a formula for the number of swans in the sanctuary after n years in terms of n.
d Find the number of swans in the sanctuary after 12 years.

It is estimated that there are also 600 black swans in the national park and that, if left
untouched, their population would decrease by 15% per annum. To help compensate,
each year 24 swans are brought into the national park.

e How many swans will there be in the national park after:

i 1 year ii 2 years iii 12 years?

f How long will it take for the swan population in the national park to stabilise? What
is this stable population size?

24 Each year for the past 10 years, the population of the city of Alpha has been growing at
a steady rate of 2.3% per annum. The current population of Alpha is 1.35 million.

a What was the population of Alpha 10 years ago?

Over the next 10 years, the population of Alpha is predicted to grow at a steady rate
of 2.8% per annum.

b What will be the population of Alpha in 10 years’ time?

A neighbouring city, Beta, had a population of 1.25 million 5 years ago. Its population
has been growing at a steady rate of 1.9% per annum and is predicted to maintain this
growth rate for the next 10 years.

c Which city currently has the greater population?
d Which city will have the greater population in 10 years’ time?
e In how many years from now will the populations of the two cities be equal?

25 a Prove that

a4 + 4b4 = (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab)

Note: This is known as Sophie Germain’s identity.

b Use this identity to prove that, if n is an odd number greater than 1, then n4 + 4n is
not prime.

c Hence show that the number 4545 + 5454 is not prime.
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26 a Consider the geometric sequence 1, 4, 16, . . . .

i Find the 10th term of this sequence.
ii Find the value of n if the sum of the first n terms of this sequence is 349 525.

b Consider the geometric sequence 1,
1
4

,
1
16

, . . . .

i Find the 10th term of this sequence.
ii Find the sum of the first 10 terms of this sequence, correct to three decimal

places.

c Now consider the sequence 2, 4 1
4 , 16 1

16 , . . . , 22n−2 +
1

22n−2 , . . . .

i Write down the sum of the first 10 terms of this sequence, correct to three
decimal places.

ii Find a formula for the sum of the first n terms of this sequence.

5D Investigations
1 Arithmetic and geometric means

For positive numbers a and b, their arithmetic mean is greater than or equal to their
geometric mean:

1
2
(
a + b

)
≥
√

ab

Furthermore, the two means are equal if and only if a = b.

This result is called the AM–GM inequality and is easy to prove as follows:

1
2
(
a + b

)
≥
√

ab ⇔
1
2
(
a + b

)
−
√

ab ≥ 0

⇔ a + b − 2
√

ab ≥ 0

⇔
(√

a −
√

b
)2
≥ 0

The final inequality is true for all a, b > 0.

a Consider all rectangles of a given constant perimeter. Using the AM–GM inequality,
find the maximum area of such rectangles in terms of this perimeter.

b Consider all rectangles of a given constant area. Using the AM–GM inequality, find
the minimum perimeter of such rectangles in terms of this area.

c The AM–GM inequality can be extended to more than two numbers. For three
positive numbers a, b and c, we have

1
3
(
a + b + c

)
≥

3√
abc

and the two means are equal if and only if a = b = c. Prove this result.
d Consider all rectangular prisms of a given constant surface area. Using the AM–GM

inequality for three numbers, find the maximum volume of such prisms in terms of
this surface area.
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2 The arithmetic–geometric mean
Start with two positive numbers a1 and b1 such that a1 ≥ b1. By computing arithmetic
and geometric means, we can obtain a pair of sequences:

an+1 =
1
2
(
an + bn

)
and bn+1 =

√
anbn

a Use a spreadsheet to investigate such sequences. Try different values for a1 and b1.

Note that an ≥ bn for all n ∈ N, by the AM–GM inequality from Investigation 1.

b Prove that an+1 ≤ an and bn+1 ≥ bn for all n ∈ N.
c Prove that b1 ≤ an and a1 ≥ bn for all n ∈ N.

d Prove that an+1 − bn+1 ≤
1
2
(
an − bn

)
for all n ∈ N.

These results can be used to prove that the sequences a1, a2, a3, . . . and b1, b2, b3, . . .
converge to the same number (called the arithmetic–geometric mean of a and b).
The final steps of the proof are beyond the scope of this course.

3 Modelling markets
a The shampoo market in a certain country is supplied by two distributors, X and Y .

Let xn and yn represent the number of unit sales in week n by distributors X and Y ,
respectively. The market fluctuates according to the following pair of equations:

xn+1 = 30 000 − 0.6yn, x1 = 30 000

yn+1 = 15 000 − 0.3xn, y1 = 5000

Find the equilibrium values by considering xn+1 = xn = xn−1.
b A third distributor, Z, joins the shampoo market. Let zn be the number of unit sales in

week n by distributor Z. In the following system of equations, week 1 is now taken to
be the first week that Z enters the market:

xn+1 = 30 000 − 0.5yn, x1 = 25 610

yn+1 = 15 000 − 0.2xn − 0.2zn, y1 = 7317

zn+1 = 30 000 − 0.5yn, z1 = 1000

Find the equilibrium values. Consider other systems of equations to obtain different
equilibrium values.

4 Reciprocals of natural numbers
For a fixed natural number n, consider the equation

1
x

+
1
y

=
1
n

a Let n = 3. Find all ordered pairs of natural numbers (x, y) that satisfy the equation.
b Let n = 11. Find all ordered pairs of natural numbers (x, y) that satisfy the equation.
c Let n = p, where p is a prime number. Find all ordered pairs of natural numbers

(x, y) that satisfy the equation. Give your answers with x and y in terms of p.
d For any natural number n, is it always possible to find an ordered pair of natural

numbers (x, y) that is a solution to the equation? How can we determine the number
of solutions?
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5 Applications of partial fractions
a i Show that

1
n(n + 1)

=
1
n
−

1
n + 1

ii Hence show that
1

1 × 2
+

1
2 × 3

+
1

3 × 4
+ · · · +

1
99 × 100

=
99

100

iii Hence evaluate
1
1

+
1

1 + 2
+

1
1 + 2 + 3

+ · · · +
1

1 + 2 + · · · + 99

b i Find A and B such that
1

n(n + 2)
=

A
n

+
B

n + 2

ii Hence evaluate
1

1 × 3
+

1
3 × 5

+
1

5 × 7
+ · · · +

1
99 × 101

iii By using partial fractions in a similar way, evaluate

1
1 × 6

+
1

6 × 11
+

1
11 × 16

+ · · · +
1

96 × 101

c i Show that
1

n(n + 1)(n + 2)
=

1
2

(1
n
−

1
n + 1

)
−

1
2

( 1
n + 1

−
1

n + 2

)
ii Hence evaluate

1
1 × 2 × 3

+
1

2 × 3 × 4
+

1
3 × 4 × 5

+ · · · +
1

98 × 99 × 100

d i By rationalising the denominator of the left-hand side, show that

1
√

n + 1 +
√

n
=
√

n + 1 −
√

n

ii Hence show that
1

√
2 +
√

1
+

1
√

3 +
√

2
+

1
√

4 +
√

3
+ · · · +

1
√

100 +
√

99
= 9

iii By using a similar approach, evaluate

1
√

3 +
√

1
+

1
√

5 +
√

3
+

1
√

7 +
√

5
+ · · · +

1
√

121 +
√

119



6
Proof

Objectives
I To understand and use various methods of proof, including:

B direct proof
B proof by contrapositive
B proof by contradiction.

I To write down the negation of a statement.

I To write and prove converse statements.

I To understand when mathematical statements are equivalent.

I To use the symbols for implication (⇒) and equivalence (⇔).

I To understand and use the quantifiers ‘for all’ and ‘there exists’.

I To disprove statements using counterexamples.

I To understand and use the principle of mathematical induction.

A mathematical proof is an argument that demonstrates the absolute truth of a statement.

It is certainty that makes mathematics different from other sciences. In science, a theory is
never proved true. Instead, one aims to prove that a theory is not true. And if such evidence is
hard to come by, then this increases the likelihood that a theory is correct, but never provides
a guarantee. The possibility of absolute certainty is reserved for mathematics alone.

When writing a proof you should always aim for three things:

� correctness
� clarity
� simplicity.

Perhaps the following proof of Pythagoras’ theorem exemplifies these three aims.
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Pythagoras’ theorem

Take any triangle with side lengths a, b and c. If the angle between a and b is 90◦, then

a2 + b2 = c2

Proof Consider the two squares shown below.

b

a b

a

a

b

b

a

c c

cc

b

a

a

b

a

a

b

b

The two squares each have the same total area. So subtracting four red triangles from
each figure will leave the same area. Therefore a2 + b2 = c2.

The ideas introduced in this chapter will be used in proofs throughout the rest of this book.

6A Direct proof
Conditional statements
Consider the following sentence:

Statement If it is raining then the grass is wet.

This is called a conditional statement and has the form:

Statement If P is true then Q is true.

This can be abbreviated as

P⇒ Q

which is read ‘P implies Q’. We call P the hypothesis and Q the conclusion.

Not all conditional statements will be true. For example, switching the hypothesis and the
conclusion above gives:

Statement If the grass is wet then it is raining.

Anyone who has seen dewy grass on a cloudless day knows this to be false. In this chapter
we will learn how to prove (and disprove) mathematical statements.
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Direct proof
To give a direct proof of a conditional statement P⇒ Q, we assume that the hypothesis P
is true, and then show that the conclusion Q follows.

Prove the following statements:

a If a is odd and b is even, then a + b is odd.
b If a is odd and b is odd, then ab is odd.

Example 1

Solution
a Assume that a is odd and b is even.

Since a is odd, we have a = 2m + 1 for some m ∈ Z. Since b is even, we have b = 2n for
some n ∈ Z. Therefore

a + b = (2m + 1) + 2n

= 2m + 2n + 1

= 2(m + n) + 1

= 2k + 1 where k = m + n ∈ Z

Hence a + b is odd.

Note: We must use two different pronumerals m and n here, because these two
numbers may be different.

b Assume that both a and b are odd. Then a = 2m + 1 and b = 2n + 1 for some m, n ∈ Z.
Therefore

ab = (2m + 1)(2n + 1)

= 4mn + 2m + 2n + 1

= 2(2mn + m + n) + 1

= 2k + 1 where k = 2mn + m + n ∈ Z

Hence ab is odd.

Let p, q ∈ Z such that p is divisible by 5 and q is divisible by 3. Prove that pq is divisible
by 15.

Example 2

Solution
Since p is divisible by 5, we have p = 5m for some m ∈ Z. Since q is divisible by 3, we
have q = 3n for some n ∈ Z. Thus

pq = (5m)(3n)

= 15mn

and so pq is divisible by 15.
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Let x and y be positive real numbers. Prove that if x > y, then x2 > y2.

Example 3

Solution Explanation
Assume that x > y. Then x − y > 0.

Since x and y are positive, we also know
that x + y > 0.

Therefore

x2 − y2 =

positive︷ ︸︸ ︷
(x − y)

positive︷ ︸︸ ︷
(x + y) > 0

Hence x2 > y2.

When trying to prove that x2 > y2, it is
easier to first prove that x2 − y2 > 0.

Also, note that the product of two positive
numbers is positive.

Let x and y be any two positive real numbers. Prove that
x + y

2
≥
√

xy

Example 4

Solution
A false proof might begin with the statement that we are trying to prove.

x + y
2
≥
√

xy

⇒ x + y ≥ 2
√

xy

⇒ (x + y)2 ≥ 4xy (using Example 3)

⇒ x2 + 2xy + y2 ≥ 4xy

⇒ x2 − 2xy + y2 ≥ 0

⇒ (x − y)2 ≥ 0

Although it is true that (x − y)2 ≥ 0, the argument is faulty. We cannot prove that the result
is true by assuming that the result is true! However, the above work is not a waste of time.
We can correct the proof by reversing the order of the steps shown above.

Note: In the corrected proof, we need to use the fact that a > b implies
√

a >
√

b for all
positive numbers a and b. This is shown in Question 8 of Exercise 6B.

Breaking a proof into cases
Sometimes it helps to break a problem up into different cases.

Every person on an island is either a knight or a knave. Knights always tell the truth,
and knaves always lie. Alice and Bob are residents on the island. Alice says: ‘We are
both knaves.’ What are Alice and Bob?

Example 5
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Solution
We will prove that Alice is a knave and Bob is a knight.

Case 1
Suppose Alice is a knight.
⇒ Alice is telling the truth.
⇒ Alice and Bob are both knaves.
⇒ Alice is a knave and a knight.
This is impossible.

Case 2
Suppose Alice is a knave.
⇒ Alice is not telling the truth.
⇒ Alice and Bob are not both knaves.
⇒ Bob is a knight.

Therefore we conclude that Alice must be a knave and Bob must be a knight.

Summary 6A
� A mathematical proof establishes the truth of a statement.
� A conditional statement has the form: If P is true, then Q is true.

This can be abbreviated as P⇒ Q, which is read ‘P implies Q’.
� To give a direct proof of a conditional statement P⇒ Q, we assume that P is true and

show that Q follows.

Exercise 6ASkill-
sheet

1Example 1 Assume that m is even and n is even. Prove that:

m + n is evena mn is even.b

2 Assume that m is odd and n is odd. Prove that m + n is even.

3 Assume that m is even and n is odd. Prove that mn is even.

4Example 2 Suppose that m is divisible by 3 and n is divisible by 7. Prove that:

mn is divisible by 21a m2n is divisible by 63.b

5 Suppose that m and n are perfect squares. Show that mn is a perfect square.

6 Let m and n be integers. Prove that (m + n)2 − (m − n)2 is divisible by 4.

7 Suppose that n is an even integer. Prove that n2 − 6n + 5 is odd.

8 Suppose that n is an odd integer. Prove that n2 + 8n + 3 is even.

9 Let n ∈ Z. Prove that 5n2 + 3n + 7 is odd.
Hint: Consider the cases when n is odd and n is even.

10Example 3 Let x and y be positive real numbers. Show that if x > y, then x4 > y4.

11Example 4 Let x, y ∈ R. Show that x2 + y2 ≥ 2xy.
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12Example 5 Every person on an island is either a knight or a knave. Knights always tell the truth,
and knaves always lie. Alice and Bob are residents on the island. Determine whether
Alice and Bob are knights or knaves in each of the following separate instances:

a Alice says: ‘We are both knaves.’
b Alice says: ‘We are both of the same kind.’ Bob says: ‘We are of a different kind.’
c Alice says: ‘Bob is a knave.’ Bob says: ‘Neither of us is a knave.’

13 The diagram shows that 9 can be written as the difference of
two squares: 9 = 52 − 42.

a Draw another diagram to show that 11 can be written as the
difference of two squares.

b Prove that every odd number can be written as the difference
of two squares.

c Hence, express 101 as the difference of two squares.

14 a Consider the numbers
9
10

and
10
11

. Which is larger?

b Let n be a natural number. Prove that
n

n + 1
>

n − 1
n

.

15 a Prove that
1

10
−

1
11
<

1
100

b Let n > 0. Prove that
1
n
−

1
n + 1

<
1
n2

16 Let a, b ∈ R. Prove that
a2 + b2

2
≥

(a + b
2

)2
.

17 a Expand (x − y)(x2 + xy + y2).
b Prove that x2 + yx + y2 ≥ 0 for all x, y ∈ R.

Hint: Complete the square by thinking of y as a constant.
c Hence, prove that if x ≥ y, then x3 ≥ y3.

18 Sally travels from home to work at a speed of 12 km/h and immediately returns home at
a speed of 24 km/h.

a Show that her average speed is 16 km/h.
b Now suppose that Sally travels to work at a speed of a km/h and immediately returns

home at a speed of b km/h. Show that her average speed is
2ab

a + b
km/h.

c Let a and b be any two positive real numbers. Prove that

a + b
2
≥

2ab
a + b

Note: This proves that Sally’s average speed for the whole journey can be no greater
than the average of her speeds for the two individual legs of the journey.
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6B Proof by contrapositive
The negation of a statement
To negate a statement P we write its very opposite, which we call ‘not P’. For example,
consider the following four statements and their negations.

P not P

The sky is green. (false) The sky is not green. (true)

1 + 1 = 2 (true) 1 + 1 , 2 (false)

All prime numbers are odd. (false) There exists an even prime number. (true)

All triangles have three sides. (true) Some triangle does not have three sides. (false)

Notice that negation turns a true statement into a false statement, and a false statement into a
true statement.

Write down each statement and its negation. Which of the statement and its negation is
true and which is false?

2 > 1a 5 is divisible by 3b
The sum of any two odd numbers is even.c
There are two primes whose product is 12.d

Example 6

Solution

a P: 2 > 1 (true)

not P: 2 ≤ 1 (false)

b P: 5 is divisible by 3 (false)

not P: 5 is not divisible by 3 (true)

c P: The sum of any two odd numbers is even. (true)

not P: There are two odd numbers whose sum is odd. (false)

d P: There are two primes whose product is 12. (false)

not P: There are no two primes whose product is 12. (true)

De Morgan’s laws
Negating statements that involve ‘and’ and ‘or’ requires the use of De Morgan’s laws.

De Morgan’s laws

not (P and Q) is the same as (not P) or (not Q)

not (P or Q) is the same as (not P) and (not Q)
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Write down each statement and its negation. Which of the statement and its negation is
true and which is false?

6 is divisible by 2 and 3a 10 is divisible by 2 or 7b

Example 7

Solution

a P: 6 is divisible by 2 and 6 is divisible by 3 (true)

not P: 6 is not divisible by 2 or 6 is not divisible by 3 (false)

b P: 10 is divisible by 2 or 10 is divisible by 7 (true)

not P: 10 is not divisible by 2 and 10 is not divisible by 7 (false)

Every person on an island is either a knight or a knave. Knights always tell the truth, and
knaves always lie. Alice and Bob are residents on the island. Alice says: ‘I am a knave or
Bob is a knight.’ What are Alice and Bob?

Example 8

Solution
We will prove that Alice is a knight and Bob is a knight.

Case 1
Suppose Alice is a knave.
⇒ Alice is not telling the truth.
⇒ Alice is a knight AND Bob is a knave.
⇒ Alice is a knight and a knave.
This is impossible.

Case 2
Suppose Alice is a knight.
⇒ Alice is telling the truth.
⇒ Alice is a knave OR Bob is a knight.
⇒ Bob is a knight.

Therefore we conclude that Alice must be a knight and Bob must be a knight.

Proof by contrapositive
Consider this statement:

Statement If it is the end of term then the students are happy.

By switching the hypothesis and the conclusion and negating both, we obtain the
contrapositive statement:

Contrapositive If the students are not happy then it is not the end of term.

Note that the original statement and its contrapositive are logically equivalent:

� If the original statement is true, then the contrapositive is true.
� If the original statement is false, then the contrapositive is false.

This means that to prove a conditional statement, we can instead prove its contrapositive.
This is helpful, as it is often easier to prove the contrapositive than the original statement.
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� The contrapositive of P⇒ Q is the statement (not Q)⇒ (not P).
� To prove P⇒ Q, we can prove the contrapositive instead.

Let n ∈ Z and consider this statement: If n2 is even, then n is even.

Write down the contrapositive.a Prove the contrapositive.b

Example 9

Solution
a If n is odd, then n2 is odd.
b Assume that n is odd. Then n = 2m + 1 for some m ∈ Z. Squaring n gives

n2 = (2m + 1)2

= 4m2 + 4m + 1

= 2(2m2 + 2m) + 1

= 2k + 1 where k = 2m2 + 2m ∈ Z

Therefore n2 is odd.

Note: Although we proved the contrapositive, remember that we have actually proved that
if n2 is even, then n is even.

Let n ∈ Z and consider this statement: If n2 + 4n + 1 is even, then n is odd.

Write down the contrapositive.a Prove the contrapositive.b

Example 10

Solution
a If n is even, then n2 + 4n + 1 is odd.
b Assume that n is even. Then n = 2m for some m ∈ Z. Therefore

n2 + 4n + 1 = (2m)2 + 4(2m) + 1

= 4m2 + 8m + 1

= 2(2m2 + 4m) + 1

= 2k + 1 where k = 2m2 + 4m ∈ Z

Hence n2 + 4n + 1 is odd.

Let x and y be positive real numbers and consider this statement: If x < y, then
√

x <
√

y.

Write down the contrapositive.a Prove the contrapositive.b

Example 11

Solution

a If
√

x ≥
√

y, then x ≥ y.
b Assume that

√
x ≥
√

y. Then x ≥ y by Example 3, since
√

x and
√

y are positive.
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Summary 6B
� To negate a statement we write its opposite.
� For a statement P⇒ Q, the contrapositive is the statement (not Q)⇒ (not P).

That is, we switch the hypothesis and the conclusion and negate both.
� A statement and its contrapositive are logically equivalent.
� Proving the contrapositive of a statement may be easier than giving a direct proof.

Exercise 6BSkill-
sheet

1Example 6 Write down each statement and its negation. Which of the statement and its negation is
true and which is false?

1 > 0a 4 is divisible by 8b
Each pair of primes has an even sum.c
Some rectangle has four sides of equal length.d

2Example 7 Write down each statement and its negation. Which of the statement and its negation is
true and which is false?

14 is divisible by 7 and 2a 12 is divisible by 3 or 4b
15 is divisible by 3 and 6c 10 is divisible by 2 or 3d

3Example 8 Every person on an island is either a knight or a knave. Knights always tell the truth,
and knaves always lie. Alice and Bob are residents on the island. Alice says: ‘I am a
knave and Bob is a knight.’ What are Alice and Bob?

4Example 9 Write down the contrapositive version of each of these statements:

a If it is raining, then there are clouds in the sky.
b If you are smiling, then you are happy.
c If x = 1, then 2x = 2.
d If x > y, then x5 > y5.
e Let n ∈ Z. If n2 is odd, then n is odd.
f Let m, n ∈ Z. If m and n are odd, then mn is odd.
g Let m, n ∈ Z. If m + n is even, then m and n are either both even or both odd.

5Example 10 Let m, n ∈ Z. For each of the following statements, write down and prove the
contrapositive statement:

If 3n + 5 is even, then n is odd.a If n2 is odd, then n is odd.b
If n2 − 8n + 3 is even, then n is odd.c
If n2 is not divisible by 3, then n is not divisible by 3.d
If n3 + 1 is even, then n is odd.e
If mn is not divisible by 3, then m is not divisible by 3 and n is not divisible by 3.f
If m + n is odd, then m , n.g
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6 Let x, y ∈ R. For each of the following statements, write down and prove the
contrapositive statement:

a If x2 + 3x < 0, then x < 0.
b If x3 − x > 0, then x > −1.
c If x + y ≥ 2, then x ≥ 1 or y ≥ 1.
d If 2x + 3y ≥ 12, then x ≥ 3 or y ≥ 2.

7 Let m, n ∈ Z and consider this statement: If mn and m + n are even, then m and n
are even.

a Write down the contrapositive.
b Prove the contrapositive. You will have to consider cases.

8Example 11 Let x and y be positive real numbers.

a Prove that
√

x −
√

y =
x − y
√

x +
√

y

b Hence, prove that if x > y, then
√

x >
√

y.
c Give a simpler proof by considering the contrapositive.

6C Proof by contradiction
There are various instances when we want to prove mathematically that something cannot be
done. To do this, we assume that it can be done, and then show that something goes horribly
wrong. Let’s first look at a familiar example from geometry.

An angle is called reflex if it exceeds 180◦. Prove that no quadrilateral has more than one
reflex angle.

Example 12

Solution
If there is more than one reflex angle, then the angle sum must exceed 2 × 180◦ = 360◦.
This contradicts the fact that the angle sum of any quadrilateral is exactly 360◦. Therefore
there cannot be more than one reflex angle.

The example above is a demonstration of a proof by contradiction. The basic outline of a
proof by contradiction is:

1 Assume that the statement we want to prove is false.
2 Show that this assumption leads to mathematical nonsense.
3 Conclude that we were wrong to assume that the statement is false.
4 Conclude that the statement must be true.



6C Proof by contradiction 179

A Pythagorean triple consists of three natural numbers (a, b, c) satisfying

a2 + b2 = c2

Show that if (a, b, c) is a Pythagorean triple, then a, b and c cannot all be odd numbers.

Example 13

Solution
This will be a proof by contradiction.

Let (a, b, c) be a Pythagorean triple. Then a2 + b2 = c2.

Suppose that a, b and c are all odd numbers.
⇒ a2, b2 and c2 are all odd numbers.
⇒ a2 + b2 is even and c2 is odd.

Since a2 + b2 = c2, this gives a contradiction.

Therefore a, b and c cannot all be odd numbers.

Possibly the most well-known proof by contradiction is the following.

Theorem
√

2 is irrational.

Proof This will be a proof by contradiction.

Suppose that
√

2 is rational. Then
√

2 =
p
q

where p, q ∈ Z

We can assume that p and q have no common factors (or else they could be
cancelled). Then, squaring both sides and rearranging gives

p2 = 2q2 (1)

⇒ p2 is divisible by 2

⇒ p is divisible by 2 (by Example 9)

⇒ p = 2n for some n ∈ Z

⇒ (2n)2 = 2q2 (substituting into (1))

⇒ q2 = 2n2

⇒ q2 is divisible by 2

⇒ q is divisible by 2 (by Example 9)

Therefore both p and q are divisible by 2, which contradicts the fact that they have no
common factors.

Hence
√

2 is irrational.
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Suppose x satisfies 5x = 2. Show that x is irrational.

Example 14

Solution
Suppose that x is rational. Since x must be positive, we can write x =

m
n

where m, n ∈ N.
Therefore

5x = 2 ⇒ 5
m
n = 2

⇒
(
5

m
n
)n

= 2n (raise both sides to the power n)

⇒ 5m = 2n

The left-hand side of this equation is odd and the right-hand side is even. This gives a
contradiction, and so x is not rational.

We finish on a remarkable result, which is attributed to Euclid some 2300 years ago.

Theorem

There are infinitely many prime numbers.

Proof This is a proof by contradiction, so we will suppose that there are only finitely many
primes. This means that we can create a list that contains every prime number:

2, 3, 5, 7, . . . , p

where p is the largest prime number.

Now for the trick. We a create a new number N by multiplying each number in the list
and then adding 1:

N = 2 × 3 × 5 × 7 × · · · × p + 1

The number N is not divisible by any of the primes 2, 3, 5, 7, . . . , p, since it leaves a
remainder of 1 when divided by any of these numbers.

However, every natural number greater than 1 is divisible by a prime number. (This
is proved in Question 13 of Exercise 6F.) Therefore N is divisible by some prime
number q. But this prime number q is not in the list 2, 3, 5, 7, . . . , p, contradicting the
fact that our list contains every prime number.

Hence there are infinitely many prime numbers.

Summary 6C
� A proof by contradiction is used to prove that something cannot be done.
� These proofs always follow the same basic structure:

1 Assume that the statement we want to prove is false.
2 Show that this assumption leads to mathematical nonsense.
3 Conclude that we were wrong to assume that the statement is false.
4 Conclude that the statement must be true.
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Exercise 6CSkill-
sheet

1Example 12 Prove that every triangle has some interior angle with a magnitude of at least 60◦.

2 Prove that there is no smallest positive rational number.

3 Let p be a prime number. Show that
√

p is not an integer.

4Example 14 Suppose that 3x = 2. Prove that x is irrational.

5 Prove that log2 5 is irrational.

6 Suppose that x > 0 is irrational. Prove that
√

x is also irrational.

7 Suppose that a is rational and b is irrational. Prove that a + b is irrational.

8 Suppose that c2 − b2 = 4. Prove that b and c cannot both be natural numbers.

9 Let a, b and c be real numbers with a , 0. Prove by contradiction that there is only one
solution to the equation ax + b = c.

10 a Prove that all primes p > 2 are odd.
b Hence, prove that there are no two primes whose sum is 1001.

11 a Prove that there are no integers a and b for which 42a + 7b = 1.
Hint: The left-hand side is divisible by 7.

b Prove that there are no integers a and b for which 15a + 21b = 2.

12 a Prove that if n2 is divisible by 3, then n is divisible by 3.
Hint: Prove the contrapositive by considering two cases.

b Hence, prove that
√

3 is irrational.

13 a Prove that if n3 is divisible by 2, then n is divisible by 2.
Hint: Prove the contrapositive.

b Hence, prove that 3√2 is irrational.

14 Prove that if a, b ∈ Z, then a2 − 4b − 2 , 0.

15 a Let a, b, n ∈ N. Prove that if n = ab, then a ≤
√

n or b ≤
√

n.
b Hence, show that 97 is a prime number.

16 a Let m be an integer. Prove that m2 is divisible by 4 or leaves a remainder of 1.
Hint: Suppose that m = 4n + r and consider m2 for r = 0, 1, 2, 3.

b Let a, b, c ∈ Z. Prove by contradiction: If a2 + b2 = c2, then a is even or b is even.

17 a Let a, b, c, d ∈ Z. Prove that if a + b
√

2 = c + d
√

2, then a = c and b = d.

b Hence, find c, d ∈ Z if
√

3 + 2
√

2 = c + d
√

2. Hint: Square both sides.

18 Let a, b, c ∈ Z. Prove that if a, b and c are all odd, then the equation ax2 + bx + c = 0
cannot have a rational solution.
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6D Equivalent statements
The converse of a statement
At the beginning of this chapter, we proved Pythagoras’ theorem. Consider any triangle with
side lengths a, b and c.

Statement If the angle between a and b is 90◦ then a2 + b2 = c2.

By switching the hypothesis and the conclusion, we obtain the converse statement:

Converse If a2 + b2 = c2 then the angle between a and b is 90◦.

For this example, the converse is also a true statement.

When we switch the hypothesis and the conclusion of a conditional statement, P⇒ Q,
we obtain the converse statement, Q⇒ P.

Note: The converse of a true statement may not be true. For example:

Statement If it is raining, then there are clouds in the sky. (true)

Converse If there are clouds in the sky, then it is raining. (false)

Let x and y be positive real numbers. Consider the statement: If x < y, then x2 < y2.

a Write down the converse of this statement.
b Prove the converse.

Example 15

Solution
a If x2 < y2, then x < y.

b Assume that x2 < y2. Then, since both x and y are positive,

x2 − y2 < 0 (subtract y2)

⇒ (x − y)(x + y) < 0 (factorising)

⇒ x − y < 0 (divide both sides by x + y > 0)

⇒ x < y

as required.

Let m and n be integers. Consider the statement: If m and n are even, then m + n is even.

a Write down the converse of this statement.
b Show that the converse is not true.

Example 16



6D Equivalent statements 183

Solution
a If m + n is even, then m is even and n is even.

b Clearly 1 + 3 = 4 is even, although 1 and 3 are not.

Equivalent statements
Now consider the following two statements:

P: your heart is beating

Q: you are alive

Notice that both P⇒ Q and its converse Q⇒ P are true statements. In this case, we say that
P and Q are equivalent statements and we write

P⇔ Q

We will also say that P is true if and only if Q is true. So in the above example, we can say

Your heart is beating if and only if you are alive.

To prove that two statements P and Q are equivalent, you have to prove two things:

P⇒ Q and Q⇒ P

Let n ∈ Z. Prove that n is even if and only if n + 1 is odd.

Example 17

Solution
(⇒) Assume that n is even. Then n = 2m for some m ∈ Z.

Therefore n + 1 = 2m + 1, and so n + 1 is odd.

(⇐) Assume that n + 1 is odd. Then n + 1 = 2m + 1 for some m ∈ Z.
Subtracting 1 from both sides gives n = 2m. Therefore n is even.

Note: To prove that P⇔ Q, we have to show that P⇒ Q and P⇐ Q. When we are about to
prove P⇒ Q, we write (⇒). When we are about to prove P⇐ Q, we write (⇐).

Summary 6D
� For a statement P⇒ Q, the converse is the statement Q⇒ P.

That is, we switch the hypothesis and the conclusion.
� If P⇒ Q is true and Q⇒ P is true, then we say that P is equivalent to Q, or that

P is true if and only if Q is true.
� If P and Q are equivalent, we write P⇔ Q.
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Exercise 6DSkill-
sheet

1Example 15 Write down and prove the converse of each of these statements:

a Let x ∈ R. If 2x + 3 = 5, then x = 1.
b Let n ∈ Z. If n is odd, then n − 3 is even.
c Let m ∈ Z. If m2 + 2m + 1 is even, then m is odd.
d Let n ∈ Z. If n2 is divisible by 5, then n is divisible by 5.

2Example 16 Let m and n be integers. Consider the statement: If m and n are even, then mn is a
multiple of 4.

a Write down the converse of this statement.
b Show that the converse is not true.

3 Which of these pairs of statements are equivalent?

a P: Vivian is in China.

Q: Vivian is in Asia.

b P: 2x = 4

Q: x = 2

c P: x > 0 and y > 0

Q: xy > 0

d P: m is even or n is even, where m, n ∈ Z

Q: mn is even, where m, n ∈ Z

4Example 17 Let n be an integer. Prove that n + 1 is odd if and only if n + 2 is even.

5 Let n ∈ N. Prove that n2 − 4 is a prime number if and only if n = 3.

6 Let n be an integer. Prove that n3 is even if and only if n is even.

7 Let n be an integer. Prove that n is odd if and only if n = 4k ± 1 for some k ∈ Z.

8 Let x, y ∈ R. Prove that (x + y)2 = x2 + y2 if and only if x = 0 or y = 0.

9 Let m and n be integers.

a By expanding the right-hand side, prove that m3 − n3 = (m − n)(m2 + mn + n2).
b Hence, prove that m − n is even if and only if m3 − n3 is even.

10 Prove that an integer is divisible by 4 if and only if the number formed by its last two
digits is divisible by 4. Hint: 100 is divisible by 4.
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6E Disproving statements
Quantification using ‘for all’ and ‘there exists’
For all
Universal quantification claims that a property holds for all members of a given set. For
example, consider this statement:

Statement For all natural numbers n, we have 2n ≥ n + 1.

To prove that this statement is true, we need to give a general argument that applies to every
natural number n.

There exists
Existential quantification claims that a property holds for at least one member of a given
set. For example, consider this statement:

Statement There exists an integer m such that m2 = 25.

To prove that this statement is true, we just need to give an example: 5 ∈ Z with 52 = 25.

Rewrite each statement using either ‘for all’ or ‘there exists’:

a Some real numbers are irrational.
b Every integer that is divisible by 4 is also divisible by 2.

Example 18

Solution
a There exists x ∈ R such that x < Q.
b For all m ∈ Z, if m is divisible by 4, then m is divisible by 2.

Negating ‘for all’ and ‘there exists’
To negate a statement involving a quantifier, we interchange ‘for all’ with ‘there exists’ and
then negate the rest of the statement.

Write down the negation of each of the following statements:

a For all natural numbers n, we have 2n ≥ n + 1.
b There exists an integer m such that m2 = 4 and m3 = −8.

Example 19

Solution
a There exists a natural number n such that 2n < n + 1.
b For all integers m, we have m2 , 4 or m3 , −8.

Note: For part b, we used one of De Morgan’s laws.
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Notation
The words ‘for all’ can be abbreviated using the turned A symbol, ∀. The words ‘there exists’
can be abbreviated using the turned E symbol, ∃. For example:

� ‘For all natural numbers n, we have 2n ≥ n + 1’ can be written as (∀n ∈ N) 2n ≥ n + 1.
� ‘There exists an integer m such that m2 = 25’ can be written as (∃m ∈ Z) m2 = 25.

Despite the ability of these new symbols to make certain sentences more concise, we do not
believe that they make written sentences clearer. Therefore we have avoided using them in
this chapter.

Counterexamples
Consider the quadratic function f (n) = n2 − n + 11. Notice how f (n) is a prime number for
small natural numbers n:

n 1 2 3 4 5 6 7 8 9 10

f (n) 11 13 17 23 31 41 53 67 83 101

From this, we might be led to believe that the following statement is true:

Statement For all natural numbers n, the number f (n) is prime.

We call this a universal statement, because it asserts the truth of a statement without
exception. So to disprove a universal statement, we need only show that it is not true in
some particular instance. For our example, we need to find n ∈ N such that f (n) is not prime.
Luckily, we do not have to look very hard.

Let f (n) = n2 − n + 11. Disprove this statement: For all n ∈ N, the number f (n) is prime.

Example 20

Solution
When n = 11, we obtain

f (11) = 112 − 11 + 11 = 112

Therefore f (11) is not prime.

To disprove a statement of the form P⇒ Q, we simply need to give one example for
which P is true and Q is not true. Such an example is called a counterexample.

Find a counterexample to disprove this statement: For all x, y ∈ R, if x > y, then x2 > y2.

Example 21

Solution
Let x = 1 and y = −2. Clearly 1 > −2, but 12 = 1 ≤ 4 = (−2)2.
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Disproving existence statements
Consider this statement:

Statement There exists n ∈ N such that n2 + 3n + 2 is a prime number.

We call this an existence statement, because it claims the existence of an object possessing a
particular property. To show that such a statement is false, we prove that its negation is true:

Negation For all n ∈ N, the number n2 + 3n + 2 is not a prime number.

This is easy to prove, as

n2 + 3n + 2 = (n + 1)(n + 2)

is clearly a composite number for each n ∈ N.

Disprove this statement: There exists n ∈ N such that n2 + 13n + 42 is a prime number.

Example 22

Solution
We need to prove that, for all n ∈ N, the number n2 + 13n + 42 is not prime.

This is true, since

n2 + 13n + 42 = (n + 6)(n + 7)

is clearly a composite number for each n ∈ N.

Show that this statement is false: There exists some real number x such that x2 = −1.

Example 23

Solution
We have to prove that the negation is true: For all real numbers x, we have x2 , −1.

This is easy to prove since, for any real number x, we have x2 ≥ 0 and so x2 , −1.

Summary 6E
� A universal statement claims that a property holds for all members of a given set.

Such a statement can be written using the quantifier ‘for all’.
� An existence statement claims that a property holds for some member of a given set.

Such a statement can be written using the quantifier ‘there exists’.
� A universal statement of the form P⇒ Q can be disproved by giving one example of

an instance when P is true but Q is not.
� Such an example is called a counterexample.
� To disprove an existence statement, we prove that its negation is true.
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Exercise 6ESkill-
sheet

1Example 18 Which of the following are universal statements (‘for all’) and which are existence
statements (‘there exists’)?

a For each n ∈ N, the number 5n2 + 3n + 7 is odd.
b There is an even prime number.
c Every natural number greater than 1 has a prime factorisation.
d All triangles have three sides.
e Some natural numbers are primes.
f At least one real number x satisfies the equation x2 − x − 1 = 0.
g Any positive real number has a square root.
h The angle sum of a triangle is 180◦.

2 Which of the following statements are true and which are false?

a There exists a real number x such that x2 = 2.
b There exists a real number x such that x2 < 0.
c For all natural numbers n, the number 2n − 1 is odd.
d There exists n ∈ N such that 2n is odd.
e For all x ∈ R, we have x3 ≥ 0.

3Example 19 Write down the negation of each of the following statements:

a For every natural number n, the number 2n2 − 4n + 31 is prime.
b For all x ∈ R, we have x2 > x.
c There exists x ∈ R such that 2 + x2 = 1 − x2.
d For all x, y ∈ R, we have (x + y)2 = x2 + y2.
e There exist x, y ∈ R such that x < y and x2 > y2.

4 Prove that each of the following statements is false by finding a counterexample:

aExample 20 For every natural number n, the number 2n2 − 4n + 31 is prime.
b If x, y ∈ R, then (x + y)2 = x2 + y2.
cExample 21 For all x ∈ R, we have x2 > x.
d Let n ∈ Z. If n3 − n is even, then n is even.
e If m, n ∈ N, then m + n ≤ mn.
f Let m, n ∈ Z. If 6 divides mn, then 6 divides m or 6 divides n.

5 Show that each of the following existence statements is false:

aExample 22 There exists n ∈ N such that 9n2 − 1 is a prime number.
b There exists n ∈ N such that n2 + 5n + 6 is a prime number.
cExample 23 There exists x ∈ R such that 2 + x2 = 1 − x2.



6E 6F Mathematical induction 189

6 Provide a counterexample to disprove each of the following statements.
Hint:

√
2 might come in handy.

a If a is irrational and b is irrational, then ab is irrational.
b If a is irrational and b is irrational, then a + b is irrational.
c If a is irrational and b is irrational, then

a
b

is irrational.

7 Let a ∈ Z.

a Prove that if a is divisible by 4, then a2 is divisible by 4.
b Prove that the converse is not true.

8 Let a, b ∈ Z.

a Prove that if a − b is divisible by 3, then a2 − b2 is divisible by 3.
b Prove that the converse is not true.

9 Prove that each of the following statements is false:

a There exist real numbers a and b such that a2 − 2ab + b2 = −1.

b There exists some real number x such that x2 − 4x + 5 =
3
4

.

10 The numbers {1, 2, . . . , 8} can be paired so that the sum of each pair is a square number:

1 + 8 = 9, 2 + 7 = 9, 3 + 6 = 9, 4 + 5 = 9

a Prove that you can also do this with the numbers {1, 2, . . . , 16}.
b Prove that you cannot do this with the numbers {1, 2, . . . , 12}.

11 Let f (n) = an2 + bn + c be a quadratic function, where a, b, c are natural numbers
and c ≥ 2. Show that there is an n ∈ N such that f (n) is not a prime number.

6F Mathematical induction
Consider the sum of the first n odd numbers:

1 = 1 = 12

1 + 3 = 4 = 22

1 + 3 + 5 = 9 = 32

1 + 3 + 5 + 7 = 16 = 42

From this limited number of examples, we could make the following proposition P(n) about
the number n: the sum of the first n odd numbers is n2. Since the nth odd number is 2n − 1,
we can write this proposition as

P(n): 1 + 3 + 5 + · · · + (2n − 1) = n2

However, we have to be careful here: Just because something looks true does not mean that it
is true. In this section, we will learn how to prove statements like the one above.
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The principle of mathematical induction
Imagine a row of dominoes extending infinitely to the right. Each of these dominoes can be
knocked over provided two conditions are met:

1 The first domino is knocked over.
2 Each domino is sufficiently close to the next domino.

· · ·

This scenario provides an accurate physical model of the following proof technique.

Principle of mathematical induction

Let P(n) be some proposition about the natural number n.

We can prove that P(n) is true for every natural number n as follows:

a Show that P(1) is true.
b Show that, for every natural number k, if P(k) is true, then P(k + 1) is true.

The idea is simple: Condition a tells us that P(1) is true. But then condition b means that
P(2) will also be true. However, if P(2) is true, then condition b also guarantees that P(3) is
true, and so on. This process continues indefinitely, and so P(n) is true for all n ∈ N.

P(1) is true ⇒ P(2) is true ⇒ P(3) is true ⇒ · · ·

Let’s see how mathematical induction is used in practice.

Prove that

1 + 3 + 5 + · · · + (2n − 1) = n2

for all n ∈ N.

Example 24

Solution
For each natural number n, let P(n) be the proposition:

1 + 3 + 5 + · · · + (2n − 1) = n2

Step 1 P(1) is the proposition 1 = 12, that is, 1 = 1. Therefore P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,

1 + 3 + 5 + · · · + (2k − 1) = k2

Step 3 We now have to prove that P(k + 1) is true, that is,

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1) = (k + 1)2

Notice that we have written the last and the second-last term in the summation.
This is so we can easily see how to use our assumption that P(k) is true.
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We have

LHS of P(k + 1) = 1 + 3 + 5 + · · · + (2k − 1) + (2k + 1)

= k2 + (2k + 1) (using P(k))

= (k + 1)2

= RHS of P(k + 1)

We have proved that if P(k) is true, then P(k + 1) is true, for every natural
number k.

By the principle of mathematical induction, it follows that P(n) is true for every natural
number n.

While mathematical induction is good for proving that formulas are true,
it rarely indicates why they should be true in the first place. The formula
1 + 3 + 5 + · · · + (2n − 1) = n2 can be discovered in the diagram shown on
the right.

Prove by induction that 7n − 4 is divisible by 3 for all n ∈ N.

Example 25

Solution
For each natural number n, let P(n) be the proposition:

7n − 4 is divisible by 3

Step 1 P(1) is the proposition 71 − 4 = 3 is divisible by 3. Clearly, P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,

7k − 4 = 3m

for some m ∈ Z.

Step 3 We now have to prove that P(k + 1) is true, that is, 7k+1 − 4 is divisible by 3.
We have

7k+1 − 4 = 7 × 7k − 4

= 7(3m + 4) − 4 (using P(k))

= 21m + 28 − 4

= 21m + 24

= 3(7m + 8)

Therefore 7k+1 − 4 is divisible by 3.

We have proved that if P(k) is true, then P(k + 1) is true, for every natural
number k.

Therefore P(n) is true for all n ∈ N, by the principle of mathematical induction.
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Proving inequalities
Induction can be used to prove certain inequalities.

For example, consider this table of values:

n 1 2 3 4 5

3n 3 9 27 81 243

3 × 2n 6 12 24 48 96

From the table, it certainly looks as though

3n > 3 × 2n for all n ≥ 3

We will prove this formally using induction; this time starting with P(3) instead of P(1).

Prove that 3n > 3 × 2n for every natural number n ≥ 3.

Example 26

Solution
For each natural number n ≥ 3, let P(n) be the proposition:

3n > 3 × 2n

Step 1 P(3) is the proposition 33 > 3 × 23, that is, 27 > 24. Therefore P(3) is true.

Step 2 Let k be a natural number with k ≥ 3, and assume P(k) is true. That is,

3k > 3 × 2k

Step 3 We now have to prove that P(k + 1) is true, that is,

3k+1 > 3 × 2k+1

We have

LHS of P(k + 1) = 3k+1

= 3 × 3k

> 3 × 3 × 2k (using P(k))

> 3 × 2 × 2k

= 3 × 2k+1

= RHS of P(k + 1)

We have proved that if P(k) is true, then P(k + 1) is true, for every natural
number k ≥ 3.

By the principle of mathematical induction, it follows that P(n) is true for every natural
number n ≥ 3.
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Applications to sequences
Induction proofs are also frequently used in the study of sequences.

Consider the sequence defined by the recurrence relation

tn+1 = 10tn − 9, t1 = 11

The first five terms of this sequence are listed in the following table.

n 1 2 3 4 5

tn 11 101 1001 10 001 100 001

Notice that each of these terms is one more than a power of 10. Let’s see if we can prove that
this is true for every term in the sequence.

Given t1 = 11 and tn+1 = 10tn − 9, prove that tn = 10n + 1.

Example 27

Solution
For each natural number n, let P(n) be the proposition:

tn = 10n + 1

Step 1 Since t1 = 11 and 101 + 1 = 11, it follows that P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,

tk = 10k + 1

Step 3 We now have to prove that P(k + 1) is true, that is,

tk+1 = 10k+1 + 1

We have

LHS of P(k + 1) = tk+1

= 10tk − 9

= 10 × (10k + 1) − 9 (using P(k))

= 10k+1 + 10 − 9

= 10k+1 + 1

= RHS of P(k + 1)

We have proved that if P(k) is true, then P(k + 1) is true, for every natural
number k.

By the principle of mathematical induction, it follows that P(n) is true for every natural
number n.
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Tower of Hanoi
You have three pegs and a collection of n discs of different sizes. Initially, all the discs are
stacked in size order on the left-hand peg. Discs can be moved one at a time from one peg to
any other peg, provided that a larger disc never rests on a smaller one. The aim of the puzzle
is to transfer all the discs to another peg using the smallest possible number of moves.

Let an be the minimum number of moves needed to solve the Tower of Hanoi with n discs.

a Find a formula for an+1 in terms of an.
b Evaluate an for n = 1, 2, 3, 4, 5. Guess a formula for an in terms of n.
c Confirm your formula for an using mathematical induction.
d If n = 20, how many days are needed to transfer all the discs to another peg, assuming

that one disc can be moved per second?

Example 28

Solution
a Suppose there are n + 1 discs on the left-hand peg.

If we want to be able to move the largest disc to the right-hand peg, then first we must
transfer the other n discs to the centre peg. This takes a minimum of an moves.

It takes 1 move to transfer the largest disc to the right-hand peg. Now we can complete
the puzzle by transferring the n discs on the centre peg to the right-hand peg. This takes
a minimum of an moves.

Hence the minimum number of moves required to transfer all the discs is

an+1 = an + 1 + an

= 2an + 1

b We have a1 = 1, since one disc can be moved in one move. Using the recurrence
relation from part a, we find that

a2 = 2a1 + 1 = 2 × 1 + 1 = 3

a3 = 2a2 + 1 = 2 × 3 + 1 = 7

Continuing in this way, we obtain the following table.

n 1 2 3 4 5

an 1 3 7 15 31

It seems as though every term is one less than a power of 2. We guess that

an = 2n − 1
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c For each natural number n, let P(n) be the proposition:

an = 2n − 1

Step 1 The minimum number of moves required to solve the Tower of Hanoi puzzle
with one disc is 1. Since 21 − 1 = 1, it follows that P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,

ak = 2k − 1

Step 3 We now wish to prove that P(k + 1) is true, that is,

ak+1 = 2k+1 − 1

We have

LHS of P(k + 1) = ak+1

= 2ak + 1 (using part a)

= 2 × (2k − 1) + 1 (using P(k))

= 2k+1 − 2 + 1

= 2k+1 − 1

= RHS of P(k + 1)

We have proved that if P(k) is true, then P(k + 1) is true, for every natural
number k.

By the principle of mathematical induction, it follows that P(n) is true for all n ∈ N.
Hence we have shown that an = 2n − 1 for all n ∈ N.

d A puzzle with 20 discs requires a minimum of 220 − 1 seconds.

Since there are 60 × 60 × 24 = 86 400 seconds in a day, it will take

220 − 1
86 400

≈ 12.14 days

to complete the puzzle.

Summary 6F
The basic outline of a proof by mathematical induction is:

0 Define the proposition P(n) for n ∈ N.
1 Show that P(1) is true.
2 Assume that P(k) is true for some k ∈ N.
3 Show that P(k + 1) is true.
4 Conclude that P(n) is true for all n ∈ N.
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Exercise 6FSkill-
sheet

1Example 24 Prove each of the following by mathematical induction:

a 1 + 2 + · · · + n =
n(n + 1)

2

b 1 + x + x2 + · · · + xn =
1 − xn+1

1 − x
, where x , 1

c 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6

d 1 · 2 + 2 · 3 + · · · + n · (n + 1) =
n(n + 1)(n + 2)

3

e
1

1 × 3
+

1
3 × 5

+ · · · +
1

(2n − 1)(2n + 1)
=

n
2n + 1

f
(
1 −

1
22

) (
1 −

1
32

)
· · ·

(
1 −

1
n2

)
=

n + 1
2n

, for n ≥ 2

2Example 25 Prove each of the following divisibility statements by mathematical induction:

a 11n − 1 is divisible by 10 for all n ∈ N

b 32n + 7 is divisible by 8 for all n ∈ N

c 7n − 3n is divisible by 4 for all n ∈ N

d 5n + 6 × 7n + 1 is divisible by 4 for all n ∈ N

3Example 26 Prove each of the following inequalities by mathematical induction:

a 4n > 10 × 2n for all integers n ≥ 4
b 3n > 5 × 2n for all integers n ≥ 5
c 2n > 2n for all integers n ≥ 3
d 2n ≥ n2 for all integers n ≥ 4

4Example 27 Prove each of the following statements by mathematical induction:

a If an+1 = 2an − 1 and a1 = 3, then an = 2n + 1.
b If an+1 = 5an + 4 and a1 = 4, then an = 5n − 1.
c If an+1 = 2an − n + 1 and a1 = 3, then an = 2n + n.

5 Prove that 3n is odd for every n ∈ N.

6 a Prove by mathematical induction that n2 − n is even for all n ∈ N.
b Find an easier proof by factorising n2 − n.

7 a Prove by mathematical induction that n3 − n is divisible by 6 for all n ∈ N.
b Find an easier proof by factorising n3 − n.
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8 Consider the sequence defined by an+1 = 10an + 9, where a1 = 9.

a Find an for n = 1, 2, 3, 4, 5.
b Guess a formula for an in terms of n.
c Confirm that your formula is valid by using mathematical induction.

9 The Fibonacci numbers are defined by f1 = 1, f2 = 1 and fn+1 = fn + fn−1.

a Find fn for n = 1, 2, . . . , 10.
b Prove that f1 + f2 + · · · + fn = fn+2 − 1.
c Evaluate f1 + f3 + · · · + f2n−1 for n = 1, 2, 3, 4.
d Try to find a formula for the above expression.
e Confirm that your formula works using mathematical induction.
f Using induction, prove that every third Fibonacci number, f3n, is even.

10 Prove that 4n + 5n is divisible by 9 for all odd integers n.

11 Prove by induction that, for all n ∈ N, every set of numbers S with exactly n elements
has a largest element.

12 Standing around a circle, there are n friends and n thieves. You begin with no money,
but as you go around the circle clockwise, each friend will give you $1 and each thief
will steal $1. Prove that no matter where the friends and thieves are placed, it is possible
to walk once around the circle without going into debt, provided you start at the correct
point.

13 Prove by induction that every natural number n ≥ 2 is divisible by some prime number.
Hint: Let P(n) be the statement that every integer j such that 2 ≤ j ≤ n is divisible by
some prime number.

14 If n straight lines are drawn across a sheet of paper, they will
divide the paper into regions. Show that it is always possible
to colour each region black or white, so that no two adjacent
regions have the same colour.



R
ev

ie
w

198 Chapter 6: Proof

Assign-
ment

Nrich

Chapter summary

� A conditional statement has the form: If P is true, then Q is true.
This can be abbreviated as P⇒ Q, which is read ‘P implies Q’.

� To give a direct proof of a conditional statement P⇒ Q, we assume that P is true and
show that Q follows.

� The converse of P⇒ Q is Q⇒ P.
� Statements P and Q are equivalent if P⇒ Q and Q⇒ P. We write P⇔ Q.
� The contrapositive of P⇒ Q is (not Q)⇒ (not P).
� Proving the contrapositive of a statement may be easier than giving a direct proof.
� A proof by contradiction begins by assuming the negation of what is to be proved.
� A universal statement claims that a property holds for all members of a given set. Such a

statement can be written using the quantifier ‘for all’.
� An existence statement claims that a property holds for some member of a given set.

Such a statement can be written using the quantifier ‘there exists’.
� Counterexamples can be used to demonstrate that a universal statement is false.
� Mathematical induction is used to prove that a statement is true for all natural numbers.

Technology-free questions

1 For each of the following statements, if the statement is true, then prove it, and
otherwise give a counterexample to show that it is false:

a The sum of any three consecutive integers is divisible by 3.
b The sum of any four consecutive integers is divisible by 4.

2 Assume that n is even. Prove that n2 − 3n + 1 is odd.

3 Let n ∈ Z. Consider the statement: If n3 is even, then n is even.

a Write down the contrapositive of this statement.
b Prove the contrapositive.
c Hence, prove by contradiction that 3√6 is irrational.

4 a Show that one of three consecutive integers is always divisible by 3.
b Hence, prove that n3 + 3n2 + 2n is divisible by 3 for all n ∈ Z.

5 a Suppose that both m and n are divisible by d. Prove that m − n is divisible by d.
b Hence, prove that the highest common factor of two consecutive integers is 1.
c Find the highest common factor of 1002 and 999.

6 A student claims that
√

x + y =
√

x +
√

y, for all x ≥ 0 and y ≥ 0.

a Using a counterexample, prove that the equation is not always true.
b Prove that

√
x + y =

√
x +
√

y if and only if x = 0 or y = 0.
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7 Let n ∈ Z. Prove that n2 + 3n + 4 is even.
Hint: Consider the cases when n is odd and n is even.

8 Suppose that a, b, c and d are positive integers.

a Provide a counterexample to disprove the equation
a
b

+
c
d

=
a + c
b + d

b Now suppose that
c
d
>

a
b

. Prove that

a
b
<

a + c
b + d

<
c
d

9 Prove by mathematical induction that:

a 6n + 4 is divisible by 10 for all n ∈ N

b 12 + 32 + · · · + (2n − 1)2 =
n(2n − 1)(2n + 1)

3
for all n ∈ N

Multiple-choice questions

1 If m is even and n is odd, then which of these statements is true?

m + 2n is oddA m + n is evenB m × n is oddC
m2 − n2 is evenD m − 3n is oddE

2 If m is divisible by 6 and n is divisible by 15, then which of these statements might
be false?

m × n is divisible by 90A m × n is divisible by 30B m × n is divisible by 15C
m + n is divisible by 3D m + n is divisible by 15E

3 The contrapositive of P⇒ Q is

Q⇒ PA (not P)⇒ (not Q)B (not Q)⇒ (not P)C
Q⇔ PD (not P)⇔ (not Q)E

4 The converse of P⇒ Q is

(not Q)⇒ (not P)A Q⇒ PB Q⇔ QC
(not P)⇔ (not Q)D (not Q)⇔ (not P)E

5 If a, b and c are any real numbers with a > b, the statement that must be true is
1
a
>

1
b

A
1
a
<

1
b

B ac > bcC a + c > b + cD a2 > b2E

6 If n = (m− 1)(m− 2)(m− 3) where m is an integer, then n will not always be divisible by

1A 2B 3C 5D 6E
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7 Let m, n ∈ Z. Which of the following statements is false?

n is even if and only if n + 1 is oddA
m + n is odd if and only if m − n is oddB
m + n is even if and only if m and n are evenC
m and n are odd if and only if mn is oddD
mn is even if and only if m is even or n is evenE

8 Consider the statement: For all x ∈ R, there exists y ∈ R such that y2 = x.
Which of the following provides a counterexample to this statement?

x = 2, y =
√

2A x =
√

2, y = 2B x = −1C
x = 0D y = −1E

Extended-response questions

1 a Use the diagram on the right to deduce the equation

1 + 2 + · · · + n =
n(n + 1)

2
(1)

b Using equation (1), prove that the sum 1 + 2 + · · · + 99 is
divisible by 99.

c Using equation (1), prove that if n is odd, then the sum of any n consecutive odd
natural numbers is divisible by n.

d With the help of equation (1) and mathematical induction, prove that

13 + 23 + · · · + n3 = (1 + 2 + · · · + n)2 for all n ∈ N

2 For each natural number n, define n! = n × (n − 1) × · · · × 2 × 1.

a Prove that 10! + 2, 10! + 3, . . . , 10! + 10 are nine consecutive composite numbers.
Hint: The first number is divisible by 2.

b Find a sequence of ten consecutive composite numbers.

3 We call (a, b, c) a Pythagorean triple if a, b, c are natural numbers such that a2 + b2 = c2.

a Let n ∈ N. Prove that if (a, b, c) is a Pythagorean triple, then so is (na, nb, nc).
b Prove that there is only one Pythagorean triple (a, b, c) of consecutive natural

numbers.
c Prove that there is no Pythagorean triple (a, b, c) containing the numbers 1 or 2.

4 Let a be an integer that is not divisible by 3. We know that a = 3k + 1 or a = 3k + 2, for
some k ∈ Z.

a Show that a2 must leave a remainder of 1 when divided by 3.
b Hence, prove that if (a, b, c) is any Pythagorean triple, then a or b is divisible by 3.
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5 a Prove by mathematical induction that n2 + n is even for all n ∈ N.
b Find an easier proof by factorising n2 + n.
c Hence, prove that if n is odd, then there exists an integer k such that n2 = 8k + 1.

6 Let n ∈ Z and consider the statement: If n is divisible by 8, then n2 is divisible by 8.

a Prove the statement.
b Write down the converse of the statement.
c If the converse is true, prove it. Otherwise, give a counterexample.

7 Goldbach’s conjecture is that every even integer greater than 2 can be expressed as the
sum of two primes. To date, no one has been able to prove this, although it has been
verified for all integers less than 4 × 1018.

a Express 100 and 102 as the sum of two prime numbers.
b Prove that 101 cannot be written as the sum of two prime numbers.
c Express 101 as the sum of three prime numbers.
d Assuming that Goldbach’s conjecture is true, prove that every odd integer greater

than 5 can be written as the sum of three prime numbers.

8 a Simplify the expression
1

n − 1
−

1
n

.

b Hence, show that

1
2 × 1

+
1

3 × 2
+

1
4 × 3

+ · · · +
1

n(n − 1)
= 1 −

1
n

c Give another proof of the above equation using mathematical induction.
d Using the above equation, prove that

1
12 +

1
22 +

1
32 + · · · +

1
n2 < 2 for all n ∈ N

9 a Let x ≥ 0 and y ≥ 0. Prove that

x + y
2
≥
√

xy

by substituting x = a2 and y = b2 into
x + y

2
−
√

xy.
b Using the above inequality, or otherwise, prove each of the following:

i If a > 0, then a +
1
a
≥ 2.

ii If a, b and c are positive real numbers, then (a + b)(b + c)(c + a) ≥ 8abc.
iii If a, b and c are positive real numbers, then a2 + b2 + c2 ≥ ab + bc + ca.

c Take any rectangle of length x and width y. Prove that a square with the same
perimeter has an area greater than or equal to that of the rectangle.



R
ev

ie
w

202 Chapter 6: Proof

10 Exactly one of the following three people is lying. Who is the liar?

� Jay says: ‘Kaye is lying.’
� Kaye say: ‘Elle is lying.’
� Elle says: ‘I am not lying.’

11 There are four sentences written below. Which of them is true?

� Exactly one of these statements is false.
� Exactly two of these statements are false.
� Exactly three of these statements are false.
� Exactly four of these statements are false.

12 We will say that a set of numbers can be split if it can be divided into two groups
so that no two numbers appear in the same group as their sum. For example, the set
{1, 2, 3, 4, 5, 6} can be split into the two groups {1, 2, 4} and {3, 5, 6}.

a Prove that the set {1, 2, . . . , 8} can be split.
b Hence, explain why the set {1, 2, . . . , n} can be split, where 1 ≤ n ≤ 8.
c Prove that it is impossible to split the set {1, 2, . . . , 9}.
d Hence, prove that it is impossible to split the set {1, 2, . . . , n}, where n ≥ 9.

13 Consider the set of six 2 × 2 square tiles shown below.

A B C D E F

a Tile the 2 × 12 grid shown using all six tiles, so
that neighbouring squares have matching colours
along the boundaries between tiles. Tiles can be
rotated.

b Prove that there are only four ways to tile the 4 × 6 grid shown
using all six tiles, so that neighbouring squares have matching
colours along the boundaries between tiles. Tiles can be rotated.
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Logic

Objectives
I To understand the Boolean operations ∨,∧, ′ and the axioms of Boolean algebra.

I To understand the concept of a statement and its truth value.

I To use logical connectives to form compound statements.

I To construct truth tables for compound statements.

I To use truth tables to check the validity of arguments.

I To represent circuits using logic gates.

I To use Karnaugh maps to simplify Boolean expressions.

The words ‘or’, ‘and’, ‘not’, ‘true’ and ‘false’ are central to this chapter. You may have
already met these words in your studies of sets, probability and proofs. In this chapter, these
ideas are brought together in a formal way as Boolean algebra.

In Chapter 2, we looked at sets and operations on sets, including union ∪, intersection ∩ and
complementation ′. This chapter begins by studying these operations on the set of all subsets
of a given set. Such structures are examples of Boolean algebras.

We will see that the ideas of Boolean algebra lead to the formal study of logic. Some of
the concepts introduced in Chapter 6 will reappear in this chapter, including negation,
De Morgan’s laws, implication, converse and contrapositive.

Early work in logic was carried out by George Boole (1815–1864) in his book An
Investigation of the Laws of Thought, published in 1854. His aims in the book were to

. . . investigate the fundamental laws of those operations of the mind by which
reasoning is performed; to give expression to them in the symbolical language
of a Calculus, and upon this foundation to establish the science of Logic and
construct its method.
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The ideas of Boolean algebra were first applied to electrical circuits in the 1930s, notably
by Claude Shannon (1916–2001). Today, Boolean algebra forms the foundation of computer
science, and is central to electronics and programming.

7A The algebra of sets
In this section, we prove general statements involving the set operations of union, intersection
and complementation. Throughout this chapter, you will see analogous statements arising in
different contexts.

Basic set notation
We begin by revising set notation, which was introduced in Section 2A.

A set is any collection of objects where order is not important.

� The set of all the elements being considered in a given context is called the universal set
and is denoted by ξ.

� The set with no elements is called the empty set and is denoted by ∅.
� We say that a set B is a subset of a set A if each element of B is also in A. In this case,

we write B ⊆ A. Note that ∅ ⊆ A and A ⊆ A.

The following three operations on sets play an important role in this chapter.

The union of sets A and B is denoted by A ∪ B and consists
of all elements that belong to A or B:

A ∪ B = { x : x ∈ A or x ∈ B } A B

The intersection of sets A and B is denoted by A ∩ B and
consists of all elements that belong to both A and B:

A ∩ B = { x : x ∈ A and x ∈ B } A B

The complement of a set A is denoted by A′ and consists of
all elements of the universal set ξ that are not in A:

A′ = { x ∈ ξ : x < A } A

A′
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The set of all subsets of a set
In this section, we consider the operations ∪, ∩ and ′ on the set of all subsets of a set.

We will prove in Section 9G that a set with n elements has 2n subsets.

For example, consider the universal set ξ = {a, b, c, d}. This set has 16 subsets:

� the empty set: ∅
� the subsets of size 1: {a}, {b}, {c}, {d}
� the subsets of size 2: {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}

� the subsets of size 3: {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}

� the universal set: ξ.

We can make the following observations for these sets and, more generally, for any such
collection of subsets. We will illustrate how to prove these laws in Example 2. You will see
similar laws reoccurring throughout this chapter.

Laws of the algebra of sets

For A, B, C ⊆ ξ, the following are true:

Primary � A ∪ A = A � A ∩ A = A

� A ∪ ∅ = A � A ∩ ξ = A

� A ∪ ξ = ξ � A ∩ ∅ = ∅

Associativity � (A ∪ B) ∪C = A ∪ (B ∪C) � (A ∩ B) ∩C = A ∩ (B ∩C)

Commutativity � A ∪ B = B ∪ A � A ∩ B = B ∩ A

Distributivity � A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪C) � A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C)

Absorption � A ∪ (A ∩ B) = A � A ∩ (A ∪ B) = A

Complements � A ∪ A′ = ξ � A ∩ A′ = ∅

� ∅′ = ξ � ξ′ = ∅

� (A ∪ B)′ = A′ ∩ B′ � (A ∩ B)′ = A′ ∪ B′

� (A′)′ = A

You may notice that some of these laws are similar to laws of arithmetic involving the
operations + and × and the numbers 0 and 1. For example:

Algebra of sets A ∪ ∅ = A A ∩ ξ = A A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C)

Algebra of numbers a + 0 = a a × 1 = a a × (b + c) = a × b + a × c

You may also notice that all but one of these laws occurs as a member of a pair. The two laws
in each pair are called dual statements.
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Dual statements

For a given statement about sets, the dual statement is obtained by interchanging:

∪ with ∩, ∅ with ξ, ⊆ with ⊇

Write the dual of (A ∩ B′) ∩ B = ∅.

Example 1

Solution
(A ∪ B′) ∪ B = ξ

In the next example, we show a method for proving that two sets are equal. We also illustrate
the result with a Venn diagram. However, note that we cannot prove a result using a Venn
diagram, just as in geometry we cannot prove a result by simply drawing a diagram.

Two sets A and B are equal if they have exactly the same elements. That is, each element of
set A also belongs to set B, and each element of set B also belongs to set A.

Equality for sets

When proving that two sets are equal, we can use the following equivalence:

X ⊆ Y and Y ⊆ X ⇔ X = Y

a Illustrate (A ∪ B)′ = A′ ∩ B′ with Venn diagrams.
b Prove that (A ∪ B)′ = A′ ∩ B′.

Example 2

Solution
a We first draw the diagram for (A ∪ B)′.

(A ∪ B)′

A B

Note: Required regions are shaded.

To help draw the diagram for A′ ∩ B′, we draw diagrams for A′ and B′.

A′ B′ A′ ∩ B′

A B A B A B

The diagrams for (A ∪ B)′ and A′ ∩ B′ are the same.
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b We must show that (A ∪ B)′ ⊆ A′ ∩ B′ and A′ ∩ B′ ⊆ (A ∪ B)′.

Let x ∈ ξ.

x ∈ (A ∪ B)′ ⇒ x < A ∪ B

⇒ x < A and x < B

⇒ x ∈ A′ and x ∈ B′

⇒ x ∈ A′ ∩ B′

Hence (A ∪ B)′ ⊆ A′ ∩ B′.

i x ∈ A′ ∩ B′ ⇒ x ∈ A′ and x ∈ B′

⇒ x < A and x < B

⇒ x < A ∪ B

⇒ x ∈ (A ∪ B)′

Hence A′ ∩ B′ ⊆ (A ∪ B)′.

ii

Note: The proof of ii can be obtained from the proof of i by reversing the steps. This
can be shown by using the equivalence symbol,⇔, at each step in the proof of i.

The next example shows how we can use the algebra of sets to simplify expressions involving
∪, ∩ and ′. In Section 7C, we will see similar calculations in a more general context.

Simplify each of the following expressions:

X ∩ (Y ∩ X′)a X′ ∪ (Y ∩ X)b[
X′ ∪ (Y ∩ X)

]′c
[
(X ∩ Y ′) ∪ (X ∩ Y)

]′d

Example 3

Solution
We use the laws of the algebra of sets, which are listed earlier in this section.
The justification of each step is given on the right-hand side.

a X ∩ (Y ∩ X′) = X ∩ (X′ ∩ Y) by commutativity

= (X ∩ X′) ∩ Y by associativity

= ∅ ∩ Y as A ∩ A′ = ∅

= Y ∩ ∅ by commutativity

= ∅ as A ∩ ∅ = ∅

b X′ ∪ (Y ∩ X) = (X′ ∪ Y) ∩ (X′ ∪ X) by distributivity

= (X′ ∪ Y) ∩ (X ∪ X′) by commutativity

= (X′ ∪ Y) ∩ ξ as A ∪ A′ = ξ

= X′ ∪ Y as A ∩ ξ = A

c
[
X′ ∪ (Y ∩ X)

]′
= X′′ ∩ (Y ∩ X)′ as (A ∪ B)′ = A′ ∩ B′

= X ∩ (Y ′ ∪ X′) as A′′ = A and (A ∩ B)′ = A′ ∪ B′

= (X ∩ Y ′) ∪ (X ∩ X′) by distributivity

= (X ∩ Y ′) ∪ ∅ as A ∩ A′ = ∅

= X ∩ Y ′ as A ∪ ∅ = A
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d
[
(X ∩ Y ′) ∪ (X ∩ Y)

]′
= (X ∩ Y ′)′ ∩ (X ∩ Y)′ as (A ∪ B)′ = A′ ∩ B′

= (X′ ∪ Y ′′) ∩ (X′ ∪ Y ′) as (A ∩ B)′ = A′ ∪ B′

= (X′ ∪ Y) ∩ (X′ ∪ Y ′) as A′′ = A

= X′ ∪ (Y ∩ Y ′) by distributivity

= X′ ∪ ∅ as A ∩ A′ = ∅

= X′ as A ∪ ∅ = A

Summary 7A
� In the algebra of sets, we consider general statements involving the operations ∪, ∩

and ′ on the set of all subsets of a given set ξ. For example:

A ∪ B = B ∪ A• A ∩ B = B ∩ A•

A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪C)• A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C)•

A ∪ A′ = ξ• A ∩ A′ = ∅•

� For a given statement about sets, the dual statement is obtained by interchanging:

∪ with ∩, ∅ with ξ, ⊆ with ⊇

� When proving that two sets are equal, we can use the following equivalence:

X ⊆ Y and Y ⊆ X ⇔ X = Y

Exercise 7A

1 Let ξ = {7, 8, 9, 10, 11}, A = {7, 9, 10, 11} and B = {8, 9}.
Show these sets on a Venn diagram and use the diagram to find:

A′a B′b A ∪ Bc (A ∪ B)′d A′ ∩ B′e

2 Define two subsets of N:

� X is the set of all natural numbers less than or equal to 5
� Y is the set of all prime numbers.

For each of the following, describe the given subset of N in terms of X and Y by using
suitable set operations:

{2, 3, 5}a {1, 4}b the set of all composite numbers greater than 5c

3 Draw this diagram six times. Use shading to
illustrate each of the following sets:

a A ∩ B ∩C b A ∩ B ∩C′

c A ∩ B′ ∩C′ d A′ ∩ B′ ∩C′

e A ∪ (B ∩C) f (A ∪ B) ∩ (A ∪C)
BA

C
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4 Define three subsets of N:

� A is the set of all natural numbers less than or equal to 6
� B is the set of all even numbers
� C is the set of all multiples of 3.

For each of the following, describe the given subset of N in terms of A, B and C by
using suitable set operations:

a {3, 6}
b {1, 3, 5}
c the set of all multiples of 6
d the set of all even numbers greater than 6
e the set containing all multiples of 3 and all odd numbers

5Example 1 Write the dual of each of the following statements:

(A ∪ ξ) ∩ (A ∩ ∅) = ∅a If A ∩ B = ∅, then A′ ∪ B = A′.b
A ∩ B ⊆ A ∪ Bc

6Example 2b Prove each of the following results:

A ∪ B = B ∪ Aa A ∩ B = B ∩ Ab
(A ∩ B)′ = A′ ∪ B′c (A ∪ B) ∩ (A ∪ B′) = Ad
A = (A ∩ B) ∪ (A ∩ B′)e A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪C)f
A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C)g

7Example 3 Use the laws of the algebra of sets to simplify each of the following expressions:

X ∪ (Y ∪ X)a (Y ∪ Y ′) ∩ Yb
X ∩ (X′ ∩ Y)c X ∩ (Y ∪ X)d
X ∪ (Y ′ ∩ X)e

[
X′ ∪ (Y ∩ Z)

]′f
(X′ ∪ Y ′)′g (X′ ∩ Y ′)′h
(X ∩ Y ′) ∩ (X′ ∩ Y ′)i (X ∩ Y) ∪ (X ∩ Y ′)j[
(X ∪ Y) ∩ (X ∪ Y ′)

]′k (X ∪ Y ′) ∩
[
(X ∩ Z) ∪ (X ∩ Z′)

]′l

8 Prove each of the following:

a If A ⊆ B and B ⊆ C, then A ⊆ C.
b If A ⊆ B and A ⊆ C, then A ⊆ B ∩C.
c A ⊆ B⇔ B′ ⊆ A′

9 Set difference is defined as

A \ B = A ∩ B′ = { x : x ∈ A and x < B }

Prove each of the following results:

P \ (Q \ R) = (P \ Q) ∪ (P ∩ R)a P ∩ (Q \ R) = (P ∩ Q) \ (P ∩ R)b
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7B Switching circuits
Claude Shannon applied the ideas of logic to electrical circuits. In this chapter, we follow the
opposite path. We first introduce switching circuits, and then in the next section we see how
they can be interpreted using Boolean algebra.

Switches in parallel
The following diagram shows two switches x and y in parallel. If at least one of the switches
is closed, then current flows and the light is on. In this case, we say that the system is closed.

The four possible situations for two switches in parallel are summarised in the table.

x

y

Switches x and y in parallel

x y State of system

open open open

open closed closed

closed open closed

closed closed closed

Switches in series
The following diagram shows two switches x and y in series. If both switches are closed,
then current flows and the light is on. In this case, we say that the system is closed.

The four possible situations for two switches in series are summarised in the table.

x y

Switches x and y in series

x y State of system

open open open

open closed open

closed open open

closed closed closed

Complementary switches
The complement switch x′ is always in the opposite state to x.

x x′

open closed

closed open
New notation
We introduce a new notation that will be used throughout this chapter in different contexts.

� Use 0 for open.
� Use 1 for closed.
� Use the notation x ∨ y, read as ‘x or y’, for two switches x and y connected in parallel.
� Use the notation x ∧ y, read as ‘x and y’, for two switches x and y connected in series.
� Use x′ for the complement of x.
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Using this new notation, we now reproduce the tables for switches in parallel, switches in
series and complementary switches.

Or (parallel) And (series) Complement

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

x y x ∧ y

0 0 0

0 1 0

1 0 0

1 1 1

x x′

0 1

1 0

We now have three operations ∨, ∧ and ′ acting on the set {0, 1}.

Evaluate (1 ∨ 0) ∧ 1′.

Example 4

Solution

(1 ∨ 0) ∧ 1′ = 1 ∧ 1′

= 1 ∧ 0

= 0

This new notation allows us to represent more complicated switching circuits. You will see
the notation used again in the next section in a more general context.

Consider the expression

(x ∧ y) ∨ (z ∧ x′)

a Draw the switching circuit that is represented by this expression.
b Give a table that describes the operation of this circuit for all possible combinations of

switches x, y and z being open (0) and closed (1).

Example 5

Solution
a Switches x and y are connected in series, as are switches z and x′. These two pairs of

switches are then connected in parallel.

x

z

y

x′
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b For three variables x, y and z, there are 23 = 8 possible combinations of 0s and 1s.
This gives the first three columns of the table. To find the value of (x ∧ y) ∨ (z ∧ x′) in
each case, we start by finding the values of the simpler expressions x ∧ y and z ∧ x′.

x y z x′ x ∧ y z ∧ x′ (x ∧ y) ∨ (z ∧ x′)

0 0 0 1 0 0 0

0 0 1 1 0 1 1

0 1 0 1 0 0 0

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 1 0 1

1 1 1 0 1 0 1

Summary 7B
� Use 0 to represent a switch being open (i.e. off).
� Use 1 to represent a switch being closed (i.e. on).

� ‘Or’ (switches in parallel)
x

y

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

� ‘And’ (switches in series)

x y

x y x ∧ y

0 0 0

0 1 0

1 0 0

1 1 1

� ‘Not’ (complementary switches)
The complement switch x′ is always in the
opposite state to x.

x x′

0 1

1 0
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Exercise 7B

1Example 4 Evaluate each of the following:

1 ∨ 0′a 1′ ∧ 0b 1′ ∨ 0′c (1 ∧ 0)′d
(1 ∨ 0) ∨ 1′e 0 ∧ (1′ ∨ 0)f (1′ ∨ 1) ∧ (1 ∨ 0)g (1 ∨ 0) ∧ (1′ ∨ 0)′h

2 Each of the following tables describes the operation of a switching circuit. Complete
each table using 0s and 1s:

x y y′ x ∨ y′

0 0

0 1

1 0

1 1

a x y y′ x ∧ y′

0 0

0 1

1 0

1 1

b

x y x′ y′ x′ ∧ y′

0 0

0 1

1 0

1 1

c x y x′ y′ x′ ∨ y′

0 0

0 1

1 0

1 1

d

3Example 5 For each of the following expressions:

i draw the switching circuit that is represented by the expression
ii give the table with entries 0s and 1s describing the operation of this circuit.

x ∨ (y ∧ z)a (x ∧ y) ∨ zb x ∧ (y ∨ z)c
(x ∨ y) ∧ (x ∧ y)d (x ∨ y′) ∧ (y ∨ z)e (x ∧ y) ∨

(
(z ∨ x) ∧ y′

)
f

4 Draw the switching circuits and give the tables for x ∧ (x ∨ y) and x ∨ (x ∧ y). Hence
show that each of these circuits is equivalent to the circuit with one switch x.

5 a Draw the switching circuits and give the tables for x ∧ (y ∨ z) and (x ∧ y) ∨ (x ∧ z).
Hence show that these circuits are equivalent to each other.

b Draw the switching circuits and give the tables for x ∨ (y ∧ z) and (x ∨ y) ∧ (x ∨ z).
Hence show that these circuits are equivalent to each other.

c Draw the switching circuits and give the tables for (x ∧ y) ∨ z and (x ∨ y) ∧ z.
Hence show that these circuits are not equivalent to each other.

6 Draw the switching circuit for each of the following:

a (x ∧ y ∧ z) ∨ (x ∧ y ∧ z′) ∨ (x ∧ y′ ∧ z) ∨ (x′ ∧ y ∧ z)
b (x ∧ y ∧ z) ∨

(
x ∧ y ∧ (z ∨ w ∨ (u ∧ v)

)
c x ∧

(
(y ∧ (z ∨ w)

)
∨

(
z ∧ (u ∨ v)

))
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7C Boolean algebra
We have now seen two different examples of a Boolean algebra:

� the set of all subsets of a set together with the operations ∪, ∩ and ′

� the set {0, 1} together with the operations ∨, ∧ and ′.

In general, a Boolean algebra is a set B with operations ∨, ∧, ′ and distinguished
elements 0, 1 such that the following axioms are satisfied, for all x, y, z ∈ B:

Axiom 1 x ∨ y = y ∨ x (∨ is commutative)

x ∧ y = y ∧ x (∧ is commutative)

Axiom 2 (x ∨ y) ∨ z = x ∨ (y ∨ z) (∨ is associative)

(x ∧ y) ∧ z = x ∧ (y ∧ z) (∧ is associative)

Axiom 3 x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (∨ distributes over ∧)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (∧ distributes over ∨)

Axiom 4 x ∨ 0 = x (0 is the identity for ∨)

x ∧ 1 = x (1 is the identity for ∧)

Axiom 5 x ∨ x′ = 1 (′ is complementation)

x ∧ x′ = 0

Note: As in Section 7B, the symbols ∨ and ∧ can be read as ‘or’ and ‘and’ respectively.
Since the operations ∨ and ∧ are also analogous to the operations of union ∪ and
intersection ∩, the symbols ∨ and ∧ are also read as ‘join’ and ‘meet’.

Given these axioms, we can prove general results that are true for any Boolean algebra.

Prove that, for each Boolean algebra B and all x, y, a, b ∈ B:

x ∨ 1 = 1a x ∧ 0 = 0b
If a ∨ b = 1 and a ∧ b = 0, then a′ = b.c (x ∨ y)′ = x′ ∧ y′d

Example 6

Solution

a x ∨ 1 = (x ∨ 1) ∧ 1 (axiom 4)

= (x ∨ 1) ∧ (x ∨ x′) (axiom 5)

= x ∨ (1 ∧ x′) (axiom 3)

= x ∨ (x′ ∧ 1) (axiom 1)

= x ∨ x′ (axiom 4)

= 1 (axiom 5)
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b x ∧ 0 = (x ∧ 0) ∨ 0 (axiom 4)

= (x ∧ 0) ∨ (x ∧ x′) (axiom 5)

= x ∧ (0 ∨ x′) (axiom 3)

= x ∧ (x′ ∨ 0) (axiom 1)

= x ∧ x′ (axiom 4)

= 0 (axiom 5)

Note: Part b is the dual of part a.

c Let a ∈ B. We know that a ∨ a′ = 1 and a ∧ a′ = 0, by axiom 5. Assume that there is
another element b which satisfies a ∨ b = 1 and a ∧ b = 0. Then

a′ = a′ ∧ 1 (axiom 4)

= a′ ∧ (a ∨ b) since a ∨ b = 1

= (a′ ∧ a) ∨ (a′ ∧ b) (axiom 3)

= (a ∧ a′) ∨ (a′ ∧ b) (axiom 1)

= 0 ∨ (a′ ∧ b) (axiom 5)

= (a ∧ b) ∨ (a′ ∧ b) since a ∧ b = 0

= (b ∧ a) ∨ (b ∧ a′) (axiom 1)

= b ∧ (a ∨ a′) (axiom 3)

= b ∧ 1 (axiom 5)

= b (axiom 4)

d We want to apply part c with a = x ∨ y and b = x′ ∧ y′. To do this, we need to show
that a ∨ b = 1 and a ∧ b = 0. We have

a ∨ b = (x ∨ y) ∨ (x′ ∧ y′)

=
(
(x ∨ y) ∨ x′

)
∧

(
(x ∨ y) ∨ y′

)
(axiom 3)

=
(
y ∨ (x ∨ x′)

)
∧

(
x ∨ (y ∨ y′)

)
(axioms 1 and 2)

= (y ∨ 1) ∧ (x ∨ 1) (axiom 5)

= 1 ∧ 1 by part a

= 1 (axiom 4)

a ∧ b = (x ∨ y) ∧ (x′ ∧ y′)and

= (x′ ∧ y′) ∧ (x ∨ y) (axiom 1)

=
(
(x′ ∧ y′) ∧ x

)
∨

(
(x′ ∧ y′) ∧ y

)
(axiom 3)

=
(
y′ ∧ (x ∧ x′)

)
∨

(
x′ ∧ (y ∧ y′)

)
(axioms 1 and 2)

= (y′ ∧ 0) ∨ (x′ ∧ 0) (axiom 5)

= 0 ∨ 0 by part b

= 0 (axiom 4)

Hence (x ∨ y)′ = x′ ∧ y′ by part c.



216 Chapter 7: Logic

The set of all subsets of a set is a Boolean algebra with the operations ∪, ∩, ′ and the identity
elements ∅, ξ. All the laws for sets given in Section 7A have parallel results for Boolean
algebras in general. Some of them are axioms, and the others can be proved from the axioms
(see Example 6 and Question 2 in Exercise 7C).

Properties of Boolean algebras

Primary � x ∨ x = x � x ∧ x = x

� x ∨ 0 = x (A4) � x ∧ 1 = x (A4)
� x ∨ 1 = 1 � x ∧ 0 = 0

Associativity (A2) � (x ∨ y) ∨ z = x ∨ (y ∨ z) � (x ∧ y) ∧ z = x ∧ (y ∧ z)

Commutativity (A1) � x ∨ y = y ∨ x � x ∧ y = y ∧ x

Distributivity (A3) � x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) � x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Absorption � x ∨ (x ∧ y) = x � x ∧ (x ∨ y) = x

Complements � x ∨ x′ = 1 (A5) � x ∧ x′ = 0 (A5)
� 0′ = 1 � 1′ = 0
� (x ∨ y)′ = x′ ∧ y′ � (x ∧ y)′ = x′ ∨ y′

� (x′)′ = x

Note: The properties (x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ = x′ ∨ y′ are called De Morgan’s laws.

Boolean expressions and Boolean functions
A Boolean expression is an expression formed using ∨, ∧, ′, 0 and 1, such as x ∧ (y ∨ x)′.

You are familiar with defining functions on the set R of real numbers. We can use Boolean
expressions to define functions on the set {0, 1}. A simple example of a Boolean function is

f : {0, 1} → {0, 1}, f (x) = x ∨ 1

In this case, we have f (0) = 0 ∨ 1 = 1 and f (1) = 1 ∨ 1 = 1.

In general, a Boolean function has one or more inputs from {0, 1} and outputs in {0, 1}.

Give the table of values for the Boolean function f (x, y) = (x ∧ y) ∨ y′.

Example 7

Solution

x y y′ x ∧ y f (x, y) = (x ∧ y) ∨ y′

0 0 1 0 1

0 1 0 0 0

1 0 1 0 1

1 1 0 1 1
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The next example shows how to find a Boolean expression for a Boolean function given in
table form. We don’t give a formal proof, but you can easily verify the result by forming the
table of values. In Section 7F, we will see the importance of this process in electronics.

Find a Boolean expression for the Boolean function given by the following table.

x y z f (x, y, z)

1 0 0 0 0

2 0 0 1 0

3 0 1 0 1

4 0 1 1 0

5 1 0 0 1

6 1 0 1 0

7 1 1 0 1

8 1 1 1 1

Example 8

Solution
We look at the rows of the table in which the output is 1. These are rows 3, 5, 7 and 8.

Each row corresponds to some combination using ∧ of either x or x′, either y or y′, and
either z or z′.

For example, row 3 corresponds to x′ ∧ y ∧ z′. We use x for a 1-entry in the x-column and
use x′ for a 0-entry. The same rule is followed for the y- and z-columns.

� Row 3 x′ ∧ y ∧ z′

� Row 5 x ∧ y′ ∧ z′

� Row 7 x ∧ y ∧ z′

� Row 8 x ∧ y ∧ z

Now combine these terms using ∨. We obtain the Boolean expression

(x′ ∧ y ∧ z′) ∨ (x ∧ y′ ∧ z′) ∨ (x ∧ y ∧ z′) ∨ (x ∧ y ∧ z)

We can write the Boolean function as

f (x, y, z) = (x′ ∧ y ∧ z′) ∨ (x ∧ y′ ∧ z′) ∨ (x ∧ y ∧ z′) ∨ (x ∧ y ∧ z)

Note: You are already used to writing expressions such as a + b + c without brackets. The
brackets are not needed because

(a + b) + c = a + (b + c) for all a, b, c ∈ R

That is, the operation + is associative. The operations ∨ and ∧ are also associative,
and so we can write expressions such as x ∧ y ∧ z and w ∨ x ∨ y ∨ z unambiguously
without brackets.
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Equivalent Boolean expressions

Two Boolean expressions are equivalent if they represent the same Boolean function.

If two Boolean expressions represent the same Boolean function, then it is possible to derive
one expression from the other using the axioms of Boolean algebras.

Consider the two Boolean expressions(
(x ∨ y) ∧ (x′ ∨ y)

)
∨ x and x ∨ y

Show that these two expressions are equivalent by:

a showing that they represent the same Boolean function
b using the axioms and properties of Boolean algebras.

Example 9

Solution
a x y x ∨ y x′ x′ ∨ y (x ∨ y) ∧ (x′ ∨ y) ((x ∨ y) ∧ (x′ ∨ y)) ∨ x

0 0 0 1 1 0 0

0 1 1 1 1 1 1

1 0 1 0 0 0 1

1 1 1 0 1 1 1

Columns 3 and 7 of the table are the same, and therefore the two expressions determine
the same Boolean function.

b
(
(x ∨ y) ∧ (x′ ∨ y)

)
∨ x =

(
(y ∨ x) ∧ (y ∨ x′)

)
∨ x (axiom 1)

=
(
y ∨ (x ∧ x′)

)
∨ x (axiom 3)

= (y ∨ 0) ∨ x (axiom 5)

= y ∨ x (axiom 4)

= x ∨ y (axiom 1)

Summary 7C
� A Boolean algebra is a set B with operations ∨, ∧, ′ and distinguished elements 0, 1

such that the following axioms are satisfied, for all x, y, z ∈ B:

1 Commutativity x ∨ y = y ∨ x and x ∧ y = y ∧ x

2 Associativity (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z)
3 Distributivity x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
4 Identities x ∨ 0 = x and x ∧ 1 = x

5 Complementation x ∨ x′ = 1 and x ∧ x′ = 0

� A Boolean function has one or more inputs from {0, 1} and outputs in {0, 1}.
� Two Boolean expressions are equivalent if they represent the same Boolean function.
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Exercise 7C

1 Use the properties of Boolean algebras to simplify each of the following expressions:

a ∧ (b ∧ a′)a (a ∧ b′) ∧ a′b a ∨ (b ∨ a′)c
(a ∨ b′) ∨ a′d (a ∨ b) ∧ a′e a ∨ (b ∧ a′)f
a ∧ (b ∨ a′)g (a ∧ b) ∨ (a′ ∧ b)h (a ∨ b) ∨ (a′ ∨ b)i

2Example 6 Each of the following gives a template for proving a property of Boolean algebras,
where x and y are elements of a Boolean algebra B. Copy and complete each proof.

Proof that x ∨ x = x.

LHS = x ∨ x

= (x ∨ x) ∧ 1 (axiom 4)

= (x ∨ x) ∧ (x ∨ x′) (axiom 5)

= x ∨ ( ∧ ) (axiom 3)

= x ∨ (axiom )

= x (axiom )

= RHS

a Proof that x ∧ x = x.

LHS = x ∧ x

= (x ∧ x) ∨ 0 (axiom )

= (x ∧ x) ∨ (x ∧ x′) (axiom )

= x ∧ ( ∨ ) (axiom 3)

= x ∧ (axiom )

= x (axiom )

= RHS

b

Proof that x ∨ (x ∧ y) = x.

LHS = x ∨ (x ∧ y)

= (x ∧ 1) ∨ (x ∧ y) (axiom )

= x ∧ ( ∨ y) (axiom )

= x ∧ (y ∨ ) (axiom 1)

= x ∧ (Example 6a)

= x (axiom )

= RHS

c Proof that x ∧ (x ∨ y) = x.

LHS = x ∧ (x ∨ y)

= (x ∨ 0) ∧ (x ∨ y) (axiom )

= x ∨ ( ∧ y) (axiom )

= x ∨ (y ∧ ) (axiom 1)

= (Example 6b)

= (axiom )

= RHS

d

Proof that 0′ = 1.
We use the result from Example 6 c
with a = 0 and b = 1. We have

a ∨ b = 0 ∨ 1 = 1 (axioms 1 and )

a ∧ b = 0 ∧ 1 = 0 (axiom )

Hence 0′ = 1.

e Proof that 1′ = 0.
We use the result from Example 6 c
with a = 1 and b = 0. We have

a ∨ b = ∨ = (axiom )

a ∧ b = ∧ = (axioms 1 and )

Hence 1′ = 0.

f

Proof that (x′)′ = x.
We use the result from Example 6 c
with a = x′ and b = x. We have

a ∨ b = = (axioms and )

a ∧ b = = (axioms and )

Hence (x′)′ = x.

g
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3 Simplify (b ∧ c′) ∧ (d ∧ b′) by using the commutativity and associativity axioms. Hence
show that a ∨

(
(b ∧ c′) ∧ (d ∧ b′)

)
= a.

4Example 7 For each of the following Boolean functions, produce a table of values:

f (x, y) = (x ∨ y) ∧ x′a f (x, y) = (x ∨ y′) ∧ (x′ ∨ y′)b
f (x, y) = (x ∧ y′) ∧ (x′ ∧ y′)c f (x, y, z) = (x ∧ y′) ∨ zd
f (x, y, z) = (x ∨ y) ∧ ze f (x, y, z) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x)f

5 Draw a switching circuit for each of the following expressions. Try to simplify your
circuit by first simplifying the expression using the properties of Boolean algebras.

(x ∧ y) ∨ xa (x ∨ y) ∧ xb
(x ∧ y′) ∨ (x ∧ y′)c (x ∧ y′) ∨ (x′ ∧ y′)d
(x′ ∧ y′) ∨ (x′ ∧ z)e (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y)f

6Example 8 For each of the following, find a Boolean expression for the given Boolean function:

x y f (x, y)

0 0 1

0 1 1

1 0 0

1 1 1

a x y f (x, y)

0 0 1

0 1 1

1 0 0

1 1 0

b

x y z f (x, y, z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

c x y z f (x, y, z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

d

7Example 9 Show that the expressions (x′ ∨ y) ∧ (x ∨ y′) and (x ∧ y) ∨ (x′ ∧ y′) are equivalent by:

a showing that they represent the same Boolean function
b using the axioms and properties of Boolean algebras.



7D Logical connectives and truth tables 221

7D Logical connectives and truth tables
A statement is a sentence that is either true or false. Examples of statements are:

The boy plays tennis.� 5 + 7 = 12� 5 + 7 = 10�

Note that ‘5 + 7’ is not a statement.

A statement can be assigned a truth value: T if it is true, or F if it is false. For example,
the statement ‘5 + 7 = 12’ is true (T), while the statement ‘5 + 7 = 10’ is false (F).

A statement is often denoted by a capital letter such as A, B or C.

The logical connectives ‘or’, ‘and’, ‘not’
Logical connectives enable statements to be combined together to form new statements.

In English, two sentences may be combined by a grammatical connective to form a new
compound sentence. For example, consider the following sentences:

Gary went to the cinema.A Gary did not go to the cinema.B
Kay went to the cinema.C Gary and Kay went to the cinema.D

Statement B is the negation (not) of statement A. Statement D is the conjunction (and) of
statements A and C. The same can be done using logical connectives.

We will consider two statements about an integer n.

� Let G be the statement ‘n is odd’.
� Let H be the statement ‘n > 10’.

Given two statements, there are four possible combinations of
truth values, as shown in the table on the right.

G H

1 T T

2 T F

3 F T

4 F F

Or
The symbol ∨ is used for ‘or’.

� The statement G ∨ H is ‘n is odd or n > 10’.

The statement G ∨ H is known as the disjunction of G and H.
If either or both of the statements are true, then the compound
statement is true. If both are false, then the compound statement
is false. This is shown in the table on the right, which is called a
truth table.

Truth table for ‘or’

G H G ∨ H

T T T

T F T

F T T

F F F

And
The symbol ∧ is used for ‘and’.

� The statement G ∧ H is ‘n is odd and n > 10’.

The statement G ∧ H is known as the conjunction of G and H.
If both statements are true, then the compound statement is true.
If either or both are false, then the compound statement is false.
This can be shown conveniently in a truth table.

Truth table for ‘and’

G H G ∧ H

T T T

T F F

F T F

F F F
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Not
The symbol ¬ is used for ‘not’.

� The statement ¬G is ‘n is even’.
� The statement ¬H is ‘n ≤ 10’.

In general, the statement ¬A is called the negation of A and
has the opposite truth value to A.

Truth table for ‘not’

A ¬A

T F

F T

Note: The negation operation ¬ corresponds to complementation in Boolean algebra. But in
logic, it is common to use the notation ¬A instead of A′.

Truth tables for compound statements
More complicated compound statements can be built up using these three connectives.
For example:

� The statement ¬G ∧ ¬H is ‘n is even and n ≤ 10’.

We can use truth tables to find the truth values of compound statements.

To construct the truth table for ¬G ∧ ¬H, we first find the truth values for the simpler
statements ¬G and ¬H, and then use the truth table for ∧. Note that ¬G ∧ ¬H is true if and
only if both ¬G and ¬H are true.

G H ¬G ¬H ¬G ∧ ¬H

T T F F F

T F F T F

F T T F F

F F T T T

Write the truth table for ¬(A ∨ B).

Example 10

Solution
The truth values for the simpler statement A ∨ B are found first.

A B A ∨ B ¬(A ∨ B)

T T T F

T F T F

F T T F

F F F T
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Write the truth table for (A ∧ B) ∧ (¬A).

Example 11

Solution

A B A ∧ B ¬A (A ∧ B) ∧ (¬A)

T T T F F

T F F F F

F T F T F

F F F T F

Equivalent statements, tautologies and contradictions

Two statements that have the same truth values are logically equivalent.

Show that ¬(A ∧ B) is logically equivalent to ¬A ∨ ¬B.

Example 12

Solution

A B ¬A ¬B A ∧ B ¬(A ∧ B) ¬A ∨ ¬B

T T F F T F F

T F F T F T T

F T T F F T T

F F T T F T T

The truth values for ¬(A ∧ B) and ¬A ∨ ¬B are the same, so the statements are equivalent.

� A tautology is a statement which is true under all circumstances.
� A contradiction is a statement which is false under all circumstances.

Show that (¬A) ∨ (A ∨ B) is a tautology.

Example 13

Solution

A B ¬A A ∨ B (¬A) ∨ (A ∨ B)

T T F T T

T F F T T

F T T T T

F F T F T
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Show that (A ∨ B) ∧ (¬A ∧ ¬B) is a contradiction.

Example 14

Solution

A B ¬A ¬B A ∨ B ¬A ∧ ¬B (A ∨ B) ∧ (¬A ∧ ¬B)

T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T F

Implication
We now consider another logical connective, called implication.

For statements A and B, we can form the compound statement
A⇒ B, which is read as ‘A implies B’ or as ‘If A, then B’.

The truth table for⇒ is shown on the right.

It is useful to consider whether this truth table is consistent with
a ‘common sense’ view of implication.

� Let A be the statement ‘I am elected’.
� Let B be the statement ‘I will make public transport free’.

Truth table for ‘implies’

A B A⇒ B

T T T

T F F

F T T

F F T

Therefore A⇒ B is the statement ‘If I am elected, then I will make public transport free’.

Now consider each row of the truth table:

Row 1 I am elected (A is true) and public transport is made free (B is true). I have kept
my election promise. The statement A⇒ B is true.

Row 2 I am elected (A is true) but public transport is not made free (B is false). I have
broken my election promise. The statement A⇒ B is false.

Rows 3 & 4 I am not elected (A is false). Whether or not public transport is made free, I have
not broken my promise, as I was not elected. The statement A⇒ B is true.

Note that the only possible way that A⇒ B could be false is if I am elected but do not make
public transport free. Otherwise, the statement is not false, and therefore must be true.

In general, the statement A⇒ B is true, except when A is true and B is false.

The statement A⇒ B is logically equivalent to ¬A ∨ B, as
shown in the truth table on the right.

A B ¬A ¬A ∨ B

T T F T

T F F F

F T T T

F F T T
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Give the truth table for B⇒ (A ∨ ¬B).

Example 15

Solution

A B ¬B A ∨ ¬B B⇒ (A ∨ ¬B)

T T F T T

T F T T T

F T F F F

F F T T T

Note: To complete the last column of the table, we look for the rows in which B is true
and A ∨ ¬B is false. This is only row 3. In this case, the statement B⇒ (A ∨ ¬B)
is false. Otherwise, it is true.

Equivalence
Another logical connective is equivalence, which is
represented by the symbol⇔. It has the truth table shown.

You can check using truth tables that the statement A⇔ B is
logically equivalent to (A⇒ B) ∧ (B⇒ A).

Truth table for equivalence

A B A⇔ B

T T T

T F F

F T F

F F T

Give the truth table for (¬A ∨ ¬B)⇔ ¬(A ∧ B).

Example 16

Solution

A B ¬A ¬B A ∧ B ¬(A ∧ B) ¬A ∨ ¬B (¬A ∨ ¬B)⇔ ¬(A ∧ B)

T T F F T F F T

T F F T F T T T

F T T F F T T T

F F T T F T T T

Note: This statement is a tautology. The two statements ¬A ∨ ¬B and ¬(A ∧ B) are
logically equivalent.
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Converse and contrapositive
Let A be the statement ‘You study Mathematics’ and let B be the statement ‘You study
Physics’. The following two statements form a pair of converse statements:

� ‘If you study Mathematics, then you study Physics.’ (A⇒ B)
� ‘If you study Physics, then you study Mathematics.’ (B⇒ A)

The following two statements form a pair of contrapositive statements:

� ‘If you study Mathematics, then you study Physics.’ (A⇒ B)
� ‘If you do not study Physics, then you do not study Mathematics.’ (¬B⇒ ¬A)

In general, for a conditional statement A⇒ B:

� the converse statement is B⇒ A

� the contrapositive statement is ¬B⇒ ¬A.

Note: Using truth tables, you can check that a statement A⇒ B is equivalent to its
contrapositive ¬B⇒ ¬A, but is not equivalent to its converse B⇒ A.

Negation of an implication
Again consider the conditional statement ‘If you study Mathematics, then you study Physics’.

The only way this can be false is if you are studying Mathematics but not Physics. So the
negation of the statement is ‘You study Mathematics and you do not study Physics’.

For a conditional statement A⇒ B, the negation of the statement is A ∧ ¬B.

Note: Using a truth table, you can check that ¬(A⇒ B) and A ∧ ¬B are equivalent.

For each of the following conditional statements:

i write the converse ii write the contrapositive iii write the negation.

a If you know the password, then you can get in.
b Let n, a, b ∈ N. If n does not divide ab, then n does not divide a and n does not divide b.

Example 17

Solution
a i Converse If you can get in, then you know the password.

ii Contrapositive If you cannot get in, then you do not know the password.
iii Negation You know the password and you cannot get in.

b i Converse If n does not divide a and n does not divide b, then n does not divide ab.
ii Contrapositive If n divides a or n divides b, then n divides ab.
iii Negation n does not divide ab and n divides a or b.

Note that statement b and its contrapositive are true, but its converse is false.
(As a counterexample to the converse, we can take n = 6, a = 2 and b = 3.)
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The Boolean algebra of statements
Consider the set S of all statements together with the operations ∨, ∧ and ¬ and the special
statements F (always false) and T (always true). We can view S as a Boolean algebra,
provided we use equivalence (≡) instead of equality (=). For example, we have

A ∨ ¬A ≡ T and A ∧ ¬A ≡ F

for each statement A.

This means that the techniques we used to simplify Boolean expressions in Section 7C can be
used to help simplify compound statements down to simpler equivalent statements.

Summary 7D
� Logical connectives
• The symbol ∨ is used for ‘or’.
• The symbol ∧ is used for ‘and’.
• The symbol ¬ is used for ‘not’.
• The symbol⇒ is used for ‘implies’.
• The symbol⇔ is used for ‘is equivalent to’.

� Truth tables
Or

A B A ∨ B

T T T

T F T

F T T

F F F

• And

A B A ∧ B

T T T

T F F

F T F

F F F

• Not

A ¬A

T F

F T

•

Implies

A B A⇒ B

T T T

T F F

F T T

F F T

• Equivalence

A B A⇔ B

T T T

T F F

F T F

F F T

•

� Two statements are logically equivalent if they have the same truth values.
� A tautology is a statement which is true under all circumstances.
� A contradiction is a statement which is false under all circumstances.
� For a conditional statement A⇒ B:

• the converse statement is B⇒ A

• the contrapositive statement is ¬B⇒ ¬A.
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Exercise 7DSkill-
sheet

1 For each statement (P), write down its negation (¬P):

Your eyes are blue.a The sky is grey.b
This integer is odd.c I live in Switzerland.d
x > 2e This number is less than 100.f

2 Consider the following four statements.

A: It is dark.� B: It is cold.� C: It is good.� D: It is soft.�

Using the given table of opposites, write each of the following
statements in English:

a A ∨ B b A ∧ B c ¬A ∧ B

d ¬(A ∧ B) e C ∨ ¬A f ¬(A ∨ D)
g A ∨ ¬D

dark light

cold hot

good bad

soft hard

3 Consider the following four statements.

A: It is wet.� B: It is rough.� C: It is difficult.� D: It is expensive.�

Write each of the following in symbols:

It is rough and wet.a It is expensive or difficult.b
It is not difficult but is expensive.c It is not wet and not rough.d
It is not expensive and not difficult.e It is rough or wet.f

4 Consider the following four statements.

A: It is wet.� B: It is rough.� C: It is difficult.� D: It is expensive.�

Using the given table of opposites, write each of the
following statements in English:

a A ∨ B b A ∧ B

c ¬A ∧ B d ¬(A ∧ B)
e C ∨ ¬A f ¬(A ∨ D)
g A ∨ ¬D

wet dry

rough smooth

difficult easy

expensive inexpensive

5 Consider the following three statements for n a natural number.

� A: n is a prime number.
� B: n is an even number.
� C: n is divisible by 6.

Write each of the following in English as concisely as possible:

A ∨ Ba B ∧Cb A ∧ Bc ¬A ∧ Bd
¬(A ∧ B)e C ∨ ¬Af ¬(A ∨C)g A ∨ ¬Ch

6Example 10 Give the truth table for ¬(A ∧ B).

7Example 11 Give the truth table for (A ∨ B) ∧ (¬B).
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8Example 12 Show that each of the following pairs of statements are equivalent:

a ¬(A ∨ B) ¬A ∧ ¬B b ¬(¬A) A

c A ∨ A A d A ∨ B ¬(¬A ∧ ¬B)
e A ∧ B ¬(¬A ∨ ¬B) f A ∧ ¬B ¬(¬A ∨ B)

9Example 13 Show that (¬A ∧ ¬B) ∨ (B ∨ A) is a tautology.

10Example 14 Show that (A ∧ B) ∧ (¬B) is a contradiction.

11 Show that (¬A ∧ B) ∧ A is a contradiction.

12Example 15 Give a truth table for each of the following statements:

(A ∧ B)⇒ Aa (A ∨ B)⇒ Ab
(¬B ∨ ¬A)⇒ Ac (¬B ∧ A)⇒ Ad
(B ∨ ¬A)⇒ ¬Ae (¬B ∨ ¬A)⇒ (¬B ∧ A)f
(¬B ∨ A)⇒ ¬(B ∧ A)g ¬B ∧ (¬B⇒ A)h

13 Show that each of the following pairs of statements are equivalent:

a A ∧ B ¬(A⇒ ¬B)
b A ∨ B ¬A⇒ B

c A⇔ B ¬[(A⇒ B)⇒ ¬(B⇒ A)]

14 Show that each of the following is a tautology:

(A ∧ B)⇒ (A ∨ B)a [A ∧ (A⇒ B)]⇒ Bb [(A ∨ B) ∧ (¬A)]⇒ Bc

15Example 16 Show that ¬(P ∨ Q)⇔ (¬P ∧ ¬Q) is a tautology. Give the corresponding result for
sets A and B, and illustrate with a Venn diagram.

16 The logical connective nor is written symbolically as ↓. The statement A ↓ B is true if
and only if neither A nor B is true. Thus A ↓ B is equivalent to ¬(A ∨ B).

a Give the truth table for A ↓ B and B ↓ A.
b Show that A ↓ A is equivalent to ¬A.
c Show that [(A ↓ A) ↓ (B ↓ B)]⇔ (A ∧ B) is a tautology.
d Show that ¬(A ↓ B)⇔ (A ∨ B) is a tautology.

17 Using truth tables, show that the conditional statement A⇒ B is equivalent to its
contrapositive ¬B⇒ ¬A, but is not equivalent to its converse B⇒ A.

18 Use a truth table to show that the statement ¬(A⇒ B) is equivalent to A ∧ ¬B.

19Example 17 For each of the following conditional statements:

i write the converse ii write the contrapositive iii write the negation.

a If x = 6, then x is an even integer.
b If I am elected, then public transport will improve.
c If I pass this exam, then I will be qualified as an actuary.
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7E Valid arguments
One important use of the formal approach to logic in Section 7D is checking arguments.

� By an argument, we mean that one statement (called the conclusion) is claimed to follow
from other statements (called the premises).

� An argument is said to be valid if whenever all the premises are true, the conclusion is
also true.

We illustrate the procedure for checking an argument in the next example.

By constructing a truth table, decide whether or not the following argument is valid.

Premise 1 If Australia is a democracy, then Australians have the right to vote.

Premise 2 Australia is a democracy.

Conclusion Australians have the right to vote.

Example 18

Solution
Let A be the statement ‘Australia is a democracy’.
Let B be the statement ‘Australians have the right to vote’.

Then the argument can be presented symbolically as follows:

Premise 1 A⇒ B

Premise 2 A

Conclusion B

We check this argument using a truth table.

Premise 2 Conclusion Premise 1

A B A⇒ B

T T T

T F F

F T T

F F T

We look for the rows in which both premises are true. This is only row 1. In this row, the
conclusion is also true. Therefore the argument is valid.

In general, we can use the following procedure to check the validity of an argument using
a truth table:

� Look for the rows of the truth table in which all the premises are true.
� If the conclusion is also true in each of these rows, then argument is valid. Otherwise,

the argument is not valid.
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By constructing a truth table, decide whether or not the following argument is valid.

Premise 1 If you invest in Company W, then you get rich.

Premise 2 You did not invest in Company W.

Conclusion You did not get rich.

Example 19

Solution
Let A be the statement ‘You invest in Company W’.
Let B be the statement ‘You get rich’.

Then the argument can be presented symbolically as follows:

Premise 1 A⇒ B

Premise 2 ¬A

Conclusion ¬B

We check this argument using a truth table.

Premise 1 Premise 2 Conclusion

A B A⇒ B ¬A ¬B

T T T F F

T F F F T

F T T T F

F F T T T

We look for the rows in which both premises are true. These are rows 3 and 4. In row 3,
the conclusion is false. Therefore the argument is not valid.

Validity versus truth
The validity of an argument depends only on whether or not the conclusion follows logically
from the premises; it does not depend on whether or not the conclusion is actually true.

Valid arguments with false conclusions A valid argument is guaranteed to have a true
conclusion only if all of the premises are true.

For example, consider the argument:

Premise 1 If 2 is odd, then 3 is even. A⇒ B

Premise 2 The number 2 is odd. A

Conclusion The number 3 is even. B

This argument is valid, as it follows the pattern of Example 18. But the conclusion is false.
Note that, in this case, the second premise is false. Therefore, even though the argument is
valid, we are not guaranteed that the conclusion is true.
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Invalid arguments with true conclusions Next consider the argument:

Premise 1 If 2 is odd, then 3 is even. A⇒ B

Premise 2 The number 2 is even. ¬A

Conclusion The number 3 is odd. ¬B

This argument is invalid, as it follows the pattern of Example 19. But the conclusion is true.

Checking for a tautology
The following example illustrates an alternative way to check the validity of an argument.
We consider the entire argument as a single compound statement, and then check whether
this statement is a tautology.

Investigate the validity of each of the following arguments by checking whether or not an
appropriate compound statement is a tautology:

a In March, there are strong winds every day. The wind is not strong today. Therefore it
is not March.

b On Mondays I go swimming. Today is not Monday. Therefore I do not swim today.

Example 20

Solution
a Let M be the statement ‘It is March’.

Let S be the statement ‘There are strong winds’.

The compound statement to consider is [(M ⇒ S ) ∧ (¬S )]⇒ ¬M.

M S M ⇒ S ¬S (M ⇒ S ) ∧ (¬S ) ¬M [(M ⇒ S ) ∧ (¬S )]⇒ ¬M

T T T F F F T

T F F T F F T

F T T F F T T

F F T T T T T

Since [(M ⇒ S ) ∧ (¬S )]⇒ ¬M is a tautology, the argument is valid.

b Let M be the statement ‘It is Monday’.
Let S be the statement ‘I swim today’.

The compound statement to consider is [(M ⇒ S ) ∧ (¬M)]⇒ ¬S .

M S M ⇒ S ¬M (M ⇒ S ) ∧ (¬M) ¬S [(M ⇒ S ) ∧ (¬M)]⇒ ¬S

T T T F F F T

T F F F F T T

F T T T T F F

F F T T T T T

The argument is not valid. It fails to be true when M is false and S is true.
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Here is a list of some useful tautologies that can be used to form valid arguments:

1 [(A⇒ B) ∧ (B⇒ C)]⇒ (A⇒ C)

2 [(A⇒ B) ∧ A]⇒ B

3 [(A⇒ B) ∧ (¬B)]⇒ ¬A

4 [(A ∨ B) ∧ (¬A)]⇒ B

5 (A⇒ B)⇔ (¬B⇒ ¬A) (contrapositive)
6 ¬(A ∨ B)⇔ (¬A ∧ ¬B) (De Morgan’s law)
7 ¬(A ∧ B)⇔ (¬A ∨ ¬B) (De Morgan’s law)

The third of these tautologies is used in part a of Example 20.

Summary 7E
Checking the validity of an argument
Step 1 Represent each of the premises and the conclusion as compound statements.

Step 2 Construct a truth table that includes a column for each of the premises and
the conclusion.

Step 3 Look for the rows of the truth table in which all the premises are true.

Step 4 If the conclusion is also true in each of these rows, then argument is valid.
Otherwise, the argument is not valid.

Exercise 7ESkill-
sheet

1Example 18 Consider the following argument, which is presented symbolically. Complete the
truth table and state whether or not the argument is valid.

Premise 1 A ∨ B

Premise 2 ¬A

Conclusion B

A B A ∨ B ¬A

T T

T F

F T

F F

2Example 19 Consider the following argument, which is presented symbolically. Complete the
truth table and state whether or not the argument is valid.

Premise 1 A ∨ B

Premise 2 ¬A

Conclusion ¬B

A B A ∨ B ¬A ¬B

T T

T F

F T

F F
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3 Consider the following argument, which is presented symbolically. Complete the
truth table and state whether or not the argument is valid.

Premise 1 A

Premise 2 A⇒ B

Premise 3 B⇒ C

Conclusion C

A B C A⇒ B B⇒ C

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

4Example 18 By constructing a truth table, decide whether or not the following argument is valid.

Premise 1 You eat lots of garlic.

Premise 2 If you eat lots of garlic, then you don’t have many friends.

Conclusion You don’t have many friends.

5Example 19 By constructing a truth table, decide whether or not the following argument is valid.

Premise 1 The number 5 is odd.

Premise 2 If 4 is even, then 5 is odd.

Conclusion The number 4 is even.

6 By constructing a truth table, decide whether or not the following argument is valid.

Premise 1 I will buy a car or a motorcycle.

Premise 2 If I buy a car and a motorcycle, then I will need a loan.

Premise 3 I bought a motorcycle and I don’t need a loan.

Conclusion I did not buy a car.

7 For each of the following, use a truth table to decide if the argument is valid or not:

Premise 1 A⇔ B

Premise 2 A

Conclusion B

a Premise 1 A ∨ B

Premise 2 A⇒ B

Conclusion B

b

Premise 1 A ∧ B

Premise 2 ¬A⇒ B

Conclusion ¬B

c Premise 1 A⇒ ¬B

Premise 2 ¬B

Conclusion A

d
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8 For each of the following, use a truth table to decide if the argument is valid or not:

Premise 1 A⇔ B

Premise 2 A ∨C

Premise 3 ¬C

Conclusion B

a Premise 1 A

Premise 2 B⇔ ¬C

Premise 3 C ⇒ A

Conclusion B

b

9Example 20 Investigate the validity of each of the following arguments by checking whether an
appropriate compound statement is a tautology:

a In January, it is warm every day. It is warm today. Therefore it is January.
b If it is not sunny, then I do not go running. I am going running today. Therefore

today is sunny.
c All kangaroos jump. Jumping needs strength. So kangaroos need strength.

7F Logic circuits
In Section 7B, we introduced circuits composed of switches. In this section, we consider
designing circuits composed of logic gates.

We use the Boolean operations ∨, ∧ and ¬ on the set {0, 1}.

A B A ∨ B

0 0 0

0 1 1

1 0 1

1 1 1

A B A ∧ B

0 0 0

0 1 0

1 0 0

1 1 1

A ¬A

0 1

1 0

These correspond to the logical operations ‘or’, ‘and’ and ‘not’ if we interpret 0 as ‘false’ and
1 as ‘true’. In a circuit, we represent 0 as ‘low voltage’ and 1 as ‘high voltage’.

Logic gates
We will create circuits using the following three logic gates, which carry out the operations
of ‘or’ (∨), ‘and’ (∧) and ‘not’ (¬).

‘or’ gate (∨) ‘and’ gate (∧) ‘not’ gate (¬)

Each gate is shown with the inputs on the left and the output on the right. For example:

� If an ‘or’ gate has inputs 0 and 1, then the output will be 1.
� If an ‘and’ gate has inputs 0 and 1, then the output will be 0.
� If a ‘not’ gate has input 0, then the output will be 1.
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We can build a logic circuit to represent any Boolean expression.

Give the gate representation of the Boolean expression (A ∧ B) ∨C.

Example 21

Solution

A

B

C

Note: The inputs to this circuit are labelled A, B and C. The output of the circuit will
reflect the state of these inputs according to the logic statement (A ∧ B) ∨C.

a Give the gate representation of the Boolean expression A ∨ (¬A ∧ B).
b Describe the operation of this circuit through a truth table.

Example 22

Solution
a

A

B

A ¬A

B

A

¬A ∧ B

b A B ¬A ¬A ∧ B A ∨ (¬A ∧ B)

0 0 1 0 0

0 1 1 1 1

1 0 0 0 1

1 1 0 0 1

In Example 8, we saw a technique for constructing a Boolean expression to match a given
truth table of 0s and 1s. Given any truth table, we can construct a matching Boolean
expression and therefore build a logic circuit that will operate according to the given table.
This is what makes Boolean algebra so central to electronics.

Given any truth table that specifies the required operation of a circuit, it is possible to build
an appropriate circuit using ‘or’, ‘and’ and ‘not’ gates.
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Consider the truth table shown on the right.

a Using the technique from Example 8, construct a
Boolean expression to match this truth table.

b Draw a circuit for this expression.
c Use the properties of Boolean algebras to simplify

the expression, and hence draw a simpler circuit that
is equivalent to the circuit from b.

A B Output

1 0 0 1

2 0 1 1

3 1 0 1

4 1 1 0

Example 23

Solution
a Look at the rows of the truth table in which the output is 1:

� Row 1 ¬A ∧ ¬B

� Row 2 ¬A ∧ B

� Row 3 A ∧ ¬B

Therefore a Boolean expression for this truth table is

(¬A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ ¬B)

b A B

¬A ∧ B

A ∧ ¬B

¬A ∧ ¬B

c (¬A ∧ ¬B) ∨ (¬A ∧ B) ∨ (A ∧ ¬B)

=
(
¬A ∧ (¬B ∨ B)

)
∨ (A ∧ ¬B)

= (¬A ∧ 1) ∨ (A ∧ ¬B)

= ¬A ∨ (A ∧ ¬B)

= (¬A ∨ A) ∧ (¬A ∨ ¬B)

= 1 ∧ (¬A ∨ ¬B)

= ¬A ∨ ¬B

A

B

Note: This simplified circuit uses only three logic gates. In fact, we could rewrite the
expression as ¬(A ∧ B) and obtain an equivalent circuit that uses only two gates.
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Summary 7F
� In a logic circuit, we interpret 0 as false and 1 as true.
� We will use the following three logic gates to create circuits (where the inputs are

shown on the left and the output on the right):

‘or’ gate (∨) ‘and’ gate (∧) ‘not’ gate (¬)

Exercise 7F

1Example 21

Example 22

Draw a circuit using logic gates for each of the following:

A ∧ (¬B)a ¬(A ∨ B)b
A ∧ (¬B ∨ A)c (¬A ∨ B) ∧ (¬B ∨ A)d

2 For each of the following, give a Boolean expression that represents the circuit and give
a truth table describing the operation of the circuit:

A

B

a
A

B

b

X

Y

c
A

B

d

3 Write a Boolean expression for the following circuit:

X

Y

Z

4 Draw a circuit using logic gates for each of the following:

¬(¬P ∧ Q) ∨ Ra (¬A ∧ B) ∨ (B ∧ ¬C) ∨ Ab

5Example 23 Consider the truth table shown on the right.

a Using the technique from Example 8, construct a
Boolean expression to match this truth table.

b Draw a circuit for this expression.
c Use the properties of Boolean algebras to simplify the

expression, and hence draw a simpler circuit that is
equivalent to the circuit from b.

A B Output

0 0 0

0 1 1

1 0 1

1 1 1
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6 The table on the right specifies the required operation of a
logic circuit. Draw an appropriate circuit.

A B Output

0 0 0

0 1 1

1 0 1

1 1 0
7 Consider the logic circuit shown below.

A B

a Write a Boolean expression corresponding to the circuit.
b Simplify this expression using Boolean algebra.
c Draw an equivalent logic circuit that uses only three gates.
d Draw an equivalent logic circuit that uses only two gates.

7G Karnaugh maps
We want to be able to simplify Boolean expressions so that the circuits we build from them
are simpler. These simpler circuits will be more compact and cheaper to produce.

In Section 7C, we showed how to simplify Boolean expressions using properties of Boolean
algebras. In this section, we introduce a more pictorial approach.

Minimal representation
We start by formalising what it means for a Boolean expression to be ‘simplified’.

Let f be a non-constant Boolean function. Then a minimal representation of f is a Boolean
expression E which represents f and satisfies the following:

� The expression E has the form E1 ∨ E2 ∨ · · · ∨ En, where each Ei is an expression such as
x ∧ y or x′ ∧ y′ ∧ z or y ∧ z′.

� If F is any other expression of this form which also represents f , then the number of
terms Fi is greater than or equal to the number of terms Ei.

� If F and E have the same number of terms, then the number of variables in F is greater
than or equal to the number of variables in E.



240 Chapter 7: Logic

Karnaugh maps involving two variables
We demonstrate how a different representation of a truth table can be used to find a minimal
expression. The truth table for f (x, y) = (x′ ∧ y′) ∨ (x′ ∧ y) ∨ (x ∧ y) is shown below.

x y f (x, y)

0 0 1 x′ ∧ y′

0 1 1 x′ ∧ y

1 0 0 x ∧ y′

1 1 1 x ∧ y

As in Example 8, each row of the truth table corresponds to some combination using ∧ of
either x or x′, and either y or y′. This is shown to the right of the truth table above. Using this
correspondence, we fill the values of f (x, y) into the following 2 × 2 table.

1 0

1 1

x

x′

y y′

The next step is to shade the 1s which occur in pairs as 1 × 2 or 2 × 1 blocks.

1 0

1 1

x

x′

y y′

The table above is called a Karnaugh map.

To find a minimal expression, we read off the label of each coloured block:

� Red The two 1s in the red block have labels x′y and x′y′. The common label for the 1s in
the red block is x′. So the red block has label x′.

� Green The two 1s in the green block have labels xy and x′y. The common label for the 1s
in the green block is y. So the green block has label y.

� Together Combine the block labels using ∨. This gives x′ ∨ y.

The minimal expression is f (x, y) = x′ ∨ y.

The following calculation illustrates why this process works:

(x′ ∧ y′) ∨ (x′ ∧ y) ∨ (x ∧ y) =

red block︷                    ︸︸                    ︷[
(x′ ∧ y′) ∨ (x′ ∧ y)

]
∨

green block︷                 ︸︸                 ︷[
(x′ ∧ y) ∨ (x ∧ y)

]
=

[
x′ ∧ (y′ ∨ y)

]
∨

[
(x′ ∨ x) ∧ y

]
=

[
x′ ∧ 1

]
∨

[
1 ∧ y

]
= x′ ∨ y
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We could have used the original expression

(x′ ∧ y′) ∨ (x′ ∧ y) ∨ (x ∧ y)

to fill in the Karnaugh map directly, by putting a 1 for each of the terms x′ ∧ y′, x′ ∧ y and
x ∧ y in the expression. A Boolean expression must be of a form like this to enter directly into
a Karnaugh map.

Simplify (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y).

Example 24

Solution Explanation
Step 1

1 1

1

x

x′

y y′ For the expression (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y),
we fill a 1 into the cells xy, xy′ and x′y.

It is not necessary to fill in the 0s.

Step 2

1 1

1

x

x′

y y′ Complete the shading of the 1s.

Step 3 Block labels:

� Red x

� Green y

� Together x ∨ y

Now read off the labels of the coloured blocks:

� The common label for the 1s in the red block is x.
� The common label for the 1s in the green block is y.
� Combine the block labels using ∨.

The simplified expression
is x ∨ y.

Karnaugh maps involving three variables
A Karnaugh map for three variables x, y and z can be labelled as shown.

x

yz y′z y′z′ yz′

x′

Notes:
� The order of the labels yz, y′z, y′z′, yz′ along the top is important. There is only one

change from one label to the next.
� You need to imagine that this Karnaugh map is wrapped around a cylinder so that the

xyz and xyz′ cells are adjacent and the x′yz and x′yz′ cells are adjacent.
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The technique for three variables is similar to that for two variables. We first use either
the truth table or the expression to fill the 1s into the Karnaugh map. Then we cover the 1s
using blocks.

Blocks in Karnaugh maps

� You may use an m × n block in a Karnaugh map if both m and n are powers of 2.
(So you may use 1 × 1, 1 × 2, 1 × 4, 2 × 1, 2 × 2 and 2 × 4 blocks.)

� You always try to form the biggest blocks that you can, and to use the least number of
blocks that you can.

Examples of correct shading

1 1

1 1

yz y′z y′z′ yz′

x

x′

1 1 1

1 1 1

yz y′z y′z′ yz′

x

x′

1 1

1 1

yz y′z y′z′ yz′

x

x′

Examples of incorrect shading

Blocks too small Blocks too small Too many blocks

1 1

1 1

yz y′z y′z′ yz′

x

x′

1 1 1

1 1 1

yz y′z y′z′ yz′

x

x′

1 1

1 1

yz y′z y′z′ yz′

x

x′

Simplify (x ∧ y ∧ z) ∨ (x ∧ y ∧ z′) ∨ (x ∧ y′ ∧ z′) ∨ (x′ ∧ y ∧ z′).

Example 25

Solution Explanation

1 1 1

1

yz y′z y′z′ yz′

x

x′

In this example, the blue shading shows a
1 × 2 block that wraps around the back of
the ‘cylinder’.

Labels of the coloured blocks:

� Red x ∧ z′

� Green y ∧ z′

� Blue x ∧ y

The simplified expression is

(x ∧ y) ∨ (x ∧ z′) ∨ (y ∧ z′)

The common labels for the 1s in the red
block are x and z′. So the label of the red
block is x ∧ z′.

We find the other labels similarly, and
combine the block labels using ∨.
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Write a minimal Boolean expression for the following truth table.

x y z f (x, y, z)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Example 26

Solution Explanation

1 1

1 1 1

yz y′z y′z′ yz′

x

x′

Labels of the coloured blocks:

� Red y′

� Green x′ ∧ z′

A minimal expression is
f (x, y, z) = (x′ ∧ z′) ∨ y′.

We first fill the 1s from the rightmost column of the
truth table into the Karnaugh map.

For example, row 1 of the truth table corresponds to
x′ ∧ y′ ∧ z′ and thus to the x′y′z′ cell.

Note: A Boolean function can have more than one minimal expression, since there can be
more than one correct way to choose the blocks on a Karnaugh map.

Exercise 7G

1Example 24 Simplify each of the following using a Karnaugh map:

(x ∧ y) ∨ (x′ ∧ y)a (x ∧ y′) ∨ (x′ ∧ y) ∨ (x′ ∧ y′)b
(x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y′)c

2 Write down the minimal Boolean expression represented by each Karnaugh map:

a

1 1

1 1

yz y′z y′z′ yz′

x

x′

b

1 1 1

1 1 1

yz y′z y′z′ yz′

x

x′

c

1 1

1 1

yz y′z y′z′ yz′

x

x′
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3Example 25 Simplify each of the following using a Karnaugh map:

a (x ∧ y ∧ z) ∨ (x ∧ y′ ∧ z) ∨ (x ∧ y′ ∧ z′) ∨ (x′ ∧ y ∧ z′)
b (x ∧ y ∧ z) ∨ (x ∧ y ∧ z′) ∨ (x′ ∧ y ∧ z′) ∨ (x′ ∧ y′ ∧ z′)
c (x ∧ y ∧ z) ∨ (x ∧ y′ ∧ z) ∨ (x ∧ y′ ∧ z′) ∨ (x′ ∧ y ∧ z) ∨ (x′ ∧ y ∧ z′) ∨ (x′ ∧ y′ ∧ z′)

4Example 26 Write a minimal Boolean expression for each of the following Boolean functions:

x y f (x, y)

0 0 1

0 1 1

1 0 1

1 1 0

a x y z f (x, y, z)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

b

5 Consider the circuit shown below.

X

Y

a Construct the truth table that describes the operation of this circuit.
b Find a minimal Boolean expression for the truth table.
c Draw the simplified circuit corresponding to the minimal Boolean expression.

6 Consider the circuit shown below.

X

Y

Z

a Construct the truth table that describes the operation of this circuit.
b Find a minimal Boolean expression for the truth table.
c Draw the simplified circuit corresponding to the minimal Boolean expression.
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Assign-
ment

Nrich

Chapter summary

Boolean algebra
� Basic examples of Boolean algebras:

• the set of all subsets of a set together with the operations ∪, ∩ and ′

• the set {0, 1} together with the operations ∨, ∧ and ′

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

x y x ∧ y

0 0 0

0 1 0

1 0 0

1 1 1

x x′

0 1

1 0

� A Boolean expression is an expression formed using ∨, ∧, ′, 0 and 1, such as x ∧ (y ∨ x)′.
� Two Boolean expressions are equivalent if they give the same Boolean function on {0, 1}.

Logical connectives

Or

A B A ∨ B

T T T

T F T

F T T

F F F

� And

A B A ∧ B

T T T

T F F

F T F

F F F

� Not

A ¬A

T F

F T

�

Implies

A B A⇒ B

T T T

T F F

F T T

F F T

� Equivalence

A B A⇔ B

T T T

T F F

F T F

F F T

�

� Two statements are logically equivalent if they have the same truth values.
� A tautology is a statement which is true under all circumstances.
� A contradiction is a statement which is false under all circumstances.
� The converse of A⇒ B is the statement B⇒ A.
� The contrapositive of A⇒ B is the statement ¬B⇒ ¬A.

Logic circuits

‘Or’ gate (∨)� ‘And’ gate (∧)� ‘Not’ gate (¬)�
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Technology-free questions

1 Which of the following statements are true?

2 is even.a 3 is not even.b
3 is even and 2 is even.c 3 is even or 2 is even.d
If 2 is even, then 3 is odd.e If 2 is odd, then 3 is even.f

2 For each statement (P), write down the negation (¬P):

It is raining.a It is not raining.b
x = 5 and y = 5c x = 3 or x = 5d
It is not raining and it is not windy.e If it is snowing, then it is cold.f

3 The logical connective ‘exclusive or’ is denoted by ⊕.
The statement A ⊕ B is true when either A or B is
true, but not both. The truth table for ⊕ is shown on
the right.

Construct a truth table for each of the following
compound statements:

a A ⊕ (A ⊕ B) b A ⊕ (A ∨ B)

Truth table for ‘exclusive or’

A B A ⊕ B

T T F

T F T

F T T

F F F

4 Construct a truth table to show that the statement ¬A⇒ (A⇒ B) is a tautology.

5 For each pair of Boolean expressions, prove that the two expressions are equivalent by:

i showing that they represent the same Boolean function on {0, 1}
ii using the axioms and properties of Boolean algebras.

x ∨ (x′ ∧ y) and x ∨ ya (x ∨ y) ∧ (x′ ∨ y) and yb

6 Draw a circuit using logic gates for each of the following:

¬A ∨ Ba A ∧ (B ∨C)b (A ∧ ¬B) ∨ (B ∧ ¬A)c

Multiple-choice questions

1 The blue region of the Venn diagram is

A B′ B A ∪ B′ C A ∩ B′

D A′ ∩ B′ E A′ ∪ B′

A B
2 The dual of A ∩ (A ∪ B)′ = ∅ is

B ∩ (B ∪ A)′ = ∅A A ∪ (A ∩ B)′ = ∅B A ∪ (A ∩ B)′ = ξC
A′ ∩ (A′ ∪ B′)′ = ξD A ∩ (A ∪ B)′ = ξE

3 Which of the following is not an identity of Boolean algebra?

x ∧ x = xA x ∧ y = y ∧ xB (x ∧ y)′ = x′ ∧ y′C
x ∧ (x ∧ y) = x ∧ yD 0 ∧ x = 0E
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4 Consider the statement ‘If n is divisible by 12, then n is divisible by 2 and 3’.
Which of the following is equivalent to this statement?

A If n is not divisible by 12, then n is divisible by 2 or divisible by 3.
B If n is not divisible by 12, then n is not divisible by 2 or not divisible by 3.
C If n is divisible by 2 and divisible by 3, then n is divisible by 12.
D If n is not divisible by 2 or not divisible by 3, then n is not divisible by 12.
E If n is divisible by 2 or divisible by 3, then n is divisible by 12.

5 Let P be the statement ‘If Tom is Jane’s father, then Jane is Bill’s niece’.
Let Q be the statement ‘Bill is Tom’s brother’.
Which of the following is equivalent to the statement P⇒ Q?

A If Bill is Tom’s brother, then Tom is Jane’s father and Jane is not Bill’s niece.
B If Bill is not Tom’s brother, then Tom is Jane’s father and Jane is not Bill’s niece.
C If Bill is not Tom’s brother, then Tom is Jane’s father or Jane is Bill’s niece.
D If Bill is Tom’s brother, then Tom is Jane’s father and Jane is Bill’s niece.
E If Bill is not Tom’s brother, then Tom is not Jane’s father and Jane is Bill’s niece.

6 Which of the following Boolean expressions
represents the switching circuit shown?

A (x ∧ y ∧ z) ∨ x′ B x ∧ (y ∨ z ∨ x′)
C (x ∨ x′) ∧ (y ∨ z) D

(
x ∧ (y ∨ z)

)
∨ x′

E x ∧ (y ∨ z) ∧ x′

x
y

z

x′

7 Which of the following Boolean expressions
corresponds to the truth table shown on the right?

A (x′ ∧ y′ ∧ z) ∨ (x ∧ y′ ∧ z)
B (x ∧ y ∧ z′) ∨ (x′ ∧ y ∧ z′)
C (x ∧ y ∧ z) ∨ (x′ ∧ y′ ∧ z′)
D (x ∧ y′ ∧ z′) ∨ (x′ ∧ y ∧ z)
E (x′ ∧ y ∧ z′) ∨ (x ∧ y′ ∧ z)

x y z f (x, y, z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

8 Which of the following Boolean expressions
represents the logic circuit shown?

A (X ∧ Y) ∨ Z B (¬X ∧ ¬Y) ∨ Z

C ¬(X ∧ Y) ∨ Z D (¬X ∨ ¬Y) ∧ Z

E ¬X ∧ (¬Y ∨ Z)

X

Y

Z
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For Questions 9 and 10, let P be the statement ‘I will pass Specialist Mathematics’ and
let S be the statement ‘I study hard’.

9 Which of the following corresponds to the statement ‘If I study hard, then I will pass
Specialist Mathematics’?

S ⇔ PA S ∨ PB P⇒ SC S ⇒ PD S ∧ PE

10 Which of the following is not equivalent to the statement ‘I will not pass Specialist
Mathematics unless I study hard’?

P⇒ SA ¬P ∨ SB ¬S ⇒ ¬PC S ∨ ¬PD P ∧ SE

Extended-response questions

1 Recall that set difference is defined as

A \ B = A ∩ B′ = { x : x ∈ A and x < B }

The symmetric difference of two sets A and B is defined as

A ⊕ B = (A \ B) ∪ (B \ A)

a Draw a Venn diagram showing A ⊕ B for two sets A and B with A ∩ B , ∅.
b Prove that A ⊕ B = (A ∪ B) \ (A ∩ B).
c Prove that A ∩ (B ⊕C) = (A ∩ B) ⊕ (A ∩C).

2 A light in a stairwell is controlled by two switches: one at the bottom of the stairs and
one at the top. If both switches are off, then the light should be off. If either of the
switches changes state, then the light should change state. In this question, we will
create a switching circuit to represent such a two-way switch.

a Use x and y to denote the two switches. Use 0 for ‘off’
and 1 for ‘on’. Complete the table on the right so that it
describes the operation of the circuit.

b Based on your table for part a, write down a Boolean
expression that represents the circuit.

c Draw the switching circuit that is represented by your
Boolean expression from part b.

x y Light

0 0 0

0 1

1 0

1 1

3 A committee with three members reaches its decisions by using a voting machine.
The machine has three switches (x, y, z); one for each member of the committee. If
at least two of the three members vote ‘yes’ (1), then the machine’s light goes on (1).
Otherwise, the light is off (0).

a Construct a table with entries 0s and 1s that describes the operation of the voting
machine.

b Give a Boolean expression for the voting machine, based on your table for part a.
c Use a Karnaugh map to simplify the Boolean expression obtained in part b.
d Draw a circuit for the voting machine using logic gates, based on your simplified

Boolean expression from part c.
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4 Let B be the set of all factors of 30. Thus

B = {1, 2, 3, 5, 6, 10, 15, 30}

It can be shown that axioms 1, 2 and 3 of Boolean algebras hold for B, with the
operation ∨ as LCM (lowest common multiple) and the operation ∧ as HCF (highest
common factor). In this question, we will show that axioms 4 and 5 hold, in order to
complete the proof that B is a Boolean algebra.

a i The identity element for LCM must be a number ` in B such that LCM(x, `) = x
for all x ∈ B. What is `?

ii The identity element for HCF must be a number h in B such that HCF(x, h) = x
for all x ∈ B. What is h?

b For each x ∈ B, define x′ = 30 ÷ x. By completing the following table, show that this
operation ′ is complementation in B.

x 1 2 3 5 6 10 15 30

x′

LCM(x, x′)

HCF(x, x′)

Note: Can you see what is special about the number 30 here? Consider its prime
factorisation. What goes wrong if you try using the number 12 instead?

5 Ternary logic In Boolean logic, there are two truth values: true (1) and false (0).
In ternary logic, there are three truth values: true (1), false (0) and don’t know (d).
The basic example of a ternary algebra is the set {0, d, 1} with the operations ∨, ∧ and ′

given by the following tables.

Or (∨)

∨ 0 d 1

0 0 d 1

d d d 1

1 1 1 1

� And (∧)

∧ 0 d 1

0 0 0 0

d 0 d d

1 0 d 1

� Not (′)

x x′

0 1

d d

1 0

�

Note that d′ = d, since if we don’t know whether a statement is true, then we don’t
know whether its negation is true. Ternary logic has applications in electronic
engineering and database query languages.

a Evaluate each of the following:

i d ∨ 0 ii (d ∧ 0)′ iii (d ∨ 0) ∧ (d′ ∨ 1)′

b Give counterexamples to show that the laws x ∨ x′ = 1 and x ∧ x′ = 0 for Boolean
algebras do not hold for the ternary algebra {0, d, 1}.

c Prove that the De Morgan law (x ∨ y)′ = x′ ∧ y′ holds for the ternary algebra {0, d, 1}.
Hint: Construct a truth table to show that (x ∨ y)′ and x′ ∧ y′ represent the same

function on {0, d, 1}. Since there are two variables, each with three possible
values, the truth table will have 3 × 3 = 9 rows.
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Algorithms

Objectives
I To understand the concept of an algorithm.

I To understand and utilise the basic constructs that are used to build algorithms,
including iteration and selection.

I To understand the use of pseudocode to describe algorithms.

I To describe algorithms using pseudocode by applying:

B if–then blocks B for loops B while loops.

I To describe algorithms using pseudocode by applying functions, lists and nested loops.

We define an algorithm to be a finite, unambiguous sequence of instructions for performing a
specific task.

You have already used many algorithms in your study of mathematics. For example, you have
used an algorithm for completing the square for any quadratic polynomial. In the previous
chapter, you encountered an algorithm for finding a Boolean expression for a Boolean
function given in table form. You will also see examples of algorithms used in graph theory
in Chapter 12.

In recent decades, the study of algorithms has become an important area of research
within mathematics. This is partly because of their obvious importance in computing.
Mathematicians work to obtain new algorithms and to improve the efficiency of existing
algorithms.

Note: The Interactive Textbook includes online appendices that provide an introduction
to coding using the language Python and also to coding using the TI-Nspire and the
Casio ClassPad.
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8A Introduction to algorithms
In this section, we introduce the idea of an algorithm by exploring three specific examples.

Karatsuba’s algorithm for multiplication
In 1956, the Russian mathematician Andrey Kolmogorov claimed that our standard long-
multiplication algorithm was the most efficient possible in terms of the number of individual
multiplications required. However, a more efficient algorithm was discovered in 1960 by
another Russian mathematician, Anatoly Karatsuba.

The standard long-multiplication algorithm
Consider a pair of two-digit numbers. They can be written as m = 10a + b and n = 10c + d.
Using the standard long-multiplication algorithm, we find their product as follows:

mn = (10a + b)(10c + d) = 100ac + 10(ad + bc) + bd (∗)

You can see that we need to perform four individual multiplications: ac, ad, bc and bd.

For example, let m = 23 and n = 31. Then a = 2, b = 3, c = 3 and d = 1.

We demonstrate the algorithm by substituting these values into (∗). We also show the
algorithm using the standard layout seen in primary school.

23 × 31 = 100(2 × 3) + 10(2 × 1 + 3 × 3) + (3 × 1)

= 600 + 110 + 3

= 713

2 3

× 3 1

2 3
16 9 0

7 1 3

Karatsuba’s multiplication algorithm
We now describe Karatsuba’s more efficient algorithm in the special case of a pair of
two-digit numbers.

Karatsuba’s multiplication algorithm

To find the product of a pair of two-digit numbers m = 10a + b and n = 10c + d:

Step 1 Calculate ac. Call the result F.

Step 2 Calculate bd. Call the result G.

Step 3 Calculate (a + b)(c + d). Call the result H.

Step 4 Calculate H − F −G. Call the result K.

Step 5 Calculate 100F + 10K + G. The result is mn.

Note that this method requires only three individual multiplications. An important aim of
computing with large numbers is to reduce the number of multiplications required. Each
time you perform a web search, for example, your device performs a huge number of
multiplications, involving numbers with hundreds or even thousands of digits.
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The following calculation shows why Karatsuba’s method works:

100F + 10K + G = 100ac + 10(H − F −G) + bd

= 100ac + 10(ac + ad + bc + bd − ac − bd) + bd

= 100ac + 10(ad + bc) + bd

= (10a + b)(10c + d)

= mn

Use Karatsuba’s multiplication algorithm to calculate 23 × 31.

Example 1

Solution Explanation
Here m = 23 and n = 31.
So a = 2, b = 3, c = 3 and d = 1. Follow the steps of the algorithm:

Step 1 F = 2 × 3 = 6 Calculate ac. Call the result F.

Step 2 G = 3 × 1 = 3 Calculate bd. Call the result G.

Step 3 H = 5 × 4 = 20 Calculate (a + b)(c + d). Call the result H.

Step 4 K = 20 − 6 − 3 = 11 Calculate H − F −G. Call the result K.

Step 5 mn = 600 + 110 + 3 = 713 Calculate 100F + 10K + G. The result is mn.

The general form of Karatsuba’s multiplication algorithm applies to pairs of numbers with
any number of digits. There are now even more efficient multiplication algorithms, and
mathematicians continue to work on improving them.

The binary number system
The decimal number system uses strings of the digits 0 to 9 to represent numbers. The
positions of the digits correspond to different powers of 10. For example:

352 = (3 × 102) + (5 × 101) + (2 × 100)

When using the decimal number system, we say that we are writing numbers in base 10.

The binary number system uses only the digits 0 and 1 to represent numbers. The positions
of the digits correspond to different powers of 2.

For example, we write 53 in binary form as

110101 = (1 × 25) + (1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20)

When using the binary number system, we say that we are writing numbers in base 2.

Converting a decimal number to a binary number
We first remind ourselves of the meaning of the words ‘quotient’ and ‘remainder’. For
example, when dividing 53 by 2, we obtain

53 = 26 × 2 + 1

Here 26 is the quotient and 1 is the remainder.
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We now describe a method for converting 53 into binary form. The calculations are shown in
the table on the right.

� Divide 53 by 2. Record the quotient
and remainder.

� Divide the previous quotient by 2.
Record the new quotient and remainder.

� Continue until the quotient is zero.
� Write the remainders in reverse order.

Hence 53 in binary is 110101.

Division Quotient Remainder

53 ÷ 2 26 1

26 ÷ 2 13 0

13 ÷ 2 6 1

6 ÷ 2 3 0

3 ÷ 2 1 1

1 ÷ 2 0 1

The general method is described more formally by the following algorithm.

Algorithm for converting a decimal number to a binary number

To convert a natural number n into binary notation:

Step 1 Input n.

Step 2 Let q be the quotient when n is divided by 2.

Step 3 Let r be the remainder when n is divided by 2.

Step 4 Record r.

Step 5 Let n have the value of q.

Step 6 If n > 0, then repeat from Step 2.

Step 7 Write the recorded values of r in reverse order.

Convert the decimal number 237 into binary form.

Example 2

Solution
We follow the algorithm step by step, recording the values of n, q and r after each step.

n q r

237 118 1 237 = 118 × 2 + 1

118 59 0 118 = 59 × 2 + 0

59 29 1 59 = 29 × 2 + 1

29 14 1 29 = 14 × 2 + 1

14 7 0 14 = 7 × 2 + 0

7 3 1 7 = 3 × 2 + 1

3 1 1 3 = 1 × 2 + 1

1 0 1 1 = 0 × 2 + 1

0

We write the values of r in reverse order. Hence 237 in binary is 11101101.
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The Euclidean algorithm
In Section 2D, we found the highest common factor of two natural numbers using prime
decomposition. Here we describe a more efficient method for finding highest common
factors, called the Euclidean algorithm. This is one of the earliest recorded algorithms.

We used division by 2 in the previous algorithm. More generally, you are familiar with
dividing one natural number by another. For example:

� 65 ÷ 7 gives 65 = 9 × 7 + 2
� 91 ÷ 3 gives 91 = 30 × 3 + 1

We can formalise this process as follows.

Euclidean division

If a and b are integers with b > 0, then there are unique integers q and r such that

a = qb + r where 0 ≤ r < b

Note: Here q is the quotient and r is the remainder when a is divided by b.

The following theorem is useful for finding the highest common factor of any two given
integers. We use HCF(a, b) to denote the highest common factor of two integers a and b.

Theorem

Let a and b be two integers with b , 0. If a = qb + r, where q and r are integers, then
HCF(a, b) = HCF(b, r).

We show how to use this theorem in the next example, which will motivate our description of
the Euclidean algorithm.

Find the highest common factor of 72 and 42.

Example 3

Solution
At each step, we use Euclidean division and the previous theorem:

72 = 1 × 42 + 30 and so HCF(72, 42) = HCF(42, 30)

42 = 1 × 30 + 12 and so HCF(42, 30) = HCF(30, 12)

30 = 2 × 12 + 6 and so HCF(30, 12) = HCF(12, 6)

12 = 2 × 6 + 0 and so HCF(12, 6) = HCF(6, 0) = 6

Hence it follows that HCF(72, 42) = 6.

Note: In general, we keep using Euclidean division until we get remainder zero. Then the
HCF is the last non-zero remainder.

This method can be formalised into the Euclidean algorithm as follows.
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Euclidean algorithm

To find the highest common factor of two natural numbers a and b, where a > b:

Step 1 Input a and b.

Step 2 Let r be the remainder when a is divided by b.

Step 3 If r = 0, then go to Step 7.

Step 4 Let a have the value of b.

Step 5 Let b have the value of r.

Step 6 Repeat from Step 2.

Step 7 The required value is b.

Find the highest common factor of 72 and 42 using the Euclidean algorithm.

Example 4

Solution
Here we start with a = 72 and b = 42. We follow the algorithm step by step, recording the
values of a, b and r after each step.

a b r

72 42 30 72 = 1 × 42 + 30

42 30 12 42 = 1 × 30 + 12

30 12 6 30 = 2 × 12 + 6

12 6 0 12 = 2 × 6 + 0

The highest common factor is the final value of b. Hence HCF(72, 42) = 6.

Summary 8A
� An algorithm is a finite, unambiguous sequence of instructions for performing a

specific task.

� In this section, we have seen three examples of algorithms:

• Karatsuba’s multiplication algorithm
• an algorithm for converting a decimal number to a binary number
• the Euclidean algorithm.

Exercise 8A

1Example 1 Use Karatsuba’s multiplication algorithm to calculate each of the following products.
Give the values of F, G, H and K in each case.

92 × 37a 43 × 26b 27 × 19c 57 × 23d
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2Example 2 Write each of the following decimal numbers in binary form:

342a 127b 1777c 2468d

3 a Describe an algorithm for converting a decimal number into base 8.
b Use your algorithm to convert each of the following decimal numbers into base 8:

i 342 ii 5678 iii 453 iv 9647

4Example 4 Use the Euclidean algorithm to find:

HCF(9284, 4361)a HCF(2160, 999)b
HCF(762, 372)c HCF(716 485, 5255)d

5 The following algorithm can be applied to a polynomial P(x):

Step 1 Write the polynomial in order of decreasing powers of x.

Step 2 Factor x out of every non-constant term.

Step 3 Factor x out of every non-constant term in the innermost brackets.

Step 4 Repeat Step 3 until only a constant remains in the innermost brackets.

The resulting expression is called the nested form of the polynomial. For example,
we express the polynomial P(x) = 3x3 − 4x2 + 7x + 4 in nested form as follows:

P(x) = 3x3 − 4x2 + 7x + 4

= (3x2 − 4x + 7)x + 4

= ((3x − 4)x + 7)x + 4

= (((3)x − 4)x + 7)x + 4

Use this algorithm to write each of the following polynomials in nested form:

2x2 + 3x + 4a x3 + 3x2 − 4x + 5b 4x3 + 6x2 − 5x − 4c

6 Prove the theorem used to justify the Euclidean algorithm: Let a and b be two integers
with b , 0. If a = qb + r, where q and r are integers, then HCF(a, b) = HCF(b, r).

7 The Babylonians (1500 bc) had a method for determining the square root of a natural
number N by using a recurrence relation. The recurrence relation is

xn+1 =
1
2

(
xn +

N
xn

)
where x1 is some initial guess for

√
N

You can think of this as finding the average of xn and
N
xn

repeatedly.

a Express this method as an algorithm for calculating a square root to a given accuracy.
Hint: To decide when to stop generating the sequence, check whether the square of

the current term is sufficiently close to N; e.g. −0.01 < (xn)2 − N < 0.01.
b Use the algorithm to calculate the square root of each of the following numbers,

correct to one decimal place:

i 5 ii 345 iii 1563 iv 7856
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8 Sieve of Eratosthenes This is a simple ancient algorithm for finding all the prime
numbers up to a particular natural number n.

Step 1 Create a list of all natural numbers from 1 to n.

Step 2 Cross out 1 and let p be 2 (the first prime).

Step 3 Circle p and then cross out all the other multiples of p.

Step 4 Let p be the smallest number in the list that has not been marked.

Step 5 If p2 ≤ n, then repeat from Step 3.

The primes are all the numbers in the list that are not crossed out.

Carry out this algorithm for n = 100. Hint: Write the numbers in a 10 × 10 grid.

8B Iteration and selection
In this section, we start to become slightly more formal in the language we use to talk about
algorithms and in the notation we use to describe them.

Assigning values to variables
The concept of a variable used in algorithms is different from that used in pure mathematics.

A variable is a string of one or more letters that acts as a placeholder that can be assigned
different values.

We will use an arrow pointing from right to left to denote the assignment of a value to a
variable. For example, the notation x← 3 means ‘assign the value 3 to the variable x’.

Consider the following instructions:

Step 1 x← 3

Step 2 y← x

Step 3 x← 4

After following these steps, we have x = 4 and y = 3.

Often the new value assigned to a variable will depend on its old value. The following table
gives two such examples.

Notation Meaning Initial value New value

A← A + 5 Replace the value of A with A + 5 A = 3 A = 8

A← 2A Replace the value of A with 2A A = 3 A = 6

Controlling the flow of steps
When describing an algorithm, the order of the steps is very important. The steps are
typically carried out one after the other. However, there are two fundamental constructs that
allow us to change the flow of steps: iteration and selection.
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Iteration
Looping constructs allow us to repeat steps in a controlled way; this is called iteration.

The following example illustrates iteration by generating terms of an arithmetic sequence.

a Write an algorithm to find the first six terms of the arithmetic sequence with first
term 10 and common difference 7.

b Illustrate the algorithm with a flowchart.
c Demonstrate the algorithm with a table of values.

Example 5

Solution
a We use the variable T for the current term.

We use the variable n for the index of the
current term (i.e. its position in the sequence).

Step 1 T ← 10 and n← 1

Step 2 Print n and print T

Step 3 T ← T + 7 and n← n + 1

Step 4 Print n and print T

Step 5 Repeat from Step 3 while n < 6

c n T

1 10

2 17

3 24

4 31

5 38

6 45

b
Start

T ← 10
n ← 1

Print n
Print T

T ← T + 7
n ← n + 1

Print n
Print T

Is n < 6?

End

No

Yes

Note: There are five iterations: you follow the instructions in the loop five times.
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An initial amount of $100 000 is invested at an interest rate of 5% p.a. compounded
annually.

a Write an algorithm to find the value of the investment at the end of each year for the
first five years.

b Illustrate the algorithm with a flowchart.
c Demonstrate the algorithm with a table of values.

Example 6

Solution
The yearly interest rate is 5% = 0.05. Therefore the value of the investment increases by a
factor of 1.05 each year.

a We use the variable A for the current value
of the investment.

We use the variable i to keep track of the
number of iterations.

Step 1 A← 100 000 and i← 0

Step 2 A← 1.05A and i← i + 1

Step 3 Print i and print A

Step 4 Repeat from Step 2 while i < 5

c i A

0 100 000.00

1 105 000.00

2 110 250.00

3 115 762.50

4 121 550.63

5 127 628.16

b
Start

A ← 100 000
i ← 0

A ← 1.05A
i ← i + 1

Print i
Print A

Is i < 5?

End

No

Yes

Note: There are five iterations: you follow the instructions in the loop five times.
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Selection
Decision-making constructs allow us to specify whether certain steps should be followed
based on some condition. For example, we can use an instruction such as ‘If . . . then . . . ’.
This is called selection.

We illustrate selection in the next example by considering a piecewise-defined sequence.

For n ∈ N, define tn =

2n + 4 if n is even

n + 3 if n is odd

a Write an algorithm to generate the first N terms of this sequence.
b Demonstrate the algorithm for N = 6 with a table of values.

Example 7

Solution
a We use T for the current term of the sequence.

We use n for the index of the current term.

Step 1 n← 1

Step 2 If n is even, then T ← 2n + 4

Otherwise T ← n + 3

Step 3 Print T

Step 4 n← n + 1

Step 5 Repeat from Step 2 while n ≤ N

b n T

1 4

2 8

3 6

4 12

5 8

6 16

7

Summary 8B
� Variables
• A variable is a string of one or more letters that acts as a placeholder that can be

assigned different values.
• The notation x← 3 means ‘assign the value 3 to the variable x’.

� Iteration Loops are used in algorithms to enable repetition of the same instructions.

� Selection ‘If . . . then . . . ’ instructions are used in algorithms to enable logical
decisions to be made within the algorithm.

Exercise 8B

1 aExample 5 Write an algorithm to find the first six terms of the arithmetic sequence with first
term 6 and common difference 3.

b Illustrate the algorithm with a flowchart.
c Demonstrate the algorithm with a table of values.
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2Example 6 An initial amount of $100 000 is invested at an interest rate of 2.5% p.a. compounded
annually.

a Write an algorithm to find the value of the investment at the end of each of the first
five years.

b Illustrate the algorithm with a flowchart.
c Demonstrate the algorithm with a table of values. (Give values to the nearest dollar.)

3 For each of the following algorithms, give a table showing the values of A and n after
each step:

a Step 1 A← 10 and n← 1

Step 2 A← A + 5 and n← n + 1

Step 3 Repeat Step 2 while n ≤ 5

b Step 1 A← 2 and n← 1

Step 2 A← 3A and n← n + 1

Step 3 Repeat Step 2 while n ≤ 4

4 Approximations of infinite sums Here is an example of an infinite sum:

π

4
= 1 −

1
3

+
1
5
−

1
7

+
1
9
−

1
11

+ · · ·

This formula is attributed to the Indian mathematician Madhava in the fourteenth
century. The following algorithm can be used to evaluate the sum of the first N terms of
this infinite sum.

Step 1 sum← 0 and n← 1

Step 2 sum← sum +
(−1)n+1

2n − 1
Step 3 n← n + 1

Step 4 Repeat from Step 2 while n ≤ N

a In 1735 Euler proved the following remarkable formula involving π:

π2

6
= 1 +

1
22 +

1
32 +

1
42 +

1
52 + · · ·

Write an algorithm to evaluate the sum of the first N terms of this infinite sum.
b It can be proved that the infinite sum

1 +
1
2

+
1
3

+
1
4

+
1
5

+ · · ·

grows without bound. Write an algorithm to evaluate the sum of the first N terms of
this infinite sum.

5Example 7 For n ∈ N, define

tn =

5 − 2n if n is even

n2 + 1 if n is odd

a Write an algorithm to generate the first N terms of this sequence.
b Demonstrate the algorithm for N = 6 with a table of values.
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6 Horner’s algorithm This algorithm was introduced in the nineteenth century to speed
up the evaluation of polynomials by hand. Here we restrict to a cubic polynomial
P(x) = a3x3 + a2x2 + a1x + a0. To see why the algorithm works, we write the polynomial
in nested form. Then we can see that the algorithm evaluates P(x0) by starting at the
innermost brackets and working outwards.

Step 1 p← 0 and i← 3

Step 2 p← p × x0 + ai

Step 3 i← i − 1

Step 4 Repeat from Step 2 while i ≥ 0

Step 5 Print p

P(x) = a3x3 + a2x2 + a1x + a0

= (a3x2 + a2x + a1)x + a0

= ((a3x + a2)x + a1)x + a0

= (((a3)x + a2)x + a1)x + a0

The table of values on the right demonstrates
this algorithm for P(x) = 3x3 − 4x2 + 7x + 4
and x0 = 5.

Here a3 = 3, a2 = −4, a1 = 7 and a0 = 4.

The algorithm gives P(5) = 314.

p i

0 3 p← 0

3 2 p← 0 × 5 + 3

11 1 p← 3 × 5 − 4

62 0 p← 11 × 5 + 7

314 −1 p← 62 × 5 + 4

Use Horner’s algorithm to evaluate P(3) for each of the following:

a P(x) = x3 + 2x2 − 3x + 1
b P(x) = 2x3 − x2 + 4x − 2
c P(x) = −4x3 + 2x2 − x − 1

7 a The following is an algorithm to draw an equilateral triangle in the plane. Verify that
it does indeed produce such a triangle.

Step 1 n← 1

Step 2 Draw forwards for 3 cm

Step 3 Turn through 120◦ anticlockwise

Step 4 n← n + 1

Step 5 Repeat from Step 2 while n ≤ 3

b Write a similar algorithm to draw a square.
c Write a similar algorithm to draw a regular hexagon.
d Draw the shape described by the following algorithm:

Step 1 n← 1

Step 2 Draw forwards for 3 cm

Step 3 Turn through 144◦ anticlockwise

Step 4 n← n + 1

Step 5 Repeat from Step 2 while n ≤ 5
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8 Collatz conjecture Starting with any natural number n, define a sequence as follows:

� If the current number is even, then obtain a new number by halving it.
� If the current number is odd and greater than 1, then obtain a new number by

multiplying it by 3 and adding 1.

For example, starting with 6 we obtain the sequence 6, 3, 10, 5, 16, 8, 4, 2, 1.
The conjecture asserts that, for any natural number n, the sequence will always reach 1.

a Write an algorithm to generate the sequence for a given starting number n.
b Use your algorithm with the following starting numbers:

i n = 5 ii n = 7 iii n = 8

8C Introduction to pseudocode
In this section, we take a step further in formalising the language we use to write algorithms,
so that it is closer to the code necessary to instruct a computer to perform an algorithm.

Terminology
A computer can be defined as a machine that carries out the instructions of algorithms.
Computers consist of both hardware (the physical machine) and software (the instructions
they follow). Since computers cannot directly understand natural language, we have to
provide them with instructions in a programming language. The process of taking an
algorithm and writing it in a programming language is called coding.

The algorithms in this section are written in pseudocode. This is an informal notation for
writing instructions that is closer to natural language. It makes no reference to any particular
programming language. In order to actually implement these algorithms on a computer, they
must be translated into a specific programming language.

If–then blocks
In the previous section, we used ‘If . . . then . . . ’ instructions for making decisions within an
algorithm. In pseudocode, we use if-then blocks.

� The basic template for an if-then block
is shown on the right. if condition then

follow these instructions

end if

� We can strengthen this construct by
specifying alternative instructions to be
followed when the given condition is not
satisfied.

if condition then

follow these instructions

else

follow these instructions

end if
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� We can iterate this construct as shown in
the template on the right. if first condition then

follow these instructions

else if second condition then

follow these instructions

else

follow these instructions

end if

Using pseudocode, write an algorithm to find the maximum of two numbers a and b.

Example 8

Solution

input a, b

if a ≥ b then

print a

else

print b

end if

Write an algorithm that assigns a letter grade based on a mark out of 100.

Example 9

Solution

input mark

if mark ≥ 90 then

print ‘A’

else if mark ≥ 75 then

print ‘B’

else if mark ≥ 60 then

print ‘C’

else if mark ≥ 50 then

print ‘D’

else

print ‘E’

end if
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For loops
A for loop provides a means of repeatedly executing the same set of instructions in a
controlled way. This is achieved by performing one iteration for each term in a specified
finite sequence.

We will use for loops based on the following template:

for i from 1 to n

follow these instructions

end for

This for loop uses the sequence 1, 2, 3, . . . , n. There are n iterations. You follow the
instructions in the loop n times, with the variable i taking the values 1, 2, 3, . . . , n in turn.

Consider the sequence 12, 22, 32, . . . , n2.

Using pseudocode, write an algorithm to calculate:

a the sum of the terms in this sequence
b the product of the terms in this sequence.

Provide a table of values to demonstrate each algorithm when n = 4.

Example 10

Solution
a We use the variable sum for the current sum at each step of the algorithm. The initial

value of sum must be 0.

input n

sum← 0

for i from 1 to n

sum← sum + i2

end for

print sum

i sum

0

1 0 + 12 = 1

2 1 + 22 = 5

3 5 + 32 = 14

4 14 + 42 = 30

b We use the variable product for the current product at each step of the algorithm. The
initial value of product must be 1.

input n

product ← 1

for i from 1 to n

product ← product × i2

end for

print product

i product

1

1 1 × 12 = 1

2 1 × 22 = 4

3 4 × 32 = 36

4 36 × 42 = 576
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In the previous example, we constructed a table of values to demonstrate each algorithm.
This is called a desk check. In general, we carry out a desk check of an algorithm by
carefully following the algorithm step by step, and constructing a table of the values of all the
variables after each step.

While loops
A while loop provides another means of repeatedly executing the same set of instructions in
a controlled way. This construct is useful when the number of iterations required to perform a
task is unknown. For example, this may happen when we want to achieve a certain accuracy.
A while loop will perform iterations indefinitely, as long as some condition remains true.

Every while loop is based on the following template:

while condition

follow these instructions

end while

We have used Euclidean division in Section 8A. In the following example, we construct a
division algorithm. The algorithm works by counting the number of times that the divisor can
be subtracted from the dividend.

Write an algorithm that divides 72 by 14 and returns the quotient and remainder. Show a
desk check to test the operation of the algorithm.

Example 11

Solution
We use a while loop, since we don’t know how many iterations will be required.

The variable count keeps track of the number of times that 14 can be subtracted from 72.
The variable remainder keeps track of the remainder after each subtraction.

count ← 0

remainder ← 72

while remainder ≥ 14

count ← count + 1

remainder ← remainder − 14

end while

print count, remainder

count remainder

0 72

1 58

2 44

3 30

4 16

5 2

Note: The first output is 5 (the quotient) and the second output is 2 (the remainder).
We can check that 72 = 5 × 14 + 2.
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Consider the sequence defined by the rule

xn+1 = 5xn + 4, where x1 = 3

Write an algorithm that will determine the smallest value of n for which xn > 10 000.
Show a desk check to test the operation of the algorithm.

Example 12

Solution
We use a while loop, since we don’t know how many iterations will be required.

The variable x is used for the current term of the sequence, and the variable n is used to
keep track of the number of iterations.

n← 1

x← 3

while x ≤ 10 000

n← n + 1

x← 5x + 4

end while

print n

n x

1 3

2 19

3 99

4 499

5 2499

6 12 499

Note: The output is 6.

Summary 8C
� If–then blocks This construct provides a

means of making decisions within an algorithm.
Certain instructions are only followed if a
condition is satisfied.

if condition then

follow these instructions

end if

� For loops This construct provides a means of
repeatedly executing the same set of instructions
in a controlled way. In the template on the right,
this is achieved by performing one iteration for
each value of i in the sequence 1, 2, 3, . . . , n.

for i from 1 to n

follow these instructions

end for

� While loops This construct provides another
means of repeatedly executing the same set
of instructions in a controlled way. This is
achieved by performing iterations indefinitely,
as long as some condition remains true.

while condition

follow these instructions

end while
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Exercise 8CSkill-
sheet

In this exercise, you will execute various algorithms. You may like to use a device to help
carry out the steps; see the coding appendices in the Interactive Textbook for instructions.

1Example 8 Using pseudocode, write an algorithm to find the minimum of two numbers a and b.

2Example 9 Using this table, write an algorithm that assigns a letter
grade based on a mark out of 100.

95 ≤ mark ≤ 100 A

85 ≤ mark < 95 B

65 ≤ mark < 85 C

55 ≤ mark < 65 D

0 ≤ mark < 55 E

3Example 10 For the block of code shown on the right,
determine the printed output when:

a x = 0
b x = 1
c x = 5

total← x

for i from 1 to 5

total← total + i

end for

print total

4 For the block of code shown on the right,
determine the printed output when:

a x = 0
b x = 1
c x = 5

total← 0

for i from 1 to 5

total← total + x

end for

print total

5 For the block of code shown on the right,
determine the printed output when:

a x = 0
b x = 1
c x = 5

total← 0

for i from 1 to 5

total← x + i

end for

print total

6Example 11 For the block of code shown on the right,
determine the printed output for each of the
following inputs:

a a = 2, b = 3
b a = 2, b = 5
c a = 3, b = 2

input a, b

while a2 − b < 20

b← b + 2a

a← a + 2

end while

print a, b
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7 Consider the sequence 21, 22, 23, . . . , 2n. Using pseudocode, write an algorithm to find:

a the sum of the terms in this sequence
b the product of the terms in this sequence.

8 Using pseudocode, write an algorithm to calculate the sum 13 + 23 + 33 + · · · + n3.

9 For the algorithm shown on the right, perform a
desk check by constructing a table of the values
of the variables a and b after each pass of the
while loop.

a← 8

b← 6

while a − b < 20

b← ab − 30

a← b − 2a

end while

print a, b

10Example 12 Consider the sequence defined by the rule xn+1 = 3xn + 2, where x1 = 4. Using
pseudocode, write an algorithm to determine the smallest value of n for which
xn > 1000. Perform a desk check for your algorithm.

11 Using pseudocode, write an algorithm to find the smallest natural number n such that

11 + 22 + 33 + · · · + nn > 1 000 000

Perform a desk check for your algorithm.

12 Using pseudocode, write an algorithm to determine the smallest natural number n such
that 2n > 10n2.

13 The sequence defined by the rule xn = 2n + 3 is increasing, while the sequence defined
by the rule yn = 0.9n × 1000 is decreasing. Using pseudocode, write an algorithm to
determine the smallest value of n for which xn > yn.

14 Consider the block of code shown on the right.

a Perform a desk check for each of the
following input values of a and b:

i a = 64, b = 120
ii a = 360, b = 100
iii a = 144, b = 896

b Describe what this algorithm does when you
input two positive integers a and b.

input a, b

while a , b

if a < b then

c← a

a← b − a

b← c

else

c← b

b← a − b

a← c

end if

end while

print a
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8D Further pseudocode
The real power of algorithms comes when we combine the basic constructs in clever ways to
perform tasks that are not possible without the aid of computers.

In this section, we combine loops and if-then blocks. We also introduce three other
important tools for the construction of algorithms: functions, lists and nested loops.

Functions
A block of code that performs a clearly defined task and can be separated out from the main
algorithm is called a function. Functions must be defined before they are used. Once they are
defined, they can be used again and again in different algorithms.

A function can have one or more inputs and return an output. Here are two simple examples
of functions:

� Consider the linear function f (x) = 3x + 2.
We can define this function for use in an
algorithm as shown on the right.

We can then call this function in an algorithm
by writing f (5), for example.

define f (x):

y← 3x + 2

return y

� The function defined on the right has two
inputs; it determines the distance from a
point (x, y) to the origin.

We can call this function in an algorithm by
writing dist(3, 4), for example.

define dist(x, y):

dist ←
√

x2 + y2

return dist

The quotient and remainder functions
The following two functions can be used if we require Euclidean division of natural numbers
in an algorithm. The first function returns the quotient when number is divided by divisor; the
second function returns the remainder.

define quotient(number, divisor):

count ← 0

remainder ← number

while remainder ≥ divisor

count ← count + 1

remainder ← remainder − divisor

end while

return count

define remainder(number, divisor):

count ← 0

remainder ← number

while remainder ≥ divisor

count ← count + 1

remainder ← remainder − divisor

end while

return remainder

For example, we get quotient(7, 3) = 2 and remainder(7, 3) = 1. These two functions are built
into most programming languages. The next two examples illustrate how they can be used.
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Write an algorithm that computes the sum of all the integers from 1 to 1000 that are
divisible by 2 or 3.

Example 13

Solution
We use the variable sum to keep a running total of the numbers that are divisible by 2 or 3.
The initial value of sum must be 0.

sum← 0

for i from 1 to 1000

if remainder(i, 2) = 0 or remainder(i, 3) = 0 then

sum← sum + i

end if

end for

print sum

Write an algorithm that determines the number of digits in the decimal representation of a
given natural number. Show a desk check for the number 7564.

Example 14

Solution
We use a while loop, since we don’t know how many iterations will be required.

The variable count keeps track of how many times we can divide the number by 10 before
the quotient is zero.

input number

count ← 0

while number > 0

number ← quotient(number, 10)

count ← count + 1

end while

print count

number count

7564 0

756 1

75 2

7 3

0 4

Using separately defined functions helps to make the structure of the main algorithm clearer
and easier to understand.
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Lists
In programming languages, a finite sequence is often called a list. We will write lists using
square brackets. For example, we can define a list A by

A← [2, 3, 5, 7, 11]

The notation A[n] refers to the nth entry of the list. So A[1] = 2 and A[5] = 11.

We can add an entry to the end of a list using append. For example, the instruction

append 9 to A

would result in A = [2, 3, 5, 7, 11, 9].

Note: The position of an entry in a list is called its index. In this book, we use 1 as the index
of the first entry. But most programming languages use 0 as the index of the first entry.

Perform a desk check for the algorithm shown
on the right by giving a table of values for the
variables i and A after each step.

A← [5, 7]

for i from 1 to 3

append 2i to A

end for

Example 15

Solution

i A

[5, 7]

1 [5, 7, 2]

2 [5, 7, 2, 4]

3 [5, 7, 2, 4, 6]

Write a function that returns a list of all the factors of a given natural number.

Example 16

Solution Explanation

define factors(N):

A← [ ]

for i from 1 to N

if remainder(N, i) = 0 then

append i to A

end if

end for

return A

We start with an empty list A.

We use a for loop to go through
all the integers from 1 to N.

Each time we find a factor of N,
we append it to list A.

For example, this function will
give factors(10) = [1, 2, 5, 10].
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We can find the length of a list using the function length. For example, if A = [2, 3, 5, 7, 11],
then the instruction

` ← length(A)

would result in ` = 5.

Nested loops
In the previous section, we introduced for loops and while loops. In this section, we
consider problems that require loops within loops. These are called nested loops.

A nested loop consists of an outer loop and an inner loop.

� The first pass of the outer loop starts the inner loop, which executes to completion.
� Then the second pass of the outer loop starts the inner loop again.
� This repeats until the outer loop finishes.

We begin with a simple example.

The algorithm on the right has a nested loop.
Perform a desk check for this algorithm that keeps
track of the values of a, b and c after each step.

c← 0

for a from 1 to 2

for b from 1 to 4

c← c + 1

end for

end for

Example 17

Solution Explanation

a b c

0

1 1 1

1 2 2

1 3 3

1 4 4

2 1 5

2 2 6

2 3 7

2 4 8

The initial value of a in the outer loop is 1.

This value of a is taken into the inner loop,
where b takes the values 1, 2, 3 and 4.

We exit the inner loop. Then a takes its next
value in the outer loop, which is 2.

We enter the inner loop with this new value
of a. Again b takes the values 1, 2, 3 and 4.
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The next example illustrates how we can use nested loops to solve mathematical problems.

Using pseudocode, write an algorithm to find the positive integer solutions of the equation

43x + 17y + 7z = 200

Example 18

Solution
We use three loops to run through all the possible positive integer values of x, y and z.
We first note that

200 ÷ 43 ≈ 4.7, 200 ÷ 17 ≈ 11.8, 200 ÷ 7 ≈ 28.6

Therefore we know that we will find all the solutions from the following nest of
three loops.

for x from 1 to 4

for y from 1 to 11

for z from 1 to 28

if 43x + 17y + 7z = 200 then

print (x, y, z)

end if

end for

end for

end for

This algorithm prints the three solutions (1, 1, 20), (1, 8, 3) and (2, 3, 9).

Summary 8D
� Functions A function takes one or more

input values and returns an output value.
Functions can be defined and then used in
other algorithms.

define function(input):

follow these instructions

return output

� Lists A list is a finite sequence. We write lists using square brackets. For example,
we can assign A← [2, 3, 5, 7, 11]. The notation A[n] refers to the nth entry of the list.
So A[1] = 2 and A[5] = 11.

• To add an entry x to the end of list A, use the instruction append x to A.
• To find the length of list A, use length(A).

� Nested loops A nested loop is a loop within a loop. The first pass of the outer loop
starts the inner loop, which executes to completion. Then the second pass of the outer
loop starts the inner loop again. This repeats until the outer loop finishes.
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Exercise 8DSkill-
sheet

In this exercise, you will execute various algorithms. You may like to use a device to help
carry out the steps; see the coding appendices in the Interactive Textbook for instructions.

1Example 13

Example 14

The function defined on the right will find
the sum of the squares of the first n natural
numbers, that is, 12 + 22 + 32 + · · · + n2.
Modify this function so that it will find each of
the following:

a 13 + 23 + 33 + · · · + n3

b 21 + 22 + 23 + · · · + 2n

c 1 · 2 + 2 · 3 + 3 · 4 + · · · + n · (n + 1)

define sum(n):

sum← 0

for i from 1 to n

sum← sum + i2

end for

return sum

2Example 15

Example 16

The function defined on the right will output
the list [12, 22, 32, . . . , n2].

a The second line of code is A← [ ]. What is
the purpose of this line?

b Rewrite the function so that it outputs the
list [21, 22, 23, . . . , 2n].

c Rewrite the function so that it outputs the
previous list in reverse.

define squares(n):

A← [ ]

for i from 1 to n

append i2 to A

end for

return A

3 The function defined on the right will find the
maximum number in a given list of numbers.
Rewrite this function so that it finds the
minimum number.

define max(A):

max← A[1]

for i from 1 to length(A)

if A[i] > max then

max← A[i]

end if

end for

return max

4 The factorial function can be defined as shown
on the right. For a given natural number n, this
function will return the value of

n! = 1 × 2 × 3 × · · · × n

Using this function:

a write another function that will return the
value of 1! + 2! + 3! + · · · + n!

b write an algorithm that will find the smallest
natural number n for which n! > 10n.

define factorial(n):

product ← 1

for i from 1 to n

product ← product × i

end for

return product
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5Example 17 Each of the following algorithms has a nested loop. Perform a desk check for each
algorithm by completing a table of values for the variables a, b and c after each step.

c← 0

for a from 1 to 3

for b from 1 to 3

c← c + 1

end for

end for

a
c← 0

for a from 2 to 3

for b from 3 to 4

c← c + ab

end for

end for

b

6 Consider the algorithm shown on the right.

a Perform a desk check for this algorithm
by completing a table of values for the
variables i and tally after each step.

b Describe in words what this algorithm
evaluates.

A← [1, 3,−5, 8]

tally← 0

for i from 1 to 4

tally← tally + A[i]2

end for

print tally

7 The algorithm shown on the right will
print a list of the first seven terms of a
well-known sequence of numbers.

a Describe the result of this algorithm by
completing a desk check that tabulates
the values of the variables i and A.

b Modify the algorithm so that it will
print the first term of the sequence that
is greater than 1000.

A← [1, 1]

for i from 1 to 5

append A[i] + A[i + 1] to A

end for

print A

c Modify the algorithm into a function that returns the nth term of the sequence.
d The tribonacci sequence is a modification of the Fibonacci sequence, where each

term is the sum of the three preceding terms. The first five terms are 0, 1, 1, 2, 3.
Change the algorithm so that it will print a list of the first 10 tribonacci numbers.

8 The algorithm on the right prints a list of the
perfect squares between 1 and 1000.

a The first entry of the printed list is A[1] = 1.
Give the value of A[5].

b Modify the algorithm so that it prints the
perfect cubes between 1 and 100 000.

c How many entries will be in the printed list
of your modified algorithm?

A← [ ]

n← 1

while n2 ≤ 1000

append n2 to A

n← n + 1

end while

print A
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9Example 18 Using pseudocode, write an algorithm to find all the positive integer solutions of the
equation 3x + 5y + 7z = 30.

10 a Using pseudocode, write an algorithm to find all the positive integer solutions of the
equation x2 + y2 + 10z = 30.

b Determine the four solutions.
c Modify your algorithm from part a to find the positive integer solution of the

simultaneous equations x2 + y2 + 10z = 30 and x + y + z = 7.

11 Let n be a positive integer. Write a function that will return a list of every solution of the
equation x2 + y2 = n, where x and y are non-negative integers.

12 We know that a quadratic equation ax2 + bx + c = 0 has no real solutions if b2 − 4ac < 0.
By considering integer values of the coefficients a, b and c from −10 to 10, describe
what the following algorithm does.

count ← 0

number ← 0

for a from −10 to 10

if a , 0 then

for b from −10 to 10

for c from −10 to 10

count ← count + 1

if b2 − 4ac < 0 then

number ← number + 1

end if

end for

end for

end if

end for

print count, number, number/count

13 In Example 16, we defined a function factors(N) that returns a list of all the factors of a
given natural number N.

a Using this function, write an algorithm that determines whether a given natural
number N is prime.

b Write a function prime(n) that returns the nth prime number.

14 In this section, we have defined the function remainder(number, divisor), which returns
the remainder when number is divided by divisor. Making use of this function, write a
function that inputs a natural number n and returns:

a the highest power of 2 that is a factor of n

b the smallest natural number that is divisible by all the numbers 1, 2, 3, . . . , n.
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15 The sequence of Pell numbers is defined by the recurrence relation Pn+1 = 2Pn + Pn−1,
where P1 = 1 and P2 = 2.

a Write a function that returns the nth Pell number.
b Using this function, write an algorithm to find the sum of the first n Pell numbers.
c Write an algorithm to find the first Pell number with at least 1000 decimal digits.

16 Here we outline a process that can be described neatly with an algorithm:

Step 1 Initially, bag A contains a counters, and bag B contains b counters.

Step 2 If one bag has more counters than the other, then we double the number of
counters in the bag with fewer counters by taking the required number from
the bag with more.

Step 3 Repeat Step 2 until bags A and B have the same number of counters.

Note that Step 2 can be described using an
if-then block as shown on the right.

a Write the complete process as an algorithm in
pseudocode.

b Use the algorithm to see what happens when:

i a = 21, b = 28
ii a = 21, b = 49
iii a = 35, b = 105
iv a = 19, b = 133
v a = 37, b = 259

if a < b then

b← b − a

a← 2a

else if b < a then

a← a − b

b← 2b

end if

c Find another two sets of initial values for a and b such that the algorithm will
eventually stop.

17 The Euclidean algorithm for finding the highest common factor of two natural numbers
is introduced in Section 8A. Describe this algorithm using pseudocode.
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Assign-
ment

Nrich

Chapter summary

Algorithms
� An algorithm is a finite, unambiguous sequence of instructions for performing a specific

task.
� An algorithm can be described using step-by-step instructions, illustrated by a flowchart,

or written out in pseudocode.

Pseudocode
� Variables
• A variable is a string of one or more letters that acts as a placeholder that can be

assigned different values.
• The notation x← 3 means ‘assign the value 3 to the variable x’.
• A desk check of an algorithm is achieved by following the algorithm step by step, and

constructing a table of the values of all the variables after each step.

� If–then blocks This construct provides a means
of making decisions within an algorithm. Certain
instructions are only followed if a condition is
satisfied.

if condition then

follow these instructions

end if

� For loops This construct provides a means of
repeatedly executing the same set of instructions in
a controlled way. In the template on the right, this
is achieved by performing one iteration for each
value of i in the sequence 1, 2, 3, . . . , n.

for i from 1 to n

follow these instructions

end for

� While loops This construct provides another
means of repeatedly executing the same set of
instructions in a controlled way. This is achieved
by performing iterations indefinitely, as long as
some condition remains true.

while condition

follow these instructions

end while

� Functions A function takes one or more input
values and returns an output value. Functions can
be defined and then used in other algorithms.

define function(input):

follow these instructions

return output

� Lists
• A list is a finite sequence.
• We write lists using square brackets. For example, we can assign A← [2, 3, 5, 7, 11].

The notation A[n] refers to the nth entry of the list. So A[1] = 2 and A[5] = 11.
• To add an entry x to the end of list A, use the instruction append x to A.
• To find the length of list A, use length(A).
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Technology-free questions

1 Find the printed output for each of the following blocks of code:

x← 5

for n from 1 to 3

x← x + 1

end for

print x

a
A← [2, 1]

for i from 1 to 5

append A[i] + A[i + 1] to A

end for

print A[7]

b

a← 3

i← 1

while i < 5

a← 2a + 3

i← i + 1

end while

print a

c
a← 2

b← 40

while a2 < b − 2

b← b + a

a← a + 1

end while

print a, b

d

2 The block of code shown on the right
evaluates the sum 12 + 22 + 32 + 42 + 52.

Change the code so that it evaluates:

a 11 + 22 + 33 + 44 + 55 + 66

b 1 · 6 − 2 · 5 + 3 · 4 − 4 · 3 + 5 · 2 − 6 · 1

sum← 0

for n from 1 to 5

sum← sum + n2

end for

print sum

3 Show a desk check for the following algorithm by completing the table of values.

a← 1

b← 2

for n from 1 to 5

c← n × b + 2a

a← b

b← c

print n, a, b, c

end for

n a b c

1

2

3

4

5

4 Define a sequence recursively by an+1 = 3an + 2, where a1 = 2.

a Write down the first three terms of this sequence.
b Write pseudocode that would print the 50th term of this sequence, that is, a50.
c Now adjust your pseudocode so that it would print the sum of the first 50 terms,

that is, a1 + a2 + a3 + · · · + a50.
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5 For n ∈ N, define tn =

6 − 2n if n is even

3n + 1 if n is odd

a Write an algorithm in pseudocode to print the first N terms of this sequence.
b Demonstrate the algorithm for N = 5 with a table of values.
c Modify your algorithm so that it prints the sum of the first N terms.

6 Write an algorithm in pseudocode to find all the pairs of integers (a, b) such that
9 ≤ a2 + b2 ≤ 36.

7 Bisection method This method is used for finding approximate solutions of equations
of the form f (x) = 0. Here we illustrate the method by finding an approximation of

√
2,

accurate to within 0.1.

The general idea is as follows:

� Start with the interval [a, b] = [0, 2].
� Find the midpoint m of the interval.
� Decide which of the two subintervals [a, m]

or [m, b] contains
√

2.
� Rename the chosen subinterval as [a, b] and

continue the process.

The algorithm shown on the right implements
this idea.

a Perform a desk check for the algorithm by
completing the following table.

a m b f (a) f (m) f (b)

0 1 2 −2 −1 2

define f (x):

return x2 − 2

a← 0

b← 2

m← 1

while b − a > 2 × 0.1

if f (a) × f (m) < 0 then

b← m

else

a← m

end if

m←
a + b

2
print a, m, b

end while

print m

b Modify the algorithm so that it approximates
√

3 to within 0.01.

Multiple-choice questions

1 When the algorithm on the right is executed,
the printed value of a will be

A 8 B 9 C 10 D 11 E 16

a← 1

while a < 10

a← 2a

end while

print a
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2 When the algorithm on the right is executed,
the printed value of i will be

A 1 B 2 C 3 D 4 E 5

i← 0

sum← 0

while sum < 10

i← i + 1

sum← sum + i

end while

print i

3 When the algorithm on the right is executed,
only one value will be printed. This value is

A 1 B 2 C 3 D 4 E 5

A← [1, 2, 3, 4, 5]

B← [5, 4, 3, 2, 1]

for i from 1 to 5

if A[i] = B[i] then

print A[i]

end if

end for

4 Consider the function defined on the right,
which takes a natural number n as its input.
The value of f (4) is

A −2 B −1 C 0 D 1 E 2

define f (n):

sum← 0

for i from 1 to n

sum← sum + (−1)i × i

end for

return sum

5 The function defined on the right takes a list A
as its input. If the input is A = [1, 3, 5], then the
output is

A [2, 5, 8] B [5, 3, 1]
C [2, 4, 6] D [2, 6, 10]
E [4, 6, 8]

define f (A):

B← [ ]

for i from 1 to length(A)

append A[i] + i to B

end for

return B

6 When the algorithm on the right is executed,
the printed value of sum will be

A 7 B 8 C 9 D 10 E 11

sum← 0

for i from 1 to 2

for j from 1 to 2

sum← sum + i × j

end for

end for

print sum
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7 The function defined on the right takes a pair of
positive integers (a, b) as its input. How many
different inputs will return a value of 8?

A 0 B 1 C 2 D 4 E 8

define f (a, b):

if a ≤ b then

c← ab

else

c← ba

end if

return c

8 The function remainder(n, d) returns the
remainder when n is divided by d.

Consider the function defined on the
right, which takes a natural number n as
its input. The value of f (11) is

A 1 B 2 C 3
D 4 E 5

define f (n):

count ← 0

while n , 1

if remainder(n, 2) = 0 then

n←
n
2

else

n← n − 1

end if

count ← count + 1

end while

return count

9 The function remainder(n, d) returns the
remainder when n is divided by d.

Consider the function defined on the
right, which takes a natural number n as
its input. If function(n) = [1, 2, 4, 8, 16],
then n must be equal to

A 1 B 2 C 4
D 8 E 16

define function(n):

A← [ ]

for i from 1 to n

if remainder(n, i) = 0 then

append i to A

end if

end for

return A

10 When the algorithm on the right is
executed, the printed value of sum
will be

A 10 B 15 C 20
D 25 E 30

sum← 0

A← [1, 2, 3, 4]

for i from 1 to 4

sum← sum + A[i] × A[5 − i]

end for

print sum
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Extended-response questions

1 Converting to binary
In Section 8A, we discussed an algorithm for converting a natural number n into binary
form. The following function gives a pseudocode implementation of that algorithm.
We use the functions quotient and remainder from Section 8D. We also use a new
function reverse, which reverses the order of a list.

define binary(n):

A← [ ]

while n > 0

r ← remainder(n, 2)

append r to A

n← quotient(n, 2)

end while

A← reverse(A)

return A

a Carry out a desk check for:

i n = 65
ii n = 4567
iii n = 54 786

b Using pseudocode, write a function to convert a natural number n into any base b.
Carry out a desk check for:

i b = 8 and n = 65
ii b = 8 and n = 4567
iii b = 8 and n = 54 786

c The following block of code illustrates how we can reverse the order of a list.

A← [2, 4, 6, 8, 10]

B← [ ]

` ← length(A)

for i from 0 to ` − 1

append A[` − i] to B

end for

print B

i Carry out a desk check for this code.
ii Why do we need the second list B? What would happen if instead we used

A[i + 1]← A[` − i] in the loop?
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2 Bubble sort
Sorting lists into ascending order is an important process in both mathematics and
computer science. The following algorithm illustrates a bubble sort. The idea is
very simple: unsorted neighbours are swapped until the whole list is sorted.
This code implements a bubble sort for a list with six entries A = [1, 9, 3, 2, 7, 6].
The if-then block swaps entries A[ j] and A[ j + 1] if they are in the wrong order.

A← [1, 9, 3, 2, 7, 6]

for i from 1 to 6

for j from 1 to 6 − i

if A[ j] > A[ j + 1] then

temp← A[ j]

A[ j]← A[ j + 1]

A[ j + 1]← temp

end if

end for

end for

print A

For example, for i = 1, the variable j takes values from 1 to 5.

� j = 1: Since A[1] ≤ A[2], these entries are not swapped.
� j = 2: Since A[2] > A[3], these entries are swapped.

At the end of the i = 1 pass, we will have A = [1, 3, 2, 7, 6, 9]. The largest entry is now
in the final position.

a Continue the following desk check until you reach the end of the i = 2 pass.

i j A[1] A[2] A[3] A[4] A[5] A[6]

1 9 3 2 7 6 Initial list

1 1 1 9 3 2 7 6 Not swapped

1 2 1 3 9 2 7 6 Swapped

1 3 1 3 2 9 7 6 Swapped

b Why do we need the variable temp? What would happen if instead we used the
following code for the if-then block?

if A[ j] > A[ j + 1] then

A[ j]← A[ j + 1]

A[ j + 1]← A[ j]

end if

c Modify the pseudocode to define a function that will bubble sort an input list of
any length.
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3 Palindromic squares
The function R(n) defined on the right uses
the functions quotient and remainder from
Section 8D. It takes a natural number as
input and returns another natural number.

a Carry out a desk check of this code with
input n = 5678 by tabulating the values
of the variables a, n and reverse after
each pass of the while loop.

b Describe in words what this function
does.

define R(n):

reverse← 0

while n > 0

a← remainder(n, 10)

n← quotient(n, 10)

reverse← reverse × 10 + a

end while

return reverse

A natural number is palindromic if it remains the same when its digits are reversed.
For example, the number 12321 is palindromic. Interestingly, it is also a square number,
since 1112 = 12321.

c Making use of the function R(n), write an algorithm in pseudocode that prints all the
square numbers less than 1 000 000 that are palindromic.

4 Reverse-then-add algorithm
For each natural number n, let R(n) be the natural number obtained when the digits
of n are written in reverse order. For example, we have R(123) = 321. This function is
implemented in pseudocode in Question 3. A natural number n is palindromic if and
only if R(n) = n.

a Evaluate each of the following:

i R(1234) ii 1234 + R(1234)
iii R(5678) iv 5678 + R(5678)

b If each digit of n is less than 5, explain why the number n + R(n) will be palindromic.

Now consider the function defined on the
right. It takes a natural number, reverses its
digits and adds the two numbers. It repeats
this process until the result is palindromic.

c Complete a desk check for this function
with n = 1756. Give the values of n,
R(n) and n + R(n) after each step.

define function(n):

while R(n) , n

n← n + R(n)

end while

return n

Note: A Lychrel number is a natural number that does not eventually form a
palindrome when repeatedly reversing its digits and adding the two numbers.
So far, no natural numbers have been proven to have this property. However,
the number 196 is thought to be the smallest example.

d What is the output of this function if the input is 1268? Determine how many
different inputs return an output of 9889 by writing and running an appropriate
program.
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5 Pythagorean triples
A Pythagorean triple (a, b, c) consists of three natural numbers a, b and c such that
a2 + b2 = c2. The following algorithm will generate a Pythagorean triple for any input
of a natural number.

Step 1 Input a natural number m.

Step 2 Let n = m + 2.

Step 3 Evaluate the sum of the reciprocals of m and n.

Step 4 Output the numerator and denominator of the result; they will be the first two
entries of a Pythagorean triple.

a Find the output for m = 3.
b Find the output for m = 5.
c Prove that this algorithm always gives a Pythagorean triple for every natural

number m.

6 Selection sort
In Question 2, we looked at an algorithm to sort a list into ascending order. In this
question, your aim is to write your own sorting algorithm. You can use the following
general method:

� Find the smallest entry in the list and swap it with the first entry.
� Find the smallest entry in the rest of the list and swap it with the second entry.
� Continue this process until the whole list is sorted.

Using pseudocode, write an algorithm to sort a list of six numbers.

7 Prime factorisation
Write an algorithm that computes the prime factorisation of an input natural number.
The output should be a list with entries that give both the prime factor and its
multiplicity. For example, since 200 = 23 × 52, the output for the number 200 should
be [[2, 3], [5, 2]].
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Combinatorics

Objectives
I To solve problems using the addition and multiplication principles.

I To solve problems involving permutations.

I To solve problems involving combinations.

I To establish and use identities associated with Pascal’s triangle.

I To solve problems using the pigeonhole principle.

I To understand and apply the inclusion–exclusion principle.

Take a deck of 52 playing cards. This simple, familiar deck can be arranged in so many ways
that if you and every other living human were to shuffle a deck once per second from the
beginning of time, then by now only a tiny fraction of all possible arrangements would have
been obtained. So, remarkably, every time you shuffle a deck you are likely to be the first
person to have created that particular arrangement of cards!

To see this, note that we have 52 choices for the first card, and then 51 choices for the second
card, and so on. This gives a total of

52 × 51 × · · · × 2 × 1 ≈ 8.1 × 1067

arrangements. This is quite an impressive number, especially in light of the fact that the
universe is estimated to be merely 1.4 × 1010 years old.

Combinatorics is concerned with counting the number of ways of doing something. Our
goal is to find clever ways of doing this without explicitly listing all the possibilities. This is
particularly important in the study of probability. For instance, we can use combinatorics to
explain why certain poker hands are more likely to occur than others without considering all
2 598 960 possible hands.
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9A Basic counting methods
Tree diagrams
In most combinatorial problems, we are interested in the number of solutions to a given
problem, rather than the solutions themselves. Nonetheless, for simple counting problems
it is sometimes practical to list and then count all the solutions. Tree diagrams provide a
systematic way of doing this, especially when the problem involves a small number of steps.

A restaurant has a fixed menu, offering a choice of fish or beef for the main meal, and
cake, pudding or ice-cream for dessert. How many different meals can be chosen?

Example 1

Solution
We illustrate the possibilities on a tree diagram:

B

IPC

F

IPC

This gives six different meals, which we can write as

FC, FP, FI, BC, BP, BI

The multiplication principle
In the above example, for each of the two ways of selecting the main meal, there were three
ways of selecting the dessert. This gives a total of 2 × 3 = 6 ways of choosing a meal. This
is an example of the multiplication principle, which will be used extensively throughout
this chapter.

Multiplication principle

If there are m ways of performing one task and then there are n ways of performing
another task, then there are m × n ways of performing both tasks.

Sandra has three different skirts, four different tops and five different pairs of shoes. How
many choices does she have for a complete outfit?

Example 2

Solution Explanation
3 × 4 × 5 = 60 Using the multiplication principle, we multiply the number

of ways of making each choice.
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How many paths are there from point P to point R travelling from left to right?

P
Q

R

Example 3

Solution Explanation
4 × 3 = 12 For each of the four paths from P to Q, there are three

paths from Q to R.

The addition principle
In some instances, we have to count the number of ways of choosing between two alternative
tasks. In this case, we use the addition principle.

Addition principle

Suppose there are m ways of performing one task and n ways of performing another task.
If we cannot perform both tasks, then there are m + n ways to perform one of the tasks.

To travel from Melbourne to Sydney tomorrow, Kara has a choice between three different
flights and two different trains. How many choices does she have?

Example 4

Solution Explanation
3 + 2 = 5 The addition principle applies because Kara cannot travel

by both plane and train. Therefore, we add the number of
ways of making each choice.

Some problems will require use of both the multiplication and the addition principles.

How many paths are there from point A to point E travelling from left to right?

A

B C D

E

F G H

Example 5

Solution
We can take either an upper path or a lower path:

� Going from A to B to C to D to E there are 2 × 2 × 2 × 1 = 8 paths.
� Going from A to F to G to H to E there are 1 × 3 × 3 × 1 = 9 paths.

Using the addition principle, there is a total of 8 + 9 = 17 paths from A to E.
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Harder problems involving tree diagrams
For some problems, a straightforward application of the multiplication and addition
principles is not possible.

A bag contains one blue token, two red tokens and one green token. Three tokens are
removed from the bag and placed in a row. How many arrangements are possible?

Example 6

Solution
The three tokens are selected without replacement. So once a blue or green token
is taken, these cannot appear again. We use a tree diagram to systematically find
every arrangement.

G

R

RB

B

R

R

G

RB

R

GB

B

GR

B

G

R

R

GR

The complete set of possible arrangements can be read by tracing out each path from top
to bottom of the diagram. This gives 12 different arrangements:

BRR, BRG, BGR, RBR, RBG, RRB, RRG, RGB, RGR, GBR, GRB, GRR

Summary 9A
Three useful approaches to solving simple counting problems:

� Tree diagrams
These can be used to systematically list all solutions to a problem.

� Multiplication principle
If there are m ways of performing one task and then there are n ways of performing
another task, then there are m × n ways of performing both tasks.

� Addition principle
Suppose there are m ways of performing one task and n ways of performing another
task. If we cannot perform both tasks, there are m + n ways to perform one of the tasks.

Some problems require use of both the addition and the multiplication principles.

Exercise 9ASkill-
sheet

1Example 2 Sam has five T-shirts, three pairs of pants and three pairs of shoes. How many different
outfits can he assemble using these clothes?
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2Example 4 A restaurant offers five beef dishes and three chicken dishes. How many selections of
one main meal does a customer have?

3 Each of the 10 boys at a party shakes hands with each of the 12 girls. How many
handshakes take place?

4 Draw a tree diagram showing all the two-digit numbers that can be formed using the
digits 7, 8 and 9 if each digit:

cannot be repeateda can be repeated.b

5 How many different three-digit numbers can be formed using the digits 2, 4 and 6 if
each digit can be used:

as many times as you would likea at most once?b

6 Jack wants to travel from Sydney to Perth via Adelaide. There are four flights and two
trains from Sydney to Adelaide. There are two flights and three trains from Adelaide to
Perth. How many ways can Jack travel from Sydney to Perth?

7 Travelling from left to right, how many paths are there from point A to point B in each
of the following diagrams?

Example 3
A B

a A Bb

Example 5

A B

c A Bd

8Example 6 A bag contains two blue, one red and two green tokens. Two tokens are removed
from the bag and placed in a row. With the help of a tree diagram, list all the different
arrangements.

9 How many ways can you make change for 50 cents using 5, 10 and 20 cent pieces?

10 Four teachers decide to swap desks at work. How many ways can this be done if no
teacher is to sit at their previous desk?

11 Three runners compete in a race. In how many ways can the runners complete the race
assuming:

there are no tied placesa the runners can tie places?b

12 A six-sided die has faces labelled with the numbers 0, 2, 3, 5, 7 and 11. If the die
is rolled twice and the two results are multiplied, how many different answers can
be obtained?
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9B Factorial notation and permutations
Factorial notation
Factorial notation provides a convenient way of expressing products of consecutive natural
numbers. For each natural number n, we define

n! = n · (n − 1) · (n − 2) · · · · · 2 · 1

where the notation n! is read as ‘n factorial’.

We also define 0! = 1. Although it might seem strange at first, this definition will turn out to
be very convenient, as it is compatible with formulas that we will establish shortly.

Another very useful identity is

n! = n · (n − 1)!

Evaluate:

3!a
50!
49!

b
10!
2! 8!

c

Example 7

Solution
3! = 3 · 2 · 1

= 6

a
50!
49!

=
50 · 49!

49!

= 50

b
10!
2! 8!

=
10 · 9 · 8!

2! · 8!

=
10 · 9
2 · 1

= 45

c

Permutations of n objects
A permutation is an ordered arrangement of a collection of objects.

Using a tree diagram, list all the permutations of the letters in the word CAT.

Example 8

Solution Explanation

T

A

C

C

A

A

T

C

C

T

C

T

A

A

T

There are six permutations:

CAT, CTA, ACT, ATC, TCA, TAC

There are three choices for the first letter.
This leaves only two choices for the second
letter, and then one for the third.
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Another way to find the number of permutations for the previous example is to draw three
boxes, corresponding to the three positions. In each box, we write the number of choices we
have for that position.

� We have 3 choices for the first letter (C, A or T).
� We have 2 choices for the second letter (because we have already used one letter).
� We have 1 choice for the third letter (because we have already used two letters).

3 2 1

By the multiplication principle, the total number of arrangements is

3 × 2 × 1 = 3!

So three objects can be arranged in 3! ways. More generally:

The number of permutations of n objects is n!.

Proof The reason for this is simple:

� The first item can be chosen in n ways.
� The second item can be chosen in n − 1 ways, since only n − 1 objects remain.
� The third item can be chosen in n − 2 ways, since only n − 2 objects remain.
...
� The last item can be chosen in 1 way, since only 1 object remains.

Therefore, by the multiplication principle, there are

n · (n − 1) · (n − 2) · · · · · 2 · 1 = n!

permutations of n objects.

How many ways can six different books be arranged on a shelf?

Example 9

Solution Explanation

6! = 6 × 5 × 4 × 3 × 2 × 1

= 720

Six books can be arranged in 6! ways.

Using your calculator, find how many ways 12 students can be lined up in a row.

Example 10

Using the TI-Nspire
Evaluate 12! as shown.

Note: The factorial symbol (!) can be accessed
using º, the Symbols palette ( ctrl k )
or menu > Probability > Factorial.
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Using the Casio ClassPad
� InM, open the keyboard.
� Enter the number 12, followed by the factorial

symbol. Tap EXE .

Note: The factorial symbol (!) is found in the Advance keyboard; you need to scroll
down to see this keyboard.

How many four-digit numbers can be formed using the digits 1, 2, 3 and 4 if:

a they cannot be repeated
b they can be repeated?

Example 11

Solution Explanation
a 4! = 4 × 3 × 2 × 1 = 24 Four numbers can be arranged in 4! ways.

b 44 = 4 × 4 × 4 × 4 = 256 Using the multiplication principle, there are
4 choices for each of the 4 digits.

Permutations of n objects taken r at a time
Imagine a very small country with very few cars. Licence plates consist of a sequence of four
digits, and repetitions of the digits are not allowed. How many such licence plates are there?

Here, we are asking for the number of permutations of 10 digits taken four at a time. We will
denote this number by 10P4.

To solve this problem, we draw four boxes. In each box, we write the number of choices we
have for that position. For the first digit, we have a choice of 10 digits. Once chosen, we have
only 9 choices for the second digit, then 8 choices for the third and 7 choices for the fourth.

10 9 8 7

By the multiplication principle, the total number of licence plates is

10 × 9 × 8 × 7

There is a clever way of writing this product as a fraction involving factorials:
10P4 = 10 · 9 · 8 · 7

=
10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

6 · 5 · 4 · 3 · 2 · 1

=
10!
6!

=
10!

(10 − 4)!

We can easily generalise this procedure to give the following result.
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Number of permutations

The number of permutations of n objects taken r at a time is denoted by nPr and is given
by the formula

nPr =
n!

(n − r)!

Proof To establish this formula we note that:

� The 1st item can be chosen in n ways.
� The 2nd item can be chosen in n − 1 ways.
...
� The rth item can be chosen in n − r + 1 ways.

Therefore, by the multiplication principle, the number of permutations of n objects
taken r at a time is

nPr = n · (n − 1) · · · · · (n − r + 1)

=
n · (n − 1) · · · · · (n − r + 1) · (n − r) · · · · · 2 · 1

(n − r) · · · · · 2 · 1

=
n!

(n − r)!

Notes:
� If r = n, then we have nPn, which is simply the number of permutations of n objects and so

must equal n!. The formula still works in this instance, since

nPn =
n!

(n − n)!
=

n!
0!

= n!

Note that this calculation depends crucially on our decision to define 0! = 1.
� If r = 1, then we obtain nP1 = n. Given n objects, there are n choices of one object, and

each of these can be arranged in just one way.

a Using the letters A, B, C, D and E without repetition, how many different two-letter
arrangements are there?

b Six runners compete in a race. In how many ways can the gold, silver and bronze
medals be awarded?

Example 12

Solution
There are five letters to arrange in
two positions:

5P2 =
5!

(5 − 2)!
=

5!
3!

=
5 · 4 · 3!

3!
= 20

a There are six runners to arrange in
three positions:

6P3 =
6!

(6 − 3)!
=

6!
3!

=
6 · 5 · 4 · 3!

3!
= 120

b
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Although the formula developed for nPr will have an important application later in this
chapter, you do not actually have to use it when solving problems. It is often more convenient
to simply draw boxes corresponding to the positions, and to write in each box the number of
choices for that position.

How many ways can seven friends sit along a park bench with space for only four people?

Example 13

Solution Explanation

7 6 5 4

By the multiplication principle, the total
number of arrangements is

7 × 6 × 5 × 4 = 840

We draw four boxes, representing the
positions to be filled. In each box we
write the number of ways we can fill
that position.

Using the TI-Nspire
� To evaluate 7P4, use menu > Probability >

Permutations as shown.

Note: Alternatively, you can simply type npr(7, 4). The command is not case sensitive.

Using the Casio ClassPad
To evaluate 7P4:

� InM, select|from the Advance keyboard.
(You need to scroll down to find this keyboard.)

� After the bracket, enter the numbers 7 and 4,
separated by a comma. Then tap EXE .

Summary 9B
� n! = n · (n − 1) · (n − 2) · · · · · 2 · 1 and 0! = 1
� n! = n · (n − 1)!
� A permutation is an ordered arrangement of objects.
� The number of permutations of n objects is n!.
� The number of permutations of n objects taken r at a time is given by

nPr =
n!

(n − r)!
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Exercise 9B

1 Evaluate n! for n = 0, 1, 2, . . . , 10.

2Example 7 Evaluate each of the following:
5!
4!

a
10!
8!

b
12!

10! 2!
c

100!
97! 3!

d

3 Simplify the following expressions:
(n + 1)!

n!
a

(n + 2)!
(n + 1)!

b
n!

(n − 2)!
c

1
n!

+
1

(n + 1)!
d

4 Evaluate 4Pr for r = 0, 1, 2, 3, 4.

5Example 8 Use a tree diagram to find all the permutations of the letters in the word DOG.

6Example 9 How many ways can five books on a bookshelf be arranged?

7 How many ways can the letters in the word HYPERBOLA be arranged?

8Example 12 Write down all the two-letter permutations of the letters in the word FROG.

9Example 13 How many ways can six students be arranged along a park bench if the bench has:

six seatsa five seatsb four seats?c

10 Using the digits 1, 2, 5, 7 and 9 without repetition, how many numbers can you form
that have:

five digitsa four digitsb three digits?c

11 How many ways can six students be allocated to eight vacant desks?

12 How many ways can three letters be posted in five mailboxes if each mailbox
can receive:

more than one lettera at most one letter?b

13 Using six differently coloured flags without repetition, how many signals can you
make using:

three flags in a rowa four flags in a rowb five flags in a row?c

14 You are in possession of four flags, each coloured differently. How many signals can
you make using at least two flags arranged in a row?

15 Some car licence plates consist of a sequence of three letters followed by a sequence of
three digits.

a How many different car licence plates have letters and numbers arranged this way?
b How many of these have no repeated letters or numbers?

16 Find all possible values of m and n if m! · n! = 720 and m > n.

17 Show that n! = (n2 − n) · (n − 2)! for n ≥ 2.
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18 a The three tiles shown are to be arranged in a row, and can
be rotated. How many different ways can this be done?

b The four tiles shown are to be arranged in a row, and
can be rotated. How many different ways can this
be done?

19 Given six different colours, how many ways can you paint a cube so that all the faces
have different colours? Two colourings are considered to be the same when one can be
obtained from the other by rotating the cube.

9C Permutations with restrictions
Suppose we want to know how many three-digit numbers have no repeated digits. The
answer is not simply 10P3, the number of permutations of 10 digits taken three at a time.
This is because the digit 0 cannot be used in the hundreds place.

� There are 9 choices for the first digit (1, 2, 3, . . . , 9).
� There are 9 choices for the second digit (0 and the eight remaining non-zero digits).
� This leaves 8 choices for the third digit.

100s 10s units

9 9 8

By the multiplication principle, there are 9 × 9 × 8 = 648 different three-digit numbers.

When considering permutations with restrictions, we deal with the restrictions first.

a How many arrangements of the word DARWIN begin and end with a vowel?
b Using the digits 0, 1, 2, 3, 4 and 5 without repetition, how many odd four-digit numbers

can you form?

Example 14

Solution
a We draw six boxes. In each box, we write the number of choices we have for that

position. We first consider restrictions. There are two choices of vowel (A or I) for the
first letter, leaving only one choice for the last letter.

2 1

This leaves four choices for the second letter, three for the next, and so on.

2 4 3 2 1 1

By the multiplication principle, the number of arrangements is

2 × 4 × 3 × 2 × 1 × 1 = 48
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b We draw four boxes. Again, we first consider restrictions. The last digit must be odd
(1, 3 or 5), giving three choices. We cannot use 0 in the first position, so this leaves
four choices for that position.

4 3

Once these two digits have been chosen, this leaves four choices and then three choices
for the remaining two positions.

4 4 3 3

Thus the number of arrangements is

4 × 4 × 3 × 3 = 144

Permutations with items grouped together
For some arrangements, we may want certain items to be grouped together. In this case,
the trick is to initially treat each group of items as a single object. We then multiply by the
numbers of arrangements within each group.

a How many arrangements of the word EQUALS are there if the vowels are kept
together?

b How many ways can two chemistry, four physics and five biology books be arranged on
a shelf if the books of each subject are kept together?

Example 15

Solution Explanation

a 4! × 3!

= 144

We group the three vowels together so that we have four items
to arrange: (E, U, A), Q, L, S. They can be arranged in 4! ways.
Then the three vowels can be arranged among themselves in
3! ways. We use the multiplication principle.

b 3! × 2! × 4! × 5!

= 34 560

There are three groups and so they can be arranged in 3! ways.
The two chemistry books can be arranged among themselves in
2! ways, the four physics books in 4! ways and the five biology
books in 5! ways. We use the multiplication principle.

Summary 9C
� To count permutations that are subject to restrictions, we draw a series of boxes.

In each box, we write the number of choices we have for that position. We always
consider the restrictions first.

� When items are to be grouped together, we initially treat each group as a single object.
We find the number of arrangements of the groups, and then multiply by the numbers
of arrangements within each group.
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Exercise 9CSkill-
sheet

1Example 14 Using the digits 1, 2, 3, 4 and 5 without repetition, how many five-digit numbers can
you form:

without restrictiona that are oddb
that begin with 5c that do not begin with 5?d

2Example 15 In how many ways can three girls and two boys be arranged in a row:

without restrictiona if the two boys sit togetherb
if the two boys do not sit togetherc if girls and boys alternate?d

3 How many permutations of the word QUEASY:

a begin with a vowel b begin and end with a vowel
c keep the vowels together d keep the vowels and consonants together?

4 How many ways can four boys and four girls be arranged in a row if:

boys and girls sit in alternate positionsa boys sit together and girls sit together?b

5 The digits 0, 1, 2, 3, 4 and 5 can be combined without repetition to form new numbers.
In how many ways can you form:

a six-digit numbera a four-digit number divisible by 5b
a number less than 6000c an even three-digit number?d

6 Two parents and four children are seated in a cinema along six consecutive seats. How
many ways can this be done:

a without restriction
b if the two parents sit at either end
c if the children sit together
d if the parents sit together and the children sit together
e if the youngest child must sit between and next to both parents?

7 12321 is a palindromic number because it reads the same backwards as forwards.
How many palindromic numbers have:

five digitsa six digits?b

8 How many arrangements of the letters in VALUE do not begin and end with a vowel?

9 Using each of the digits 1, 2, 3 and 4 at most once, how many even numbers can
you form?

10 How many ways can six girls be arranged in a row so that two of the girls, A and B:

do not sit togethera have one person between them?b

11 How many ways can three girls and three boys be arranged in a row if no two girls sit
next to each other?



302 Chapter 9: Combinatorics

9D Permutations of like objects
The name for the Sydney suburb of WOOLLOOMOOLOO has the unusual distinction
of having 13 letters in total, of which only four are different. Finding the number of
permutations of the letters in this word is not as simple as evaluating 13!. This is because
switching like letters does not result in a new permutation.

Our aim is to find an expression for P, where P is the number of permutations of the letters in
the word WOOLLOOMOOLOO. First notice that the word has

1 letter W, 1 letter M, 3 letter Ls, 8 letter Os

Replace the three identical Ls with L1, L2 and L3. These three letters can be arranged in
3! different ways. Therefore, by the multiplication principle, there are now

P · 3!

permutations. Likewise, replace the eight identical Os with O1, O2, . . . , O8. These eight
letters can be arranged in 8! different ways. Therefore there are now

P · 3! · 8!

permutations.

On the other hand, notice that the 13 letters are now distinct, so there are 13! permutations of
these letters. Therefore

P · 3! · 8! = 13! and so P =
13!
3! 8!

We can easily generalise this procedure to give the following result.

Permutations of like objects

The number of permutations of n objects of which n1 are alike, n2 are alike, . . . and nr are
alike is given by

n!
n1! n2! · · · nr!

a Find the number of permutations of the letters in the word RIFFRAFF.
b There are four identical knives, three identical forks and two identical spoons in a

drawer. They are taken out of the drawer and lined up in a row. How many ways can
this be done?

Example 16

Solution Explanation

a
8!

4! 2!
= 840 There are 8 letters of which 4 are alike and 2 are alike.

b
9!

4! 3! 2!
= 1260 There are 9 items of which 4 are alike, 3 are alike and

2 are alike.
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The grid shown consists of unit squares. By travelling only
right (R) or down (D) along the grid lines, how many paths are
there from point A to point B?

B

A
Example 17

Solution
Each path from A to B can be described by a sequence of four Ds
and five Rs in some order. For example, the path shown can be
described by the sequence RRDDDRRRD.

Since there are 9 letters of which 4 are alike and 5 are alike, the
number of permutations of these letters is

9!
4! 5!

= 126

A

B

Summary 9D
� Switching like objects does not give a new arrangement.
� The number of permutations of n objects of which n1 are alike, n2 are alike, . . . and

nr are alike is given by
n!

n1! n2! · · · nr!

Exercise 9DSkill-
sheet

1Example 16 Ying has four identical 20 cent pieces and three identical 10 cent pieces. How many
ways can she arrange these coins in a row?

2 How many ways can the letters in the word MISSISSIPPI be arranged?

3 Find the number of permutations of the letters in the word WARRNAMBOOL.

4 Using five 9s and three 7s, how many eight-digit numbers can be made?

5 Using three As, four Bs and five Cs, how many sequences of 12 letters can be made?

6 How many ways can two red, two black and four blue flags be arranged in a row:

without restrictiona if the first flag is redb
if the first and last flags are bluec if every alternate flag is blued
if the two red flags are adjacent?e

7Example 17 The grid shown consists of unit squares. By travelling only
right (R) or down (D) along the grid lines, how many paths are
there from point A to point B?

A

B
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8 The grid shown consists of unit squares. By travelling only
along the grid lines, how many paths are there:

a of length 6 from (0, 0) to the point (2, 4)
b of length m + n from (0, 0) to the point (m, n), where m and

n are natural numbers? x

y

(0, 0)

9 Consider a deck of 52 playing cards.

a How many ways can the deck be arranged? Express your answer in the form a!.
b If two identical decks are combined, how many ways can the cards be arranged?

Express your answer in the form
a!

(b!)c .

c If n identical decks are combined, find an expression for the number of ways that the
cards can be arranged.

10 An ant starts at position (0, 0) and walks north, east, south or west, one unit at a time.
How many different paths of length 8 units finish at (0, 0)?

11 Jessica is about to walk up a flight of 10 stairs. She can take either one or two stairs at a
time. How many different ways can she walk up the flight of stairs?

9E Combinations
We have seen that a permutation is an ordered arrangement of objects. In contrast, a
combination is a selection made regardless of order. We use the notation nPr to denote
the number of permutations of n distinct objects taken r at a time. Similarly, we use the
notation nCr to denote the number of combinations of n distinct objects taken r at a time.

How many ways can two letters be chosen from the set {A, B, C, D}?

Example 18

Solution
The tree diagram below shows the ways that the first and second choices can be made.

D

CBA

C

DBA

B

DCA

A

DCB

This gives 12 arrangements. But there are only six selections, since

{A, B} is the same as {B, A}, {A, C} is the same as {C, A}, {A, D} is the same as {D, A},

{B, C} is the same as {C, B}, {B, D} is the same as {D, B} {C, D} is the same as {D, C}
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Suppose we want to count the number of ways that three students can be chosen from a group
of seven. Let’s label the students with the letters {A, B, C, D, E, F, G}. One such combination
might be BDE. Note that this combination corresponds to 3! permutations:

BDE, BED, DBE, DEB, EBD, EDB

In fact, each combination of three items corresponds to 3! permutations, and so there are
3! times as many permutations as combinations. Therefore

7P3 = 3! × 7C3

and so

7C3 =
7P3

3!

Since we have already established that 7P3 =
7!

(7 − 3)!
, we obtain

7C3 =
7!

3! (7 − 3)!

This argument generalises easily so that we can establish a formula for nCr.

Number of combinations

The number of combinations of n objects taken r at a time is given by the formula

nCr =
n!

r! (n − r)!

a A pizza can have three toppings chosen from nine options. How many different pizzas
can be made?

b How many subsets of {1, 2, 3, . . . , 20} have exactly two elements?

Example 19

Solution
Three objects are to be chosen from
nine options. This can be done in
9C3 ways, and

9C3 =
9!

3! (9 − 3)!

=
9!

3! 6!

=
9 · 8 · 7 · 6!

3! · 6!

=
9 · 8 · 7

3 · 2

= 84

a Two objects are to be chosen from
20 options. This can be done in
20C2 ways, and

20C2 =
20!

2! (20 − 2)!

=
20!

2! 18!

=
20 · 19 · 18!

2! · 18!

=
20 · 19
2 · 1

= 190

b
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Using your calculator, find how many ways 10 students can be selected from a class
of 20 students.

Example 20

Using the TI-Nspire
� To evaluate 20C10, use menu > Probability >

Combinations as shown.

Note: Alternatively, you can simply type ncr(20, 10). The command is not case sensitive.

Using the Casio ClassPad
To evaluate 20C10:

� InM, select\from the Advance keyboard.
� After the bracket, enter the numbers 20 and 10,

separated by a comma. Then tap EXE .

Consider a group of six students. In how many ways can a group of:

two students be selecteda four students be selected?b

Example 21

Solution
6C2 =

6!
2! (6 − 2)!

=
6!

2! 4!

=
6 · 5 · 4!
2! · 4!

=
6 · 5
2 · 1

= 15

a 6C4 =
6!

4! (6 − 4)!

=
6!

4! 2!

=
6 · 5 · 4!
4! · 2!

=
6 · 5
2 · 1

= 15

b

Parts a and b of the previous example have the same answer. This is not a coincidence.
Choosing two students out of six is the same as not choosing the other four students out
of six. Therefore 6C2 = 6C4.

More generally:

nCr = nCn−r



9E Combinations 307

Quick calculations
In some instances, you can avoid unnecessary calculations by noting that:

� nC0 = 1, since there is only one way to select no objects from n objects
� nCn = 1, since there is only one way to select n objects from n objects
� nC1 = n, since there are n ways to select one object from n objects
� nCn−1 = n, since this corresponds to the number of ways of not selecting one object from

n objects.

a Six points lie on a circle. How many triangles can you make using these points as
the vertices?

b Each of the 20 people at a party shakes hands with every other person. How many
handshakes take place?

Example 22

Solution Explanation

a 6C3 = 20 This is the same as asking how many ways three vertices can be
chosen out of six.

b 20C2 = 190 This is the same as asking how many ways two people can be
chosen to shake hands out of 20 people.

The grid shown consists of unit squares. By travelling only
right (R) or down (D) along the grid lines, how many paths are
there from point A to point B?

A

B

Example 23

Solution
Each path from A to B can be described by a sequence of three Ds and five Rs in some
order. Therefore, the number of paths is equal to the number of ways of selecting three
of the eight boxes below to be filled with the three Ds. (The rest will be Rs.) This can be
done in 8C3 = 56 ways.

Alternative notation
We will consistently use the notation nCr to denote the number of ways of selecting r objects

from n objects, regardless of order. However, it is also common to denote this number by
(
n
r

)
.

For example:(
6
4

)
=

6!
4! 2!

= 15
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Summary 9E
� A combination is a selection made regardless of order.
� The number of combinations of n objects taken r at a time is given by

nCr =
n!

r! (n − r)!

Exercise 9E

1 Evaluate 5Cr for r = 0, 1, 2, 3, 4, 5.

2 Evaluate each of the following without the use of your calculator:
7C1a 6C5b 12C10c 8C5d 100C99e 1000C998f

3 Simplify each of the following:
nC1a nC2b nCn−1c n+1C1d n+2Cne n+1Cn−1f

4Example 19 A playlist contains ten of Nandi’s favourite songs. How many ways can he:

arrange three songs in a lista select three songs for a list?b

5 How many ways can five cards be selected from a deck of 52 playing cards?

6 How many subsets of {1, 2, 3, . . . , 10} contain exactly:

1 elementa 2 elementsb 8 elementsc 9 elements?d

7 A lottery consists of drawing seven balls out of a barrel of balls numbered from 1 to 45.
How many ways can this be done if their order does not matter?

8Example 22 Eight points lie on a circle. How many triangles can you make using these points as
the vertices?

9 a In a hockey tournament, each of the 10 teams plays every other team once. How
many games take place?

b In another tournament, each team plays every other team once and 120 games take
place. How many teams competed?

10 At a party, every person shakes hands with every other person. Altogether there are
105 handshakes. How many people are at the party?

11 Prove that nCr = nCn−r.

12 Explain why the number of diagonals in a regular polygon with n sides is nC2 − n.

13 Ten students are divided into two teams of five. Explain why the number of ways of

doing this is
10C5

2
.

14 Twelve students are to be divided into two teams of six. In how many ways can this
be done? (Hint: First complete the previous question.)



9E 9F Combinations with restrictions 309

15 Using the formula for nCr, prove that nCr = n−1Cr−1 + n−1Cr, where 1 ≤ r < n.

16 Consider the 5 × 5 grid shown.

a How many ways can three dots be chosen?
b How many ways can three dots be chosen so that they lie on

a straight line?
c How many ways can three dots be chosen so that they are the

vertices of a triangle? (Hint: Use parts a and b.)

9F Combinations with restrictions
Combinations including specific items
In some problems, we want to find the number of combinations that include specific items.
This reduces both the number of items we have to select and the number of items from which
we are selecting.

a Grace belongs to a group of eight workers. How many ways can a team of four workers
be selected if Grace must be on the team?

b A hand of cards consists of five cards drawn from a deck of 52 playing cards. How
many hands contain both the queen and the king of hearts?

Example 24

Solution Explanation
a 7C3 = 35 Grace must be in the selection. Therefore three more workers are

to be selected from the remaining seven workers.

b 50C3 = 19 600 The queen and king of hearts must be in the selection. So three
more cards are to be selected from the remaining 50 cards.

In some other problems, it can be more efficient to count the selections that we don’t want.

Four students are to be chosen from a group of eight students for the school tennis team.
Two members of the group, Sam and Tess, do not get along and cannot both be on the
team. How many ways can the team be selected?

Example 25

Solution
There are 8C4 ways of selecting four students from eight. We then subtract the number of
combinations that include both Sam and Tess. If Sam and Tess are on the team, then we
can select two more students from the six that remain in 6C2 ways. This gives

8C4 −
6C2 = 55
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Combinations from multiple groups
If we are required to make multiple selections from separate groups, then the multiplication
principle dictates that we simply multiply the number of ways of performing each task.

From seven women and four men in a workplace, how many groups of five can be chosen:

without restrictiona containing three women and two menb
containing at least one manc containing at most one man?d

Example 26

Solution
a There are 11 people in total, from which we must select five. This gives

11C5 = 462

b There are 7C3 ways of selecting three women from seven. There are 4C2 ways of
selecting two men from four. We then use the multiplication principle to give

7C3 ·
4C2 = 210

c Method 1
If you select at least one man, then you select 1, 2, 3 or 4 men and fill the remaining
positions with women. We use the multiplication and addition principles to give

4C1 ·
7C4 + 4C2 ·

7C3 + 4C3 ·
7C2 + 4C4 ·

7C1 = 441

Method 2
It is more efficient to consider all selections of 5 people from 11 and then subtract the
number of combinations containing all women. This gives

11C5 −
7C5 = 441

d If there is at most one man, then either there are no men or there is one man. If there are
no men, then there are 7C5 ways of selecting all women. If there is one man, then there
are 4C1 ways of selecting one man and 7C4 ways of selecting four women. This gives

7C5 + 4C1 ·
7C4 = 161

Permutations and combinations combined
In the following example, we first select the items and then arrange them.

a How many arrangements of the letters in the word DUPLICATE can be made that have
two vowels and three consonants?

b A president, vice-president, secretary and treasurer are to be chosen from a group
containing seven women and six men. How many ways can this be done if exactly two
women are chosen?

Example 27
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Solution Explanation

a 4C2 ·
5C3 · 5! = 7200 There are 4C2 ways of selecting 2 of 4 vowels and

5C3 ways of selecting 3 of 5 consonants. Once chosen, the
5 letters can be arranged in 5! ways.

b 7C2 ·
6C2 · 4! = 7560 There are 7C2 ways of selecting 2 of 7 women and

6C2 ways of selecting 2 of 6 men. Once chosen, the
4 people can be arranged into the positions in 4! ways.

Summary 9F
� If a selection must include specific items, then this reduces both the number of items

that we have to select and the number of items that we select from.
� If we are required to make multiple selections from separate groups, then we multiply

the number of ways of performing each task.
� Some problems will require us to select and then arrange objects.

Exercise 9FSkill-
sheet

1Example 24 Jane and Jenny belong to a class of 20 students. How many ways can you select a group
of four students from the class if both Jane and Jenny are to be included?

2 How many subsets of {1, 2, 3, . . . , 10} have exactly five elements and contain the
number 5?

3 Five cards are dealt from a deck of 52 playing cards. How many hands contain the jack,
queen and king of hearts?

4Example 25 Six students are to be chosen from a group of 10 students for the school basketball
team. Two members of the group, Rachel and Nethra, do not get along and cannot both
be on the team. How many ways can the team be selected?

5Example 26 From eight girls and five boys, a team of seven is selected for a mixed netball team.
How many ways can this be done if:

a there are no restrictions
b there are four girls and three boys on the team
c there must be at least three boys and three girls on the team
d there are at least two boys on the team?

6 There are 10 student leaders at a secondary school. Four are needed for a fundraising
committee and three are needed for a social committee. How many ways can the
students be selected if they can serve on:

both committeesa at most one committee?b
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7 There are 18 students in a class. Seven are required for a basketball team and eight are
required for a netball team. How many ways can the teams be selected if students can
play in:

both teamsa at most one team?b

8 From 10 Labor senators and 10 Liberal senators, a committee of five is formed. How
many ways can this be done if:

a there are no restrictions
b there are at least two senators from each political party
c there is at least one Labor senator?

9 Consider the set of numbers {1, 2, 3, 4, 5, 6, 7}.

a How many subsets have exactly five elements?
b How many five-element subsets contain the numbers 2 and 3?
c How many five-element subsets do not contain both 2 and 3?

10 Four letters are selected from the English alphabet. How many of these selections will
contain exactly two vowels?

11 A seven-card hand is dealt from a deck of 52 playing cards. How many distinct hands
contain:

four hearts and three spadesa exactly two hearts and three spades?b

12 A committee of five people is chosen from four doctors, four dentists and three
physiotherapists. How many ways can this be done if the committee contains:

exactly three doctors and one dentista exactly two doctors?b

13Example 27 There are four girls and five boys. Two of each are chosen and then arranged on a
bench. How many ways can this be done?

14 A president, vice-president, secretary and treasurer are to be chosen from a group
containing six women and five men. How many ways can this be done if exactly two
women must be chosen?

15 Using five letters from the word TRAMPOLINE, how many arrangements contain two
vowels and three consonants?

16 How many rectangles are there in the grid shown on the right?
Hint: Every rectangle is determined by a choice of two vertical and
two horizontal lines.

17 Five cards are dealt from a deck of 52 playing cards. A full house is a hand that contains
3 cards of one rank and 2 cards of another rank (for example, 3 kings and 2 sevens).
How many ways can a full house be dealt?
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9G Pascal’s triangle
The diagram below consists of the values of nCr for 0 ≤ n ≤ 5. They form the first 6 rows of
Pascal’s triangle, named after the seventeenth century French mathematician Blaise Pascal,
one of the founders of probability theory.

Interestingly, the triangle was well known to Chinese and Indian mathematicians many
centuries earlier.

n = 0: 0C0

n = 1: 1C0
1C1

n = 2: 2C0
2C1

2C2

n = 3: 3C0
3C1

3C2
3C3

n = 4: 4C0
4C1

4C2
4C3

4C4

n = 5: 5C0
5C1

5C2
5C3

5C4
5C5

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Pascal’s rule
Pascal’s triangle has many remarkable properties. Most importantly:

Each entry in Pascal’s triangle is the sum of the two entries immediately above.

Pascal’s triangle has this property because of the following identity.

Pascal’s rule

nCr = n−1Cr−1 + n−1Cr where 1 ≤ r < n

Proof In Question 15 of Exercise 9E, you are asked to prove Pascal’s rule using the formula
for nCr. However, there is a much nicer argument.

The number of subsets of {1, 2, . . . , n} containing exactly r elements is nCr. Each of
these subsets can be put into one of two groups:

1 those that contain n

2 those that do not contain n.

If the subset contains n, then each of the remaining r − 1 elements must be chosen
from {1, 2, . . . , n − 1}. Therefore the first group contains n−1Cr−1 subsets.

If the subset does not contain n, then we still have to choose r elements from
{1, 2, . . . , n − 1}. Therefore the second group contains n−1Cr subsets.

The two groups together contain all nCr subsets and so
nCr = n−1Cr−1 + n−1Cr

which establishes Pascal’s rule.
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Given that 17C2 = 136 and 17C3 = 680, evaluate 18C3.

Example 28

Solution Explanation
18C3 = 17C2 + 17C3

= 136 + 680

= 816

We let n = 18 and r = 3 in Pascal’s rule:
nCr = n−1Cr−1 + n−1Cr

Write down the n = 6 row of Pascal’s triangle and then write down the value of 6C3.

Example 29

Solution Explanation

n = 6: 1 6 15 20 15 6 1
Each entry in the n = 6 row is the sum of
the two entries immediately above.

6C3 = 20 Note that 6C3 is the fourth entry in the row,
since the first entry corresponds to 6C0.

Subsets of a set
Suppose your friend says to you: ‘I have five books that I no longer need, take any that you
want.’ How many different selections are possible?

We will look at two solutions to this problem.

Solution 1
You could select none of the books (5C0 ways), or one out of five (5C1 ways), or two out of
five (5C2 ways), and so on. This gives the answer

5C0 + 5C1 + 5C2 + 5C3 + 5C4 + 5C5 = 32

Note that this is simply the sum of the entries in the n = 5 row of Pascal’s triangle.

Solution 2
For each of the five books we have two options: either accept or reject the book. Using the
multiplication principle, we obtain the answer

2 × 2 × 2 × 2 × 2 = 25 = 32

There are two important conclusions that we can draw from this example.

1 The sum of the entries in row n of Pascal’s triangle is 2n. That is,
nC0 + nC1 + · · · + nCn−1 + nCn = 2n

2 A set of size n has 2n subsets, including the empty set and the set itself.
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a Your friend offers you any of six books that she no longer wants. How many selections
are possible assuming that you take at least one book?

b How many subsets of {1, 2, 3, . . . , 10} have at least two elements?

Example 30

Solution Explanation

a 26 − 1 = 63 There are 26 subsets of a set of size 6. We subtract 1
because we discard the empty set of no books.

b 210 − 10C1 −
10C0

= 210 − 10 − 1

= 1013

There are 210 subsets of a set of size 10. There are
10C1 subsets containing 1 element and 10C0 subsets
containing 0 elements.

Summary 9G
� The values of nCr can be arranged to give Pascal’s triangle.
� Each entry in Pascal’s triangle is the sum of the two entries immediately above.
� Pascal’s rule nCr = n−1Cr−1 + n−1Cr

� The sum of the entries in row n of Pascal’s triangle is 2n. That is,
nC0 + nC1 + · · · + nCn−1 + nCn = 2n

� A set of size n has 2n subsets, including the empty set and the set itself.

Exercise 9G

1Example 28 Evaluate 7C2, 6C2 and 6C1, and verify that the first is the sum of the other two.

2Example 29 Write down the n = 7 row of Pascal’s triangle. Use your answer to write down the
values of 7C2 and 7C4.

3 Write down the n = 8 row of Pascal’s triangle. Use your answer to write down the
values of 8C4 and 8C6.

4Example 30 Your friend offers you any of six different T-shirts that he no longer wants. How many
different selections are possible?

5 How many subsets does the set {A, B, C, D, E} have?

6 How many subsets does the set {1, 2, 3, . . . , 10} have?

7 How many subsets of {1, 2, 3, 4, 5, 6} have at least one element?

8 How many subsets of {1, 2, 3, . . . , 8} have at least two elements?

9 How many subsets of {1, 2, 3, . . . , 10} contain the numbers 9 and 10?
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10 You have one 5 cent, one 10 cent, one 20 cent and one 50 cent piece. How many
different sums of money can you make assuming that at least one coin is used?

11 Let’s call a set selfish if it contains its size as an element. For example, the set {1, 2, 3} is
selfish because the set has size 3 and the number 3 belongs to the set.

a How many subsets of {1, 2, 3, . . . , 8} are selfish?
b How many subsets of {1, 2, 3, . . . , 8} have the property that both the subset and its

complement are selfish?

9H The pigeonhole principle
The pigeonhole principle is an intuitively obvious counting technique which can be used to
prove some remarkably counterintuitive results. It gets its name from the following simple
observation: If n + 1 pigeons are placed into n holes, then some hole contains at least two
pigeons. Obviously, in most instances we will not be working with pigeons, so we will recast
the principle as follows.

Pigeonhole principle

If n + 1 or more objects are placed into n holes, then some hole contains at least
two objects.

Proof Suppose that each of the n holes contains at most one object. Then the total number of
objects is at most n, which is a contradiction.

We are now in a position to prove a remarkable fact: There are at least two people in
Australia with the same number of hairs on their head. The explanation is simple. No one
has more than 1 million hairs on their head, so let’s make 1 million holes labelled with the
numbers from 1 to 1 million. We now put each of the 26 million Australians into the hole
corresponding to the number of hairs on their head. Clearly, some hole contains at least two
people, and all the people in that hole will have the same number of hairs on their head.

You have thirteen red, ten blue and eight green socks. How many socks need to be selected
at random to ensure that you have a matching pair?

Example 31

Solution
Label three holes with the colours red, blue and green.

R B G

Selecting just three socks is clearly not sufficient, as you might pick one sock of each
colour. Select four socks and place each sock into the hole corresponding to the colour of
the sock. As there are four socks and three holes, the pigeonhole principle guarantees that
some hole contains at least two socks. This is the required pair.
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a Show that for any five points chosen inside a 2 × 2 square, at least two of them will be
no more than

√
2 units apart.

b Seven football teams play 22 games of football. Show that some pair of teams play
each other at least twice.

Example 32

Solution
a Split the 2 × 2 square into four unit squares.

Now we have four squares and five points. By the pigeonhole principle, some square
contains at least two points. The distance between any two of these points cannot
exceed the length of the square’s diagonal,

√
12 + 12 =

√
2.

b There are 7C2 = 21 ways that two teams can be chosen to compete from seven. There
are 22 games of football, and so some pair of teams play each other at least twice.

The generalised pigeonhole principle
Suppose that 13 pigeons are placed into four holes. By the pigeonhole principle, there is
some hole with at least two pigeons. In fact, some hole must contain at least four pigeons.
The reason is simple: If each of the four holes contained no more than three pigeons, then
there would be no more than 12 pigeons.

This observation generalises as follows.

Generalised pigeonhole principle

If at least mn + 1 objects are placed into n holes, then some hole contains at least
m + 1 objects.

Proof Again, let’s suppose that the statement is false. Then each of the n holes contains no
more than m objects. However, this means that there are no more than mn objects,
which is a contradiction.

Sixteen natural numbers are written on a whiteboard. Prove that at least four numbers will
leave the same remainder when divided by 5.

Example 33

Solution
We label five holes with each of the possible remainders on division by 5.

0 1 2 3 4

There are 16 numbers to be placed into five holes. Since 16 = 3 × 5 + 1, there is some hole
with at least four numbers, each of which leaves the same remainder when divided by 5.
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Pigeons in multiple holes
In some instances, objects can be placed into more than one hole.

Seven people sit at a round table with 10 chairs. Show that there are three consecutive
chairs that are occupied.

Example 34

Solution
Number the chairs from 1 to 10. There are 10 groups of three consecutive chairs:

{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {5, 6, 7},

{6, 7, 8}, {7, 8, 9}, {8, 9, 10}, {9, 10, 1}, {10, 1, 2}

Each of the seven people will belong to three of these groups, and so 21 people have to
be allocated to 10 groups. Since 21 = 2 × 10 + 1, the generalised pigeonhole principle
guarantees that some group must contain three people.

Summary 9H
� Pigeonhole principle

If n + 1 or more objects are placed into n holes, then some hole contains at least
two objects.

� Generalised pigeonhole principle
If at least mn + 1 objects are placed into n holes, then some hole contains at least
m + 1 objects.

Exercise 9H

1Example 31 You have twelve red, eight blue and seven green socks. How many socks need to be
selected at random to ensure that you have a matching pair?

2 A sentence contains 27 English words. Show that there are at least two words that begin
with the same letter.

3 Show that in any collection of five natural numbers, at least two will leave the same
remainder when divided by 4.

4 How many cards need to be dealt from a deck of 52 playing cards to be certain that you
will obtain at least two cards of the same:

coloura suitb rank?c

5 Eleven points on the number line are located somewhere between 0 and 1. Show that
there are at least two points no more than 0.1 apart.
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6Example 32 An equilateral triangle has side length 2 units. Choose any five points inside the
triangle. Prove that there are at least two points that are no more than 1 unit apart.

7 Thirteen points are located inside a rectangle of length 6 and width 8. Show that there
are at least two points that are no more than 2

√
2 units apart.

8 The digital sum of a natural number is defined to be the sum of its digits. For example,
the digital sum of 123 is 1 + 2 + 3 = 6.

a Nineteen two-digit numbers are selected. Prove that at least two of them have the
same digital sum.

b Suppose that 82 three-digit numbers are selected. Prove that at least four of them
have the same digital sum.

9Example 33 Whenever Eva writes down 13 integers, she notices that at least four of them leave the
same remainder when divided by 4. Explain why this is always the case.

10 Twenty-nine games of football are played among eight teams. Prove that there is some
pair of teams who play each other more than once.

11 A teacher instructs each member of her class to write down a different whole number
between 1 and 49. She says that there will be at least one pair of students such that the
sum of their two numbers is 50. How many students must be in her class?

12Example 34 There are 10 students seated at a round table with 14 chairs. Show that there are three
consecutive chairs that are occupied.

13 There are four points on a circle. Show that three of these points lie on a half-circle.
Hint: Pick any one of the four points and draw a diameter through that point.

14 There are 35 players on a football team and each player has a different number chosen
from 1 to 99. Prove that there are at least four pairs of players whose numbers have the
same sum.

15 Seven boys and five girls sit evenly spaced at a round table. Prove that some pair of
boys are sitting opposite each other.

16 There are n guests at a party and some of these guests shake hands when they meet. Use
the pigeonhole principle to show that there is a pair of guests who shake hands with the
same number of people.
Hint: Place the n guests into holes labelled from 0 to n − 1, corresponding to the
number of hands that they shake. Why must either the first or the last hole be empty?
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9I The inclusion–exclusion principle
Basic set theory
A set is any collection of objects where order is not important. The set with no elements
is called the empty set and is denoted by ∅. We say that set B is a subset of set A if each
element of B is also in A. In this case, we can write B ⊆ A. Note that ∅ ⊆ A and A ⊆ A.

If A is a finite set, then the number of elements in A will be denoted by |A|.

Given any two sets A and B we define two important sets:

The intersection of sets A and B is
denoted by A ∩ B and consists of
elements belonging to A and B.

A ∩ B

A B

1 The union of sets A and B is
denoted by A ∪ B and consists of
elements belonging to A or B.

A B

A ∪ B

2

Note: It is important to realise that A ∪ B includes elements belonging to A and B.

Consider the three sets of numbers A = {2, 3}, B = {1, 2, 3, 4} and C = {3, 4, 5}.

Find B ∩C.a Find A ∪C.b
Find A ∩ B ∩C.c Find A ∪ B ∪C.d
Find |A|.e List all the subsets of C.f

Example 35

Solution
B ∩C = {3, 4}a A ∪C = {2, 3, 4, 5}b
A ∩ B ∩C = {3}c A ∪ B ∪C = {1, 2, 3, 4, 5}d
|A| = 2e ∅, {3}, {4}, {5}, {3, 4}, {3, 5}, {4, 5}, {3, 4, 5}f

Earlier in the chapter we encountered the addition principle. This principle can be concisely
expressed using set notation.

Addition principle

If A and B are two finite sets of objects such that A ∩ B = ∅, then

|A ∪ B| = |A| + |B|

Our aim is to extend this rule for instances where A ∩ B , ∅.



9I The inclusion–exclusion principle 321

Two sets
To count the number of elements in the set A ∪ B, we first add (include) |A| and |B|. However,
this counts the elements in A ∩ B twice, and so we subtract (exclude) |A ∩ B|.

A BA   B∩

Inclusion–exclusion principle for two sets

If A and B are two finite sets of objects, then

|A ∪ B| = |A| + |B| − |A ∩ B|

Each of the 25 students in a Year 11 class studies Physics or Chemistry. Of these students,
15 study Physics and 18 study Chemistry. How many students study both subjects?

Example 36

Solution Explanation

|P ∪C| = |P| + |C| − |P ∩C|

25 = 15 + 18 − |P ∩C|

25 = 33 − |P ∩C|

∴ |P ∩C| = 8

Let P and C be the sets of students who study
Physics and Chemistry respectively.

Since each student studies Physics or Chemistry,
we know that |P ∪C| = 25.

A bag contains 100 balls labelled with the numbers from 1 to 100. How many ways can a
ball be chosen that is a multiple of 2 or 5?

Example 37

Solution Explanation

|A ∪ B| = |A| + |B| − |A ∩ B|

= 50 + 20 − 10

= 60

Within the set of numbers {1, 2, 3, . . . , 100},
let A be the set of multiples of 2 and let B be the
set of multiples of 5.

Then A ∩ B consists of numbers that are multiples
of both 2 and 5, that is, multiples of 10.

Therefore |A| = 50, |B| = 20 and |A ∩ B| = 10.
We then use the inclusion–exclusion principle.
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A hand of five cards is dealt from a deck of 52 cards. How many hands contain exactly:

two clubsa three spadesb
two clubs and three spadesc two clubs or three spades?d

Example 38

Solution Explanation
a 13C2 ·

39C3 = 712 842 There are 13C2 ways of choosing 2 clubs
from 13 and 39C3 ways of choosing 3 more
cards from the 39 non-clubs.

b 13C3 ·
39C2 = 211 926 There are 13C3 ways of choosing 3 spades

from 13 and 39C2 ways of choosing 2 more
cards from the 39 non-spades.

c 13C2 ·
13C3 = 22 308 There are 13C2 ways of choosing 2 clubs

from 13 and 13C3 ways of choosing 3 spades
from 13.

d |A ∪ B|

= |A| + |B| − |A ∩ B|

= 712 842 + 211 926 − 22 308

= 902 460

We let A be the set of all hands with 2 clubs
and let B be the set of all hands with 3 spades.
Then A ∩ B is the set of all hands with 2 clubs
and 3 spades. We use the inclusion–exclusion
principle to find |A ∪ B|.

Three sets
For three sets A, B and C, the formula for |A ∪ B ∪C| is
slightly harder to establish.

We first add |A|, |B| and |C|. However, we have counted
the elements in A ∩ B, A ∩C and B ∩C twice, and the
elements in A ∩ B ∩C three times.

Therefore we subtract |A ∩ B|, |A ∩C| and |B ∩C| to
compensate. But then the elements in A ∩ B ∩C will have
been excluded once too often, and so we add |A ∩ B ∩C|.

A B

C

A∩C

A∩B∩C

B∩C

A∩B

Inclusion–exclusion principle for three sets

If A, B and C are three finite sets of objects, then

|A ∪ B ∪C| = |A| + |B| + |C| − |A ∩ B| − |A ∩C| − |B ∩C| + |A ∩ B ∩C|
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How many integers from 1 to 140 inclusive are not divisible by 2, 5 or 7?

Example 39

Solution
Let A, B and C be the sets of all integers from 1 to 140 that are divisible by 2, 5 and 7
respectively. We then have

A multiples of 2 |A| = 140 ÷ 2 = 70

B multiples of 5 |B| = 140 ÷ 5 = 28

C multiples of 7 |C| = 140 ÷ 7 = 20

A ∩ B multiples of 10 |A ∩ B| = 140 ÷ 10 = 14

A ∩C multiples of 14 |A ∩C| = 140 ÷ 14 = 10

B ∩C multiples of 35 |B ∩C| = 140 ÷ 35 = 4

A ∩ B ∩C multiples of 70 |A ∩ B ∩C| = 140 ÷ 70 = 2

We use the inclusion–exclusion principle to give

|A ∪ B ∪C| = |A| + |B| + |C| − |A ∩ B| − |A ∩C| − |B ∩C| + |A ∩ B ∩C|

= 70 + 28 + 20 − 14 − 10 − 4 + 2

= 92

Therefore the number of integers not divisible by 2, 5 or 7 is 140 − 92 = 48.

Summary 9I
� The inclusion–exclusion principle extends the addition principle to instances where the

two sets have objects in common.
� The principle works by ensuring that objects belonging to multiple sets are not counted

more than once.
� The inclusion–exclusion principles for two sets and three sets:

|A ∪ B| = |A| + |B| − |A ∩ B|

|A ∪ B ∪C| = |A| + |B| + |C| − |A ∩ B| − |A ∩C| − |B ∩C| + |A ∩ B ∩C|

Exercise 9I

1Example 35 Consider the three sets of numbers A = {4, 5, 6}, B = {1, 2, 3, 4, 5} and C = {1, 3, 4, 6}.

Find B ∩C.a Find A ∪C.b
Find A ∩ B ∩C.c Find A ∪ B ∪C.d
Find |A|.e List all the subsets of A.f
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2Example 36 In an athletics team, each athlete competes in track or field events. There are 25 athletes
who compete in track events, 23 who compete in field events and 12 who compete in
both track and field events. How many athletes are in the team?

3 Fifty patients at a medical clinic are being treated for a disease using two types of
medication, A and B. There are 25 patients using medication A and 29 patients using
medication B. How many patients are using both types of medication?

4Example 37 How many integers from 1 to 630 inclusive are multiples of 7 or 9?

5 Consider the integers from 1 to 96 inclusive. How many of these are:

divisible by 2 or 3a not divisible by 2 or 3?b

6Example 38 How many five-letter arrangements of the word COMET:

begin with a vowela end with a vowelb
begin and end with a vowelc begin or end with a vowel?d

7 a How many of the integers from 1 to 100 inclusive are perfect squares or perfect
cubes?

b How many of the integers from 1 to 1000 inclusive are perfect squares or perfect
cubes?

8Example 39 How many of the integers from 1 to 120 inclusive are multiples of 2, 3 or 5?

9 How many of the integers from 1 to 220 inclusive are not divisible by 2, 5 or 11?

10 There are 98 Year 11 students at a secondary school and each of them must study at
least one of Biology, Physics or Chemistry. There are 36 students who study Biology,
42 who study Physics and 40 who study Chemistry. Moreover, 9 study Biology and
Physics, 8 study Biology and Chemistry and 7 study Physics and Chemistry. How many
students study all three subjects?

11 A group of six students is selected from four students in Year 10, five in Year 11 and
four in Year 12. How many selections have exactly:

two Year 10 studentsa two Year 11 studentsb
two Year 10 and two Year 11 studentsc two Year 10 or two Year 11 students?d

12 A hand of five cards is dealt from a deck of 52 cards. How many hands contain exactly
one heart or exactly two diamonds?

13 Find the sum of all the integers from 1 to 100 inclusive that are divisible by 2 or 3.

14 There are seventy Year 11 students at a school and each of them must study at least one
of three languages. Thirty are studying French, forty-five are studying Chinese, thirty
are studying German and fifteen are studying all three languages. How many students
are studying exactly two languages?
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Chapter summary

� The addition and multiplication principles provide efficient methods for counting the
number of ways of performing multiple tasks.

� The number of permutations (or arrangements) of n objects taken r at a time is given by

nPr =
n!

(n − r)!

� The number of combinations (or selections) of n objects taken r at a time is given by

nCr =
n!

r! (n − r)!

� When permutations or combinations involve restrictions, we deal with them first.
� The values of nCr can be arranged to give Pascal’s triangle, where each entry is the sum

of the two entries immediately above.
� The sum of the entries in row n of Pascal’s triangle is 2n. That is,

nC0 + nC1 + · · · + nCn−1 + nCn = 2n

� A set of size n has 2n subsets.
� The pigeonhole principle is used to show that some pair or group of objects have the

same property.
� The inclusion–exclusion principle allows us to count the number of elements in a union

of sets:

|A ∪ B| = |A| + |B| − |A ∩ B|

|A ∪ B ∪C| = |A| + |B| + |C| − |A ∩ B| − |A ∩C| − |B ∩C| + |A ∩ B ∩C|

Technology-free questions

1 Evaluate:
6C3a 20C2b 300C1c 100C98d

2 Find the value of n if nC2 = 55.

3 How many three-digit numbers can be formed using the digits 1, 2 and 3 if the digits:

can be repeateda cannot be repeated?b

4 How many ways can six students be arranged on a bench seat with space for three?

5 How many ways can three students be allocated to five vacant desks?

6 There are four Year 11 and three Year 12 students in a school debating club. How many
ways can a team of four be selected if two are chosen from each year level?

7 There are three boys and four girls in a group. How many ways can three children be
selected if at least one of them is a boy?
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8 On a ship’s mast are two identical red flags and three identical black flags that can be
arranged to send messages to nearby ships. How many different arrangements using all
five flags are possible?

9 There are 53 English words written on a page. How many are guaranteed to share the
same first letter?

10 Each of the twenty students in a class plays netball or basketball. Twelve play
basketball and four play both sports. How many students play netball?

11 Six people are to be seated in a row. Calculate the number of ways this can be done so
that two particular people, A and B, always have exactly one person between them.

Multiple-choice questions

1 Bao plans to study six subjects in Year 12. He has already chosen three subjects
and for the remaining three he plans to choose one of four languages, one of three
mathematics subjects and one of four science subjects. How many ways can he select
his remaining subjects?

6A 11B 48C 165D 990E

2 There are three flights directly from Melbourne to Brisbane. There are also two flights
from Melbourne to Sydney and then four choices of connecting flight from Sydney to
Brisbane. How many different paths are there from Melbourne to Brisbane?

9A 11B 18C 20D 24E

3 In how many ways can 10 people be arranged in a queue at the bank?

10!A 1010B 210C 10C2D 10C1E

4 How many three-digit numbers can be formed using the digits 1, 2, 3, 4, 5 and 6 at
most once?

6C3A 3!B 6!C 6 × 5 × 4D 6 + 5 + 4E

5 How many permutations of the word UTOPIA begin and end with a vowel?

90A 288B 384C 720D 4320E

6 How many ways can four identical red flags and three identical blue flags be arranged in
a row?

4 × 3A
7!

4! × 3!
B 7! × 3! × 4!C 4! × 3!D 2 × 3! × 4!E

7 How many ways can three books be chosen from a collection of nine different books?

3!A 9 × 8 × 7B 9C3C
9!
3!

D 3 × 9E

8 The number of subsets of {A, B, C, D, E, F} with at least one element is
6C2A 6C2 − 1B 25 − 1C 26 − 1D 26E
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9 A class consists of nine girls and eight boys. How many ways can a group of two boys
and two girls be chosen?

17!
2! 2!

A 17C4B 9C2 ·
8C2C

17!
9! 8!

D 9 × 8 × 8 × 7E

10 There are six blue balls and five red balls in a bag. How many balls need to be selected
at random before you are certain that three will have the same colour?

3A 4B 5C 7D 11E

11 Each of the 30 students in a class studies French, German or Chinese. Of these students,
15 study French, 17 study German and 15 study Chinese. There are 15 students that
study more than one subject. How many students study all three subjects?

2A 3B 4C 5D 6E

Extended-response questions

1 A six-digit number is formed using the digits 1, 2, 3, 4, 5 and 6 without repetition. How
many ways can this be done if:

the first digit is 5a the first digit is evenb
even and odd digits alternatec the even digits are kept together?d

2 Three letters from the word AUNTIE are arranged in a row. How many ways can this be
done if:

the first letter is Ea the first letter is a vowelb the letter E is used?c

3 A student leadership team consists of four boys and six girls. A group of four students
is required to organise a social function. How many ways can the group be selected:

without restrictiona if the school captain is includedb
if there are two boysc if there is at least one boy?d

4 Consider the eight letters N, N, J, J, T, T, T, T. How many ways can all eight letters be
arranged if:

there is no restrictiona the first and last letters are both Nb
the two Js are adjacentc no two Ts are adjacent?d

5 A pizza restaurant offers the following toppings: onion, capsicum, mushroom, olives,
ham and pineapple.

a How many different kinds of pizza can be ordered with:

i three different toppings
ii three different toppings including ham
iii any number of toppings (between none and all six)?

b Another pizza restaurant boasts that they can make more than 200 varieties of pizza.
What is the smallest number of toppings that they could use?
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6 In how many ways can a group of four people be chosen from five married couples if:

a there is no restriction
b any two married couples are chosen
c the selected group cannot contain a married couple?

7 The name David Smith has initials DS.

a How many different two-letter initials are possible?
b How many different two-letter initials contain at least one vowel?
c Given 50 000 people, how many of them can be guaranteed to share the same

two-letter initials?

8 Consider the integers from 1 to 96 inclusive. Let sets A and B consist of those integers
that are multiples of 6 and 8 respectively.

a What is the lowest common multiple of 6 and 8?
b How many integers belong to A ∩ B?
c How many integers from 1 to 96 are divisible by 6 or 8?
d An integer from 1 to 96 is chosen at random. What is the probability that it is not

divisible by 6 or 8?

9 Every morning, Milly walks from her home H(0, 0) to the
gym G(6, 6) along city streets that are laid out in a square
grid as shown. She always takes a path of shortest distance.

a How many paths are there from H to G?
b Show that there is some path that she takes at least twice

in the course of three years.
c On her way to the gym, she often purchases a coffee

at a cafe located at point C(2, 2). How many paths are
there from:

i H to C ii C to G iii H to C to G?

H

G

d A new cafe opens up at point B(4, 4). How many paths can Milly take, assuming that
she buys coffee at either cafe?
Hint: You will need to use the inclusion–exclusion principle here.

10 A box contains 400 balls, each of which is blue, red, green, yellow or orange. The ratio
of blue to red to green balls is 1 : 4 : 2. The ratio of green to yellow to orange balls is
1 : 3 : 6. What is the smallest number of balls that must be drawn to ensure that at least
50 balls of one colour are selected?
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10A Technology-free questions
1 Suppose that n is odd. Prove that n2 + n is even.

2 Prove that if m and n are consecutive integers, then n2 − m2 = n + m.

3 Let n ∈ Z. Consider the statement: If 5n + 3 is even, then n is odd.

a Write down the converse statement. b Prove the converse.
c Write down the contrapositive statement. d Prove the contrapositive.

4 Suppose the number x is irrational. Prove by contradiction that x + 1 is also irrational.

5 Prove by contradiction that 6 cannot be written as the difference of two perfect squares.

6 Let n ∈ Z. Prove that 3n + 1 is even if and only if n is odd.

7 Prove that each of the following statements is false by finding a counterexample:

a The sum of two prime numbers cannot be a prime number.
b For all x ∈ R, we have x3 > x2.

8 Show that this statement is false: There exists n ∈ N such that 25n2 − 9 is a prime
number.

9 Prove by mathematical induction that:

a 2 + 4 + · · · + 2n = n(n + 1)
b 11n − 6 is divisible by 5, for all n ∈ N

10 Let A, B and C be subsets of ξ.

a Prove that A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C).
b Illustrate this equality using a Venn diagram.
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11 Let A and B be subsets of ξ. Simplify each of the following expressions:

A ∩ ∅a A ∪ ξb (A ∪ B) ∪ Ac
(A ∩ B) ∪ ∅d A ∩ A′e A ∪ A′f
(A ∩ B) ∩ B′g (A ∪ B′) ∪ Bh A ∪ (B ∩ A)i
A ∩ (A′ ∪ B)j B ∩ (A ∪ B)′k A ∩ (A ∩ B)′l

12 Let x, y ∈ B, where B is a Boolean algebra. Simplify each of the following expressions:

x ∧ 1a x ∨ 0b x′ ∧ xc
x′ ∨ xd (x ∨ x′) ∨ xe (x ∧ y) ∧ xf
(x ∧ x′) ∧ yg x ∨ (x′ ∨ y)h (x ∧ 0) ∧ yi
(x ∨ 1) ∧ x′j y ∧ (x ∨ y′)k x ∧ (x ∨ y)′l

13 Find a Boolean expression for the Boolean function defined
by the table on the right, and simplify this expression.

x y f (x, y)

0 0 1

0 1 0

1 0 1

1 1 0

14 Consider the following two statements.

A: Amina is in Year 11.� B: Bao is in Year 11.�

Write each of the following statements in symbolic form:

a Amina is not in Year 11.
b Amina and Bao are in Year 11.
c If Amina is in Year 11, then Bao is not.
d Amina is in Year 11 or, if she is not, then Bao is in Year 11.
e Amina and Bao are in Year 11, or else neither Amina nor Bao is in Year 11.

15 Consider the following two statements.

P: Yasmin plays the violin.� Q: Yasmin is in the school orchestra.�

a Write each of the following statements in symbolic form:

i Yasmin plays the violin and is in the school orchestra.
ii If Yasmin plays the violin, then she is in the school orchestra.

b Write a statement in English corresponding to ¬Q⇔ ¬P.

16 Prove each of the following by using a truth table:

a ¬A ∨ B is equivalent to ¬(A ∧ ¬B)
b (A ∨ B) ∧ (¬A ∧ ¬B) is a contradiction
c (A ∧ B)⇒ (A ∨ B) is a tautology
d A ∧ (B ∨C) is equivalent to (A ∧ B) ∨ (A ∧C)

Hint: The truth table for part d will require 8 rows.
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17 Consider the following two statements.

P: I completed the task.� Q: I was paid.�

a Write the statement ¬Q in words.
b Write the following statement in symbols: If I was paid, then I completed the task.
c Using a truth table, show that

(
(P ∨ ¬Q) ∧ Q

)
⇒ P is a tautology.

18 Prove that ¬(P ∨ ¬Q) ∨ (¬P ∧ ¬Q) is logically equivalent to ¬P by constructing a
truth table.

19 a Write the Boolean expression corresponding
to the circuit shown on the right.

b Simplify this expression by using the
properties of Boolean algebras.

c Draw the circuit corresponding to the simplified expression.

X

Y

20 For each of the following, use a truth table to determine whether the argument is valid:

Premise 1 (A ∧ B)⇒ C

Premise 2 A

Premise 3 ¬B

Conclusion ¬C

a Premise 1 A ∨ B

Premise 2 A⇒ C

Premise 3 B⇒ C

Conclusion C

b

21 Use a truth table to determine whether the following argument is valid:

Premise 1 If I am Sam’s father, then Sam is Will’s brother.

Premise 2 Sam is Will’s brother.

Conclusion I am not Sam’s father.

22 The following algorithm begins with an empty list called A. Numbers are added to the
list according to a given rule.

A← [ ]

for i from 1 to 16

if i is not the sum of two different entries in A then

append i to A

end if

end for

print A

a Give the final value of A after this algorithm is executed.
b Suppose that ‘two different entries’ is changed to ‘two or more different
entries’. Give the final value of A after the modified algorithm is executed.

c Describe the entries in A from part b.
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23 Consider the function defined on the right,
which takes a natural number n as input.

a Describe what this function does.
b Determine the output of the function when

the input is n = 4.
c Determine the input if the output is 55.
d Rewrite the function so that it evaluates the

product of the cubes of the first n natural
numbers.

define function(n):

sum← 0

for i from 1 to n

sum← sum + i2

end for

return sum

24 The function remainder(n, d) returns the
remainder when n is divided by d.
Consider the function defined on the right,
which takes a natural number n as input.

a Determine the output of the function when
the input is n = 120. A desk check will help
you to do this.

b Describe what this function does.
c Describe the inputs for which the output is 3.

define function(n):

total← 0

while remainder(n, 2) = 0

n←
n
2

total← total + 1

end while

return total

25 How many ways can four different books be arranged on a shelf?

26 How many ways can three teachers and three students be arranged in a row if a teacher
must be at the start of the row?

27 How many different three-digit numbers can be formed using the digits 1, 3, 5, 7 and 9:

as many times as you would likea at most once?b

28 Travelling from left to right, how many paths are there from point A to point B in each
of the following diagrams?

A B

a

A B

b

29 Evaluate each of the following:

4!a
6!
4!

b
8!

6! 2!
c 10C2d

30 How many ways can five children be arranged on a bench with space for:

four childrena five children?b

31 A bookshelf has three different mathematics books and two different physics books.
How many ways can these books be arranged:

without restrictiona if the mathematics books are kept together?b
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32 Using the digits 0, 1, 2, 3 and 4 without repetition, how many five-digit numbers can
you form:

without restrictiona that are divisible by 10b
that are greater than 20 000c that are even?d

33 Asha has three identical 20 cent pieces and two identical 10 cent pieces. How many
ways can she arrange these coins in a row?

34 How many ways can you select:

a three children from a group of six
b two letters from the alphabet
c four numbers from the set {1, 2, . . . , 10}
d three sides of an octagon?

35 Consider the set of numbers X = {1, 2, . . . , 8}.

a How many subsets of X have exactly two elements?
b How many subsets of X have exactly three elements, one of which is the number 8?
c Find the total number of subsets of X.

36 How many ways can you select three boys and two girls from a group of five boys and
four girls?

37 There are four Labor and five Liberal parliamentarians, from which four are to be
selected to form a committee. If the committee must include at least one member from
each party, how many ways can this be done?

38 There are 10 blue, 11 green and 12 red balls in a bag. How many balls must be chosen
at random to be sure that at least three will have the same colour?

39 How many different natural numbers from 1 to 99 inclusive must be chosen at random
to be sure there will be at least one pair of numbers that sums to 100?

40 How many integers from 1 to 120 inclusive are divisible by 2 or 3?

10B Multiple-choice questions
1 Suppose that both m and n are odd. Which of the following statements is false?

m + n is evenA m − n is evenB 3m + 5n is evenC
2m + n is oddD mn + 1 is oddE

2 Suppose that m is divisible by 4 and n is divisible by 12. Which of the following
statements might be false?

m × n is divisible by 3A m × n is divisible by 48B m + n is divisible by 4C
m2n is divisible by 48D n is divisible by mE
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3 Let m and n be integers. Which of the following statements is always true?

A If mn is even, then m is even.
B The number m + n is even if and only if both m and n are even.
C If m + n is odd, then mn is odd.
D If mn is odd, then m + n is even.
E If m + n is even, then m − n is odd.

4 Consider the statement: If n is even, then n + 3 is odd. The converse of this statement is

If n + 3 is even, then n is even.A If n is odd, then n + 3 is even.B
If n + 3 is odd, then n is even.C If n + 3 is odd, then n is odd.D
If n + 3 is even, then n is odd.E

5 Assume that a and b are positive real numbers with a > b. Which of the following might
be false?

1
a − b

> 0A
a
b
−

b
a
> 0B a + b > 2bC a + 3 > b + 2D 2a > 3bE

6 The number of pairs of integers (m, n) that satisfy mn − n = 12 is

2A 3B 4C 6D 12E

7 Suppose that n is a positive integer. For how many values of n is the number 9n2 − 4
a prime?

0A 1B 2C 3D 4E

8 If a, b, c and d are consecutive integers, then which of the following statements may
be false?

a + b + c + d is divisible by 2A a + b + c + d is divisible by 4B
a × b × c × d is divisible by 3C a × b × c × d is divisible by 8D
a × b × c × d is divisible by 24E

9 Consider the statement:

� If you know the rules and you are not overconfident, then you win the game.

The contrapositive of this statement is

A If you lose the game, then you don’t know the rules or you are overconfident.
B If you lose the game, then you don’t know the rules and you are overconfident.
C If you win the game, then you know the rules and you are not overconfident.
D If you know the rules or you are not overconfident, then you win the game.
E If you don’t know the rules or you are overconfident, then you lose the game.

10 Let A and B be subsets of ξ. The expression A ∩ (A′ ∪ B) simplifies to

A ∪ BA A ∩ BB A′ ∩ BC A′ ∪ BD A ∩ B′E

11 Let x, y ∈ B, where B is a Boolean algebra. An expression equivalent to
(
(x ∧ y)′ ∨ z

)′ is

(x ∧ y) ∨ zA x ∧ y ∧ zB x ∨ y ∨ zC (x ∧ z) ∨ y′D x ∧ y ∧ z′E
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12 Which of the following Boolean functions has the table of
values shown on the right?

A f (x, y) = x′ ∧ y B f (x, y) = x ∧ y

C f (x, y) = x ∧ y′ D f (x, y) = x ∨ y′

E f (x, y) = x ∨ y

x y f (x, y)

0 0 0

0 1 0

1 0 1

1 1 0

13 Consider the statement: If it flies, then it is not an elephant. Which of the following is
equivalent to this statement?

A If it flies, then it is an elephant.
B If it does not fly, then it is an elephant.
C If it does not fly, then it is not an elephant.
D If it is an elephant, then it does not fly.
E If it is not an elephant, then it does not fly.

14 Which of the following Boolean expressions
represents the switching circuit shown?

A (x ∨ z) ∨ (x′ ∧ y) B (x ∧ z) ∧ (x′ ∨ y)
C (x ∨ z) ∧ (x′ ∧ y) D

(
(x ∨ z) ∧ x′

)
∧ y

E
(
(x ∧ z) ∨ x′

)
∨ y

x

z

x′ y

15 The Boolean expression x ∨ (x ∨ y)′ simplifies to

x ∧ y′A x ∨ y′B x′ ∧ y′C x′ ∨ yD x′ ∧ yE

16 Which of the following statements is a contradiction?

P⇒ QA (¬P) ∧ PB (¬P) ∨ PC P ∨ QD P ∧ QE

17 This statement is a tautology:[
(A ∨ B) ∧ (¬A)

]
⇒ B

Which of the following arguments is an example of this tautology?

The cat is grey or black. The cat is not grey. Therefore the cat is black.A
The cat is grey or black. The cat is grey. Therefore the cat is not black.B
The cat is grey. Therefore the cat is not black.C
The cat is not black. Therefore the cat is grey.D
The cat is not grey. Therefore the cat is black.E

18 Consider the following argument:

� If I am 18, then I am eligible to vote. I am 18. Therefore I am eligible to vote.

Which of the following compound statements represents this argument?[
(A ∨ B) ∧ B

]
⇒ AA

[
(A ∧ B) ∧ A

]
⇒ BB

[
(A ∧ B) ∨ A

]
⇒ BC[

(A⇒ B) ∧ B
]
⇒ BD

[
(A⇒ B) ∧ A

]
⇒ BE
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19 Which of the following statements is not a tautology?

A ∨ ¬AA A⇒ AB (A ∨ B)⇔ (B ∨ A)C
(A ∧ B)⇒ BD (A ∨ B)⇒ (A ∧ B)E

20 Which of the following Boolean expressions
represents the logic circuit shown?

A ¬(X ∧ Y) ∨ Z B ¬(X ∨ Y) ∧ Z

C (X ∧ ¬Y) ∨ Z D (X ∨ ¬Y) ∧ Z

E (X ∨ Y) ∧ ¬Z

X

Y

Z

21 The minimal Boolean expression represented by the
Karnaugh map shown is

A x ∨ (y′ ∧ z′) B x ∧ (y′ ∨ z′)
C x′ ∨ (y ∧ z) D x′ ∧ (y ∨ z)
E x ∨ (x′ ∧ y′ ∧ z′)

1 1 1 1

1

yz y′z y′z′ yz′

x

x′

22 This code will print

A the value of 2 × 4 × 6
B the value of 1 × 2 × 3 × 4 × 5 × 6
C the value of 1 × 3 × 5
D the value of 1 × 3 × 5 × 7 × 9
E the value of 1 × 3 × 5 × 7 × 9 × 11

product ← 1

for n from 1 to 6

product ← product × (2n − 1)

end for

print product

23 The function remainder(n, d) returns the
remainder when n is divided by d.
Consider the function defined on the right,
which takes a natural number n as input.
The value of f (12) is

A 1 B 2 C 3
D 4 E 6

define f (n):

sum← 0

for i from 1 to n

if remainder(n, i) = 0 then

sum← sum + 1

end if

end for

return sum

24 The algorithm shown on the right will
print the value

A 18 B 19 C 20
D 21 E 22

sum← 0

for x from 1 to 2

for y from 1 to 3

sum← sum + x + y

end for

end for

print sum
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25 How many ways can five people be arranged in a line?

A 5! B 25 C 55 D 5C1 E 5 + 4 + 3 + 2 + 1

26 How many arrangements of the word HOBART begin with a vowel?

24A 48B 240C 120D 720E

27 How many four-digit numbers can be formed using the digits 1, 2, 3, 4 and 5 at
most once?

A 5C4 B 5 + 4 + 3 + 2 C 5 × 4 × 3 × 2 D 4! E 54

28 The number of arrangements of the digits in the number 111222 is
6!

3! × 3!
A 6!B

6!
3!

C 3! × 3! × 3!D 3! × 3!E

29 Sam has n identical 10 cent pieces and n identical 20 cent pieces. How many ways can
these coins be arranged in a row?

n! × n!A
(2n)!
(n!)2B

(n!)2

(2n)!
C (2n)!D 2n!E

30 There are 10 flavours of ice-cream at a shop. Mark will select three flavours for his
cone, one of which must be chocolate. The total number of different selections is

10C3A 10C2B 9C3C 9C2D 8C2E

31 There are four Labor and five Liberal parliamentarians, from which two of each are to
be selected to form a committee. How many ways can this be done?

9C2A 9C4B 9C2 ×
9C2C 4C2 ×

5C2D 4C2 + 5C2E

32 From 10 friends, you can invite any number of them to the movies. Assuming that you
invite at least one friend, how many different selections can you make?

29A 29 − 1B 210C 210 − 1D 10C1E

33 An untidy kitchen drawer has a jumbled collection of eight knives, six forks and ten
spoons. What is the smallest number of items that must be randomly chosen to ensure
that at least four items of the same type are selected?

10A 11B 12C 13D 14E

34 Whenever n integers are written on a whiteboard, at least six of them leave the same
remainder when divided by 3. What is the smallest possible value of n?

3A 4B 7C 15D 16E

35 How many integers from 1 to 60 inclusive are multiples of 2 or 5?

32A 36B 40C 44D 50E
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10C Extended-response questions
1 Let a, b and c be integers. Suppose you know that a + b is even and b + c is odd.

a Is it possible to work out whether a, b and c are even or odd?
b What if you also know that a + b + c is even?

2 a Find all positive integer values of a, b and c such that a < b < c and

1
a

+
1
b

+
1
c

= 1

b Find all positive integer values of a, b, c and d such that a < b < c < d and

1
a

+
1
b

+
1
c

+
1
d
> 2

3 Let a, b and c be positive real numbers. Prove that if b > a, then
a + c
b + c

>
a
b

.

4 a Find the smallest value of n ∈ N such that 2n > 103.
b Hence, prove that 2100 has at least 31 digits.
c Hence, explain why some digit in the decimal expansion of 2100 occurs at least

four times. (Hint: There are 10 different digits: 0, 1, . . . , 9.)

5 A stack of paper, printed on both sides, is folded in the middle to make a newspaper.

Each sheet contains four pages. The page numbers on the top sheet of Monday’s
newspaper are 1, 2, 99 and 100.

front

page 100 page 1

back

page 2 page 99

a What are the page numbers on the bottom sheet of Monday’s stack?
b One of the sheets in Monday’s newspaper has page numbers 7 and 8. What are its

other two page numbers?
c Suppose that a newspaper is made from n sheets of paper. Prove that the sum of the

four page numbers on each sheet is a constant.
d Tuesday’s newspaper has a sheet whose pages are numbered 11, 12, 33 and 34. How

many pages does this newspaper have?
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6 Sam has 20 one-dollar coins and seven pockets. He wants to put coins into his pockets
so that each pocket contains a different number of coins. (The number 0 is allowed.)

a Prove that this is impossible.
b What is the minimum number of coins Sam would need to do this?
c If Sam had 50 one-dollar coins, find the maximum number of pockets that he could

fill, each with a different number of coins.

7 Take a close look at the following square numbers:

152 = 225, 252 = 625, 352 = 1225, 452 = 2025, 552 = 3025, 652 = 4225

a Find and describe the pattern that you see in these square numbers.
b Confirm that your pattern works for the number 75.
c Prove that your pattern actually works. (Hint: Each number is of the form 10n + 5.)

8 Heidi has 10 wooden cubes, with edges of length 1 cm through to 10 cm.

a Using all the cubes, can she build two towers of the same height?
b Now Heidi has n wooden cubes, with edges of length 1 through to n. For what values

of n can Heidi use all the cubes to build two towers of the same height?

9 a Suppose that a is odd and b is odd. Prove that ab is odd.
b Suppose that a is odd and n ∈ N. Prove by induction that an is odd.
c Hence, prove that if x satisfies 3x = 2, then x is irrational.

10 a If n4 + 6n3 + 11n2 + 6n + 1 = (an2 + bn + c)2, find the positive values of a, b and c.
b Hence, prove that when 1 is added to the product of four consecutive integers, the

result is always a perfect square.
c Hence, write the number 5 × 6 × 7 × 8 + 1 as a product of prime numbers.

11 Consider the following list of numbers:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We proceed through the list entry by entry, calculating a running tally as follows.
The tally is initially zero. Starting with the first entry, each entry is subtracted from the
running tally if the result is non-negative, otherwise it is added to the tally. The final
result is called the net tally.

a Complete the following table by giving the value of tally as each entry n in the list is
either subtracted or added.

n 1 2 3 4 5 6 7 8 9 10

tally 0 1 3 0 4

b Describe this general process by writing an algorithm in pseudocode.
c Change the order of the numbers in the list so that the net tally is 19.
d Prove that, for every natural number n, the list of numbers [1, 2, 3, . . . , 4n] can be

reordered so that the net tally is zero.
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12 In Chapter 7, we constructed logic circuits using ‘or’ gates, ‘and’ gates and ‘not’ gates.
Two other commonly used logic gates are the ‘nor’ gate (not or) and the ‘nand’ gate
(not and). These two gates are important because any logic circuit can be constructed
using only ‘nor’ gates and also constructed using only ‘nand’ gates.

‘Nor’ gate ‘Nand’ gate

a The ‘nor’ gate corresponds to the Boolean expression ¬(A ∨ B). Describe the
operation of the ‘nor’ gate using a truth table.

b The ‘nand’ gate corresponds to the Boolean expression ¬(A ∧ B). Describe the
operation of the ‘nand’ gate using a truth table.

c Show an implementation of each of the following using only ‘nand’ gates:

i ¬A Hint: Input A twice into the same ‘nand’ gate.
ii A ∧ B Hint: Input A and B into a ‘nand’ gate to produce ¬(A ∧ B).

Then input ¬(A ∧ B) twice into a second ‘nand’ gate.
iii A ∨ B

d Show an implementation of each of the following using only ‘nor’ gates:

i ¬A ii A ∨ B iii A ∧ B

13 A five-digit number is formed using the digits 0, 1, 2, 3, 4, 5 and 6 without repetition.
How many ways can this be done:

a without restriction b if the number is divisible by 10
c if the number is odd d if the number is even?

14 Nic and Lucy belong to a group of eight coworkers. There are three men and five
women in this group. A team of four workers is required to complete a project. How
many ways can the team be selected:

a without restriction b if it must contain two men and two women
c if it must contain both Nic and Lucy d if it must not contain both Nic and Lucy?

15 A sailing boat has three identical black flags and three identical red flags. The boat can
send signals to nearby boats by arranging flags along its mast.

a How many ways can all six flags be arranged in a row?
b How many ways can all six flags be arranged in a row if no two black flags

are adjacent?
c Using at least one flag, how many arrangements in a row are possible?

16 Consider the letters in the word BAGGAGE.

a How many arrangements of these letters are there?
b How many arrangements begin and end with a vowel?
c How many arrangements begin and end with a consonant?
d How many arrangements have all vowels together and all consonants together?
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17 There are 25 people at a party.

a If every person shakes hands with every other person, what is the total number
of handshakes?

b In fact, there are two rival groups at the party, so everyone only shakes hands with
every other person in their group. If there are 150 handshakes, how many people are
in each of the rival groups?

c At another party, there are 23 guests. Explain why it is not possible for each person
to shake hands with exactly three other guests.

18 Jacobi’s method This is a method for finding approximate solutions to systems of
equations. For example, consider the simultaneous equations

9x + 3y = 1 (1) and 3x + 11y = 2 (2)

We rewrite the equations by solving the first for x and the second for y:

x =
1
9
(
1 − 3y

)
(3) and y =

1
11

(
2 − 3x

)
(4)

We then make an initial guess at a solution of the equations, say (x0, y0) = (0, 0).
This guess can be improved by substituting these values into (3) and (4) to obtain

x1 =
1
9
(
1 − 3y0

)
≈ 0.111 and y1 =

1
11

(
2 − 3x0

)
≈ 0.182

In general, we substitute the values of xn and yn into (3) and (4) to obtain

xn+1 =
1
9
(
1 − 3yn

)
and yn+1 =

1
11

(
2 − 3xn

)
a Complete the table on the right by continuing this

process. Record your answers to three decimal places.
b Find the exact solution of the simultaneous equations

algebraically. Compare the exact solution (x, y) with
the approximate solution (x5, y5).

c Now use Jacobi’s method to find an approximate
solution of the system of equations

8x + y = 5 and 2x + 13y = 4

Start with the initial guess (x0, y0) = (0, 0) and
complete five iterations.

n xn yn

0 0 0

1 0.111 0.182

2

3

4

5

d We next look at an example where Jacobi’s method does not work. Consider the
system of equations

2x − 3y = 1 and 3x − 2y = −1

i Find the exact solution of this system algebraically.
ii Apply Jacobi’s method to this system. Start with the initial guess (x0, y0) = (0, 0)

and complete five iterations. Summarise your answers in a table as in part a.
iii What do you notice about the values of xn and yn as n increases?

iv Confirm your observation by proving that xn ≥
1
2

(3
2

)n−1
for all n ≥ 1.
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19 On a clock’s face, twelve points are evenly spaced around a circle.

a How many ways can you select four of these points?
b How many ways can you select two points that are not diametrically opposite?
c For every selection of two points that are not diametrically opposite, you can draw

one rectangle on the face that has these two points as vertices. What are the other
two vertices?

d How many ways can you select four points that are the vertices of a rectangle?
Hint: Why must you divide the answer to part b by 4?

e Four points are randomly selected. What is the probability that the four points are the
vertices of a rectangle?

20 Let B = {0, 1}. We have seen that B forms a Boolean algebra with the operations ∨, ∧
and ′. Now define B2 = { (a, b) : a, b ∈ B }. Then B2 forms a Boolean algebra with the
operations ∨, ∧ and ′ given by

� (a, b) ∨ (c, d) = (a ∨ c, b ∨ d)
� (a, b) ∧ (c, d) = (a ∧ c, b ∧ d)
� (a, b)′ = (a′, b′)

The set B2 has four elements in total: (0, 0), (0, 1), (1, 0) and (1, 1). Two of these are the
distinguished elements 0 = (0, 0) and 1 = (1, 1).

a Evaluate each of the following in B2:

(1, 0) ∧ (0, 1)i (1, 0) ∨ (0, 1)ii (1, 1) ∧ (0, 1)iii
(0, 0) ∨ (0, 1)iv (1, 0)′v (1, 1)′vi

b Similarly, we can define a Boolean algebra B3, where B3 = { (a, b, c) : a, b, c ∈ B }.

i List the elements of B3.
ii Evaluate (1, 0, 0) ∧ (0, 1, 0) and (1, 0, 0) ∨ (0, 0, 1).
iii Show how every element of B3 can be formed from joins (∨) and meets (∧) of

the elements (1, 0, 0), (0, 1, 0) and (0, 0, 1).

c More generally, we can define a Boolean algebra Bn, for each natural number n. How
many elements does Bn have?

In Extended-response question 4 in Chapter 7, we considered the Boolean algebra B of
all factors of 30, with the operation ∨ as LCM and the operation ∧ as HCF.

d Find a correspondence between the elements of B and the elements of B3 that shows
that these two Boolean algebras have the same structure.
Hint: Start with the correspondences 2↔ (1, 0, 0), 3↔ (0, 1, 0) and 5↔ (0, 0, 1).

This gives 6↔ (1, 1, 0). Consider the operations on both Boolean algebras.

e The number 6 has four factors. Discuss the correspondence between B2 and the
Boolean algebra of factors of 6.

f The number 210 has 16 factors. Discuss the correspondence between B4 and the
Boolean algebra of factors of 210.
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10D Investigations
1 Sums of consecutive natural numbers

The numbers 9 and 12 can each be expressed as the sum of at least two consecutive
natural numbers:

4 + 5 = 9 and 3 + 4 + 5 = 12

a Investigate which natural numbers from 1 to 20 can be expressed as the sum of at
least two consecutive natural numbers.

b Based on your answer to part a, make a conjecture as to which numbers can be
expressed as the sum of at least two consecutive natural numbers.

c Try to prove your conjecture from part b.

2 Natural numbers written on a page
There are n natural numbers written on a page, where n ≥ 2.

� Katia chooses two of the numbers on the page; call them a and b.
� She then erases these two numbers and writes the single number ab + a + b.

She repeats this process until there is only one number left on the page, which is 71.

a Suppose that n = 2. Determine all the possibilities for the two numbers that could
have been written on the page at the start.

b Suppose that n = 3. Determine all the possibilities for the three numbers that could
have been written on the page at the start.

c What is the largest possible value of n?
d Investigate why the question would make no sense if Katia was left with a final

number of 70.

3 Properties of the Fibonacci sequence
The Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, . . .

has many interesting properties. In Question 7 of Exercise 8D, you worked with an
algorithm in pseudocode that generates the Fibonacci sequence. Adapt that code in
order to investigate this sequence. State results and develop proofs where you can.

� What happens when you add six consecutive Fibonacci numbers and divide by four?
� Which Fibonacci numbers are even?
� Which Fibonacci numbers are divisible by 3?
� Describe the behaviour of the sequence of quotients

Fn+1

Fn
as n→ ∞.

� Determine Fn−1Fn+1 − F2
n for all n ≥ 2.

There are many other properties. Use your programs to investigate.
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4 Stars and bars
The technique of using stars and bars for combinatorics problems was introduced by
William Feller (1906–1970).

a Suppose that 10 identical chocolates are to be distributed among three children, Amy,
Ben and Clara. We will investigate the number of ways that this can be done.

Let a, b and c denote the number of chocolates given to Amy, Ben and Clara
respectively. We can represent allocations of the 10 chocolates using stars and bars.
For example:

� The allocation (a, b, c) = (2, 3, 5) is represented as

∗ ∗ | ∗ ∗ ∗ | ∗ ∗ ∗ ∗ ∗

� The allocation (a, b, c) = (3, 0, 7) is represented as

∗ ∗ ∗ | | ∗ ∗ ∗ ∗ ∗ ∗ ∗

i Using stars and bars, represent each of the following allocations:

� (a, b, c) = (4, 5, 1)
� (a, b, c) = (0, 6, 4)
� (a, b, c) = (0, 0, 10)

ii Notice that each allocation is represented by some arrangement of 10 stars and
2 bars. How many different ways can you allocate the 10 chocolates to the three
children?

iii Using a similar technique, find the number of ways that eight chocolates can be
distributed among four children.

iv How many ways can you distribute n chocolates among k children?
v If Amy, Ben and Clara are each to receive at least one of the 10 chocolates, how

many ways can this be done?
vi How many ways can you distribute n chocolates among k children if each child is

to receive at least one chocolate?

All of the following problems can be solved using this technique:

b How many ways can you distribute three identical balls into three different boxes?
c How many sequences of four non-negative integers are there that sum to 10?
d How many sequences of three odd positive integers are there that sum to 17?
e How many paths are there from the top-left corner to the bottom-right corner of an

m × n grid if you can only travel right or down along the grid lines?
f List some other situations that can be considered in this way and analyse them using

the technique of stars and bars.
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Matrices

Objectives
I To identify when two matrices are equal.

I To add and subtract matrices of the same size.

I To multiply a matrix by a real number.

I To identify when the multiplication of two given matrices is possible.

I To perform multiplication of two suitable matrices.

I To find the inverse of a 2 × 2 matrix.

I To find the determinant of a 2 × 2 matrix.

I To solve simultaneous linear equations by using an inverse matrix.

I To use technology to find inverses and determinants of n × n matrices, where n ≥ 3.

A matrix is a rectangular array of numbers. An example of a matrix is
2 3 1
2 4 −1
1 2 −2


Matrix algebra was first studied in England in the middle of the nineteenth century. Matrices
are now used in many areas of science: for example, in physics, medical research, encryption
and internet search engines.

In this chapter we will show how addition and multiplication of matrices can be defined and
how matrices can be used to solve simultaneous linear equations.

In Chapter 12 we will see how matrices can be used to represent graphs, and in Chapter 20
we will see how they can be used to study transformations of the plane.
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11A Matrix notation
A matrix is a rectangular array of numbers. The numbers in the array are called the
entries of the matrix.

The following are examples of matrices:
−1 2
−3 4

5 6

 [
2 1 5 6

] 
√

2 π 3
0 0 1
√

2 0 π

 [
5
]

The size of a matrix
Matrices vary in size. The size of the matrix is described by specifying the number of rows
(horizontal lines) and columns (vertical lines) that occur in the matrix.

The sizes of the above matrices are, in order:

3 × 2, 1 × 4, 3 × 3, 1 × 1

The first number represents the number of rows, and the second the number of columns.

An m × n matrix has m rows and n columns.

Write down the sizes of the following matrices:

1 1 2
2 1 0

a


1
2
3
4

b
[
2 2 3

]
c

Example 1

Solution
2 × 3a 4 × 1b 1 × 3c

Storing information in matrices
The use of matrices to store information is demonstrated by the following example.

Four exporters A, B, C and D sell refrigerators (r), dishwashers (d), microwave ovens (m) and
televisions (t). The sales in a particular month can be represented by a 4× 4 array of numbers.
This array of numbers is called a matrix.

A
B
C
D



r
120

d
95

m
370

t
250

430 380 950 900
60 50 150 100

200
column 1

100
column 2

470
column 3

50
column 4


row 1
row 2
row 3
row 4
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From this matrix it can be seen that:

� Exporter A sold 120 refrigerators, 95 dishwashers, 370 microwave ovens, 250 televisions.
� Exporter B sold 430 refrigerators, 380 dishwashers, 950 microwave ovens, 900 televisions.

The entries for the sales of refrigerators are in column 1.

The entries for the sales of exporter A are in row 1.

A minibus has four rows of seats, with three seats in each row. If 0 indicates that a seat is
vacant and 1 indicates that a seat is occupied, write down a matrix to represent:

a the 1st and 3rd rows are occupied, but the 2nd and 4th rows are vacant
b only the seat at the front-left corner of the minibus is occupied.

Example 2

Solution
1 1 1
0 0 0
1 1 1
0 0 0

a


1 0 0
0 0 0
0 0 0
0 0 0

b

There are four clubs in a local football league:

� Club A has 2 senior teams and 3 junior teams.
� Club B has 2 senior teams and 4 junior teams.
� Club C has 1 senior team and 2 junior teams.
� Club D has 3 senior teams and 3 junior teams.

Represent this information in a matrix.

Example 3

Solution Explanation
2 3
2 4
1 2
3 3


The rows represent clubs A, B, C, D and the columns
represent the number of senior and junior teams.

Entries and equality
We will use uppercase letters A, B, C, . . . to denote matrices.

If A is a matrix, then ai j will be used to denote the entry that occurs in row i and column j
of A. Thus a 3 × 4 matrix may be written as

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34
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Two matrices A and B are equal, and we can write A = B, when:

� they have the same size, and
� they have the same entry at corresponding positions.

For example:2 1 −1
0 1 3

 =

1 + 1 1 −1
1 − 1 1 6

2



If matrices A and B are equal, find the values of x and y.

A =

2 1
x 4

 B =

 2 1
−3 y


Example 4

Solution
x = −3 and y = 4

Although a matrix is made from a set of numbers, it is important to think of a matrix as a
single entity, somewhat like a ‘super number’.

Summary 11A
� A matrix is a rectangular array of numbers. The numbers in the array are called the

entries of the matrix.
� The size of a matrix is described by specifying the number of rows and the number of

columns. An m × n matrix has m rows and n columns.
� Two matrices A and B are equal when:

• they have the same size, and
• they have the same entry at corresponding positions.

Exercise 11A

1Example 1 Write down the sizes of the following matrices:1 2
3 4

a
2 1 −1
0 1 3

b
[
a b c d

]
c


p
q
r
s

d

2Example 2 There are 25 seats arranged in five rows and five columns. Using 0 to indicate that a seat
is vacant and 1 to indicate that a seat is occupied, write down a matrix to represent the
situation when:

a only the seats on the two diagonals are occupied
b all seats are occupied.
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3 Seating arrangements are again represented by matrices, as in Question 2. Describe the
seating arrangement represented by each of the following matrices:

a the entry ai j is 1 if i = j, but 0 if i , j

b the entry ai j is 1 if i > j, but 0 if i ≤ j

c the entry ai j is 1 if i = j + 1, but 0 otherwise.

4Example 3 At a certain school there are 200 girls and 110 boys in Year 7. The numbers of girls
and boys in the other year levels are 180 and 117 in Year 8, 135 and 98 in Year 9,
110 and 89 in Year 10, 56 and 53 in Year 11, and 28 and 33 in Year 12. Summarise this
information in a matrix.

5Example 4 From the following, select those pairs of matrices which could be equal, and write down
the values of x and y which would make them equal:

a
32

 ,
0x

 ,
[
0 x

]
,

[
0 4

]
b

4 7
1 −2

 ,
1 −2
4 x

 ,
x 7
1 −2

 ,
[
4 x 1 −2

]
c

 2 x 4
−1 10 3

 ,
 y 0 4
−1 10 3

 ,
 2 0 4
−1 10 3


6 Find the values of the pronumerals so that matrices A and B are equal:

a A =

2 1 −1
0 1 3

 , B =

x 1 −1
0 1 y


b A =

x
2

 , B =

3y


c A =
[
−3 x

]
, B =

[
y 4

]
d A =

1 y
4 3

 , B =

1 −2
4 x


7 The statistics for five members of a basketball team are recorded as follows:

Player A points 21, rebounds 5, assists 5
Player B points 8, rebounds 2, assists 3
Player C points 4, rebounds 1, assists 1
Player D points 14, rebounds 8, assists 60
Player E points 0, rebounds 1, assists 2

Express this information in a 5 × 3 matrix.
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11B Addition, subtraction and multiplication by a
real number

Addition of matrices

If A and B are two matrices of the same size, then the sum A + B is the matrix obtained by
adding together the corresponding entries of the two matrices.

For example:1 0
0 2

 +

0 −3
4 1

 =

1 −3
4 3


a11 a12

a21 a22

a31 a32

 +


b11 b12

b21 b22

b31 b32

 =


a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32

and

Multiplication of a matrix by a real number

If A is any matrix and k is a real number, then the product kA is the matrix obtained by
multiplying each entry of A by k.

For example:

3
2 −2
0 1

 =

6 −6
0 3


Note: If a matrix is added to itself, then the result is twice the matrix, i.e. A + A = 2A.

Similarly, for any natural number n, the sum of n matrices each equal to A is nA.

If B is any matrix, then −B denotes the product (−1)B.

Subtraction of matrices

If A and B are matrices of the same size, then A − B is defined to be the sum

A + (−B) = A + (−1)B

For two matrices A and B of the same size, the difference A − B can be found by subtracting
the entries of B from the corresponding entries of A.

Find:1 0
2 0

 −  2 −1
−4 1

a
 2 3
−1 4

 −  2 3
−1 4

b

Example 5

Solution1 0
2 0

 −  2 −1
−4 1

 =

−1 1
6 −1

a
 2 3
−1 4

 −  2 3
−1 4

 =

0 0
0 0

b
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Zero matrix

The m × n matrix with all entries equal to zero is called the zero matrix, and will be
denoted by O.

For any m × n matrix A and the m × n zero matrix O, we have

A + O = A and A + (−A) = O

Let X =

24
, Y =

36
, A =

 2 0
−1 2

 and B =

 5 0
−2 4

.
Find X + Y, 2X, 4Y + X, X − Y, −3A and 3A + B.

Example 6

Solution

X + Y =

24
 +

36
 =

 5
10


2X = 2

24
 =

48


4Y + X = 4
36

 +

24
 =

12
24

 +

24
 =

14
28


X − Y =

24
 − 36

 =

−1
−2


−3A = −3

 2 0
−1 2

 =

−6 0
3 −6


−3A + B =

−6 0
3 −6

 +

 5 0
−2 4

 =

−1 0
1 −2



If A =

 3 2
−1 1

 and B =

 0 −4
−2 8

, find the matrix X such that 2A + X = B.

Example 7

Solution
If 2A + X = B, then X = B − 2A. Therefore

X =

 0 −4
−2 8

 − 2
 3 2
−1 1


=

 0 − 2 × 3 −4 − 2 × 2
−2 − 2 × (−1) 8 − 2 × 1


=

−6 −8
0 6
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Using the TI-Nspire
Entering matrices

Assign the matrix A =

3 6
6 7

 as follows:

� In a Calculator page, type a := and then enter
the matrix. (The assign symbol := is accessed
using ctrl t.)

� The simplest way to enter a 2 × 2 matrix is
by using the 2 × 2 matrix template as shown.
(Access the templates using either t or
ctrl menu > Math Templates.)

Note: There is also a template for entering
m × n matrices.

� Use the touchpad arrows (or tab ) to move
between the entries of the matrix.

Assign the matrix B =

3 6
5 −6.5

 similarly.

Operations on matrices
Once A and B are assigned as above, the
matrices A + B, A − B and kA can easily
be determined.

Using the Casio ClassPad
Entering matrices
� InM, select the Math2 keyboard.
� To enter a 2 × 2 matrix, tap8.
� Tap on each of the entry boxes to enter the values

into the matrix template.
� Move the cursor to the right-hand side of the

matrix. Select the store symbol⇒ and then the
variable name A from the Var keyboard.

� Tap EXE .
� Enter the second matrix and assign it the variable

name B as shown.
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Note: The variables A and B will represent these two
matrices until they are reassigned or you select
Edit > Clear All Variables.

Operations on matrices
Calculate the matrices A + B, AB and kA as shown.
(Use the Var keyboard to enter the variable names.)

Summary 11B
� If A and B are matrices of the same size, then:

• the matrix A + B is obtained by adding the corresponding entries of A and B
• the matrix A − B is obtained by subtracting the entries of B from the corresponding

entries of A.

� If A is any matrix and k is a real number, then the matrix kA is obtained by multiplying
each entry of A by k.

Exercise 11B

1Example 6 Let X =

 1
−2

, Y =

30
, A =

1 −1
2 3

 and B =

 4 0
−1 2

.
Find X + Y, 2X, 4Y + X, X − Y, −3A and −3A + B.

2 Let A =

1 −1
0 2

. Find 2A, −3A and −6A.

3 For m × n matrices A, B and C, is it always true that:

A + B = B + Aa (A + B) + C = A + (B + C)?b

4 Let A =

 3 2
−2 −2

 and B =

0 −3
4 1

. Calculate:

2Aa 3Bb 2A + 3Bc 3B − 2Ad

5 Let P =

1 0
0 3

, Q =

−1 1
2 0

 and R =

0 4
1 1

. Calculate:

P + Qa P + 3Qb 2P −Q + Rc

6Example 7 If A =

 3 1
−1 4

 and B =

 0 −10
−2 17

, find matrices X and Y such that 2A − 3X = B and

3A + 2Y = 2B.
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7 Matrices X and Y show the production of four models of cars a, b, c, d at two factories
P, Q in successive weeks. Find X + Y and describe what this sum represents.

Week 1: X =
P
Q


a

150
b
90

c
100

d
50

100 0 75 0

 Week 2: Y =
P
Q


a

160
b
90

c
120

d
40

100 0 50 0



11C Multiplication of matrices
Multiplication of a matrix by a real number has been discussed in the previous section.
The definition for multiplication of matrices is less straightforward. The procedure for
multiplying two 2 × 2 matrices is shown first.

Let A =

1 3
4 2

 and B =

5 1
6 3

.
AB =

1 3
4 2

 5 1
6 3

Then

=

1 × 5 + 3 × 6 1 × 1 + 3 × 3
4 × 5 + 2 × 6 4 × 1 + 2 × 3


=

23 10
32 10


BA =

5 1
6 3

 1 3
4 2

and

=

5 × 1 + 1 × 4 5 × 3 + 1 × 2
6 × 1 + 3 × 4 6 × 3 + 3 × 2


=

 9 17
18 24


Note that AB , BA.

If A is an m × n matrix and B is an n × r matrix, then the product AB is the m × r matrix
whose entries are determined as follows:

To find the entry in row i and column j of AB, single out row i in matrix A and
column j in matrix B. Multiply the corresponding entries from the row and column
and then add up the resulting products.

Note: The product AB is defined only if the number of columns of A is the same as the
number of rows of B.
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For A =

2 4
3 6

 and B =

53
, find:

a AB b A2 = AA

Example 8

Solution
a A is a 2 × 2 matrix and B is a 2 × 1 matrix. Therefore the product AB is defined and

will be a 2 × 1 matrix.

AB =

2 4
3 6

 53
 =

2 × 5 + 4 × 3
3 × 5 + 6 × 3

 =

22
33


b A is a 2 × 2 matrix. Therefore the product AA is defined and will be a 2 × 2 matrix.

A2 = AA =

2 4
3 6

 2 4
3 6

 =

2 × 2 + 4 × 3 2 × 4 + 4 × 6
3 × 2 + 6 × 3 3 × 4 + 6 × 6

 =

16 32
24 48


Note: A matrix with the same number of rows and columns is called a square matrix.

For any square matrix A and natural number n, we can define the matrix An.
We can do this inductively by defining A1 = A and An = AAn−1 for n ≥ 2.

Matrix X shows the number of cars of models a and b bought by four dealers A, B, C, D.
Matrix Y shows the cost in dollars of cars a and b. Find XY and explain what it represents.

X =

A
B
C
D



a
3

b
1

2 2
1 4
1 1

 Y =

26 000
32 000

 a
b

Example 9

Solution
X is a 4 × 2 matrix and Y is a 2 × 1 matrix. Therefore XY is a 4 × 1 matrix.

XY =

A
B
C
D



a
3

b
1

2 2
1 4
1 1


26 000
32 000

 a
b

=


3 × 26 000 + 1 × 32 000
2 × 26 000 + 2 × 32 000
1 × 26 000 + 4 × 32 000
1 × 26 000 + 1 × 32 000

 =


110 000
116 000
154 000
58 000


The matrix XY shows that dealer A spent $110 000, dealer B spent $116 000, dealer C
spent $154 000 and dealer D spent $58 000.
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For A =

2 3 4
5 6 7

 and B =


4 0
1 2
0 3

, find AB.

Example 10

Solution
A is a 2 × 3 matrix and B is a 3 × 2 matrix. Therefore AB is a 2 × 2 matrix.

AB =

2 3 4
5 6 7



4 0
1 2
0 3


=

2 × 4 + 3 × 1 + 4 × 0 2 × 0 + 3 × 2 + 4 × 3
5 × 4 + 6 × 1 + 7 × 0 5 × 0 + 6 × 2 + 7 × 3

 =

11 18
26 33


Summary 11C
� If A is an m× n matrix and B is an n× r matrix, then the product AB is the m× r matrix

whose entries are determined as follows:

To find the entry in row i and column j of AB, single out row i in matrix A and
column j in matrix B. Multiply the corresponding entries from the row and column
and then add up the resulting products.

� The product AB is defined only if the number of columns of A is the same as the
number of rows of B.

Exercise 11CSkill-
sheet

1Example 8

Example 10

Let X =

 2
−1

, Y =

13
, A =

 1 −2
−1 3

, B =

3 2
1 1

, C =

2 1
1 1

 and I =

1 0
0 1

.
Find the products AX, BX, AY, IX, AC, CA, (AC)X, C(BX), AI, IB, AB, BA,
A2, B2, A(CA) and A2C.

2 Which of the following products of matrices from Question 1 are defined?
AY, YA, XY, X2, CI, XI

3 If A =

2 0
0 0

 and B =

 0 0
−3 2

, find AB.

4 Let A and B be 2 × 2 matrices and let O be the 2 × 2 zero matrix. Is the following
argument correct?

‘If AB = O and A , O, then B = O.’

5 Find a matrix A such that A , O but A2 = O.

6 If L =
[
2 −1

]
and X =

 2
−3

, find LX and XL.
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7 Assume that both A and B are m × n matrices. Are AB and BA defined and, if so, how
many rows and columns do they have?

8 Suppose that
a b
c d

  d −b
−c a

 =

1 0
0 1

.
a Show that ad − bc = 1.
b Evaluate the product on the left-hand side if the order of multiplication is reversed.

9 Using the result of Question 8, write down a pair of matrices A and B such that

AB = I = BA, where I =

1 0
0 1

.
10 Choose any three 2 × 2 matrices A, B and C. Find A(B + C), AB + AC and (B + C)A.

11 Find matrices A and B such that (A + B)2 , A2 + 2AB + B2.

12Example 9 It takes John 5 minutes to drink a milk shake which costs $2.50, and 12 minutes to eat a
banana split which costs $3.00.

a Find the product
 5 12
2.50 3.00

 12
 and interpret the result in fast-food economics.

b Two friends join John. Find
 5 12
2.50 3.00

 1 2 0
2 1 1

 and interpret the result.

13 Let A =

 1 2
−2 1

. Find A2 and use your answer to find A4 and A8.

14 Let A =

1 1
0 1

. Find A2, A3 and A4. Write down a formula for An.

11D Identities, inverses and determinants for
2 × 2 matrices
Identities
Recall that a matrix with the same number of rows and columns is called a square matrix.
For square matrices of any given size (e.g. 2 × 2), a multiplicative identity I exists.

For 2 × 2 matrices, the identity matrix is I =

1 0
0 1

.
For example, if A =

2 3
1 4

, then AI = A = IA, and this result holds for any square matrix

multiplied by the appropriate multiplicative identity.

For 3 × 3 matrices, the identity matrix is I =


1 0 0
0 1 0
0 0 1

.
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Inverses
We know that, for any non-zero real number x, there is a real number x−1 such that xx−1 = 1.
We now investigate the analogous question for matrices.

Given a 2 × 2 matrix A, is there a matrix B such that AB = I = BA?

For example, consider A =

2 3
1 4

 and let B =

x y
u v

.
Then AB = I implies2 3

1 4

 x y
u v

 =

1 0
0 1

2x + 3u 2y + 3v
x + 4u y + 4v

 =

1 0
0 1

i.e.

2x + 3u = 1 and 2y + 3v = 0

x + 4u = 0 y + 4v = 1

∴

These simultaneous equations can be solved to find x, y, u, v and hence B.

B =

 0.8 −0.6
−0.2 0.4


In general:

If A is a square matrix and if a matrix B can be found such that

AB = I = BA

then A is said to be invertible and B is called the inverse of A.

We will denote the inverse of A by A−1. You will prove in Exercise 11D that the inverse of an
invertible matrix is unique.

For an invertible matrix A, we have

AA−1 = I = A−1A

The inverse of a general 2 × 2 matrix

Now consider A =

a b
c d

 and let B =

x y
u v

.
Then AB = I impliesa b

c d

 x y
u v

 =

1 0
0 1

ax + bu ay + bv
cx + du cy + dv

 =

1 0
0 1

i.e.

ax + bu = 1 and ay + bv = 0

cx + du = 0 cy + dv = 1

∴

These form two pairs of simultaneous equations, the first for x, u and the second for y, v.
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The first pair of equations gives

(ad − bc)x = d (eliminating u)

(bc − ad)u = c (eliminating x)

These two equations can be solved for x and u provided ad − bc , 0:

x =
d

ad − bc
and u =

c
bc − ad

=
−c

ad − bc

In a similar way, we obtain

y =
−b

ad − bc
and v =

−a
bc − ad

=
a

ad − bc

We have established the following result.

Inverse of a 2 × 2 matrix

If A =

a b
c d

, then the inverse of A is given by

A−1 =
1

ad − bc

 d −b
−c a

 (provided ad − bc , 0)

The determinant
The quantity ad − bc that appears in the formula for A−1 has a name: the determinant of A.
This is denoted det(A).

Determinant of a 2 × 2 matrix

If A =

a b
c d

, then det(A) = ad − bc.

A 2 × 2 matrix A has an inverse only if det(A) , 0.

Using the TI-Nspire
� The inverse of a matrix is obtained by raising

the matrix to the power of −1.
� The determinant command ( menu >

Matrix & Vector > Determinant) is used
as shown.

Hint: You can also type in det(a).

(Here a is the matrix A =

3 6
6 7

 defined in Section 11B.)
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Using the Casio ClassPad
� To find the inverse matrix, type A∧−1 and tap EXE .

Note: If the matrix has no inverse, then the calculator
will give the message Undefined.

� To find the determinant, enter and highlight A.
Select Interactive > Matrix > Calculation > det.

For the matrix A =

5 2
3 1

, find:

det(A)a A−1b

Example 11

Solution
det(A) = 5 × 1 − 2 × 3 = −1a A−1 =

1
−1

 1 −2
−3 5

 =

−1 2
3 −5

b

For the matrix A =

3 2
1 6

, find:

det(A)a A−1b

X, if AX =

5 6
7 2

c Y, if YA =

5 6
7 2

d

Example 12

Solution
det(A) = 3 × 6 − 2 = 16a A−1 =

1
16

 6 −2
−1 3

b

AX =

5 6
7 2


Multiply both sides (on the left) by A−1.

A−1AX = A−1
5 6
7 2


∴ IX = X =

1
16

 6 −2
−1 3

 5 6
7 2


=

1
16

16 32
16 0


=

1 2
1 0



c YA =

5 6
7 2


Multiply both sides (on the right) by A−1.

YAA−1 =

5 6
7 2

 A−1

∴ YI = Y =
1
16

5 6
7 2

  6 −2
−1 3


=

1
16

24 8
40 −8


=

 3
2

1
2

5
2 − 1

2



d
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Summary 11D

� For a 2 × 2 matrix A =

a b
c d

:
• the inverse of A is given by

A−1 =
1

ad − bc

 d −b
−c a

 (if ad − bc , 0)

• the determinant of A is given by

det(A) = ad − bc

� A 2 × 2 matrix A has an inverse only if det(A) , 0.

Exercise 11DSkill-
sheet

1Example 11 For the matrices A =

2 1
3 2

 and B =

−2 −2
3 2

, find:

det(A)a A−1b det(B)c B−1d

2 Find the inverse of each of the following invertible matrices (where k is any non-zero
real number):3 −1

4 −1

a
 3 1
−2 4

b
1 0
0 k

c
cos θ − sin θ

sin θ cos θ

d

3 Let A and B be the invertible matrices A =

2 1
0 −1

 and B =

1 0
3 1

.
a Find A−1 and B−1.
b Find AB and hence find, if possible, (AB)−1.
c From A−1 and B−1, find the products A−1B−1 and B−1A−1. What do you notice?

4Example 12 Let A =

4 3
2 1

.
a Find A−1. b If AX =

3 4
1 6

, find X. c If YA =

3 4
1 6

, find Y.

5 Let A =

3 2
1 6

, B =

4 −1
2 2

 and C =

3 4
2 6

.
Find X such that AX + B = C.a Find Y such that YA + B = C.b

6 Let A =

 a b
−b a

, where a and b are not both zero. Prove that A−1 will always exist.

7 If the matrix A is invertible, show that the inverse is unique.

8 Assume that A is a 2 × 2 matrix such that a12 = a21 = 0, a11 , 0 and a22 , 0. Show that
A is invertible and find A−1.
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9 Let A be an invertible 2 × 2 matrix, let B be a 2 × 2 matrix and assume that AB = O.
Show that B = O.

10 For what values of x does the matrix A =

 x 2x + 1
2x + 1 x

 have an inverse?

11 a Let A =

 a 4
−2 −3

. Find the value of a if A−1 = A.

b Find all 2 × 2 matrices such that A−1 = A.

12 For what values of a does the matrix A =

a 1
2 a

 not have an inverse?

13 Let n be an integer and consider the matrix A =

 n n + 1
n + 1 n + 2

.
Show that all the entries of A−1 are integers.

14 Let n be an integer and consider the matrix A =

 n n + 1
n + 2 n + 3

.
Show that the entries of A−1 cannot all be integers.

15 Let n be a natural number and consider the matrix

A =


1
n

1
n + 1

1
n + 1

1
n + 2


Show that all the entries of A−1 are integers.

11E Solution of simultaneous equations using matrices
Inverse matrices can be used to solve some systems of simultaneous linear equations.

Simultaneous equations with a unique solution
For example, consider the pair of simultaneous equations

3x − 2y = 5

5x − 3y = 9

This can be written as a matrix equation:3 −2
5 −3

 x
y

 =

59


Let A =

3 −2
5 −3

. The determinant of A is 3(−3) − (−2)5 = 1.
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Since the determinant is non-zero, the inverse matrix exists:

A−1 =

−3 2
−5 3


Now multiply both sides of the original matrix equation on the left by A−1:3 −2

5 −3

 x
y

 =

59


A−1A
x
y

 = A−1
59


I
x
y

 = A−1
59

 since A−1A = I

∴

x
y

 =

−3 2
−5 3

 59
 =

32


This is the solution to the simultaneous equations. Check by substituting x = 3 and y = 2 into
the two equations.

Simultaneous equations without a unique solution
If a pair of simultaneous linear equations in two variables corresponds to two parallel lines,
then a non-invertible matrix results.

For example, the following pair of simultaneous equations has no solution:

x + 2y = 3

−2x − 4y = 6

The associated matrix equation is 1 2
−2 −4

 x
y

 =

36


The determinant of the matrix
 1 2
−2 −4

 is 1(−4) − 2(−2) = 0, so the matrix has no inverse.

Let A =

2 −1
1 2

 and K =

−1
2

. Solve the system AX = K, where X =

x
y

.
Example 13

Solution
If AX = K, then

X = A−1K

=
1
5

 2 1
−1 2

 −1
2

 =

01
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Solve the following simultaneous equations:

3x − 2y = 6

7x + 4y = 7

Example 14

Solution
The matrix equation is3 −2

7 4

 x
y

 =

67


Let A =

3 −2
7 4

. Then A−1 =
1
26

 4 2
−7 3

.
Thereforex

y

 =
1

26

 4 2
−7 3

 67
 =

1
26

 38
−21



Exercise 11ESkill-
sheet

1Example 13 Let A =

3 −1
4 −1

 and X =

x
y

. Solve the system AX = K, where:

K =

−1
2

a K =

−2
3

b

2Example 14 Use matrices to solve each of the following pairs of simultaneous equations:

−2x + 4y = 6

3x + y = 1

a −x + 2y = −1

−x + 4y = 2

b
1
2

x +
1
3

y = 1

1
3

x +
1
4

y = 1

c
1

20
x +

1
21

y =
1
2

1
21

x +
1
22

y =
1
2

d

3 Use matrices to find the point of intersection of the lines given by the equations
2x − 3y = 7 and 3x + y = 5.

4 Two children spend their pocket money buying some books and some games. One child
spends $120 and buys four books and four games. The other child spends $114 and
buys five books and three games. Set up a system of simultaneous equations and use
matrices to find the cost of a single book and a single game.

5 Consider the system

2x − 3y = 3

4x − 6y = 6

a Write this system in matrix form, as AX = K.
b Is A an invertible matrix?
c Can any solutions be found for this system of equations?
d How many pairs does the solution set contain?
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6 Suppose that A, B, C and X are 2 × 2 matrices and that both A and B are invertible.
Solve the following for X:

AX = Ca ABX = Cb AXB = Cc
A(X + B) = Cd AX + B = Ce XA + B = Af

11F Inverses and determinants for n × n matrices
In the next two sections, we see how the theory that has been developed for 2 × 2 matrices
can be extended to n × n matrices, where n ≥ 3. Much of the work in these two sections will
be completed with the use of technology.

An n × n matrix A can be written as

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann


Here ai j is the entry in row i and column j of A.

We will focus on 3×3 matrices, but the techniques used for larger square matrices are similar.

Identities
For 3 × 3 matrices, the identity matrix is

I =


1 0 0
0 1 0
0 0 1


For each 3 × 3 matrix A, we have AI = A = IA.

Similarly, for 4 × 4 matrices, the identity matrix is

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


In general, the n × n identity matrix has 1s along the main diagonal (top-left to bottom-right)
and 0s everywhere else.

Inverses
Recall that, if A is a square matrix and there exists a matrix B such that AB = I = BA, then
B is called the inverse of A. When it exists, the inverse of a square matrix A is unique and is
denoted by A−1.

We can use the following useful fact to help find inverses.

Let A and B be n × n matrices. If AB = I, then it follows that BA = I and so B = A−1.



366 Chapter 11: Matrices

You can use technology to find the inverse of a 3 × 3 matrix. However, the inverse can also be
found by hand, as shown in the next example. (There are more efficient methods for finding
inverses, but they are beyond the scope of this course.)

Without using a calculator, find the inverse of the matrix A =


1 −3 2
−3 3 −1

2 −1 0

.
Example 15

Solution

We want to find a matrix B =


a b c
d e f
g h i

 such that AB = I.

That is: 
1 −3 2
−3 3 −1

2 −1 0



a b c
d e f
g h i

 =


1 0 0
0 1 0
0 0 1


a − 3d + 2g b − 3e + 2h c − 3 f + 2i
−3a + 3d − g −3b + 3e − h −3c + 3 f − i

2a − d 2b − e 2c − f

 =


1 0 0
0 1 0
0 0 1


We first solve the three equations from the left-hand columns for a, d and g:

a − 3d + 2g = 1 (1)

−3a + 3d − g = 0 (2)

2a − d = 0 (3)

From (3), we have d = 2a. Substitute into (1) and (2):

−5a + 2g = 1 (1′)

3a − g = 0 (2′)

We obtain a = 1, d = 2 and g = 3.

Solving the three equations from the middle columns gives b = 2, e = 4 and h = 5.
Solving the three equations from the right-hand columns gives c = 3, f = 5 and i = 6.

We obtain A−1 = B =


1 2 3
2 4 5
3 5 6

.

Check: AA−1 =


1 −3 2
−3 3 −1

2 −1 0



1 2 3
2 4 5
3 5 6

 =


1 0 0
0 1 0
0 0 1

 = I

Not every 3 × 3 matrix has an inverse. For example, the matrix


1 2 3
4 5 6
7 8 9

 is non-invertible.
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Let A =


8 8 7
1 0 1
9 9 8

 and B =


9 1 −8
−1 −1 1
−9 0 8

.
Find the product AB, and hence find A−1.

Example 16

Solution

AB =


8 8 7
1 0 1
9 9 8




9 1 −8
−1 −1 1
−9 0 8

 =


1 0 0
0 1 0
0 0 1

 = I

Hence A−1 = B.

Using your calculator, find the inverse of the matrix


3 2 1
5 3 0
1 2 4

.
Example 17

Using the TI-Nspire
� To enter a 3 × 3 matrix, select the m-by-n matrix template

[
�
�
�

�
�
�

�
�
�
]
. (The templates can be

accessed using t.) Complete the pop-up screen as shown below.
� The inverse of a matrix is obtained by raising the matrix to the power of −1.

Using the Casio ClassPad
� InM, select the Math2 keyboard.
� To enter a 3 × 3 matrix, tap8 twice.
� Type the values into the matrix template.
� Type ∧−1 and tap EXE .
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The determinant
In Section 11D, we defined the determinant of a 2 × 2 matrix. The definition was motivated
by the formula for the inverse of a 2 × 2 matrix. We saw that a 2 × 2 matrix has an inverse if
and only if its determinant is non-zero.

In fact, the determinant is defined for all square matrices. You can use technology to find
the determinant of an n × n matrix when n ≥ 3. However, we will also see how to find the
determinant of a 3 × 3 matrix by hand.

The determinant of a 3 × 3 matrix
Consider a 3 × 3 matrix

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


The determinant of A can be defined as follows:

det(A) = a11 det
a22 a23

a32 a33

 − a12 det
a21 a23

a31 a33

 + a13 det
a21 a22

a31 a32


= a11

(
a22a33 − a23a32

)
− a12

(
a21a33 − a23a31

)
+ a13

(
a21a32 − a22a31

)
This formula comes from working through the first row of A:

� The first 2 × 2 matrix is obtained by deleting the row and column containing a11.
� The second 2 × 2 matrix is obtained by deleting the row and column containing a12.
� The third 2 × 2 matrix is obtained by deleting the row and column containing a13.

Find the determinant of A =


3 2 0
3 4 1
2 1 2

.
Example 18

Solution

det(A) = 3 × det
4 1
1 2

 − 2 × det
3 1
2 2

 + 0 × det
3 4
2 1


= 3

(
4 × 2 − 1 × 1

)
− 2

(
3 × 2 − 1 × 2

)
+ 0

= 3 × 7 − 2 × 4

= 13

We can obtain equivalent formulas for the determinant by using any row or column of A in a
similar way. For example, working through the first column of A:

det(A) = a11 det
a22 a23

a32 a33

 − a21 det
a12 a13

a32 a33

 + a31 det
a12 a13

a22 a23


Check that this formula gives the same result.
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The sign of the ai j term in a formula for the determinant is determined by (−1)i+ j.
For example:

� For a11, the sign is given by (−1)1+1 = 1.
� For a12, the sign is given by (−1)1+2 = −1.

These signs can also be determined using the following array:
+ − +

− + −

+ − +


For example, working through the second row of A:

det(A) = −a21 det
a12 a13

a32 a33

 + a22 det
a11 a13

a31 a33

 − a23 det
a11 a12

a31 a32


Note: When finding the determinant of a 3 × 3 matrix A by hand, it helps to work through

the row or column of A that has the most 0 entries.

The determinant of an n × n matrix
We have seen that the determinant of a 3 × 3 matrix is defined using 2 × 2 matrices. Similarly,
the determinant of a 4 × 4 matrix is defined using 3 × 3 matrices, and so on. You can use your
calculator to find the determinant of large square matrices.

The determinant has the following important property.

Determinant of an n × n matrix

An n × n matrix A has an inverse if and only if det(A) , 0.

Using a calculator, find the determinant of:
0 4 2
2 2 2
−2 −4 −4

a


0 2 −2
4 2 −4
2 2 −4

b

Example 19

Using the TI-Nspire
Use the determinant command ( menu >

Matrix & Vector > Determinant) as shown.
Alternatively, type det(.
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Using the Casio ClassPad
a � Enter the 3 × 3 matrix.
� Highlight the matrix and select Interactive > Matrix > Calculation > det.

b Similarly, we can find det


0 2 −2
4 2 −4
2 2 −4

 = 8.

Summary 11F
Identity matrix
� For each natural number n, there is an n × n identity matrix I. This matrix satisfies

AI = A = IA, for all n × n matrices A.

� The 3 × 3 identity matrix is I =


1 0 0
0 1 0
0 0 1

.
Inverse matrices
� If A is a square matrix and there exists a matrix B such that AB = I = BA, then B is

called the inverse of A.
� When it exists, the inverse of a square matrix A is unique and is denoted by A−1.
� Let A and B be n × n matrices. If AB = I, then it follows that BA = I and so B = A−1.

Determinant
� The determinant is defined for all square matrices.
� A square matrix has an inverse if and only if its determinant is non-zero.
� For a 3 × 3 matrix

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


the determinant of A can be defined by

det(A) = a11 det
a22 a23

a32 a33

 − a12 det
a21 a23

a31 a33

 + a13 det
a21 a22

a31 a32
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Exercise 11F

1Example 15 Without using a calculator, find the inverse matrix of each of the following:
1 0 0
0 2 0
0 0 5

a


1 4 5
0 2 3
0 0 5

b

2 Let A =


1 3 2
4 7 5
1 0 0

 and B =


0 0 1
5 −2 3
−7 3 −5

.
Show that the inverse of matrix A is the matrix B. (Hint: Calculate AB.)

3Example 16 Let A =


1 2 −3
2 −1 −4
−2 5 1

 and B =


19 −17 −11

6 −5 −2
8 −9 −5

.
Find the product AB, and hence find A−1.

4 Let A =


3 0 0
0 0 3
0 3 0

. Find A2, and hence find A−1.

5 Let A =


0 4 2
2 2 2
−2 −4 −4

. Find A2, and hence find A−1.

6Example 17 Use your calculator to find the inverse of each of the following matrices:
5 2 3
1 6 4
1 1 1

a


5 8 3
3 6 4
2 1 2

b


9 1 2 5
1 2 3 1
3 2 1 0
0 0 1 2

c


9 1 3 0
1 2 2 0
2 3 1 1
5 1 0 2

d

7Example 18 Without using a calculator, find the determinant of:
9 1 3
1 2 2
2 3 1

a


1 3 2
4 7 5
1 0 0

b

8Example 19 Using a calculator, find the determinant of:

a i


1 2 3
2 2 2
4 2 1

 ii


1 2 4
2 2 2
3 2 1


b i


2 4 8
2 2 2
3 2 1

 ii


2 4 8
4 4 4
6 4 2
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9 a Without using a calculator, find the determinant of A =


1 2 p
2 2 2
3 2 1

 in terms of p.

b Hence find the value of p for which A does not have an inverse.

10 a Without using a calculator, find the determinant of A =


1 2 p
2 2 2
p 2 p

 in terms of p.

b Hence find the values of p for which A does not have an inverse.

11G Simultaneous linear equations with
more than two variables
In this section, we use inverse matrices to solve some systems of simultaneous linear
equations.

Linear equations in three variables
Consider the general system of three linear equations in three variables:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

This can be written as a matrix equation:
a1 b1 c1

a2 b2 c2

a3 b3 c3



x
y
z

 =


d1

d2

d3


Define the matrices

A =


a1 b1 c1

a2 b2 c2

a3 b3 c3

 , X =


x
y
z

 and B =


d1

d2

d3


Then the matrix equation becomes

AX = B

If the inverse matrix A−1 exists, we can multiply both sides on the left by A−1:

A−1(AX
)

= A−1B(
A−1A

)
X = A−1B

IX = A−1B (where I is the 3 × 3 identity matrix)

X = A−1B∴

Hence, if the inverse matrix A−1 exists, then the system of simultaneous equations has
a unique solution given by X = A−1B. You can use your calculator to find the inverse
matrix A−1.
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Use matrix methods to solve the following system of three equations in three variables:

2x + y + z = −1

3y + 4z = −7

6x + z = 8

Example 20

Solution
Define the matrices

A =


2 1 1
0 3 4
6 0 1

 , X =


x
y
z

 and B =


−1
−7

8


Then the system of equations can be written as a matrix equation:

AX = B

Multiply both sides on the left by A−1:

A−1AX = A−1B

IX = A−1B

X = A−1B∴

Use your calculator to find A−1B:

X = A−1B =


1
−5

2


The solution is x = 1, y = −5 and z = 2.

You can also use your calculator to solve a system of three linear equations directly, without
finding an inverse matrix.

Solve the following simultaneous linear equations for x, y and z:

x − y + z = 6, 2x + z = 4, 3x + 2y − z = 6

Example 21

Using the TI-Nspire
Simultaneous linear equations can be solved in a
Calculator application.

� Use menu > Algebra > Solve System of
Equations > Solve System of Linear Equations.

� Complete the pop-up screen as shown.
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� Enter the three equations:

x − y + z = 6

2x + z = 4

3x + 2y − z = 6

� Hence x =
14
3

, y = −
20
3

and z = −
16
3

.

Using the Casio ClassPad
� InM, select the Math1 keyboard.
� For three simultaneous equations, tap the

simultaneous equations icon~ twice.
� Enter the three equations into the three lines

and enter the variables x, y, z in the bottom right
separated by commas. Tap EXE .

� The solution is x =
14
3

, y = −
20
3

and z = −
16
3

.

Simultaneous equations without a unique solution
Just as for two linear equations in two variables, there is a geometric interpretation for three
linear equations in three variables. There is only a unique solution if the three equations
represent three planes intersecting at a point.

There are three possible cases for a system of three linear equations in three variables:

� a unique solution
� no solution
� infinitely many solutions.
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Use your calculator to solve the simultaneous equations

x + 2y + 3z = 13, −x − 3y + 2z = 2, −x − 4y + 7z = 17

Example 22

Using the TI-Nspire
� In a Calculator application, use menu >

Algebra > Solve System of Equations >

Solve System of Linear Equations.
� Complete the pop-up screen and then enter

the three equations as shown.
� The solutions are described in terms of a

parameter c1. Using λ for the parameter,
we can write the solutions as x = 43 − 13λ,
y = 5λ − 15 and z = λ, for λ ∈ R.

Using the Casio ClassPad
� In the Math1 keyboard, tap the simultaneous

equations icon~ twice.
� Enter the equations and variables as shown.
� The solutions are described in terms of z. We can

use a parameter λ and write the solutions as
x = 43 − 13λ, y = 5λ − 15 and z = λ, for λ ∈ R.

Linear equations in more than three variables
More generally, we can consider a system of n linear equations in n variables:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
. . .

...
...

an1x1 + an2x2 + · · · + annxn = bn

Such a system of equations can be written as a matrix equation:
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann



x1

x2
...

xn

 =


b1

b2
...

bn


If the n × n matrix has an inverse, then the system of equations has a unique solution.
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Summary 11G
Matrix method for solving simultaneous linear equations
� A system of three linear equations in three variables has the form:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

� This can be written as a matrix equation AX = B, where

A =


a1 b1 c1

a2 b2 c2

a3 b3 c3

 , X =


x
y
z

 and B =


d1

d2

d3


� If the inverse matrix A−1 exists, then the system of simultaneous equations has a

unique solution given by X = A−1B.

Exercise 11G

1Example 20 Use matrix methods to solve each of the following systems of simultaneous equations:

2x + 3y − z = 12

2y + z = 7

2y − z = 5

a x + 2y + 3z = 13

−x − y + 2z = 2

−x + 3y + 4z = 26

b x + y = 5

y + z = 7

z + x = 12

c

x − y − z = 0

5x + 20z = 50

10y − 20z = 30

d x + y − z = 3

x − z + w = 0

2x − y − z + 3w = 1

−4x + 2y + 3z − 4w = 0

e

2 Consider the following system of simultaneous equations:

x + 2y + 3z = 13 (1)

−x − 3y + 2z = 2 (2)

−x − 4y + 7z = 17 (3)

a Write this system as a matrix equation AX = B.
b Find det(A). Is the matrix A invertible?
c This system of simultaneous equations has infinitely many solutions. Express the

solutions in terms of a parameter λ by following these steps:

i Add equation (2) to equation (1) and subtract equation (2) from equation (3).
ii Comment on the equations obtained in part i.
iii Let z = λ and find y in terms of λ.
iv Substitute for z and y in terms of λ in equation (1) to find x in terms of λ.
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Assign-
ment

Nrich

Chapter summary

� A matrix is a rectangular array of numbers.
� The size of a matrix is described by specifying the number of rows and the number of

columns. An m × n matrix has m rows and n columns.
� Two matrices A and B are equal when:

• they have the same size, and
• they have the same entry at corresponding positions.

� Addition is defined for two matrices only when they have the same size. The sum is found
by adding corresponding entries.a b

c d

 +

e f
g h

 =

a + e b + f
c + g d + h


Subtraction is performed in a similar way.

� If A is any matrix and k is a real number, then the matrix kA is obtained by multiplying
each entry of A by k.

k
a b
c d

 =

ka kb
kc kd


� If A is an m × n matrix and B is an n × r matrix, then the product AB is the m × r matrix

whose entries are determined as follows:

To find the entry in row i and column j of AB, single out row i in matrix A and
column j in matrix B. Multiply the corresponding entries from the row and column
and then add up the resulting products.

Note that the product AB is defined only if the number of columns of A is the same as the
number of rows of B.

� If A is a square matrix and if a matrix B can be found such that AB = I = BA, then A is
said to be invertible and B is called the inverse of A.

� For a 2 × 2 matrix A =

a b
c d

:
• the inverse of A is given by

A−1 =
1

ad − bc

 d −b
−c a

 (if ad − bc , 0)

• the determinant of A is given by

det(A) = ad − bc

� A square matrix A has an inverse if and only if det(A) , 0.
� Simultaneous equations can sometimes be solved using inverse matrices. For example, the

system of equations

ax + by = c

dx + ey = f

can be written as
a b
d e

 x
y

 =

c
f

 and solved using
x
y

 =

a b
d e

−1 c
f

.
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Technology-free questions

1 If A =

1 0
2 3

 and B =

−1 0
0 1

, find:

(A + B)(A − B)a A2 − B2b

2 Find all possible matrices A which satisfy the equation
3 4
6 8

 A =

 8
16

.
3 Let A =

1 2
3 −1

, B =
[
3 −1 2

]
, C =

61
, D =

[
2 4

]
and E =


5
0
2

.
a State whether or not each of the following products exists: AB, AC, CD, BE.
b Find DA and A−1.

4 If A =

 1 −2 1
−5 1 2

, B =


1 −4
1 −6
3 −8

 and C =

1 2
3 4

, find AB and C−1.

5 Find the 2 × 2 matrix A such that A
1 2
3 4

 =

 5 6
12 14

.
6 If A =


2 0 0
0 0 2
0 2 0

, find A2 and hence find A−1.

7 If the matrix
1 2
4 x

 does not have an inverse, find the value of x.

8 a If M =

2 −1
1 3

, find:

i MM = M2 ii MMM = M3 iii M−1

b Find x and y, given that M
x
y

 =

35
.

Multiple-choice questions

1 The matrix A =


1 0
2 −1
−2 3

3 0

 has size

8A 4 × 2B 2 × 4C 1 × 4D 3 × 4E
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2 If A =

 2 0
−1 3

 and B =

 1 −3 4
−1 −3 −1

, then A + B = 3 −3
−2 0

A
 3 4
−2 2

B
−1 2

2 3

C
2 1
1 −3

D undefinedE

3 If C =

2 −3 1
1 0 −2

 and D =

1 −3 1
2 3 −1

, then D − C = 1 0 0
−1 −3 −1

A
 2 −6 4
−2 0 −4

B
−1 0 0

1 3 1

C1 −6 0
1 3 1

D undefinedE

4 If M =

−4 0
−2 −6

, then −M =−4 0
−2 −6

A
 0 −4
−6 −2

B
 4 0
−2 −6

C
0 4
6 2

D
4 0
2 6

E

5 If M =

 0 2
−3 1

 and N =

0 4
3 0

, then 2M − 2N = 0 0
−9 2

A
 0 −2
−6 1

B
 0 −4
−12 2

C
 0 4
12 −2

D
0 2
6 −1

E

6 If both A and B are m × n matrices, where m , n, then A + B is

an m × n matrixA an m × m matrixB an n × n matrixC
a 2m × 2n matrixD not definedE

7 If P is an m × n matrix and Q is an n × p matrix, where m , p, then QP is

an n × n matrixA an m × p matrixB an n × p matrixC
an m × n matrixD not definedE

8 The determinant of the matrix
 2 2
−1 1

 is

4A 0B −4C 1D 2E

9 The inverse of the matrix
1 −1
1 −2

 is

−1A
 2 1
−1 −1

B
 1 1
−1 −2

C
 1 1
−1 2

D
2 −1
1 −1

E

10 If M =

 0 −2
−3 1

 and N =

0 2
3 1

, then NM = 0 −4
−9 1

A
−4 −2

2 −8

B
0 4
9 1

C
−6 2
−3 −5

D
 6 −2
−3 −5

E
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Extended-response questions

1 a Consider the system of equations

2x − 3y = 3

4x + y = 5

i Write this system in matrix form, as AX = K.
ii Find det(A) and A−1.
iii Solve the system of equations.
iv Interpret your solution geometrically.

b Consider the system of equations

2x + y = 3

4x + 2y = 8

i Write this system in matrix form, as AX = K.
ii Find det(A) and explain why A−1 does not exist.

c Interpret your findings in part b geometrically.

2 The final grades for Physics and Chemistry are made up of three components: tests,
practical work and exams. Each semester, a mark out of 100 is awarded for each
component. Wendy scored the following marks in the three components for Physics:

Semester 1 tests 79, practical work 78, exam 80
Semester 2 tests 80, practical work 78, exam 82

a Represent this information in a 2 × 3 matrix.

To calculate the final grade for each semester, the three components are weighted:
tests are worth 20%, practical work is worth 30% and the exam is worth 50%.

b Represent this information in a 3 × 1 matrix.
c Calculate Wendy’s final grade for Physics in each semester.

Wendy also scored the following marks in the three components for Chemistry:

Semester 1 tests 86, practical work 82, exam 84
Semester 2 tests 81, practical work 80, exam 70

d Calculate Wendy’s final grade for Chemistry in each semester.

Students who gain a total score of 320 or more for Physics and Chemistry over the two
semesters are awarded a Certificate of Merit in Science.

e Will Wendy be awarded a Certificate of Merit in Science?

She asks her teacher to re-mark her Semester 2 Chemistry exam, hoping that she will
gain the necessary marks to be awarded a Certificate of Merit.

f How many extra marks on the exam does she need?
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3 A company runs computing classes and employs full-time and part-time teaching staff,
as well as technical staff, catering staff and cleaners. The number of staff employed
depends on demand from term to term.
In one year the company employed the following teaching staff:

Term 1 full-time 10, part-time 2
Term 2 full-time 8, part-time 4
Term 3 full-time 8, part-time 8
Term 4 full-time 6, part-time 10

a Represent this information in a 4 × 2 matrix.

Full-time teachers are paid $70 per hour and part-time teachers are paid $60 per hour.

b Represent this information in a 2 × 1 matrix.
c Calculate the cost per hour to the company for teaching staff for each term.

In the same year the company also employed the following support staff:

Term 1 technical 2, catering 2, cleaning 1
Term 2 technical 2, catering 2, cleaning 1
Term 3 technical 3, catering 4, cleaning 2
Term 4 technical 3, catering 4, cleaning 2

d Represent this information in a 4 × 3 matrix.

Technical staff are paid $60 per hour, catering staff are paid $55 per hour and cleaners
are paid $40 per hour.

e Represent this information in a 3 × 1 matrix.
f Calculate the cost per hour to the company for support staff for each term.
g Calculate the total cost per hour to the company for teaching and support staff for

each term.

4 Bronwyn and Noel have a clothing warehouse
in Summerville. They are supplied by three
contractors: Brad, Flynn and Lina.
The matrix shows the number of dresses, pants
and shirts that one worker, for each of the
contractors, can produce in a week.

Dresses
Pants
Shirts


Brad

5
Flynn

6
Lina
10

3 4 5
2 6 5


The number produced varies because of the different equipment used by the contractors.
The warehouse requires 310 dresses, 175 pants and 175 shirts in a week. How many
workers should each contractor employ to meet the requirement exactly?

5 Suppose that A and B are 2 × 2 matrices.

a Prove that det(AB) = det(A) det(B).
b Hence prove that if both A and B are invertible, then AB is invertible.

6 Let A =

3 1
0 2

. Prove by induction that An =

3n 3n − 2n

0 2n

 for all n ∈ N.
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Graph theory

Objectives
I To define a graph by specifying a set of vertices and a set of edges.

I To represent graphs using diagrams and matrices.

I To define the degree of a vertex, and to use the fact that the sum of the degrees of all
the vertices of a graph is equal to twice the number of edges.

I To understand what it means for two graphs to be isomorphic, and what it means for
one graph to be a subgraph of another graph.

I To define simple graphs, connected graphs, complete graphs, bipartite graphs
and trees.

I To introduce Euler circuits, Euler trails, Hamiltonian cycles and Hamiltonian paths.

I To count the number of walks of a given length between two vertices of a graph.

I To introduce planar graphs, and to prove and apply Euler’s formula v − e + f = 2 for
connected planar graphs.

Graph theory is useful for analysing ‘things that are connected to other things’, and so has
applications in a variety of areas, including genetics, linguistics, engineering and sociology.
There are many useful techniques in graph theory that are suitable for solving real-world
problems – particularly optimisation problems.

The Seven Bridges of Königsberg is a famous
historical problem in graph theory. The question
is whether or not you can walk around the city of
Königsberg crossing each of the seven bridges
exactly once and returning to your starting point.
We investigate this problem in Section 12B.

Pregel RiverDB

C

A
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12A Graphs and adjacency matrices
Suppose that there are six teams in a hockey tournament. Label the teams as v1, v2, v3, v4, v5

and v6. A few weeks into the tournament, the six teams have played one another as follows:

� v1 has played v2, v5 and v6 � v2 has played v1, v3 and v6

� v3 has played v2, v4 and v5 � v4 has played v3 and v6

� v5 has played v1 and v3 � v6 has played v1, v2 and v4.

This situation can be represented by the diagram below. Each team is represented by a point.
Two points are joined by a line if the teams they represent have played each other. The points
are called vertices, and the lines connecting the vertices are called edges. The table shows
the edge-endpoint function, which indicates the endpoints of each edge.

v1

v5

e7

v6

v4

e4
v2

v3

e8

e2

e1

e6

e3

e5

Edge Endpoints

e1 {v1, v2}

e2 {v1, v6}

e3 {v2, v6}

e4 {v4, v6}

e5 {v3, v4}

e6 {v3, v5}

e7 {v1, v5}

e8 {v2, v3}

This is a diagram for a graph. In this diagram, it does not matter how we arrange the vertices,
or whether the edges are drawn as straight, curved or intersecting lines.

A graph G consists of:

1 a finite non-empty set of elements called vertices
2 a finite set of elements called edges
3 an edge-endpoint function that indicates the endpoints of each edge – this function

maps each edge to a set of either one or two vertices.

Two vertices of a graph are adjacent if they are joined by an edge. The adjacency matrix of
a graph with vertices v1, v2, . . . , vn is an n × n matrix such that the entry in row i and column j
is the number of edges joining vertices vi and v j. For example, the adjacency matrix of the
graph shown above is

A =



v1 v2 v3 v4 v5 v6

v1 0 1 0 0 1 1
v2 1 0 1 0 0 1
v3 0 1 0 1 1 0
v4 0 0 1 0 0 1
v5 1 0 1 0 0 0
v6 1 1 0 1 0 0
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Another example of a graph is shown below.

v4 v3

v1 v2

� This graph has multiple edges, as there are two edges joining vertices v2 and v3.
� There is an edge joining v4 to itself; this edge is called a loop.
� Vertex v1 is not an endpoint of any edge; it is called an isolated vertex.

The edge-endpoint function and the adjacency matrix for this graph are shown below.

Edge Endpoints

e1 {v2, v3}

e2 {v2, v3}

e3 {v3, v4}

e4 {v4}



v1 v2 v3 v4

v1 0 0 0 0
v2 0 0 2 0
v3 0 2 0 1
v4 0 0 1 1


Note: There is only one edge joining v4 to itself. So this loop only contributes 1 to the

corresponding entry of the adjacency matrix.

The following graph represents three houses, A, B and C, that are each connected to
three utilities, gas (G), water (W) and electricity (E). Construct the adjacency matrix for
this graph.

Gas Water Electricity

A B C

Example 1

Solution



A B C G W E

A 0 0 0 1 1 1
B 0 0 0 1 1 1
C 0 0 0 1 1 1
G 1 1 1 0 0 0
W 1 1 1 0 0 0
E 1 1 1 0 0 0





12A Graphs and adjacency matrices 385

Graph drawing
The same graph can be drawn in very different ways. For example, the graph in Example 1
can also be represented by a different looking diagram, as shown below. The information that
we get from the two diagrams about the vertices and edges is exactly the same. These two
diagrams represent the same graph.

Gas Water Electricity

A B C

A

B

CGas

Water

Electricity

Isomorphism
Two graphs that have exactly the same ‘structure’ are said to be isomorphic. If you ignore
the labels on the vertices, then isomorphic graphs can be represented by the same diagram.

Isomorphic graphs

Two graphs are isomorphic if there is a one-to-one correspondence between their vertices
that preserves the ways the vertices are connected by edges.

That is, two graphs G and H are isomorphic if graph H can be obtained from graph G by
simply relabelling its vertices.

For example, the graphs G and H represented by the following two diagrams are isomorphic.

A B

D C

XW

YZ

Graph G Graph H

We can obtain graph H from graph G by relabelling its vertices as follows:

A↔ Y , B↔ Z, C ↔ W, D↔ X

Note: Two graphs that are isomorphic are regarded as being essentially the same.
If two graphs are isomorphic, then they have exactly the same features.
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Give three reasons why the two graphs shown
on the right could not possibly be isomorphic.

A B

C D

W X

Y Z

Graph G Graph H

Example 2

Solution
There are many possible answers to this question. Here are three possible reasons:

� Graph G does not have multiple edges, while graph H has multiple edges.
� Graph G has three edges, while graph H has four edges.
� Graph G has one vertex where three edges meet, while graph H has two such vertices.

For the small graphs in the previous example, it is easy to see that they are not isomorphic.
But it can sometimes be very difficult to tell whether or not two large graphs are isomorphic.

Degree of a vertex

� Let v be a vertex of a graph G. The degree of v is equal to the number of edges that
have vertex v as an endpoint, with each edge that is a loop counted twice.

� We denote the degree of v by deg(v).
� The total degree of the graph G is the sum of the degrees of all the vertices.

For the graph G shown below, the degrees of the vertices are given in the table.

v4 v3

v1 v2 Vertex Degree

v1 0

v2 2

v3 3

v4 3

The total degree of the graph G is

deg(v1) + deg(v2) + deg(v3) + deg(v4) = 0 + 2 + 3 + 3 = 8

Note that this sum is equal to twice the number of edges of G. This is not a coincidence.

Handshaking lemma

The total degree of any graph is equal to twice the number of edges of the graph.

Proof Each edge of the graph has two ends, and so each edge contributes exactly 2 to the
sum of the vertex degrees.
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The handshaking lemma has two important consequences:

� The total degree of any graph is even.
� Every graph has an even number of vertices of odd degree.

You will prove these in Exercise 12A.

Simple graphs

A simple graph is a graph with no loops or multiple edges.

An example of a simple graph is shown below, together with its adjacency matrix.

v1

v2

v4

v5

v3



v1 v2 v3 v4 v5

v1 0 1 0 1 1
v2 1 0 1 0 0
v3 0 1 0 1 0
v4 1 0 1 0 1
v5 1 0 0 1 0


In the adjacency matrix of a simple graph, every entry is either 0 or 1, and the entries on the
main diagonal (top-left to bottom-right) are all 0.

Subgraphs

A subgraph is a graph whose vertices and edges are subsets of another graph.

A graph G and one of its subgraphs are shown below.

v1

v2

v4

v5

v3

v1

v2

v4

v5

Graph G A subgraph of G

Summary 12A
� A graph G consists of:

1 a finite non-empty set of elements called vertices
2 a finite set of elements called edges
3 an edge-endpoint function that indicates the endpoints of each edge – this function

maps each edge to a set of either one or two vertices.
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� A graph can be represented by a diagram or an adjacency matrix, which stores the
number of edges between each pair of vertices. For example:

v4 v3

v1 v2 

v1 v2 v3 v4

v1 0 0 0 0
v2 0 0 2 0
v3 0 2 0 1
v4 0 0 1 1


� Two graphs are isomorphic if there is a one-to-one correspondence between their

vertices that preserves the ways the vertices are connected by edges.
� The degree of a vertex v, denoted by deg(v), is equal to the number of edges that have

vertex v as an endpoint, with each edge that is a loop counted twice.
� The total degree of a graph is the sum of the degrees of all the vertices.
� Handshaking lemma The total degree of any graph is equal to twice the number of

edges of the graph.
� A simple graph is a graph with no loops or multiple edges.
� A subgraph is a graph whose vertices and edges are subsets of another graph.

Exercise 12A

1Example 1 Houses X and Y are each connected to four utilities: gas (G), water (W), electricity (E)
and broadband (B).

a Draw a graph to depict these connections.
b Redraw your graph so that the edges do not cross.
c Construct the adjacency matrix for this graph.

2 This section of a road map may
be considered as a graph, with
towns as vertices and the roads
connecting the towns as edges.
a Give the degree of:

i Town A ii Town B iii Town H

b Construct the adjacency matrix for this graph.
c Is this graph simple? Why?

Town H

Town D

Town C

Town B

Town A

3 There are five football teams in a conference: Alphington (A), Burlington (B),
Carlington (C), Darrington (D) and Eddington (E).

� A has played: B, C, C, D � B has played: A, D, E, E � C has played: A, A, D

� D has played: A, B, C � E has played: B, B

a Draw a graph that models this situation.
b Construct the adjacency matrix for this graph.
c Give a reason why this is not a simple graph.



12A 12A Graphs and adjacency matrices 389

4 Six people are seated at a round table. For each of the following, draw a graph that
models the situation:

a Each person shakes hands with the two people they are sitting next to.
b Each person shakes hands with the person they are sitting opposite.
c Each person shakes hands with every other person.

5 Draw a graph such that each state and territory of Australia is represented as a vertex.
Connect two vertices by an edge if the states or territories that they represent share a
land border.

6 For each of the following graphs, give the adjacency matrix:

A

C

B
D

a A

C

B

D

b A B

C D

c

A

d

CD

BAe

E F

CD

BAf

B

C

A

g

A

C

B D

h

7 Which of the graphs in Question 6 are simple?

8 For each of the following adjacency matrices, give a reason why the corresponding
graph is not simple:


v1 v2 v3

v1 1 1 1
v2 1 0 1
v3 1 1 0


a 

v1 v2 v3

v1 0 2 1
v2 2 0 1
v3 1 1 0


b

9 Describe how you can use an adjacency matrix to determine:

a the degree of each vertex of a simple graph
b the total degree of a simple graph
c the number of edges of a simple graph.
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10 For each of the following, draw the graph corresponding to the given adjacency matrix:



v1 v2 v3 v4

v1 0 1 1 0
v2 1 0 1 1
v3 1 1 0 0
v4 0 1 0 0



a 
v1 v2 v3

v1 0 1 1
v2 1 0 1
v3 1 1 1


b



v1 v2 v3 v4

v1 0 1 0 1
v2 1 0 1 0
v3 0 1 0 1
v4 1 0 1 0



c 
v1 v2 v3

v1 1 0 1
v2 0 0 2
v3 1 2 0


d

11Example 2 Consider the following five graphs:

A B

C D

W X

Y Z

A B

C D

W X

Y Z

W X

Y Z

Graph G Graph H Graph I Graph J Graph K

a Show that graphs G and H are isomorphic by finding a one-to-one correspondence
between their vertices.

b In fact, explain why there are six possible answers to the previous question.
c Show that graphs I and J are isomorphic by finding a one-to-one correspondence

between their vertices.
d Give three reasons why graph G is not isomorphic to graph I.
e Give three reasons why graph I is not isomorphic to graph K.

12 Draw the simple graph with four vertices, each of which has degree 3.

13 Draw all simple graphs with vertices v1, v2, v3 such that one of the edges is {v1, v2}.

14 Use the handshaking lemma to prove that:

a the total degree of any graph is even
b every graph has an even number of vertices of odd degree.

15 a Draw two different graphs with two vertices, each of which has degree 2.
b Explain why there is no graph with three vertices, each of which has degree 3.
c Draw all non-isomorphic graphs with three vertices, each of which has degree 2.

16 a Construct a graph with four vertices v1, v2, v3, v4 such that deg(v1) = 1, deg(v2) = 2,
deg(v3) = 3 and deg(v4) = 4.

b Prove that there is no graph with four vertices v1, v2, v3, v4 such that deg(v1) = 2,
deg(v2) = 1, deg(v3) = 2 and deg(v4) = 2.

17 How many different simple graphs with three vertices are there?
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18 There are 11 different simple graphs with four vertices. Draw them.

19 Let G be a graph with n vertices and exactly n − 1 edges. Prove that G has either a
vertex of degree 1 or an isolated vertex. (Hint: Prove this result by contradiction.)

20 a Draw a graph with three vertices whose total degree is 10.
b Consider all graphs with three vertices whose total degree is 10. Prove that each of

these graphs has some vertex with degree at least 4.

12B Euler circuits
Many applications of graphs involve travelling along the edges from one vertex to another.

Walks in graphs
Consider the graph shown on the right.

� The walk shown in red from v1 to v5 can be described
by the sequence of vertices v1, v2, v3, v5.

� For the walk shown in green from v4 to v1, we must
also list the edges taken, as there is more than one edge
joining v3 and v1. This walk can be described by the
sequence v4, e3, v3, e6, v1.

� A walk can include vertices and edges more than once.
For instance, the walk v2, v1, v4, v1 visits vertex v1 twice
and also uses edge e4 twice.

v1

v5

v2 v4

v3

e1

e2

e4

e3

e7

e5 e6

Walks in graphs

A walk in a graph is an alternating sequence of vertices and edges

v1, e1, v2, e2, . . . , vn−1, en−1, vn

where the edge ei joins the vertices vi and vi+1.

If each pair of adjacent vertices in a walk is joined by only one edge, then the walk can be
described by the sequence of vertices v1, v2, . . . , vn.

A graph is said to be connected if there is a walk between each pair of distinct vertices.
Otherwise, the graph is said to be disconnected. The graph G shown below is connected,
while the graph H is disconnected.

v4 v3

v1 v2

v4 v3

v1 v2

A connected graph G A disconnected graph H
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Euler circuits
A trail is a walk in a graph that does not use the same edge more than once. In this section,
we are interested in trails that use all the edges.

Euler trails and circuits

� An Euler trail is a walk in a graph
that uses every edge exactly once.

� An Euler circuit is a walk in a graph
that uses every edge exactly once and
that starts and ends at the same vertex.

v3

v2

v1

v5

v4

v3

v2

v1

v5

v4

The walk v4, v1, v3, v2, v1, v5 in the
graph above is an Euler trail.

The walk v4, v1, v3, v2, v1, v5, v4 in the
graph above is an Euler circuit.

Note: In an Euler trail, some vertices may be visited more than once.

Euler circuits get their name from the Swiss mathematician Leonhard Euler, who considered
the following famous problem in a paper published in 1736.

The seven bridges of Königsberg
The Pregel River flows through the city of
Königsberg. In the middle of the river there are
two large islands. These are connected to each
other and the two river banks by seven bridges,
as shown in the diagram.

Pregel RiverDB

C

A

The problem that Euler considered was posed as follows:

‘Is it possible to walk around the city crossing each of the seven bridges
exactly once and returning to your starting point?’

We can represent this diagram using the graph shown on the right.
Translated into the language of graph theory, we would like to know
whether this graph has an Euler circuit.

We will show that, no matter which vertex is chosen as the starting
point, it is impossible to traverse the graph and come back to the
starting vertex, while using every edge exactly once.

A

DB

C
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Euler’s solution of the problem
In fact, the solution follows at once from a much more general theorem that characterises
when a connected graph has an Euler circuit. Half of this theorem is proved below. The other
half is proved in Section 12H.

Theorem (Euler circuits)

A connected graph has an Euler circuit if and only if the degree of every vertex is even.

Proof Let G be a graph with an Euler circuit. We need to prove that every vertex has even
degree. Suppose that the Euler circuit starts and ends at the vertex v0.

First consider a vertex v of the graph other than v0. Each time an edge of the Euler
circuit enters v, there must be a corresponding exit edge. Since the Euler circuit
includes every edge exactly once, it follows that the degree of v is even.

Now consider the starting vertex v0. The initial edge that leads out of v0 can be paired
with the final edge that leads into v0. If the vertex v0 is revisited in the middle of the
Euler circuit, then there must be a different entry edge and a corresponding exit edge.
Hence, the degree of v0 is also even.

We are still to prove that, if every vertex has even degree, then the graph has an Euler
circuit. We will complete this half of the proof in Section 12H.

Returning to the seven bridges problem, we see that the graph has
no Euler circuit, since the degree of each vertex is odd.

A

DB

C

For each of the following graphs, name an Euler circuit if one exists:

v1

v5

v6

v4

v2

v3

a v1

v4

v2

v3

b

Example 3

Solution
a The degree of every vertex is even. Therefore the graph has an Euler circuit. One such

circuit is v4, v1, v2, v5, v4, v3, v2, v6, v4. There are many others.

b This graph has vertices of odd degree. Therefore it does not have an Euler circuit.
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Euler trails
We recall that an Euler trail in a graph includes every edge exactly once, but does not have to
start and end at the same vertex.

We can easily identify whether an Euler trail exists in a graph by using the next theorem.

Theorem (Euler trails)

A connected graph has an Euler trail if and only if one of the following holds:

� every vertex has even degree
� exactly two vertices have odd degree.

Proof (⇒) Let G be a graph that has an Euler trail. Using the theorem for Euler circuits, we
can assume that the Euler trail starts and ends at different vertices v1 and v2. Add an
edge joining v1 and v2. The new graph has an Euler circuit, and so every vertex has
even degree. Remove the new edge, and we see that v1 and v2 have odd degree in G.
Therefore the graph G has exactly two vertices with odd degree.

(⇐) We know that, if every vertex has even degree, then there is an Euler circuit. So
consider a connected graph G with exactly two vertices of odd degree. Let these be v1

and v2. Add an edge joining v1 and v2. We obtain a connected graph such that every
vertex has even degree, and so it has an Euler circuit. Remove the new edge, and we
have an Euler trail in the graph G from v1 to v2.

In Exercise 12B, you will prove the following result.

If a connected graph has exactly two vertices of odd degree, then every Euler trail in the
graph must start at one of these vertices and end at the other.

For each of the following graphs, name an Euler trail if one exists:

v1

v4

v2

v3

a v1

v4

v2

v3

b

Example 4

Solution
a Vertices v1 and v3 have odd degree. Any Euler trail must start and end at these vertices.

The walk v1, v3, v2, v1, v4, v3 is an Euler trail. There are many others.

b This graph has more than two vertices of odd degree. Therefore it does not have an
Euler trail.
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Fleury’s algorithm
For small graphs, it is easy to find an Euler trail. But graphs used in real-world problems can
have millions of vertices, and so a trial-and-error approach will not always work.

One systematic approach to finding an Euler trail is called Fleury’s algorithm. The basic
idea behind this algorithm can be recalled with the help a familiar motto:

Don’t burn your bridges (unless you have to).

In a connected graph, a bridge is any edge whose deletion would
cause the resulting graph to become disconnected.

An example of a bridge is shown in the graph on the right.
Deleting this edge would disconnect the graph. bridge

Fleury’s algorithm

To find an Euler trail in a connected graph such that every vertex has even degree or
exactly two vertices have odd degree:

Step 1 If there are two vertices of odd degree, then start from one of them. Otherwise,
start from any vertex.

Step 2 Move from the current vertex across an edge to an adjacent vertex. Always
choose a non-bridge edge unless there is no alternative.

Step 3 Delete the edge that you have just traversed.

Step 4 Repeat from Step 2 until there are no edges left.

We will apply Fleury’s algorithm to the graph shown in the top-left of the following table.
The vertices A and E have odd degree. We choose to start at vertex A.

E D

A C

B

E D

A C

B

E D

A C

B

There is only one edge
at A. We must pick A-B.
Delete this edge.

There are three edges at B.
However B-E is a bridge.
We pick B-D.
Delete this edge.

There is only one edge
at D. We must pick D-C.
Delete this edge.

E D

A C

B

E D

A C

B

E D

A C

B

There is only one edge
at C. We must pick C-B.
Delete this edge.

There is only one edge
at B. We must pick B-E.
Delete this edge.

All edges are deleted.
An Euler trail is
A-B-D-C-B-E.
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Summary 12B
� A walk in a graph is an alternating sequence of vertices and edges.
� An Euler trail is a walk in a graph that uses every edge exactly once.
� An Euler circuit is a walk in a graph that uses every edge exactly once and that starts

and ends at the same vertex.
� A connected graph has an Euler circuit if and only if the degree of every vertex is even.
� A connected graph has an Euler trail if and only if every vertex has even degree or

exactly two vertices have odd degree.

Exercise 12BSkill-
sheet

1 Consider the graph shown on the right.

a Recall that an Euler trail must start and end at the two vertices
of odd degree. List all four Euler trails in this graph.

b This graph does not have an Euler circuit. Why not?

v1

v2

v3 v4

2 Consider the graph shown on the right.

a Give a reason why this graph does not have an Euler circuit.
b Give a reason why this graph has an Euler trail.

v1

v4

v2

v3

3Example 3

Example 4

For each of the following, find an Euler circuit or trail:

v1

v2

v3 v4

a v1 v2

v3

v4v5

b

v1

v2 v3

v4

v5

v6 v7

v8

c v1 v2v3

v4v5v6

d

v1

v2 v3 v4

v5

e v1

v2

v3v4

v5

v6

f
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4 Is it possible for a graph with a vertex of degree 1 to have an Euler circuit? If so, draw
one. If not, explain why not. What about an Euler trail?

5 Can you trace the edges of the following polyhedra without lifting your pencil or tracing
over the same edge twice? (Hint: First find the degree of each vertex.)

a b c

6 Suppose that six rooms in a house are laid out as shown.
The doors are represented by open sections along the
walls. Can you walk around the house going through
each door exactly once and finishing in the same room
where you started?

7 A bridge builder has come to Königsberg and would like to add
bridges to the city so that it is possible to travel over every bridge
exactly once. What is the least number of bridges that must be
built to guarantee that there is:

a an Euler trail
b an Euler circuit?

B D

A

C

8 The triangular grid graph T3 is shown on the right.
The number of vertices of this graph is 1 + 2 + 3 = 6.

a Draw the triangular grid graph T4.
b Briefly explain why Tn has an Euler circuit for all n ∈ N.

9 The 3 × 4 grid graph is shown on the right. For what values
of m and n will the m × n grid graph have:

a an Euler trail
b an Euler circuit?

10 Prove that, if a connected graph has exactly two vertices of odd degree, then every Euler
trail in the graph must start at one of these vertices and end at the other.

11 Prove that, if all the vertices of a connected graph have even degree, then every Euler
trail in the graph is an Euler circuit. (Hint: Try a proof by contradiction.)
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12C Hamiltonian cycles
Consider a group of six students, which we represent by six vertices
A, B, C, D, E and F. An edge is drawn between two vertices if the
students that they represent are friends.

Question
Is it possible for these students to be seated at a round table so that
every student is sitting next to a friend on both sides?

A B

E D

F C

Answer
We are looking for a walk in this graph that starts and ends at the
same vertex and visits every other vertex exactly once.

An example of such a walk is A, B, C, E, F, D, A.

A B

E D

F C

This walk gives the order in which we can seat the students at the
round table.

A B

F E

D C

Hamiltonian paths and cycles
A path is a walk in a graph that does not repeat any vertices (and therefore does not repeat
any edges). A cycle is a walk that starts and ends at the same vertex and otherwise does not
repeat any vertices or edges. In this section, we are interested in paths and cycles that visit all
the vertices.

Hamiltonian paths and cycles

� A Hamiltonian path is a walk in a
graph that visits every vertex
exactly once.

� A Hamiltonian cycle is a walk that
starts and ends at the same vertex and
visits every other vertex exactly once
(without repeating any edges).

v3

v4

v2

v1

v5

v3

v4

v2

v1

v5

The walk v1, v2, v3, v4, v5 in the
graph above is a Hamiltonian path.

The walk v1, v2, v3, v4, v5, v1 in the
graph above is a Hamiltonian cycle.

Note: In a Hamiltonian path or cycle, some edges may not be used.

Hamiltonian cycles are named after Sir William Rowan Hamilton, who devised a puzzle to
find such a walk along the edges of a dodecahedron. In general, there is no simple necessary
and sufficient condition that enables us to identify whether there is a Hamiltonian cycle.
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Eight towns are represented by the vertices v1, v2, . . . , v8. The
roads that connect these towns are represented as edges. Starting
and ending at v1, how can a salesperson visit every town exactly
once?

v3

v8

v1

v6 v7

v4

v2

v5

Example 5

Solution
We seek a Hamiltonian cycle starting and ending at v1.

One such cycle is v1, v2, v3, v5, v8, v7, v6, v4, v1. This is shown
in red. There are many others.

v3

v8

v1

v6 v7

v4

v2

v5

Notes:
� It is easy to remember the difference between Euler circuits and Hamiltonian cycles:

EULER circuits are defined in terms of EDGES.

� A graph can have an Euler circuit but no Hamiltonian cycle. This can be
seen in the graph on the right.

� A graph can have a Hamiltonian cycle but no Euler circuit. This can be
seen in the graph on the right. It has vertices of odd degree.

Summary 12C
� A Hamiltonian path is a walk in a graph that visits every vertex exactly once.
� A Hamiltonian cycle is a walk in a graph that starts and ends at the same vertex and

visits every other vertex exactly once (without repeating any edges).

Exercise 12CSkill-
sheet

1Example 5 For the graph shown, list a Hamiltonian path that:

a starts at v1 and ends at v4

b starts at v6 and ends at v7.

v1 v2

v3v4

v5

v6 v7

v8
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2 List a Hamiltonian path for each of the following graphs:

v1

v2

v3 v4

a v1 v3
v2

v4 v5

v6

b

v1v3

v2

v4

c

v1 v2 v4

v3

v5

v6 v7

d

3 List a Hamiltonian cycle starting from v1 for each of the following graphs:

v1

v2

v3 v4

a

v4

v6

v1
v2 v3

v5

b

v2 v1

v3

v4

v5

c

v1 v2

v4

v5

v3

v6 v7

d

4 Consider the graph shown on the right.

a Briefly explain why this graph does not have a
Hamiltonian cycle.

b How many Hamiltonian paths does it have?
c What edge should be added to this graph so that it

will have a Hamiltonian cycle?

v1 v4 v5 v3

v2

5 Consider the butterfly graph shown on the right.

a Briefly explain why this graph does not have a
Hamiltonian cycle.

b How many Hamiltonian paths does it have?

v2

v3

v1

v5

v4
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6 Draw a connected graph with four vertices that has:

a a Hamiltonian cycle and an Euler circuit
b a Hamiltonian cycle but no Euler circuit
c an Euler circuit but no Hamiltonian cycle
d no Euler circuit and no Hamiltonian cycle.

7 Answer true or false for each of the following statements:

a A graph with a vertex of degree 1 can have a Hamiltonian cycle.
b A graph with exactly one vertex of degree 1 can have a Hamiltonian path.
c A graph with exactly two vertices of degree 1 can have a Hamiltonian path.
d A graph with three vertices of degree 1 can have a Hamiltonian path.
e If a vertex of a simple graph has degree 2, then both edges at this vertex must be part

of any Hamiltonian cycle.

8 For the graphs in this question, each vertex represents a student. Two vertices are joined
by an edge if the two students that they represent are friends.

a Consider the group of students represented by the graph on
the right. Can these students be seated at a round table so
that students are only sitting next to their friends?
Hint: It will help to consider the vertices of degree 2.

I B
A

C

D

EF

G

H

b Consider the group of students represented by the graph
on the right. Can these students be seated in a line so that
students are only sitting next to their friends?
Hint: Consider the vertices of degree 1 and 2.

I B

C

D

EF

G

H

A

9 In the graph shown on the right, every vertex has degree 3.

a Colour the edges of this graph using three colours so that
every vertex has three edges with three different colours.

b Find a Hamiltonian cycle in the coloured graph. What do
you notice about the colours of the edges in this cycle?

Now consider any graph such that every vertex has degree 3. Suppose that the graph
also has a Hamiltonian cycle.

c Use the handshaking lemma to prove that the graph has an even number of vertices.
d Hence, explain why it is possible to colour the edges of the graph using three colours

so that every vertex has three edges with three different colours.
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12D Using matrix powers to count walks in graphs
The graph shown below represents three towns and the routes connecting these towns. The
adjacency matrix of this graph is also shown.

v1 v2 v3
A =


v1 v2 v3

v1 1 2 1
v2 2 0 3
v3 1 3 1


There is one direct route from v1 to v3. This is called a walk of length 1. There are also
several walks from v1 to v3 via v2. These are called walks of length 2.

In general, the length of a walk in a graph is the number of edges in the walk. (If you use
the same edge more than once, then you must count that edge more than once.)

In the graph shown above, how many different walks of length 2 are there from v1 to v3?
There are three cases to consider.

� Case 1: v1 → v1 → v3

There is 1 edge from v1 to v1 and then 1 edge from v1 to v3. This gives 1 × 1 = 1 walk.
� Case 2: v1 → v2 → v3

There are 2 edges from v1 to v2 and then 3 edges from v2 to v3. This gives 2 × 3 = 6 walks.
� Case 3: v1 → v3 → v3

There is 1 edge from v1 to v3 and then 1 edge from v3 to v3. This gives 1 × 1 = 1 walk.

Therefore the total number of walks of length 2 from v1 to v3 is given by:(
v1 → v1 then v1 → v3

)
or

(
v1 → v2 then v2 → v3

)
or

(
v1 → v3 then v3 → v3

)
↓ ↓ ↓(

1 × 1
)

+
(
2 × 3

)
+

(
1 × 1

)
= 8

Note that this calculation can also be obtained by multiplying the first row of A by the third
column of A. The entries corresponding to this product are shown in red below.

A2 =


v1 v2 v3

v1 1 2 1
v2 2 0 3
v3 1 3 1




v1 v2 v3

v1 1 2 1
v2 2 0 3
v3 1 3 1

 =


v1 v2 v3

v1 6 5 8
v2 5 13 5
v3 8 5 11


In general, the entries of A2 give the number of walks of length 2 between each pair of
vertices. Likewise, the entries of A3 give the number of walks of length 3. In fact, a simple
induction argument will prove the following.

If A is the adjacency matrix of a graph G, then the number of walks of length n from
vertex vi to vertex v j is equal to the entry of An in row i and column j.
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Note: It is helpful to define A0 = I, where I is the identity matrix. We can then also consider
walks of length 0. We say that there is one walk of length 0 from any vertex to itself.

Find the number of walks of length 3 from vertex v1 to vertex v3 in
the graph shown.

v2

v3 v1

Example 6

Solution
We construct the adjacency matrix A of the graph and then calculate A3:

A =


v1 v2 v3

v1 0 1 2
v2 1 1 1
v3 2 1 0

 =⇒ A3 =


v1 v2 v3

v1 5 9 13
v2 9 9 9
v3 13 9 5


The number of walks of length 3 from v1 to v3 is the entry of A3 in row 1 and column 3.
Therefore there are 13 walks.

Summary 12D
� The length of a walk in a graph is the number of edges in the walk. (If you use the

same edge more than once, then you must count that edge more than once.)
� If A is the adjacency matrix of a graph G, then the number of walks of length n from

vertex vi to vertex v j is equal to the entry of An in row i and column j.

Exercise 12DSkill-
sheet

1Example 6 A graph with four vertices has the following adjacency matrix.

A =



v1 v2 v3 v4

v1 0 1 2 0
v2 1 0 2 0
v3 2 2 0 1
v4 0 0 1 0


a Find the number of walks of length 2 between:

i v1 and v2 ii v3 and v4 iii v1 and v1 iv v4 and v2

b Find the number of walks of length 3 between:

i v1 and v2 ii v3 and v4 iii v1 and v1 iv v4 and v2
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2 a Construct the adjacency matrix of the graph shown on
the right.

b Find the number of walks of length 2 between:

i v1 and v2 ii v2 and v2 iii v3 and v1

v1 v2 v3

c Find the number of walks of length 2 that start at v1.
d Find the number of walks of length 2 that end at v3.
e Find the number of walks of length 3 between:

i v1 and v2 ii v2 and v2 iii v3 and v1

f Find the number of walks of length 3 that start and end at the same vertex.

3 Consider the graph shown on the right.

a Write down the adjacency matrix A of this graph.
b By finding A3, show that there is only one pair of vertices that

is not connected by a walk of length 3.
c By finding A4, show that any every pair of vertices is

connected by a walk of length 4.

v1v3

v4

v2

4 In the graph on the right, each of the five vertices is adjacent to
every other vertex.

a Write down the adjacency matrix A of this graph.
b Without computing the matrix directly, find A2.
c Without computing the matrix directly, find A3.

v1

v2

v3v4

v5

5 In the graph on the right, each of the six vertices is adjacent to
exactly two other vertices.

a Write down the adjacency matrix A of this graph.
b Without computing A3, find the entry in row 1 and column 1.
c Without computing A4, find the entry in row 1 and column 2.
d Let n be an odd natural number. Without computing the matrix,

describe the entries on the main diagonal of An (top-left to
bottom-right).

v1

v2

v3

v4

v5

v6

6 Consider the graph shown on the right.

a Write down the adjacency matrix A of this graph.
b Let I be the 3 × 3 identity matrix. Evaluate the matrix

I + A + A2 + A3 + A4.
c Hence, find the number of walks of length at most 4

from vertex v1 to vertex v2.

v3

v1 v2
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12E Regular, cycle, complete and bipartite graphs
We now consider various types of graphs that frequently arise in applications, and investigate
some of their properties.

Regular graphs

A graph is said to be regular if all its vertices have the
same degree.

The graph on the right is regular, as every vertex has
degree 3.

Theorem (Edges of a regular graph)

If G is a regular graph with n vertices of degree r, then G has
nr
2

edges.

Proof Each of the n vertices has degree r, so the sum of the degrees of all the vertices is nr.

Therefore, by the handshaking lemma, there are
nr
2

edges.

We now look at two special examples of regular graphs.

Cycle graphs

A cycle graph is a graph consisting of a single cycle
of vertices and edges. For n ≥ 3, the cycle graph with
n vertices is denoted by Cn.

Every cycle graph Cn is regular, since each vertex has
degree 2. The cycle graph C5 is shown on the right.

Complete graphs

A complete graph is a simple graph with one edge
joining each pair of distinct vertices. The complete
graph with n vertices is denoted by Kn.

The complete graph K10 is shown on the right. This graph
models the situation where there is a group of 10 people,
and each person shakes hands with the nine other people in
the group.

The graph Kn is regular, since each vertex has degree n − 1. The adjacency matrix of Kn

has 1s in all positions, except on the main diagonal. The main diagonal has 0s.
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Theorem (Edges of a complete graph)

The complete graph Kn has
n(n − 1)

2
edges.

Proof Each of the n vertices has degree n − 1, so the sum of the degrees of all the vertices

is n(n − 1). Therefore, by the handshaking lemma, there are
n(n − 1)

2
edges.

The complement of a simple graph

If G is a simple graph, then its complement is the simple graph G defined as follows:

1 G and G have the same set of vertices
2 two vertices are adjacent in G if and only if they are not adjacent in G.

Note: To generate the complement of a simple graph, fill in all the missing edges required to
form a complete graph and then remove all the edges of the original graph.

a How many edges does the complete graph K5 have?
b Draw K5.
c Draw the cycle graph C5 and draw the complement of C5.

Example 7

Solution
a The graph K5 has

5(5 − 1)
2

= 10 edges.

b K5

c C5 K5 C5



12E Regular, cycle, complete and bipartite graphs 407

Bipartite graphs

A bipartite graph is a graph whose vertices can be divided into
two disjoint subsets A and B such that every edge of the graph
joins a vertex in A to a vertex in B.

The graph shown on the right is a bipartite graph, as every edge of
the graph joins a vertex in A = {a1, a2} to a vertex in B = {b1, b2, b3}.

a1 a2

b1 b2 b3

A complete bipartite graph is a simple graph whose vertices
can be divided into two disjoint subsets A and B such that:

1 every edge joins a vertex in A to a vertex in B

2 every vertex in A is joined to every vertex in B.

The complete bipartite graph where A contains m vertices and
B contains n vertices is denoted by Km,n.

a1 a2

b1 b2 b3

The complete bipartite graph Km,n has m + n vertices and mn edges. The graph above is K2,3.

The utility graph from Example 1 corresponds
to the complete bipartite graph K3,3.

Gas Water Electricity

A B C

Draw the complete bipartite graph K2,4 and give its adjacency matrix.

Example 8

Solution
Each of the two vertices in the set A = {a1, a2} is joined to each of the four vertices in the
set B = {b1, b2, b3, b4}.

a1 a2

b1 b2 b3 b4
A =



a1 a2 b1 b2 b3 b4

a1 0 0 1 1 1 1
a2 0 0 1 1 1 1
b1 1 1 0 0 0 0
b2 1 1 0 0 0 0
b3 1 1 0 0 0 0
b4 1 1 0 0 0 0


Every cycle graph with an even number of vertices is a bipartite graph. This is illustrated in
the next example.
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a Show that the cycle graph C6 is a bipartite graph by dividing the set of vertices into two
suitable disjoint subsets.

b Hence show that C6 is a subgraph of K3,3.

Example 9

Solution
a It helps to colour the vertices with alternating colours. The vertices are then split into

two disjoint subsets according to their colour.

A B

C

DE

F

A C E

B D F

b The graph C6 is shown in red as a subgraph of K3,3.

A C E

B D F

Summary 12E
� A graph is regular if all its vertices have the same degree.
� If G is a regular graph with n vertices of degree r, then G has

nr
2

edges.

� The cycle graph Cn is a graph consisting of a single cycle of n vertices and n edges.
� The complete graph Kn is a simple graph with n vertices such that every pair of

distinct vertices is joined by an edge.
� A simple graph G and its complement G have the same set of vertices. Two vertices

are adjacent in G if and only if they are not adjacent in G.
� The vertices of a bipartite graph can be divided into two disjoint subsets A and B such

that every edge joins a vertex in A to a vertex in B.

Exercise 12ESkill-
sheet

1 Draw a regular graph with four vertices and six edges.

2 Draw the cycle graph C4 and its complement C4.
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3 There are six teams in a competition. Each team plays every other team exactly once.

a How many matches are there?
b Represent this competition with the complete graph K6.

4 There are five teams in a competition.

a Show that it is possible for each of the five teams to play exactly two other teams.
Illustrate this competition as a regular graph.

b Using the handshaking lemma, show that it is not possible for each of the five teams
to play exactly three other teams.

5 aExample 7 How many edges does the complete graph K7 have?
b Draw K7.
c Draw the cycle graph C7 and its complement C7.

6 aExample 8 Draw the complete bipartite graph K3,3 and its complement.
b Is it true that the complement of a bipartite graph is also bipartite?

7 Find the maximum number of handshakes that can take place between eight people.
Represent this with the complete graph K8.

8 Draw a regular graph with eight vertices where each vertex has degree:

3a 4b 5c

9 For each of the following, draw the complete bipartite graph and give its adjacency
matrix:

K1,3a K2,3b

10 Show that the complete bipartite graph K2,2 is isomorphic to the cycle graph C4.

11 a Find a Hamiltonian cycle in K3,3.
b Find a Hamiltonian cycle in K4,4.
c Explain why K2,3 cannot have a Hamiltonian cycle.

12 Prove that the complete bipartite graph Km,n has a Hamiltonian cycle if and only
if m = n.

13 a Prove that the complete bipartite graph Km,n has an Euler circuit if and only if both
m and n are even.

b Find an Euler circuit in K2,4.

14 aExample 9 Show that the cycle graph C8 is bipartite by dividing the set of vertices into two
suitable disjoint subsets.

b Hence show that C8 is a subgraph of K4,4.
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15 A simple graph is said to be self-complementary if it is isomorphic to its complement.

a Show that the cycle graph C5 is self-complementary.
b Draw another simple graph with five vertices that is self-complementary.
c Show that the cycle graph C4 is not self-complementary.
d There is just one simple graph with four vertices that is self-complementary. Find it.

e Prove that a self-complementary graph with n vertices has
n(n − 1)

4
edges.

f Prove that, if a simple graph with n vertices is self-complementary, then n = 4k or
n = 4k + 1, where k is a non-negative integer.

16 Recall that a graph is connected if there is a walk between each pair of distinct vertices.
Let G be a simple graph. Show that either G or its complement G is connected.

12F Trees
Recall that a cycle is a walk in a graph that starts and ends at the same vertex and otherwise
does not repeat any vertices or edges. (By convention, a cycle must include at least one edge.)
The cycle in graph G below is indicated by red edges. Graph H has no cycles.

Graph G has a cycle Graph H has no cycles

A tree is a connected graph that contains no cycles.

Trees get their name from the fact that they can often be
drawn in a way that resembles a branching tree. A tree has no
loops or multiple edges. The smallest tree is a single vertex.

Draw the three trees with five vertices.

Example 10

Solution
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Trees have many important properties, some of which you will prove in Exercise 12F.

Properties of trees

� A tree with n vertices has n − 1 edges.
� In any tree, there is exactly one path between each pair of distinct vertices.
� Every tree is a bipartite graph.

Show that this tree is a bipartite graph by dividing its
vertices into two suitable disjoint subsets.

Example 11

Solution
It helps to colour the vertices with alternating colours. The vertices are then split into two
disjoint subsets according to their colour.

A B

C

F G

H

D

E A

B

C F

G

H

D E

Spanning trees

Let G be a connected graph. A spanning tree of G is a subgraph of G that is a tree with
the same set of vertices as G.

A graph may have many spanning trees. For example, the cycle graph C4 has four spanning
trees. These are shown in red below.
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Trees are important largely due to the following theorem.

Theorem (Spanning trees)

Every connected graph has a spanning tree.

The proof of this theorem is suggested by the following algorithm for finding a spanning tree
of any connected graph. You will complete the proof in Exercise 12F (Question 11).

Algorithm for finding a spanning tree

To find a spanning tree of a given connected graph:

Step 1 If the graph has no cycles, then stop.

Step 2 Choose any edge that belongs to a cycle, and delete the chosen edge.

Step 3 Repeat from Step 1.

Find a spanning tree for the complete graph K5.

Example 12

Solution
Start with K5. Then successively delete edges belonging to cycles, until the graph has no
cycles. An example is shown below. There are many other possibilities.

Summary 12F
� A tree is a connected graph that contains no cycles.
� A spanning tree of a connected graph G is a subgraph of G that is a tree with the same

set of vertices as G.
� Every connected graph has a spanning tree.

Exercise 12F

1Example 10 There are two trees with four vertices. Draw them.

2 a There are eight trees with five or fewer vertices. Draw them.
b There are six trees with six vertices. Draw them.
c By using the six trees with six vertices, draw the eleven trees with seven vertices.



12F 12F Trees 413

3Example 11 Show that each of the following trees is a bipartite graph by dividing the set of vertices
into two suitable disjoint subsets:

A B C D

F

E

a

A B
C

D

FE

Gb

A B C
D

G

E
F

c

4Example 12 By successively deleting edges belonging to cycles, find a spanning tree for each of the
following graphs:

a b c d

5 Usually a connected graph will have more than one spanning tree.

a Show that all the spanning trees of C3 are isomorphic.
b Draw the eight spanning trees of the graph shown on the right. Put

these spanning trees into two groups of isomorphic graphs.

6 Use a proof by contradiction to show that the addition of an edge to a tree cannot form
more than one cycle.

7 a Consider a tree with at least two vertices. Prove that at least two of its vertices have
degree 1. (Hint: Consider the endpoints of a path of maximal length.)

b Prove that every tree with n vertices has n − 1 edges. (Hint: Use part a and
mathematical induction.)

8 Recall that a path is a walk in a graph that does not visit the same vertex more than
once. Prove that, in a connected graph, there is a path between each pair of distinct
vertices. (Hint: Consider a walk between the vertices of minimal length.)

9 Use a proof by contradiction for each of the following:

a Consider a connected graph G such that there is only one path between any two
vertices. Prove that the graph G is a tree.

b Let G be a tree. Prove that there is only one path between any two vertices.
c Consider a connected graph G such that, if any edge is removed, then the resulting

graph is disconnected. Prove that the graph G is a tree.
d Let G be a tree. Prove that deleting any edge of G will disconnect the graph.
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10 a Give an example of a bipartite graph that is not a tree.
b Prove that every tree is a bipartite graph. (Hint: Start with a fixed vertex v. There is a

unique path from v to any other vertex u. Consider the length of this path.)

11 In a connected graph, there is a path between each pair of distinct vertices.

a Consider a connected graph that has a cycle. Prove that if an edge from the cycle is
deleted, then the resulting graph is still connected.

b Prove that every connected graph has a spanning tree. (Hint: Use part a.)

12G Euler’s formula and the Platonic solids
Planar graphs
The complete graph K4 shown below can be redrawn so that its edges do not cross. To do
this, we can simply stretch one of the diagonal edges so that it lies outside the square.

K4 with edges crossing Moving an edge K4 without edges crossing

A graph G is called a planar graph if it can be drawn in the plane so that its edges only
intersect at their endpoints. Any such drawing is called a plane drawing of G.

Not all graphs are planar. The complete graph K5 is not planar, as it
is not possible to draw this graph so that its edges do not cross. You
will prove this in Exercise 12G.

Theorem (Subgraphs of planar graphs)

Any subgraph of a planar graph is also planar.

Proof The original planar graph can be drawn so that the edges do not cross. As the edges of
a subgraph form a subset of the edges of the original graph, the edges of the subgraph
also do not cross.

This theorem seems rather trivial, but it is surprisingly useful. To show that a graph is not
planar, it is enough to find a subgraph that is not planar.
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Euler’s formula
Faces of a planar graph

If G is a planar graph, then any plane drawing of G
divides the plane into regions, called faces. The bounded
faces are those bordered by edges. The region that is not
bordered by edges is called the unbounded face.

For the graph shown on the right, the faces f1, f2, f3 and f4
are bounded, while the face f5 is unbounded.

f5

f1 f4
f2

f3

Euler discovered a remarkable result about planar graphs that relates the number of vertices,
edges and faces.

Theorem (Euler’s formula)

If G is a connected planar graph with v vertices, e edges and f faces, then

v − e + f = 2

Proof We start with a plane drawing of the graph G. Since G is connected, we can
successively delete edges belonging to cycles until we obtain a spanning tree of G.

f1

A connected planar graph A spanning tree of the graph

Each time we delete an edge, the number of faces decreases by 1, the number of
edges decreases by 1 and the number of vertices is unchanged. Therefore the value of
v − e + f is unchanged each time we delete an edge.

The spanning tree has v vertices. As it is a tree, it therefore has v − 1 edges. This tree
has just one face, the unbounded face f1. Therefore, the spanning tree satisfies

v − e + f = v − (v − 1) + 1 = 2

Moreover, since the value of v − e + f did not change as each edge was deleted, this
formula is also satisfied by the original graph G.

The connected planar graph on the right has four vertices,
seven edges and five faces. Therefore v = 4, e = 7 and f = 5.
We can verify that

v − e + f = 4 − 7 + 5

= 2

f5

f1
f2

f3
f4



416 Chapter 12: Graph theory

Verify Euler’s formula for the planar graph shown.

Example 13

Solution
There are 8 vertices, 13 edges and 7 faces (including the unbounded face).

Therefore v = 8, e = 13 and f = 7, giving

v − e + f = 8 − 13 + 7

= 2

The next theorem says that, if a planar graph has many edges, then it must also have many
vertices.

Theorem (Edges of planar graphs)

Let G be a connected simple graph with v vertices and e edges, where v ≥ 3. If the
graph G is planar, then e ≤ 3v − 6.

Proof Let f be the number of faces in a plane drawing of G. As the graph is simple, it has
no loops or multiple edges, so every face is bordered by at least three edges. (If the
face lies on both sides of an edge, then the edge is counted twice.)

Therefore

2e = sum of edges around each face (each edge is double counted)

≥ 3 f (each face has at least three edges)

= 3(2 − v + e) (by Euler’s formula)

= 6 − 3v + 3e

Overall, we find that 2e ≥ 6 − 3v + 3e. By rearranging the terms in this inequality, we
obtain e ≤ 3v − 6.

This theorem provides a simple test to show that a connected simple graph is not planar.

A connected simple graph has 6 vertices and 14 edges. Show that this graph is not planar.

Example 14

Solution
If the graph were planar, then e ≤ 3v − 6. However, for this graph we have

3v − 6 = 12 < 14 = e

Note: This theorem can be used to show that a graph is not planar, but it cannot be used to
show that a graph is planar.



12G Euler’s formula and the Platonic solids 417

Polyhedral graphs
A polyhedron is a three-dimensional solid formed from a collection of polygons joined along
their edges.

Every convex polyhedron can be drawn as a connected planar graph.

Here we show the process for obtaining a planar graph from the cube:

In general, start by resting a convex polyhedron on a flat surface and selecting one of the
upturned faces. Create an open box by removing this face. Then flatten the box by pulling
on the edges, leaving a network of points and edges on the flat plane. This network is a
planar graph of the polyhedron. Graphs so obtained are called polyhedral graphs. The face
removed in this process can be thought of as the unbounded face that surrounds the graph.

A pentagonal prism is shown on the right.

a Give a plane drawing of the graph that represents the
pentagonal prism.

b Verify Euler’s formula for this graph.

Example 15

Solution
a Here v = 10, e = 15 and f = 7. Thus

v − e + f = 10 − 15 + 7

= 2

b

The Platonic solids
A Platonic solid is a convex polyhedron such that:

� the polygonal faces are all congruent (identical in shape and size) and regular (all angles
are equal and all sides are equal), and

� the same number of faces meet at each vertex.
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There are five Platonic solids. These are shown below, along with their polyhedral graphs.

Tetrahedron Octahedron Icosahedron Cube Dodecahedron

We can use Euler’s formula to prove that there are no other Platonic solids. You should seek
out other proofs of this beautiful result.

Theorem

There are only five Platonic solids.

Proof Listed above are five Platonic solids. We will show that there are no more. Consider
a Platonic solid with m edges around each face and n edges meeting at each vertex.
Let v, e and f be the number of vertices, edges and faces in a planar representation of
this polyhedron. Then

m f = 2e = nv

Substituting in Euler’s formula gives

2e
n
− e +

2e
m

= 2

Hence
1
m

+
1
n

=
1
2

+
1
e

and therefore
1
m

+
1
n
>

1
2

Rearranging gives

2(m + n)
mn

> 1

2(m + n) > mn

mn − 2(m + n) + 4 < 4

(m − 2)(n − 2) < 4

Since both m and n must be at least 3, there are only five possibilities for (m, n). These
are (3, 3), (3, 4), (4, 3), (3, 5) and (5, 3). Hence there are at most five Platonic solids.
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Summary 12G
� A graph G is called a planar graph if it can be drawn in the plane so that its edges

only intersect at their endpoints.
� Euler’s formula If G is a connected planar graph with v vertices, e edges and f faces,

then v − e + f = 2.
� Let G be a connected simple graph with v vertices and e edges, where v ≥ 3. If the

graph G is planar, then e ≤ 3v − 6.
� Every convex polyhedron can be drawn as a connected planar graph.
� Euler’s formula can be used to show that there are only five Platonic solids.

Exercise 12GSkill-
sheet

1 Show that each of the following graphs is planar by redrawing it so that the edges do
not cross:

A B

DC

a A

D E F

B Cb

A B C

E F

Dc A

C D E

Bd

2Example 13 Verify Euler’s formula for each of the following planar graphs:

a b

c d

3 Use Euler’s formula to explain why there is no connected planar graph with the
following properties:

a the numbers of vertices, edges and faces are all odd
b the numbers of vertices, edges and faces are all multiples of 4.

4 The 3 × 4 grid graph is shown on the right.

a Verify Euler’s formula for the 3 × 4 grid graph.
b Verify Euler’s formula for the m × n grid graph.
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5 aExample 14 Draw a simple, connected and planar graph with 4 vertices and 6 edges.
b Show that there is no simple, connected and planar graph with 4 vertices and 7 edges.

6 a Draw a simple, connected and planar graph with 5 vertices and 9 edges.
b Show that there is no simple, connected and planar graph with 5 vertices and

10 edges.

7 a Verify Euler’s formula for the cube and the tetrahedron.
b A dodecahedron has 12 faces and 30 edges. How many vertices does it have?
c An icosahedron has 12 vertices and 20 faces. How many edges does it have?

8Example 15 A triangular prism is shown on the right.

a Draw the polyhedral graph that represents the triangular prism.
b Verify Euler’s formula for this graph.

9 By drawing a suitable diagram, show that the complete bipartite graph K2,n is planar for
all n ∈ N.

10 a Explain why the graph K3,3 is not planar.
Hint: First explain why the cycle graph C6 is a subgraph of K3,3. Draw this subgraph

as a planar graph. What goes wrong when you try to add the missing edges?
b Interpret this result in terms of the houses and utility outlets from Example 1.
c Why does part a imply that Km,n is not planar for all m, n ≥ 3?

Hint: Use the theorem about subgraphs of planar graphs.

11 a Prove by contradiction that K5 is not planar.
Hint: Use the test e ≤ 3v − 6.

b Why does part a imply that Kn is not planar for all n ≥ 5?
Hint: Use the theorem about subgraphs of planar graphs.

12 A polyhedron has v vertices. Meeting at each vertex there are three square faces and one
triangular face.

a Explain why the total number of square faces is
3v
4

.

b Explain why the total number of triangular faces is
v
3

.

c Explain why the total number of edges of this polyhedron is 2v.
d Hence, using Euler’s formula, find the number of vertices, edges and faces.
e A traditional soccer ball is a polyhedron called a truncated icosahedron. Meeting

at each of the v vertices there are two hexagonal faces and one pentagonal face.
Determine the number of vertices, edges and faces of a truncated icosahedron.
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12H Appendix: When every vertex has even degree
In Section 12B, we stated the condition for a connected graph to have an Euler circuit.

Theorem (Euler circuits)

A connected graph has an Euler circuit if and only if the degree of every vertex is even.

In Section 12B we proved only half of this result. We are still to prove that if the degree of
every vertex is even, then the connected graph has an Euler circuit. Our proof of this result
requires the following theorem.

Theorem
Let G be a graph in which every vertex has even degree. Then G can be split into cycles,
no two of which have an edge in common.

Proof Begin at any non-isolated vertex and start ‘moving along edges’, without using the
same edge twice. Every vertex has even degree, so if we arrive at a new vertex along
an edge, there must be an unused edge by which we can leave the vertex. There are
finitely many vertices, so at some stage we will return to a vertex that we have visited
before. Therefore we have a cycle, A1. Remove the edges of A1 from the graph.

Removing this cycle eliminates edges in pairs at each vertex. Therefore every vertex
of the new graph has even degree. Repeat this process until there are no edges left. In
this way, we can split the graph into cycles A1, A2, . . . , An with no edges in common.

We can now complete the proof of the theorem on Euler circuits.

Theorem
A connected graph has an Euler circuit if every vertex has even degree.

Proof Let G be a connected graph such that every vertex has even degree. By the previous
theorem, the graph G can be split into cycles, no two of which have an edge in
common. We want to combine these cycles to create an Euler circuit.

We start going around a cycle, A1, until we arrive at the vertex of another cycle, A2.
We go all the way around cycle A2 and then go around the rest of A1 to return to our
original starting point. We have created a circuit from cycles A1 and A2.

If we have not yet used all the edges, then we go around our circuit until we reach
another cycle, A3. (This works as G is connected.) We create a new circuit from the
previous circuit and the cycle A3. This process is repeated until we have a circuit that
uses all the edges of the graph.

Notice that the proofs of these two theorems give an algorithm for finding an Euler circuit in
a connected graph if all its vertices have even degree. The first proof describes a method for
splitting the graph into cycles, and then the second proof describes a method for combining
these cycles into an Euler circuit.
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Exercise 12H

1 Each vertex of the graph G shown below has even degree. We have shown one way to
split this graph into cycles with no edges in common.

A B C

F

E

D

F F

B C

E

A D

E

Graph G A cycle splitting for G

a Find an Euler circuit in G by using the given cycle splitting.
b There are two other ways to split the graph G into cycles with no edges in common.

Draw them.

2 Each vertex of the graph H shown below has even degree. We have shown one way to
split this graph into cycles with no edges in common.

A C

B

A

B

C
A C

B

Graph H A cycle splitting for H

a Find an Euler circuit in H by using the given cycle splitting.
b There are four other ways to split the graph H into cycles with no edges in common.

Draw them.



R
eview

Chapter 12 review 423

Assign-
ment

Nrich

Chapter summary

� A graph consists of a finite non-empty set of vertices, a finite set of edges and an
edge-endpoint function that maps each edge to a set of either one or two vertices.

� A graph can be represented by a diagram or an adjacency matrix.

M N

LK 

K L M N

K 0 2 1 1
L 2 0 0 1
M 1 0 0 1
N 1 1 1 1


� The degree of a vertex v is the number of edges that have v as an endpoint, with each edge

that is a loop counted twice.
� The sum of the degrees of all the vertices of a graph is equal to twice the number of edges.
� Two graphs are isomorphic if one can be obtained from the other by relabelling vertices.
� A subgraph is a graph whose vertices and edges are subsets of another graph.

Types of graphs
simple graph a graph with no loops or multiple edges

connected graph there is a walk between each pair of distinct vertices

complete graph a simple graph with each pair of distinct vertices joined by an edge

bipartite graph the vertex set can be divided into two disjoint subsets A and B such
that each edge joins a vertex in A and a vertex in B

tree a connected graph with no cycles

planar graph a graph that can be drawn in the plane so that its edges do not cross

Notation for graphs
Cn the cycle graph with n vertices

Kn the complete graph with n vertices

Km,n the complete bipartite graph where A has m vertices and B has n vertices

Walks in graphs
� An Euler circuit is a walk that starts and ends at the same vertex and uses every edge of

the graph exactly once. A connected graph has an Euler circuit if and only if every vertex
has even degree.

� A Hamiltonian cycle is a walk that starts and ends at the same vertex and visits every
other vertex exactly once (without repeating any edges).

� If A is the adjacency matrix of a graph G, then the number of walks of length n from
vertex vi to vertex v j is equal to the entry of An in row i and column j.

Euler’s formula
� Let G be a connected planar graph, and let v, e and f denote the number of vertices, edges

and faces in a plane drawing of G. Then v − e + f = 2.



R
ev

ie
w

424 Chapter 12: Graph theory

Technology-free questions

1 a Six people are seated at a round table. Draw a graph to represent each of the
following situations:

i Each person shakes hands with the two people sitting on either side.
ii Each person shakes hands with the person sitting opposite.
iii Each person shakes hands with exactly three other people.

b Explain why it is not possible to draw a graph representing a group of seven people
such that each person shakes hands with exactly three other people.

2 a Write down the definition of a simple graph.
b Draw all non-isomorphic simple graphs with four vertices and three edges.
c Draw all non-isomorphic simple graphs with four vertices and four edges.
d Prove that there is no simple graph with four vertices and seven edges.

3 a Draw the complete graph K6 with its vertices labelled as A, B, C, D, E, F.
b Explain why there are 24 different Hamiltonian paths from vertex A to vertex B.
c The subgraph of K6 with the three vertices A, B and C and the three edges {A, B},
{B, C} and {C, A} is called a triangle graph. Show this triangle graph on your
drawing of K6 by using a different colour.

d How many triangle subgraphs does K6 have?

4 The cycle graph C4 is shown on the right.

a How many walks of length 2 are there from A to C?
b How many walks of length 3 are there from A to C?
c Write down the adjacency matrix A of C4.

A D

B C

d Without performing a calculation, explain why the entries of A99 along the main
diagonal (top-left to bottom-right) are all zero.

5 a Draw the complete bipartite graph K2,3.
b Draw the complement of K2,3.
c Show that the complement of Km,n has

m(m − 1) + n(n − 1)
2

edges.

6 a Consider a connected planar graph that has twice as many edges as it has vertices
and one more edge than it has faces. Determine the number of vertices, edges and
faces of such a graph.

b Draw two different (i.e. non-isomorphic) graphs that satisfy the description in part a.

7 a Show that the graph on the right is planar by drawing it in the plane
without any edges crossing.

b Verify Euler’s formula for this graph.

8 a Draw two different connected planar graphs that have 4 vertices, 6 edges and 4 faces.
b Give three reasons why your two graphs cannot be isomorphic.
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Multiple-choice questions

1 Which one of the following statements is false?

A The total degree of a graph is equal to twice the number of edges of the graph.
B A graph must have an even number of vertices with odd degree.
C A graph can have an odd number of vertices with odd degree.
D The total degree of a graph is always even.
E A graph can have an even number of vertices with even degree.

2 The adjacency matrix of a graph G is shown on the right.
The graph G does not have an Euler circuit. Which one of
the following edges should be added to G so that the new
graph has an Euler circuit?

A {v1, v2} B {v1, v3} C {v1, v4}

D {v2, v3} E {v2, v4}



v1 v2 v3 v4

v1 0 1 2 1
v2 1 0 2 0
v3 2 2 0 1
v4 1 0 1 0


3 The graph on the right has an Euler trail that starts and ends at

which one of the following pairs of vertices?

A v1 and v2 B v1 and v3 C v1 and v4

D v2 and v3 E v2 and v4

v1 v2 v3 v4

4 For which one of the following adjacency matrices does the corresponding graph not
have an Euler circuit?

0 1 1
1 0 1
1 1 0

A


0 2 2
2 0 2
2 2 0

B


0 3 3
3 0 1
3 1 0

C


0 3 1
3 0 1
1 1 0

D


0 2 1
2 0 3
1 3 0

E

5 The complement of the graph shown on the right is

A the complete graph K3 B the complete graph K6

C the cycle graph C3 D the cycle graph C6

E the complete bipartite graph K3,3

6 The graph G shown on the right does not have an Euler circuit.
Which one of the following edges should be added to G so that the
new graph has an Euler circuit?

A {A, D} B {B, E} C {C, F} D {A, F} E {C, D}

A B C

D E F

7 Which one of the following graphs has an Euler circuit?

the complete graph K4A the complete graph K5B
the complete graph K6C the complete bipartite graph K1,3D
the complete bipartite graph K3,3E

8 The complete bipartite graph Km,n has a Hamiltonian cycle if and only if

m = nA m ≥ nB m ≤ nC m < nD m > nE
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9 For the graph shown on the right, the number of walks of length 6 from
vertex A to vertex A is

A 90 B 91 C 92 D 93 E 94 A B

D C

10 A simple graph G has 7 vertices and 11 edges. Its complement G has

10 edgesA 11 edgesB 12 edgesC 22 edgesD 42 edgesE

11 Which one of the following complete bipartite graphs has 10 vertices and 24 edges?

K3,8A K2,8B K2,12C K4,6D K5,5E

12 Which one of the following graphs is a tree?

A B C D E

13 Which one of the following statements is false?

Every tree is a connected graph.A No tree has a cycle.B
A tree has more edges than vertices.C Every tree is a bipartite graph.D
Adding an edge to a tree will always create a cycle.E

14 A connected simple graph G has 6 vertices and 13 edges. We can find a spanning tree
for G by deleting edges belonging to cycles. How many edges will be deleted?

5A 6B 7C 8D 9E

Extended-response questions

1 a The complete graph K5 is shown on the right. Write down
the adjacency matrix A of this graph.

From Section 12D, we know that the entries of the matrix An

give the number of walks of length n in the graph.
D C

B

A

E

b The matrix A3 is given on the right.
Without referring to this matrix, explain
why there are 12 walks of length 3 in the
graph K5 that start and end at vertex A.

The trace of a square matrix A, denoted
by tr(A), is the sum of the entries of A on the
main diagonal (top-left to bottom-right).

A3 =



A B C D E

A 12 13 13 13 13
B 13 12 13 13 13
C 13 13 12 13 13
D 13 13 13 12 13
E 13 13 13 13 12


c If A is the adjacency matrix of any simple graph, explain why:

i tr(A) = 0
ii tr(A2) = 2 × the number of edges of the graph
iii tr(A3) = 6 × the number of triangles of the graph

d Let A be the adjacency matrix of any simple graph G. Prove that if the trace of any
odd power of A is non-zero, then the graph G is not bipartite.
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2 Samira has four cubes with faces coloured red, green, blue or
yellow. Cube 1 has three green faces and one each of red, blue
and yellow.

� The blue face is opposite the red face.
� Two of the green faces are opposite one another.
� The other green face is opposite the yellow face.

This information is illustrated by the coloured net on the right.
We can also summarise the information in the graph with four
vertices R, G, B and Y shown on the right.

a Cube 2 has a green face opposite a blue face, another green
face opposite a red face and a second red face opposite a
yellow face. Draw a graph to represent this information.

b Cube 3 is represented by the graph on the right, which
indicates its opposite faces. Draw an example of a coloured
net for this cube. (Note: There is more than one possibility.)

c Cube 4 has one green face, two yellow faces, one blue face
and two red faces. The green face is opposite a yellow face,
and the blue face is opposite a red face. Fill in the missing
information and then draw a graph to represent the opposite
faces of cube 4.

B R

G Y

Cube 1

B R

G Y

Cube 3

Samira wants to stack her four cubes into a tower as shown on the right,
in such a way that all four colours are used on each of the four vertical
faces of the tower. We can use a graph to help with this.

First we combine the four graphs representing the opposite faces of the
four cubes into a single graph. Each edge of this graph is labelled 1, 2, 3
or 4 to indicate which cube it comes from.

1

2

3

4

d The labelled graph on the right shows cubes 1 and 3
combined together. Copy and complete this graph so
that it represents all four cubes.

From the graph representing all four cubes, we will find
a subgraph that represents the front and back faces of the
tower. Each face of the tower uses each colour once. This
means that the graph representing the front and back faces
must be a subgraph of the answer to part d with four edges
labelled 1, 2, 3 and 4 and four vertices of degree 2.

B R

G Y1

1

1 3

3

3

Cubes 1 and 3

e If we include the loop labelled 1 on vertex G, it is not possible to form a subgraph
with four edges labelled 1, 2, 3 and 4 and four vertices of degree 2. Explain why.

f Suppose that we include the edge labelled 1 that joins B and R. Draw a subgraph that
has the required properties.

g Using part f, show the two possible colourings of the front face of the tower.

Challenge: Can you find the colourings of the two side faces of the tower?
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3 Consider the graph G with the following adjacency matrix:

A =



A B C D E F

A 0 1 0 0 1 1
B 1 0 1 0 1 0
C 0 1 0 1 0 0
D 0 0 1 0 1 1
E 1 1 0 1 0 0
F 1 0 0 1 0 0


a Show that G is a planar graph by drawing it without any crossings.
b Verify Euler’s formula for this graph.
c Explain why this graph cannot have a Hamiltonian cycle that includes the

edge {A, B}.

Now consider the following algorithm for colouring the vertices of a connected graph:

Step 1 Choose any vertex. Colour this vertex red.

Step 2 Identify all the vertices that are not already coloured and that are adjacent to a
red vertex. Colour each of these vertices green.

Step 3 Identify all the vertices that are not already coloured and that are adjacent to a
green vertex. Colour each of these vertices red.

Step 4 Repeat from Step 2 while there are still vertices that are not coloured.

d Apply this algorithm to the graph G, starting with vertex E.
e Using your answer to part d, explain why the graph G is not bipartite.
f By removing one edge from the graph G, it is possible to make a bipartite graph.

i Identify which edge needs to be removed.
ii Write down the two disjoint sets of vertices that show that the new graph is

bipartite.
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13A Technology-free questions

1 Let A =

1 4
2 −1

, B =
[
0 −1 −2

]
, C =

41
, D =

[
−2 4

]
and E =


−5

5
0

.
a State whether or not each of the following products exists: AB, AC, CD, BE.
b Evaluate DA and A−1.

2 If A =

1 −2
2 4

 and B =

−2 3
1 5

, find:

(A + B)(A − B)a A2 − B2b

3 If the matrix
2 4
8 x

 is non-invertible, find the value of x.

4 Find all possible matrices A which satisfy the equation
 3 −1
−6 2

 A =

 5
−10

.
5 If A =

−1 −2 3
−5 −1 2

, B =


2 −4
−1 −6
−3 −8

 and C =

−1 2
3 −4

, evaluate AB and C−1.

6 Suppose that A, B, C and X are n × n matrices and that both A and B are invertible.
Denote the n × n zero matrix by O and the n × n identity matrix by I. Solve each of
the following matrix equations for X:

B + XA = Ca B(X + A) = Cb AX + BA = Ac
X + A = Od 2X − B = Oe AX + I = Af

7 Express each of the following as a single matrix: 3
−2

 − 4
12

a
 2 3
−1 2

 −1
2

b
 2 3
−1 2

 −1 4
2 4

 +

0 4
2 0

c
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8 Given that A =

 w 2w + 5
−1 w + 1

 and det(A) = 15, find the possible values of w.

9 Determine the value of x if[
2 1

] x
5

 =
[
x 2

] 14


10 Determine the values of a and b if a b
−b a

 2 0
0 2

 =

0 −2
2 0


11 Assume that A and B are invertible n × n matrices. Prove that (AB)−1 = B−1A−1.

12 Let A =

1 −2
0 a

 and B =

1 4
b 2

.
Find AB.a If B = A−1, determine the values of a and b.b

13 Find all triples of real numbers (a, b, c) such that AB = O, where

A =

1 1
a 1

 , B =

a b
c 0

 and O =

0 0
0 0


14 In a group of five people, A, B, C, D and E, the following pairs of people are acquainted

with each other:

A and C� A and D� B and C� C and D� C and E�

a Draw a graph G to represent this situation.
b Construct the adjacency matrix of G.

15 A tree has six vertices, with exactly three vertices of degree 1. Determine the number of
vertices of degree 2 and the number of vertices of degree 3.

16 Draw three non-isomorphic trees such that each tree has seven vertices, with exactly
three vertices of degree 1.

17 Let G be a graph such that every vertex has degree 4 and there are exactly 12 edges.
How many vertices does the graph G have?

18 a Construct the adjacency matrix for the complete graph K4.
b Determine the number of walks of length 3 between two different vertices of K4.

19 Let n be a natural number with n ≥ 3.

a Prove that the complete graph Kn has a Hamiltonian cycle.
b Determine the number of Hamiltonian cycles in Kn.

20 Let G1 and G2 be two planar graphs each with v vertices, e edges and f faces. Must
these two graphs be isomorphic?

21 There are nine line segments drawn in a plane. Is it possible that each line segment
intersects with exactly three others?
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22 Give a plane drawing of the complete bipartite graph K2,3.

23 A connected planar graph G has six vertices, each of degree 4. How many faces are
there in a plane drawing of G?

24 Let G be a simple, connected and planar graph such that the degree of every vertex is at
least 5. Show that the graph G must have at least 12 vertices.

25 a Draw the graph C5 with its vertices in a circle, and label the vertices clockwise
as v1, v2, . . . , v5. Write down a Hamiltonian cycle in C5 starting at v1.

b Draw the graph C6 with its vertices in a circle, and label the vertices clockwise
as v1, v2, . . . , v6. Write down a Hamiltonian cycle in C6 starting at v1.

c Prove that the graph Cn has a Hamiltonian cycle, for all n ≥ 5.

26 a Draw a simple, connected and planar graph with 4 vertices and 2 × 4 − 4 = 4 faces.
b Draw a simple, connected and planar graph with 5 vertices and 2 × 5 − 4 = 6 faces.
c Now let G be a simple, connected and planar graph with n vertices, where n ≥ 3.

i Show that the graph G has at most 2n − 4 faces.
ii Show that it is possible to add edges to G so as to obtain a planar simple graph

with exactly 2n − 4 faces.

27 Consider a polyhedral graph such that every vertex has degree 3 and every face has
exactly five edges. Determine the number of vertices, edges and faces of this graph.

28 a Draw the complete bipartite graph K3,4.
b Explain why this graph does not have an Euler trail.
c What is the smallest number of edges that can be added to the graph K3,4 so that the

resulting graph has an Euler trail?
d What is the smallest number of edges that can be added to the graph K3,4 so that the

resulting graph has an Euler circuit?

13B Multiple-choice questions
1 If P2 = 4I, then P−1 equals

1
4

PA
1
2

PB
1
2

IC 2PD 4PE

2 If R =
[
5 3 1

]
and S =


0
−1

2

, then RS is

A undefined B
[
−1

]
C


0 0 0
−5 −3 −1
10 6 2

 D
[
0 −3 2

]
E


0
−3

2
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3 If A =

 9 8
−11 5

, then det(A) equals

−43A −
1
43

B
1

333
C 17D 133E

4 If A =


1
2
5

 and B =
[
−2 6 4

]
, then BA has size

1 × 1A 3 × 1B 1 × 3C 3 × 3D 3 × 2E

5 Let A =

5 2
2 1

, B =

2 −1
6 7

 and C =

5 4
8 9

. If AX + B = C, then X equals

1
20

−2 19
−2 6

A
−1 1

4 0

B
−2 19
−2 6

C

 3 −10
−4 10

D
1

20

1 3
4 5

E

6 Let P =

2 −1
3 2

, Q =

4 2
6 5

 and R =

 2 1
−3 2

.
If X = PQR, then the number of zero entries of X is

0A 1B 2C 3D 4E

7 If X =

 3 5
−1 −2

, then X−1 is

 2 5
−1 −3

A
−2 −5

1 3

B


1
3

1
5

−1 −
1
2

C
−3 −1

5 2

D
 3 −1
−5 −2

E

8 The determinant of the matrix
4 6
2 4

 is

16A 4B −16C
1
4

D −4E

9 If S =

5 7
2 2

, then S−1 is

−

5 7
2 2

A
 5 −7
−2 5

B −
1
4

−2 7
2 −5

C

1
4

−2 7
2 −5

D
1
4

−2 −7
−2 −5

E
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10 A connected planar graph has 8 vertices and 13 edges. The number of faces is

5A 6B 7C 8D 10E

11 A tree with 12 vertices has

8 edgesA 9 edgesB 10 edgesC 11 edgesD 12 edgesE

12 The graph G shown on the right does not have an Euler circuit.
However, by adding one or more edges to G we can produce a
new graph that does have an Euler circuit. What is the minimum
number of edges that we need to add?

A 1 B 2 C 3
D 4 E 5

v1 v2

v3v4

13 A connected planar graph G has 17 faces (including the unbounded face). Half the
vertices of G have degree 4, and half have degree 5. How many vertices does G have?

6A 12B 24C 36D 48E

14 For the graph shown, the number of walks of length 3 from
vertex A to vertex B is

A 0 B 2 C 4
D 6 E 8

A

B C

15 A simple graph G has 10 vertices and 24 edges. Its complement G has

14 edgesA 17 edgesB 30 edgesC 21 edgesD 45 edgesE

16 For the graph shown opposite, which of the following is a
Hamiltonian cycle?

A T , P, S , V , R, U, Q, T B T , Q, R, T , P, S , V , U, T

C R, V , S , P, T , Q, R, U D U, V , S , P, T , Q, R

E U, V , S , P, T , Q, R, U
S

P T Q

RV

U

17 The number of edges of the graph Cn is
n2 − 3n

2
A nB

n2 + n
2

C
n2 + 3n

2
D n2E

18 The adjacency matrix of a graph with six vertices is shown on
the right. This is the adjacency matrix of the graph

A K6 B C6 C K3,3

D C6 E K4,2



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
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19 The adjacency matrix of the graph C5 is shown on the right.
In this graph, the number of walks of length 4 from a given
vertex back to itself is

A 2 B 3 C 4 D 5 E 6



0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0



13C Extended-response questions

1 Let A =

a b
c d

 with b , 0 and c , 0.

a i Find A2. ii Find 3A.
b If A2 = 3A − I, show that:

i a + d = 3 ii det(A) = 1
c Assume that A has the properties:

� a + d = 3 � det(A) = 1

Show that A2 = 3A − I.

2 The trace of a square matrix A is defined to be the sum of the entries along the main
diagonal of A (from top-left to bottom-right) and is denoted by tr(A).

For example, if A =

6 −3
2 2

, then tr(A) = 6 + 2 = 8.

a Prove each of the following for all 2 × 2 matrices X and Y:

i tr(X + Y) = tr(X) + tr(Y)
ii tr(−X) = −tr(X)
iii tr(XY) = tr(YX)

b Use the results of a to show that XY − YX , I for all 2 × 2 matrices X and Y.

3 A square matrix A is said to be idempotent if A2 = A.

a Show that each of the following 2 × 2 matrices is idempotent:

i
−3 −6

2 4

 ii
1 5
0 0

 iii
0 3
0 1

 iv
1
2

1 − cos θ sin θ
sin θ 1 + cos θ


b Show that each of the following 3 × 3 matrices is idempotent:

i
1
2


1 2 1
1 2 1
−1 −2 −1

 ii
1
6


5 −1 2
−1 5 2

2 2 2


c Show that a product of two idempotent matrices is not necessarily idempotent.
d Show that for every idempotent matrix A, either det(A) = 0 or det(A) = 1.

Note: You can use the result that det(AB) = det(A) det(B).
e Show that if an idempotent matrix A has an inverse, then A = I.
f Show that for every idempotent matrix A, the matrix I − A is also idempotent.
g Describe all 2 × 2 idempotent matrices.
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4 A square matrix A is said to be involutory if A2 = I, that is, if it is its own inverse.

a Show that each of the following matrices is involutory:

i
1 5
0 −1

 ii
−3 −2

4 3

 iii


0 2 1
1 1 1
−1 −2 −2


b Show that for every involutory matrix A, either det(A) = 1 or det(A) = −1.
c Describe all 2 × 2 involutory matrices.
d Let A be a square matrix. Prove that A is involutory if and only if the matrix 1

2 (A + I)
is idempotent. (See Question 3 for the definition of idempotent.)

5 Let A =

a b
c d

. Consider the matrix A − mI, where I is the 2 × 2 identity matrix.

a Find det(A − mI), writing your answer as a quadratic polynomial in m.
b If m = λ1 and m = λ2 are the solutions of the quadratic equation det(A − mI) = 0,

show that λ1 + λ2 = a + d and λ1λ2 = det(A).
c Suppose that a + b = c + d = 1. Show that m = 1 is a solution of the quadratic

equation, and find the other solution in terms of a and c.

d i Suppose that A =

−3 4
6 −5

. Solve the equation det(A − mI) = 0 for m.

ii The equation
−3 4

6 −5

 x
y

 =

x
y

 has infinitely many solutions. Describe them.

iii If m = 1 and m = λ2 are the two solutions from part i, describe the solutions of

the equation
−3 4

6 −5

 x
y

 = λ2

x
y

.
e Now consider examples of matrices A =

a b
c d

 with a + b = c + d = 6.

More generally, consider examples with a + b = c + d = k, where k is an integer.

6 a Can you draw a graph with exactly five vertices and vertex degrees 1, 2, 3, 4 and 5?
Give reasons.

b A connected graph has exactly six vertices and vertex degrees 2, 2, 2, 2, 4 and 6.

i Explain why the graph is not simple.
ii Determine if the graph has an Euler circuit. Give reasons.

c A connected simple graph has exactly six vertices.

i State the minimum possible value of the sum of the vertex degrees of the graph.
ii If the graph has an Euler circuit, what are the possible values of the degree of a

vertex of this graph?

d A connected simple graph with six vertices and 10 edges has an Euler circuit.

i What can you deduce about the vertex degrees of this graph?
ii Draw a graph that satisfies these properties.
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7 For the planar graph shown on the right, each of the eight
faces is triangular (including the unbounded face). Given
any planar graph G, we let v, e and f denote the number of
vertices, edges and faces in a plane drawing of G.

a For any planar graph with only triangular faces, explain
why 2e = 3 f .

b Hence, prove that if a connected planar graph has only
triangular faces, then e = 3v − 6.

You will now try to prove that the converse of the result in part b is true for simple
graphs. Consider any simple, connected and planar graph.

c Show that if e = 3v − 6, then 2e = 3 f .
d Hence, prove that if e = 3v − 6, then the graph has only triangular faces.
e Deduce that a convex polyhedron with 12 vertices and 20 faces is composed entirely

of triangles.

13D Investigations
1 Fibonacci-style sequences

The Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . is defined by the recurrence relation

fn+2 = fn + fn+1 and f1 = f2 = 1

a Let Q =

1 1
1 0

.
Find Q2, Q3 and Q4. Deduce the entries of Qn, for n ≥ 2. Prove your claim using
mathematical induction.

b Find det(Q), det(Q2), det(Q3) and det(Q4). Use these to deduce the result

fn+1 fn−1 − ( fn)2 = (−1)n

Note: You can use the result that det(AB) = det(A) det(B).
c From the equation Qn+1Qn = Q2n+1, prove that ( fn+1)2 + ( fn)2 = f2n+1.
d From the equation QmQn−1 = Qm+n−1, prove that fm+n = fm+1 fn + fm fn−1.
e Solve the equation det(Q − xI) = 0 for x.
f Now start with any two positive integers and generate a sequence of 10 numbers

by adding in the ‘Fibonacci manner’. For example: 5, 1, 6, 7, 13, 20, 33, 53, 86, 139.
Find the relationship between the sum of these numbers and the 7th number. State
the result for a sequence of 10 terms generated in this way and prove your result.

g The sequence of Lucas numbers is 2, 1, 3, 4, 7, 11, 18, . . . . Investigate identities
satisfied by the Lucas numbers and the relationship between Lucas numbers and
Fibonacci numbers.



R
evision

13D Investigations 437

2 Transition matrices
Olivia drinks either green tea or jasmine tea every day. If she drinks green tea one day,
then she drinks jasmine tea the next day with probability 2

5 . If she drinks jasmine tea
one day, she drinks green tea the next day with probability 3

4 .

a Olivia drinks green tea on Monday (day 1).

Let Gn be the event ‘Green tea on day n’.
Let Jn be the event ‘Jasmine tea on day n’.

Using the tree diagram, find Pr(G3). That is,
find the probability that Olivia will drink
green tea on Wednesday.

2
5

3
5

3
5

1
4

2
5

3
4

G2 | G1

J2 | G1

G3 | G2

J3 | J2

J3 | G2

G3 | J2

WedTues

We can represent the probabilities in this example using a transition matrix, T, and a
sequence of state vectors, S1, S2, S3, . . . , defined as follows:

T =

Pr(Gn |Gn−1) Pr(Gn | Jn−1)

Pr(Jn |Gn−1) Pr(Jn | Jn−1)

 =

 3
5

3
4

2
5

1
4

 and Sn =

Pr(Gn)

Pr(Jn)


b i Explain why S1 =

10
.

ii Explain why Sn = TSn−1 for all n ≥ 2.
c Use part b to find S2 and S3. Check against your answer to part a.
d Explain why Sn = Tn−1S1 for all n ≥ 2.
e Use your calculator to find S20. Hence find the probability that Olivia will drink

green tea on day 20.
f Use your calculator to find S200. Hence find the probability that Olivia will drink

green tea on day 200.

g Find S =

ab
 such that a + b = 1 and S = TS. Compare with your answer for part f.

Now consider another example. A computer system operates in two different modes.
Every hour, it remains in the same mode or switches to the other mode, according to the
following transition matrix:

T =

 2
5

3
5

3
5

2
5


h If the system is in mode 1 at 5:30 p.m., what is the probability that it will be in

mode 1 at 8:30 p.m. on the same day?
i Construct similar examples based on switching between two alternatives. Investigate

what happens to the state vector Sn as n gets larger and larger.
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3 Graph colourings
How many different colours are needed to colour the regions on a map in such a way
that no two adjacent regions have the same colour? The figure below shows a typical
arrangement of coloured regions. Each region can be represented by a vertex. If
two regions share a border, then we represent this by drawing an edge between their
corresponding vertices. As the edges cannot cross each other, we obtain a planar graph.

A graph is said to be n-colourable if it is possible to assign one of n colours to each
vertex in such a way that no two adjacent vertices have the same colour.

a Explain why the graph shown above is not 3-colourable.

b Some planar graphs require fewer than four colours.
Explain why every m × n grid graph is 2-colourable.

c What feature of the graph shown on the right means that it is
not 2-colourable? Show that it is 3-colourable.

d Show that if a graph is 2-colourable, then every cycle in the graph has even length.

The four colour theorem asserts that every planar simple graph is 4-colourable (and
therefore so is every map, no matter how large or complex). This theorem is notoriously
difficult to prove. Instead, your aim is to prove a simpler result: Every planar simple
graph is 6-colourable.

e In Section 12G, we proved that every simple, connected and planar graph with
v vertices (v ≥ 3) and e edges satisfies the inequality e ≤ 3v − 6. Using this fact,
prove that every planar simple graph has at least one vertex of degree less than or
equal to 5.
Hint: Assume that the degree of every vertex is greater than or equal to 6, and then

use the handshaking lemma.
f Using mathematical induction, prove that every planar simple graph with n vertices

is 6-colourable, for all n ∈ N.
Hint: At the inductive step, delete a vertex of degree less than or equal to 5.
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Simulation, sampling and
sampling distributions

Objectives
I To introduce the mean, variance and standard deviation of a random variable.

I To investigate the distribution of a sum of independent random variables, and the
distribution of a multiple of a random variable.

I To understand the di�erence between a population and a sample.

I To understand random samples and how they may be obtained.

I To define population parameters and sample statistics.

I To introduce the concept of sample statistics as random variables which can be
described by sampling distributions.

I To investigate the sampling distribution of the sample mean.

I To investigate the e�ect of sample size on a sampling distribution.

I To use simulation to generate random samples.

I To introduce the concept of the sample mean as an estimate of the population mean.

Statistics is concerned with the collection and analysis of data. For example, you may be
interested in the amount of pocket money that Year 11 students receive each week. You could
collect this information from all the Year 11 students at your school, and then analyse the
data using statistical techniques such as histograms, dotplots, means and standard deviations.

Probability is concerned with the likelihood that a particular outcome may occur, and
assigning a numerical value (between 0 and 1) to that likelihood. For example, if an urn
contains six black balls and five white balls, then you could determine the probability of
obtaining three black balls in a sample of five balls drawn from the urn.

In this chapter we link these two topics in a new area of study called statistical inference,
which you will study further in Year 12.
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14A Expected value and variance for
discrete random variables
In this section, we start by reviewing discrete random variables from Mathematical Methods
Units 1 & 2. We then introduce expected value and variance for discrete random variables.

Random variables
Consider the sample space obtained when a coin is tossed three times:

ε = {HHH, HHT , HTH, THH, HTT , THT , TTH, TTT}

Suppose we are particularly interested in the number of heads associated with each outcome.
We let X represent the number of heads observed when a coin is tossed three times. Then
each outcome in the sample space can be associated with a value of X. The possible values
of X are 0, 1, 2 and 3. Since the actual value that X will take is the result of a random
experiment, we call X a random variable.

A random variable is a function that assigns a number to each outcome in the sample
space ε.

A random variable can be discrete or continuous:

� A discrete random variable is one which can take only a countable number of distinct
values, such as 0, 1, 2, 3, 4. Discrete random variables are usually (but not necessarily)
generated by counting. The number of children in a family, the number of brown eggs in a
carton of a dozen eggs, and the number times we roll a die before we observe a ‘six’ are
all examples of discrete random variables.

� A continuous random variable is one which can take any value in an interval of the real
number line, and is usually (but not always) generated by measuring. Height, weight, and
the time taken to complete a puzzle are all examples of continuous random variables.

Discrete probability distributions
Because the values of a random variable are associated with outcomes in the sample space,
we can determine the probability of each value of the random variable occurring.

Let’s look again at the results obtained when a coin is tossed three times. Assuming that the
coin is fair, we can summarise the probability distribution associated with the number of
heads, X, observed when a fair coin is tossed three times in a table as follows.

x 0 1 2 3

Pr(X = x)
1
8

3
8

3
8

1
8

Note that, since every possible value of the random variable is included, the probabilities
must add to 1.
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The probability distribution of a discrete random variable X is a function

p(x) = Pr(X = x)

that assigns a probability to each value of X. It can be represented by a rule, a table or a
graph, and must give a probability p(x) for every value x that X can take.

For any discrete probability distribution, the following two conditions must hold:

1 Each value of p(x) belongs to the interval [0, 1]. That is, 0 ≤ p(x) ≤ 1 for all x.
2 The sum of all the values of p(x) is 1.

Consider the probability distribution:

x 1 2 3 4 5 6

Pr(X = x) 0.2 0.3 0.1 0.2 0.15 0.05

Use the table to find:

a Pr(X = 3) b Pr(X < 3) c Pr(X ≥ 4)

Example 1

Solution Explanation
a Pr(X = 3) = 0.1

b Pr(X < 3) = 0.2 + 0.3

= 0.5

If X is less than 3, then from the table we
see that X can take the value 1 or 2.

c Pr(X ≥ 4) = 0.2 + 0.15 + 0.05

= 0.4

If X is greater than or equal to 4, then X
can take the value 4, 5 or 6.

Consider the function:

x 1 2 3 4 5

Pr(X = x) 2c 3c 4c 5c 6c

For what value of c is this a probability distribution?

Example 2

Solution Explanation

2c + 3c + 4c + 5c + 6c = 1

20c = 1

c =
1
20

For a probability distribution, we require
that the probabilities add to 1.
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Measures of centre and spread
From your studies of statistics, you may already be familiar with the mean as a measure of
centre and with the variance and the standard deviation as measures of spread. When they
are calculated from a set of data, they are called sample statistics. It is also possible to use
the probability distribution to determine theoretically the values of the mean, variance and
standard deviation. When they are calculated from the probability distribution, they are called
population parameters.

A measure of centre: expected value
When the mean of a random variable is determined from the probability distribution, it is
generally called the expected value of the random variable.

Expected value

The expected value of a discrete random variable X is determined by summing the
products of each value of X and the probability that X takes that value.

We can write this in symbols as

E(X) =
∑

x

x · Pr(X = x)

=
∑

x

x · p(x)

where the notation
∑
x

means ‘sum over all possible values of x’.

The expected value E(X) may be considered as the long-run average value of X. It is
denoted by the Greek letter µ (mu), and is also called the mean of X.

Suppose that we are interested in the number, X, observed when a fair die is rolled. The
probability distribution of X is given in the following table.

x 1 2 3 4 5 6

Pr(X = x)
1
6

1
6

1
6

1
6

1
6

1
6

We can easily use this table to find the mean of X. This is demonstrated in the next example.

Let X be the number observed when a fair die is rolled. Find the expected value of X.

Example 3

Solution

E(X) =
∑

x

x · Pr(X = x)

=

(
1 ×

1
6

)
+

(
2 ×

1
6

)
+

(
3 ×

1
6

)
+

(
4 ×

1
6

)
+

(
5 ×

1
6

)
+

(
6 ×

1
6

)
=

21
6

= 3.5



14A Expected value and variance for discrete random variables 443

The expected value in the previous example means that, if the die was rolled many times,
then in the long run an average of 3.5 would be observed. Note that you cannot actually
obtain a value of 3.5 from a single roll of the die. This is the long-run average value.

Suppose that the amount, $X, that you win when you play a certain game of chance has the
following probability distribution.

x −5 2 20

Pr(X = x) 0.7 0.2 0.1

Find the expected value of the amount that you win in this game.

Example 4

Solution

E(X) =
∑

x

x · Pr(X = x)

= (−5 × 0.7) + (2 × 0.2) + (20 × 0.1)

= −1.10

In the long run, you would expect to lose an average of $1.10 per game.

Measures of spread: variance and standard deviation
As well as knowing the long-run average value of a random variable (the mean), it is also
useful to have a measure of how close the possible values of the random variable are to
the mean – that is, a measure of the spread of the probability distribution. The most useful
measures of spread for a discrete random variable are the variance and the standard deviation.

Variance

The variance of a random variable X is a measure of the spread of the probability
distribution about its mean or expected value µ. It is defined as

Var(X) = E[(X − µ)2]

and may be considered as the long-run average value of the square of the distance from X
to µ. The variance is denoted by σ2, where σ is the lowercase Greek letter sigma.

From the definition,

Var(X) = E[(X − µ)2]

=
∑

x

(x − µ)2 · Pr(X = x)

Since the variance is determined by squaring the distance from X to µ, it is no longer in
the units of measurement of the original random variable X. A measure of spread in the
appropriate unit is found by taking the square root of the variance.
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Standard deviation

The standard deviation of X is defined as

sd(X) =
√

Var(X)

The standard deviation is denoted by σ.

Using the definition is not always the easiest way to calculate the variance. Instead we can
use the following formula, which will be proved in Mathematical Methods Units 3 & 4.

An alternative (computational) formula for variance is

Var(X) = E(X2) −
[
E(X)

]2

Let X be the number observed when a fair die is rolled. Find the variance and standard
deviation of X.

Example 5

Solution
We will use the formula

Var(X) = E(X2) −
[
E(X)

]2

From Example 3, we know that E(X) = 3.5. We have

E(X2) =
∑

x

x2 · Pr(X = x)

=

(
12 ×

1
6

)
+

(
22 ×

1
6

)
+

(
32 ×

1
6

)
+

(
42 ×

1
6

)
+

(
52 ×

1
6

)
+

(
62 ×

1
6

)
=

91
6

Hence

Var(X) =
91
6
− (3.5)2 =

35
12

and therefore

sd(X) =

√
35
12
≈ 1.7078

Consider again the game of chance from Example 4. The amount, $X, that you win in this
game has the following probability distribution.

x −5 2 20

Pr(X = x) 0.7 0.2 0.1

Find the variance and standard deviation of the amount that you win in this game.

Example 6
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Solution
We know from Example 4 that E(X) = −1.10.

E(X2) = (−5)2 × 0.7 + 22 × 0.2 + 202 × 0.1Now

= 58.3

Var(X) = E(X2) −
[
E(X)

]2Hence

= 58.3 − (−1.10)2

= 57.09

sd(X) =
√

57.09and

≈ 7.5558

Summary 14A
� A random variable associates a number with each outcome of a random experiment.

A discrete random variable is one which can take only a countable number of values.

� The probability distribution of a discrete random variable X is a function

p(x) = Pr(X = x)

that assigns a probability to each value of X. It can be represented by a rule, a table or a
graph, and must give a probability p(x) for every value x that X can take.

� For any discrete probability distribution, the following two conditions must hold:

1 Each value of p(x) belongs to the interval [0, 1]. That is, 0 ≤ p(x) ≤ 1 for all x.
2 The sum of all the values of p(x) is 1.

� The expected value (or mean) of a discrete random variable X may be considered as
the long-run average value of X. It is found by summing the products of each value
of X and the probability that X takes that value. That is,

µ = E(X) =
∑

x

x · Pr(X = x)

=
∑

x

x · p(x)

� The variance of a random variable X is a measure of the spread of the probability
distribution about its mean µ. It is defined as

σ
2 = Var(X) = E[(X − µ)2]

An alternative (computational) formula for variance is

Var(X) = E(X2) −
[
E(X)

]2

� The standard deviation of a random variable X is defined as

σ = sd(X) =
√

Var(X)
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Exercise 14A

1Example 1

Example 2

Consider the following function:

x 1 2 3 4 5

Pr(X = x) k 2k 3k 4k 5k

a For what value of k is this a probability distribution?
b Find Pr(X ≥ 3).

2Example 3

Example 4

For each of the following probability distributions, find the mean (expected value):

a x 1 3 5 7

p(x) 0.1 0.3 0.3 0.3

b x −1 0 1 2

p(x) 0.25 0.25 0.25 0.25

c x 0 1 2 3 4

p(x) 0.18 0.22 0.26 0.21 0.13

d x −3 −2 −1 0 1 2 3

p(x)
1

10
1
10

1
5

1
5

1
5

1
10

1
10

3 A business consultant evaluates a proposed venture as follows. A company stands
to make a profit of $20 000 with probability 0.1, to make a profit of $10 000
with probability 0.5, to break even with probability 0.3, and to lose $10 000 with
probability 0.1. Find the company’s expected profit.

4 A spinner is numbered from 0 to 5, and each of the six numbers has an equal chance of
coming up. A player who bets $2 on any number wins $10 if that number comes up;
otherwise the $2 is lost. What is the player’s expected profit on the game?

5Example 5

Example 6

For each of the following probability distributions, find the variance of X:

a x 1 3 5 7

p(x) 0.1 0.3 0.3 0.3

b x 0 1 2 3

p(x)
1
4

1
4

1
4

1
4

6 A discrete random variable X takes
values 0, 1, 2, 3, 4 with probabilities
as shown in the table.

x 0 1 2 3 4

Pr(X = x) p
1
2

1
4

1
8

1
16

Find p.a Find E(X).b Find Var(X).c Find sd(X).d
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7 A random variable X has the probability
distribution shown on the right.

x 0 1 2 3

Pr(X = x) 4k 3k 2k k

Find k.a Find E(X).b Find Var(X).c Find sd(X).d

14B Distribution of sums of random variables
In this section, we will consider the probability distribution of the sum of independent
identical discrete random variables, and how to determine the expected value and variance of
that sum. We will compare this with the distribution of a discrete random variable which has
been multiplied by a positive real number.

Sum of two independent random variables
Suppose that we are interested in the sum of the two numbers observed when two fair dice
are rolled. Let X1 represent the number on the first die, and let X2 represent the number on
the second die. We can construct the following table to determine the possible values of the
sum X1 + X2.

X2

1 2 3 4 5 6

X1

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

From this table, we see that the sum X1 + X2 can take the values 2, 3, 4, . . . , 11, 12.

There are 36 equally likely outcomes for the pair of numbers on the dice. So we can
determine the probability of a value of X1 + X2 by counting the number of associated pairs.
For example:

Pr(X1 + X2 = 2) = Pr(X1 = 1, X2 = 1) =
1

36

Pr(X1 + X2 = 3) = Pr(X1 = 1, X2 = 2) + Pr(X1 = 2, X2 = 1) =
2
36

Continuing in this way, we can obtain the probability distribution of the sum X1 + X2.

z 2 3 4 5 6 7 8 9 10 11 12

Pr(X1 + X2 = z)
1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Because the outcome from rolling one die is not affected by the outcome from rolling the
other die, we say that X1 and X2 are independent random variables. This means that we can
determine the probability of a pair of values of X1 and X2 by multiplication:

Pr(X1 = a, X2 = b) = Pr(X1 = a) × Pr(X2 = b)

For example:

Pr(X1 + X2 = 3) = Pr(X1 = 1, X2 = 2) + Pr(X1 = 2, X2 = 1)

= Pr(X1 = 1) × Pr(X2 = 2) + Pr(X1 = 2) × Pr(X2 = 1)

=
1
6
×

1
6

+
1
6
×

1
6

=
2
36

Suppose that the amount, $X, that you win when you play a certain game of chance has the
following probability distribution.

x −5 2 20

Pr(X = x) 0.7 0.2 0.1

Determine the probability distribution of the total amount that you win when you play the
game twice.

Example 7

Solution
Let $X1 be the amount won on the first game, and let $X2 be the amount won on the
second game. We can use a table to determine the possible values of X1 + X2.

X2

−5 2 20

−5 −10 −3 15

X1 2 −3 4 22

20 15 22 40

The sum X1 + X2 can take the values −10, −3, 4, 15, 22 and 40.

In this example, the outcomes are not equally likely, so we need to use the probability
distribution of X. Since X1 and X2 are independent, we have

Pr(X1 + X2 = −10) = Pr(X1 = −5, X2 = −5)

= Pr(X1 = −5) × Pr(X2 = −5)

= 0.7 × 0.7 = 0.49

Pr(X1 + X2 = −3) = Pr(X1 = −5, X2 = 2) + Pr(X1 = 2, X2 = −5)

= 0.7 × 0.2 + 0.2 × 0.7 = 0.28
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Pr(X1 + X2 = 4) = Pr(X1 = 2, X2 = 2)

= 0.2 × 0.2 = 0.04

Continuing in this way, we can obtain the probability distribution of the sum X1 + X2.

z −10 −3 4 15 22 40

Pr(X1 + X2 = z) 0.49 0.28 0.04 0.14 0.04 0.01

The mean of X1 + X2

We will continue with our example of the sum, X1 + X2, of the two numbers observed when
two fair dice are rolled. We have already determined the following probability distribution
of X1 + X2.

z 2 3 4 5 6 7 8 9 10 11 12

Pr(X1 + X2 = z)
1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

We can use this probability distribution to find the mean of X1 + X2 as follows:

E(X1 + X2) = 2 ×
1
36

+ 3 ×
2

36
+ 4 ×

3
36

+ · · · + 11 ×
2
36

+ 12 ×
1
36

= 7

How does this value relate to the means of X1 and X2?

From Example 3, we know that E(X1) = E(X2) = 3.5. So for this example, the mean of the
sum is equal to the sum of the means:

E(X1 + X2) = E(X1) + E(X2)

The variance of X1 + X2

Now we use the probability distribution of X1 + X2 to calculate

E[(X1 + X2)2] = 22 ×
1

36
+ 32 ×

2
36

+ 42 ×
3
36

+ · · · + 112 ×
2
36

+ 122 ×
1

36
=

329
6

Therefore

Var(X1 + X2) = E[(X1 + X2)2] −
[
E(X1 + X2)

]2

=
329

6
− 72 =

35
6

How does this value relate to the variances of X1 and X2?

From Example 5, we know that Var(X1) = Var(X2) =
35
12

. So for this example, the variance of
the sum is equal to the sum of the variances:

Var(X1 + X2) = Var(X1) + Var(X2)



450 Chapter 14: Simulation, sampling and sampling distributions

The standard deviation of X1 + X2

From the variance of X1 + X2, we find

sd(X1 + X2) =
√

Var(X1 + X2) =

√
35
6
≈ 2.4152

By Example 5, we have sd(X1) = sd(X2) ≈ 1.7078. Hence we see that the standard deviation
of the sum is not equal to the sum of the standard deviations:

sd(X1 + X2) , sd(X1) + sd(X2)

Consider again the game of chance from Example 7.

a Find the mean and variance of X1 + X2, the total amount won when you play the
game twice.

b Compare the values found in part a with the mean and variance of X, the amount won
when you play the game once.

Example 8

Solution
a Using the probability distribution of X1 + X2 found in Example 7, we have

E(X1 + X2) = (−10) × 0.49 + (−3) × 0.28 + 4 × 0.04 + · · · = −2.20

E[(X1 + X2)2] = (−10)2 × 0.49 + (−3)2 × 0.28 + 42 × 0.04 + · · · = 119.02

Var(X1 + X2) = E[(X1 + X2)2] −
[
E(X1 + X2)

]2∴

= 119.02 − (−2.20)2 = 114.18

b From Examples 4 and 6, we have E(X) = −1.10 and Var(X) = 57.09. We see that

E(X1 + X2) = −2.20 = 2 × (−1.10) = 2 E(X)

Var(X1 + X2) = 114.18 = 2 × 57.09 = 2 Var(X)

We can generalise our findings as follows.

Let X be a random variable with mean µ and variance σ2. Then if X1 and X2 are
independent random variables with identical distributions to X, we have

E(X1 + X2) = E(X1) + E(X2) = 2µ

Var(X1 + X2) = Var(X1) + Var(X2) = 2σ2

sd(X1 + X2) =
√

Var(X1 + X2) =
√

2σ

Note: Since sd(X1) + sd(X2) = 2σ, we see that sd(X1 + X2) , sd(X1) + sd(X2) for σ , 0.
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Sum of n independent random variables
So far we have looked at the sum of two independent identically distributed random variables.
In the next example, we consider a sum of three random variables.

Consider a random variable X which has a probability distribution as follows:

x 0 1 2

Pr(X = x)
1
3

1
3

1
3

Let X1, X2 and X3 be independent random variables with identical distributions to X.

a Find the probability distribution of X1 + X2 + X3.
b Hence find the mean, variance and standard deviation of X1 + X2 + X3.

Example 9

Solution
a Using a tree diagram or a similar strategy, we can list all the possible combinations of

values of X1, X2 and X3 as follows:

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2)

(1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)

(2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 2, 0), (2, 2, 1), (2, 2, 2)

The value of X1 + X2 + X3 can be determined for each of the 27 outcomes. Since all
outcomes are equally likely, we can construct the probability distribution:

z 0 1 2 3 4 5 6

Pr(X1 + X2 + X3 = z)
1
27

1
9

2
9

7
27

2
9

1
9

1
27

b Using the probability distribution from part a, we have

E(X1 + X2 + X3) = 0 ×
1
27

+ 1 ×
1
9

+ 2 ×
2
9

+ · · · + 5 ×
1
9

+ 6 ×
1

27
= 3

E[(X1 + X2 + X3)2] = 02 ×
1

27
+ 12 ×

1
9

+ 22 ×
2
9

+ · · · + 52 ×
1
9

+ 62 ×
1

27
= 11

Var(X1 + X2 + X3) = 11 − 32 = 2Thus

sd(X1 + X2 + X3) =
√

2 ≈ 1.4142and

It is easy to verify in the previous example that

E(X1 + X2 + X3) = 3 E(X)

Var(X1 + X2 + X3) = 3 Var(X)
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We can extend our findings in this section to the sum of n independent identically distributed
random variables.

Sums of independent random variables

Let X be a random variable with mean µ and variance σ2. Then if X1, X2, . . . , Xn are
independent random variables with identical distributions to X, we have

E(X1 + X2 + · · · + Xn) = E(X1) + E(X2) + · · · + E(Xn) = nµ

Var(X1 + X2 + · · · + Xn) = Var(X1) + Var(X2) + · · · + Var(Xn) = nσ2

sd(X1 + X2 + · · · + Xn) =
√

Var(X1 + X2 + · · · + Xn) =
√

nσ

Let X be a random variable with mean µ = 10 and variance σ2 = 9. If X1, X2, X3, X4 are
independent random variables with identical distributions to X, find:

E(X1 + X2 + X3 + X4)a Var(X1 + X2 + X3 + X4)b sd(X1 + X2 + X3 + X4)c

Example 10

Solution
E(X1 + X2 + X3 + X4)

= 4µ = 40

a Var(X1 + X2 + X3 + X4)

= 4σ2 = 36

b sd(X1 + X2 + X3 + X4)

=
√

4σ = 2σ = 6

c

Multiples of random variables
Once again, let X represent the number observed when a fair die is rolled. We now consider
the random variable 2X, which is obtained by doubling each value of X. The probability
distribution of 2X is given in the following table.

z 2 4 6 8 10 12

Pr(2X = z)
1
6

1
6

1
6

1
6

1
6

1
6

This is very different from the distribution of X1 + X2, which takes values 2, 3, 4, . . . , 11, 12.

We found the mean and variance of X in Examples 3 and 5:

E(X) = 3.5 and Var(X) =
35
12

What can we say about the mean and variance of 2X?

We have

E(2X) = 2 ×
1
6

+ 4 ×
1
6

+ 6 ×
1
6

+ 8 ×
1
6

+ 10 ×
1
6

+ 12 ×
1
6

= 7

Thus we can see that

E(2X) = 2 E(X)
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To find the variance of 2X, we first calculate

E[(2X)2] = 22 ×
1
6

+ 42 ×
1
6

+ 62 ×
1
6

+ 82 ×
1
6

+ 102 ×
1
6

+ 122 ×
1
6

=
182

3
Thus

Var(2X) = E[(2X)2] −
[
E(2X)

]2

=
182

3
− 72 =

35
3

We observe that

Var(2X) = 4 Var(X) = 22 Var(X)

More generally, we can consider random variables of the form kX, which have been obtained
by multiplying the values of a random variable X by a positive real number k.

Multiples of random variables

Let X be a random variable with mean µ and variance σ2. Then if k is a positive number,
we have

E(kX) = k E(X) = kµ

Var(kX) = k2 Var(X) = k2
σ

2

sd(kX) =
√

Var(kX) = kσ

Let X be a random variable with mean µ = 10 and variance σ2 = 9. Find:

E(4X)a Var(4X)b sd(4X)c

Example 11

Solution
E(4X) = 4µ = 40a Var(4X) = 16σ2 = 144b sd(4X) = 4σ = 12c

Comparing the distributions of X1 + X2 and 2X
We can use the results of this section to point out some importance differences between the
random variables X1 + X2 and 2X. We have seen from the dice example that their distributions
are quite different, both in the possible values that the random variables can take and in the
probabilities associated with those values. We have also seen that, while X1 + X2 and 2X have
the same mean, they have different variances and standard deviations.

Let X be a random variable with mean µ and non-zero variance σ2. Then if X1 and X2 are
independent random variables with identical distributions to X, we have

E(X1 + X2) = 2µ E(2X) = 2µ ∴ E(X1 + X2) = E(2X)

Var(X1 + X2) = 2σ2 Var(2X) = 4σ2 ∴ Var(X1 + X2) , Var(2X)

sd(X1 + X2) =
√

2σ sd(2X) = 2σ ∴ sd(X1 + X2) , sd(2X)
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Summary 14B
� Sums of independent random variables

Let X be a random variable with mean µ and variance σ2. Then if X1, X2, . . . , Xn are
independent random variables with identical distributions to X, we have

• E(X1 + X2 + · · · + Xn) = E(X1) + E(X2) + · · · + E(Xn) = nµ

• Var(X1 + X2 + · · · + Xn) = Var(X1) + Var(X2) + · · · + Var(Xn) = nσ2

• sd(X1 + X2 + · · · + Xn) =
√

Var(X1 + X2 + · · · + Xn) =
√

nσ

� Multiples of random variables
Let X be a random variable with mean µ and variance σ2. Then if k is a positive
number, we have

• E(kX) = k E(X) = kµ

• Var(kX) = k2 Var(X) = k2σ2

• sd(kX) =
√

Var(kX) = kσ

Exercise 14B

1Example 7 The probability distribution of the amount won, $X, when playing a game of chance is
given in the following table.

x −2 0 50

Pr(X = x) 0.8 0.15 0.05

Suppose that you play the game twice.

a Determine the probability distribution of the total amount won.
b Find the probability that the total amount won is at least $50.

2 The following table gives the probability distribution of X, the number observed when a
biased die is rolled.

x 1 2 3 4 5 6

Pr(X = x) 0.2 0.2 0.2 0.2 0.1 0.1

Suppose that this die is rolled twice.

a Determine the probability distribution of the sum of the two numbers observed.
b Find the probability that the sum of the two numbers observed is more than 10.

3Example 8 Consider a spinner with five equally likely sections numbered 1, 2, 3, 4 and 5.

a Find the mean and variance of X, the number obtained from one spin.
b Find the probability distribution of X1 + X2, the sum of the two numbers obtained

from two spins.
c Find the probability that the sum of the two numbers is even.
d Use the probability distribution to find the mean and variance of X1 + X2.
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4 Suppose that the amount won, $X, when playing a game of chance has the following
probability distribution.

x −5 0 5 50

Pr(X = x) 0.9 0.06 0.03 0.01

a Find the expected value, variance and standard deviation of X.
b Find the probability distribution of X1 + X2, the total amount won when playing the

game twice.
c Use the probability distribution to find the expected value, variance and standard

deviation of X1 + X2.

5Example 10 Let X be a random variable with mean µ = 100 and variance σ2 = 16. If X1, X2, X3, X4

are independent random variables with identical distributions to X, find:

E(X1 + X2 + X3 + X4)a Var(X1 + X2 + X3 + X4)b sd(X1 + X2 + X3 + X4)c

6 Let X be a random variable with mean µ = 30 and variance σ2 = 7. If X1, X2, X3 are
independent random variables with identical distributions to X, find:

E(X1 + X2 + X3)a Var(X1 + X2 + X3)b sd(X1 + X2 + X3)c

7 Consider again the game of chance from Question 4. Find the expected value, variance
and standard deviation of the total amount won when the game is played three times.

8 aExample 11 Let X be a random variable with mean µ = 100 and variance σ2 = 16. Find:

i E(4X) ii Var(4X) iii sd(4X)

b Compare your answers to part a with your answers to Question 5.

9 Let X be a random variable with mean µ = 3.4 and variance σ2 = 1.2. Find correct to
three decimal places:

E(10X)a Var(10X)b sd(10X)c

10 Data from a recent census was used to determine the following probability distribution
for the number of dogs, X, belonging to a household in a certain town.

x 0 1 2 3

Pr(X = x) 0.50 0.38 0.11 0.01

a Find the mean, variance and standard deviation of X.
b Assume that the number of dogs in a household is independent of the number in any

other household. Find the mean, variance and standard deviation of the total number
of dogs in a street with 10 households.

c Each household in the town is required to pay $40 per dog in registration fees. Find
the mean, variance and standard deviation of the total amount paid by a household.
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14C Populations and samples
In the next two sections, we apply our knowledge of probability distributions to a special type
of distribution that arises from sampling.

The set of all eligible members of a group which we intend to study is called a population.
For example, if we are interested in the Intelligence Quotient (IQ) scores of the Year 12
students at ABC Secondary College, then this group of students could be considered a
population; we could collect and analyse all the IQ scores for these students. However, if
we are interested in the IQ scores of all Year 12 students across Australia, then this becomes
the population.

Often, dealing with an entire population is not practical:

� The population may be too large – for example, all Year 12 students in Australia.
� The population may be hard to access – for example, all blue whales in the Pacific Ocean.
� The data collection process may be destructive – for example, testing every battery to see

how long it lasts would mean that there were no batteries left to sell.

Nevertheless, we often wish to make statements about a property of a population when data
about the entire population is unavailable.

The solution is to select a subset of the population – called a sample – in the hope that what
we find out about the sample is also true about the population it comes from. Dealing with
a sample is generally quicker and cheaper than dealing with the whole population, and a
well-chosen sample will give much useful information about this population. How to select
the sample then becomes a very important issue.

Random samples
Suppose we are interested in investigating the effect of sustained computer use on the
eyesight of a group of university students. To do this we go into a lecture theatre containing
the students and select all the students sitting in the front two rows as our sample. This
sample may be quite inappropriate, as students who already have problems with their
eyesight are more likely to be sitting at the front, and so the sample may not be typical of the
population. To make valid conclusions about the population from the sample, we would like
the sample to have a similar nature to the population.

While there are many sophisticated methods of selecting samples, the general principle of
sample selection is that the method of choosing the sample should not favour or disfavour
any subgroup of the population. Since it is not always obvious if the method of selection will
favour a subgroup or not, we try to choose the sample so that every member of the population
has an equal chance of being in the sample. In this way, all subgroups have a chance of being
represented. The way we do this is to choose the sample at random.

The simplest way to obtain a valid sample is to choose a random sample, where every
member of the population has an equal chance of being included in the sample.
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To choose a sample from the group of university students, we could put the name of every
student in a hat and then draw out, one at a time, the names of the students who will be in
the sample.

Choosing a sample in an appropriate manner is critical in order to obtain results from which
we can make meaningful conclusions.

A researcher wishes to evaluate how well the local library caters to the needs of a town’s
residents. To do this, she hands out a questionnaire to each person entering the library over
the course of a week. Will this method result in a random sample?

Example 12

Solution
Since the members of the sample are already using the library, they are possibly satisfied
with the service available. Additional valuable information might well be obtained by
finding out the opinion of those who do not use the library.

A better sample would be obtained by selecting at random from the town’s entire
population, so the sample contains both people who use the library and people who do not.

Thus, we have a very important consideration when sampling if we wish to generalise from
the results of the sample.

In order to make valid conclusions about a population from a sample, we would like the
sample chosen to be representative of the population as a whole. This means that all the
different subgroups present in the population appear in the sample in similar proportions
as they do in the population.

One very useful method for drawing random samples is to generate random numbers using a
calculator or a computer.

Using the TI-Nspire
� In a Calculator page, go to menu >

Probability > Random > Seed and enter
the last 4 digits of your phone number.
This ensures that your random-number
starting point differs from the calculator
default.

� For a random number between 0 and 1, use
menu > Probability > Random > Number.

� For a random integer, use menu > Probability > Random > Integer.
To obtain five random integers between 2 and 4 inclusive, use the command
randInt(2, 4, 5) as shown.
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Using the Casio ClassPad
� InM, press the Keyboard button.
� Find and then select Catalog by first tapping H at

the bottom of the left sidebar.
� Scroll across the alphabet to the letter R.

� To generate a random number between 0 and 1:
• In Catalog , select rand(.
• Tap EXE .

� To generate three random integers between 1 and 6
inclusive:
• In Catalog , select rand(.
• Type: 1, 6
• Tap EXE three times.

� To generate a list of 10 random numbers between
0 and 1:
• In Catalog , select randList(. Type: 10
• Tap EXE and then tap I to view all the numbers.

� To generate a list of 20 random integers between
1 and 30 inclusive:
• In Catalog , select randList(. Type: 20, 1, 30
• Tap EXE and then tap I to view all the integers.

The table gives the IQ score for each student in the population of Year 12 students at
ABC Secondary College. Each student has been given an identity number (Id). Use a
random number generator to select a random sample of size 4 from this population.

Id IQ
1 101
2 116
3 107
4 76
5 104
6 101
7 103
8 112
9 72

10 89

Id IQ
11 94
12 116
13 98
14 104
15 87
16 130
17 88
18 105
19 88
20 92

Id IQ
21 102
22 84
23 128
24 81
25 91
26 91
27 111
28 94
29 89
30 121

Id IQ
31 85
32 122
33 125
34 96
35 104
36 89
37 99
38 94
39 120
40 107

Id IQ
41 113
42 109
43 76
44 101
45 137
46 106
47 106
48 97
49 124
50 84

Id IQ
51 92
52 85
53 111
54 106
55 97
56 133
57 112
58 69
59 92
60 117

Id IQ
61 103
62 78
63 128
64 98
65 114
66 87
67 75
68 126
69 114
70 105

Id IQ
71 107
72 104
73 99
74 96
75 82
76 117
77 104
78 92
79 100
80 84

Id IQ
81 86
82 87
83 92
84 94
85 95
86 99
87 106
88 63
89 105
90 113

Id IQ
91 113
92 108
93 90
94 103
95 83
96 106
97 73
98 80
99 99

100 109

Example 13
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Solution
Generating four random integers from 1 to 100 gives on this occasion:

18, 51, 92, 41

Thus the sample chosen consists of the four students listed in the table
on the right.

Id IQ

18 105

51 92

92 108

41 113

Population parameters and sample statistics
Consider the IQ scores of the population of 100 Year 12 students at ABC Secondary College
from Example 13. The mean IQ for this whole group is called the population mean and is
denoted by the Greek letter µ (mu).

Population mean µ =
sum of the data values in the population

population size

By summing the IQ scores of all students and dividing by 100, we find that the population
mean is µ = 100.0.

The mean IQ for the sample chosen in Example 13 is

105 + 92 + 108 + 113
4

= 104.50

This value is called the sample mean and is denoted by x̄. (We say ‘x bar’.)

Sample mean x̄ =
sum of the data values in the sample

sample size

In this particular case, the value of the sample mean x̄ (104.50) is not the same as the value of
the population mean µ (100.0).

We can select another three random samples, each of size 4, and calculate the sample means:

Sample Sample mean

101 102 101 94 x̄ = 99.50

116 84 103 116 x̄ = 104.75

107 128 112 98 x̄ = 111.25

Clearly, the sample mean is going to vary from sample to sample, depending on which
members of the population are selected in the sample. While the sample means are quite
close to the population mean, they are not often exactly equal to the population mean.

We will look at the behaviour of the sample mean in more detail in the next section.
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� The population mean µ is a population parameter; its value is constant for a given
population.

� The sample mean x̄ is a sample statistic; its value is not constant, but varies from
sample to sample.

As another example, we can consider the proportion of females in the population of Year 12
students at ABC Secondary College. This is a population parameter; its value is constant.
The proportion of females in a random sample of four students is a sample statistic; its value
varies from sample to sample.

Summary 14C
� A population is the set of all eligible members of a group which we intend to study.
� A sample is a subset of the population which we select in order to make inferences

about the population. Generalising from the sample to the population will not be
meaningful unless the sample is representative of the population.

� The simplest way to obtain a valid sample is to choose a random sample, where every
member of the population has an equal chance of being included in the sample.

� The population mean µ is the mean of all values of a measure in the entire population,
and is constant for a given population.

� The sample mean x̄ is the mean of the values of this measure in a particular sample,
and varies from sample to sample.

Exercise 14C

1Example 12 In order to estimate the amount of time that students spend playing computer games,
a researcher conducted an email survey. She found that the average time was 1.5 hours
per week for those who responded. Do you think that this is an appropriate way of
selecting a random sample of students? Explain your answer.

2 A market researcher wishes to determine the age profile of the customers of a popular
fast-food chain. She positions herself outside one of the restaurants between 4 p.m. and
8 p.m. one weekend, and asks customers to fill out a short questionnaire. Do you think
this sample will be representative of the population? Explain your answer.

3 To estimate the number of days per week that students bring their lunch from home,
the principal selected a group of 10 students by using a list of all enrolled students and a
random number generator.

a Is this an appropriate method of choosing a sample of students? Give reasons for
your answer.

b For the 10 students in the sample, the numbers of days that they brought their lunch
from home last week were 1, 0, 4, 4, 5, 5, 5, 0, 0, 3. What is the value of the sample
mean x̄ for this sample?
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4 aExample 13 Use a random number generator to select a random sample of size 5 from the
population of Year 12 students at ABC Secondary College given in Example 13.

b Determine the mean IQ of the students in your sample.

5 Recent research has established that Australian adults spend on average four hours per
day on sedentary leisure activities such as watching television. A group of 100 people
were selected at random and found to spend an average of 3.5 hours per day on
sedentary leisure activities. In this example:

a What is the population?
b What is the value of the population mean µ?
c What is the value of the sample mean x̄?

14D Investigating the distribution of the sample mean
using simulation
In Section 14C, we saw that while the population mean µ is constant for a given population,
the sample mean x̄ is not constant, but varies from sample to sample. In this section we will
further investigate this variation in the sample mean.

The sampling distribution of the sample mean
Since x̄ varies according to the contents of the random samples, we can consider the sample
means x̄ as being the values of a random variable, which we will denote by X̄.

As X̄ is a random variable, it can be described by a probability distribution. The distribution
of a statistic which is calculated from a sample (such as the sample mean) has a special name
– it is called a sampling distribution.

Consider again the IQ scores of the population of 100 Year 12 students at ABC Secondary
College. The population mean is µ = 100.0 and the population standard deviation is σ = 15.0.

In the previous section, we selected four random samples from this population, each of size 4,
and found the sample means to be

104.50, 99.50, 104.75, 111.25

Suppose that we continue this process until we have selected a total of 50 random samples
(each of size 4). The values of x̄ obtained might look like those in the following dotplot.

75 80 85 90 95 100 105 110 115

The values look to be centred around 100, ranging from about 83 to 113. In fact, the mean of
these 50 values is 100.3 and the standard deviation is 6.13.
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To get a better picture of the sampling distribution of X̄, we require more sample means. The
following histogram summarises the values of x̄ observed for 100 samples (each of size 4).

8580 90 95 100
n = 4

105 110 115 120
0

5

10

15

20

Fr
eq

ue
nc

y

25

30

35

Here we can see that the sampling distribution of X̄ appears to be symmetric and centred
around 100. In fact, the mean of these 100 values is 100.04 and the standard deviation is 6.27.

How does the sampling distribution of X̄ compare with the distribution of X? In the following
diagram, the lower plot shows the distribution of IQ scores for the population of 100 Year 12
students at ABC Secondary College, and the upper plot shows the sampling distribution of X̄
based on 100 samples of size 4 from this population.
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Comparing these two plots, we can see that, while both are centred around 100, the spread of
the sampling distribution of X̄ is much less than that of the population. For example, we see
that several students have IQ scores of 120 or more, but none of the samples of size 4 has an
average score that high.
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The e�ect of sample size on the distribution of the
sample mean
We have seen that the distribution of the sample mean X̄ is centred at the value of the
population mean, with a smaller standard deviation than the population. We next explore how
the distribution of the sample mean is affected by the size of the sample chosen.

The following histograms show the sample means x̄ obtained when 100 samples of size 4
(lower plot), then size 16 (middle plot) and then size 64 (upper plot) were chosen from
the population of Year 12 students at ABC Secondary College. Here it is important not to
confuse the size of each sample with the number of samples, which is quite arbitrary.
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We can see from the histograms that all three sampling distributions appear to be centred
at 100, the value of the population mean µ. Furthermore, as the sample size increases, the
values of the sample mean x̄ are more tightly clustered around that value.

These observations are confirmed in the following table, which gives the mean and standard
deviation for each of the three sampling distributions shown in the histograms.

Sample size 4 16 64

Population mean µ 100.0 100.0 100.0

Population standard deviation σ 15.0 15.0 15.0

Mean of the values of x̄ 100.04 99.56 99.71

Standard deviation of the values of x̄ 6.27 3.78 1.84

Based on this investigation, we can make the following generalisations:

� The sampling distribution of X̄ is centred at the value of the population mean µ.
� The variation in the sampling distribution decreases as the size of the sample increases.
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Estimating the population mean
In practice, it is highly unlikely that we will know the value of the population mean µ.
However, we have seen that the distribution of the sample mean X̄ is centred at the value of
the population mean. Moreover, the larger the sample we select, the closer the sample mean
is likely to be to the population mean.

Thus, when the population mean µ is not known, the sample mean x̄ can be used as an
estimate of this parameter. The larger the sample used to calculate the sample mean, the
more confident we can be that this is a good estimate of the population mean.

The mean length of the population of adult fish in a very large lake is unknown.

A random sample of 100 fish was found to have a mean length of x̄ = 34.6 cm.
A random sample of 200 fish was found to have a mean length of x̄ = 35.7 cm.

a Which sample gives a better estimate of µ, the population mean?
b Find an even better estimate of µ by combining the information from both samples.

(Assume that the two samples contain different fish.)

Example 14

Solution
a We expect a larger sample to give a better estimate. So, based on the sample of 200 fish,

we estimate µ as 35.7 cm.

b We can view the two samples together as a random sample of 300 fish. To find the
sample mean x̄ for this sample, we calculate the weighted mean of the two separate
sample means. Thus we can estimate µ as

(100 × 34.6) + (200 × 35.7)
300

= 35.3 cm

Using simulation to investigate the distribution of the
sample mean
So far we have investigated the sampling distribution of the sample mean X̄ based on data.
To make our investigations easier, we can use technology (calculators or computers) to repeat
a random sampling process many times. This is known as simulation.

Normal distributions
Consider the random variable IQ, which has a mean of 100 and a standard deviation of 15
in the population. In order to use technology to investigate this random variable, we use a
distribution that you may not have met before, called the normal distribution. You will
study this distribution in Year 12, but for now it is enough to know that many commonly
occurring continuous random variables – such as height, weight and IQ – follow this
distribution.
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This histogram shows the IQ scores of 1000 people randomly drawn from the population.
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A normal distribution is symmetric and bell-shaped, with its centre of symmetry at the
population mean.

Simulating samples from a normal distribution
A normal distribution is fully defined by its mean and standard deviation. If we know these
values, then we can use technology to generate sample means for random samples drawn
from this population.

Using the TI-Nspire
To generate the sample means for 10 random
samples of size 25 from a normal population
with mean 100 and standard deviation 15:

� Start from a Lists & Spreadsheet page.
� Name the list ‘iq’ in Column A.
� In cell A1, enter the formula using menu >

Data > Random > Normal and complete as:
= mean(randnorm(100, 15, 25))

� Use menu > Data > Fill to fill down to obtain
the sample means for 10 random samples.

For a large number of simulations, an alternative
method is easier.

To generate the sample means for 500 random
samples of size 25, enter the following formula
in the formula cell of Column A:

= seq(mean(randnorm(100, 15, 25)), k, 1, 500)

The dotplot on the right was created this way.
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Using the Casio ClassPad
To generate the sample means for 10 random samples of size 25 from a normal
population with mean 100 and standard deviation 15:

� Open the Spreadsheet application .
� Tap in cell A1.
� Type: = mean(randNorm(15, 100, 25))

Note: The commands mean( and randNorm( can be
selected from Catalog .

� Go to Edit > Fill > Fill Range.
� Enter A1:A10 for the range, using the symbols A

and : from the toolbar. Tap OK .

To sketch a histogram of these sample means:

� Go to Edit > Select > Select Range.
� Enter A1:A10 for the range and tap OK .
� Select Graph and tap Histogram.

The IQ scores for a population have mean µ = 100 and standard deviation σ = 15. The
following dotplot summarises the sample means x̄ for 100 random samples of 25 people
drawn from this population.

92 94 96 98 100 102 104 106

Use the dotplot to estimate the probability that, for a random sample of 25 people drawn
from this population, the sample mean x̄ is 104 or more.

Example 15

Solution
From the dotplot we can count 6 out of 100 samples where the sample mean is 104 or
more. Thus we can estimate

Pr(X̄ ≥ 104) ≈
6

100
= 0.06
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Suppose it is known that parking times in a large city car park are normally distributed,
with mean µ = 223 minutes and standard deviation σ = 48 minutes.

a Use your calculator to generate the sample means for 100 samples, each of size 25,
drawn at random from this population. Summarise these values in a dotplot.

b Use your dotplot to estimate the probability that, in a random sample of 25 cars, the
mean parking time is greater than or equal to 240 minutes.

Example 16

Solution
a In the dotplot, there are 6 out of

100 samples where the sample mean
is 240 or more. This gives

Pr(X̄ ≥ 240) ≈
6

100
= 0.06

b

Expected value and variance of the sample mean
So far we have used data and simulations to give us an insight into the sampling distribution
of X̄. Now we can confirm these insights theoretically, using the results from Section 14B.

Let X be a random variable with mean µ and variance σ2. Consider the sample mean, X̄, for
random samples of size n. We can write

X̄ =
X1 + X2 + · · · + Xn

n

where X1, X2, . . . , Xn are independent random variables with identical distributions to X.
Using our results on multiples and sums of random variables from Section 14B, we obtain

E(X̄) = E
(X1 + X2 + · · · + Xn

n

)
=

E(X1 + X2 + · · · + Xn)
n

=
nµ
n

= µ

Var(X̄) = Var
(X1 + X2 + · · · + Xn

n

)
=

Var(X1 + X2 + · · · + Xn)
n2 =

nσ2

n2 =
σ2

n

These two new results confirm our observations:

� The sampling distribution of X̄ is centred at the value of the population mean µ.
� The variation in the sampling distribution decreases as the size n of the sample increases.

Distribution of the sample mean

If we select samples of size n from a population with mean µ and standard deviation σ,
then the sample mean X̄ satisfies:

E(X̄) = µ� Var(X̄) =
σ2

n
� sd(X̄) =

σ
√

n
�
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Consider again the game of chance from Example 4. The amount, $X, that you win in this
game has a mean of µ = −1.10 and a variance of σ2 = 57.09.

a Find the mean and variance of X1 + X2 + X3, the total amount won when you play the
game three times.

b Find the mean and variance of X̄, the average amount won per game when you play the
game three times.

Example 17

Solution

a E(X1 + X2 + X3) = E(X1) + E(X2) + E(X3) = 3µ = −3.30

Var(X1 + X2 + X3) = Var(X1) + Var(X2) + Var(X3) = 3σ2 = 171.27

b E(X̄) = µ = −1.10

Var(X̄) =
σ2

3
=

57.09
3

= 19.03

Let X be a random variable with mean µ = 100 and standard deviation σ = 15. Find the
mean and standard deviation of the sample mean X̄ for each of the following sample sizes:

a n = 4 b n = 16 c n = 64

Example 18

Solution

a E(X̄) = µ = 100, sd(X̄) =
σ
√

n
=

15
2

= 7.5

b E(X̄) = µ = 100, sd(X̄) =
σ
√

n
=

15
4

= 3.75

c E(X̄) = µ = 100, sd(X̄) =
σ
√

n
=

15
8

= 1.875

Summary 14D
� The sample mean X̄ is a random variable and so can be described by a probability

distribution, called the sampling distribution of the sample mean.
� The sampling distribution of X̄ is centred at the value of the population mean µ.
� The variation in the sampling distribution decreases as the size of the sample increases.
� When the population mean µ is not known, the sample mean x̄ can be used as an

estimate of this parameter. The larger the sample size, the more confident we can be
that x̄ is a good estimate of the population mean µ.
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Exercise 14D

1Example 14a The mean time spent on social media each day by teenagers in a certain country
is unknown. A random sample of 100 teenagers was found to spend an average of
x̄ = 45.6 minutes per day on social media. Give an estimate of µ, the population mean.

2Example 14b The mean salary of cybersecurity engineers is unknown. A survey of 50 cybersecurity
engineers found that they earned an average of x̄ = $3250 per week. A second
survey of 100 different cybersecurity engineers found that they earned an average
of x̄ = $3070 per week. Use the data from both samples to find an estimate of µ, the
population mean.

3Example 15 In a certain city, the average size of a kindergarten class is µ = 24 children, with a
standard deviation of σ = 2. The following dotplot shows the sample means x̄ for
100 random samples of 20 classes.

22.5 23.0 23.5 24.0 24.5 25.0 25.5

Use the dotplot to estimate:

a Pr(X̄ ≥ 25) b Pr(X̄ ≤ 23)

4 The mean height of women in a certain country is µ = 160 cm, with a standard
deviation of σ = 8 cm. The following dotplot shows the sample means x̄ for 100 random
samples of 30 women.

156 157 158 159 160 161 162 163 164

Use the dotplot to estimate:

a Pr(X̄ ≥ 163) b Pr(X̄ ≤ 158)

5Example 16 The lengths of a species of fish are normally distributed with mean length µ = 40 cm
and standard deviation σ = 4 cm.

a Use your calculator to simulate 100 values of the sample mean calculated from a
sample of size 50 drawn from this population of fish, and summarise the values
obtained in a dotplot.

b Use your dotplot to estimate:

i Pr(X̄ ≥ 41) ii Pr(X̄ ≤ 39)
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6 The marks in a statistics examination in a certain university are normally distributed
with a mean of µ = 48 marks and a standard deviation of σ = 15 marks.

a Use your calculator to simulate 100 values of the sample mean calculated from a
sample of size 20 drawn from the students at this university, and summarise the
values obtained in a dotplot.

b Use your dotplot to estimate:

i Pr(X̄ ≥ 55) ii Pr(X̄ ≤ 40)

7Example 17 Consider again the game of chance from Example 4. The amount, $X, that you win in
this game has a mean of µ = −1.10 and a variance of σ2 = 57.09.

a Find the mean and variance of the total amount won when you play the game
25 times.

b Find the mean and variance of the average amount won per game when you play the
game 25 times.

8 Data from a recent census was used to determine that the number of dogs belonging to
each household in a certain town has a mean of µ = 0.63 and a variance of σ2 = 0.5131.

a Find the mean and variance of the total number of dogs in a random sample of
10 households.

b Find the mean and variance of the average number of dogs per household in a
random sample of 10 households.

9Example 18 Let X be a random variable with mean µ = 30 and standard deviation σ = 7. Find
the mean and standard deviation of the sample mean X̄ for each of the following
sample sizes:

n = 25a n = 2500b n = 250 000c

10 Let X be a random variable with mean µ = 16.77 and standard deviation σ = 2.45.
Find the mean and standard deviation of the sample mean X̄ for each of the following
sample sizes:

n = 10a n = 100b n = 1000c

11 Tickets in a game of chance can be purchased for $5. Each ticket has a 20% chance of
winning $5, a 5% chance of winning $40, and otherwise loses.

a Find the mean and standard deviation of the profit if you buy one ticket.
b Find the mean and standard deviation of the average profit per ticket if you buy:

i 10 tickets ii 100 tickets iii 1000 tickets
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Chapter summary

Random variables
� A random variable associates a number with each outcome of a random experiment.

A discrete random variable is one which can take only a countable number of values.
� The probability distribution of a discrete random variable X is a function

p(x) = Pr(X = x)

that assigns a probability to each value of X. It can be represented by a rule, a table or a
graph, and must give a probability p(x) for every value x that X can take.

� For any discrete probability distribution, the following two conditions must hold:

• Each value of p(x) belongs to the interval [0, 1]. That is, 0 ≤ p(x) ≤ 1 for all x.
• The sum of all the values of p(x) is 1.

� The expected value (or mean) of a discrete random variable X may be considered as the
long-run average value of X. It is found by summing the products of each value of X and
the probability that X takes that value. That is,

µ = E(X) =
∑

x

x · Pr(X = x)

=
∑

x

x · p(x)

� The variance of a random variable X is a measure of the spread of the probability
distribution about its mean µ. It is defined as

σ
2 = Var(X) = E[(X − µ)2]

An alternative (computational) formula for variance is

Var(X) = E(X2) −
[
E(X)

]2

� The standard deviation of a random variable X is defined as

σ = sd(X) =
√

Var(X)

Sums and multiples of random variables
� Let X be a random variable with mean µ and variance σ2. Then if X1, X2, . . . , Xn are

independent random variables with identical distributions to X, we have

• E(X1 + X2 + · · · + Xn) = nµ

• Var(X1 + X2 + · · · + Xn) = nσ2

• sd(X1 + X2 + · · · + Xn) =
√

nσ

� Let X be a random variable with mean µ and variance σ2. Then if k is a positive number,
we have

• E(kX) = k E(X) = kµ

• Var(kX) = k2 Var(X) = k2σ2

• sd(kX) =
√

Var(kX) = kσ
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Sampling
� A population is the set of all eligible members of a group which we intend to study.
� A sample is a subset of the population which we select in order to make inferences about

the population. Generalising from the sample to the population will not be meaningful
unless the sample is representative of the population.

� The simplest way to obtain a valid sample is to choose a random sample, where every
member of the population has an equal chance of being included in the sample.

� The population mean µ is the mean of all values of a measure in the entire population.
The sample mean x̄ is the mean of these values in a particular sample.

� The population mean µ is a population parameter; its value is constant for a given
population.

� The sample mean x̄ is a sample statistic; its value varies from sample to sample.

Sampling distributions
� The sample mean X̄ is a random variable and so can be described by a probability

distribution, called the sampling distribution of the sample mean.
� The sampling distribution of X̄ is centred at the value of the population mean µ.
� The variation in the sampling distribution decreases as the size of the sample increases.
� When the population mean µ is not known, the sample mean x̄ can be used as an estimate

of this parameter. The larger the sample size, the more confident we can be that x̄ is a good
estimate of the population mean µ.

� If we select samples of size n from a population with mean µ and standard deviation σ,
then the sample mean X̄ satisfies:

E(X̄) = µ• Var(X̄) =
σ2

n
• sd(X̄) =

σ
√

n
•

Technology-free questions

1 A discrete random variable X takes values 0, 1, 2, 3 with probabilities as shown in the
following table.

x 1 2 3 4

Pr(X = x) p
1
4

1
4

1
4

Find p.a Find E(X).b Find Var(X).c

2 A random variable X has the following probability distribution:

x −1 0 1 2 3

Pr(X = x) k 2k 3k 2k 2k

Find k.a Find E(X).b Find Var(X).c
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3 Let X be a random variable with mean µ = 50 and variance σ2 = 25. If X1, X2, X3, X4 are
independent random variables with identical distributions to X, find:

E(X1 + X2 + X3 + X4)a Var(X1 + X2 + X3 + X4)b sd(X1 + X2 + X3 + X4)c

4 Let X be a random variable with mean µ = 30 and variance σ2 = 16. Find:

E(10X)a Var(10X)b sd(10X)c

5 To study the popularity of yoga, a researcher sent out a survey to students at her
university and asked respondents to rate their interest in undertaking a yoga course on a
scale of 1 (not at all interested) to 10 (sign me up today). Do you think that this sample
will be representative of all the students at that university? Explain your answer.

6 Medical researchers were interested in the amount of water consumed by people with
Type II diabetes, which they suspect may be more than the 1 litre per day average
observed in the general population. They randomly selected a sample of 50 people with
Type II diabetes and found their average daily water consumption was 1.5 litres per day.

a What is the population of interest here?
b Why did the researchers select a sample rather than studying the entire population?
c What is the value of the population mean µ?
d What is the value of the sample mean x̄?

7 The mean height of females in a certain large population is unknown. A sample
of 100 randomly chosen females was found to have a mean height of x̄ = 1.62 m.
A second sample of 100 randomly chosen females (different from the first sample) was
found to have a mean height of x̄ = 1.58 m. Find an estimate of µ, the population mean.

8 A random variable X has a mean of 10 and a standard deviation of 2. Find the mean and
standard deviation of the sample mean X̄ for each of the following sample sizes:

n = 9a n = 25b n = 100c

Multiple-choice questions

1 The random variable X has the probability

distribution shown, where 0 < p <
1
2

.

The mean of X is

x −1 0 1

Pr(X = x) p p 1 − 2p

1A 0B 1 − 3pC 1 − pD 1 + 2pE

2 A random variable X is such that E(X) = 1.5 and E(X2) = 2.89. The standard deviation
of X is equal to

1.7A
√

1.39B 0.64C 0.7D 0.8E
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The following information relates to Questions 3–4.

Suppose that the amount, $X, that you win when you
play a certain game of chance has the probability
distribution shown on the right.

x −1 0 25

Pr(X = x) 0.7 0.2 0.1

3 If you play the game twice, the possible values for the total amount won (in dollars) are

−2, 0, 50A −2, −1, 0, 50B −1, 0, 25C
−2, −1, 0, 24, 25, 50D −2, −1, 25, 50E

4 If you play the game twice, the probability of winning a total of $25 is

0A 0.1B 0.2C 0.02D 0.04E

The following information relates to Questions 5–7.

Consider the discrete random variable X
with the probability distribution shown on
the right.

x −1 0 1 2

Pr(X = x) 0.2 0.3 0.3 0.2

5 If X1, X2, X3, X4 are independent random variables with identical distributions to X, then
the expected value of the sum X1 + X2 + X3 + X4 is equal to

0A 0.5B 0.125C 2.0D 2.5E

6 The expected value of 5X is equal to

0A 0.1B 2.5C 0.5D 3.0E

7 The variance of 5X is equal to

2.5A 1.05B 5.123C 5.25D 26.25E

8 In order to estimate the ratio of males to females at a school, a teacher determines the
number of males and the number of females in a particular class. The ratio that he then
calculates is called a

sampleA sample statisticB population parameterC
populationD sample parameterE

9 In a complete census of the population of a particular community, it is found that
59% of families have two or more children. Here ‘59%’ represents the value of a

sampleA sample statisticB population parameterC
populationD sample parameterE

10 Which of the following statements is true?

A We use sample statistics to estimate population parameters.
B We use sample parameters to estimate population statistics.
C We use population parameters to estimate sample statistics.
D We use population statistics to estimate sample parameters.
E None of the above.
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11 A sampling distribution can best be described as a distribution which

A gives the most likely value of the sample statistic
B describes how a statistic’s value will change from sample to sample
C describes how samples do not give reliable estimates
D gives the distribution of the values observed in a particular sample
E None of the above.

12 A market research company has decided to increase the size of the random sample of
Australians that it will select for a survey, from about 1000 people to about 1500 people.
What is the effect of this increase in sample size?

A The increase will ensure that the sampling distribution is symmetric.
B The effect cannot be predicted without knowing the population size.
C There will be no effect as the population size is the same.
D The variability of the sample estimate will increase, as more people are involved.
E The variability of the sample estimate will decrease.

13 Suppose a random variable X has mean µ = 8 and standard deviation σ = 2.5. The mean
and standard deviation of the sample mean X̄ for a sample size of 100 are

E(X̄) = 8, sd(X̄) = 2.5A E(X̄) = 0.08, sd(X̄) = 0.025B
E(X̄) = 8, sd(X̄) = 0.25C E(X̄) = 8, sd(X̄) = 0.025D
E(X̄) = 0.8, sd(X̄) = 0.25E

Extended-response questions

1 At the Fizzy Drinks Company, the volume of soft drink in a 1 litre bottle is normally
distributed with mean µ = 1 litre and standard deviation σ = 0.01 litres.

a Use your calculator to simulate 100 values of the sample mean calculated from a
random sample of 25 bottles from this company. Summarise the values obtained in
a dotplot.

b Use your dotplot from part a to estimate:

i Pr(X̄ ≥ 1.003)
ii Pr(X̄ ≤ 0.995)

c Repeat the simulation carried out in part a but this time using samples of 50 bottles.
Summarise the values obtained in a dotplot.

d Use your dotplot from part c to estimate:

i Pr(X̄ ≥ 1.003)
ii Pr(X̄ ≤ 0.995)

e Compare your answers to parts b and d.
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2 For a certain type of mobile phone, the length of time between charges of the battery is
normally distributed with a mean of 50 hours and a standard deviation of 5 hours.

a i Use your calculator to simulate 100 values of the sample mean calculated from a
sample of 20 phones.

ii Summarise the values obtained in part i in a dotplot.
iii Determine the mean and standard deviation of this sampling distribution.

b i Use your calculator to simulate 100 values of the sample mean calculated from a
sample of 50 phones.

ii Summarise the values obtained in part i in a dotplot.
iii Determine the mean and standard deviation of this sampling distribution.

c i Use your calculator to simulate 100 values of the sample mean calculated from a
sample of 100 phones.

ii Summarise the values obtained in part i in a dotplot.
iii Determine the mean and standard deviation of this sampling distribution.

d It can be shown theoretically that the standard deviation of the sampling distribution
is inversely proportional to

√
n, where n is the sample size. Use your answers to

parts a–c to demonstrate this relationship.

3 Samar has determined the following probability distribution for the number of cups of
coffee, X, that he drinks in a day.

x 0 1 2

Pr(X = x) 0.1 0.6 0.3

a Find the mean, variance and standard deviation of X.

Suppose that the number of cups of coffee that Samar drinks on one day is independent
of the number he drinks on any other day.

b i Find the probability distribution of the total number of cups of coffee that Samar
drinks over a weekend (that is, over two days).

ii Find the probability that he drinks more than three cups of coffee over a
weekend.

iii Find the mean and variance of the total number of cups of coffee he drinks over a
weekend.

iv Find the mean and variance of the average number of cups of coffee he drinks per
day over a weekend.

c i Find the mean and variance of the total number of cups of coffee that Samar
drinks over a week (that is, over seven days).

ii Find the mean and variance of the average number of cups of coffee he drinks per
day over a week.



15
Trigonometric ratios
and applications

Objectives
I To solve practical problems using the trigonometric ratios.

I To use the sine rule and the cosine rule to solve problems.

I To find the area of a triangle given two sides and the included angle.

I To find the length of an arc and the length of a chord of a circle.

I To find the area of a sector and the area of a segment of a circle.

I To solve problems involving angles of elevation and angles of depression.

I To identify the line of greatest slope of a plane.

I To solve problems in three dimensions, including determining the angle between
two planes.

Trigonometry deals with the side lengths and angles of a triangle: the word trigonometry
comes from the Greek words for triangle and measurement.

You have studied the four standard congruence tests for triangles in earlier years. If you have
the information about a triangle given in one of the congruence tests, then the triangle is
uniquely determined (up to congruence). You can find the unknown side lengths and angles
of the triangle using the sine rule or the cosine rule. In this chapter, we establish these rules,
and apply them in two- and three-dimensional problems.

We also apply trigonometry to circles. We find the lengths and angles associated with arcs
and chords of circles, and we find the areas of sectors and segments of circles.

Note: An introduction to sine, cosine and tangent as functions is given in Mathematical
Methods Units 1 & 2.
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15A Reviewing trigonometry
In this section we review sine, cosine and tangent for angles between 0◦ and 180◦.

Defining sine and cosine
The unit circle is a circle of radius 1 with centre at the origin.

We can define the sine and cosine of any angle by using the
unit circle. x

y

(–1, 0) O

(0, 1)

(1, 0)

(0, –1)

Unit-circle definition of sine and cosine

For each angle θ◦, there is a point P on the unit circle
as shown. The angle is measured anticlockwise from
the positive direction of the x-axis.

� cos(θ◦) is defined as the x-coordinate of the point P

� sin(θ◦) is defined as the y-coordinate of the point P

P(cos(θ°), sin(θ°))

θ° x

y

O

The trigonometric ratios
For acute angles, the unit-circle definition of sine and cosine given above is equivalent to the
ratio definition.

For a right-angled triangle OBC, we can construct a similar
triangle OB′C′ that lies in the unit circle. From the diagram:

B′C′ = sin(θ◦) and OC′ = cos(θ◦)

As triangles OBC and OB′C′ are similar, we have

BC
OB

=
B′C′

1
and

OC
OB

=
OC′

1

BC
OB

= sin(θ◦) and
OC
OB

= cos(θ◦)∴

B¢

O C¢ C

B

1

θ°

This gives the ratio definition of sine and cosine for a right-angled triangle. The naming of
sides with respect to an angle θ◦ is as shown.

sin(θ◦) =
opposite

hypotenuse

cos(θ◦) =
adjacent

hypotenuse

tan(θ◦) =
opposite
adjacent

θ°

B

O C

hypotenuse

adjacent

opposite



15A Reviewing trigonometry 479

Obtuse angles
From the unit circle, we see that

sin(180 − θ)◦ = sin(θ◦)

cos(180 − θ)◦ = − cos(θ◦)

For example:

sin 135◦ = sin 45◦

cos 135◦ = − cos 45◦

y

O 1−1

1

−1

θ°

(cos(θ°), sin(θ°))
(180 − θ)°

(cos(180 − θ)°, sin(180 − θ)°)

x

In this chapter, we will generally use the ratio definition of tangent for acute angles. But we
can also find the tangent of an obtuse angle by defining

tan θ =
sin θ
cos θ

We will not consider angles greater than 180◦ or less than 0◦ in this chapter, since we are
dealing with triangles.

Solving right-angled triangles
Here we provide some examples of using the trigonometric ratios.

Find the value of x correct to
two decimal places.

a Find the length of the hypotenuse correct
to two decimal places.

b

B

x cm 

C

80 cm

A
29.6°

CA

B

15°
10 cm

Example 1

Solution
x

80
= sin 29.6◦

∴ x = 80 sin 29.6◦

= 39.5153 . . .

Hence x = 39.52, correct to
two decimal places.

a
10
AB

= cos 15◦

10 = AB cos 15◦

∴ AB =
10

cos 15◦

= 10.3527 . . .

The length of the hypotenuse is 10.35 cm,
correct to two decimal places.

b
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Find the magnitude of ∠ABC.
A

B C3 cm

11 cm

x°

Example 2

Solution

tan x =
11
3

∴ x = tan−1
(11

3

)
= (74.7448 . . . )◦

Hence x = 74.74◦, correct to two decimal places.

Exercise 15A

1Example 1

Example 2

Find the value of x in each of the following:

x cm

5 cm

35°

a
10 cm

x cm

5°

b

x cm

20.16°
8 cm

c

x cm

7 cm
30.25°

d

x°
15 cm

10 cm

e

10 cm

40°
x cm 

f

2 An equilateral triangle has altitudes of length 20 cm. Find the length of one side.

3 The base of an isosceles triangle is 12 cm long and the equal sides are 15 cm long. Find
the magnitude of each of the three angles of the triangle.
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4 A pole casts a shadow 20 m long when the altitude of the
sun is 49◦. Calculate the height of the pole.

20 m

pole

49°

5 This figure represents a ramp.

a Find the magnitude of angle ACB.
b Find the distance BC.

A

BC

6 m
1 m

6 This figure shows a vertical mast PQ, which stands on horizontal
ground. A straight wire 20 m long runs from P at the top of the
mast to a point R on the ground, which is 10 m from the foot of
the mast.

a Calculate the angle of inclination, θ◦, of the wire to the ground.
b Calculate the height of the mast.

20 m

10 mR

P

Q
θ°

7 A ladder leaning against a vertical wall makes an angle of 26◦ with the wall. If the foot
of the ladder is 3 m from the wall, calculate:

a the length of the ladder
b the height it reaches above the ground.

8 An engineer is designing a straight concrete entry ramp, 60 m long, for a car park that is
13 m above street level. Calculate the angle of the ramp to the horizontal.

9 A vertical mast is secured from its top by straight cables 200 m long fixed at the ground.
The cables make angles of 66◦ with the ground. What is the height of the mast?

10 A mountain railway rises 400 m at a uniform slope of 16◦ with the horizontal. What is
the distance travelled by a train for this rise?

11 The diagonals of a rhombus bisect each other at
right angles. If BD = AC = 10 cm, find:

a the length of the sides of the rhombus
b the magnitude of angle ABC.

A D

B C
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12 A pendulum swings from the vertical through an angle
of 15◦ on each side of the vertical. If the pendulum is
90 cm long, what is the distance, x cm, between its highest
and lowest points?

90 cm 90 cm

x cm 

13 A picture is hung symmetrically by means of a string
passing over a nail, with the ends of the string attached
to two rings on the upper edge of the picture. The
distance between the rings is 30 cm, and the string
makes an angle of 105◦ at the nail. Find the length of
the string.

105°
30 cm

14 The distance AB is 50 m. If the line of sight to the tree
of a person standing at A makes an angle of 32◦ with
the bank, how wide is the river?

50 mB A
32°

15 A ladder 4.7 m long is placed against a wall. The foot of the ladder must not be placed
in a flower bed, which extends a distance of 1.7 m out from the base of the wall. How
high up the wall can the ladder reach?

16 A river is known to be 50 m wide. A swimmer
sets off from A to cross the river, and the path of
the swimmer AB is as shown. How far does the
person swim?

50 m

B

A

60°

17 A rope is tied to the top of a flagpole. When it hangs straight down, it is 2 m longer than
the pole. When the rope is pulled tight with the lower end on the ground, it makes an
angle of 60◦ to the horizontal. How tall is the flagpole?

18 The triangle shown has perimeter 10. Find the value of x.

30°
x

19 Consider the circle with equation x2 + y2 − 4y = 0 and the point P(5, 2). Draw a diagram
to show the circle and the two lines from P that are tangent to the circle. Find the angle
between the two tangent lines, ∠APB, where A and B are the two points of contact.
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15B The sine rule
In the previous section, we focused on right-angled triangles. In this section and the next,
we consider non-right-angled triangles.

The sine rule is used to find unknown side lengths or angles of a triangle in the following
two situations:

1 one side and two angles are given
2 two sides and a non-included angle are given (that is, the given angle is not ‘between’ the

two given sides).

In the first case, the triangle is uniquely defined up to congruence. In the second case, there
may be two triangles.

Labelling triangles
The following convention is used in the remainder of this chapter:

� Interior angles are denoted by uppercase letters.
� The length of the side opposite an angle is denoted by the

corresponding lowercase letter.

B

A C

ac

b

For example, the magnitude of angle BAC is denoted by A, and the length of side BC is
denoted by a.

Sine rule

For triangle ABC:

a
sin A

=
b

sin B
=

c
sin C

B

A C

ac

b

Proof We will give a proof for acute-angled triangles. The proof for obtuse-angled triangles
is similar.

In triangle ACD:

sin A =
h
b

h = b sin A∴

In triangle BCD:

sin B =
h
a

a sin B = b sin A∴

a
sin A

=
b

sin B
i.e.

C

a

B

hb

A D

Similarly, starting with a perpendicular from A to BC would give
b

sin B
=

c
sin C
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One side and two angles
When one side and two angles are given, this corresponds to the AAS congruence test. The
triangle is uniquely defined up to congruence.

Use the sine rule to find the length of AB. B

70°
c

A 10 cm
31° C

Example 3

Solution
c

sin 31◦
=

10
sin 70◦

∴ c =
10 sin 31◦

sin 70◦

= 5.4809 . . .

The length of AB is 5.48 cm, correct to two decimal places.

Two sides and a non-included angle
Suppose that we are given the two side lengths 7 m and 9 m and a non-included angle of 45◦.
There are two triangles that satisfy these conditions, as shown in the diagram.

9 m

7 m

A

B
45°

C C ¢

7 m

Warning

� When you are given two sides and a non-included angle, you must consider the
possibility that there are two such triangles.

� An angle found using the sine rule is possible if the sum of the given angle and the
found angle is less than 180◦.

Note: If the given angle is obtuse or a right angle, then there is only one such triangle.

The following example illustrates the case where there are two possible triangles.
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Use the sine rule to find the magnitude of angle XZY in the
triangle, given that Y = 25◦, y = 5 cm and z = 6 cm.

Z
5 cm

6 cm
25°

YX

Example 4

Solution

5
sin 25◦

=
6

sin Z

sin Z
6

=
sin 25◦

5

sin Z =
6 sin 25◦

5
= 0.5071 . . .

Z = (30.473 . . . )◦ or Z = (180 − 30.473 . . . )◦∴

Z1

Z2

30.47°

5 cm

X

5 cm

6 cm
25° Y

149.53°

Hence Z = 30.47◦ or Z = 149.53◦, correct to two decimal places.

Note: Remember that sin(180 − θ)◦ = sin(θ◦).

Summary 15B
� Sine rule For triangle ABC:

a
sin A

=
b

sin B
=

c
sin C

� When to use the sine rule:

• one side and two angles are given (AAS)
• two sides and a non-included angle are given.

B

A C

ac

b

Exercise 15BSkill-
sheet

1Example 3 Find the value of the pronumeral for each of the following triangles:

Y

70°

50°
X 10 cm Z

x cm

a Z

65°
y cm

X 6 cm
37°

Y

b

Z

5.6 cm

100°

x cm

Y
28°

X

c
Y X

x cm 

12 cm

Z

90°

38°
d
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2Example 4 Find the value of θ for each of the following triangles:

72°
7 cm

A 8 cm
θ°

B

Ca A

θ°

9.4 cm

C 8.3 cm
B42°

b

C

10 cm

108°

8 cm

A
θ°

B

c B

8 cm

θ°
9 cm C

38°
A

d

3 Solve the following triangles (i.e. find all sides and angles):

a = 12, B = 59◦, C = 73◦a A = 75.3◦, b = 5.6, B = 48.25◦b
A = 123.2◦, a = 11.5, C = 37◦c A = 23◦, a = 15, B = 40◦d
B = 140◦, b = 20, A = 10◦e

4 Solve the following triangles (i.e. find all sides and angles):

b = 17.6, C = 48.25◦, c = 15.3a B = 129◦, b = 7.89, c = 4.56b
A = 28.35◦, a = 8.5, b = 14.8c

5 A landmark A is observed from two points B and C, which are 400 m apart. The
magnitude of angle ABC is measured as 68◦ and the magnitude of angle ACB as 70◦.
Find the distance of A from C.

6 P is a point at the top of a lighthouse. Measurements
of the length AB and angles PBO and PAO are
as shown in the diagram. Find the height of the
lighthouse.

P

O
46.2°

B
27.6°

34 mA

7 A and B are two points on a coastline, and C is a point at sea. The points A and B are
1070 m apart. The angles CAB and CBA have magnitudes of 74◦ and 69◦ respectively.
Find the distance of C from A.

8 Find:

a AX

b AY
X

A

88° 32°
50 m

20° 89°
B

Y
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9 Use the sine rule to establish the following identities for triangles:
a + b

c
=

sin A + sin B
sin C

a
a − b

c
=

sin A − sin B
sin C

b

15C The cosine rule
The cosine rule is used to find unknown side lengths or angles of a triangle in the following
two situations:

1 two sides and the included angle are given
2 three sides are given.

In each case, the triangle is uniquely defined up to congruence.

Cosine rule

For triangle ABC:

a2 = b2 + c2 − 2bc cos A

or equivalently

cos A =
b2 + c2 − a2

2bc

B

A C

ac

b

Proof We will give a proof for acute-angled triangles. The proof for obtuse-angled triangles
is similar.

In triangle ACD:

cos A =
x
b

x = b cos A∴

Using Pythagoras’ theorem in
triangles ACD and BCD:

b2 = x2 + h2

a2 = (c − x)2 + h2

C

b h
a

B
cA D

x

Expanding gives

a2 = c2 − 2cx + x2 + h2

= c2 − 2cx + b2 (as b2 = x2 + h2)

a2 = b2 + c2 − 2bc cos A (as x = b cos A)∴

Two sides and the included angle
When two sides and the included angle are given, this corresponds to the SAS congruence
test. The triangle is uniquely defined up to congruence.
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For triangle ABC, find the length of AB in centimetres correct to
two decimal places. c

A

B

5 cm

67°
10 cm

C

Example 5

Solution

c2 = 52 + 102 − 2 × 5 × 10 cos 67◦

= 85.9268 . . .

∴ c = 9.2696 . . .

The length of AB is 9.27 cm, correct to two decimal places.

Three sides
When three sides are given, this corresponds to the SSS congruence test. The triangle is
uniquely defined up to congruence.

Find the magnitude of angle ABC.
B

12 cm

15 cm

6 cm

A C

Example 6

Solution

cos B =
a2 + c2 − b2

2ac

=
122 + 62 − 152

2 × 12 × 6

= −0.3125

∴ B = (108.2099 . . . )◦

The magnitude of angle ABC is 108.21◦, correct to two decimal places.

Summary 15C
� Cosine rule For triangle ABC:

a2 = b2 + c2 − 2bc cos A or cos A =
b2 + c2 − a2

2bc
� When to use the cosine rule:

• two sides and the included angle are given (SAS)
• three sides are given (SSS).

B

A C

ac

b
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Exercise 15CSkill-
sheet

1Example 5 Find the length of BC.
10 cm

B

15°
15 cm

CA

2Example 6 Find the magnitudes of angles ABC and ACB. B
8 cm

10 cmA

5 cm

C

3 For triangle ABC with:

a A = 60◦ b = 16 c = 30, find a

b a = 14 B = 53◦ c = 12, find b

c a = 27 b = 35 c = 46, find the magnitude of angle ABC

d a = 17 B = 120◦ c = 63, find b

e a = 31 b = 42 C = 140◦, find c

f a = 10 b = 12 c = 9, find the magnitude of angle BCA

g a = 11 b = 9 C = 43.2◦, find c

h a = 8 b = 10 c = 15, find the magnitude of angle CBA.

4 A section of an orienteering course is as shown. Find the
length of leg AB.

B

A 6 km

4 km

20° C

5 Two ships sail in different directions from a point O. At a
particular time, their positions A and B are as shown.
Find the distance between the ships at this time.

N

B

4 km

O

30°

6 km

A

6 A weight is hung from two hooks in a ceiling by
strings of length 54 cm and 42 cm, which are inclined
at 70◦ to each other. Find the distance between
the hooks. 54 cm

42 cm

70°
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7 ABCD is a parallelogram. Find the lengths of
the diagonals:

a AC

b BD

5 cmB

4 cm

48°
A D

C

8 a Find the length of diagonal BD.
b Use the sine rule to find the length of CD.

B

4 cm 5 cm
92°

6 cm

88°

D

C
A

9 Two circles of radius 7.5 cm and 6 cm have a common
chord of length 8 cm.

a Find the magnitude of angle AO′B.
b Find the magnitude of angle AOB.

A
7.5 cm

O 8 cm O¢
6 cm

B

10 Two straight roads intersect at an angle of 65◦.
A point A on one road is 90 m from the intersection
and a point B on the other road is 70 m from the
intersection, as shown.

a Find the distance of A from B.
b If C is the midpoint of AB, find the distance of C

from the intersection.

A

C

B

65°

90 m

O

70 m

15D The area of a triangle
The area of a triangle is given by

Area =
1
2
× base length × height

=
1
2

bh
A C

B

b

c a
h

By observing that h = c sin A, we obtain the following useful formula.

For triangle ABC:

Area =
1
2

bc sin A

B

A C

ac

b

That is, the area is half the product of the lengths of two sides and the sine of the angle
included between them.
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Find the area of triangle ABC shown in
the diagram.

B

140° 6.5 cm7.2 cm

A C

Example 7

Solution

Area =
1
2
× 7.2 × 6.5 sin 140◦

= 15.04 cm2 (correct to two decimal places)

Find the area of each of the following triangles, correct to three decimal places:

a A

10 cm

6.4 cm

C

8 cm

B

b 8.2 cm
70°

85°

F

D
E

c G

7 cm

I

10 cm

H
12°

Example 8

Solution
a Using the cosine rule:

82 = 6.42 + 102 − 2 × 6.4 × 10 cos C

64 = 140.96 − 128 cos C

cos C = 0.60125

∴ C◦ = (53.0405 . . . )◦ (store exact value on your calculator)

Area 4ABC =
1
2
× 6.4 × 10 × sin C

= 25.570 cm2 (correct to three decimal places)

b Note that E◦ = (180 − (70 + 85))◦ = 25◦.
Using the sine rule:

DF = sin 25◦ ×
8.2

sin 85◦

= 3.4787 . . . (store exact value on your calculator)

Area 4DEF =
1
2
× 8.2 × DF × sin 70◦

= 13.403 cm2 (correct to three decimal places)
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c Using the sine rule:

sin I = 10 ×
sin 12◦

7
= 0.2970 . . .

∴ I◦ = (180 − 17.27 . . . )◦ (since I is an obtuse angle)

= (162.72 . . . )◦ (store exact value on your calculator)

∴ G◦ = (180 − (12 + I))◦

= (5.27 . . . )◦ (store exact value on your calculator)

Area 4GHI =
1
2
× 10 × 7 × sin G

= 3.220 cm2 (correct to three decimal places)

Summary 15D
For triangle ABC:

Area =
1
2

bc sin A

B

A C

ac

b

That is, the area is half the product of the lengths of two sides and the sine of the angle
included between them.

Exercise 15DSkill-
sheet

1Example 7 Find the area of each of the following triangles:

C

70°
6 cm 4 cm

BA

a X

5.1 cm

72.8° 6.2 cm

Z

Y

b

N
3.5 cm

130°
M

8.2 cm

L

c

A

C

B

5 cm
25°

5 cm

d
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2Example 8 Find the area of each of the following triangles, correct to three decimal places:

A

B

C

5.9 cm

4.1 cm

3.2 cm

a A

B

C

9 cm

100°
7 cm

b

E

F

D

6.3 cm

55°

65°

c E

F

D

5.7 cm

5.9 cm
5.1 cm

d

5 cm

12 cm

24°

G

I

H

e

4 cm 19°
10°

G

I

H

f

15E Circle mensuration
Terminology
In the diagram, the circle has centre O.

� Chords A chord of a circle is a line segment with
endpoints on the circle; e.g. line segment AB in the
diagram. A chord passing through the centre of the circle is
called a diameter; e.g. line segment CD in the diagram.

A

C

B

OD

� Arcs Any two points on a circle divide the circle into arcs. The shorter arc is called the
minor arc and the longer is the major arc. In the diagram, arc ACB is a minor arc and
arc ADB is a major arc. The arcs DAC and DBC are called semicircular arcs.

� Segments Every chord divides the interior of a circle into two regions called segments.
The smaller is called the minor segment and the larger is the major segment. In the
above diagram, the minor segment has been shaded.

� Sectors Two radii and an arc define a region called a
sector. In this diagram, with circle centre O, the shaded
region is a minor sector and the unshaded region is a
major sector.

A

C

B

OD
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Arc length
The circle in the diagram has centre O and radius r. The arc
ACB and the corresponding chord AB are said to subtend
the angle ∠AOB at the centre of the circle.

The magnitude θ◦ of angle ∠AOB is a fraction of 360◦.
The length ` of arc ACB will be the same fraction of the
circumference of the circle, 2πr.

A

O

r 

C

B

D θ°

Length of an arc using degrees

` =
θ

360
× 2πr

=
πrθ
180

(where θ is measured in degrees)

Radian measure of angles is introduced in Mathematical Methods Units 1 & 2.

We recall that, in the unit circle, an arc of length θ units subtends an angle of θ radians at the
centre. A circle of radius r is similar to the unit circle, with similarity factor r, and therefore
an arc of length rθ units subtends an angle of θ radians at the centre.

Length of an arc using radians

` = rθ (where θ is measured in radians)

Note: As there are 2π radians in a circle, the arc length is ` =
θ

2π
× 2πr = rθ.

Chord length
In triangle OAP:

AP = r sin
(
θ

2

)
∴ AB = 2r sin

(
θ

2

)
A

O

r

r

B

θ

B A

r

O

P

θ
2

Area of a sector
The magnitude θ◦ of angle ∠AOB is a fraction of 360◦. The area of
the sector will be the same fraction of the area of the circle, πr2.

Using degrees: Area of sector =
πr2θ

360

Using radians: Area of sector =
1
2

r2θ

r

A

B 

O θ°
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The circle shown has centre O and radius length 10 cm. The
angle subtended at O by arc ACB has magnitude 120◦. Find:

a i the exact length of the chord AB

ii the exact length of the arc ACB

b the exact area of the minor sector AOB

c the magnitude of angle AOC, in degrees, if the minor arc AC
has length 4 cm.

B

A

CO 

10 cm

10 cm

120°

Example 9

Solution

a i Chord length = 2r sin
(
θ

2

)
= 20 sin 60◦ since r = 10 and θ = 120◦

= 20 ×

√
3

2
= 10

√
3

Length of chord is 10
√

3 cm.

ii Arc length ` = rθ using radians

= 10 ×
2π
3

since r = 10 and θ =
2π
3

=
20π

3

Length of arc is
20π

3
cm.

Check: Verify that length of arc is greater than length of chord.

b Area of sector =
1
2

r2
θ using radians

=
1
2
× 102 ×

2π
3

since r = 10 and θ =
2π
3

=
100π

3
Area of minor sector AOB is

100π
3

cm2.

c ` = rθUsing radians:

4 = 10θ

∴ θ =
4

10

A

CO
θ

4 cm10 cm

∠AOC = 0.4 ×
180
π

Convert to degrees:

= (22.9183 . . . )◦

= 22.92◦ (correct to two decimal places)
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Area of a segment
The area of the shaded segment is found by subtracting the area
of 4AOB from the area of the minor sector OAB.

Using degrees: Area of segment =
πr2θ

360
−

1
2

r2 sin θ

Using radians: Area of segment =
1
2

r2θ −
1
2

r2 sin θ

A 

B 

r

O θ°

A circle, with centre O and radius length 20 cm, has a chord AB that is 10 cm from the
centre of the circle. Calculate the area of the minor segment formed by this chord.

Example 10

Solution
The area of the segment is

1
2

r2(θ − sin θ). We know r = 20, but we need to find θ.

cos
(
θ

2

)
=

10
20

In 4OCB:

θ

2
=
π

3

∴ θ =
2π
3

Area of segment =
1
2
× 202

(2π
3
− sin

(2π
3

))
= 200

(2π
3
−

√
3

2

)
= 200

(4π − 3
√

3
6

)
=

100(4π − 3
√

3)
3

cm2

20 cm 10 cm

A

O

B
C 

θ

Summary 15E
� Circle mensuration formulas with θ in radians

Arc length = rθ• Chord length = 2r sin
(
θ

2

)
•

Area of sector =
1
2

r2θ• Area of segment =
1
2

r2(θ − sin θ)•

� Circle mensuration formulas with θ in degrees

Arc length =
πrθ
180

• Chord length = 2r sin
(
θ

2

)
•

Area of sector =
πr2θ

360
• Area of segment =

πr2θ

360
−

1
2

r2 sin θ•
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Exercise 15ESkill-
sheet

1Example 9 Find the length of an arc which subtends an angle of magnitude 105◦ at the centre of a
circle of radius length 25 cm.

2 Find the magnitude, in degrees, of the angle subtended at the centre of a circle of radius
length 30 cm by:

a an arc of length 50 cm
b a chord of length 50 cm.

3Example 10 A chord of length 6 cm is drawn in a circle of radius 7 cm. Find:

a the length of the minor arc cut off by the chord
b the area of the smaller region inside the circle cut off by the chord.

4 Sketch, on the same set of axes, the graphs of A = { (x, y) : x2 + y2 ≤ 16 } and
B = { (x, y) : y ≥ 2 }. Find the area measure of the region A ∩ B.

5 Find the area of the region between an equilateral triangle of side length 10 cm and
the circumcircle of the triangle (the circle that passes through the three vertices of
the triangle).

6 A person stands on level ground 60 m from the nearest point of a cylindrical tank of
radius length 20 m. Calculate:

a the circumference of the tank
b the percentage of the circumference that is visible to the person.

7 The minute hand of a large clock is 4 m long.

a How far does the tip of the minute hand move between 12:10 p.m. and 12:35 p.m.?
b What is the area covered by the minute hand between 12:10 p.m. and 12:35 p.m.?

8 Two circles of radii 3 cm and 4 cm have their centres 5 cm apart. Calculate the area of
the region common to both circles.

9 A sector of a circle has perimeter 32 cm and area 63 cm2. Find the radius length and the
magnitude of the angle subtended at the centre of the two possible sectors.

10 Two wheels (pulleys) have radii of length 15 cm and 25 cm and have their centres 60 cm
apart. What is the length of the belt required to pass tightly around the pulleys without
crossing?

11 A frame in the shape of an equilateral triangle encloses three circular discs of radius
length 5 cm so that the discs touch each other. Find:

a the perimeter of the smallest frame which can enclose the discs
b the area enclosed between the discs.
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15F Angles of elevation, angles of depression and bearings
The angle of elevation is the angle between the
horizontal and a direction above the horizontal.

angle of elevation
eye level

line of sight

The angle of depression is the angle between
the horizontal and a direction below the
horizontal.

angle of depression

line of sight

eye level

cliff

The pilot of a helicopter flying at 400 m observes a small boat at an angle of depression
of 1.2◦. Calculate the horizontal distance of the boat to the helicopter.

Example 11

Solution
Note that ∠ABH = 1.2◦, using alternate angles.
Thus

AH
AB

= tan 1.2◦

400
AB

= tan 1.2◦

∴ AB =
400

tan 1.2◦

= 19 095.800 . . .

(diagram not to scale)

400 m

1.2° (angle of depression) 

A B

H

The horizontal distance is 19 100 m, correct to the nearest 10 m.

The light on a cliff-top lighthouse, known to be 75 m above sea level, is observed from a
boat at an angle of elevation of 7.1◦. Calculate the distance of the boat from the lighthouse.

Example 12

Solution

75
AB

= tan 7.1◦

∴ AB =
75

tan 7.1◦

= 602.135 . . .

75 m

A B

L

7.1°

The distance of the boat from the lighthouse is 602 m, correct to the nearest metre.
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From the point A, a man observes that the angle of elevation of the summit of a hill is 10◦.
He then walks towards the hill for 500 m along flat ground. The summit of the hill is now
at an angle of elevation of 14◦. Find the height of the hill above the level of A.

Example 13

Solution
Magnitude of ∠HBA = (180 − 14)◦ = 166◦

Magnitude of ∠AHB =
(
180− (166 + 10)

)◦
= 4◦

Using the sine rule in triangle ABH:

500
sin 4◦

=
HB

sin 10◦

∴ HB =
500 sin 10◦

sin 4◦

= 1244.67 . . .

In triangle BCH:

HC
HB

= sin 14◦

∴ HC = HB sin 14◦

= 301.11 . . .

166°
4°

14°
500 m
10°A

B C

H

The height of the hill is 301 m, correct to the nearest metre.

Bearings
The bearing (or compass bearing) is the direction measured from north clockwise.

For example:

� The bearing of A from O is 030◦.
� The bearing of B from O is 120◦.
� The bearing of C from O is 210◦.
� The bearing of D from O is 330◦.

N
AD

C

W E

S

B

30°

210°

120°

330°
O
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The road from town A runs due west for 14 km to town B. A television mast is located due
south of B at a distance of 23 km. Calculate the distance and bearing of the mast from the
centre of town A.

Example 14

Solution

tan θ =
23
14

θ = 58.67◦ (to two decimal places)∴

Thus the bearing is

180◦ + (90 − 58.67)◦ = 211.33◦

To find the distance, use Pythagoras’ theorem:

AT 2 = AB2 + BT 2

= 142 + 232

= 725

AT = 26.925 . . .∴

14 km

23 km

T

B A
θ

N

The mast is 27 km from the centre of town A (to the nearest kilometre) and on a bearing
of 211.33◦.

A yacht starts from a point A and sails on a bearing of 038◦ for 3000 m. It then alters its
course to a bearing of 318◦ and after sailing for a further 3300 m reaches a point B. Find:

a the distance AB

b the bearing of B from A.

Example 15

Solution
a The magnitude of angle ACB needs to be found so that

the cosine rule can be applied in triangle ABC:

∠ACB = (180 − (38 + 42))◦ = 100◦

In triangle ABC:

AB2 = 30002 + 33002 − 2 × 3000 × 3300 cos 100◦

= 23 328 233.917 . . .

∴ AB = 4829.931 . . .

The distance of B from A is 4830 m (to the nearest metre).

3300 m

3000 m

A

B

C

38°

42°

318°

N

N
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b To find the bearing of B from A, the magnitude of angle BAC
must first be found. Using the sine rule:

3300
sin A

=
AB

sin 100◦

sin A =
3300 sin 100◦

AB
∴

= 0.6728 . . .

A = (42.288 . . . )◦∴

The bearing of B from A = 360◦ − (42.29◦ − 38◦)

= 355.71◦

The bearing of B from A is 356◦ to the nearest degree.
A

B

C

38°
38°

42°

N

N

Exercise 15F

1Example 11 From the top of a vertical cliff 130 m high, the angle of depression of a buoy at sea
is 18◦. What is the distance of the buoy from the foot of the cliff?

2Example 12 The angle of elevation of the top of an old chimney stack at a point 40 m from its base
is 41◦. Find the height of the chimney.

3 A hiker standing on top of a mountain observes that the angle of depression to the base
of a building is 41◦. If the height of the hiker above the base of the building is 500 m,
find the horizontal distance from the hiker to the building.

4 A person lying down on top of a cliff 40 m high observes the angle of depression to a
buoy in the sea below to be 20◦. If the person is in line with the buoy, find the distance
between the buoy and the base of the cliff, which may be assumed to be vertical.

5Example 13 A person standing on top of a cliff 50 m high is in line with two buoys whose angles of
depression are 18◦ and 20◦. Calculate the distance between the buoys.

6Example 14 A ship sails 10 km north and then sails 15 km east. What is its bearing from the
starting point?

7 A ship leaves port A and travels 15 km due east. It then turns and travels 22 km
due north.

a What is the bearing of the ship from port A?
b What is the bearing of port A from the ship?

8Example 15 A yacht sails from point A on a bearing of 035◦ for 2000 m. It then alters course to a
direction with a bearing of 320◦ and after sailing for 2500 m it reaches point B.

Find the distance AB.a Find the bearing of B from A.b
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9 The bearing of a point A from a point B is 207◦. What is the bearing of B from A?

10 The bearing of a ship S from a lighthouse A is 055◦. A second lighthouse B is due east
of A. The bearing of S from B is 302◦. Find the magnitude of angle ASB.

11 A yacht starts from L and sails 12 km due east to M. It then sails 9 km on a bearing
of 142◦ to K. Find the magnitude of angle MLK.

12 The bearing of C from A is 035◦. The bearing of B from A
is 346◦. The distance of C from A is 340 km. The distance
of B from A is 160 km.

a Find the magnitude of angle BAC.
b Use the cosine rule to find the distance from B to C.

N

340 km
160 km

346°

35°

B

A

C

13 From a ship S , two other ships P and Q are on bearings 320◦ and 075◦ respectively. The
distance PS is 7.5 km and the distance QS is 5 km. Find the distance PQ.

15G Problems in three dimensions
Some problems in three dimensions can be solved by picking out triangles from a main figure
and finding lengths and angles through these triangles.

ABCDEFGH is a cuboid. Find:

a the distance DB

b the distance HB

c the magnitude of angle HBD

d the magnitude of angle HBA.

H
G

F

CD

E

A
B

7 cm

8 cm
10 cm

Example 16

Solution

a DB2 = 82 + 102

= 164

∴ DB =
√

164

= 12.81 cm (correct to two decimal places)

8 cm

10 cm

D

A B

b HB2 = HD2 + DB2

= 72 + 164

= 213

∴ HB =
√

213

= 14.59 cm (correct to two decimal places)

H

D B

7 cm

√164 cm 

q°
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c tan θ =
HD
BD

=
7
√

164

∴ θ = 28.66◦ (correct to two decimal places)

H

D Bq°

7 cm

√164 cm 

d From triangle HBA:

cos B =
10
√

213

B = 46.75◦ (correct to two decimal places)∴

H

A B
10 cm

√213 cm 

The figure shows a pyramid with a square base. The base has
sides 6 cm long and the edges VA, VB, VC and VD are each
10 cm long.

a Find the length of DB.
b Find the length of BE.
c Find the length of VE.
d Find the magnitude of angle VBE.

V

B

CD

A
E

6 cm

10 cm

Example 17

Solution

a DB2 = 62 + 62

= 72

∴ DB = 6
√

2

= 8.4852 . . . C

BA

D

E 6 cm

6 cm

b BE =
1
2

DB

= 3
√

2

= 4.2426 . . .

The length of DB is 8.49 cm,
correct to two decimal places.

The length of BE is 4.24 cm,
correct to two decimal places.

c VE2 = VB2 − BE2

= 102 −
(
3
√

2
)2

= 100 − 18

= 82

∴ VE =
√

82

= 9.0553 . . .

V

E Bθ°

10 cm

d sin θ =
VE
VB

=

√
82

10

= 0.9055 . . .

∴ θ = (64.8959 . . . )◦

The length of VE is 9.06 cm,
correct to two decimal places.

The magnitude of ∠VBE is 64.90◦,
correct to two decimal places.
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A communications mast is erected at corner A of a
rectangular courtyard ABCD with side lengths 60 m
and 45 m as shown. If the angle of elevation of the top
of the mast from C is 12◦, find:

a the height of the mast
b the angle of elevation of the top of the mast from B.

12°

60 m

45 m

H

A

B

D

C

Example 18

Solution
AC2 = 452 + 602

= 5625

∴ AC = 75

A

BC
60 m

45 m

HA
75

= tan 12◦

∴ HA = 75 tan 12◦

= 15.941 . . .

H

AC
75 m

12°

The height of the mast is 15.94 m, correct
to two decimal places.

a tan θ =
HA
45

= 0.3542 . . .

∴ θ = (19.507 . . . )◦

θ°B A

H

45 m

The angle of elevation of the top of the
mast, H, from B is 19.51◦, correct to two
decimal places.

b

Exercise 15G

1Example 16 ABCDEFGH is a cuboid with dimensions as
shown. Find:

a the length of FH b the length of BH

c the magnitude of angle BHF

d the magnitude of angle BHG.

A
B

C
D

E

H
G

F

12 cm
5 cm

8 cm

2Example 17 VABCD is a right pyramid with a square base. The sides of
the base are 8 cm in length. The height, VF, of the pyramid
is 12 cm. If E is the midpoint of AD, find:

a the length of EF

b the magnitude of angle VEF

c the length of VE

d the length of a sloping edge
e the magnitude of angle VAD

f the surface area of the pyramid.

V

C

A B

D

E F

8 cm
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3Example 18 A tree stands at a corner of a square playing field.
Each side of the square is 100 m long. At the centre
of the field, the tree subtends an angle of 20◦. What
angle does it subtend at each of the other three
corners of the field?

100 m

20°

100 m

A

B C

T

4 Suppose that A, C and X are three points in a
horizontal plane and that B is a point vertically
above X. The length of AC is 85 m and the
magnitudes of angles BAC, ACB and BCX are
45◦, 90◦ and 32◦ respectively. Find:

a the distance CB b the height XB. A

B

X

C85 m
45°

32°

5 Standing due south of a tower 50 m high, the angle of elevation of the top is 26◦. What
is the angle of elevation after walking a distance 120 m due east?

6 From the top of a cliff 160 m high, two buoys are observed. Their bearings are 337◦

and 308◦. Their respective angles of depression are 3◦ and 5◦. Calculate the distance
between the buoys.

7 Find the magnitude of each of the following angles
for the cuboid shown:

a ACE b HDF c ECH

H

E

A

D

F

C

B

G

12 cm
5 cm

6 cm

8 From a point A due north of a tower, the angle of elevation to the top of the tower is 45◦.
From point B, which is 100 m from A on a bearing of 120◦, the angle of elevation is 26◦.
Find the height of the tower.

9 A and B are two positions on level ground. From an advertising balloon at a vertical
height of 750 m, point A is observed in an easterly direction and point B at a bearing
of 160◦. The angles of depression of A and B, as viewed from the balloon, are 40◦

and 20◦ respectively. Find the distance between A and B.

10 A right pyramid, height 6 cm, stands on a square base of side length 5 cm. Find:

the length of a sloping edgea the area of a triangular face.b

11 A light aircraft flying at a height of 500 m above
the ground is sighted at a point A′ due east of an
observer at a point O on the ground, measured
horizontally to be 1 km from the plane. The aircraft
is flying south-west (along A′B′) at 300 km/h.

a How far will it travel in one minute?
b Find its bearing from O (O′) at this time.
c What will be its angle of elevation from O at this time?

A¢

A

B

O

O¢

B¢
500 m

45°

1000 m
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15H Angles between planes and more di�cult 3D problems
Angles between planes
Consider any point P on the common line of two
planes Π1 and Π2. If lines PA and PB are drawn at
right angles to the common line so that PA is in Π1

and PB is in Π2, then ∠APB is the angle between
planes Π1 and Π2.

P

B

θ

A

P1

P2

Note: If the plane Π2 is horizontal, then PA
is called a line of greatest slope in the
plane Π1.

P

A

P1

P2

lines of
greatest slope

angle of
greatest slope

For the cuboid shown in the diagram, find:

a the angle between AC′ and the plane ABB′A′

b the angle between the planes ACD′ and DCD′.

D

D

A

A B

C

C

B3a
3a

a

Example 19

Solution
a To find the angle θ between AC′ and the plane ABB′A′,

we need the projection of AC′ in the plane.

We drop a perpendicular from C′ to the plane
(line C′B′), and join the foot of the perpendicular to A
(line B′A).

D

A

A
B

C

B
θ
3a

3a

a

D C

The required angle, θ, lies between C′A and B′A.

Draw separate diagrams showing the base and the section
through A, C′ and B′. Then we see that

AB′ =
√

(3a)2 + (3a)2 = 3a
√

2

tan θ =
a

3a
√

2
=

1

3
√

2
and

Hence the required angle, θ, is 13.26◦.

A

B¢

B

A¢

3a

3a

A

a

θ
B

C

b The line common to the planes ACD′ and
DCD′ is CD′. Let M be the midpoint of
the line segment CD′.

Then MD is perpendicular to CD′ in the
plane DCD′, and MA is perpendicular to
CD′ in the plane ACD′.

D

A

M

C a

B
3a

3a

ϕ

A B

D C
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Thus ϕ is the angle between the planes DCD′ and ACD′.
We have

DM =
1
2

DC′ =
1
2
(
3a
√

2
)

tanϕ = a ÷
(3a
√

2
2

)
=

√
2

3
∴

Hence the required angle is ϕ = 25.24◦.

D

A

Mj

Three points A, B and C are on a horizontal
line such that AB = 70 m and BC = 35 m.
The angles of elevation of the top of a tower
are α, β and γ, where

tanα =
1
13

, tan β =
1
15

, tan γ =
1
20

as shown in the diagram.

The base of the tower is at the same level as A,
B and C. Find the height of the tower.

P

A C
B

Q

70 m 35 m

b
g

a

Example 20

Solution
Let the height of the tower, PQ, be h m. Then

h = QA tanα = QB tan β = QC tan γ

which implies that

QA = 13h, QB = 15h, QC = 20h

Now consider the base triangle ACQ.

Q

A B
C

15h

35 m70 m

13h 20h

q

Using the cosine rule in 4AQB:

cos θ =
(70)2 + (15h)2 − (13h)2

2(70)(15h)

Using the cosine rule in 4CQB:

− cos θ = cos(180◦ − θ) =
(35)2 + (15h)2 − (20h)2

2(35)(15h)
Hence

(70)2 + (15h)2 − (13h)2

2(70)(15h)
=

(20h)2 − (15h)2 − (35)2

2(35)(15h)

4900 + 56h2 = 2(175h2 − 1225)

7350 = 294h2

∴ h = 5

The height of the tower is 5 m.
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A sphere rests on the top of a vertical cylinder which is open at the top. The inside
diameter of the cylinder is 8 cm. The sphere projects 8 cm above the top of the cylinder.
Find the radius length of the sphere.

Example 21

Solution
This 3D problem can be represented by a 2D diagram without loss of information.

Let the radius length of the sphere be r cm. Then, in 4OBC,
we have

OC = (8 − r) cm, BC = 4 cm, OB = r cm

Using Pythagoras’ theorem:

(8 − r)2 + 42 = r2

64 − 16r + r2 + 16 = r2

−16r + 80 = 0

∴ r = 5

The radius length of the sphere is 5 cm.

A B
C

O 8 cm

8 cm 

A box contains two standard golf balls that fit snugly inside. The box is 85 mm long. What
percentage of the space inside the box is air?

Example 22

Solution
Two 2D diagrams may be used to
represent the 3D situation.

Let r mm be the radius length of a
golf ball.

Length of box = 85 mm = 4r mm

Thus r =
85
4

, i.e. r = 21.25

side view end view

85 mm

So the box has dimensions 85 mm by 42.5 mm by 42.5 mm.

volume of box = 42.52 × 85 using V = AhNow

volume of two golf balls = 2 ×
4
3
× π × 21.253 using V =

4
3
πr3

=
8
3
π × 21.253

percentage air =
100

(
42.52 × 85 − 8

3π × 21.253)
42.52 × 85

= 47.6% to one decimal place

Hence
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Exercise 15H

1Example 19 The diagram shows a rectangular prism. Assume that
AB = 4a units, BC = 3a units, GC = a units.

a Calculate the areas of the faces ABFE, BCGF
and ABCD.

b Calculate the magnitude of the angle which plane
GFAD makes with the base.

H

E

A

D
F

B

C

G

c Calculate the magnitude of the angle which plane HGBA makes with the base.
d Calculate the magnitude of the angle which AG makes with the base.

2 VABCD is a right pyramid with square base ABCD, and
with AB = 2a and OV = a.

a Find the slope of the edge VA. That is, find the
magnitude of ∠VAO.

b Find the slope of the face VBC.

D
O

B

C

V

A

3 A hill has gradient
5
12

. If BF makes an angle of 45◦ with

the line of greatest slope, find:

a the gradient of BF

b the magnitude of ∠FBD.

F E

C

12

5

BA

D

4 The cross-section of a right prism is an isosceles triangle ABC with AB = BC = 16 cm
and ∠ABC = 58◦. The equal edges AD, BE and CF are parallel and of length 12 cm.
Calculate:

a the length of AC

b the length of AE

c the magnitude of the angle between AE and EC.

5Example 20 A vertical tower, AT , of height 50 m, stands at a point A on a horizontal plane. The
points A, B and C lie on the same horizontal plane, where B is due west of A and C is
due south of A. The angles of elevation of the top of the tower, T , from B and C are 25◦

and 30◦ respectively.

a Giving answers to the nearest metre, calculate the distances:

i AB ii AC iii BC

b Calculate the angle of elevation of T from the midpoint, M, of AB.

6 A right square pyramid, vertex O, stands on a square base ABCD. The height is 15 cm
and the base side length is 10 cm. Find:

a the length of the slant edge
b the inclination of a slant edge to the base
c the inclination of a sloping face to the base
d the magnitude of the angle between two adjacent sloping faces.
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7 A post stands at one corner of a rectangular courtyard. The elevations of the top of the
post from the nearest corners are 30◦ and 45◦. Find the elevation from the diagonally
opposite corner.

8 VABC is a regular tetrahedron with base 4ABC. (All faces are equilateral triangles.)
Find the magnitude of the angle between:

a a sloping edge and the base
b adjacent sloping faces.

9 An observer at a point A at sea level notes an aircraft due east at an elevation of 35◦.
At the same time an observer at B, which is 2 km due south of A, reports the aircraft on
a bearing of 50◦. Calculate the altitude of the aircraft.

10 ABFE represents a section of a ski run which has
a uniform inclination of 30◦ to the horizontal, with
AE = 100 m and AB = 100 m. A skier traverses the
slope from A to F. Calculate:

a the distance that the skier has traversed
b the inclination of the skier’s path to the horizontal.

A

D

E F

C

B

11Example 21 A sphere of radius length 8 cm rests on the top of a hollow inverted cone of height
15 cm whose vertical angle is 60◦. Find the height of the centre of the sphere above the
vertex of the cone.

12Example 22 Four congruent spheres, radius length 10 cm, are placed on a horizontal table so that
each touches two others and their centres form a square. A fifth congruent sphere rests
on top of them. Find the height of the top of this fifth sphere above the table.

13 A cube has edge length a cm. What is the radius length, in terms of a, of:

a the sphere that just contains the cube
b the sphere that just fits inside the cube?

14 In the diagram, the edge AB is vertical, 4BCD is
horizontal, ∠CBD is a right angle and AB = 20 m,
BD = 40 m, BC = 30 m. Calculate the inclination to
the horizontal of:

a AD

b AE, where AE is the line of greatest slope
c AE, where E is the midpoint of CD.

A

B
D

E
C
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Assign-
ment

Nrich

Chapter summary

Triangles
� Labelling triangles
• Interior angles are denoted by uppercase letters.
• The length of the side opposite an angle is denoted by the

corresponding lowercase letter.

For example, the magnitude of angle BAC is denoted by A,
and the length of side BC by a.

B

A C
b

c a

� Sine rule
For triangle ABC:

a
sin A

=
b

sin B
=

c
sin C

A
C

B

b

c a

The sine rule is used to find unknown quantities in a triangle in the following cases:

• one side and two angles are given
• two sides and a non-included angle are given.

In the first case, the triangle is uniquely defined. But in the second case, there may be
two triangles.

� Cosine rule
For triangle ABC:

a2 = b2 + c2 − 2bc cos A

cos A =
b2 + c2 − a2

2bc

A
C

B

b

c a

The symmetrical results also hold:

b2 = a2 + c2 − 2ac cos B

c2 = a2 + b2 − 2ab cos C

The cosine rule is used to find unknown quantities in a triangle in the following cases:

• two sides and the included angle are given
• three sides are given.

� Area of a triangle

Area =
1
2

bh

Area =
1
2

bc sin A
A C

B

b

c a
h

That is, the area of a triangle is half the product of the lengths of two sides and the sine of
the angle included between them.
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Circles
� Length of minor arc AB (red curve) is given by

` = rθ

� Area of sector AOB (shaded) is given by

Area =
1
2

r2
θ

O

r
A

B

ℓqc

� Length of chord AB (red line) is given by

` = 2r sin
(
θ

2

)
� Area of segment (shaded) is given by

Area =
1
2

r2(θ − sin θ)

O

r
A

B

qc

Angle between planes
� Consider any point P on the common line of

two planes Π1 and Π2. If lines PA and PB are
drawn at right angles to the common line so
that PA is in Π1 and PB is in Π2, then ∠APB is
the angle between Π1 and Π2.

P

B

θ

A

P1

P2

� If plane Π2 is horizontal, then PA is called
a line of greatest slope in plane Π1.

P

A

P1

P2

lines of
greatest slope

angle of
greatest slope

Technology-free questions

1 a Find x.
b Find y.

A C

B

10 cm

x cm
30° y°

6 cm

2 a Find ∠ABC and ∠ACB.
b Find the length of side AB.
c Find the distance CM, where M is the midpoint of

side AB. B

A

C40 cm

40 cm
30°
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3 From a port P, a ship Q is 20 km away on a bearing of 112◦, and a ship R is 12 km away
on a bearing of 052◦. Find the distance between the two ships.

4 In a quadrilateral ABCD, AB = 5 cm, BC = 5 cm, CD = 7 cm, B = 120◦ and C = 90◦.
Find:

the length of the diagonal ACa the area of triangle ABCb
the area of triangle ADCc the area of the quadrilateral.d

5 If sin x = sin 37◦ and x is obtuse, find x.

6 A point T is 10 km due north of a point S . A point R, which is east of the straight line
joining T and S , is 8 km from T and 7 km from S . Calculate the cosine of the bearing
of R from S .

7 In 4ABC, AB = 5 cm, ∠BAC = 60◦ and AC = 6 cm. Calculate the sine of ∠ABC.

8 The area of a sector of a circle with radius 6 cm is 33 cm2. Calculate the angle of
the sector.

9 The diagram shows two survey points, A
and B, which are on an east–west line on
level ground. From point A, the bearing
of a tower T is 060◦, while from point B,
the bearing of the tower is 045◦.

a i Find the magnitude of ∠T AB.
ii Find the magnitude of ∠AT B.

b Given that sin 15◦ =

√
6 −
√

2
4

, find the
distances AT and BT .

N

A B

N T

300 m

60° 45°

10 A boat sails 11 km from a harbour on a bearing of 220◦. It then sails 15 km on a bearing
of 340◦. How far is the boat from the harbour?

11 A helicopter leaves a heliport A and flies 2.4 km on a bearing of 150◦ to a checkpoint B.
It then flies due east to its base C.

a If the bearing of C from A is 120◦, find the distances AC and BC.
b The helicopter flies at a constant speed throughout and takes five minutes to fly

from A to C. Find its speed.

12 A sector of a circle has an arc length of 30 cm. If the radius of the circle is 12 cm, find
the area of the sector.

13 A chord PQ of a circle, radius 5 cm, subtends an angle of 2 radians at the centre of the
circle. Taking π to be 3.14, calculate the length of the major arc PQ, correct to one
decimal place.
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14 The diagram shows a circle of radius length 13 cm and
a chord AB of length 24 cm. Calculate:

a the length of arc ACB

b the area of the shaded region.

A
C

B
O

24

13

13

15 From a cliff top 11 m above sea level, two boats are observed. One has an angle of
depression of 45◦ and is due east, the other an angle of depression of 30◦ on a bearing
of 120◦. Calculate the distance between the boats.

Multiple-choice questions

1 In a triangle XYZ, x = 21 cm, y = 18 cm and ∠YXZ = 62◦. The magnitude of ∠XYZ,
correct to one decimal place, is

0.4◦A 0.8◦B 1.0◦C 49.2◦D 53.1◦E

2 In a triangle ABC, a = 30, b = 21 and cos C =
51
53

. The value of c, to the nearest whole
number, is

9A 10B 11C 81D 129E

3 In a triangle ABC, a = 5.2 cm, b = 6.8 cm and c = 7.3 cm. The magnitude of ∠ACB,
correct to the nearest degree, is

43◦A 63◦B 74◦C 82◦D 98◦E

4 The area of the triangle ABC, where b = 5 cm, c = 3 cm, ∠A = 30◦ and ∠B = 70◦, is

2.75 cm2A 3.75 cm2B 6.5 cm2C 7.5 cm2D 8 cm2E

5 The length of the radius of the circle shown, correct to two
decimal places, is

A 5.52 cm B 8.36 cm C 9.01 cm
D 12.18 cm E 18.13 cm

10 cm

130°

6 A chord of length 5 cm is drawn in a circle of radius 6 cm. The area of the smaller
region inside the circle cut off by the chord, correct to one decimal place, is

1.8 cm2A 2.3 cm2B 3.9 cm2C 13.6 cm2D 15.5 cm2E
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7 From a point on a cliff 500 m above sea level, the angle of depression to a boat is 20◦.
The distance from the foot of the cliff to the boat, to the nearest metre, is

182 mA 193 mB 210 mC 1374 mD 1834 mE

8 A tower 80 m high is 1.3 km away from a point on the ground. The angle of elevation to
the top of the tower from this point, correct to the nearest degree, is

1◦A 4◦B 53◦C 86◦D 89◦E

9 A man walks 5 km due east followed by 7 km due south. The bearing he must take to
return to the start is

036◦A 306◦B 324◦C 332◦D 348◦E

10 A boat sails at a bearing of 215◦ from A to B. The bearing it must take from B to return
to A is

035◦A 055◦B 090◦C 215◦D 250◦E

Extended-response questions

1 AB is a tower 60 m high on top of a hill. The magnitude
of ∠ACO is 49◦ and the magnitude of ∠BCO is 37◦.

a Find the magnitudes of ∠ACB, ∠CBO and ∠CBA.
b Find the length of BC.
c Find the height of the hill, i.e. the length of OB.

O
C

B

A

2 The angle of a sector of a circle, centre O and radius length
12 cm, has magnitude 2.5 radians. The sector is folded so
that OA and OA′ are joined to form a cone. Calculate:

a the base radius length of the cone
b the curved surface area of the cone
c the shortest distance between two points diametrically

opposite on the edge of the base.

O

2.5c

A A

3 A tower 110 m high stands on the top of a hill. From a
point A at the foot of the hill, the angle of elevation of
the bottom of the tower is 7◦ and that of the top is 10◦.

a Find the magnitudes of angles T AB, ABT and AT B.
b Use the sine rule to find the length of AB.
c Find CB, the height of the hill.

T

110 m

10°
7°

CA

B
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4 Point S is a distance of 120 m from the base of a building.
On the building is an aerial, AB. The angle of elevation
from S to A is 57◦. The angle of elevation from S to B
is 59◦. Find:

a the distance OA

b the distance OB

c the distance AB.

A

O
S

B

120 m

59°
57°

5 From the top of a communications tower, T ,
the angles of depression of two points A and B
on a horizontal line through the base of the
tower are 30◦ and 40◦. The distance between
the points is 100 m. Find:

a the distance AT

b the distance BT

c the height of the tower.

T

A B
100 m

base of tower

top of tower
40° 30°

6 Angles VBA, VBC and ABC are right angles. Find:

a the distance VA

b the distance VC

c the distance AC

d the magnitude of angle VCA.

8 cm

8 cm 6 cm

A

B
C

V

7 The perimeter of a triangle ABC is L metres. Find the area of the triangle in terms of L
and the triangle’s angles α, β and γ.
Hint: Let AB = x. Using the sine rule, first find the other side lengths in terms of x.



16
Trigonometric
identities

Objectives
I To introduce the reciprocal circular functions and use them to obtain alternative

forms of the Pythagorean identity.

I To evaluate simple trigonometric expressions using trigonometric identities.

I To prove simple trigonometric identities.

I To apply the compound angle formulas for circular functions.

I To apply the double angle formulas for circular functions.

I To simplify expressions of the form a cos x + b sin x.

I To sketch graphs of functions of the form f(x) = a cos x + b sin x.

I To solve equations of the form a cos x + b sin x = c.

I To apply the trigonometric identities for products of sines and cosines expressed as
sums or di�erences, and vice versa.

There are many interesting and useful relationships between the circular functions. The most
fundamental is the Pythagorean identity:

cos2 x + sin2 x = 1

Some of these identities were discovered a very long time ago. For example, the following
two results were discovered by the Indian mathematician Bhāskara II in the twelfth century:

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

They are of great importance in many areas of mathematics, including calculus.

Note: An introduction to sine, cosine and tangent as functions is given in Mathematical
Methods Units 1 & 2.



518 Chapter 16: Trigonometric identities

16A Reciprocal circular functions and the
Pythagorean identity
In this section we introduce the reciprocals of the basic circular functions. The graphs of
these functions appear in Chapter 17, where reciprocal functions are studied in general. Here
we use these functions in alternative forms of the Pythagorean identity.

Reciprocal circular functions
The circular functions sine, cosine and tangent can be used to form three new functions,
called the reciprocal circular functions.

Secant, cosecant and cotangent

sec θ =
1

cos θ
� cosec θ =

1
sin θ

� cot θ =
cos θ
sin θ

�

(for cos θ , 0) (for sin θ , 0) (for sin θ , 0)

Note: For cos θ , 0 and sin θ , 0, we have

cot θ =
1

tan θ
and tan θ =

1
cot θ

Find the exact value of each of the following:

sec
(2π

3

)
a cot

(5π
4

)
b cosec

(7π
4

)
c

Example 1

Solution

sec
(2π

3

)
=

1

cos
(2π

3

)
=

1

cos
(
π −

π

3

)
=

1

− cos
(π

3

)
= 1 ÷

(
−

1
2

)
= −2

a cot
(5π

4

)
=

cos
(5π

4

)
sin

(5π
4

)
=

cos
(
π +

π

4

)
sin

(
π +

π

4

)
=
−1
√

2
÷

(
−1
√

2

)
= 1

b cosec
(7π

4

)
=

1

sin
(
2π −

π

4

)
=

1

− sin
(π

4

)
= 1 ÷

(
−

1
√

2

)
= −
√

2

c

Note: In this example, we are using symmetry properties and exact values of circular
functions, which are covered in Mathematical Methods Units 1 & 2.
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Find the values of x between 0 and 2π for which:

sec x = −2a cot x = −1b

Example 2

Solution
sec x = −2

1
cos x

= −2

cos x = −
1
2

∴ x = π −
π

3
or x = π +

π

3

∴ x =
2π
3

or x =
4π
3

a cot x = −1

tan x = −1

∴ x = π −
π

4
or x = 2π −

π

4

∴ x =
3π
4

or x =
7π
4

b

Using the TI-Nspire
Check that your calculator is in radian mode. Use menu > Algebra > Solve as shown.

Note: Access sec and cot using . Access ≤ using ctrl = .

a b

Using the Casio ClassPad
The ClassPad does not recognise sec x, cosec x and cot x. These functions must be
entered as reciprocals of cos x, sin x and tan x respectively.

a � Select` from the Math1 or Math3 keyboard.

� Enter
1

cos(x)
= −2

∣∣∣ 0 ≤ x ≤ 2π and tap EXE .

b � Select` from the Math1 or Math3 keyboard.

� Enter
1

tan(x)
= −1

∣∣∣ 0 ≤ x ≤ 2π and tap EXE .

Note: The ‘for’ operator | is found in the Math3

keyboard and is used to specify a condition.
In this case, the condition is the domain
restriction.
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The Pythagorean identity
Consider a point, P(θ), on the unit circle.

By Pythagoras’ theorem:

OP2 = OM2 + MP2

1 = (cos θ)2 + (sin θ)2∴

Since this is true for all values of θ, it is called an identity.

We write (cos θ)n as cosn θ, and similarly for other circular
functions. Therefore we have:

x

y

-1

-1

1

sin θ
cos θ M 1O

P(θ)

Pythagorean identity

cos2
θ + sin2

θ = 1

We can derive other forms of this identity:

� Dividing both sides by cos2 θ gives

cos2 θ

cos2 θ
+

sin2
θ

cos2 θ
=

1
cos2 θ

1 + tan2
θ = sec2

θ∴

� Dividing both sides by sin2
θ gives

cos2 θ

sin2
θ

+
sin2

θ

sin2
θ

=
1

sin2
θ

cot2 θ + 1 = cosec2
θ∴

If cosec x =
7
4

, find cos x.a If sec x = −
3
2

and
π

2
≤ x ≤ π, find sin x.b

Example 3

Solution

Since cosec x =
7
4

, we have sin x =
4
7

.

cos2 x + sin2 x = 1Now

cos2 x +
16
49

= 1

cos2 x =
33
49

∴ cos x = ±

√
33
7

a Since sec x = −
3
2

, we have cos x = −
2
3

.

cos2 x + sin2 x = 1Now

4
9

+ sin2 x = 1

∴ sin x = ±

√
5

3

But sin x is positive for P(x) in the

2nd quadrant, and so sin x =

√
5

3
.

b
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If sin θ =
3
5

and
π

2
< θ < π, find the values of cos θ and tan θ.

Example 4

Solution

cos2
θ + sin2

θ = 1

cos2
θ +

9
25

= 1

cos2
θ =

16
25

∴

Thus cos θ = −
4
5

, since
π

2
< θ < π, and therefore tan θ =

sin θ
cos θ

= −
3
4

.

Prove that
1

1 − cos θ
+

1
1 + cos θ

= 2 cosec2 θ.

Example 5

Solution

LHS =
1

1 − cos θ
+

1
1 + cos θ

=
1 + cos θ + 1 − cos θ

1 − cos2 θ

=
2

1 − cos2 θ

=
2

sin2
θ

= 2 cosec2
θ

= RHS

Summary 16A

Reciprocal circular functions

sec θ =
1

cos θ
(for cos θ , 0)

cosec θ =
1

sin θ
(for sin θ , 0)

cot θ =
cos θ
sin θ

(for sin θ , 0)

� Pythagorean identity

cos2
θ + sin2

θ = 1

1 + tan2
θ = sec2

θ

cot2 θ + 1 = cosec2
θ

�
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Exercise 16A

1Example 1 Find the exact value of each of the following:

cot
(3π

4

)
a cosec

(5π
4

)
b sec

(5π
6

)
c

cosec
(
π

2

)
d sec

(4π
3

)
e cosec

(13π
6

)
f

cot
(7π

3

)
g sec

(5π
3

)
h

2 Without using a calculator, write down the exact value of each of the following:

cot 135◦a sec 150◦b cosec 90◦c
cot 240◦d cosec 225◦e sec 330◦f
cot 315◦g cosec 300◦h cot 420◦i

3Example 2 Find the values of x between 0 and 2π for which:

cosec x = 2a cot x =
√

3b
sec x +

√
2 = 0c cosec x = sec xd

4Example 3

Example 4

If sec θ = −
17
8

and
π

2
< θ < π, find:

cos θa sin θb tan θc

5 If tan θ = −
7
24

and
3π
2
< θ < 2π, find cos θ and sin θ.

6 Find the value of sec θ if tan θ =
2
5

and θ is not in the 1st quadrant.

7 If tan θ =
4
3

and π < θ <
3π
2

, evaluate
sin θ − 2 cos θ
cot θ − sin θ

.

8 If cos θ =
2
3

and θ is in the 4th quadrant, express
tan θ − 3 sin θ
cos θ − 2 cot θ

in simplest surd form.

9Example 5 Prove each of the following identities for suitable values of θ and ϕ:

(1 − cos2 θ)(1 + cot2 θ) = 1a cos2 θ tan2 θ + sin2
θ cot2 θ = 1b

tan θ
tanϕ

=
tan θ + cotϕ
cot θ + tanϕ

c (sin θ + cos θ)2 + (sin θ − cos θ)2 = 2d

1 + cot2 θ
cot θ cosec θ

= sec θe sec θ + tan θ =
cos θ

1 − sin θ
f
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16B Compound and double angle formulas
The compound angle formulas

Compound angle formulas for cosine

1 cos(x + y) = cos x cos y − sin x sin y

2 cos(x − y) = cos x cos y + sin x sin y

Proof Consider a unit circle as shown:

arc length AB = y units

arc length AC = x units

arc length BC = x − y units

Rotate ∆OCB so that B is coincident
with A. Then C is moved to

P
(
cos(x − y), sin(x − y)

) x

y

x − y

C

A
B

(cos x, sin x) 

−1 O

1

1

(cos y, sin y) 

Since the triangles CBO and PAO
are congruent, we have CB = PA.

Using the coordinate distance formula:

CB2 =
(
cos x − cos y

)2
+

(
sin x − sin y

)2

= 2 − 2
(
cos x cos y + sin x sin y

)
PA2 =

(
cos(x − y) − 1

)2
+

(
sin(x − y) − 0

)2

= 2 − 2 cos(x − y)

x − yP

A
O−1

x

1

(1, 0)

(cos(x − y),  sin(x − y))

y

Since CB = PA, this gives

2 − 2 cos(x − y) = 2 − 2
(
cos x cos y + sin x sin y

)
cos(x − y) = cos x cos y + sin x sin y∴

We can now obtain the first formula from the second by replacing y with −y:

cos(x + y) = cos(x − (−y))

= cos x cos(−y) + sin x sin(−y)

= cos x cos y − sin x sin y

Note: Here we used cos(−θ) = cos θ and sin(−θ) = − sin θ.

Using the TI-Nspire
Access the tExpand( ) command from menu >

Algebra > Trigonometry > Expand and complete
as shown.
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Using the Casio ClassPad
� InM, enter and highlight cos(x − y).
� Go to Interactive > Transformation > tExpand and

tap OK .

Evaluate cos 75◦.

Example 6

Solution

cos 75◦ = cos(45◦ + 30◦)

= cos 45◦ cos 30◦ − sin 45◦ sin 30◦

=
1
√

2
×

√
3

2
−

1
√

2
×

1
2

=

√
3 − 1

2
√

2

=

√
3 − 1

2
√

2
×

√
2
√

2

=

√
6 −
√

2
4

Compound angle formulas for sine

1 sin(x + y) = sin x cos y + cos x sin y

2 sin(x − y) = sin x cos y − cos x sin y

Proof We use the symmetry properties sin θ = cos
(
π

2
− θ

)
and cos θ = sin

(
π

2
− θ

)
:

sin(x + y) = cos
(
π

2
− (x + y)

)
= cos

((π
2
− x

)
− y

)
= cos

(
π

2
− x

)
cos y + sin

(
π

2
− x

)
sin y

= sin x cos y + cos x sin y

We can now obtain the second formula from the first by replacing y with −y:

sin(x − y) = sin x cos(−y) + cos x sin(−y)

= sin x cos y − cos x sin y
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Evaluate:

sin 75◦a sin 15◦b

Example 7

Solution
sin 75◦ = sin(30◦ + 45◦)

= sin 30◦ cos 45◦ + cos 30◦ sin 45◦

=
1
2
×

1
√

2
+

√
3

2
×

1
√

2

=
1 +
√

3

2
√

2

=
1 +
√

3

2
√

2
×

√
2
√

2

=

√
2 +
√

6
4

a sin 15◦ = sin(45◦ − 30◦)

= sin 45◦ cos 30◦ − cos 45◦ sin 30◦

=
1
√

2
×

√
3

2
−

1
√

2
×

1
2

=

√
3 − 1

2
√

2

=

√
3 − 1

2
√

2
×

√
2
√

2

=

√
6 −
√

2
4

b

Compound angle formulas for tangent

tan(x + y) =
tan x + tan y

1 − tan x tan y
1 tan(x − y) =

tan x − tan y
1 + tan x tan y

2

Proof To obtain the first formula, we write

tan(x + y) =
sin(x + y)
cos(x + y)

=
sin x cos y + cos x sin y
cos x cos y − sin x sin y

Now divide the numerator and denominator by cos x cos y. The second formula can
be obtained from the first by using tan(−θ) = − tan θ.

If x and y are acute angles such that tan x = 4 and tan y =
3
5

, show that x − y =
π

4
.

Example 8

Solution

tan(x − y) =
tan x − tan y

1 + tan x tan y

=
4 − 3

5

1 + 4 × 3
5

=
20 − 3

5 + 4 × 3

= 1

∴ x − y =
π

4

Note: The function tan θ is one-to-one for −
π

2
< θ <

π

2
.
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The double angle formulas
Using the compound angle formulas, we can easily derive useful expressions for sin(2x),
cos(2x) and tan(2x).

Double angle formulas for cosine

cos(2x) = cos2 x − sin2 x

= 2 cos2 x − 1 (since sin2 x = 1 − cos2 x)

= 1 − 2 sin2 x (since cos2 x = 1 − sin2 x)

Proof cos(x + x) = cos x cos x − sin x sin x

= cos2 x − sin2 x

Double angle formula for sine

sin(2x) = 2 sin x cos x

Proof sin(x + x) = sin x cos x + cos x sin x

= 2 sin x cos x

Double angle formula for tangent

tan(2x) =
2 tan x

1 − tan2 x

Proof tan(x + x) =
tan x + tan x

1 − tan x tan x

=
2 tan x

1 − tan2 x

If tan θ =
4
3

and 0 < θ <
π

2
, evaluate:

sin(2θ)a tan(2θ)b

Example 9

Solution

sin θ =
4
5

and cos θ =
3
5

∴ sin(2θ) = 2 sin θ cos θ

= 2 ×
4
5
×

3
5

=
24
25

a

5 4

3
θ

tan(2θ) =
2 tan θ

1 − tan2 θ

=
2 × 4

3

1 − 16
9

=
2 × 4 × 3

9 − 16

= −
24
7

b
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Prove each of the following identities:

a
2 sin θ cos θ

cos2 θ − sin2
θ

= tan(2θ)

b
sin θ
sinϕ

+
cos θ
cosϕ

=
2 sin(θ + ϕ)

sin(2ϕ)

c
1

cos θ + sin θ
+

1
cos θ − sin θ

= tan(2θ) cosec θ

Example 10

Solution

LHS =
2 sin θ cos θ

cos2 θ − sin2
θ

=
sin(2θ)
cos(2θ)

= tan(2θ)

= RHS

Note: Identity holds when cos(2θ) , 0.

a LHS =
sin θ
sinϕ

+
cos θ
cosϕ

=
sin θ cosϕ + cos θ sinϕ

sinϕ cosϕ

=
sin(θ + ϕ)
1
2 sin(2ϕ)

=
2 sin(θ + ϕ)

sin(2ϕ)

= RHS

Note: Identity holds when sin(2ϕ) , 0.

b

c LHS =
1

cos θ + sin θ
+

1
cos θ − sin θ

=
cos θ − sin θ + cos θ + sin θ

cos2 θ − sin2
θ

=
2 cos θ
cos(2θ)

=
2 cos θ
cos(2θ)

×
sin θ
sin θ

=
sin(2θ)

cos(2θ) sin θ

=
tan(2θ)

sin θ

= tan(2θ) cosec θ

= RHS

Note: Identity holds when cos(2θ) , 0 and sin θ , 0.

Sometimes the easiest way to prove that two expressions are equal is to simplify each of them
separately. This is demonstrated in the following example.
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Prove that
(
sec A − cos A

)(
cosec A − sin A

)
=

1
tan A + cot A

.

Example 11

Solution

LHS =
(
sec A − cos A

)(
cosec A − sin A

)
=

( 1
cos A

− cos A
)( 1

sin A
− sin A

)
=

1 − cos2 A
cos A

×
1 − sin2 A

sin A

=
cos2 A sin2 A
cos A sin A

= cos A sin A

RHS =
1

tan A + cot A

=
1

sin A
cos A

+
cos A
sin A

=
cos A sin A

sin2 A + cos2 A

= cos A sin A

We have shown that LHS = RHS.

Summary 16B

Compound angle formulas

cos(x + y) = cos x cos y − sin x sin y

cos(x − y) = cos x cos y + sin x sin y

sin(x + y) = sin x cos y + cos x sin y

sin(x − y) = sin x cos y − cos x sin y

tan(x + y) =
tan x + tan y

1 − tan x tan y

tan(x − y) =
tan x − tan y

1 + tan x tan y

� Double angle formulas

cos(2x) = cos2 x − sin2 x

= 2 cos2 x − 1

= 1 − 2 sin2 x

sin(2x) = 2 sin x cos x

tan(2x) =
2 tan x

1 − tan2 x

�

Exercise 16BSkill-
sheet

1Example 6 By using the appropriate compound angle formulas, find exact values for the following:

cos 15◦a cos 105◦b

2Example 7 By using the appropriate compound angle formulas, find exact values for the following:

sin 165◦a tan 75◦b

3 Find the exact value of:

cos
(5π

12

)
a sin

(11π
12

)
b tan

(
−
π

12

)
c

4Example 8 If sin x =
12
13

and sin y =
3
5

, evaluate sin(x + y). (Note: There is more than one answer.)
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5 Simplify the following:

sin
(
θ +

π

6

)
a cos

(
ϕ −

π

4

)
b tan

(
θ +

π

3

)
c sin

(
θ −

π

4

)
d

6 Simplify:

cos(u − v) sin v + sin(u − v) cos va sin(u + v) sin v + cos(u + v) cos vb

7Example 9 If sin θ = −
3
5

, with θ in the 3rd quadrant, and cosϕ = −
5
13

, with ϕ in the 2nd quadrant,

evaluate each of the following without using a calculator:

cos(2ϕ)a sin(2θ)b tan(2θ)c sec(2ϕ)d
sin(θ + ϕ)e cos(θ − ϕ)f cosec(θ + ϕ)g cot(2θ)h

8 For acute angles u and v such that tan u =
4
3

and tan v =
5
12

, evaluate:

tan(u + v)a tan(2u)b cos(u − v)c sin(2u)d

9 If sinα =
3
5

and sin β =
24
25

, with
π

2
< β < α < π, evaluate:

cos(2α)a sin(α − β)b tan(α + β)c sin(2β)d

10 If sin θ = −

√
3

2
and cos θ =

1
2

, evaluate:

sin(2θ)a cos(2θ)b

11 Simplify each of the following expressions:

(sin θ − cos θ)2a cos4 θ − sin4
θb

12Example 10

Example 11

Prove the following identities:
√

2 sin
(
θ −

π

4

)
= sin θ − cos θa cos

(
θ −

π

3

)
+ cos

(
θ +

π

3

)
= cos θb

tan
(
θ +

π

4

)
tan

(
θ −

π

4

)
= −1c cos

(
θ +

π

6

)
+ sin

(
θ +

π

3

)
=
√

3 cos θd

tan
(
θ +

π

4

)
=

1 + tan θ
1 − tan θ

e
sin(u + v)
cos u cos v

= tan v + tan uf

tan u + tan v
tan u − tan v

=
sin(u + v)
sin(u − v)

g cos(2θ) + 2 sin2
θ = 1h

sin(4θ) = 4 sin θ cos3 θ − 4 cos θ sin3
θi

1 − sin(2θ)
sin θ − cos θ

= sin θ − cos θj

13 a Suppose that angles x, y and x + y are all acute.
Use the diagram to show that:

i sin(x + y) = sin x cos y + cos x sin y

ii cos(x + y) = cos x cos y − sin x sin y

b Suppose that angles x, y and x − y are all acute.
Adapt the diagram to show that:

i sin(x − y) = sin x cos y − cos x sin y

ii cos(x − y) = cos x cos y + sin x sin y

x
y

x + y

1
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16C Simplifying a cos x + b sin x
In this section, we see how to rewrite the rule of a function f (x) = a cos x + b sin x in terms of
a single circular function.

a cos x + b sin x = r cos(x − α) where r =
√

a2 + b2, cosα =
a
r

and sinα =
b
r

Proof Let r =
√

a2 + b2. Consider the point P
(a

r
,

b
r

)
and its distance from the origin O:

OP2 =

(a
r

)2
+

(b
r

)2
=

a2

a2 + b2 +
b2

a2 + b2 = 1

The point P is on the unit circle, and so
a
r

= cosα and
b
r

= sinα, for some angle α.

We can now write

a cos x + b sin x = r
(a

r
cos x +

b
r

sin x
)

= r
(
cosα cos x + sinα sin x

)
= r cos(x − α)

Similarly, it may be shown that

a cos x + b sin x = r sin(x + β) where r =
√

a2 + b2, sin β =
a
r

, cos β =
b
r

Express cos x −
√

3 sin x in the form r cos(x − α). Hence find the range of the function f
with rule f (x) = cos x −

√
3 sin x and find the maximum and minimum values of f .

Example 12

Solution

Here a = 1 and b = −
√

3. Therefore

r =
√

1 + 3 = 2, cosα =
a
r

=
1
2

and sinα =
b
r

= −

√
3

2

We see that α = −
π

3
and so

f (x) = cos x −
√

3 sin x = 2 cos
(
x +

π

3

)
Thus the range of f is [−2, 2], the maximum value is 2 and the minimum value is −2.

Using the TI-Nspire
Access the tCollect( ) command from menu >

Algebra > Trigonometry > Collect and complete
as shown.
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Solve cos x −
√

3 sin x = 1 for x ∈ [0, 2π].

Example 13

Solution
From Example 12, we have

cos x −
√

3 sin x = 2 cos
(
x +

π

3

)
∴ 2 cos

(
x +

π

3

)
= 1

cos
(
x +

π

3

)
=

1
2

x +
π

3
=
π

3
,

5π
3

or
7π
3

x = 0,
4π
3

or 2π

Using the TI-Nspire
Use solve( ) from the Algebra menu as shown.

Using the Casio ClassPad
Use` and complete as shown.

Express
√

3 sin(2x) − cos(2x) in the form r sin(2x + α).

Example 14

Solution
A slightly different technique is used. Assume that

√
3 sin(2x) − cos(2x) = r sin(2x + α)

= r
(
sin(2x) cosα + cos(2x) sinα

)
This is to hold for all x.

√
3 = r cosα (1)For x =

π

4
:

−1 = r sinα (2)For x = 0:
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Squaring and adding (1) and (2) gives

r2 cos2
α + r2 sin2

α = 4

r2 = 4

∴ r = ±2

We take the positive solution. Substituting in (1) and (2) gives
√

3
2

= cosα and −
1
2

= sinα

Thus α = −
π

6
and hence

√
3 sin(2x) − cos(2x) = 2 sin

(
2x −

π

6

)
Check: Expand the right-hand side of the equation using a compound angle formula.

Summary 16C

� a cos x + b sin x = r cos(x − α) where r =
√

a2 + b2, cosα =
a
r

, sinα =
b
r

� a cos x + b sin x = r sin(x + β) where r =
√

a2 + b2, sin β =
a
r

, cos β =
b
r

Exercise 16CSkill-
sheet

1Example 12 Find the maximum and minimum values of the following:

4 cos x + 3 sin xa
√

3 cos x + sin xb
cos x − sin xc cos x + sin xd
3 cos x +

√
3 sin xe sin x −

√
3 cos xf

cos x −
√

3 sin x + 2g 5 + 3 sin x − 2 cos xh

2Example 13 Solve each of the following for x ∈ [0, 2π] or for θ ∈ [0, 360]:

sin x − cos x = 1a
√

3 sin x + cos x = 1b
sin x −

√
3 cos x = −1c 3 cos x −

√
3 sin x = 3d

4 sin θ◦ + 3 cos θ◦ = 5e 2
√

2 sin θ◦ − 2 cos θ◦ = 3f

3 Write
√

3 cos(2x) − sin(2x) in the form r cos(2x + α).

4Example 14 Write cos(3x) − sin(3x) in the form r sin(3x − α).

5 Sketch the graph of each of the following, showing one cycle:

f (x) = sin x − cos xa f (x) =
√

3 sin x + cos xb
f (x) = sin x + cos xc f (x) = sin x −

√
3 cos xd
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16D Sums and products of sines and cosines
In Section 16B, we derived the compound angle formulas for sine and cosine. We use them in
this section to obtain new identities which allow us to rewrite products of sines and cosines as
sums or differences, and vice versa.

Expressing products as sums or di�erences

Product-to-sum identities

2 cos x cos y = cos(x − y) + cos(x + y)

2 sin x sin y = cos(x − y) − cos(x + y)

2 sin x cos y = sin(x + y) + sin(x − y)

Proof We use the compound angle formulas for sine and cosine:

cos(x + y) = cos x cos y − sin x sin y (1)

cos(x − y) = cos x cos y + sin x sin y (2)

sin(x + y) = sin x cos y + cos x sin y (3)

sin(x − y) = sin x cos y − cos x sin y (4)

The first product-to-sum identity is obtained by adding (2) and (1), the second identity
is obtained by subtracting (1) from (2), and the third by adding (3) and (4).

Express each of the following products as sums or differences:

a 2 sin(3θ) cos(θ)

b 2 sin 50◦ cos 60◦

c 2 cos
(
θ +

π

4

)
cos

(
θ −

π

4

)

Example 15

Solution
a Use the third product-to-sum identity:

2 sin(3θ) cos(θ) = sin(3θ + θ) + sin(3θ − θ)

= sin(4θ) + sin(2θ)

b Use the third product-to-sum identity:

2 sin 50◦ cos 60◦ = sin 110◦ + sin(−10)◦

= sin 110◦ − sin 10◦

c Use the first product-to-sum identity:

2 cos
(
θ +

π

4

)
cos

(
θ −

π

4

)
= cos

(
π

2

)
+ cos(2θ)

= cos(2θ)
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Expressing sums and di�erences as products

Sum-to-product identities

cos x + cos y = 2 cos
( x + y

2

)
cos

( x − y
2

)
cos x − cos y = −2 sin

( x + y
2

)
sin

( x − y
2

)
sin x + sin y = 2 sin

( x + y
2

)
cos

( x − y
2

)
sin x − sin y = 2 sin

( x − y
2

)
cos

( x + y
2

)
Proof Using the first product-to-sum identity, we have

2 cos
( x + y

2

)
cos

( x − y
2

)
= cos

( x + y
2
−

x − y
2

)
+ cos

( x + y
2

+
x − y

2

)
= cos y + cos x

= cos x + cos y

The other three sum-to-product identities can be obtained similarly.

Express each of the following as products:

sin 36◦ + sin 10◦a cos 36◦ + cos 10◦b
sin 36◦ − sin 10◦c cos 36◦ − cos 10◦d

Example 16

Solution
sin 36◦ + sin 10◦ = 2 sin 23◦ cos 13◦a cos 36◦ + cos 10◦ = 2 cos 23◦ cos 13◦b
sin 36◦ − sin 10◦ = 2 cos 23◦ sin 13◦c cos 36◦ − cos 10◦ = −2 sin 23◦ sin 13◦d

Prove that
cos(θ) − cos(3θ)
sin(3θ) − sin(θ)

= tan(2θ)

Example 17

Solution

LHS =
cos(θ) − cos(3θ)
sin(3θ) − sin(θ)

=
−2 sin(2θ) sin(−θ)

2 sin(θ) cos(2θ)

=
2 sin(2θ) sin(θ)
2 sin(θ) cos(2θ)

= tan(2θ)

= RHS
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Solve the equation sin(3x) + sin(11x) = 0 for x ∈ [0,π].

Example 18

Solution

sin(3x) + sin(11x) = 0

⇔ 2 sin(7x) cos(4x) = 0

⇔ sin(7x) = 0 or cos(4x) = 0

⇔ 7x = 0,π, 2π, 3π, 4π, 5π, 6π, 7π or 4x =
π

2
,

3π
2

,
5π
2

,
7π
2

⇔ x = 0,
π

7
,

2π
7

,
3π
7

,
4π
7

,
5π
7

,
6π
7

,π,
π

8
,

3π
8

,
5π
8

or
7π
8

Summary 16D
� Product-to-sum identities

2 cos x cos y = cos(x − y) + cos(x + y)

2 sin x sin y = cos(x − y) − cos(x + y)

2 sin x cos y = sin(x + y) + sin(x − y)

� Sum-to-product identities

cos x + cos y = 2 cos
( x + y

2

)
cos

( x − y
2

)
cos x − cos y = −2 sin

( x + y
2

)
sin

( x − y
2

)
sin x + sin y = 2 sin

( x + y
2

)
cos

( x − y
2

)
sin x − sin y = 2 sin

( x − y
2

)
cos

( x + y
2

)

Exercise 16D

1Example 15 Express each of the following products as sums or differences:

2 sin(3πt) cos(2πt)a sin 20◦ cos 30◦b

2 cos
(
πx
4

)
sin

(3πx
4

)
c 2 sin

(A + B + C
2

)
cos

(A − B −C
2

)
d

2 Express 2 sin(3θ) sin(2θ) as a difference of cosines.

3 Use a product-to-sum identity to derive the expression for 2 sin
( x − y

2

)
cos

( x + y
2

)
as a

difference of sines.

4 Show that sin 75◦ sin 15◦ =
1
4

.
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5Example 16 Express each of the following as products:

sin 56◦ + sin 22◦a cos 56◦ + cos 22◦b
sin 56◦ − sin 22◦c cos 56◦ − cos 22◦d

6 Express each of the following as products:

sin(6A) + sin(2A)a cos(x) + cos(2x)b
sin(4x) − sin(3x)c cos(3A) − cos(A)d

7Example 17 Show that sin(A) + 2 sin(3A) + sin(5A) = 4 cos2(A) sin(3A).

8 For any three angles α, β and γ, show that

sin(α + β) sin(α − β) + sin(β + γ) sin(β − γ) + sin(γ + α) sin(γ − α) = 0

9 Show that cos 70◦ + sin 40◦ = cos 10◦.

10 Show that cos 20◦ + cos 100◦ + cos 140◦ = 0.

11Example 18 Solve each of the following equations for x ∈ [−π,π]:

cos(5x) + cos(x) = 0a cos(5x) − cos(x) = 0b
sin(5x) + sin(x) = 0c sin(5x) − sin(x) = 0d

12 Solve each of the following equations for θ ∈ [0,π]:

cos(2θ) − sin(θ) = 0a sin(5θ) − sin(3θ) + sin(θ) = 0b
sin(7θ) − sin(θ) = sin(3θ)c cos(3θ) − cos(5θ) + cos(7θ) = 0d

13 Prove that
sin A + sin B
cos A + cos B

= tan
(A + B

2

)
.

14 Prove the identity:

4 sin(A + B) sin(B + C) sin(C + A) = sin(2A) + sin(2B) + sin(2C)− sin(2A + 2B + 2C)

15 Prove that
cos(2A) − cos(2B)

sin(2A − 2B)
= −

sin(A + B)
cos(A − B)

.

16 Prove each of the following identities:

a
sin(A) + sin(3A) + sin(5A)
cos(A) + cos(3A) + cos(5A)

= tan(3A)

b cos2(A) + cos2(B) − 1 = cos(A + B) cos(A − B)

c cos2(A − B) − cos2(A + B) = sin(2A) sin(2B)

d cos2(A − B) − sin2(A + B) = cos(2A) cos(2B)

17 Find the sum

sin(x) + sin(3x) + sin(5x) + · · · + sin(99x)

Hint: First multiply this sum by 2 sin(x).
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Assign-
ment

Nrich

Chapter summary

� Reciprocal circular functions

sec θ =
1

cos θ
cosec θ =

1
sin θ

cot θ =
cos θ
sin θ

=
1

tan θ
(if cos θ , 0)

� Pythagorean identity

cos2
θ + sin2

θ = 1

1 + tan2
θ = sec2

θ

cot2 θ + 1 = cosec2
θ

Compound angle formulas

cos(x + y) = cos x cos y − sin x sin y

cos(x − y) = cos x cos y + sin x sin y

sin(x + y) = sin x cos y + cos x sin y

sin(x − y) = sin x cos y − cos x sin y

tan(x + y) =
tan x + tan y

1 − tan x tan y

tan(x − y) =
tan x − tan y

1 + tan x tan y

� Double angle formulas

cos(2x) = cos2 x − sin2 x

= 2 cos2 x − 1

= 1 − 2 sin2 x

sin(2x) = 2 sin x cos x

tan(2x) =
2 tan x

1 − tan2 x

�

� Linear combinations
a cos x + b sin x = r cos(x − α) where r =

√
a2 + b2, cosα =

a
r

, sinα =
b
r

a cos x + b sin x = r sin(x + β) where r =
√

a2 + b2, sin β =
a
r

, cos β =
b
r

� Product-to-sum identities

2 cos x cos y = cos(x − y) + cos(x + y)

2 sin x sin y = cos(x − y) − cos(x + y)

2 sin x cos y = sin(x + y) + sin(x − y)

� Sum-to-product identities

cos x + cos y = 2 cos
( x + y

2

)
cos

( x − y
2

)
cos x − cos y = −2 sin

( x + y
2

)
sin

( x − y
2

)
sin x + sin y = 2 sin

( x + y
2

)
cos

( x − y
2

)
sin x − sin y = 2 sin

( x − y
2

)
cos

( x + y
2

)



R
ev

ie
w

538 Chapter 16: Trigonometric identities

Technology-free questions

1 Prove each of the following identities:

sec θ + cosec θ cot θ = sec θ cosec2 θa sec θ − sin θ =
tan2 θ + cos2 θ

sec θ + sin θ
b

2 Find the values of θ ∈ [0, 2π] for which:

cosec2 θ = 4a cosec(2θ) = 2b sec(3θ) =
2
√

3
3

c cosec2(2θ) = 1d

cot2 θ = 3e cot(2θ) = −1f cosec(3θ) = −1g sec(2θ) =
√

2h

3 Solve the equation tan(θ◦) = 2 sin(θ◦) for values of θ◦ from 0◦ to 360◦.

4 If sin A =
5

13
and sin B =

8
17

, where A and B are acute, find:

cos(A + B)a sin(A − B)b tan(A + B)c

5 Find:

cos 80◦ cos 20◦ + sin 80◦ sin 20◦a
tan 15◦ + tan 30◦

1 − tan 15◦ tan 30◦
b

6 If A + B =
π

2
, find the value of:

sin A cos B + cos A sin Ba cos A cos B − sin A sin Bb

7 Prove each of the following:

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 Ba
sin θ

1 + cos θ
+

1 + cos θ
sin θ

=
2

sin θ
b

sin θ − 2 sin3
θ

2 cos3 θ − cos θ
= tan θc

8 Given that sin A =

√
5

3
and that A is obtuse, find the value of:

cos(2A)a sin(2A)b sin(4A)c

9 Prove:
1 − tan2 A
1 + tan2 A

= cos(2A)a
√

2r2(1 − cos θ) = 2r sin
(
θ

2

)
for r > 0 and θ acuteb

10 Find tan 15◦ in simplest surd form.

11 Solve each of the following equations for x ∈ [0, 2π]:

sin x + cos x = 1a sin
(1
2

x
)

cos
(1
2

x
)

= −
1
4

b

3 tan(2x) = 2 tan xc sin2 x = cos2 x + 1d

sin(3x) cos x − cos(3x) sin x =

√
3

2
e 2 cos

(
2x −

π

3

)
= −
√

3f
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12 Sketch the graph of:

y = 2 cos2 xa y = 2 sin2 xb

13 If tan A = 2 and tan(θ + A) = 4, find the exact value of tan θ.

14 a Express 2 cos θ + 9 sin θ in the form r cos(θ − α), where r > 0 and 0 < α <
π

2
.

b i Give the maximum value of 2 cos θ + 9 sin θ.
ii Give the cosine of θ for which this maximum occurs.
iii Find the smallest positive solution of the equation 2 cos θ + 9 sin θ = 1.

15 Solve each of the following equations for θ ∈ [0,π]:

sin(4θ) + sin(2θ) = 0a sin(2θ) − sin(θ) = 0b

16 Prove that
cos A − cos B
sin A + sin B

= tan
(B − A

2

)
.

Multiple-choice questions

1 cosec x − sin x is equal to

cos x cot xA cosec x tan xB 1 − sin2 xC

sin x cosec xD
1 − sin x

sin x
E

2 If cos x = −
1
3

, then the possible values of sin x are

−
2
√

2
3

,
2
√

2
3

A −
2
3

,
2
3

B −
8
9

,
8
9

C

−

√
2

3
,

√
2

3
D −

1
2

,
1
2

E

3 If cos θ =
a
b

both a and b are positive, and 0 < θ <
π

2
, then tan θ is equal to

√
a2 + b2

b
A

√
b2 − a2

a
B

a
√

b2 − a2
C

a
√

b2 + a2
D

a

b
√

b2 + a2
E

4 In the diagram, the magnitude of ∠ABX is θ,
AX = 4 cm, XC = x cm and BC = 2 cm.
Therefore tan θ is equal to

A
8

(x + 2)2 B
4
x

C 8 − x

D 8 + x E
8

√
x2 + 4

2 cm

θ

4 cm

x cm

X

C

A

B
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5 If
π

2
< A < π and π < B <

3π
2

with cos A = t and sin B = t, then sin(B + A) equals

0A 1B 2t2 − 1C 1 − 2t2D −1E

6
sin(2A)

cos(2A) − 1
is equal to

cot(2A) − 1A sin(2A) + sec(2A)B
sin A

cos A − 1
C

sin(2A) − tan(2A)D − cot AE

7 (1 + cot x)2 + (1 − cot x)2 is equal to

2 + cot(x) + 2 cot(2x)A 2B −4 cot xC
2 + cot(2x)D 2 cosec2 xE

8 If sin(2A) = m and cos A = n, then tan A is equal to
m

2n2A
n
m

B
2n
m2C

2n
m

D
2n2

m
E

9 Expressing − cos x + sin x in the form r sin(x + α), where r > 0, gives
√

2 sin
(
x +

π

4

)
A − sin

(
x +

π

4

)
B

√
2 sin

(
x +

5π
4

)
C

√
2 sin

(
x +

7π
4

)
D

√
2 sin

(
x +

3π
4

)
E

10 The product sin 25◦ cos 75◦ can be rewritten as

sin 100◦ − sin 50◦A 2
(
sin 100◦ + sin 50◦

)
B 2

(
sin 100◦ − sin 50◦

)
C

1
2
(
sin 100◦ + sin 50◦

)
D

1
2
(
sin 100◦ − sin 50◦

)
E

Extended-response questions

1 The diagram shows a rectangle ABCD inside
a semicircle, centre O and radius 5 cm, with
∠BOA = ∠COD = θ◦.

a Show that the perimeter, P cm, of the rectangle
is given by P = 20 cos θ + 10 sin θ.

b Express P in the form r cos(θ − α) and hence
find the value of θ for which P = 16.

c Find the value of k for which the area of the
rectangle is k sin(2θ) cm2.

d Find the value of θ for which the area is
a maximum.

θ° θ°
A

B C

DO

5 cm 5 cm
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2 The diagram shows a vertical section through a tent in
which AB = 1 m, BC = 2 m and ∠BAD = ∠BCD = θ.
The line CD is horizontal, and the diagram is
symmetrical about the vertical AD.

a Obtain an expression for AD in terms of θ.
b Express AD in the form r cos(θ − α), where

r is positive.
c State the maximum length of AD and the

corresponding value of θ.
d Given that AD = 2.15 m, find the value of θ for which θ > α.

A

B

C D

1 m

2 m

θ

θ

3 a Prove the identity cos(2θ) =
1 − tan2 θ

1 + tan2 θ
.

b i Use the result of a to show that 1 + x2 =
√

2x2 −
√

2, where x = tan(67 1
2 )◦.

ii Hence find the values of integers a and b such that tan(67 1
2 )◦ = a + b

√
2.

c Find the value of tan(7 1
2 )◦.

4 In the diagram, 4ABC has a right angle at B, the
length of BC is 1 unit and ∠BAC = θ.

a Find in terms of θ:

i h1 ii h2 iii h3 iv hn

b Show that the infinite sum is given by

h1 + h2 + h3 + · · · =
cos θ

1 − sin θ

A

h1

h2
h3

B C

θ

c If the value of the infinite sum is
√

2, find θ.

5 ABCDE is a regular pentagon with side length one unit.
The exterior angles of a regular pentagon each have

magnitude
2π
5

.

a i Show that the magnitude of ∠BCA is
π

5
.

ii Find the length of CA.

b i Show the magnitude of ∠DCP is
2π
5

.

B

C
P Q R

A

D E

2π
5

ii Use the fact that AC = 2CQ = 2CP + PR to show that 2 cos
(
π

5

)
= 2 cos

(2π
5

)
+ 1.

iii Use the identity cos(2θ) = 2 cos2 θ − 1 to form a quadratic equation in terms

of cos
(
π

5

)
.

iv Find the exact value of cos
(
π

5

)
.

6 a Prove each of the identities:

i cos θ =
1 − tan2( 1

2θ)

1 + tan2( 1
2θ)

ii sin θ =
2 tan( 1

2θ)

1 + tan2( 1
2θ)

b Use the results of a to find the value of tan( 1
2θ), given that 8 cos θ − sin θ = 4.



17
Graphing functions
and relations

Objectives
I To define and sketch the graphs of the inverse circular functions.

I To sketch graphs of reciprocal functions, including those of polynomial functions and
circular functions.

I To solve equations and sketch graphs involving the modulus function.

I To give locus definitions of lines, circles, parabolas, ellipses and hyperbolas, and to
find the Cartesian equations of these curves.

I To use parametric equations to describe curves in the plane.

I To understand polar coordinates and their relationship to Cartesian coordinates.

I To sketch graphs in polar form.

The extensive use of mobile phones has led to an increased awareness of potential threats to
the privacy of their users. For example, a little basic mathematics can be employed to track
the movements of someone in possession of a mobile phone.

Suppose that there are three transmission towers within range
of your mobile phone. By measuring the time taken for signals
to travel between your phone and each tower, it is possible to
estimate your distance from each tower.

In the diagram, there are towers at points A, B and C. If it is
estimated that a person is no more than 1.4 km from A, no more
than 0.8 km from B and no more than 1.2 km from C, then the
person can be located in the intersection of the three circles.

In this chapter, we will look at different ways of describing circles
and various other interesting figures.

A

B

C

1.2

1.4

0.8
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17A The inverse circular functions
As the circular functions sine, cosine and tangent are periodic, they are not one-to-one and
therefore they do not have inverse functions. However, by restricting their domains to form
one-to-one functions, we can define the inverse circular functions.

The inverse sine function: y = sin−1 x
Restricting the sine function
When the domain of the sine function is restricted to the

interval
[
−
π

2
,
π

2

]
, the resulting function is one-to-one and

therefore has an inverse function.

Note: Other intervals (defined through consecutive turning
points of the graph) could have been used for the
restricted domain, but this is the convention.

y

x

y = sin x
1

−1

π
2

−π
2

O

Defining the inverse function
The inverse of the restricted sine function is usually denoted by sin−1 or arcsin.

Inverse sine function

sin−1 x = y if sin y = x, for x ∈ [−1, 1] and y ∈
[
−
π

2
,
π

2

]
The graph of y = sin−1 x is obtained from the graph of y = sin x, x ∈

[
−
π

2
,
π

2

]
, through a

reflection in the line y = x.

y

x

y = sin x
1

−1

π
2

−π
2

O

y

x

y = sin−1x

y = sin x 

y = x 
1

−1 1

−1

π
2

π
2

π
2

O
−

π
2

−

x

y

−1 1
O

π
2

y = sin−1x

−π
2

� Domain Domain of sin−1 = range of restricted sine function = [−1, 1]

� Range Range of sin−1 = domain of restricted sine function =

[
−
π

2
,
π

2

]
� Inverse relationship
• sin(sin−1 x) = x for all x ∈ [−1, 1]

• sin−1(sin x) = x for all x ∈
[
−
π

2
,
π

2

]
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The inverse cosine function: y = cos−1 x
The standard domain for the restricted cosine function is [0,π].

The restricted cosine function is one-to-one, and its inverse is denoted by cos−1 or arccos.

Inverse cosine function

cos−1 x = y if cos y = x, for x ∈ [−1, 1] and y ∈ [0,π]

The graph of y = cos−1 x is obtained from the graph of y = cos x, x ∈ [0,π], through a
reflection in the line y = x.

y

x

y = cos x

−1

1

O
π π
2

y = x

y

x
y = cos x 

1

O

−1
−1

π

ππ
2

y = cos−1x

y

x

 

O

−1 1

π

π
2 y = cos−1x

� Domain Domain of cos−1 = range of restricted cosine function = [−1, 1]
� Range Range of cos−1 = domain of restricted cosine function = [0,π]
� Inverse relationship
• cos(cos−1 x) = x for all x ∈ [−1, 1]
• cos−1(cos x) = x for all x ∈ [0,π]

The inverse tangent function: y = tan−1 x
The domain of the restricted tangent function is

(
−
π

2
,
π

2

)
.

The restricted tangent function is one-to-one, and its inverse is denoted by tan−1 or arctan.

Inverse tangent function

tan−1 x = y if tan y = x, for x ∈ R and y ∈
(
−
π

2
,
π

2

)
The graph of y = tan−1 x is obtained from the graph of y = tan x, x ∈

(
−
π

2
,
π

2

)
, through a

reflection in the line y = x.
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y

x

y = tan x

O
π
2

π
2

−

y

O x

y = tan−1x

y = x 

y = tan x

π
2

π
2

π
2

−

π
2

−

y

x
y = tan−1x  

y = − 

O

y =

 π
2

π
2

π
2

π
2

−

� Domain Domain of tan−1 = range of restricted tangent function = R

� Range Range of tan−1 = domain of restricted tangent function =

(
−
π

2
,
π

2

)
� Inverse relationship
• tan(tan−1 x) = x for all x ∈ R

• tan−1(tan x) = x for all x ∈
(
−
π

2
,
π

2

)

Sketch the graph of each of the following functions for the maximal domain:

y = cos−1(2 − 3x)a y = tan−1(x + 2) +
π

2
b

Example 1

Solution

a cos−1(2 − 3x) is defined ⇔ −1 ≤ 2 − 3x ≤ 1

⇔ −3 ≤ −3x ≤ −1

⇔
1
3
≤ x ≤ 1

The implied domain is
[1
3

, 1
]
.

It helps to write y = cos−1
(
−3

(
x −

2
3

))
.

The graph is obtained from the graph of
y = cos−1 x by the following sequence of
transformations:

� a dilation of factor 1
3 from the y-axis

� a reflection in the y-axis
� a translation of 2

3 units in the positive
direction of the x-axis.

y

x

(1, π)

O 11
3
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b The domain of tan−1 is R.

The graph of

y = tan−1(x + 2) +
π

2
is obtained from the graph of y = tan−1 x by a
translation of 2 units in the negative direction
of the x-axis and

π

2
units in the positive

direction of the y-axis.

y

x
O

y = π

 −2, π
2

a Evaluate sin−1
(
−

√
3

2

)
.

b Simplify:

sin−1
(
sin

(
π

6

))
i sin−1

(
sin

(5π
6

))
ii

sin−1
(
cos

(
π

3

))
iii sin

(
cos−1

( 1
√

2

))
iv

Example 2

Solution

a Evaluating sin−1
(
−

√
3

2

)
is equivalent to solving sin y = −

√
3

2
for y ∈

[
−
π

2
,
π

2

]
.

sin
(
π

3

)
=

√
3

2

sin
(
−
π

3

)
= −

√
3

2
⇒

sin−1
(
−

√
3

2

)
= −

π

3
⇒

b Since
π

6
∈

[
−
π

2
,
π

2

]
, by definition

we have

sin−1
(
sin

(
π

6

))
=
π

6

i sin−1
(
sin

(5π
6

))
= sin−1

(
sin

(
π −

5π
6

))
= sin−1

(
sin

(
π

6

))
=
π

6

ii

sin−1
(
cos

(
π

3

))
= sin−1

(
sin

(
π

2
−
π

3

))
= sin−1

(
sin

(
π

6

))
=
π

6

iii sin
(
cos−1

( 1
√

2

))
= sin

(
π

4

)
=

1
√

2

iv
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Find the implied domain and range of:

y = sin−1(2x − 1)a y = 3 cos−1(2 − 2x)b

Example 3

Solution
For sin−1(2x − 1) to be defined:

−1 ≤ 2x − 1 ≤ 1

⇔ 0 ≤ 2x ≤ 2

⇔ 0 ≤ x ≤ 1

a For 3 cos−1(2 − 2x) to be defined:

−1 ≤ 2 − 2x ≤ 1

⇔ −3 ≤ −2x ≤ −1

⇔
1
2
≤ x ≤

3
2

b

Thus the implied domain is [0, 1]. Thus the implied domain is
[1
2

,
3
2

]
.

The range is
[
−
π

2
,
π

2

]
. The range is [0, 3π].

Summary 17A
Inverse circular functions

� sin−1 : [−1, 1]→ R, sin−1 x = y, where sin y = x and y ∈
[
−
π

2
,
π

2

]
� cos−1 : [−1, 1]→ R, cos−1 x = y, where cos y = x and y ∈ [0,π]

� tan−1 : R→ R, tan−1 x = y, where tan y = x and y ∈
(
−
π

2
,
π

2

)

Exercise 17ASkill-
sheet

1Example 1 Sketch the graphs of the following functions, stating clearly the implied domain and the
range of each:

y = tan−1(x − 1)a y = cos−1(x + 1)b y = 2 sin−1
(
x +

1
2

)
c

y = 2 tan−1(x) +
π

2
d y = cos−1(2x)e y =

1
2

sin−1(3x) +
π

4
f

2Example 2a Evaluate each of the following:

sin−1 1a sin−1
(
−

1
√

2

)
b sin−1 0.5c

cos−1
(
−

√
3

2

)
d cos−1 0.5e tan−1 1f

tan−1(−
√

3)g tan−1
( 1
√

3

)
h cos−1(−1)i
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3Example 2b Simplify:

sin(cos−1 0.5)a sin−1
(
cos

(5π
6

))
b tan

(
sin−1

(
−

1
√

2

))
c cos(tan−1 1)d

tan−1
(
sin

(5π
2

))
e tan(cos−1 0.5)f cos−1

(
cos

(7π
3

))
g sin−1

(
sin

(
−

2π
3

))
h

tan−1
(
tan

(11π
4

))
i cos−1

(
sin

(
−
π

3

))
j cos−1

(
tan

(
−
π

4

))
k sin−1

(
cos

(
−

3π
4

))
l

4 Let f :
[
π

2
,

3π
2

]
→ R, f (x) = sin x.

a Define f −1, clearly stating its domain and its range.
b Evaluate:

i f
(
π

2

)
ii f

(3π
4

)
iii f

(7π
6

)
iv f −1(−1) v f −1(0) vi f −1(0.5)

5Example 3 Given that the domains of sin, cos and tan are restricted to
[
−
π

2
,
π

2

]
, [0,π] and

(
−
π

2
,
π

2

)
respectively, give the implied domain and range of each of the following:

y = sin−1(2 − x)a y = sin
(
x +

π

4

)
b y = sin−1(2x + 4)c

y = sin
(
3x −

π

3

)
d y = cos

(
x −

π

6

)
e y = cos−1(x + 1)f

y = cos−1(x2)g y = cos
(
2x +

2π
3

)
h y = tan−1(x2)i

y = tan
(
2x −

π

2

)
j y = tan−1(2x + 1)k y = tan(x2)l

6 Simplify each of the following expressions, in an exact form:

cos
(
sin−1

(4
5

))
a tan

(
cos−1

( 5
13

))
b cos

(
tan−1

( 7
24

))
c tan

(
sin−1

(40
41

))
d

tan
(
cos−1

(1
2

))
e sin

(
cos−1

(2
3

))
f sin(tan−1(−2))g cos

(
sin−1

(3
7

))
h

7 Let sinα =
3
5

and sin β =
5

13
, where α ∈

[
0,
π

2

]
and β ∈

[
0,
π

2

]
.

a Find:

i cosα ii cos β

b Use a compound angle formula to show that:

i sin−1
(3
5

)
− sin−1

( 5
13

)
= sin−1

(16
65

)
ii sin−1

(3
5

)
+ sin−1

( 5
13

)
= cos−1

(33
65

)
8 Given that the domains of sin and cos are restricted to

[
−
π

2
,
π

2

]
and [0,π] respectively,

explain why each expression cannot be evaluated:

cos
(
sin−1(−0.5)

)
a sin

(
cos−1(−0.2)

)
b cos

(
tan−1(−1)

)
c



17B Reciprocal functions 549

17B Reciprocal functions
Reciprocals of polynomials
You have learned in previous years that the reciprocal of a non-zero number a is

1
a

.
Likewise, we have the following definition.

If y = f (x) is a polynomial function, then its reciprocal function is defined by the rule

y =
1

f (x)

For example, the reciprocal of the function y = x3 is y =
1
x3 .

In this section, we will find relationships between the graph of a function and the graph
of its reciprocal. Let’s consider some specific examples, from which we will draw general
conclusions.

Sketch the graphs of y = x3 and y =
1
x3 on the same set of axes.

Example 4

Solution
We first sketch the graph of y = x3. This is shown in blue.

Horizontal asymptotes

If x→ ±∞, then
1
x3 → 0. Therefore the line y = 0 is a

horizontal asymptote of the reciprocal function.

Vertical asymptotes
Notice that x3 = 0 when x = 0.

(1, 1)
x

y

(–1, –1)

If x is a small positive number, then
1
x3 is a large positive number.

If x is a small negative number, then
1
x3 is a large negative number.

Therefore the line x = 0 is a vertical asymptote of the reciprocal function.

Observations from the example
This example highlights behaviour typical of reciprocal functions:

� If y = f (x) is a non-zero polynomial function, then the graph of y =
1

f (x)
will have

vertical asymptotes where f (x) = 0.
� The graphs of a function and its reciprocal are always on the same side of the x-axis.
� If the graphs of a function and its reciprocal intersect, then it must be where f (x) = ±1.
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The following example is perhaps easier, because the reciprocal graph has no vertical
asymptotes. This time we are interested in turning points.

Consider the function f (x) = x2 + 2. Sketch the graphs of y = f (x) and y =
1

f (x)
on the

same set of axes.

Example 5

Solution
We first sketch y = x2 + 2. This is shown in blue.

Horizontal asymptotes If x→ ±∞, then
1

f (x)
→ 0.

Therefore the line y = 0 is a horizontal asymptote of
the reciprocal function.

Vertical asymptotes There are no vertical
asymptotes, as there is no solution to the equation
f (x) = 0.

2

y

x

1
2

Turning points Notice that the graph of y = x2 + 2 has a minimum at (0, 2). The
reciprocal function therefore has a maximum at (0, 1

2 ).

� If the graph of y = f (x) has a local minimum at x = a, then the graph of y =
1

f (x)
will

have a local maximum at x = a.

� If the graph of y = f (x) has a local maximum at x = a, then the graph of y =
1

f (x)
will

have a local minimum at x = a.

Consider the function f (x) = 2(x − 1)(x + 1). Sketch the graphs of y = f (x) and y =
1

f (x)
on the same set of axes.

Example 6

Solution
We first sketch y = 2(x − 1)(x + 1). This is shown
in blue.

Horizontal asymptotes If x→ ±∞, then
1

f (x)
→ 0.

Therefore the line y = 0 is a horizontal asymptote of
the reciprocal function.

Vertical asymptotes We have f (x) = 0 when x = −1
or x = 1. Therefore the lines x = −1 and x = 1 are
vertical asymptotes of the reciprocal function.

1
x

y

–1 0

–2

– 1
2

Turning points The graph of y = f (x) has a minimum at (0,−2). Therefore the reciprocal
has a local maximum at (0,− 1

2 ).



17B Reciprocal functions 551

Reciprocals of further functions
The techniques used to sketch graphs of the reciprocals of polynomial functions can also be
used for the reciprocals of other functions. We give two examples here.

Let f (x) = 2 cos x for −2π ≤ x ≤ 2π. Sketch the graphs of y = f (x) and y =
1

f (x)
on the

same set of axes.

Example 7

Solution
We first sketch y = 2 cos x for
x ∈ [−2π, 2π]. This is shown
in blue.

Vertical asymptotes
Vertical asymptotes of the
reciprocal function will occur
when f (x) = 0.

These are given by x = ±
π

2
,±

3π
2

.

y

x
–2p 2p

–1

1

2

3

0

–2

–3

–p p

Turning points
The points (0, 2) and (±2π, 2) are local maximums of y = f (x). Therefore the points (0, 1

2 )
and (±2π, 1

2 ) are local minimums of the reciprocal.

The points (±π,−2) are local minimums of y = f (x). Therefore the points (±π,− 1
2 ) are

local maximums of the reciprocal.

The graph of the next function has no x-axis intercepts, and so its reciprocal has no vertical
asymptotes.

Let f (x) = 0.5 sin x + 1 for 0 ≤ x ≤ 2π. Sketch the graphs of y = f (x) and y =
1

f (x)
on the

same set of axes.

Example 8

Solution
We first sketch y = 0.5 sin x + 1 for
x ∈ [0, 2π]. This is shown in blue.

Turning points
The point (π2 , 3

2 ) is a local maximum of
y = f (x). Therefore the point (π2 , 2

3 ) is a
local minimum of the reciprocal.

The point ( 3π
2 , 1

2 ) is a local minimum of
y = f (x). Therefore the point ( 3π

2 , 2) is a
local maximum of the reciprocal. 0

2

0.5

x

y

p

1

1.5

2

2
p

2
, 3

2
p

3
, 2

2
3p

2
, 1

2
3p 2,

p
2

3p 2p
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Summary 17B
Given the graph of a continuous function y = f (x), we can sketch the graph of y =

1
f (x)

with the help of the following observations:

Function y = f (x) Reciprocal function y =
1

f (x)
x-axis intercept at x = a vertical asymptote x = a

local maximum at x = a local minimum at x = a

local minimum at x = a local maximum at x = a

above the x-axis above the x-axis

below the x-axis below the x-axis

increasing over an interval decreasing over the interval

decreasing over an interval increasing over the interval

values approach∞ values approach 0 from above

values approach −∞ values approach 0 from below

values approach 0 from above values approach∞

values approach 0 from below values approach −∞

Exercise 17BSkill-
sheet

1Example 4

Example 5

Example 6

For each of the following functions, sketch the graphs of y = f (x) and y =
1

f (x)
on the

same set of axes:

f (x) = x + 3a f (x) = x2b f (x) = x2 + 4c
f (x) = (x − 1)(x + 1)d f (x) = 4 − x2e f (x) = (x − 1)2 − 1f
f (x) = x2 − 2x − 3g f (x) = −x2 − 2x + 3h f (x) = x3 + 1i

2Example 7

Example 8

For each of the following functions, sketch the graphs of y = f (x) and y =
1

f (x)
on the

same set of axes. Label asymptotes, turning points and endpoints.

f (x) = sin x for 0 ≤ x ≤ 2πa f (x) = cos x for 0 ≤ x ≤ 2πb
f (x) = −2 cos x for −π ≤ x ≤ πc f (x) = cos x + 1 for 0 ≤ x ≤ 4πd
f (x) = − sin x − 1 for −2π ≤ x ≤ 2πe f (x) = cos x − 2 for 0 ≤ x ≤ 2πf
f (x) = − sin x + 2 for 0 ≤ x ≤ 2πg f (x) = −2 cos x + 3 for −π ≤ x ≤ πh

3 Consider the quadratic function f (x) = x2 + 2x + 2.

a By completing the square, find the turning point of the graph of y = f (x).

b Hence sketch the graphs of y = f (x) and y =
1

f (x)
on the same set of axes.

4 Consider the quadratic function f (x) = 5x(1 − x).

a Sketch the graphs of y = f (x) and y =
1

f (x)
on the same set of axes.

b Find the points of intersection of the two graphs by solving f (x) = 1 and f (x) = −1.
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5 Sketch the graphs of y = 2 sin2 x and y =
1

2 sin2 x
on the same set of axes, over the

interval 0 ≤ x ≤ 2π.

6 Consider the function f : R→ R where f (x) = 2x − 1. Sketch the graphs of y = f (x) and

y =
1

f (x)
on the same set of axes.

7 Let k ∈ R and consider the function f (x) = x2 + 2kx + 1.

a By completing the square, show that the graph of y = f (x) has a minimum turning
point at (−k, 1 − k2).

b For what values of k does the graph of y = f (x) have:

i no x-axis intercept ii one x-axis intercept iii two x-axis intercepts?

c Sketch the graphs of y = f (x) and y =
1

f (x)
when the graph of y = f (x) has:

i no x-axis intercept ii one x-axis intercept iii two x-axis intercepts.

Hint: It helps to ignore the y-axis.

17C Graphing the reciprocal circular functions
The reciprocal circular functions were introduced in Chapter 16. In this section, we consider
the graphs of these functions and basic transformations of these functions.

The secant function
The secant function is defined by

sec x =
1

cos x

provided cos x , 0.

The graphs of y = cos x and y = sec x
are shown here on the same axes.

The significant features of the two graphs
are listed in the following table.

0 2π–2π – –1
x

y

3π
2 2

–
2

π
2

–π π 3ππ

1

Function y = cos x Reciprocal function y = sec x

x-axis intercepts at x =
(2n + 1)π

2
, n ∈ Z vertical asymptotes at x =

(2n + 1)π
2

, n ∈ Z

domain = R domain = R \
{ (2n + 1)π

2
: n ∈ Z

}
local maximums at (2nπ, 1), n ∈ Z local minimums at (2nπ, 1), n ∈ Z

local minimums at
(
(2n + 1)π,−1

)
, n ∈ Z local maximums at

(
(2n + 1)π,−1

)
, n ∈ Z

range = [−1, 1] range = (−∞,−1] ∪ [1,∞)
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The cosecant function
The cosecant function is defined by

cosec x =
1

sin x

provided sin x , 0.

The graphs of y = sin x and y = cosec x
are shown here on the same axes.

x

y

1

0–1 2π–2π –π π

Function y = sin x Reciprocal function y = cosec x

x-axis intercepts at x = nπ, n ∈ Z vertical asymptotes at x = nπ, n ∈ Z

domain = R domain = R \ { nπ : n ∈ Z }

local maximums at
(
2nπ +

π

2
, 1

)
, n ∈ Z local minimums at

(
2nπ +

π

2
, 1

)
, n ∈ Z

local minimums at
(
2nπ −

π

2
,−1

)
, n ∈ Z local maximums at

(
2nπ −

π

2
,−1

)
, n ∈ Z

range = [−1, 1] range = (−∞,−1] ∪ [1,∞)

The cotangent function
The cotangent function is defined by

cot x =
cos x
sin x

provided sin x , 0.

This diagram shows the graph of y = tan x
in blue and the graph of y = cot x in red.

x

y

0–2π 2π–π π–3π
2

3π
2

– π
2

π
2

Function y = tan x Function y = cot x

x-axis intercepts at x = nπ, n ∈ Z vertical asymptotes at x = nπ, n ∈ Z

vertical asymptotes at x =
(2n + 1)π

2
, n ∈ Z x-axis intercepts at x =

(2n + 1)π
2

, n ∈ Z

domain = R \
{ (2n + 1)π

2
: n ∈ Z

}
domain = R \

{
nπ : n ∈ Z

}
range = R range = R

Note the similarity between the graphs of y = cot x and y = tan x. Using the complementary
relationship between sine and cosine, we have

cot x =
cos x
sin x

=

sin
(
π

2
− x

)
cos

(
π

2
− x

) = tan
(
π

2
− x

)
= tan

(
−
(
x −

π

2

))
= − tan

(
x −

π

2

)
Therefore the graph of y = cot x can be obtained from the graph of y = tan x by a reflection in
the x-axis followed by a translation of

π

2
units in the positive direction of the x-axis.
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Transformations of the reciprocal circular functions
We now look at dilations, reflections and translations of the reciprocal circular functions.

Sketch the graph of each of the following over the interval [0, 2π]:

y = cosec(2x)a y = 2 sec xb y = − cot xc

Example 9

Solution
a The graph of y = cosec(2x) can be obtained

from the graph of y = cosec x by a dilation
of factor 1

2 from the y-axis.

It is helpful to draw the graph of y = sin(2x)
on the same axes.

y

x
π 2π–1

1

0 3π
2

π
2

The graph of y = 2 sec x can be obtained
from the graph of y = sec x by a dilation
of factor 2 from the x-axis.

b The graph of y = − cot x can be obtained
from the graph of y = cot x by a reflection
in the x-axis.

c

2π

(2π, 2)

(π, −2)

2

0 3π
2

π
2

x

y

0 2ππ 3π
2

π
2

x

y

Sketch the graph of each of the following over the interval [0, 2π]:

y = sec
(
x +

π

3

)
a y = cosec(x) − 2b y = cot

(
x −

π

4

)
c

Example 10

Solution
a The graph of y = sec

(
x +

π

3

)
can be obtained from

the graph of y = sec x by a translation of
π

3
units

in the negative direction of the x-axis.

The y-axis intercept is sec
(
π

3

)
= 2.

The asymptotes are x =
π

6
and x =

7π
6

.

2π

(2π, 2)

0 7π
6

π
6

x

y

2
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The graph of y = cosec(x) − 2 can be
obtained from the graph of y = cosec x
by a translation of 2 units in the negative
direction of the y-axis.

b The graph of y = cot
(
x −

π

4

)
can be

obtained from the graph of y = cot x by
a translation of

π

4
units in the positive

direction of the x-axis.

c

x

y

–1

–3

0 π 2π3π
2

π
2 x

y

(2π, −1)
2π3π

4
5π
4

7π
4

π
4–1

0

Describe a sequence of transformations that will take the graph of y = sec x to the graph of

y = − sec
(
2x −

π

2

)
+ 1. Sketch the transformed graph over the interval [−π,π].

Example 11

Solution
It helps to write the equation of the transformed

graph as y = − sec
(
2
(
x −

π

4

))
+ 1.

An appropriate sequence is:

1 reflection in the x-axis
2 dilation of factor 1

2 from the y-axis

3 translation of
π

4
units to the right and

1 unit up.

x

y

π–π 0– π
2

π
2

2

Summary 17C
Reciprocal circular functions

sec x =
1

cos x
� cosec x =

1
sin x

� cot x =
cos x
sin x

�

(provided cos x , 0) (provided sin x , 0) (provided sin x , 0)

Exercise 17C

1Example 9 Sketch the graph of each of the following over the interval [0, 2π]:

y = sec(2x)a y = cot(2x)b y = 3 sec xc
y = 2 cosec xd y = − cosec xe y = −2 sec xf
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2Example 10 Sketch the graph of each of the following over the interval [0, 2π]:

y = sec
(
x −

π

2

)
a y = cot

(
x +

π

4

)
b y = − cosec

(
x +

π

2

)
c

y = 1 + sec xd y = 2 − cosec xe y = 1 + cot
(
x +

π

4

)
f

3Example 11 Describe a sequence of transformations that will take the graph of y = sec x to the graph

of y = −2 sec
(
x −

π

2

)
. Sketch the transformed graph over the interval [−π,π].

4 Describe a sequence of transformations that will take the graph of y = cosec x to the
graph of y = cosec(−2x) + 1. Sketch the transformed graph over the interval [0, 2π].

5 Describe a sequence of transformations that will take the graph of y = cot x to the graph

of y = − cot
(
2x −

π

2

)
− 1. Sketch the transformed graph over the interval [0, 2π].

6 On the one set of axes, sketch the graphs of y = sec x and y = cosec x over the interval
[0, 2π]. Find and label the points of intersection.

17D The modulus function
The modulus or absolute value of a real number x is denoted by |x| and is defined by

|x| =

x if x ≥ 0

−x if x < 0

For example:

|5| = 5 and |−5| = 5

The modulus function may also be defined as |x| =
√

x2.

Evaluate each of the following:

a i |−3 × 2| ii |−3| × |2|

b i
∣∣∣∣∣−4

2

∣∣∣∣∣ ii
|−4|
|2|

c i |−6 + 2| ii |−6| + |2|

Example 12

Solution
a i |−3 × 2| = |−6| = 6 ii |−3| × |2| = 3 × 2 = 6 Note: |−3 × 2| = |−3| × |2|

b i
∣∣∣∣∣−4

2

∣∣∣∣∣ = |−2| = 2 ii
|−4|
|2|

=
4
2

= 2 Note:
∣∣∣∣∣−4

2

∣∣∣∣∣ =
|−4|
|2|

c i |−6 + 2| = |−4| = 4 ii |−6| + |2| = 6 + 2 = 8 Note: |−6 + 2| , |−6| + |2|
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Properties of the modulus function

� |ab| = |a| |b| and
∣∣∣∣∣ab

∣∣∣∣∣ =
|a|
|b|

� |x| = a implies x = a or x = −a

� |a + b| ≤ |a| + |b|

� If a and b are both positive or both negative, then |a + b| = |a| + |b|.
� If a ≥ 0, then |x| ≤ a is equivalent to −a ≤ x ≤ a.
� If a ≥ 0, then |x − k| ≤ a is equivalent to k − a ≤ x ≤ k + a.

The following example uses the second property listed above to solve simple equations.

Solve each of the following equations for x:

|x − 4| = 6a |2x − 4| = 16b

Example 13

Solution
|x − 4| = 6

⇒ x − 4 = 6 or x − 4 = −6

⇒ x = 10 or x = −2

a |2x − 4| = 16

⇒ 2x − 4 = 16 or 2x − 4 = −16

⇒ x = 10 or x = −6

b

The modulus function as a measure of distance
Consider two points A and B on a number line:

O A B

ba

On a number line, the distance between points A and B is |a − b| = |b − a|.

For example:

� |x − 2| ≤ 3 can be read as ‘the distance of x from 2 is less than or equal to 3’
� |x| ≤ 3 can be read as ‘the distance of x from the origin is less than or equal to 3’.

Note that |x| ≤ 3 is equivalent to −3 ≤ x ≤ 3 or x ∈ [−3, 3].

Illustrate each of the following sets on a number line and represent the sets using interval
notation:

a
{

x : |x| < 4
}

b
{

x : |x| ≥ 4
}

c
{

x : |x − 1| ≤ 4
}

Example 14

Solution

a
{

x : |x| < 4
}

= (−4, 4) 0 1 2 3 4 5 6−6 −5 −4 −3 −2 −1



17D The modulus function 559

b
{

x : |x| ≥ 4
}

= (−∞,−4] ∪ [4,∞) −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

c
{

x : |x − 1| ≤ 4
}

= [−3, 5] −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

The graph of y = |x|
The graph of the function y = |x| is shown
on the right.

This graph is symmetric about the y-axis,
since |x| = |−x|.

x

(−1, 1)

O

(1, 1)

y

For each of the following functions, sketch the graph and state the range:

a f (x) = |x − 3| + 1
b f (x) = −|x − 3| + 1

Example 15

Solution
Note that |a − b| = a − b if a ≥ b, and |a − b| = b − a if b ≥ a.

a f (x) = |x − 3| + 1 =

x − 3 + 1 if x ≥ 3

3 − x + 1 if x < 3

=

x − 2 if x ≥ 3

4 − x if x < 3

Range = [1,∞) x
(3, 1)

(0, 4)

y

O

b f (x) = −|x − 3| + 1 =

−(x − 3) + 1 if x ≥ 3

−(3 − x) + 1 if x < 3

=

−x + 4 if x ≥ 3

−2 + x if x < 3

Range = (−∞, 1]

x
O 2 4

(3, 1)

(0, −2)

y
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Using the TI-Nspire
� Use menu > Actions > Define to define the

function f (x) = abs(x − 3) + 1.

Note: The absolute value function can be
obtained by typing abs( ) or using the
2D-template palette t.

� Open a Graphs application ( ctrl I >

Graphs) and let f 1(x) = f (x).
� Press enter to obtain the graph.

Note: The expression abs(x − 3) + 1 could have
been entered directly for f 1(x).

Using the Casio ClassPad
� InM, enter the expression |x − 3| + 1.

Note: To obtain the absolute value function, either
choose abs( from the catalog (as shown below)
or select4from the Math1 keyboard.

� Tap$ to open the graph window.
� Highlight |x − 3| + 1 and drag into the graph

window.
� Use6 to adjust the window manually.

Note: Alternatively, the function can be graphed using the Graph & Table application.

Note: The solution of equations can be shown
graphically. For example, this graph
shows the solutions of the equation
|x − 4| = 6 from Example 13a.

O 4

(−2, 6) (10, 6)

y = |x − 4|
y = 6

x

y



17D The modulus function 561

Functions with rules of the form y = |f(x)| and y = f(|x|)
If the graph of y = f (x) is known, then we can sketch the graph of y = | f (x)| using the
following observation:

| f (x)| = f (x) if f (x) ≥ 0 and | f (x)| = − f (x) if f (x) < 0

Sketch the graph of each of the following:

y = |x2 − 4|a y = |2x − 1|b

Example 16

Solution

x
O−2 2

ya

x

y = −1 

y = 1 

O

yb

The graph of y = x2 − 4 is drawn and the
negative part reflected in the x-axis.

The graph of y = 2x − 1 is drawn and the
negative part reflected in the x-axis.

A graph with a rule of the form y = f (|x|) is symmetric about the y-axis, since f (|−x|) = f (|x|)
for all x. Thus we can sketch the graph of y = f (|x|), for x ∈ R, by reflecting the graph of
y = f (x), for x ≥ 0, in the y-axis.

Sketch the graph of each of the following:

y = |x|2 − 2|x|a y = 2|x|b

Example 17

Solution

x
−2 2O

ya

x
1

O

yb

The graph of y = x2 − 2x, x ≥ 0, is
reflected in the y-axis.

The graph of y = 2x, x ≥ 0, is reflected in
the y-axis.
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a Solve the equation |x2 − 4x| = 3 for x.
b Illustrate the solutions by graphing y = |x2 − 4x| and y = 3 on the same set of axes.

Example 18

Solution

a |x2 − 4x| = 3

⇒ x2 − 4x = 3 or x2 − 4x = −3

⇒ x2 − 4x − 3 = 0 or x2 − 4x + 3 = 0

⇒ x = 2 ±
√

7 or x = 1 or x = 3

Therefore x = 2 +
√

7, x = 2 −
√

7, x = 1 or x = 3.

b The solutions correspond to the points of
intersection of the two graphs:

A(2 −
√

7, 3)

B(1, 3)

C(3, 3)

D(2 +
√

7, 3)

y

x
4

4

O

B C DA

y = 3

y = |x2 − 4x|

Note: We can see from the graph of y = |x2 − 4x| that the equation |x2 − 4x| = 4 has three
solutions and the equation |x2 − 4x| = 5 has two solutions.

Summary 17D
� The modulus or absolute value of a real number x is

|x| =

x if x ≥ 0

−x if x < 0

� On the number line, the distance between a and b is given by |a − b| = |b − a|.
For example: |x − 2| < 5 can be read as ‘the distance between x and 2 is less than 5’.

� To sketch the graph of y = | f (x)|, first draw the graph of y = f (x). Then reflect the
sections of the graph that are below the x-axis so that they are above the x-axis.

� To sketch the graph of y = f (|x|), first draw the graph of y = f (x) for x ≥ 0. Then
reflect the graph across the y-axis to obtain the graph for x ≤ 0.

Exercise 17DSkill-
sheet

1Example 12 Evaluate each of the following:

|−5| + 3a |−5| + |−3|b |−5| − |−3|c
|−5| − |−3| − 4d |−5| − |−3| − |−4|e |−5| + |−3| − |−4|f
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2Example 13 Solve each of the following equations for x:

|x − 1| = 2a |2x − 3| = 4b |5x − 3| = 9c |x − 3| − 9 = 0d
|3 − x| = 4e |3x + 4| = 8f |5x + 11| = 9g

3Example 14 For each of the following, illustrate the set on a number line and represent the set using
interval notation:{

x : |x| < 3
}

a
{

x : |x| ≥ 5
}

b
{

x : |x − 2| ≤ 1
}

c{
x : |x − 2| < 3

}
d

{
x : |x + 3| ≥ 5

}
e

{
x : |x + 2| ≤ 1

}
f

4Example 15 For each of the following functions, sketch the graph and state the range:

f (x) = |x − 4| + 1a f (x) = −|x + 3| + 2b
f (x) = |x + 4| − 1c f (x) = 2 − |x − 1|d

5 Solve each of the following inequalities for x:

|x| ≤ 5a |x| ≥ 2b |2x − 3| ≤ 1c
|5x − 2| < 3d |−x + 3| ≥ 7e |−x + 2| ≤ 1f

6 Let f (x) = 4 − x.

a Sketch the graphs of y = | f (x)| and y = f (|x|).
b State the set of values of x for which | f (x)| = f (|x|).

7Example 16 Sketch the graph of each of the following:

y = |x2 − 9|a y = |3x − 3|b y = |x2 − x − 12|c
y = |x2 − 3x − 40|d y = |x2 − 2x − 8|e y = |2x − 4|f

8Example 17 Sketch the graph of each of the following:

y = |x|2 − 4|x|a y = 3|x|b y = |x|2 − 7|x| + 12c
y = |x|2 − |x| − 12d y = |x|2 + |x| − 12e y = −3|x| + 1f

9Example 18 Solve each of the following equations for x:

|x2 − 2x| =
1
2

a |x2 − 2x| = 1b |x2 − 2x| = 8c

|x2 − 6x| = 8d |x2 − 6x| = 16e |x2 − 6x| = 9f

10 Solve each of the following equations for x:

|x − 4| − |x + 2| = 6a |2x − 5| − |4 − x| = 10b |2x − 1| + |4 − 2x| = 10c

11 If f (x) = |x − a| + b with f (3) = 3 and f (−1) = 3, find the values of a and b.

12 Prove the following properties of the modulus function:

a |ab| = |a| |b| Hint: Start by writing |ab|2 = (ab)2.
b |a + b| ≤ |a| + |b| Hint: Start by writing |a + b|2 = (a + b)2.

13 Prove each of the following for all x, y, z ∈ R:

|x − y| ≤ |x| + |y|a |x| − |y| ≤ |x − y|b |x + y + z| ≤ |x| + |y| + |z|c
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17E Locus of points
Until now, all the curves we have studied have been described by an algebraic relationship
between the x- and y-coordinates, such as y = x2 + 1. In this section, we are interested in
sets of points described by a geometric condition. A set described in this way is often called
a locus. Many of these descriptions will give curves that are already familiar.

Circles
Circles have a very simple geometric description.

Locus definition of a circle

A circle is the locus of a point P(x, y) that moves so that its distance
from a fixed point C(a, b) is constant.

Note: The constant distance is called the radius and the fixed point
C(a, b) is called the centre of the circle.

C(a, b)

P(x, y)

This definition can be used to find the Cartesian equation of a circle.

Recall that the distance between points A(x1, y1) and B(x2, y2) is given by

AB =
√

(x2 − x1)2 + (y2 − y1)2

Let r be the radius of the circle. Then

CP = r√
(x − a)2 + (y − b)2 = r

(x − a)2 + (y − b)2 = r2

The Cartesian equation of the circle with centre C(a, b) and radius r is

(x − a)2 + (y − b)2 = r2

Find the locus of a point P(x, y) that moves so that its distance from C(−2, 1) is 3.

Example 19

Solution
We know that the point P(x, y) satisfies

CP = 3√
(x + 2)2 + (y − 1)2 = 3

(x + 2)2 + (y − 1)2 = 32

This is a circle with centre (−2, 1) and radius 3. O

(−2, 1)

3

x

y
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Sketch the circle with equation x2 − 2x + y2 + 4y = −1. Label the axis intercepts.

Example 20

Solution
We first complete the square in both variables:

x2 − 2x + y2 + 4y = −1

(x2 − 2x + 1) − 1 + (y2 + 4y + 4) − 4 = −1

(x − 1)2 + (y + 2)2 = 4

This is a circle with centre (1,−2) and radius 2.

The x-axis intercept is 1.

To find the y-axis intercepts, we let x = 0, giving

1 + (y + 2)2 = 4

(y + 2)2 = 3

y = −2 ±
√

3

The y-axis intercepts are −2 +
√

3 and −2 −
√

3.

O 1

−2 +

−2 −

(1, −2)

2

x

y

√3

√3

Straight lines
You have learned in previous years that a straight line is the set of points (x, y) satisfying

ax + by = c

for some constants a, b, c with a , 0 or b , 0.

Lines can also be described geometrically as follows.

Locus definition of a straight line

Suppose that points Q and R are fixed.

A straight line is the locus of a point P that moves so that its
distance from Q is the same as its distance from R. That is,

QP = RP

We can say that point P is equidistant from points Q and R.

P

R
M

Q

Note: This straight line is the perpendicular bisector of line segment QR. To see this, we
note that the midpoint M of QR is on the line. If P is any other point on the line, then

QP = RP, QM = RM and MP = MP

and so 4QMP is congruent to 4RMP. Therefore ∠QMP = ∠RMP = 90◦.
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a Find the locus of a point P(x, y) that moves so that it is equidistant from the two
points Q(1, 1) and R(3, 5).

b Show that this is the perpendicular bisector of line segment QR.

Example 21

Solution
a We know that the point P(x, y) satisfies

QP = RP√
(x − 1)2 + (y − 1)2 =

√
(x − 3)2 + (y − 5)2

(x − 1)2 + (y − 1)2 = (x − 3)2 + (y − 5)2

x + 2y = 8

y = − 1
2 x + 4

The locus is the straight line with equation y = − 1
2 x + 4.

b This line has gradient − 1
2 .

The line through the two points
Q(1, 1) and R(3, 5) has gradient

5 − 1
3 − 1

= 2

Because the product of the two
gradients is −1, the two lines are
perpendicular.

O

4

8

P (x, y)Q (1, 1)

R (3, 5)

M (2, 3)

x

y

We also need to check that the line y = − 1
2 x + 4 passes through the midpoint of QR,

which is M(2, 3). When x = 2, y = − 1
2 × 2 + 4 = 3. Thus M(2, 3) is on the line.

Summary 17E
� A locus is the set of points described by a geometric condition.
� A circle is the locus of a point P that moves so that its distance from a fixed point C

is constant.
� The Cartesian equation of the circle with centre C(a, b) and radius r is

(x − a)2 + (y − b)2 = r2

� A straight line is the locus of a point P that moves so that it is equidistant from two
fixed points Q and R.
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Exercise 17ESkill-
sheet

1Example 19 Find the locus of a point P(x, y) that moves so that its distance from Q(1,−2) is 4.

2 Find the locus of a point P(x, y) that moves so that its distance from Q(−4, 3) is 5.

3 Sketch the circles defined by the following equations:

x2 + y2 = 22a x2 + y2 = 32b
(x − 1)2 + y2 = 42c x2 + (y + 1)2 = 32d
(x − 1)2 + (y − 2)2 = 22e (x + 2)2 + (y − 1)2 = 32f
(x − 3)2 + (y − 2)2 = 22g (x + 3)2 + (y + 2)2 = 22h

4Example 20 Sketch the circle with equation x2 + 4x + y2 − 2y = −1. Label the axis intercepts.

5 a Find the Cartesian equation of the circle with centre C(1, 0) that passes through the
point Q(0,−2).

b Find the Cartesian equation of the circle that touches the x-axis at the point Q(2, 0)
and passes through the point R(−2, 2).

6 aExample 21 Find the locus of points P(x, y) that are equidistant from Q(−1,−1) and R(1, 1).
b Show that this is the perpendicular bisector of line segment QR.

7 a Find the locus of points P(x, y) that are equidistant from Q(0, 2) and R(1, 0).
b Show that this is the perpendicular bisector of line segment QR.

8 Point P is equidistant from points Q(0, 1) and R(2, 3). Moreover, its distance from point
S(3, 3) is 3. Find the possible coordinates of P.

9 Point P is equidistant from points Q(0, 1) and R(2, 0). Moreover, it is also equidistant
from points S(−1, 0) and T (0, 2). Find the coordinates of P.

10 A valuable item is buried in a forest. It is 10 metres from a tree stump located at
coordinates T (0, 0) and 2 metres from a rock at coordinates R(6, 10). Find the possible
coordinates of the buried item.

11 Consider the three points R(4, 5), S(6, 1) and T (1,−4).

a Find the locus of points P(x, y) that are equidistant from the points R and S .
b Find the locus of points P(x, y) that are equidistant from the points S and T .
c Hence find the point that is equidistant from the points R, S and T .
d Hence find the equation of the circle through the points R, S and T .

12 Given two fixed points A(0, 1) and B(2, 5), find the locus of P if the gradient of AB
equals that of BP.
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13 A triangle OAP has vertices O(0, 0), A(4, 0) and P(x, y), where y > 0. The triangle has
area 12 square units. Find the locus of P.

14 a Determine the locus of a point P(x, y) that moves so that its distance from the origin
is equal to the sum of its x- and y-coordinates.

b Determine the locus of a point P(x, y) that moves so that the square of its distance
from the origin is equal to the sum of its x- and y-coordinates.

15 A(0, 0) and B(3, 0) are two vertices of a triangle ABP. The third vertex P is such that
AP : BP = 2. Find the locus of P.

16 Find the locus of a point P that moves so that its distance from the line y = 3 is always
2 units.

17 A steel pipe is too heavy to drag, but can be lifted at one end and
rotated about its opposite end. How many moves are required to
rotate the pipe into the parallel position indicated by the dotted line?
The distance between the parallel lines is less than the length of
the pipe.

17F Parabolas
The parabola has been studied since antiquity and is admired for its range of applications, one
of which we will explore at the end of this section.

The standard form of a parabola is y = ax2.

Rotating the figure by 90◦ gives a parabola
with equation x = ay2.

y

x

y

x

y = ax2 x = ay2

The parabola can also be defined geometrically.

Locus definition of a parabola

A parabola is the locus of a point P that moves so that its
distance from a fixed point F is equal to its perpendicular
distance from a fixed line.

Note: The fixed point is called the focus and the fixed line is
called the directrix.

F

P(x, y)

Rdirectrix
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Find the locus of a point P(x, y) that moves so that its distance from the fixed point F(0, 1)
is equal to its perpendicular distance from the fixed line y = −1.

Example 22

Solution
We know that the point P(x, y) satisfies

FP = RP√
x2 + (y − 1)2 =

√
(y − (−1))2

x2 + (y − 1)2 = (y + 1)2

x2 + y2 − 2y + 1 = y2 + 2y + 1

x2 − 2y = 2y

x2 = 4y

y =
x2

4

P(x, y)

R(x, -1)

F(0, 1)

y = -1   

y

x

Therefore the set of points is the parabola with equation y =
x2

4
.

a Find the equation of the parabola with focus F(0, c) and directrix y = −c.
b Hence find the focus of the parabola with equation y = 2x2.

Example 23

Solution
a A point P(x, y) on the parabola satisfies

FP = RP√
x2 + (y − c)2 =

√
(y − (−c))2

x2 + (y − c)2 = (y + c)2

x2 + y2 − 2cy + c2 = y2 + 2cy + c2

x2 − 2cy = 2cy

x2 = 4cy

The parabola has equation 4cy = x2.

P(x, y)

R(x, -c)

F(0, c)

y = -c

y

x

b Since
y
2

= x2, we solve
1
2

= 4c, giving c =
1
8

.

Hence the focus is F
(
0,

1
8

)
.

In the previous example, we proved the following result:

The parabola with focus F(0, c) and directrix y = −c has equation 4cy = x2.



570 Chapter 17: Graphing functions and relations

A remarkable application
Parabolas have a remarkable property that makes them extremely
useful. Light travelling parallel to the axis of symmetry of a
reflective parabola is always reflected to its focus.

Parabolas can therefore be used to make reflective telescopes.
Low intensity signals from outer space will reflect off the dish and
converge at a receiver located at the focus.

F

To see how this works, we require a simple law of physics:

� When light is reflected off a surface, the angle between the ray and
the tangent to the surface is preserved after reflection. θθ

Reflective property of the parabola

Any ray of light parallel to the axis of symmetry of the parabola that reflects off the
parabola at point P will pass through the focus at F.

Proof Since point P is on the parabola, the distance to the
focus F is the same as the distance to the directrix.
Therefore FP = RP, and so 4FPR is isosceles.

Let M be the midpoint of FR. Then 4FMP is congruent
to 4RMP (by SSS). Therefore MP is the perpendicular
bisector of FR and

θ1 = θ2 (as 4FMP ≡ 4RMP)

= θ3 (vertically opposite angles)

P

R
M

F

y

x

q1 q2

q3

However, we also need to ensure that line MP is tangent
to the parabola. To see this, we will show that point P is
the only point common to the parabola and line MP.

Take any other point Q on line MP. Suppose that
point T is the point on the directrix closest to Q. Then

FQ = RQ > T Q

and so point Q is not on the parabola.

P

R

M

Q

T

F

y

x

Summary 17F
� A parabola is the locus of a point P that moves so that its distance from a fixed

point F is equal to its perpendicular distance from a fixed line.
� The fixed point is called the focus and the fixed line is called the directrix.
� The parabola with equation 4cy = x2 has focus F(0, c) and directrix y = −c.
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Exercise 17F

1Example 22 Find the locus of a point P(x, y) that moves so that its distance from the point F(0, 3) is
equal to its perpendicular distance from the line with equation y = −3.

2 Find the locus of a point P(x, y) that moves so that its distance from the point F(0,−4)
is equal to its perpendicular distance from the line with equation y = 2.

3 Find the equation of the locus of points P(x, y) whose distance to the point F(2, 0) is
equal to the perpendicular distance to the line with equation x = −4.

4 aExample 23 Find the equation of the parabola with focus F(c, 0) and directrix x = −c.
b Hence find the focus of the parabola with equation x = 3y2.

5 a Find the equation of the locus of points P(x, y) whose distance to the point F(a, b) is
equal to the perpendicular distance to the line with equation y = c.

b Hence find the equation of the parabola with focus (1, 2) and directrix y = 3.

6 A parabola goes through the point P(7, 9) and its focus is F(1, 1). The axis of symmetry
of the parabola is x = 1. Find the equation of its directrix.
Hint: The directrix will be a horizontal line, y = c. Expect to find two answers.

7 A parabola goes through the point (1, 1), its axis of symmetry is the line x = 2 and its
directrix is the line y = 3. Find the coordinates of its focus.
Hint: The focus must lie on the axis of symmetry.

17G Ellipses
A ball casts a shadow that looks like a squashed circle. This figure – called an ellipse – is
of considerable geometric significance. For instance, the planets in our solar system have
elliptic orbits.

Locus definition of an ellipse

An ellipse is the locus of a point P that moves so that the
sum of its distances from two fixed points F1 and F2 is a
constant. That is,

F1P + F2P = k

Note: Points F1 and F2 are called the foci of the ellipse.

P

F1 F2

d2
d1

Drawing an ellipse An ellipse can be drawn by pushing two
pins into paper. These will be the foci. A string of length k is tied
to each of the two pins and the tip of a pen is used to pull the string
taut and form a triangle. The pen will trace an ellipse if it is moved
around the pins while keeping the string taut.

P

F1 F2



572 Chapter 17: Graphing functions and relations

Cartesian equations of ellipses
The standard form of the Cartesian equation of an ellipse centred
at the origin is

x2

a2 +
y2

b2 = 1

This ellipse has x-axis intercepts ±a and y-axis intercepts ±b.

y

b a x

Applying the translation defined by (x, y)→ (x + h, y + k), we can see the following result:

The graph of

(x − h)2

a2 +
(y − k)2

b2 = 1

is an ellipse centred at the point (h, k).

b a
(h, k)

For each of the following equations, sketch the graph of the corresponding ellipse. Give
the coordinates of the centre and the axis intercepts.

x2

9
+

y2

4
= 1a 4x2 + 9y2 = 1b

(x − 1)2

4
+

(y + 2)2

9
= 1c

Example 24

Solution
a The equation can be written as

x2

32 +
y2

22 = 1

This is an ellipse with centre (0, 0) and axis intercepts
at x = ±3 and y = ±2.

y

0

2

−2

−3 3
x

b The equation can be written as

x2( 1
2
)2 +

y2( 1
3
)2 = 1

This is an ellipse with centre (0, 0) and axis intercepts
at x = ± 1

2 and y = ± 1
3 .

y

0 x
1
2

1
2

1
3

1
3

−

−

c This is an ellipse with centre (1,−2).
To find the x-axis intercepts, let y = 0. Then solving
for x gives

x =
3 ± 2

√
5

3
Likewise, to find the y-axis intercepts, let x = 0.
This gives

y =
−4 ± 3

√
3

2

y

x
3

2

(1,  2)−
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Using the locus definition

Consider points A(−2, 0) and B(2, 0). Find the equation of the locus of points P satisfying
AP + BP = 8.

Example 25

Solution
Let (x, y) be the coordinates of point P. If AP + BP = 8, then√

(x + 2)2 + y2 +
√

(x − 2)2 + y2 = 8√
(x + 2)2 + y2 = 8 −

√
(x − 2)2 + y2and so

Square both sides, then expand and simplify:

(x + 2)2 + y2 = 64 − 16
√

(x − 2)2 + y2 + (x − 2)2 + y2

x2 + 4x + 4 + y2 = 64 − 16
√

(x − 2)2 + y2 + x2 − 4x + 4 + y2

x − 8 = −2
√

(x − 2)2 + y2

Square both sides again:

x2 − 16x + 64 = 4(x2 − 4x + 4 + y2)

Simplifying yields

3x2 + 4y2 = 48

x2

16
+

y2

12
= 1i.e.

This is an ellipse with centre the origin and axis
intercepts at x = ±4 and y = ±2

√
3.

x

2√3
–

-2√3
–

4-4 O

y

Every point P on the ellipse satisfies AP + BP = 8.

Eccentricity of an ellipse
It can also be shown that an ellipse is the locus of points P(x, y) satisfying

FP = eMP

where F is a fixed point, 0 < e < 1 and MP is the perpendicular distance from P to a fixed
line `. The number e is called the eccentricity of the ellipse.

ℓ

M
P

F F¢

M¢

ℓ¢

From the symmetry of the ellipse, it is clear that there is a second point F′ and a second
line `′ such that F′P = eM′P defines the same locus, where M′P is the perpendicular
distance from P to `′.
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Find the equation of the locus of points P(x, y) if the distance from P to the point F(1, 0) is
half the distance MP, the perpendicular distance from P to the line with equation x = −2.

That is, FP =
1
2

MP.

Example 26

Solution
Let (x, y) be the coordinates of point P.

If FP =
1
2

MP, then√
(x − 1)2 + y2 =

1
2

√
(x + 2)2

Square both sides:

(x − 1)2 + y2 =
1
4

(x + 2)2

4(x2 − 2x + 1) + 4y2 = x2 + 4x + 4

3x2 − 12x + 4y2 = 0

x

y

x = – 2 

M(–2, y) P(x, y)

O F(1, 0)

Complete the square:

3(x2 − 4x + 4) + 4y2 = 12

3(x − 2)2 + 4y2 = 12 or equivalently
(x − 2)2

4
+

y2

3
= 1

This is an ellipse with centre (2, 0).

Summary 17G
� An ellipse is the locus of a point P that moves so that the sum of its distances d1 and d2

from two fixed points F1 and F2 (called the foci) is equal to a fixed positive constant.
� The graph of

(x − h)2

a2 +
(y − k)2

b2 = 1

is an ellipse centred at the point (h, k).

Exercise 17GSkill-
sheet

1Example 24 Sketch the graph of each ellipse, labelling the axis intercepts:
x2

9
+

y2

64
= 1a

x2

100
+

y2

25
= 1b

y2

9
+

x2

64
= 1c 25x2 + 9y2 = 225d

2 Sketch the graph of each ellipse, labelling the centre and the axis intercepts:
(x − 3)2

9
+

(y − 4)2

16
= 1a

(x + 3)2

9
+

(y + 4)2

25
= 1b

(y − 3)2

16
+

(x − 2)2

4
= 1c 25(x − 5)2 + 9y2 = 225d
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3 Find the Cartesian equations of the following ellipses:
y

0

4

−4

−5 5
x

a

(2, −2)

(2, 2)

−1 5
x

yb

(–1, 1)
2

x

yc

4Example 25 Find the locus of a point P that moves such that the sum of its distances from two fixed
points A(1, 0) and B(−1, 0) is 4 units.

5 Find the locus of a point P that moves such that the sum of its distances from two fixed
points A(0, 2) and B(0,−2) is 6 units.

6Example 26 Find the equation of the locus of points P(x, y) such that the distance from P to the
point F(2, 0) is half the distance MP, the perpendicular distance from P to the line with
equation x = −4. That is, FP = 1

2 MP.

7 A circle has equation x2 + y2 = 1. It is then dilated by a factor of 3 from the x-axis and
by a factor of 5 from the y-axis. Find the equation of the image and sketch its graph.

17H Hyperbolas
Hyperbolas are defined analogously to ellipses, but using the difference instead of the sum.

Locus definition of a hyperbola

A hyperbola is the locus of a point P that moves so that the
difference between its distances from two fixed points F1 and F2

is a constant. That is,∣∣∣F2P − F1P
∣∣∣ = k

Note: Points F1 and F2 are called the foci of the hyperbola.

P
d2

d1

F1
F2

The standard form of the Cartesian equation of a hyperbola centred at the origin is

x2

a2 −
y2

b2 = 1

Applying the translation defined by (x, y)→ (x + h, y + k), we can see the following result:

The graph of

(x − h)2

a2 −
(y − k)2

b2 = 1

is a hyperbola centred at the point (h, k).

Note: Interchanging x and y in this equation produces another hyperbola (rotated by 90◦).
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Asymptotes of the hyperbola
We now investigate the behaviour of the hyperbola as x→ ±∞. We first show that the
hyperbola with equation

x2

a2 −
y2

b2 = 1

has asymptotes

y =
b
a

x and y = −
b
a

x

To see why this should be the case, we rearrange the
equation of the hyperbola as follows:

x2

a2 −
y2

b2 = 1

y2

b2 =
x2

a2 − 1

y2 =
b2x2

a2 − b2

=
b2x2

a2

(
1 −

a2

x2

)
x

y

(–a, 0) (a, 0)0

y =  a
  –b

x y = a
 bx

If x→ ±∞, then
a2

x2 → 0. This suggests that y2 →
b2x2

a2 as x→ ±∞. That is,

y→ ±
bx
a

as x→ ±∞

Applying the translation defined by (x, y)→ (x + h, y + k), we obtain the following result:

The hyperbola with equation

(x − h)2

a2 −
(y − k)2

b2 = 1

has asymptotes given by

y − k = ±
b
a

(
x − h

)

For each of the following equations, sketch the graph of the corresponding hyperbola.
Give the coordinates of the centre, the axis intercepts and the equations of the asymptotes.

x2

9
−

y2

4
= 1a

y2

9
−

x2

4
= 1b

(x − 1)2 − (y + 2)2 = 1c
(y − 1)2

4
−

(x + 2)2

9
= 1d

Example 27
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Solution

a Since
x2

9
−

y2

4
= 1, we have

y2 =
4x2

9

(
1 −

9
x2

)
Thus the equations of the asymptotes are y = ±

2
3

x.

If y = 0, then x2 = 9 and so x = ±3. The x-axis
intercepts are (3, 0) and (−3, 0). The centre is (0, 0).

x

y

y =
3
2

x
3
2

xy = –

(–3, 0) (3, 0)0

b Since
y2

9
−

x2

4
= 1, we have

y2 =
9x2

4

(
1 +

4
x2

)
Thus the equations of the asymptotes are y = ±

3
2

x.

The y-axis intercepts are (0, 3) and (0,−3).
The centre is (0, 0).

x

y

(0, –3)

0

(0, 3)

3
2

y = x–
3
2

y = x

c First sketch the graph of x2 − y2 = 1. The asymptotes
are y = x and y = −x. The centre is (0, 0) and the axis
intercepts are (1, 0) and (−1, 0).

Note: This hyperbola is called a rectangular
hyperbola, as its asymptotes are perpendicular.

Now to sketch the graph of

(x − 1)2 − (y + 2)2 = 1

we apply the translation (x, y)→ (x + 1, y − 2).

x

y

(1, 0)(–1, 0) 0

y = –x  y = x

The new centre is (1,−2) and the asymptotes
have equations y + 2 = ±(x − 1). That is,
y = x − 3 and y = −x − 1.

Axis intercepts
If x = 0, then y = −2.
If y = 0, then (x − 1)2 = 5 and so x = 1 ±

√
5.

Therefore the axis intercepts are (0,−2)
and (1 ±

√
5, 0).

x

y

y = –x – 1 

(0, –2)
–3

–1
–1 0

y = x – 3

(1, –2)
(1 – √5, 0) (1 +  √5, 0)

3

(2, –2)
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d The graph of
(y − 1)2

4
−

(x + 2)2

9
= 1 is obtained from the hyperbola

y2

4
−

x2

9
= 1

through the translation (x, y)→ (x − 2, y + 1). Its centre will be (−2, 1).

x

y

2
3

y = x

(0, 2)

(0, –2)

0

2
3

y = x–

x2

9
= 1–

y2

4
(–2, 1)

(–2, –1)

(–2, 3)

x

y

0

(x + 2)2

9 = 1–
(y – 1)2 

4

y =  – x –
3
2

3
1

y = x +
3
2

3
7

Using the locus definition

Consider the points A(−2, 0) and B(2, 0). Find the equation of the locus of points P
satisfying AP − BP = 3.

Example 28

Solution
Let (x, y) be the coordinates of point P.

If AP − BP = 3, then√
(x + 2)2 + y2 −

√
(x − 2)2 + y2 = 3√
(x + 2)2 + y2 = 3 +

√
(x − 2)2 + y2and so

Square both sides, then expand and simplify:

(x + 2)2 + y2 = 9 + 6
√

(x − 2)2 + y2 + (x − 2)2 + y2

x2 + 4x + 4 + y2 = 9 + 6
√

(x − 2)2 + y2 + x2 − 4x + 4 + y2

8x − 9 = 6
√

(x − 2)2 + y2

Note that this only holds if x ≥
9
8

. Squaring both sides again gives

64x2 − 144x + 81 = 36(x2 − 4x + 4 + y2)

28x2 − 36y2 = 63

4x2

9
−

4y2

7
= 1 for x ≥

3
2

This is the right branch of a hyperbola with centre the origin and x-axis intercept
3
2

.
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It can also be shown that a hyperbola is the locus of points P(x, y)
satisfying

FP = eRP

where F is a fixed point, e > 1 and RP is the perpendicular distance
from P to a fixed line `.

R

FF ′

P

ℓ′ ℓ

From the symmetry of the hyperbola, it is clear that there is a second point F′ and a second
line `′ such that F′P = eR′P defines the same locus, where R′P is the perpendicular distance
from P to `′.

Find the equation of the locus of points P(x, y) for which the distance from P to the
point F(1, 0) is twice the distance MP, the perpendicular distance from P to the line with
equation x = −2. That is, FP = 2MP.

Example 29

Solution
Let (x, y) be the coordinates of point P.

If FP = 2MP, then√
(x − 1)2 + y2 = 2

√
(x + 2)2

Squaring both sides gives

(x − 1)2 + y2 = 4(x + 2)2

x2 − 2x + 1 + y2 = 4(x2 + 4x + 4)

3x2 + 18x − y2 + 15 = 0

x = –2 

M(–2, y)

F(1, 0)

P(x, y)

O
x

y

By completing the square, we obtain

3(x2 + 6x + 9) − 27 − y2 + 15 = 0

3(x + 3)2 − y2 = 12

(x + 3)2

4
−

y2

12
= 1

This is a hyperbola with centre (−3, 0).

x

y

y = √3(x + 3) 

y = –√3(x + 3)

–5 –3 –1
O

Summary 17H
� A hyperbola is the locus of a point P that moves so that the difference between its

distances from two fixed points F1 and F2 (called the foci) is a constant. That is,∣∣∣F2P − F1P
∣∣∣ = k.

� The graph of

(x − h)2

a2 −
(y − k)2

b2 = 1

is a hyperbola centred at the point (h, k). Its asymptotes are y − k = ±
b
a

(
x − h

)
.
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Exercise 17HSkill-
sheet

1Example 27 Sketch the graph of each of the following hyperbolas. Label axis intercepts and give the
equations of the asymptotes.

x2

4
−

y2

9
= 1a x2 −

y2

4
= 1b

y2

25
−

x2

100
= 1c 25x2 − 9y2 = 225d

2 Sketch the graph of each of the following hyperbolas. State the centre and label axis
intercepts and asymptotes.

(x − 1)2 − (y + 2)2 = 1a
(x + 1)2

4
−

(y − 2)2

16
= 1b

(y − 3)2

9
− (x − 2)2 = 1c 25(x − 4)2 − 9y2 = 225d

x2 − 4y2 − 4x − 8y − 16 = 0e 9x2 − 25y2 − 90x + 150y = 225f

3Example 28 Consider the points A(4, 0) and B(−4, 0). Find the equation of the locus of points P
satisfying AP − BP = 6.

4 Find the equation of the locus of points P(x, y) satisfying AP − BP = 4, given
coordinates A(−3, 0) and B(3, 0).

5Example 29 Find the equation of the locus of points P(x, y) for which the distance to P from the
point F(5, 0) is twice the distance MP, the perpendicular distance to P from the line
with equation x = −1. That is, FP = 2MP.

6 Find the equation of the locus of points P(x, y) for which the distance to P from the
point F(0,−1) is twice the distance MP, the perpendicular distance to P from the line
with equation y = −4. That is, FP = 2MP.

17I Parametric equations
A parametric curve in the plane is a pair of functions

x = f (t) and y = g(t)

The variable t is called the parameter, and for each choice of t we get a point in the plane(
f (t), g(t)

)
. The set of all such points will be a curve in the plane.

It is sometimes useful to think of t as being time, so that the equations x = f (t) and y = g(t)
give the position of an object at time t. Points on the curve can be plotted by substituting
various values of t into the two equations.
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For instance, we can plot points
on the curve defined by the
parametric equations

x = t and y = 3t2 − t3

by letting t = 0, 1, 2, 3.

t 0 1 2 3

x 0 1 2 3

y 0 2 4 0

In this instance, it is possible to eliminate the parameter t to obtain
a Cartesian equation in x and y alone. Substituting t = x into the
second equation gives y = 3x2 − x3.

y

x

t = 1

t = 2

t = 3
t = 0

Lines

a Find the Cartesian equation for the curve defined by the parametric equations

x = t + 2 and y = 2t − 3

b Find parametric equations for the line through the points A(2, 3) and B(4, 7).

Example 30

Solution
Substitute t = x − 2 into the second
equation to give

y = 2(x − 2) − 3

= 2x − 7

Thus every point lies on the straight line
with equation y = 2x − 7.

a The gradient of the straight line through
points A(2, 3) and B(4, 7) is

m =
7 − 3
4 − 2

= 2

Therefore the line has equation

y − 3 = 2(x − 2)

y = 2x − 1

We can simply let x = t and so y = 2t − 1.

b

Note: There are infinitely many pairs of parametric equations that describe the same curve.
In part b, we could also let x = 2t and y = 4t − 1. These parametric equations describe
exactly the same set of points. As t increases, the point moves along the same line
twice as fast.

Parabolas

Find the Cartesian equation of the parabola defined by the parametric equations

x = t − 1 and y = t2 + 1

Example 31

Solution
Substitute t = x + 1 into the second equation to give y = (x + 1)2 + 1.
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Circles
We have seen that the circle with radius r and
centre at the origin can be written in Cartesian
form as

x2 + y2 = r2

We now introduce the parameter t and let

x = r cos t and y = r sin t

As t increases from 0 to 2π, the point P(x, y) travels
from (r, 0) anticlockwise around the circle and
returns to its original position.

O

P

t
r sin t

r cos t

r

x

y

To demonstrate that this parameterises the circle, we evaluate

x2 + y2 = r2 cos2 t + r2 sin2 t

= r2(cos2 t + sin2 t
)

= r2

where we have used the Pythagorean identity cos2 t + sin2 t = 1.

a Find the Cartesian equation of the circle defined by the parametric equations

x = cos t + 1 and y = sin t − 2

b Find parametric equations for the circle with Cartesian equation

(x + 1)2 + (y + 3)2 = 4

Example 32

Solution
a We rearrange each equation to isolate cos t and sin t respectively. This gives

x − 1 = cos t and y + 2 = sin t

Using the Pythagorean identity:

(x − 1)2 + (y + 2)2 = cos2 t + sin2 t = 1

So every point on the graph lies on the circle with equation (x − 1)2 + (y + 2)2 = 1.

b We let

cos t =
x + 1

2
and sin t =

y + 3
2

giving

x = 2 cos t − 1 and y = 2 sin t − 3

We can easily check that these equations parameterise the given circle.
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Ellipses
An ellipse can be thought of as a squashed circle.

This is made apparent from the parametric equations
for an ellipse:

x = a cos t and y = b sin t

As with the circle, we see the sine and cosine
functions, but these are now scaled by different
constants, giving different dilations from the
x- and y-axes.

y

b

–b

–a a
0

x

We can turn this pair of parametric equations into one Cartesian equation as follows:

x
a

= cos t and
y
b

= sin t

giving

x2

a2 +
y2

b2 = cos2 t + sin2 t = 1

which is the standard form of an ellipse centred at the origin with axis intercepts at x = ±a
and y = ±b.

a Find the Cartesian equation of the ellipse defined by the parametric equations

x = 3 cos t + 1 and y = 2 sin t − 1

b Find parametric equations for the ellipse with Cartesian equation

(x − 1)2

4
+

(y + 2)2

16
= 1

Example 33

Solution
a We rearrange each equation to isolate cos t and sin t respectively. This gives

x − 1
3

= cos t and
y + 1

2
= sin t

Using the Pythagorean identity:( x − 1
3

)2
+

(y + 1
2

)2
= cos2 t + sin2 t = 1

So every point on the graph lies on the ellipse with equation
(x − 1)2

32 +
(y + 1)2

22 = 1.

b We let

cos t =
x − 1

2
and sin t =

y + 2
4

giving

x = 2 cos t + 1 and y = 4 sin t − 2
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Hyperbolas
We can parameterise a hyperbola using the equations

x = a sec t and y = b tan t

From these two equations, we can find the more familiar Cartesian equation:
x
a

= sec t and
y
b

= tan t

giving

x2

a2 −
y2

b2 = sec2 t − tan2 t = 1

which is the standard form of a hyperbola centred at the origin.

a Find the Cartesian equation of the hyperbola defined by the parametric equations

x = 3 sec t − 1 and y = 2 tan t + 2

b Find parametric equations for the hyperbola with Cartesian equation

(x + 2)2

4
−

(y − 3)2

16
= 1

Example 34

Solution
a We rearrange each equation to isolate sec t and tan t respectively. This gives

x + 1
3

= sec t and
y − 2

2
= tan t

and therefore( x + 1
3

)2
−

(y − 2
2

)2
= sec2 t − tan2 t = 1

So each point on the graph lies on the hyperbola with equation
(x + 1)2

32 −
(y − 2)2

22 = 1.

b We let

sec t =
x + 2

2
and tan t =

y − 3
4

giving

x = 2 sec t − 2 and y = 4 tan t + 3

Parametric equations with restricted domains

Eliminate the parameter to determine the graph of the parameterised curve

x = t − 1, y = t2 − 2t + 1 for 0 ≤ t ≤ 2

Example 35
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Solution
Substitute t = x + 1 from the first equation into the
second equation, giving

y = (x + 1)2 − 2(x + 1) + 1

= x2 + 2x + 1 − 2x − 2 + 1

= x2

Since 0 ≤ t ≤ 2, it follows that −1 ≤ x ≤ 1.

Therefore, as t increases from 0 to 2, the point travels
along the parabola y = x2 from (−1, 1) to (1, 1).

y

x

(1, 1)

10

1

–1

(–1, 1)

Intersections of curves defined parametrically
It is often difficult to find the intersection of two curves defined parametrically. This is
because, although the curves may intersect, they might do so for different values of the
parameter t.

In many instances, it is easiest to find the points of intersection using the Cartesian equations
for the two curves.

Find the points of intersection of the circle and line defined by the parametric equations:

circle x = 5 cos t and y = 5 sin t

line x = t − 3 and y = 2t − 8

Example 36

Solution
The Cartesian equation of the circle is x2 + y2 = 25.

The Cartesian equation of the line is y = 2x − 2.

Substituting the second equation into the first gives

x2 + (2x − 2)2 = 25

x2 + 4x2 − 8x + 4 = 25

5x2 − 8x − 21 = 0

(x − 3)(5x + 7) = 0

This gives solutions x = 3 and x = −
7
5

.

0

5

−5

5−5

(3, 4)

−
7
5

, −
24
5

x

y

( )

Substituting these into the equation y = 2x − 2 gives y = 4 and y = −
24
5

respectively.

The points of intersection are (3, 4) and
(
−

7
5

,−
24
5

)
.
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Using a CAS calculator with parametric equations

Plot the graph of the parametric curve given by x = 2 cos(3t) and y = 2 sin(3t).

Example 37

Using the TI-Nspire
� Open a Graphs application ( con > New Document > Add Graphs).
� Use menu > Graph Entry/Edit > Parametric to show the entry line for parametric

equations.
� Enter x1(t) = 2 cos(3t) and y1(t) = 2 sin(3t) as shown.

Using the Casio ClassPad
� Open the Graph & Table application .
� Clear all equations and graphs.
� Tap on H next tod in the toolbar and selectg.

� Enter the equations in xt1 and yt1 as shown.
� Tick the box and tap$. Adjust the window as

required.
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Summary 17I
� A parametric curve in the plane is a pair of functions

x = f (t) and y = g(t)

where t is called the parameter of the curve. For example:

Cartesian equation Parametric equations

Circle x2 + y2 = r2 x = r cos t and y = r sin t

Ellipse
x2

a2 +
y2

b2 = 1 x = a cos t and y = b sin t

Hyperbola
x2

a2 −
y2

b2 = 1 x = a sec t and y = b tan t

� We can sometimes find the Cartesian equation of a parametric curve by eliminating t
and solving for y in terms of x.

Exercise 17ISkill-
sheet

1 Consider the parametric equations

x = t − 1 and y = t2 − 1

a Find the Cartesian equation of the curve described by these equations.
b Sketch the curve and label the points on the curve corresponding to t = 0, 1, 2.

2Example 30

Example 31

For each of the following pairs of parametric equations, find the Cartesian equation and
sketch the curve:

x = t + 1 and y = 2t + 1a x = t − 1 and y = 2t2 + 1b

x = t2 and y = t6c x = t + 2 and y =
1

t + 1
d

3 aExample 32 Find the Cartesian equation of the circle defined by the parametric equations

x = 2 cos t and y = 2 sin t

bExample 33 Find the Cartesian equation of the ellipse defined by the parametric equations

x = 3 cos t − 1 and y = 2 sin t + 2

c Find parametric equations for the circle with Cartesian equation

(x + 3)2 + (y − 2)2 = 9

d Find parametric equations for the ellipse with Cartesian equation

(x + 2)2

9
+

(y − 1)2

4
= 1

4 Find parametric equations for the line through the points A(−1,−2) and B(1, 4).
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5 aExample 34 Find the Cartesian equation of the hyperbola defined by the parametric equations

x = 2 sec t + 1 and y = 3 tan t − 2

b Find parametric equations for the hyperbola with Cartesian equation

(x − 2)2 −
(y + 1)2

4
= 1

6 aExample 35 Eliminate the parameter t to determine the equation of the parameterised curve

x = t − 1 and y = −2t2 + 4t − 2 for 0 ≤ t ≤ 2

b Sketch the graph of this curve over an appropriate domain.

7Example 36 Find the points of intersection of the circle and line defined by the parametric equations:

circle x = cos t and y = sin t

line x = 3t + 6 and y = 4t + 8

8 A curve is parameterised by the equations x = sin t and y = 2 sin2 t + 1 for 0 ≤ t ≤ 2π.

Find the curve’s Cartesian equation.a What is the domain of the curve?b
What is the range of the curve?c Sketch the graph of the curve.d

9 A curve is parameterised by the equations x = 2t and y = 22t + 1 for t ∈ R.

Find the curve’s Cartesian equation.a What is the domain of the curve?b
What is the range of the curve?c Sketch the graph of the curve.d

10 Eliminate the parameter to determine the graph of the parameterised curve

x = cos t and y = 1 − 2 sin2 t for 0 ≤ t ≤ 2π

11 Consider the parametric equations

x = 2t + 2−t and y = 2t − 2−t

a Show that the Cartesian equation of the curve is
x2

4
−

y2

4
= 1 for x ≥ 2.

b Sketch the graph of the curve.

12 Consider the circle with Cartesian equation x2 + (y − 1)2 = 1.

a Sketch the graph of the circle.
b Show that the parametric equations x = cos t and y = sin t + 1 define the same circle.
c A different parameterisation of the circle can be found without the use of the cosine

and sine functions. Suppose that t is any real number and let P(x, y) be the point of
intersection of the line y = 2 − tx with the circle. Solve for x and y in terms of t,
assuming that x , 0.

d Verify that the equations found in part c parameterise the same circle.

13Example 37 The curve with parametric equations x =
t

2π
cos t and y =

t
2π

sin t is called an
Archimedean spiral.
a With the help of your calculator, sketch the curve over the interval 0 ≤ t ≤ 6π.
b Label the points on the curve corresponding t = 0, 1, 2, 3, 4, 5, 6.
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17J Polar coordinates
Until now, we have described each point in the plane by a pair of numbers (x, y). These are
called Cartesian coordinates, and take their name from the French intellectual René Descartes
(1596–1650) who introduced them. However, they are not the only way to describe points in
the plane. In fact, for many situations it is more convenient to use polar coordinates.

Using polar coordinates, every point P in the plane is described
by a pair of numbers [r, θ], where:

� the number r is the distance from the origin O to P

� the number θ measures the angle between the positive
direction of the x-axis and the ray OP, as shown.

Note: To distinguish polar coordinates from Cartesian
coordinates, we write the numbers in square brackets.

x

y

r

θ
O

P

For example, the diagram on the right shows the point P with

polar coordinates
[
2,
π

4

]
.

We can even make sense of polar coordinates such as Q
[
−2,

π

4

]
:

go to the direction
π

4
and then move a distance of 2 in the

opposite direction.

x

2

y

P

Q

p
4

Converting between the two coordinate systems requires little more than basic trigonometry.

� If a point P has polar coordinates [r, θ], then its Cartesian coordinates (x, y) satisfy

x = r cos θ and y = r sin θ

� If a point P has Cartesian coordinates (x, y), then its polar coordinates [r, θ] satisfy

r2 = x2 + y2 and tan θ =
y
x

(if x , 0)

Non-uniqueness of polar coordinates
Polar coordinates differ from Cartesian coordinates in that
each point in the plane has more than one representation in
polar coordinates.

For example, the following polar coordinates all represent the
same point:[

2,
π

3

]
,

[
−2,

4π
3

]
and

[
2,

7π
3

]
P¢

P

1

2

y

x

π
3

4π
3

√3

The point P[r, θ] can be described in infinitely many ways:[
r, θ + 2nπ

]
and

[
−r, θ + (2n + 1)π

]
for all n ∈ Z
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Convert polar coordinates
[
2,

5π
6

]
into Cartesian coordinates.

Example 38

Solution

x = r cos θ y = r sin θ

= 2 cos
(5π

6

)
= 2 sin

(5π
6

)
= −
√

3 = 1

The Cartesian coordinates are (−
√

3, 1).

For each pair of Cartesian coordinates, find two representations using polar coordinates,
one with r > 0 and the other with r < 0.

(3, 3)a (1,−
√

3)b (−5, 0)c (0, 3)d

Example 39

Solution

r =
√

32 + 32 = 3
√

2

θ = tan−1(1) =
π

4

a r =
√

12 +
(
−
√

3
)2 = 2

θ = tan−1(−√3
)

= −
π

3

b

The point has polar coordinates
[
3
√

2,
π

4

]
. The point has polar coordinates

[
2,−

π

3

]
.

We could also let r = −3
√

2 and add π to

the angle, giving
[
−3
√

2,
5π
4

]
.

We could also let r = −2 and add π to

the angle, giving
[
−2,

2π
3

]
.

r = 5 and θ = πc r = 3 and θ =
π

2
d

The point has polar coordinates [5,π]. The point has polar coordinates
[
3,
π

2

]
.

We could also let r = −5 and subtract π
from the angle, giving [−5, 0].

We could also let r = −3 and subtract π

from the angle, giving
[
−3,−

π

2

]
.

Summary 17J
� Each point P in the plane can be represented using polar coordinates [r, θ], where:

• r is the distance from the origin O to P

• θ is the angle between the positive direction of the x-axis and the ray OP.

� If a point P has polar coordinates [r, θ], then its Cartesian coordinates (x, y) satisfy

x = r cos θ and y = r sin θ

� If a point P has Cartesian coordinates (x, y), then all its polar coordinates [r, θ] satisfy

r2 = x2 + y2 and tan θ =
y
x

(if x , 0)
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� Each point in the plane has more than one representation in polar coordinates.

For example, the coordinates
[
2,
π

4

]
,
[
2,

9π
4

]
and

[
−2,

5π
4

]
all represent the same point.

Exercise 17J

1Example 38 Plot the points with the following polar coordinates and then find their Cartesian
coordinates:

A
[
1,
π

2

]
a B

[
2,

3π
4

]
b C

[
3,−

π

2

]
c D

[
−2,

π

4

]
d E[−1,π]e

F
[
0,
π

4

]
f G

[
4,−

5π
6

]
g H

[
−2,

2π
3

]
h I

[
−2,−

π

4

]
i

2Example 39 For each of the following pairs of Cartesian coordinates, find two representations using
polar coordinates, one with r > 0 and the other with r < 0:

(1,−1)a (1,
√

3)b (2,−2)c
(−
√

2,−
√

2)d (3, 0)e (0,−2)f

3 Two points have polar coordinates P
[
2,
π

6

]
and Q

[
3,
π

2

]
respectively. Find the exact

length of line segment PQ.

4 Two points have polar coordinates P[r1, θ1] and Q[r2, θ2]. Find a formula for the length
of PQ.

17K Graphing using polar coordinates
Polar coordinates are useful for describing and sketching curves in the plane, especially in
situations that involve symmetry with respect to the origin. Suppose that f is a function. The
graph of f in polar coordinates is simply the set of all points [r, θ] such that r = f (θ).

Sketch the spiral with polar equation r = θ, for 0 ≤ θ ≤ 2π.

Example 40

Solution
The distance r from the origin exactly matches the
angle θ. So as the angle increases, so too does the
distance from the origin.

Note that the coordinates on the graph are in
polar form.

[π, π] x

y

π 
2

π 
2

,

3π 
2

3π 
2,

[2π, 2π]

[ ]

[ ]
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Circles
If a circle is centred at the origin, then its polar equation could
not be simpler.

A circle of radius a centred at the origin has polar equation

r = a

That is, the distance r from the origin is constant, having no
dependence on the angle θ. This illustrates rather forcefully
the utility of polar coordinates: they simplify situations that
involve symmetry with respect to the origin.

r = 1

r = 2

r = 3

x

y

For circles not centred at the origin, the polar equations are less obvious.

A curve has polar equation r = 2 sin θ. Show that its Cartesian equation is x2 + (y−1)2 = 1.

Example 41

Solution
The trick here is to first multiply both sides of the polar equation by r to get

r2 = 2r sin θ

Since r2 = x2 + y2 and r sin θ = y, this equation becomes

x2 + y2 = 2y

x2 + y2 − 2y = 0

x2 + (y2 − 2y + 1) − 1 = 0 (completing the square)

x2 + (y − 1)2 = 1

This is a circle with centre (0, 1) and radius 1.

Lines
For a straight line through the origin, the angle θ is fixed
and the distance r varies. Because we have allowed
negative values of r, the straight line goes in both
directions.

The straight line shown has equation

θ =
π

4

x

y

r > 0

r < 0

π
4

For a straight line that does not go through the origin, the equation is more complicated.
A line in Cartesian form ax + by = c can be converted into polar form by substituting
x = r cos θ and y = r sin θ.
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a Express x + y = 1 in polar form. b Express r =
2

3 cos θ − 4 sin θ
in Cartesian form.

Example 42

Solution

a Since x = r cos θ and y = r sin θ,
the equation x + y = 1 becomes

r cos θ + r sin θ = 1

r(cos θ + sin θ) = 1

Therefore the straight line has
polar equation

r =
1

cos θ + sin θ

b Since
x
r

= cos θ and
y
r

= sin θ, the equation
becomes

r =
2

3x
r
−

4y
r

r =
2r

3x − 4y

1 =
2

3x − 4y

Therefore the Cartesian equation is

3x − 4y = 2

Further graphs
Various geometrically significant figures are best described using polar coordinates.

Cardioids
The name cardioid comes from the Greek word for heart. A cardioid is the curve traced by a
point on the perimeter of a circle that is rolling around a fixed circle of the same radius.

Graph the cardioid with equation r = 1 + cos θ, for θ ∈ [0, 2π].

Example 43

Solution
To help sketch this curve, we first graph the function r = 1 + cos θ using Cartesian
coordinates, as shown on the left. This allows us to see how r changes as θ increases.

� As the angle θ increases from 0 to π, the distance r decreases from 2 to 0.
� As the angle θ increases from π to 2π, the distance r increases from 0 to 2.

This gives the graph of the cardioid shown on the right.

2

1

0 π

r

q
π
2

3π
2

2π

0 1 2

1

–1

x

y
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Roses
This impressive curve is fittingly called a rose. It belongs to
the family of curves with polar equations of the form

r = cos(nθ)

For the example shown, n =
5
8

.

A curve has polar equation r = cos(2θ).

a Sketch the graph of the curve.
b Show that its Cartesian equation is

(
x2 + y2)3

=
(
x2 − y2)2.

Example 44

Solution
a To help sketch this curve, we first graph the function r = cos(2θ) using Cartesian

coordinates, as shown on the left. This allows us to see how r changes as θ increases.
Using numbers, we have labelled how each section of this graph corresponds to a
section of the rose shown on the right.

1
1

–1

r

4

6 72
0

5 8

2p
q

p
3

π
2

3π
2 7π

4

5π
4

2
5

3
8

1
67

4

3π
4

π
4

y

x

b Using the double angle formula cos(2θ) = cos2 θ − sin2
θ, we have

r = cos(2θ)

r = cos2
θ − sin2

θ

r =

( x
r

)2
−

(y
r

)2

r3 = x2 − y2

(r2)3 = (x2 − y2)2(
x2 + y2)3

=
(
x2 − y2)2

Note: This example further illustrates how polar coordinates can give more pleasing
equations than their Cartesian counterparts.

The curve in this example is a four-leaf rose. More generally, the equations r = cos(nθ) and
r = sin(nθ) give 2n-leaf roses if n is even, and give n-leaf roses if n is odd.
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Using a CAS calculator with polar coordinates

Plot the graph of r = 3(1 − cos θ).

Example 45

Using the TI-Nspire
� Open a Graphs application ( con > New

Document > Add Graphs) and set to polar
using menu > Graph Entry/Edit > Polar.

� Enter r1(θ) = 3(1 − cos(θ)) as shown.
The variable θ is entered using ¹ or the
Symbols palette ( ctrl k ).

Note: The domain and the step size can be
adjusted in this window.

� Set the scale using menu > Window/Zoom >

Zoom – Fit.
� You can see the polar coordinates [r, θ] of

points on the graph using menu > Trace >

Graph Trace.
� To go to the point where θ = π, simply type π

and then press enter . The cursor will move to
the point [r, θ] = [6,π] as shown.

Using the Casio ClassPad
� Open the Graph & Table application .
� Clear all equations and graphs.
� Tap on H next tod in the toolbar and selectf.

� Enter 3(1 − cos(θ)) in r1.
� Tick the box and tap$.
� Select Zoom > Initialize to adjust the window.

Note: The variable θ is found in the Trig keyboard.
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Summary 17K
� For a function f , the graph of f in polar coordinates is the set of all points [r, θ] such

that r = f (θ).
� To convert between the polar form and the Cartesian form of an equation, substitute

x = r cos θ and y = r sin θ.

Exercise 17KSkill-
sheet

1Example 40 Sketch the spiral with polar equation r =
θ

2π
, for 0 ≤ θ ≤ 4π.

2 Express each of the following Cartesian equations in polar form:

x = 4a y = x2b x2 + y2 = 9c x2 − y2 = 1d 2x − 3y = 5e

3 Express each of the following polar equations in Cartesian form:

r =
2

cos θ
a r = 2b θ =

π

4
c r =

4
3 cos θ − 2 sin θ

d

4Example 41 By finding the Cartesian equation, show that each of the following polar equations
describes a circle:

r = 6 cos θa r = 4 sin θb r = −6 cos θc r = −8 sin θd

5 Show that the graph of r = 2a cos θ is a circle of radius a centred at (a, 0).

6 aExample 42 Show that the graph of r =
a

cos θ
is a vertical line.

b Find the polar form of the horizontal line y = a.

7 Consider the set of points P[r, θ] such that the
distance from P to the origin O is equal to the
perpendicular distance from P to the line y = −a,
where a > 0. This set of points is a parabola.

a Show that the distance from P to the line is
a + r sin θ.

b Conclude that the equation for the parabola can

be written as r =
a

1 − sin θ
.

O
θ

P

R
y = −a

r

x

y

8Example 43 The curve with polar equation r = 1 − sin θ is a cardioid.

a Sketch the graph of the cardioid.
b Show that its Cartesian equation is (x2 + y2 + y)2 = x2 + y2.

9Example 44 Sketch the graphs of the roses with the following polar equations:

r = cos(3θ)a r = sin(3θ)b

10 The polar equation r = sin(2θ) defines a four-leaf rose.

a Sketch the graph of the rose.
b Using a double angle formula, show that its Cartesian equation is (x2 + y2)3 = 4x2y2.
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Chapter summary

Inverse circular functions

� sin−1 : [−1, 1]→ R, sin−1 x = y, where sin y = x and y ∈
[
−
π

2
,
π

2

]
� cos−1 : [−1, 1]→ R, cos−1 x = y, where cos y = x and y ∈ [0,π]

� tan−1 : R→ R, tan−1 x = y, where tan y = x and y ∈
(
−
π

2
,
π

2

)
Reciprocal functions
� If y = f (x) is a function, then the reciprocal function is defined by the rule y =

1
f (x)

.

� To sketch the graph of y =
1

f (x)
, we first sketch the graph of y = f (x).

� The x-axis intercepts of y = f (x) will become vertical asymptotes of y =
1

f (x)
.

� Local maximums of y = f (x) will become local minimums of y =
1

f (x)
, and vice versa.

Reciprocal circular functions

sec x =
1

cos x
� cosec x =

1
sin x

� cot x =
cos x
sin x

�

(provided cos x , 0) (provided sin x , 0) (provided sin x , 0)

The modulus function
� The modulus or absolute value of a real number x is

|x| =

x if x ≥ 0

−x if x < 0

For example: |5| = 5 and |−5| = 5.
� On the number line, the distance between two numbers a and b is given by |a − b| = |b − a|.

For example: |x − 2| < 5 can be read as ‘the distance between x and 2 is less than 5’.
� To sketch the graph of y = | f (x)|, first draw the graph of y = f (x). Then reflect the sections

of the graph that are below the x-axis so that they are above the x-axis.
� To sketch the graph of y = f (|x|), first draw the graph of y = f (x) for x ≥ 0. Then reflect

the graph across the y-axis to obtain the graph for x ≤ 0.

Circles and straight lines
� A locus is the set of points described by a geometric condition.
� A circle is the locus of a point P that moves so that its distance from a fixed point C

is constant.
� The Cartesian equation of the circle with centre C(a, b) and radius r is

(x − a)2 + (y − b)2 = r2

� A straight line is the locus of a point P that moves so that it is equidistant from two fixed
points Q and R.



R
ev

ie
w

598 Chapter 17: Graphing functions and relations

Parabolas, ellipses and hyperbolas
� A parabola is the locus of a point P that moves so that its distance from a fixed point F is

equal to its perpendicular distance from a fixed line.
� An ellipse is the locus of a point P that moves so that the sum of its distances from two

fixed points F1 and F2 is a constant.
� The graph of

(x − h)2

a2 +
(y − k)2

b2 = 1

is an ellipse centred at the point (h, k).
� A hyperbola is the locus of a point P that moves so that the difference between its

distances from two fixed points F1 and F2 is a constant.
� The graph of

(x − h)2

a2 −
(y − k)2

b2 = 1

is a hyperbola centred at the point (h, k). Its asymptotes are y − k = ±
b
a

(
x − h

)
.

Parametric curves
� A parametric curve in the plane is a pair of functions

x = f (t) and y = g(t)

where t is called the parameter of the curve.
� It can be helpful to think of the parameter t as describing time. Parametric curves are then

useful for describing the motion of an object.
� We can sometimes find the Cartesian equation of a parametric curve by eliminating t and

solving for y in terms of x.

Polar coordinates
� Each point P in the plane can be represented using polar

coordinates [r, θ], where:

• r is the distance from the origin O to P

• θ is the angle between the positive direction of the x-axis and
the ray OP.

P

x

y

r

O
q

� If a point P has polar coordinates [r, θ], then its Cartesian coordinates (x, y) satisfy

x = r cos θ and y = r sin θ (1)

� If a point P has Cartesian coordinates (x, y), then all its polar coordinates [r, θ] satisfy

r2 = x2 + y2 and tan θ =
y
x

(if x , 0) (2)

� If f is a function, then the graph of f in polar coordinates is the set of all points [r, θ] such
that r = f (θ).

� To convert between the polar form and the Cartesian form of an equation, use formulas (1)
and (2) above.
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Technology-free questions

1 Evaluate each of the following:

sin−1(1)a tan−1(
√

3)b cos−1
(
−

1
√

2

)
c

sin−1
(√3

2

)
d cos

(
sin−1

(
−

1
2

))
e tan−1

(
sin

(π
2

))
f

2 Sketch the graphs of the following functions, stating clearly the implied domain and the
range of each:

y = sin−1(x + 1)a y = 2 cos−1
(
x +

1
2

)
− πb y = −2 tan−1(x) +

π

4
c

3 State the value of each of the following without using the absolute value function in
your answer:

|−9|a
∣∣∣∣∣− 1

400

∣∣∣∣∣b |9 − 5|c |5 − 9|d |π − 3|e |π − 4|f

4 Let f (x) = |x2 − 3x|. Solve the equation f (x) = x.

5 For each of the following, sketch the graph of y = f (x) and state the range of f :

f (x) = |x2 − 4x|a f (x) = |x2 − 4x| − 3b f (x) = 3 − |x2 − 4x|c

6 a Find the four integer values of n such that |n2 − 9| is a prime number.
b Solve each equation for x:

i x2 + 5|x| − 6 = 0 ii x + |x| = 0

c Solve the inequality 5 − |x| < 4 for x.

7 For each of the following functions, sketch the graphs of y = f (x) and y =
1

f (x)
on the

same set of axes:

f (x) =
1
2

(x2 − 4)a f (x) = (x + 1)2 + 1b

f (x) = cos(x) + 1, x ∈ [0, 2π]c f (x) = sin(x) + 2, x ∈ [0, 2π]d

8 Sketch the graph of each of the following functions over the interval [0, 2π]:

y = 2 sec(x)a y = − cosec(x − π) + 1b y = − cot(2x)c

9 Find the locus of a point P(x, y) that moves so that its distance to point A(3, 2) is 6.

10 Sketch the graph of each circle and label its axis intercepts:

x2 + (y − 2)2 = 4a (x − 3)2 + (y − 1)2 = 5b

11 A circle has equation x2 + 4x + y2 − 8y = 0. Find the coordinates of the centre and the
radius of the circle.

12 Sketch the graph of each ellipse and find the coordinates of its axis intercepts:
x2

9
+

y2

4
= 1a

(x − 2)2

4
+

(y + 1)2

9
= 1b

13 An ellipse has equation x2 + 4x + 2y2 = 0. Find the coordinates of the centre and the
axis intercepts of the ellipse.
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14 Sketch the graph of each hyperbola and write down the equations of its asymptotes:

x2 −
y2

4
= 1a

(y − 1)2

16
−

(x + 2)2

4
= 1b

15 A point P(x, y) moves so that its distance from the point K(−2, 5) is twice its distance
from the line x = 1. Find its locus.

16 For each of the following pairs of parametric equations, find the corresponding
Cartesian equation:

x = 2t − 1 and y = 6 − 4ta x = 2 cos t and y = 2 sin tb
x = 3 cos t + 1 and y = 5 sin t − 1c x = cos t and y = 3 sin2 t − 2d

17 A curve has parametric equations x = t − 1 and y = 2t2 − 1 for 0 ≤ t ≤ 2.

Find the curve’s Cartesian equation.a What is the domain of the curve?b
What is the range of the curve?c Sketch the graph of the curve.d

18 Convert the polar coordinates
[
2,

3π
4

]
into Cartesian coordinates.

19 The point P has Cartesian coordinates (2,−2
√

3). Find two representations of P using
polar coordinates, one with r > 0 and the other with r < 0.

20 Find an equation for the straight line 2x + 3y = 5 using polar coordinates.

21 Show that the graph of r = 6 sin θ is a circle of radius 3 centred at (0, 3).
Hint: First multiply both sides of the equation by r.

Multiple-choice questions

1 The rule for the graph shown is

A y = cos−1(x + 1) − π

2 B y = cos−1(x − 1) + π

2

C y = sin−1(x + 1) + π

2 D y = sin−1(x − 1) − π

2

E y = sin−1(x − 1) + π

2 O

(−2, π
2 )

(0, − )

x

y

π
2

2 The rule for the graph shown is

A y = |x − 2| + 3 B y = |−x + 2| + 3
C y = |x + 2| + 3 D y = −|x − 2| + 3
E y = −|x + 2| + 3

y

x
O

5−1

(2, 3)

3 The graph of y =
1

x2 + 8x + k
will have two vertical asymptotes provided

A k = 16 B k < 16 C k > 16 D k < −4 or k > 4 E −4 < k < 4
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4 An equation for the graph shown is

A y = −2 cosec(x) + 1
B y = −2 sec(x) + 1
C y = 2 cosec(x) + 1
D y = 2 sec(x) + 1
E y = 2 cosec(x) − 1

(2π, −1)

(π, 3)

(0, −1)
x

y

3π
2

5π
2

– π
2

π
2

5 The locus of points P(x, y) which satisfy the property that AP = BP, given points
A(2,−5) and B(−4, 1), is described by the equation

y = x − 1A y = x − 6B y = −x − 3C y = x + 1D y = 3 − xE

6 A parabola has focus (0, 2) and directrix y = −2. Which of the following is not true
about the parabola?

Its axis of symmetry is the line x = 0.A It passes through the origin.B
It contains no point below the x-axis.C The point (2, 1) lies on the parabola.D
The point (4, 2) lies on the parabola.E

7 The graph of the ellipse with equation
x2

25
+

y2

9
= 1 has x-axis intercepts at

(−5, 0) and (−3, 0)A (−3, 0) and (3, 0)B (0,−5) and (0, 5)C
(−5, 0) and (5, 0)D (5, 0) and (3, 0)E

8 The equation of the graph shown is

A
(x + 2)2

27
−

y2

108
= 1

B
(x − 2)2

9
−

y2

34
= 1

C
(x + 2)2

81
−

y2

324
= 1

D
(x − 2)2

81
−

y2

324
= 1

E
(x + 2)2

9
−

y2

36
= 1

x
O

y

4

2
11

-4

-7

9 The asymptotes of the hyperbola with equation
(y − 2)2

9
−

(x + 3)2

4
= 1 intersect at

the point

(3, 2)A (3,−2)B (−3, 2)C (2,−3)D (−2, 3)E

10 An ellipse is parameterised by the equations x = 4 cos t + 1 and y = 2 sin t − 1.
The coordinates of its x-axis intercepts are

(1 − 3
√

2, 0), (1 + 3
√

2, 0)A (−3, 0), (5, 0)B
(1 − 2

√
3, 0), (1 + 2

√
3, 0)C (0,−3), (0, 5)D

(0, 1 − 2
√

3), (0, 1 + 2
√

3)E
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11 Which of the following pairs of polar coordinates represent the same point?[
2,
π

4

]
and

[
2,

3π
4

]
A

[
3,
π

2

]
and

[
−3,

π

2

]
B

[
2,
π

3

]
and

[
−2,

2π
3

]
C[

3,
π

4

]
and

[
3,

5π
4

]
D

[
1,
π

6

]
and

[
−1,

7π
6

]
E

12 A curve has polar equation r = 1 + cos θ. Its equation in Cartesian coordinates is

xy = x2 + y2A (x2 + y2 − x)2 = x2 + y2B x = x2 + y2C
(x2 + y2 − y)2 = x2 + y2D y = x2 + y2E

Extended-response questions

1 a Use a compound angle formula to prove that

tan
(
tan−1(x) + tan−1(y)

)
=

x + y
1 − xy

b Use the identity from part a to show that tan−1( 1
2 ) + tan−1( 1

3 ) =
π

4
.

2 Let f (x) = |mx + 2|, where m > 0.

a Find the x-axis intercept of the graph of f in terms of m.
b For what values of m is the x-axis intercept less than −2?
c i Find the equation of the line ` that is perpendicular to the graph of f at the point

with coordinates (0, 2).
ii For m > 1, find the coordinates of the other point of intersection of the line ` with

the graph of f .
iii What happens for m = 1?

iv For what value of m does the line ` meet the graph of f where x = −
3
2

?

3 a Consider the function with rule f (x) = |x2 − ax|, where a is a constant.

i Sketch the graph of y = f (x) for a = 2.
ii For a , 0, find the x-axis intercepts of the graph of y = f (x).
iii For a , 0, find the coordinates of the local maximum on the graph of y = f (x).
iv Find the values of a for which the point (−1, 4) lies on the graph of y = f (x).

b Consider the function with rule g(x) = |x|2 − a|x|, where a is a constant.

i Sketch the graph of y = g(x) for a = 2.
ii For a > 0, find the x-axis intercepts of the graph of y = g(x).
iii For a > 0, find the coordinates of the local minimums on the graph of y = g(x).
iv Find the value of a for which the point (−1, 4) lies on the graph of y = g(x).

c For a > 0, find the values of x such that f (x) = g(x).
d For a < 0, find the values of x such that f (x) = g(x).

4 Consider points A(0, 3) and B(6, 0). Find the locus of the point P(x, y) given that:

a AP = BP b AP = 2BP
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5 Find the equation of the locus of points P(x, y) which satisfy the property that the
distance to P from the point F(0, 4) is equal to:

a MP, the perpendicular distance from the line with equation y = −2
b half the distance MP, the perpendicular distance from the line y = −2
c twice the distance MP, the perpendicular distance from the line y = −2.

6 A ball is thrown into the air. The position of the ball at time t ≥ 0 is given by the
parametric equations x = 10t and y = 20t − 5t2.

a Find the Cartesian equation of the ball’s flight.
b Sketch the graph of the ball’s path.
c What is the maximum height reached by the ball?

A second ball is thrown into the air. Its position at time t ≥ 0 is given by the parametric
equations x = 60 − 10t and y = 20t − 5t2.

d Find the Cartesian equation of the second ball’s flight.
e Sketch the graph of the second ball’s path on the same set of axes.
f Find the points of intersection of the two paths.
g Do the balls collide?

7 Consider the lines y = mx and y = nx shown in the diagram.

a Use the diagram and Pythagoras’ theorem to prove that
if ∠AOB = 90◦, then mn = −1.

b Use the diagram and the cosine rule to prove that
if mn = −1, then ∠AOB = 90◦.

c Consider points A(0, 4) and B(8, 10). Find the equation of
the locus of points P(x, y) where AP ⊥ BP.

A(1, m)

B(1, n)

y

x
O

8 A ladder of length 6 metres stands against a vertical wall. The
ladder then slides along on the floor until it lies flat. Show that
the midpoint P(x, y) of the ladder moves along a circular path.

P(x, y)

O

9 A square box of side length 1 metre is too heavy to lift, but
can be rolled along the flat ground, using each edge as a pivot.
The box is rolled one full revolution.

a Sketch the full path of the point P.
b Find the total distance travelled by the point P.

1 m

P

c A second rectangular box has length a metres and width
b metres. Sketch the path taken by the point P when the
box is rolled one full revolution, and find the total distance
travelled by this point.

d For the second box, find the area between the path taken
by P and the ground.

P

b

a



18
Complex numbers

Objectives
I To understand the imaginary number i and the set of complex numbers C.

I To find the real part and the imaginary part of a complex number.

I To perform addition, subtraction, multiplication and division of complex numbers.

I To find the conjugate of a complex number.

I To represent complex numbers graphically on an Argand diagram.

I To work with complex numbers in polar form, and to understand the geometric
interpretation of multiplication and division of complex numbers in this form.

I To solve polynomial equations over the complex numbers.

I To sketch subsets of the complex plane, including lines, rays and circles.

In this chapter we introduce a new set of numbers, called complex numbers. These numbers
first arose in the search for solutions to polynomial equations.

In the sixteenth century, mathematicians including Girolamo Cardano began to consider
square roots of negative numbers. Although these numbers were regarded as ‘impossible’,
they arose in calculations to find real solutions of cubic equations.

For example, the cubic equation x3 − 15x − 4 = 0 has three real solutions. Cardano’s formula
gives the solution

x =
3
√

2 +
√
−121 +

3
√

2 −
√
−121

which you can show equals 4.

Today complex numbers are widely used in physics and engineering, such as in the study of
aerodynamics.
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18A Starting to build the complex numbers
Mathematicians in the eighteenth century introduced the imaginary number i with the
property that

i 2 = −1

The equation x2 = −1 has two solutions, namely i and −i.

By declaring that i =
√
−1, we can find square roots of all negative numbers.

For example:
√
−4 =

√
4 × (−1)

=
√

4 ×
√
−1

= 2i

Note: The identity
√

a ×
√

b =
√

ab holds for positive real numbers a and b, but does not hold
when both a and b are negative. In particular,

√
−1 ×

√
−1 ,

√
(−1) × (−1).

Now consider the equation x2 + 2x + 3 = 0. Using the quadratic formula gives

x =
−2 ±

√
4 − 12

2

=
−2 ±

√
−8

2

= −1 ±
√
−2

This equation has no real solutions. However, using complex numbers we obtain solutions

x = −1 ±
√

2i

The set of complex numbers
A complex number is an expression of the form a + bi, where a and b are real numbers.

The set of all complex numbers is denoted by C. That is,

C = { a + bi : a, b ∈ R }

The letter z is often used to denote a complex number.

Therefore if z ∈ C, then z = a + bi for some a, b ∈ R.

� If a = 0, then z = bi is said to be an imaginary number.
� If b = 0, then z = a is a real number.

The real numbers and the imaginary numbers
are subsets of C.

We can now extend the diagram from
Chapter 2 to include the complex numbers.

N Z Q R C
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Real and imaginary parts
For a complex number z = a + bi, we define

Re(z) = a and Im(z) = b

where Re(z) is called the real part of z and Im(z) is called the imaginary part of z.

For example, for the complex number z = 2 + 5i, we have Re(z) = 2 and Im(z) = 5.

Note: Both Re(z) and Im(z) are real numbers. That is, Re: C→ R and Im: C→ R.

Equality of complex numbers
Two complex numbers are defined to be equal if both their real parts and their imaginary
parts are equal:

a + bi = c + di if and only if a = c and b = d

If 4 − 3i = 2a + bi, find the real values of a and b.

Example 1

Solution

2a = 4 and b = −3

a = 2 and b = −3⇒

Find the real values of a and b such that (2a + 3b) + (a − 2b)i = −1 + 3i.

Example 2

Solution

2a + 3b = −1 (1)

a − 2b = 3 (2)

Multiply (2) by 2:

2a − 4b = 6 (3)

Subtract (3) from (1):

7b = −7

Therefore b = −1 and a = 1.

Operations on complex numbers
Addition and subtraction

Addition of complex numbers

If z1 = a + bi and z2 = c + di, then

z1 + z2 = (a + c) + (b + d)i

The zero of the complex numbers can be written as 0 = 0 + 0i.
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If z = a + bi, then we define −z = −a − bi.

Subtraction of complex numbers

If z1 = a + bi and z2 = c + di, then

z1 − z2 = z1 + (−z2) = (a − c) + (b − d)i

It is easy to check that the following familiar properties of the real numbers extend to the
complex numbers:

� z1 + z2 = z2 + z1 � (z1 + z2) + z3 = z1 + (z2 + z3) � z + 0 = z � z + (−z) = 0

If z1 = 2 − 3i and z2 = −4 + 5i, find:

z1 + z2a z1 − z2b

Example 3

Solution
z1 + z2 = (2 − 3i) + (−4 + 5i)

= (2 + (−4)) + (−3 + 5)i

= −2 + 2i

a z1 − z2 = (2 − 3i) − (−4 + 5i)

= (2 − (−4)) + (−3 − 5)i

= 6 − 8i

b

Multiplication by a real constant
If z = a + bi and k ∈ R, then

kz = k(a + bi) = ka + kbi

For example, if z = 3 − 6i, then 3z = 9 − 18i.

Powers of i
Successive multiplication by i gives the following:

i 0 = 1� i 1 = i� i 2 = −1� i 3 = −i�

i 4 = (−1)2 = 1� i 5 = i� i 6 = −1� i 7 = −i�

In general, for n = 0, 1, 2, 3, . . .

i 4n = 1� i 4n+1 = i� i 4n+2 = −1� i 4n+3 = −i�

Simplify:

i 13a 3i 4 × (−2i)3b

Example 4

Solution
i 13 = i 4×3+1

= i

a 3i 4 × (−2i)3 = 3 × (−2)3 × i 4 × i 3

= −24i 7

= 24i

b
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Summary 18A

� The imaginary number i satisfies i 2 = −1.
� If a is a positive real number, then

√
−a =

√
a · i.

� The set of complex numbers is C = { a + bi : a, b ∈ R }.
� For a complex number z = a + bi:

• the real part of z is Re(z) = a

• the imaginary part of z is Im(z) = b.

� Equality of complex numbers:

a + bi = c + di if and only if a = c and b = d

� If z1 = a + bi and z2 = c + di, then

z1 + z2 = (a + c) + (b + d)i and z1 − z2 = (a − c) + (b − d)i

� When simplifying powers of i, remember that i 4 = 1.

Exercise 18A

1 State the values of Re(z) and Im(z) for each of the following:

z = 2 + 3ia z = 4 + 5ib z =
1
2
−

3
2

ic

z = −4d z = 3ie z =
√

2 − 2
√

2if

2Example 1

Example 2

Find the real values of a and b in each of the following:

2a − 3bi = 4 + 6ia a + b − 2abi = 5 − 12ib
2a + bi = 10c 3a + (a − b)i = 2 + id

3Example 3 Simplify:

(2 − 3i) + (4 − 5i)a (4 + i) + (2 − 2i)b
(−3 − i) − (3 + i)c

(
2 −
√

2i
)

+
(
5 −
√

8i
)

d
(1 − i) − (2i + 3)e (2 + i) − (−2 − i)f
4(2 − 3i) − (2 − 8i)g −(5 − 4i) + (1 + 2i)h

5(i + 4) + 3(2i − 7)i
1
2

(4 − 3i) −
3
2

(2 − i)j

4Example 4 Simplify:
√
−16a 2

√
−9b

√
−2c

i 3d i 14e i 20f
−2i × i 3g 4i 4 × 3i 2h

√
8i 5 ×

√
−2i

5 Simplify:

i(2 − i)a i 2(3 − 4i)b
√

2i
(
i −
√

2
)

c −
√

3
(√
−3 +

√
2
)

d
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18B Multiplication and division of complex numbers
In the previous section, we defined addition and subtraction of complex numbers. We begin
this section by defining multiplication.

Multiplication of complex numbers
Let z1 = a + bi and z2 = c + di (where a, b, c, d ∈ R). Then

z1 × z2 = (a + bi)(c + di)

= ac + adi + bci + bdi 2

= (ac − bd) + (ad + bc)i (since i 2 = −1)

We carried out this calculation with an assumption that we are in a system where all the usual
rules of algebra apply. However, it should be understood that the following is a definition of
multiplication for C.

Multiplication of complex numbers

Let z1 = a + bi and z2 = c + di. Then

z1 × z2 = (ac − bd) + (ad + bc)i

The multiplicative identity for C is 1 = 1 + 0i.

It is easy to check that the following familiar properties of the real numbers extend to the
complex numbers:

z1z2 = z2z1� (z1z2)z3 = z1(z2z3)�

z × 1 = z� z1(z2 + z3) = z1z2 + z1z3�

If w = 3 − 2i and z = 1 + i, find wz.

Example 5

Solution Explanation

wz = (3 − 2i)(1 + i)

= 3 + 3i − 2i − 2i 2

= 5 + i

Expand the brackets in the usual way.

Remember that i 2 = −1.

The conjugate of a complex number

Let z = a + bi. The conjugate of z is denoted by z and is given by

z = a − bi

For example, the conjugate of −4 + 3i is −4 − 3i, and vice versa.
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If w = 2 − 3i and z = −1 + 2i, find:

w + z and w + za w · z and w · zb

Example 6

Solution
We have w = 2 + 3i and z = −1 − 2i.

w + z = (2 − 3i) + (−1 + 2i)

= 1 − i

w + z = 1 + i

w + z = (2 + 3i) + (−1 − 2i)

= 1 + i

a w · z = (2 − 3i)(−1 + 2i)

= −2 + 4i + 3i − 6i 2

= 4 + 7i

w · z = 4 − 7i

w · z = (2 + 3i)(−1 − 2i)

= −2 − 4i − 3i − 6i 2

= 4 − 7i

b

� The conjugate of a sum is equal to the sum of the conjugates:

w + z = w + z

� The conjugate of a product is equal to the product of the conjugates:

w · z = w · z

The modulus of a complex number
For a complex number z = a + bi, we have

zz = (a + bi)(a − bi)

= a2 − abi + abi − b2i 2

= a2 + b2 where a2 + b2 is a real number

The modulus of the complex number z = a + bi is denoted by |z| and is given by

|z| =
√

a2 + b2

The calculation above shows that

zz = |z|2

Note: In the case that z is a real number, this definition of |z| agrees with the definition of the
modulus of a real number given in Chapter 17.

In Section 18F, we will see the geometric interpretation of the modulus of a complex number.
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If w = 2 + 3i and z = 1 − 2i, find:

|wz|a |w| |z|b

Example 7

Solution
We first find that

wz = (2 + 3i)(1 − 2i)

= 2 − 4i + 3i − 6i 2

= 8 − i

a We first find that

|w| =
√

22 + 32 =
√

13

|z| =
√

12 + (−2)2 =
√

5

b

Therefore

|wz| =
√

82 + (−1)2 =
√

65

Therefore

|w| |z| =
√

13
√

5 =
√

65

The modulus of a product is equal to the product of the moduli:

|wz| = |w| |z|

Division of complex numbers
Multiplicative inverse
We begin with some familiar algebra that will motivate the definition:

1
a + bi

=
1

a + bi
×

a − bi
a − bi

=
a − bi

(a + bi)(a − bi)

=
a − bi

a2 + b2

We can see that

(a + bi) ×
a − bi

a2 + b2 = 1

Although we have carried out this arithmetic, we have not yet defined what
1

a + bi
means.

Multiplicative inverse of a complex number

If z = a + bi with z , 0, then

z−1 =
a − bi

a2 + b2 =
z
|z|2

Note: We can check that (wz)−1 = w−1z−1.
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Division
The formal definition of division in the complex numbers is via the multiplicative inverse:

Division of complex numbers

z1

z2
= z1z−1

2 =
z1z2

|z2|
2 (for z2 , 0)

Here is the procedure that is used in practice:

Assume that z1 = a + bi and z2 = c + di (where a, b, c, d ∈ R). Then

z1

z2
=

a + bi
c + di

Multiply the numerator and denominator by the conjugate of z2:

z1

z2
=

a + bi
c + di

×
c − di
c − di

=
(a + bi)(c − di)

c2 + d2

We complete the division by simplifying.

This procedure is demonstrated in the next example.

Find
2 − i
3 + 2i

.a Find z if (2 + 3i)z = −1 − 2i.b

Example 8

Solution
2 − i
3 + 2i

=
2 − i
3 + 2i

×
3 − 2i
3 − 2i

=
6 − 4i − 3i + 2i 2

32 + 22

=
4 − 7i

13

=
1
13

(4 − 7i)

a (2 + 3i)z = −1 − 2i

⇒ z =
−1 − 2i
2 + 3i

=
−1 − 2i
2 + 3i

×
2 − 3i
2 − 3i

=
−2 + 3i − 4i + 6i 2

22 + 32

=
−8 − i

13

= −
1

13
(8 + i)

b

There is an obvious similarity between the process for expressing a complex number with a
real denominator and the process for rationalising the denominator of a surd expression.
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If z = 2 − 5i, find z−1 and express with a real denominator.

Example 9

Solution

z−1 =
1
z

=
1

2 − 5i

=
1

2 − 5i
×

2 + 5i
2 + 5i

=
2 + 5i

29

=
1
29

(2 + 5i)

Using the TI-Nspire
Set to complex mode using con > Settings >

Document Settings. Select Rectangular from the
Real or Complex field.

Note: The square root of a negative number can be found only in complex mode. But
most computations with complex numbers can also be performed in real mode.

� The results of the arithmetic operations +, −,
× and ÷ are illustrated using the two complex
numbers 2 + 3i and 3 + 4i.

Note: Do not use the text i for the imaginary
constant. The symbol i is found using ¹ 
or the Symbols palette ( ctrl k ).

� To find the real part of a complex number, use
menu > Number > Complex Number Tools >

Real Part. Alternatively, type real(.

� To find the modulus of a complex number,
use menu > Number > Complex Number
Tools > Magnitude. Alternatively, use |�|
from the 2D-template palette t or type abs(.

� To find the conjugate of a complex number,
use menu > Number > Complex Number
Tools > Complex Conjugate. Alternatively,
type conj(.
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There are also commands for factorising
polynomials over the complex numbers and for
solving polynomial equations over the complex
numbers. These are available from menu >

Algebra > Complex.

Note: You must use this menu even if the
calculator is in complex mode.
When using cFactor, you must include
the variable as shown.

Using the Casio ClassPad
InM, tap Real in the status bar at the bottom of the
screen to change to Cplx mode.

� Enter
√
−1 and tap EXE to obtain the answer i.

� Enter
√
−16 to obtain the answer 4i.

� The arithmetic operations +, −, × and ÷ can be
applied to complex numbers as shown.

Note: The symbol i is found in both the Math2 and
the Math3 keyboards.

With the calculator set to complex mode, various
operations on complex numbers can be carried out
using options from Interactive > Complex.

With the calculator set to complex mode, you can
factorise polynomials and solve equations in the usual
way, and the answers will be given over the complex
numbers.
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Summary 18B
� Multiplication To find a product (a + bi)(c + di), expand the brackets in the usual way,

remembering that i 2 = −1.

� Conjugate If z = a + bi, then z = a − bi.

� Modulus If z = a + bi, then |z| =
√

a2 + b2.

� Division To perform a division, start with

a + bi
c + di

=
a + bi
c + di

×
c − di
c − di

=
(a + bi)(c − di)

c2 + d2

and then simplify.

� Multiplicative inverse To find z−1, calculate
1
z

.

Exercise 18B

1Example 5 Expand and simplify:

(4 + i)2a (2 − 2i)2b (3 + 2i)(2 + 4i)c
(−1 − i)2d

(√
2 −
√

3i
)(√

2 +
√

3i
)

e (5 − 2i)(−2 + 3i)f

2 a If w = 3 + 2i and z = 2 + 4i, find Re(wz).
b If w = 4 + 5i and z = 3 − 2i, find Im(wz).

3 Write down the conjugate of each of the following complex numbers:

2 − 5ia −1 + 3ib
√

5 − 2ic −5id

4 Evaluate z · z for each of the following:

z = 3 + 4ia z = 1 + ib z = 2 − 3ic z =
√

2 +
√

3id

5Example 6 If z1 = 2 − i and z2 = −3 + 2i, find:

z1a z2b z1 · z2c z1 · z2d
z1 · z2e z1 + z2f z1 + z2g z1 + z2h

6Example 7 If w = 1 + i and z = 3 − 4i, find:

|wz|a |w| |z|b |w + z|c |3w − 2z|d

7 If z = 2 − 4i, express each of the following in the form x + yi:

za zzb z + zc z(z + z)d

z − ze i(z − z)fExample 9 z−1g
z
i

h
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8 Find the real values of a and b such that (a + bi)(2 + 5i) = 3 − i.

9Example 8a Find each of the following, expressing your answer in the form x + yi:
2 − i
4 + i

a
3 + 2i
2 − 3i

b
4 + 3i
1 + i

c
2 − 2i

4i
d

1
2 − 3i

e
i

2 + 6i
f

10 Find the real values of a and b if (3 − i)(a + bi) = 6 − 7i.

11Example 8b Solve each of the following for z:

(2 − i)z = 42ia (1 + 3i)z = −2 − ib (3i + 5)z = 1 + ic
2(4 − 7i)z = 5 + 2id z(1 + i) = 4e

12 If a, b ∈ R and (a + bi)2 = −5 + 12i, find a and b.

13 If a ∈ R and
1

a + 3i
+

1
a − 3i

=
4
13

, find a.

14 Let z = a + bi be a complex number.

a If z = z, prove that z is a real number. That is, prove that Im(z) = 0.
b Prove that z + z is a real number.

c For z , 0, prove that
1
z

+
1
z

is a real number.

15 Let z =
a + bi
a − bi

, where a, b ∈ R. Prove that
z2 + 1

2z
is a real number.

18C Argand diagrams
An Argand diagram is a geometric representation of the set of complex numbers. A
complex number has two dimensions: the real part and the imaginary part. Therefore a plane
is required to represent C.

An Argand diagram is drawn with two
perpendicular axes. The horizontal axis
represents Re(z), for z ∈ C, and the vertical
axis represents Im(z), for z ∈ C.

Each point on an Argand diagram represents a
complex number. The complex number a + bi
is situated at the point (a, b) on the equivalent
Cartesian axes, as shown by the examples in
this figure.

A complex number written as a + bi is said to
be in Cartesian form.

1

1

2

2

3

3–3

–3

–2

–2

–1
–1

0

(–2 + i) (3 + i)

(2 – 3i)

Re(z)

Im(z)
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Write down the complex number
represented by each of the points
shown on this Argand diagram.

4
5

5

–5

–5 0 Re(z)

Im(z)

AB

C
D

FE

Example 10

Solution
A 2 + 3i B 4i C −5 D −1 + i E −5 − 2i F 1 − 3i

Represent the following complex numbers as points on an Argand diagram:

a 2 b −3i c 2 − i d −(2 + 3i) e −1 + 2i

Example 11

Solution

1

1

2

2

2

3

3–3

–3

–2

–2

–1–1
0

–(2 + 3i)

–1 + 2i

2 – i 
–3i

Re(z)

Im(z)

Geometric representation of the basic operations on
complex numbers
In an Argand diagram, the sum of two complex numbers z1 and z2 can be found geometrically
by placing the ‘tail’ of z2 on the ‘tip’ of z1, as shown in the diagram on the left.

When a complex number is multiplied by a real constant, it maintains the same ‘direction’,
but its distance from the origin is scaled. This is shown in the diagram on the right.

Re(z)

Im(z)

0

z1 + z2

z1

z2

Re(z)

Im(z)

0
bz

cz

az
z

a > 1

0 < b < 1

c < 0

The difference z1 − z2 is represented by the sum z1 + (−z2).
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Let z1 = 2 + i and z2 = −1 + 3i.

Represent the complex numbers z1, z2, z1 + z2 and z1 − z2 on an Argand diagram and show
the geometric interpretation of the sum and difference.

Example 12

Solution

z1 + z2 = (2 + i) + (−1 + 3i)

= 1 + 4i

z1 − z2 = (2 + i) − (−1 + 3i)

= 3 − 2i

1

1

2

2

3
4

43–3–4

–4
–3

–2
–2

–1–1 Re(z)

Im(z)
z1 + z2

z1

z1 – z2
 –z2

 z2

0

Let z1 = 1 − 4i and z2 = −2 + 2i. Find z1 + z2 algebraically and illustrate z1 + z2 on an
Argand diagram.

Example 13

Solution

z1 + z2 = (1 − 4i) + (−2 + 2i)

= −1 − 2i

Im(z)

Re(z)

z1

1–1
–2
–3
–4

–1–2–3–4
0
1
2
3

z1 + z2

z2

432

Rotation about the origin
When the complex number 2 + 3i is multiplied by −1,
the result is −2 − 3i. This is achieved through a rotation
of 180◦ about the origin.

When the complex number 2 + 3i is multiplied by i, we
obtain

i(2 + 3i) = 2i + 3i 2

= 2i − 3

= −3 + 2i

Re(z)

Im(z)

0

–3 + 2i

–2 – 3i

2 + 3i

The result is achieved through a rotation of 90◦ anticlockwise about the origin.

If −3 + 2i is multiplied by i, the result is −2 − 3i. This is again achieved through a rotation
of 90◦ anticlockwise about the origin.
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Reflection in the horizontal axis
The conjugate of a complex number z = a + bi is
z = a − bi. Therefore z is the reflection of z in the
horizontal axis of an Argand diagram.

Im(z)

Re(z)0

z = a + bi

z = a − bi

a

b

−b

Summary 18C
� An Argand diagram is a geometric representation

of the set of complex numbers.
� The horizontal axis represents Re(z) and the vertical

axis represents Im(z), for z ∈ C.
� The operations of addition, subtraction and

multiplication by a real constant all have geometric
interpretations on an Argand diagram.

� Multiplication of a complex number by i corresponds
to a rotation of 90◦ anticlockwise about the origin.

� Complex conjugate corresponds to reflection in the horizontal axis.

1

1

2

2

2

3

3–3

–3

–2

–2

–1–1
0

–(2 + 3i)

–1 + 2i

2 – i 
–3i

Re(z)

Im(z)

Exercise 18C

1Example 10 Write down the complex
numbers represented on this
Argand diagram.

5–1
–2

–1–2

1
2

Im(z)

Re(z)1 2 3 4

–3
–4

F

0

A
E

D

C

B

–3–4–5

3

2Example 11 Represent each of the following complex numbers as points on an Argand diagram:

3 − 4ia −4 + ib 4 + ic −3d −2ie −5 − 2if

3Example 12

Example 13

If z1 = 6 − 5i and z2 = −3 + 4i, represent each of the following on an Argand diagram:

z1 + z2a z1 − z2b

4 If z = 1 + 3i, represent each of the following on an Argand diagram:

za zb z2c −zd
1
z

e

5 If z = 2 − 5i, represent each of the following on an Argand diagram:

za zib zi 2c zi 3d zi 4e
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18D Solving quadratic equations over the
complex numbers
Quadratic equations with a negative discriminant have no real solutions. The introduction of
complex numbers enables us to solve such quadratic equations.

Sum of two squares
Since i 2 = −1, we can rewrite a sum of two squares as a difference of two squares:

z2 + a2 = z2 − (ai)2

= (z + ai)(z − ai)

This allows us to solve equations of the form z2 + a2 = 0.

Solve the following equations over C:

z2 + 16 = 0a 2z2 + 6 = 0b

Example 14

Solution
z2 + 16 = 0

z2 − 16i 2 = 0

(z + 4i)(z − 4i) = 0

∴ z = ±4i

a 2z2 + 6 = 0

z2 + 3 = 0

z2 − 3i 2 = 0(
z +
√

3i
)(

z −
√

3i
)

= 0

∴ z = ±
√

3i

b

Solution of quadratic equations
To solve a quadratic equation with a negative discriminant, we can either complete the square
or use the quadratic formula.

a Solve z2 + 6z + 11 = 0 over C by completing the square.
b Solve 3z2 + 5z + 3 = 0 over C by using the quadratic formula.

Example 15

Solution
z2 + 6z + 11 = 0

(z2 + 6z + 9) − 9 + 11 = 0

(z + 3)2 + 2 = 0

(z + 3)2 − 2i 2 = 0(
z + 3 +

√
2i

)(
z + 3 −

√
2i

)
= 0

∴ z = −3 ±
√

2i

a Using the quadratic formula:

z =
−5 ±

√
25 − 36
6

=
−5 ±

√
−11

6

=
1
6
(
−5 ±

√
11i

)

b
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Using the TI-Nspire
� To factorise polynomials over the complex

numbers, use menu > Algebra > Complex >

Factor as shown.
� To solve polynomial equations over the

complex numbers, use menu > Algebra >

Complex > Solve as shown.

Using the Casio ClassPad
To factorise:

� Ensure the mode is set to Cplx.
� Enter and highlight the expression z2 + 16.
� Select Interactive > Transformation > factor >

rFactor.

To solve:

� Ensure the mode is set to Cplx.
� Select` from the Math1 or Math3 keyboard.
� Enter 3z2 + 5z + 3 = 0, z and tap EXE .

Note: Recall that ‘= 0’ could be omitted here, but
‘, z’ is required as the default variable is x.

Let b, c ∈ R. If the quadratic equation z2 + bz + c = 0 has solutions z = 2−3i and z = 2 + 3i,
find the values of b and c.

Example 16

Solution
The quadratic has factors z − 2 + 3i and z − 2 − 3i. Multiplying them together gives

(z − 2 + 3i)(z − 2 − 3i) =
(
(z − 2) + 3i

)(
(z − 2) − 3i

)
= (z − 2)2 − (3i)2

= z2 − 4z + 4 + 9

= z2 − 4z + 13

Therefore b = −4 and c = 13.
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Summary 18D
� Quadratic equations can be solved over the complex numbers by completing the square

or by using the quadratic formula.
� Two properties of complex numbers that are useful when solving equations:

• z2 + a2 = z2 − (ai)2 = (z + ai)(z − ai)
•
√
−a =

√
a · i, where a is a positive real number.

Exercise 18DSkill-
sheet

1Example 14 Solve the following equations over C:

z2 + 1 = 0a z2 + 9 = 0b z2 = −16c
4z2 = −25d z2 = −2e 2z2 + 8 = 0f
3z2 + 75 = 0g 4z2 + 1 = 0h 16z2 + 9 = 0i
z2 + 3 = 0j 2z2 + 10 = 0k (z + 1)2 + 1 = 0l
(z − 2)2 + 5 = 0m (z + 3)2 + 3 = 0n (z − 2)2 = −4o

2Example 15a Solve the following quadratic equations over C by completing the square:

z2 + 2z + 3 = 0a z2 − 4z + 5 = 0b
z2 + 6z + 12 = 0c 2z2 − 8z + 10 = 0d
3z2 + 2z + 1 = 0e 2z2 + 2z + 1 = 0f

3Example 15b Solve the following quadratic equations over C by using the quadratic formula:

z2 + 3z + 3 = 0a z2 − 4z + 5 = 0b
z2 + 6z + 12 = 0c z2 − 4z + 8 = 0d
3z2 + 2z + 1 = 0e 2z2 −

√
2z + 1 = 0f

4 Solve the following equations over C using any method:

z2 + 4 = 0a 2z2 + 18 = 0b
3z2 = −15c (z − 2)2 + 16 = 0d
(z + 1)2 = −49e z2 − 2z + 3 = 0f
z2 + 3z + 3 = 0g 2z2 + 5z + 4 = 0h
3z2 = z − 2i 2z = z2 + 5j
2z2 − 6z = −10k z2 − 6z = −14l

5Example 16 Find the values of b, c ∈ R if the quadratic equation z2 + bz + c = 0 has solutions:

z = 1 + i and z = 1 − ia z = −2 − 5i and z = −2 + 5ib

6 Consider the quadratic equation az2 + bz + c = 0, where a, b and c are consecutive
positive integers. Show that the solutions of this equation are not real numbers.



18E Solving polynomial equations over the complex numbers 623

18E Solving polynomial equations over the
complex numbers
In Mathematical Methods Units 1 & 2, you have seen the correspondence between the linear
factors of a polynomial P(x) and the solutions of the equation P(x) = 0. This correspondence
extends to the complex numbers.

Factor theorem

Let α ∈ C. Then z − α is a factor of a polynomial P(z) if and only if P(α) = 0.

Every quadratic equation has two solutions over the complex numbers, if we count repeated
solutions twice. For example, the equation (z − 3)2 = 0 has a repeated solution z = 3. We say
that this solution has a multiplicity of 2.

Likewise, every cubic equation has three solutions over the complex numbers, counting
multiplicity. More generally, we have the following important theorem.

Fundamental theorem of algebra

For n ≥ 1, every polynomial of degree n can be expressed as a product of n linear
factors over the complex numbers. Therefore every polynomial equation of degree n has
n solutions (counting multiplicity).

Note: This theorem applies to polynomials with real or complex coefficients. The proof of
the theorem is surprisingly difficult and beyond the scope of this book.

Show that z = 1 is a solution of z3 + z2 + 3z − 5 = 0, and then find the other two solutions.

Example 17

Solution
Let P(z) = z3 + z2 + 3z − 5. Since

P(1) = 13 + 12 + 3 − 5 = 0

we see that z = 1 is a solution of P(z) = 0. Therefore z − 1 is a factor of P(z).

By inspection (or polynomial division), we can find the other factors:

z3 + z2 + 3z − 5 = (z − 1)(z2 + 2z + 5)

= (z − 1)
(
(z2 + 2z + 1) − 1 + 5

)
= (z − 1)

(
(z + 1)2 + 4

)
= (z − 1)

(
(z + 1)2 − (2i)2)

= (z − 1)(z + 1 + 2i)(z + 1 − 2i)

Therefore the remaining two solutions are z = −1 − 2i and z = −1 + 2i.
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Notice in the previous example that the solutions z = −1 − 2i and z = −1 + 2i are conjugates
of each other. This is not a coincidence.

Conjugate root theorem

Let P(z) be a polynomial with real coefficients. If a + bi is a solution of the equation
P(z) = 0, with a and b real numbers, then the complex conjugate a − bi is also a solution.

You will prove this theorem in Exercise 18E. Note that the theorem does not hold without the
assumption that P(z) has real coefficients. For example, the linear equation z − i = 0 has just
one solution, z = i, and its conjugate is clearly not a solution.

Let P(z) = z3 + 4z2 + 6z + 4. Given that z = −1 + i is a solution of the equation P(z) = 0,
find all three solutions.

Example 18

Solution
Note that the polynomial P(z) has real coefficients. Since −1 + i is a solution of P(z) = 0,
its conjugate −1 − i is also a solution.

We now have two monic linear factors z + 1 − i and z + 1 + i of P(z). Their product is also
a factor:

(z + 1 − i)(z + 1 + i) =
(
(z + 1) − i

)(
(z + 1) + i

)
= (z + 1)2 − i 2

= z2 + 2z + 1 + 1

= z2 + 2z + 2

The remaining factor can be found by inspection or polynomial division. This gives

P(z) = z3 + 4z2 + 6z + 4 = (z + 2)(z2 + 2z + 2)

Therefore the three solutions are z = −2, z = −1 + i and z = −1 − i.

Summary 18E
The following three theorems are useful when solving polynomial equations over C:

� Factor theorem
Let α ∈ C. Then z − α is a factor of a polynomial P(z) if and only if P(α) = 0.

� Fundamental theorem of algebra
For n ≥ 1, every polynomial of degree n can be expressed as a product of n linear
factors over the complex numbers. Therefore every polynomial equation of degree n
has n solutions (counting multiplicity).

� Conjugate root theorem
Let P(z) be a polynomial with real coefficients. If a + bi is a solution of P(z) = 0,
with a and b real numbers, then the complex conjugate a − bi is also a solution.
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Exercise 18E

1Example 17 Show that z = 2 is a solution of the cubic equation z3 + 2z2 − 3z − 10 = 0, and then find
the other two solutions.

2 Find a real solution of z3 + 3z2 + 4z + 2 = 0, and then find the other two solutions.

3Example 18 Given that z = 3 − 2i is a solution of z3 − 9z2 + 31z − 39 = 0, find all three solutions.

4 Given that z = 1 −
√

2i is a solution of z3 − 4z2 + 7z − 6 = 0, find all three solutions.

5 Show that z = 2i is a solution of the cubic equation z3 − 3z2 + 4z − 12 = 0, and then find
the other two solutions.

6 Show that z = 3i is a solution of the quartic equation z4 + z3 + 7z2 + 9z − 18 = 0, and
then find the other three solutions.

7 Solve each of the following cubic equations over C:

z3 − z2 + z − 1 = 0a z3 − z2 + 3z + 5 = 0b
z3 − 2z + 4 = 0c z3 + 3z2 − 6z − 36 = 0d

8 Let a, b, c ∈ R. If z = 1 + i and z = 3 are solutions of the equation z3 + az2 + bz + c = 0,
find the values of a, b and c.

9 Let c ∈ R. If z = 1 − 2i is a solution of 2z3 − 5z2 + cz − 5 = 0, find the value of c.

10 Give an example of a quartic polynomial P(z) with real coefficients such that the
equation P(z) = 0 has:

four distinct complex solutionsa two imaginary and two real solutions.b

11 For a quadratic polynomial P(z) with real coefficients, there are three possible cases for
the equation P(z) = 0: two distinct real solutions, one real solution of multiplicity 2, or
two conjugate complex solutions.

a What are the possible cases for a cubic polynomial P(z) with real coefficients?
b Give an example for each case.

12 Let P(z) be a quartic polynomial with real coefficients. Explain why it is not possible
for the equation P(z) = 0 to have:

exactly one real solutiona exactly three real solutions.b

13 In this question, you will prove the conjugate root theorem.

a If z = a + bi and w = c + di are complex numbers, prove that z + w = z + w.
b If z = a + bi and w = c + di are complex numbers, prove that zw = z w.
c If z = a + bi is a complex number and c is a real number, prove that cz = c z.
d Let z be a complex number. Using mathematical induction, prove that zn = z n.
e Consider a polynomial equation anzn + an−1zn−1 + · · · + a1z + a0 = 0, where all

the coefficients are real. Let z be a solution of this equation. Show that z is also a
solution. (Hint: Take the complex conjugate of both sides of the equation.)
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18F Polar form of a complex number
Polar coordinates for points in the plane were introduced in Chapter 17. Similarly, each
complex number may be described by an angle and a distance from the origin. In this section,
we will see that this is a very useful way to describe complex numbers.

The diagram shows the point P corresponding to the
complex number z = x + yi. We see that x = r cos θ
and y = r sin θ, and so we can write

z = x + yi

= r cos θ + (r sin θ) i

= r
(
cos θ + i sin θ

)

Im(z)

Re(z)

(x + yi )

y

P
r

x
θ

0

This is called the polar form of the complex number. The polar form is abbreviated to

z = r cis θ

� The distance r =
√

x2 + y2 is called the modulus of z and is denoted by |z|.
� The angle θ, measured anticlockwise from the horizontal axis, is called an argument of z.

Polar form for complex numbers is also
called modulus–argument form.

This Argand diagram uses a polar grid
with rays at intervals of

π

12
= 15◦.

cis
3
p

Re(z)

Im(z)

2i

−2i

−2 2

3cis − pcis 3− 2p

2cis
6
p

2cis 3
p2cis

3
2p

2cis
6

5p

Non-uniqueness of polar form
Each complex number has more than one
representation in polar form.

Since cos θ = cos(θ + 2nπ) and sin θ = sin(θ + 2nπ), for all n ∈ Z, we can write

z = r cis θ = r cis(θ + 2nπ) for all n ∈ Z

The convention is to use the angle θ such that −π < θ ≤ π. This value of θ is called the
principal value of the argument of z and is denoted by Arg z. That is,

−π < Arg z ≤ π

Note: The principal value of the argument is not defined for the complex number 0, since it
can be written in polar form as 0 cis θ for any angle θ.
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Express each of the following complex numbers in polar form:

z = 1 +
√

3ia z = 2 − 2ib

Example 19

Solution
We have x = 1 and y =

√
3, giving

r =
√

x2 + y2

=
√

1 + 3

= 2

The point z = 1 +
√

3i is in the

1st quadrant, and so 0 < θ <
π

2
.

We know that

cos θ =
x
r

=
1
2

sin θ =
y
r

=

√
3

2
and

Hence θ =
π

3
and therefore

z = 1 +
√

3i

= 2 cis
(
π

3

)

a We have x = 2 and y = −2, giving

r =
√

x2 + y2

=
√

4 + 4

= 2
√

2

The point z = 2 − 2i is in the 4th quadrant,

and so −
π

2
< θ < 0.

We know that

cos θ =
x
r

=
1
√

2

sin θ =
y
r

= −
1
√

2
and

Hence θ = −
π

4
and therefore

z = 2 − 2i

= 2
√

2 cis
(
−
π

4

)

b

Express z = 2 cis
(
−

2π
3

)
in Cartesian form.

Example 20

Solution

x = r cos θ y = r sin θ

= 2 cos
(
−

2π
3

)
= 2 sin

(
−

2π
3

)
= 2 ×

(
−

1
2

)
= 2 ×

(
−

√
3

2

)
= −1 = −

√
3

Hence z = 2 cis
(
−

2π
3

)
= −1 −

√
3i.
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Multiplication and division in polar form
We can give a simple geometric interpretation of multiplication and division of complex
numbers in polar form.

If z1 = r1 cis θ1 and z2 = r2 cis θ2, then

z1z2 = r1r2 cis(θ1 + θ2) (multiply the moduli and add the angles)

z1

z2
=

r1

r2
cis(θ1 − θ2) (divide the moduli and subtract the angles)

For example, if z1 = 2 cis 30◦ and z2 = 4 cis 20◦, then

z1z2 = r1r2 cis(θ1 + θ2)

= (2 · 4) cis(30◦ + 20◦)

= 8 cis 50◦

You will prove this result in Exercise 18F.

Im(z)

Re(z)

30°
50°

z2

z1z2

20°
0

z1

When we multiply a complex number z by r cis θ, the effect on the point representing z in
an Argand diagram is a dilation of factor r from the origin followed by a rotation about the
origin by angle θ anticlockwise.

Let z1 = 3 cis
(
π

2

)
and z2 = 2 cis

(5π
6

)
. Find the product z1z2 and express in Cartesian form.

Example 21

Solution

z1z2 = r1r2 cis(θ1 + θ2)

= 6 cis
(
π

2
+

5π
6

)
= 6 cis

(4π
3

)
∴ z1z2 = 6 cis

(
−

2π
3

)
since −π < Arg z ≤ π

Expressing this in Cartesian form, we find that

z1z2 = 6 cis
(
−

2π
3

)
= 6 cos

(
−

2π
3

)
+ 6 sin

(
−

2π
3

)
i

= 6
(
−

1
2

)
+ 6

(
−

√
3

2

)
i

= −3 − 3
√

3i
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Let z1 = 2 cis
(5π

6

)
and z2 = 4 cis

(
π

6

)
. Find the quotient

z1

z2
and express in Cartesian form.

Example 22

Solution
We find that

z1

z2
=

r1

r2
cis(θ1 − θ2)

=
2
4

cis
(5π

6
−
π

6

)
=

1
2

cis
(2π

3

)
Expressing this in Cartesian form, we find that

z1

z2
=

1
2

cos
(2π

3

)
+

1
2

sin
(2π

3

)
i

=
1
2

(
−

1
2

)
+

1
2

(√3
2

)
i

= −
1
4
(
1 −
√

3i
)

The point (2, 3) is rotated about the origin by angle
π

6
anticlockwise. By multiplying two

complex numbers, find the image of the point.

Example 23

Solution
The point (2, 3) corresponds to the complex number z = 2 + 3i.

To rotate z about the origin by
π

6
anticlockwise, we multiply z by cis

(
π

6

)
.

This gives

(2 + 3i) cis
(
π

6

)
= (2 + 3i)

(
cos

(π
6

)
+ sin

(π
6

)
i
)

= (2 + 3i)
(√3

2
+

1
2

i
)

=
√

3 + i +
3
√

3
2

i +
3
2

i 2

=
2
√

3 − 3
2

+

(3
√

3 + 2
2

)
i

Therefore the image is the point
(2
√

3 − 3
2

,
3
√

3 + 2
2

)
.
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Summary 18F
� Polar form

A complex number in Cartesian form

z = x + yi

can be written in polar form as

z = r(cos θ + i sin θ)

= r cis θ

Im(z)

Re(z)

(x + yi )

y

P
r

x
θ

0

• The distance r =
√

x2 + y2 is called the modulus of z and is denoted by |z|.
• The angle θ, measured anticlockwise from the horizontal axis, is called an

argument of z.

� The polar form of a complex number is not unique. For a non-zero complex number z,
the argument θ of z such that −π < θ ≤ π is called the principal value of the argument
of z and is denoted by Arg z.

� Multiplication and division in polar form
If z1 = r1 cis θ1 and z2 = r2 cis θ2, then

z1z2 = r1r2 cis(θ1 + θ2) and
z1

z2
=

r1

r2
cis(θ1 − θ2)

Exercise 18FSkill-
sheet

1Example 19 Express each of the following in polar form r cis θ with −π < θ ≤ π:

1 +
√

3ia 1 − ib −2
√

3 + 2ic

−4 − 4id 12 − 12
√

3ie −
1
2

+
1
2

if

2Example 20 Express each of the following in the form x + yi:

3 cis
(
π

2

)
a

√
2 cis

(
π

3

)
b 2 cis

(
π

6

)
c 5 cis

(3π
4

)
d

12 cis
(5π

6

)
e 3

√
2 cis

(
−
π

4

)
f 5 cis

(4π
3

)
g 5 cis

(
−

2π
3

)
h

3 Simplify the following and express the answers in Cartesian form:

Example 21 2 cis
(
π

6

)
· 3 cis

(
π

12

)
a 4 cis

(
π

12

)
· 3 cis

(
π

4

)
b cis

(
π

4

)
· 5 cis

(5π
12

)
c

12 cis
(
−
π

3

)
· 3 cis

(2π
3

)
d 12 cis

(5π
6

)
· 3 cis

(
π

2

)
e

(√
2 cisπ

)
·
√

3 cis
(
−

3π
4

)
f

Example 22

10 cis
(
π

4

)
5 cis

(
π

12

)g
12 cis

(
−
π

3

)
3 cis

(2π
3

)h
12
√

8 cis
(3π

4

)
3
√

2 cis
(
π

12

)i
20 cis

(
−
π

6

)
8 cis

(5π
6

)j
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4Example 23 For each of the following, multiply two complex numbers to find the image of the point
under the rotation about the origin:

(5, 2) is rotated by
π

3
anticlockwisea (3, 2) is rotated by

π

4
clockwiseb

(x, y) is rotated by θ anticlockwisec

5 Let z1 = r1 cis θ1 and z2 = r2 cis θ2. Use the compound angle formulas for sine and
cosine to prove that z1z2 = r1r2 cis(θ1 + θ2).

18G Sketching subsets of the complex plane
We have already seen how complex numbers can be plotted on an Argand diagram (also
called the complex plane). In this section, we treat complex numbers as points in the
complex plane, and therefore we can illustrate sets of complex numbers.

Distance in the complex plane
Recall that, if z = x + yi is a complex number, then its modulus

|z| =
√

x2 + y2

is equal to its distance from the origin in the complex plane. More generally:

Distance between two complex numbers

For complex numbers z1 = x1 + y1i and z2 = x2 + y2i,
the distance between z1 and z2 in the complex plane
is equal to

|z2 − z1| =
√

(x2 − x1)2 + (y2 − y1)2

0

(x1, y1)

(x2, y2)

|z2 − z1|

Re(z)

Im(z)

Find the distance between z1 = −1 + 4i and z2 = 3 + 2i in the complex plane.

Example 24

Solution
The distance can be found by evaluating

|z2 − z1| = |(3 + 2i) − (−1 + 4i)|

= |4 − 2i|

=
√

42 + (−2)2

=
√

20

= 2
√

5
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Lines in the complex plane

Equation of a line in the complex plane

Let u and w be fixed complex numbers. Then the equation

|z − u| = |z − w|

defines the set of all points z that are equal distance from u and w.
This set is a straight line.

z

u

w

Find the Cartesian equation for the set of points z such that |z − 2i| = |z − 4|.

Example 25

Solution
Note that the point z is equidistant from 2i and 4. Therefore the set of points is the straight
line that is the perpendicular bisector of the line segment between (0, 2) and (4, 0).

Letting z = x + yi, we can find the Cartesian equation
algebraically as follows:

|z − 2i| = |z − 4|

|x + yi − 2i| = |x + yi − 4|

|x + (y − 2)i| = |(x − 4) + yi|√
x2 + (y − 2)2 =

√
(x − 4)2 + y2

x2 + y2 − 4y + 4 = x2 − 8x + 16 + y2

−4y + 4 = −8x + 16

y = 2x − 3

0

−3

3
2

(x, y)
(0, 2)

(4, 0)
Re(z)

Im(z)

The set of points is the straight line with Cartesian equation y = 2x − 3.

Rays in the complex plane

Equation of a ray starting at the origin

Let θ be a fixed angle. Then the equation

Arg z = θ

defines a ray extending from the origin at an angle of θ
measured anticlockwise from the horizontal axis.

Note: The origin is not included in the set of points,
as the principal argument is not defined for the
complex number 0.

0
θ

Re(z)

Im(z)
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Sketch the subset of the complex plane defined by Arg z =
3π
4

.

Example 26

Solution
The equation defines the set of complex numbers with

a principal argument of
3π
4

.

0

3π
4

Re(z)

Im(z)

By applying a translation, we can describe rays that do not
start at the origin. The diagram on the right shows the rays
with equations:

a Arg(z − 1) =
π

4
b Arg(z − i) =

3π
4

c Arg(z + 1) = −
3π
4

d Arg(z + i) = −
π

4

Re(z)

Im(z)

ab

c
d

Circles in the complex plane

Equation of a circle in the complex plane

Let w be a fixed complex number and let r > 0. Then the equation

|z − w| = r

defines a circle with centre w and radius r.
w

z

r

Find the Cartesian equation for the set of points z such that |z − (2 − 3i)| = 2.

Example 27

Solution
Note that the point z is a distance of 2 units from 2 − 3i. Therefore the set of points is the
circle of radius 2 centred at (2,−3).

Letting z = x + yi, we can find the Cartesian equation
algebraically as follows:

|z − (2 − 3i)| = 2

|x + yi − (2 − 3i)| = 2

|(x − 2) + (y + 3)i| = 2√
(x − 2)2 + (y + 3)2 = 2

(x − 2)2 + (y + 3)2 = 4

0

(2, −3)

2

Re(z)

Im(z)
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Sketch the set of complex numbers z described by each rule:

|z| < 3a |z − i| ≥ 3b

Example 28

Solution
If |z| < 3, then z is less than 3 units
from the origin. Therefore z is inside
the circle of radius 3 centred at the origin.

0
3

Re(z)

Im(z)

a If |z − i| ≥ 3, then z is at least 3 units
from i. Therefore z lies on or outside the
circle of radius 3 centred at (0, 1).

0

(0, 1)
3

Re(z)

Im(z)

b

Other subsets of the complex plane
Sometimes the subset of the complex plane defined by a particular rule is not obvious until
we find a Cartesian description for the set.

Consider the set of points z in the complex plane such that

2|z − 2| = |z − z + 2i|

Find the Cartesian equation that describes this set.

Example 29

Solution
Let z = x + yi. Then

2|z − 2| = |z − z + 2i|

2|x + yi − 2| = |x + yi − (x − yi) + 2i|

2|(x − 2) + yi| = |(2y + 2)i|

|(x − 2) + yi| = |(y + 1)i|√
(x − 2)2 + y2 =

√
(y + 1)2

(x − 2)2 + y2 = y2 + 2y + 1

y = 1
2 (x − 2)2 − 1

2

This set of points is a parabola in the complex plane.

In the next example, we look at combining regions of the complex plane using union and
intersection.
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Define sets S and T of complex numbers by

S =
{
z : |z| ≤ 2

}
and T =

{
z : −

π

4
≤ Arg z ≤

π

4

}
Sketch the following regions of the complex plane:

Sa Tb S ∩ Tc S ∪ Td

Example 30

Solution
Region S is the set of points at most
2 units from the origin. This is a disc
of radius 2 that includes its boundary.

0
Re(z)

Im(z)

2

a Region T is the set of points with
principal argument between −π4 and π

4 .
So T is the wedge shown below.

0
Re(z)

Im(z)

b

The intersection consists of the points
in common to S and T .

0
Re(z)

Im(z)

c The union consists of all points in S or
in T (or both).

0
Re(z)

Im(z)

d

Summary 18G
� Distance in the complex plane
• For z ∈ C, the distance of z from the origin is equal to |z|.
• For z1, z2 ∈ C, the distance between z1 and z2 is equal to |z2 − z1|.

� Subsets of the complex plane
• The equation |z − w| = r defines the circle with centre w and radius r.
• The equation |z − u| = |z − w| defines a line.
• The equation Arg z = θ defines the ray extending from the origin at angle θ. (The

origin is not included.)
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Exercise 18GSkill-
sheet

1Example 24 For each of the following, find the distance between z and w in the complex plane:

z = 1 + i, w = 4 + 5ia z = 3 − 4i, w = 2 − 3ib
z = 4 − 6i, w = −1 + 6ic z = 2, w = −2id
z = 10i, w = −3ie z =

√
2 + i, w = 2if

2Example 25 For each of the following, find the Cartesian equation of the line described by the rule
and sketch the line on an Argand diagram:

Re(z) = 2a Im(z) = −1b
Im(z) = 3 Re(z)c 3 Re(z) + 4 Im(z) = 12d
|z − 1| = |z − i|e |z − (1 + i)| = |z + 1|f
z + z = 6g z − z = 4ih

3Example 26 Sketch the subsets of the complex plane described by the following rules:

Arg z =
π

4
a Arg z = −

5π
6

b 0 ≤ Arg z ≤
π

2
c

Arg(z − 1) =
3π
4

d Arg(z + i) = −
π

4
e Arg(z − 1 + i) = πf

4Example 27 Consider the set of points z ∈ C for which |z − 2| = 1. By letting z = x + yi, show
algebraically that this corresponds to the circle with equation (x − 2)2 + y2 = 1.

5 Consider the set of points z ∈ C for which |z| = |z − 2 − 2i|. By letting z = x + yi, show
algebraically that this corresponds to the straight line with equation y = 2 − x.

6 Sketch the set of points z ∈ C that are distance 2 from the point w = 2 + 2i.

7Example 28 By interpreting |z − w| as the distance from z to w, sketch the set of complex numbers z
described by each rule. (You do not have to find the Cartesian equation algebraically.)

|z| = 3a |z| ≤ 2b |z| > 2c
|z − 1| = 2d |z − i| < 2e |z + 2| ≥ 3f
|z + 2i| < 2g |z − (1 + i)| > 3h |z + 1 − 2i| ≤ 3i

8Example 30 Define three sets of complex numbers by

R =
{
z : |z| ≤ 3

}
, S =

{
z : Re(z) ≥ 0

}
and T =

{
z :

π

4
< Arg z ≤

3π
4

}
Sketch each of the following regions of the complex plane:

Ra Sb Tc R ∩ Sd
R ∩ Te S ∩ Tf R ∪ Sg R ∩ S ∩ Th
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9 Define sets S and T of complex numbers by

S =
{
z : z + z ≤ |z|2

}
and T =

{
z :

π

4
≤ Arg z ≤

π

2

}
a By letting z = x + yi, find a Cartesian description for the set S .
b Sketch S in the complex plane.
c Sketch T in the complex plane.
d Sketch S ∩ T .

10 Show that the equation |z + 2i| = |2iz − 1| defines a circle in the complex plane. Find its
centre and radius.

11Example 29 Consider the set of points z in the complex plane such that

2|z − i| = |z + z + 2|

Find the Cartesian equation that describes this set.

12 Define the set S =
{
z ∈ C : |z + 16| = 4|z + 1|

}
.

a Prove that S =
{
z ∈ C : |z| = 4

}
.

b Hence, sketch the set S in the complex plane.

13 Show that the equation |z| = 3|z + 8| defines a circle in the complex plane. Find its centre
and radius.

14 Let S =
{
z ∈ C : |z − 1| = 1

}
.

a Sketch the set S in the complex plane.
b Hence, sketch each of the following subsets of the complex plane:

i T =
{
z + 1 : z ∈ S

}
ii U =

{
z + i : z ∈ S

}
iii V =

{
2z : z ∈ S

}
iv W =

{
iz : z ∈ S

}
Hint: Multiplication by i corresponds to a rotation.
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Assign-
ment

Nrich

Chapter summary

Complex numbers
� The imaginary number i has the property i 2 = −1.
� The set of complex numbers is C = { a + bi : a, b ∈ R }.
� For a complex number z = a + bi:

• the real part of z is Re(z) = a

• the imaginary part of z is Im(z) = b.

� Complex numbers z1 and z2 are equal if and only if Re(z1) = Re(z2) and Im(z1) = Im(z2).
� An Argand diagram is a geometric representation of C.
� The modulus of z, denoted by |z|, is the distance from the origin to the point representing z

in an Argand diagram. Thus |a + bi| =
√

a2 + b2.
� The complex number z = x + yi can be expressed

in polar form as

z = r(cos θ + i sin θ)

= r cis θ

where r = |z| =
√

x2 + y2, x = r cos θ, y = r sin θ.
This is also called modulus–argument form.

Im(z)

Re(z)

(x + yi )

y

P
r

x
θ

0

� The angle θ, measured anticlockwise from the horizontal axis, is called an argument of z.
� For a non-zero complex number z, the argument θ of z such that −π < θ ≤ π is called the

principal value of the argument of z and is denoted by Arg z.

Operations on complex numbers
� The complex conjugate of z = a + bi is given by z = a − bi. Note that zz = |z|2.
� Division of complex numbers:

z1

z2
=

z1

z2
×

z2

z2
=

z1z2

|z2|
2

� Multiplication and division in polar form:
Let z1 = r1 cis θ1 and z2 = r2 cis θ2. Then

z1z2 = r1r2 cis(θ1 + θ2) and
z1

z2
=

r1

r2
cis(θ1 − θ2)

Polynomial equations over the complex numbers
� Factor theorem A polynomial P(z) has z − α as a factor if and only if P(α) = 0.
� Fundamental theorem of algebra For n ≥ 1, every polynomial of degree n can be

expressed as a product of n linear factors over the complex numbers. Therefore every
polynomial equation of degree n has n solutions (counting multiplicity).

� Conjugate root theorem Let P(z) be a polynomial with real coefficients. If a + bi is a
solution of P(z) = 0, with a and b real numbers, then the complex conjugate a − bi is also
a solution.
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Subsets of the complex plane
� For z1, z2 ∈ C, the distance between z1 and z2 is equal to |z2 − z1|.
� The equation |z − w| = r defines the circle with centre w and radius r.
� The equation |z − u| = |z − w| defines a line.
� The equation Arg z = θ defines the ray extending from the origin at angle θ. (The origin is

not included.)

Technology-free questions

1 For z1 = m + ni and z2 = p + qi, express each of the following in the form a + bi:

2z1 + 3z2a z2b z1z2c

z1

z2
d z1 + z1e (z1 + z2)(z1 − z2)f

1
z1

g
z2

z1
h

3z1

z2
i

2 Let z = 1 −
√

3i. For each of the following, express in the form a + bi and mark on an
Argand diagram:

za z2b z3c
1
z

d ze
1
z

f

3 Write each of the following in polar form:

1 + ia 1 −
√

3ib 2
√

3 + ic
3
√

2 + 3
√

2id −3
√

2 − 3
√

2ie
√

3 − if

4 Write each of the following in Cartesian form:

−2 cis
(
π

3

)
a 3 cis

(
π

4

)
b 3 cis

(3π
4

)
c

−3 cis
(
−

3π
4

)
d 3 cis

(
−

5π
6

)
e

√
2 cis

(
−
π

4

)
f

5 Let z = cis
(
π

3

)
. On an Argand diagram, carefully plot:

z2a zb
1
z

c cis
(2π

3

)
d

6 Let z = cis
(
π

4

)
. On an Argand diagram, carefully plot:

iza zb
1
z

c −izd

7 Solve each of the following quadratic equations over C:

z2 + 4 = 0a 3z2 + 9 = 0b
z2 + 4z + 5 = 0c 2z2 − 3z + 4 = 0d
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8 Show that z = 2 is a solution of the equation z3 − 2z2 + 4z − 8 = 0, and then find the
other two solutions.

9 a Show that z = i is a solution of the equation 12z3 − 11z2 + 12z − 11 = 0.
b Hence, find the other two solutions.
c Now consider the equation nz3 − (n − 1)z2 + nz − (n − 1) = 0, where n is an integer.

Show that there is only one value of n such that the equation has an integer solution.

10 Sketch the following subsets of the complex plane:{
z : |z − 1| ≤ 3

}
a

{
z : z + z = 4

}
b

{
z : Arg z = −

3π
4

}
c

11 a Let z = x + yi. Express z2 in Cartesian form.
b Sketch the subset of the complex plane defined by Re(z2) = 1.
c Sketch the subset of the complex plane defined by Im(z2) = 1.

Multiple-choice questions

1 If u = 1 + i, then
1

2 − u
is equal to

−
1
2
−

1
2

iA
1
5

+
2
5

iB
1
2

+
1
2

iC −
1
2

+
1
5

iD 1 + 5iE

2 The point C on the Argand diagram represents the
complex number z. Which point represents the complex
number i × z?

A A B B C C

D D E E
Re(z)

B

D E

AC

Im(z)

3 If |z| = 5, then
∣∣∣∣∣1z

∣∣∣∣∣ =

1
√

5
A −

1
√

5
B

1
5

C −
1
5

D
√

5E

4 If (x + yi)2 = −32i for real values of x and y, then

x = 4, y = 4A x = −4, y = 4B
x = 4, y = −4C x = 4, y = −4 or x = −4, y = 4D
x = 4, y = 4 or x = −4, y = −4E

5 The quadratic polynomial z2 + 6z + 10 can be factorised over C as

(z + 3 + i)2A (z + 3 − i)2B (z + 3 + i)(z − 3 + i)C
(z + 3 − i)(z + 3 + i)D (z + 3 + i)(z − 3 − i)E
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6 Let z =
1

1 − i
. If r = |z| and θ = Arg z, then

r = 2 and θ =
π

4
A r =

1
2

and θ =
π

4
B r =

√
2 and θ = −

π

4
C

r =
1
√

2
and θ = −

π

4
D r =

1
√

2
and θ =

π

4
E

7 The solution of the equation
z − 2i

z − (3 − 2i)
= 2, where z ∈ C, is

z = 6 + 2iA z = 6 − 2iB z = −6 − 6iC z = 6 − 6iD z = −6 + 2iE

8 Let z = a + bi, where a, b ∈ R. If z2(1 + i) = 2 − 2i, then z could be equal to
√

2iA −
√

2iB −1 − iC −1 + iD
√
−2E

9 The value of the discriminant for the quadratic expression (2 + 2i)z2 + 8iz − 4(1 − i) is

−32A 0B 64C 32D −64E

10 If Arg(ai + 1) =
π

6
, then the real number a is

√
3A −

√
3B 1C

1
√

3
D −

1
√

3
E

11 Let b, c ∈ R. If z = 3 + 4i is a solution of the equation z2 + bz + c = 0, then

b = −6, c = 25A b = 6, c = 25B b = −6, c = −25C
b = 6, c = −25D b = 25, c = −6E

Extended-response questions

1 a Find the exact solutions in C for the equation z2 − 2
√

3z + 4 = 0.
b i Plot the two solutions from part a on an Argand diagram.

ii Find the equation of the circle, with centre the origin, which passes through these
two points.

iii Find the value of a ∈ Z such that the circle passes through (0,±a).

2 Let z be a complex number with |z| = 6. Let A be the point representing z and let B be
the point representing (1 + i)z.

a Find:

i |(1 + i)z| ii |(1 + i)z − z|

b Prove that OAB is a right-angled isosceles triangle.

3 Let z =
1
√

2
+

1
√

2
i.

a On an Argand diagram, the points O, A, Z, P and Q represent the complex numbers
0, 1, z, 1 + z and 1 − z respectively. Show these points on a diagram.

b Prove that the magnitude of ∠POQ is
π

2
. Find the ratio

OP
OQ

.
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4 Let z1 and z2 be two complex numbers. Prove the following:

a |z1 + z2|
2 = |z1|

2 + |z2|
2 + z1z2 + z1z2

b |z1 − z2|
2 = |z1|

2 + |z2|
2 − (z1z2 + z1z2)

c |z1 + z2|
2 + |z1 − z2|

2 = 2|z1|
2 + 2|z2|

2

State a geometric theorem from the result of c.

5 Let z1 and z2 be two complex numbers.

a Prove the following:

i z1z2 = z1z2

ii z1z2 + z1z2 is a real number
iii z1z2 − z1z2 is an imaginary number
iv

(
z1z2 + z1z2

)2
−

(
z1z2 − z1z2

)2
= 4|z1z2|

2

b Use the results from part a and Question 4 to prove that |z1 + z2| ≤ |z1| + |z2|.
Hint: Show that

(
|z1| + |z2|

)2
− |z1 + z2|

2 ≥ 0.

c Hence prove that |z1 − z2| ≥ |z1| − |z2|.

6 Assume that |z| = 1 and that the argument of z is θ, where 0 < θ < π. Find the modulus
and argument of:

a z + 1 b z − 1 c
z − 1
z + 1

7 The quadratic expression ax2 + bx + c has real coefficients.

a Find the discriminant of ax2 + bx + c.
b Find the condition in terms of a, b and c for which the equation ax2 + bx + c = 0 has

no real solutions.
c If this condition is fulfilled, let z1 and z2 be the complex solutions of the equation and

let P1 and P2 the corresponding points on an Argand diagram.

i Find z1 + z2 and |z1| in terms of a, b and c.
ii Find cos(∠P1OP2) in terms of a, b and c.

8 Let z1 and z2 be the solutions of the quadratic equation z2 + z + 1 = 0.

a Find z1 and z2.
b Prove that z1 = z2

2 and z2 = z2
1.

c Find the modulus and the principal value of the argument of z1 and z2.
d Let P1 and P2 be the points on an Argand diagram corresponding to z1 and z2. Find

the area of triangle P1OP2.
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19A Technology-free questions
1 Given that sin A =

3
5

, where A is acute, and that cos B = −
1
2

, where B is obtuse, find the
exact values of:

sec Aa cot Ab cot Bc cosec Bd

2 Given that cos A =
1
3

, find the possible values of cos
(A

2

)
.

3 Prove the identity
1

1 + sin A
+

1
1 − sin A

= 2 sec2 A.

4 If w = 3 + 2i and z = 3 − 2i, express each of the following in the form a + bi, where a
and b are real numbers:

w + za w − zb wzc w2 + z2d
(w + z)2e (w − z)2f w2 − z2g (w − z)(w + z)h

5 If w = 1 − 2i and z = 2 − 3i, express each of the following in the form a + bi, where a
and b are real numbers:

w + za w − zb wzc
w
z

d iwe
i
w

f

w
i

g
z
w

h
w

w + z
i (1 + i)wj

w
1 + i

k w2l

6 Write each polynomial as a product of linear factors:

z2 + 49a z2 − 2z + 10b 9z2 − 6z + 5c 4z2 + 12z + 13d

7 a Find the two square roots of 3 − 4i by solving (x + yi)2 = 3 − 4i for x, y ∈ R.
b Use the quadratic formula to solve (2 − i)z2 + (4 + 3i)z + (−1 + 3i) = 0 for z.
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8 Let a, b, c ∈ R and consider the equation z3 + az2 + bz + c = 0. Given that z = −1 + i is a
solution and that the sum of the solutions is 4, find the values of a, b and c.

9 Let S =
{
z ∈ C : |z − (1 + i)| ≤ 1

}
and T =

{
z ∈ C : 0 ≤ Arg z ≤

π

3

}
.

a Sketch S in the complex plane.
b Sketch T in the complex plane.
c Sketch the region S ∩ T .

10 Sketch the graphs of the following functions over their implied domains:

y = cos−1(x − 1) − πa y = − sin−1(2x)b y = tan−1(−x) +
π

4
c

11 a Sketch the graphs of y = x2 − 4 and y = |x| + 2 on the same set of axes.
b Find the coordinates of the points of intersection.

12 Let f (x) = x(x − 1). Sketch the graph of each of the following functions:

y = f (x)a y = | f (x)|b y = f (|x|)c y = | f (|x|)|d

13 For each of the following functions, sketch the graphs of y = f (x) and y =
1

f (x)
on the

same set of axes:

f (x) = x2 + 3x + 2a f (x) = (x − 1)2 + 1b
f (x) = sin(x) + 1, x ∈ [0, 2π]c f (x) = cos(x) + 2, x ∈ [0, 2π]d

14 Sketch the graphs of the following functions over the domain [−π,π]:

f (x) = 2 sec(x) + 1a f (x) = − cosec(2x)b f (x) = 3 cot(x + π)c

15 Sketch the graph of each ellipse and find the coordinates of its axis intercepts:
x2

42 +
y2

52 = 1a
(x + 1)2

22 +
(y − 2)2

32 = 1b

16 Sketch the graph of each hyperbola and write down the equations of its asymptotes:

x2 −
y2

32 = 1a
(y + 1)2

42 −
(x − 2)2

22 = 1b

17 A point P(x, y) moves so that it is equidistant from points A(2, 2) and B(3, 4). Find the
locus of the point P.

18 A point P(x, y) moves so that its distance from the point K(0, 1) is half its distance from
the line x = −3. Find its locus.

19 Each point P(x, y) on a curve has the following property: the distance to P(x, y) from the
point F(0, 1) is the same as the shortest distance to P(x, y) from the line y = −3. Find
the equation of the curve.

20 Find the Cartesian equation corresponding to each pair of parametric equations:

x = 2t + 1 and y = 2 − 3ta x = cos(2t) and y = sin(2t)b
x = 2 cos t + 2 and y = 3 sin t + 3c x = 2 tan t and y = 3 sec td
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21 A curve has parametric equations

x = t − 1 and y = 1 − 2t2 for 0 ≤ t ≤ 2

Find the curve’s Cartesian equation.a What is the domain of the curve?b
What is the range of the curve?c Sketch the graph of the curve.d

22 Convert the polar coordinates
[
2,

7π
6

]
into Cartesian coordinates.

23 A point P has Cartesian coordinates (2,−2). Find two representations of P using polar
coordinates, one with r > 0 and the other with r < 0.

24 Convert the following polar equations into Cartesian equations:

a r = 5 b θ =
π

3
c r =

3
sin θ

d r =
2

3 sin θ + 4 cos θ
e r2 =

1
sin(2θ)

25 a Sketch the circle with equation x2 + (y − 2)2 = 22.
b Show that this circle has polar equation r = 4 sin θ.

19B Multiple-choice questions
1 Which one of the following gives the correct value for c?

A
58 cos 38◦

cos 130◦
B

58 sin 38◦

sin 130◦
C 58 sin 38◦

D
58 cos 130◦

cos 38◦
E

58 sin 130◦

sin 38◦
58 cm

12° 38°
130°

B

A

C

2 If sin A =
5
13

and sin B =
8
17

, where A and B are acute, then sin(A − B) is given by

140
221

A −
21
221

B
34 209
23 560

C −
107
140

D
107
140

E

3 In triangle ABC, c = 5, b = 9 and A = 43◦. Which of the following statements are
correct?

I With the information given, we can find the area of triangle ABC.

II With the information given, we can find angle B.

III With the information given, we can find side a.

I and II onlyA I and III onlyB II and III onlyC
I, II and IIID none of theseE

4 If sin A =
5

13
and sin B =

8
17

, where A and B are acute, then tan(A + B) is given by

140
221

A −
21
221

B
34 209
23 560

C −
171
140

D
171
140

E
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5 Which one of the following expressions will give the area
of triangle ABC?

A
1
2
× 6 × 7 sin 48◦ B

1
2
× 6 × 7 cos 48◦

C
1
2
× 6 × 7 sin 52◦ D

1
2
× 6 × 7 cos 52◦

E
1
2
× 6 × 7 tan 48◦

A B

C

6 cm

7 cm
48° 52°

6 If cos θ = c and θ is acute, then cot θ can be expressed in terms of c as

c
√

1 − c2A
√

1 − c2B
1

√
1 − c2

C
c

√
1 − c2

D 2c
√

1 − c2E

7 A child on a swing travels through an arc of length 3 m. If the ropes of the swing are
4 m in length, then the angle which the arc makes at the top of the swing (where the
swing is attached to the support) is best approximated by

135◦A 75◦B 12◦C 75cD 43◦E

8 If A + B =
π

2
, then the value of cos A cos B − sin A sin B is

−2A 1B −1C 0D 2E

9 Given that sin A =

√
5

3
and that A is obtuse, the value of sin(2A) is

16
√

5
243

A −
1
9

B −
8
√

5
27

C
5
9

D −
4
√

5
9

E

10 Correct to two decimal places, the area of a sector with an included angle of 60◦ in a
circle of diameter 10 cm is

104.72 cm2A 52.36 cm2B 13.09 cm2C 26.16 cm2D 750 cm2E

11 VABCD is a right square pyramid with base length 80 mm
and perpendicular height 100 mm. The angle θ between a
sloping face and the base ABCD, to the nearest degree, is

A 22◦ B 29◦ C 51◦

D 61◦ E 68◦

A B

CD

V

 E
q

O

12 If cos θ = c and θ is acute, then sin(2θ) can be expressed in terms of c as

c
√

1 − c2A
√

1 − c2B
1

√
1 − c2

C
c

√
1 − c2

D 2c
√

1 − c2E

13 The expression cos(3x) + cos(x) is equivalent to

cos(4x)A 2 cos(4x)B 2 cos(3x) cos(x)C
2 cos(2x) cos(x)D 2 sin(2x) cos(x)E
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14 The angles between 0◦ and 360◦ which satisfy the equation 4 cos x − 3 sin x = 1, given
correct to two decimal places, are

53.13◦ and 126.87◦A 48.41◦ and 205.33◦B 41.59◦ and 244.67◦C
131.59◦ and 334.67◦D 154.67◦ and 311.59◦E

15 The area of the shaded region in the diagram is closest to

A 951 cm2 B 992 cm2

C 1944 cm2 D 2895 cm2

E 110 424 cm2

110° 45 cm

16 The expression 8 sin θ cos3 θ − 8 sin3
θ cos θ is equal to

8 sin θ cos θA sin(8θ)B 2 sin(4θ)C
4 cos(2θ)D 2 sin(2θ) cos(2θ)E

17 If v, w and z are complex numbers such that v = 4 cis(−0.3π), w = 5 cis(0.6π) and
z = vw, then Arg z is equal to

0.9πA −0.9πB 0.3πC −0.3πD 1.8πE

18 The complex number 2 cis
(2π

3

)
is written in Cartesian form as

√
3 − iA −

√
3 + iB 1 −

√
3iC −1 +

√
3iD

1
3
−

√
3

2
iE

19 If z = −

√
3

2
−

1
2

i, then Arg z is equal to

4π
3

A
7π
6

B −
π

6
C −

2π
3

D −
5π
6

E

20 If u = 3 cis
(
π

2

)
and v = 5 cis

(2π
3

)
, then uv is equal to

15 cis
(
π

3

)
A 15 cis

(
π2

3

)
B 15 cis

(
−

5π
6

)
C 8 cis

(
π2

3

)
D 8 cis

(7π
6

)
E

21 The modulus of 12 − 5i is

169A 7B 13C
√

119D
√

7E

22 Let z = x + yi, where x and y are real numbers which are not both zero. Which one of
the following expressions does not necessarily represent a real number?

z2A zzB z−1zC Im(z)D z + zE

23 If z = −14 − 7i, then the complex conjugate of z is equal to

7 − 14iA 14 + 7iB −14 + 7iC 14 − 7iD −7 + 14iE

24 The expression 3z2 + 9 is factorised over C. Which one of the following is a factor?

3zA z + 3B z + 3iC z − 3iD z +
√

3iE
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25 (1 + 2i)2 is equal to

−3A −3 + 2iB −3 + 4iC −1 + 4iD 5 + 4iE

26 Let r > 0 and consider the set S =
{
z ∈ C : |z − 1 + 2i| = r

}
. If 4 + 2i belongs to S , then

the value of r is

2A 3B 4C 5D 6E

27 Which of the following equations has z = 2i as a solution?

z2 − 2 = 0A z2 + 2 = 0B z2 − 4 = 0C
z3 − 3z2 + 4z − 11 = 0D z3 − 3z2 + 4z − 12 = 0E

28 Which of the following equations has the graph shown?

A y = |x − 2| + 2 B y = |x + 2| − 2
C y = −|x − 2| + 2 D y = −|x + 2| + 2
E y = −|x − 2| − 2

0 4

(2, 2)

x

y

29 Let f (x) = sin−1(ax + 2) + b, where a, b ∈ R. If the implied domain of f is [2, 6] and the
range of f is [0,π], then the values of a and b are

a = −
1
2

, b = −
π

2
A a = −

1
2

, b =
π

2
B a =

1
2

, b =
π

2
C

a = 2, b =
π

2
D a = −2, b = −

π

2
E

30 Which of the following equations has the graph shown?

A y =
1

4 − x2 B y =
1

x2 − 4

C y =
1

2 − x2 D y =
1

x2 − 2

E y =
1

(x − 2)2

0

y

x
2-2

1
4

31 If a and b are positive real numbers, then the graph of the reciprocal of y = a sin(x) + b,
where 0 ≤ x ≤ 2π, will have two vertical asymptotes provided

b > aA a > bB b > −aC a > −bD a > 0E

32 The graph of f (x) = sec(2x), for −π ≤ x ≤ π, has its local minimum points at

x = 0A x = −π,πB x = −π, 0,πC

x = −
π

2
,
π

2
D x = −π,−

π

2
, 0,

π

2
,πE
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33 Given point A(1,−2), a set of points P(x, y) satisfy AP = 3. This set of points is a

lineA circleB parabolaC ellipseD hyperbolaE

34 A line has equation y = x + 1. For some pair of points A and B, each point P(x, y) on the
line satisfies AP = BP. The coordinates of A and B could be

A(0, 0) and B(0, 1)A A(0, 0) and B(−1, 1)B A(−1, 0) and B(0, 1)C
A(0, 1) and B(1, 0)D A(0, 1) and B(−1, 0)E

35 A parabola has focus F(0, 2) and directrix y = −4. Which of the following is true?

The parabola has axis of symmetry y = 0.A
The parabola goes through the origin.B
The parabola goes through the point (0,−1).C
The parabola goes through the point (1, 2).D
The parabola has equation y = 2x2 − 4.E

36 Let a and b be positive real numbers. The graphs of x2 − y2 = 1 and
x2

a2 +
y2

b2 = 1 will
have four points of intersection provided

b > aA a > 1B a < 1C b > 1D b < 1E

37 A hyperbola has asymptotes y = 2x + 1 and y = −2x + 1 and has no x-axis intercepts.
The equation of the hyperbola could be

x2 −
(y − 1)2

4
= 1A

x2

4
− (y − 1)2 = 1B

(x − 1)2

4
− y2 = 1C

(y − 1)2

4
− x2 = 1D

y2

4
− (x − 1)2 = 1E

38 A curve is parameterised by the equations x = 1 + t and y =
1 − t
1 + t

. The Cartesian
equation of the curve is

y =
2
x
− 1A y =

1
x
− 1B y =

1
x
− 2C y =

1
x

+ 2D y =
2
x

+ 1E

39 The ellipse with equation
(x − 1)2

4
+

(y + 1)2

9
= 1 can be parameterised by the pair of

equations

x = 4 cos(t) − 1 and y = 9 sin(t) + 1A x = 4 cos(t) + 1 and y = 9 sin(t) − 1B
x = 4 cos(t) − 1 and y = 9 sin(t) − 1C x = 2 cos(t) − 1 and y = 3 sin(t) − 1D
x = 2 cos(t) + 1 and y = 3 sin(t) − 1E

40 A curve is parameterised by the equations x = 2t − 3 and y = t2 − 3t. Which of the
following points does the curve pass through?

(5, 1)A (5, 2)B (5, 3)C (5, 4)D (5, 5)E

41 The Cartesian equation y = x2 written in polar form is

r = sec θ tan θA r = cos θ cot θB r = sec θ cot θC
r = cos θ tan θD r = sin θ tan θE
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19C Extended-response questions
1 For 4ABC in the diagram, A = 30◦,

a = 60 and c = 80.

a Find the magnitudes of angles:

i BCA and ABC

ii BC′A and ABC′

b Find the lengths of line segments:

i AC ii AC′ iii CC′

A
C

B

80

30°

6060

C

c Show that the magnitude of ∠CBC′ is 96.38◦ (correct to two decimal places). Then
using this value:

i find the area of triangle BCC′

ii find the area of the shaded sector
iii find the area of the shaded segment.

2 In the figure, AE = BE = BD = 1 unit and ∠BCD is a right angle.

a Show that the magnitude of ∠BDE
is 2θ.

b Use the cosine rule in 4BDE to
show that DE = 2 cos(2θ).

θ 3θ
1 1

1

A
B C

D

E

c Show that:

i DC = sin(3θ) ii AD =
sin(3θ)
sin θ

d Use the results of b and c to show that sin(3θ) = 3 sin θ − 4 sin3
θ.

3 a Adam notices a distinctive tree while orienteering on a flat horizontal plane. From
where he is standing, the tree is 200 m away on a bearing of 050◦. Two other people,
Brian and Colin, who are both standing due east of Adam, each claim that the tree
is 150 m away from them. Given that their claims are true and that Brian and Colin
are not standing in the same place, how far apart are they? Give your answer to the
nearest metre.

b A vertical tower of height 10 m stands in one corner
of a rectangular courtyard. From the top of the tower,
T , the angles of depression to the nearest corners B
and D are 32◦ and 19◦ respectively. Find:

i AB, correct to two decimal places
ii AD, correct to two decimal places
iii the angle of depression from T to the corner C

diagonally opposite the tower, correct to the
nearest degree.

T

A

B C

D

c Two circles, each of radius length 10 cm, have their centres 16 cm apart. Calculate
the area common to both circles, correct to one decimal place.
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4 A satellite travelling in a circular orbit
1600 km above the Earth is due to pass
directly over a tracking station at 12 p.m.
Assume that the satellite takes two hours
to make an orbit and that the radius of the
Earth is 6400 km.

a If the tracking station antenna is aimed
at 30◦ above the horizon, at what time
will the satellite pass through the beam
of the antenna?

satellite

direction of
travel

6400 km 
8000 km

30°

S 

O 

T 

b Find the distance between the satellite and the tracking station at 12:06 p.m.
c At what angle above the horizon should the antenna be aimed so that its beam will

intercept the satellite at 12:06 p.m.?

5 The diagonals of parallelogram ABCD
intersect at point E, with ∠CED = θ◦.
Let AB = CD = x, AD = BC = y,
BD = p and AC = q.

A 

B  C 

E 
q

D 

a Apply the cosine rule to triangle DEC to find x in terms of p, q and θ.
b Apply the cosine rule to triangle DEA to find y in terms of p, q and θ.
c Use the results of a and b to show that 2(x2 + y2) = p2 + q2.
d A parallelogram has side lengths 8 cm and 6 cm and one diagonal of length 13 cm.

Find the length of the other diagonal.

6 The figure shows the circular cross-section
of a uniform log of radius 40 cm floating
in water. The points A and B are on the
surface of the water and the highest point X
is 8 cm above the surface.

a Show that the magnitude of ∠AOB is
approximately 1.29 radians.

b i Find the length of arc AXB.
ii Find the area of the cross-section below the surface.
iii Find the percentage of the volume of the log below the surface.

X 

B A 

O 

40 cm

8 cm

7 Consider triples of real numbers (a, b, c) such that

a ≤ b ≤ c, |a| + |b| + |c| = 14, |a + b + c| = 2 and |abc| = 72

a Explain why such triples must satisfy

a ≤ 0 ≤ b ≤ c or a ≤ b ≤ 0 ≤ c

b Determine all such triples.
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8 Suppose that k is a positive real number and consider the function f : [0, 2π]→ R given
by f (x) = 2 sin(x) + k.

a Sketch the graphs of y = f (x) and y =
1

f (x)
when:

i k = 1 ii k = 3

b For what value of k does the graph of y =
1

f (x)
have only one vertical asymptote?

c For this value of k, sketch the graphs of y = f (x) and y =
1

f (x)
.

9 Two towns A and B are located on a rectangular grid with coordinates A(1, 2) and
B(2,−2), where the units are kilometres. A straight section of road is to be constructed
so that each point P(x, y) on the road is equidistant from the two towns.

a Find the equation of the road.
b Show that the road is the perpendicular bisector of the line segment AB.
c Hence find the shortest distance from town A to the road.

10 The circle with equation x2 + y2 = 4 is shown.
We will say that point A is visible to point B if
the line AB does not intersect the circle.

a Consider points A(−1, 3) and B(3, 0). Show
that the equations

x = 4t − 1 and y = 3 − 3t

parameterise the line AB.
b Show that A is not visible to B by showing

that there are two values of t for which the
line AB intersects the circle.

x
B(3, 0)

A(−1, 3)

−2

−2

2

y

2

 

 

0

c Find parametric equations for the line that goes through points C(−1, 4) and B(3, 0).
d Show that C is visible to B by showing that there is no value of t for which the line

CB intersects the circle.
e Find the range of values k for which the point D(−1, k) is visible to B.

11 A shed has a square base of side length 10 metres. A goat is tied to a corner of the shed
by a rope of length 12 metres. As the goat pulls tightly on the rope and walks around
the shed in both directions, a path is traced by the goat.

a Sketch the shed and the path described above.
b Find the size of the area over which the goat can walk.
c The goat is now tied to a point on the shed x metres from the

corner, where 0 ≤ x ≤ 5. Find a formula for the area A over
which the goat can walk, in terms of x.
Hint: Consider the two cases 0 ≤ x ≤ 2 and 2 < x ≤ 5.

d Sketch the graph of A against x for 0 ≤ x ≤ 5.
e Where should the goat be tied if the area is to be:

i a maximum ii a minimum?

x

12 m

10 m shed
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12 A rope of length π is affixed to point S(1, 0) on one side
of a circle of radius 1 centred at the origin. The rope can
be pulled tight and wrapped around the circle in both
directions. The end of the rope traces out a curve.

a Explain why the rope can reach to the opposite side of
the circle.

b Sketch the unit circle and the curve described above.

We now find parametric equations to describe the part
of the curve obtained when some of the rope is wrapped
anticlockwise around the unit circle.

Q
R

P

S(1, 0)
x

y

θ

c Referring to the diagram, find the following in terms of θ:

Arc length SQi Length PQii Angle RPQiii
Length RQiv Length RPv

d Hence, by finding the coordinates of point P, give parametric equations for the curve
in terms of θ.

13 a Let w and z be complex numbers such that the angles Arg(w) and Arg(z) are acute.
Using the rule for multiplying complex numbers in polar form, show that

Arg(wz) = Arg(w) + Arg(z)

b Find the exact values of:

Arg(2 + i)i Arg(3 + i)ii Arg(5 + 5i)iii

c Show that (2 + i)(3 + i) = 5 + 5i.
d By taking the argument of both sides of the equation from part c, prove that

tan−1
(1
2

)
+ tan−1

(1
3

)
=
π

4

e By first evaluating (3 + i)2(7 + i), prove that

2 tan−1
(1
3

)
+ tan−1

(1
7

)
=
π

4

f By first evaluating (1 + i)(1 + 2i)(1 + 3i), prove that

tan−1(1) + tan−1(2) + tan−1(3) = π

g Explain how the result from part f can also be shown using the
diagram on the right. The grid is composed of unit-length squares.
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14 The diagram shows a trapezium XYZW such that XW = 4,

WZ = 6, ∠YXW = ∠XYZ =
π

2
and ∠YZW = θ, where 0 < θ <

π

2
.

a Show that the area, A, of the trapezium is given by

A = 24 sin θ + 9 sin(2θ)

b Show that the perimeter, P, of the trapezium is given by

P = 14 + 6
(
sin θ + cos θ

)
c Find the maximum value of P and the corresponding value

of θ.
d Find the values of θ for which P = 21.

e Find the exact value of A when θ =
π

4
.

X Y

Z

W

θ

4

6

f Use your calculator to find the maximum value of A (correct to two decimal places)
and the value of θ for which this occurs (correct to one decimal place).

g Sketch the graph of A against θ.
h Change of variable Let x = XY . Show that

A = 4x +
1
2

x
√

36 − x2

Use your calculator to find the maximum value of A by graphing A against x.

19D Investigations
1 Graphs involving the modulus function

a i Sketch the graphs of the functions y = |x − 2| + |x − 3| and y = |2x − 3| + |x − 4|.
ii Investigate graphs of the form y = |ax + b| + |cx + d| and y = |ax + b| − |cx + d|.

b i Sketch the graph of the relation |2x + y| = 2.
ii Investigate graphs of the form |ax + by| = c.

c i Sketch the region of the plane defined by |x + y| ≤ 2.
ii Investigate graphs of the form |ax + by| ≤ c.

d i Sketch the graph of the relation |x| + |y| = 2. Find the area of the enclosed region.
ii Investigate graphs of the form |ax| + |by| = c and the corresponding areas.

e Sketch the region of the plane defined by |x| + |y| + |x + y| ≤ 2 and find the area of
this region.

f Investigate other families of graphs involving the modulus function. For example,
consider the graphs of |xy| = 1 and |xy| ≤ 2.
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2 Measurement errors
A practical use of trigonometry is in determining the position of an inaccessible object.
The technique used in this activity is called triangulation.

P

A Bℓ Dx

y

α β

In this diagram: The point P is inaccessible. The distance ` = AB is known. The
distances x = BD and y = PD are unknown. The angles α and β are measured.

a Note that tan β =
y
x

and tanα =
y

x + `
. Show that x =

` tanα
tan β − tanα

.

b Hence, show that

x =
` sinα cos β
sin(β − α)

and y =
` sinα sin β
sin(β − α)

c Investigate the effect that measurement errors in the angles α and β have on the
values of x and y calculated using the formulas from part b. In particular, consider
the effect for different magnitudes of β − α. For example, what is the effect of a
1◦ error in α when the measured values are α = 40◦ and β = 45◦?

d Take actual measurements in real-world situations and investigate your errors.

3 Complex quadratics
In this question, we use the quadratic formula to help solve polynomial equations over
the complex numbers. Recall that the solutions of a quadratic equation az2 + bz + c = 0
are given by

z =
−b ±

√
b2 − 4ac

2a

a i Solve the quadratic equation z2 + az + a2 = 0, where a is a positive real number.
ii Hence, solve the cubic equation z3 = a3, where a is a positive real number.

Hint: Use the factorisation z3 − a3 = (z − a)(z2 + az + a2).
iii For the case a = 1, write the solutions of the cubic equation in polar form. Plot

them on an Argand diagram with the unit circle.
iv Add the solutions for the cases a = 2 and a = 3 to your Argand diagram.
v Summarise what you have found.

b Repeat part a for z2 − az + a2 = 0 and z3 = −a3, where a is a positive real number.
Hint: Use the factorisation z3 + a3 = (z + a)(z2 − az + a2).

c Repeat part a for z2 + aiz − a2 = 0 and z3 = −a3i, where a is a positive real number.
d Repeat part a for z2 − aiz − a2 = 0 and z3 = a3i, where a is a positive real number.
e There is more to consider in this way. For example, look at the equation z4 + 1 = 0.

Factorise the left-hand side by considering z4 + 2z2 + 1 − 2z2.



20
Transformations
of the plane

Objectives
I To define linear transformations.

I To represent a linear transformation as a 2 × 2 matrix.

I To study the e�ect of important transformations, including dilations, reflections,
rotations, shears and translations.

I To investigate compositions and inverses of transformations.

I To investigate the connection between the determinant of a transformation matrix
and area.

I To investigate the e�ect of transformations on regions of the plane, including points,
shapes and graphs.

Modern animations are largely created with the use of computers. Many basic visual effects
can be understood in terms of simple transformations of the plane.

For example, suppose that an animator wants to give the car below a sense of movement.
This can be achieved by gradually tilting the car so that it leans forwards. We will see later
how this can easily be done using a transformation called a shear.

Aside from computer graphics, linear transformations play an important role in many diverse
fields such as mathematics, physics, engineering and economics.
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20A Linear transformations
Each point in the plane can be denoted by an ordered pair (x, y). The set of all ordered pairs is
often called the Cartesian plane: R2 = { (x, y) : x, y ∈ R }.

A transformation of the plane maps each point (x, y) in the plane to a new point (x′, y′). We
say that (x′, y′) is the image of (x, y).

We will mainly be concerned with linear transformations, which have rules of the form

(x, y)→ (ax + by, cx + dy)

Find the image of the point (2, 1) under the transformation with rule

(x, y)→ (3x − 5y, 2x − 4y)

Example 1

Solution
We let x = 2 and y = 1, giving

(2, 1)→ (3 × 2 − 5 × 1, 2 × 2 − 4 × 1) = (1, 0)
(2, 1)

(1, 0)

y

x

Matrices and linear transformations
Each ordered pair can also be written as a 2 × 1 matrix, which we will call a column vector:

(x, y) =

x
y


This is a very useful observation, since we can now easily perform the linear transformation
(x, y)→ (ax + by, cx + dy) by using matrix multiplication:x′

y′

 =

a b
c d

 x
y

 =

ax + by
cx + dy



a Find the matrix of the linear transformation with rule (x, y)→ (x − 2y, 3x + y).
b Use the matrix to find the image of the point (2, 3) under the transformation.

Example 2

Solution Explanation

a
1 −2
3 1

 The rows of the matrix are given by the
coefficients of x and y.

b
1 −2
3 1

 23
 =

1 × 2 − 2 × 3
3 × 2 + 1 × 3

 =

−4
9


Therefore the image of (2, 3) is (−4, 9).

We write the point (2, 3) as a column vector
and multiply by the transformation matrix.
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Transforming the unit square
The unit square is the square with vertices (0, 0), (1, 0), (0, 1)
and (1, 1). The effect of a linear transformation can often be
demonstrated by studying its effect on the unit square.

y

x

(1, 1)

10

1

A linear transformation is represented by the matrix
2 1
0 3

.
a Find the image of the unit square under this transformation.
b Sketch the unit square and its image.

Example 3

Solution
a We could find the images of the four vertices of the square one at a time:2 1

0 3

 00
 =

00
 ,

2 1
0 3

 10
 =

20
 ,

2 1
0 3

 01
 =

13
 ,

2 1
0 3

 11
 =

33


However, this can be done in a single step by multiplying the transformation matrix by
a rectangular matrix whose columns are the coordinates of each vertex of the square:2 1

0 3

 0 1 0 1
0 0 1 1

 =

0 2 1 3
0 0 3 3


The columns of the result give the images of the vertices:

(0, 0), (2, 0), (1, 3), (3, 3)

b The unit square is shown in blue and its image in red.

y

x

(1, 3)
(3, 3)

(2, 0)

(1, 1)

Mapping the standard unit vectors
Let’s express the points (1, 0) and (0, 1) as column vectors:

(1, 0) =

10
 and (0, 1) =

01


These are called the standard unit vectors in R2.

We now consider the images of these points under the transformation with matrixa b
c d
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We havea b
c d

 10
 =

ac
 = first column of the matrix

a b
c d

 01
 =

bd
 = second column of the matrix

To find the matrix of a linear transformation:

� The first column is the image of (1, 0), written as a column vector.
� The second column is the image of (0, 1), written as a column vector.

This observation allows us to write down the matrix of a linear transformation given just two
pieces of information.

A linear transformation maps the points (1, 0) and (0, 1) to the points (1, 1) and (−2, 3)
respectively.

a Find the matrix of the transformation.
b Find the image of the point (−3, 4).

Example 4

Solution Explanation

a
1 −2
1 3

 The image of (1, 0) is (1, 1), and the image
of (0, 1) is (−2, 3). We write these images
as the columns of a matrix.

b
1 −2
1 3

 −3
4

 =

−11
9


Therefore (−3, 4)→ (−11, 9).

Write the point (−3, 4) as a column vector
and multiply by the transformation matrix.

Summary 20A
� A transformation maps each point (x, y) in the plane to a new point (x′, y′).
� A linear transformation is defined by a rule of the form (x, y)→ (ax + by, cx + dy).
� Linear transformations can be represented using matrix multiplication:x′

y′

 =

a b
c d

 x
y


� The unit square has vertices (0, 0), (1, 0), (0, 1) and (1, 1). The effect of a linear

transformation can be seen by looking at the image of the unit square.
� In the matrix of a linear transformation:

• the first column is the image of (1, 0), written as a column vector
• the second column is the image of (0, 1), written as a column vector.
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Exercise 20ASkill-
sheet

1Example 1 Find the image of the point (2,−4) under the transformation with rule:

(x, y)→ (x + y, x − y)a (x, y)→ (2x + 3y, 3x − 4y)b
(x, y)→ (3x − 5y, x)c (x, y)→ (y,−x)d

2Example 2 Find the image of the point (2, 3) under the linear transformation with matrix:0 1
1 0

a
−2 0

0 3

b
1 2
0 1

c
2 1
1 3

d

3 Find the matrix of the linear transformation defined by the rule:

(x, y)→ (2x + 3y, 4x + 5y)a (x, y)→ (11x − 3y, 3x − 8y)b
(x, y)→ (2x, x − 3y)c (x, y)→ (y,−x)d

4Example 3 Find and sketch the image of the unit square under the linear transformation represented
by the matrix: 0 1
−1 0

a
2 0
0 3

b
1 0
1 1

c
−1 3

2 −1

d

5 Find the image of the triangle with vertices (1, 1), (1, 2) and (2, 1) under the linear

transformation represented by the matrix
2 −1
1 2

.
6Example 4 Find the matrix of the linear transformation that maps the points (1, 0) and (0, 1) to the

points (3, 4) and (5, 6) respectively. Hence find the image of the point (−2, 4).

7 Find the matrix of the linear transformation that maps the points (1, 0) and (0, 1) to the
points (−3, 2) and (1,−1) respectively. Hence find the image of the point (2, 3).

8 Find a matrix that transforms the unit square to each of the following parallelograms.
Note: There are two possible answers for each part.

y

x

(1, 2)

(2, 1)

(1, −1)

a y

x

(−2, 1)

(−1, 0) (1, −1)

b

y

(−2, −3)

(−1, −4)

(1, −1)
x

c
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20B Geometric transformations
We now look at various important transformations that are geometric in nature.

Reflections
A reflection in a line ` maps each point in the plane to its mirror
image on the other side of the line. The point A and its image A′

are the same distance from ` and the line AA′ is perpendicular to `.

These transformations are important for studying figures with
reflective symmetry, that is, figures that look the same when
reflected in a line of symmetry.

C¢

B¢ A¢A B

C

A square has four lines of symmetry, while an
equilateral triangle has just three.

Note: A reflection is an example of a transformation that does not change lengths. Such a
transformation is called an isometry.

Reflection in the x-axis
A reflection in the x-axis is defined by

(x, y)→ (x,−y)

So if (x′, y′) is the image of the point (x, y), then

x′ = x and y′ = −y

This transformation can also be represented using matrix
multiplication:x′

y′

 =

1 0
0 −1

 x
y



y

(x, y)

(x, −y)

x

Reflection in the y-axis
A reflection in the y-axis is defined by

(x, y)→ (−x, y)

So if (x′, y′) is the image of the point (x, y), then

x′ = −x and y′ = y

Once again, this transformation can be represented using
matrix multiplication:x′

y′

 =

−1 0
0 1

 x
y



y

(x, y)(−x, y)

x
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Reflection in the line y = x
If the point (x, y) is reflected in the line y = x, then it is mapped
to the point (y, x). So if (x′, y′) is the image of (x, y), then

x′ = y and y′ = x

Expressing this using matrix multiplication givesx′

y′

 =

0 1
1 0

 x
y



y

( y, x)

(x, y)
x

Reflection in the line y = −x
If the point (x, y) is reflected in the line y = −x, it is mapped
to (−y,−x). So if (x′, y′) is the image of (x, y), then

x′ = −y and y′ = −x

Expressing this using matrix multiplication givesx′

y′

 =

 0 −1
−1 0

 x
y



y

(x, y)

(-y, -x)

x

Transformation Rule Matrix

Reflection in the x-axis
x′ = 1x + 0y

y′ = 0x − 1y

1 0
0 −1


Reflection in the y-axis

x′ = −1x + 0y

y′ = 0x + 1y

−1 0
0 1


Reflection in the line y = x

x′ = 0x + 1y

y′ = 1x + 0y

0 1
1 0


Reflection in the line y = −x

x′ = 0x − 1y

y′ = −1x + 0y

 0 −1
−1 0


Dilations
Dilation from the y-axis
A dilation from the y-axis is a transformation of the form

(x, y)→ (cx, y)

where c > 0. The x-coordinate is scaled by a factor of c, but the y-coordinate is unchanged.

y

x

(1, 1)

2 0
0 1

 y

x

(2, 1)
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Dilation from the x-axis
Likewise, a dilation from the x-axis is a transformation of the form

(x, y)→ (x, cy)

where c > 0. The y-coordinate is scaled by a factor of c, but the x-coordinate is unchanged.

y

x

(1, 1)

1 0
0 2

 y

x

(1, 2)

Dilation from the x- and y-axes
We can also simultaneously scale along the x- and y-axes using the transformation

(x, y)→ (cx, dy)

with scale factors c > 0 and d > 0.

Transformation Rule Matrix

Dilation from the y-axis
x′ = cx + 0y

y′ = 0x + 1y

c 0
0 1


Dilation from the x-axis

x′ = 1x + 0y

y′ = 0x + cy

1 0
0 c


Dilation from the x- and y-axes

x′ = cx + 0y

y′ = 0x + dy

c 0
0 d


Shears
Shear parallel to the x-axis
A shear parallel to the x-axis is a transformation of the form

(x, y)→ (x + cy, y)

Notice that each point is moved in the x-direction by an amount proportional to the distance
from the x-axis. This means that the unit square is tilted in the x-direction.

y

x

(1, 1)

1 2
0 1

 y

x

(2, 1) (3, 1)
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Shear parallel to the y-axis
A shear parallel to the y-axis is a transformation of the form

(x, y)→ (x, cx + y)

Here, each point is moved in the y-direction by an amount proportional to the distance from
the y-axis. Now the unit square is tilted in the y-direction.

Note that if c < 0, then we obtain a shear in the negative direction.

y

x

(1, 1)

 1 0
−1 1



(1, –1)

(1, 0)

y

x

Transformation Rule Matrix

Shear parallel to the x-axis
x′ = 1x + cy

y′ = 0x + 1y

1 c
0 1


Shear parallel to the y-axis

x′ = 1x + 0y

y′ = cx + 1y

1 0
c 1


Projections
The transformation defined by

(x, y)→ (x, 0)

will project the point (x, y) onto the x-axis.

Likewise, the transformation defined by

(x, y)→ (0, y)

will project the point (x, y) onto the y-axis.

Transformation Rule Matrix

Projection onto the x-axis
x′ = 1x + 0y

y′ = 0x + 0y

1 0
0 0


Projection onto the y-axis

x′ = 0x + 0y

y′ = 0x + 1y

0 0
0 1


Projections are an important class of transformations. For example, the image on a television
screen is the projection of a three-dimensional scene onto a two-dimensional surface.
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Find the image of the point (3, 4) under each of the following transformations:

a reflection in
the y-axis

b dilation of
factor 2 from
the y-axis

c shear of factor 4
parallel to
the x-axis

d projection onto
the y-axis

Example 5

Solution

a
−1 0

0 1

 34
 =

−3
4

 b
2 0
0 1

 34
 =

64
 c

1 4
0 1

 34
 =

19
4

 d
0 0
0 1

 34
 =

04


(3, 4)→ (−3, 4) (3, 4)→ (6, 4) (3, 4)→ (19, 4) (3, 4)→ (0, 4)

Translations
A translation moves a figure so that every point in the figure
moves in the same direction and over the same distance.

A translation of a units in the x-direction and b units in the
y-direction is defined by the rule

(x, y)→ (x + a, y + b)

This can be expressed using vector addition:x′

y′

 =

x
y

 +

ab
 B

A

C

A B

C

Note: Translations cannot be represented using matrix multiplication. To see this, note that
matrix multiplication will always map the point (0, 0) to itself. Therefore, there is no
matrix that will translate the point (0, 0) to (a, b), unless a = b = 0.

Find the rule for a translation of 2 units in the x-direction and −1 units in the y-direction,
and sketch the image of the unit square under this translation.

Example 6

Solution
Using vector addition, this translation can be defined
by the rulex′

y′

 =

x
y

 +

 2
−1

 =

x + 2
y − 1


or equivalently

x′ = x + 2 and y′ = y − 1

y

x
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Summary 20B
� Important geometric transformation matrices are summarised in the table below.

Transformation Matrix Transformation Matrix

Reflection in
the x-axis

1 0
0 −1

 Reflection in
the y-axis

−1 0
0 1


Reflection in
the line y = x

0 1
1 0

 Reflection in
the line y = −x

 0 −1
−1 0


Dilation from
the y-axis

c 0
0 1

 Dilation from
the x-axis

1 0
0 c


Shear parallel to
the x-axis

1 c
0 1

 Shear parallel to
the y-axis

1 0
c 1


Projection onto
the x-axis

1 0
0 0

 Projection onto
the y-axis

0 0
0 1


� A translation of a units in the x-direction and b units in the y-direction is defined by the

rule (x, y)→ (x + a, y + b). This can be expressed using vector addition:x′

y′

 =

x
y

 +

ab


Exercise 20BSkill-
sheet

1Example 5 For each of the transformations described below:

i find the matrix of the transformation
ii sketch the image of the unit square under this transformation.

dilation of factor 2 from the x-axisa dilation of factor 3 from the y-axisb
shear of factor 3 parallel to the x-axisc shear of factor −1 parallel to the y-axisd
reflection in the x-axise reflection in the line y = −xf

2Example 6 For each of the translations described below:

i find the rule for the translation using column vectors
ii sketch the image of the unit square under this translation.

translation of 2 units in the x-directiona
translation of −3 units in the y-directionb
translation of −2 units in the x-direction and −4 units in the y-directionc

translation by the vector
02

d translation by the vector
−1

2

e
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20C Rotations and general reflections
Rotations
A rotation turns an object about a point, but keeps its distance
to the point fixed. A rotation does not change lengths, and so is
another example of an isometry.

Rotations are important for studying figures with rotational
symmetry, that is, figures that look the same when rotated
through a certain angle.

A¢

B¢

C¢
C

BAO

These two figures have rotational symmetry, but
no reflective symmetry.

Finding the rotation matrix
Consider the transformation that rotates each point in the plane about the origin by angle θ
anticlockwise. We will show that this is a linear transformation and find its matrix.

Let O be the origin and let P(x, y) be a point in the plane.

Then we can write

x = r cosϕ and y = r sinϕ

where r is the distance OP and ϕ is the angle between OP
and the positive direction of the x-axis.

Now let P′(x′, y′) be the image of P(x, y) under a rotation
about O by angle θ anticlockwise.

P¢(x¢, y¢)

y

r
r

x

P(x, y)

O

q
j

As OP′ = r, we can use the compound angle formulas to show that

x′ = r cos(ϕ + θ)

= r cosϕ cos θ − r sinϕ sin θ

= x cos θ − y sin θ

y′ = r sin(ϕ + θ)and

= r sinϕ cos θ + r cosϕ sin θ

= y cos θ + x sin θ

Writing this using matrix multiplication givesx′

y′

 =

cos θ − sin θ
sin θ cos θ

 x
y
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Find the matrix that represents a rotation of the plane about the origin by:

a 90◦ anticlockwise
b 45◦ clockwise.

Example 7

Solution Explanation

a
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

 =

0 −1
1 0

 An anticlockwise rotation means that
we let θ = 90◦ in the formula for the
rotation matrix.

b
cos(−45◦) − sin(−45◦)

sin(−45◦) cos(−45◦)

 =


1
√

2

1
√

2

−
1
√

2

1
√

2


A clockwise rotation means that we
let θ = −45◦ in the formula for the
rotation matrix.

Reflection in the line y = mx
Reflection in a line that passes through the origin is also a
linear transformation. We will find the matrix that will reflect
the point (x, y) in the line y = mx.

Let’s suppose that the angle between the positive direction of
the x-axis and the line y = mx is θ. Then tan θ = m and so

y = mx = x tan θ

y

m

1
x

q

Finding the reflection matrix
We will use the fact that the first column of the required
matrix will be the image A of C(1, 0), written as a
column vector, and the second column will be the
image B of D(0, 1), written as a column vector.

Since ∠AOC = 2θ, we have

(1, 0)→
(
cos(2θ), sin(2θ)

)
Moreover, since ∠BOC = 2θ − 90◦, we have

(0, 1)→
(
cos(2θ − 90◦), sin(2θ − 90◦)

)
=

(
sin(2θ),− cos(2θ)

)
Writing these images as column vectors gives the
reflection matrix:cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)



O

y = mx

A
B

x

y

C (1, 0)

D (0, 1)

q
q
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a Find the matrix that will reflect the point (x, y) in the line through the origin at an angle
of 30◦ to the positive direction of the x-axis.

b Find the matrix that will reflect the point (x, y) in the line y = 2x.

Example 8

Solution
a We simply let θ = 30◦, and so the required reflection matrix is

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

 =

cos 60◦ sin 60◦

sin 60◦ − cos 60◦

 =


1
2

√
3

2
√

3
2

−
1
2


b Since tan θ = 2 =

2
1

, we draw a right-angled triangle with opposite

and adjacent lengths 2 and 1 respectively.

Pythagoras’ theorem gives the hypotenuse as
√

5. Therefore

cos θ =
1
√

5
and sin θ =

2
√

5
We then use the double angle formulas to show that

cos(2θ) = 2 cos2
θ − 1 = 2

( 1
√

5

)2
− 1 =

2
5
− 1 = −

3
5

sin(2θ) = 2 sin θ cos θ = 2 ×
2
√

5
×

1
√

5
=

4
5

1

2
5

θ

√

Therefore the required reflection matrix is

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

 =


−

3
5

4
5

4
5

3
5



Summary 20C
Rotation matrix Reflection matrix
The matrix that will rotate the plane about
the origin by angle θ anticlockwise is[

cos θ − sin θ
sin θ cos θ

]
The matrix that will reflect the plane
in the line y = mx = x tan θ is[

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]

Exercise 20C

1Example 7 Find the matrix for each of the following rotations about the origin:

270◦ anticlockwisea 30◦ anticlockwiseb
60◦ clockwisec 135◦ clockwised
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2 Find the image of the point (2, 3) under a rotation about the origin by:

90◦ anticlockwisea 45◦ clockwise.b

3Example 8a Find the matrix that will reflect the point (x, y) in the line through the origin that makes
an angle with the positive direction of the x-axis of:

45◦a 60◦b −30◦c 15◦d

4Example 8b Find the matrix that will reflect the point (x, y) in the line:

y = 3xa y = 5xb y =
2x
3

c y = −3xd

5 a Find a formula (in terms of m) for the matrix that will reflect the point (x, y) in the
line y = mx.

b Hence find the image of (1, 1) when reflected in the line y = 6x.

6 The unit square is rotated about the origin by 45◦ anticlockwise.

a Find the matrix of this transformation.
b Draw the unit square and its image on the same set of axes.
c Find the area of the overlapping region.

7 The point A(1, 0) is rotated to point B through angle 120◦ anticlockwise. The point
A(1, 0) is also rotated to point C through angle 240◦ anticlockwise.

a Find the coordinates of B and C.
b What sort of triangle is ABC?
c Triangle ABC has three lines of symmetry. Find the equations of all three lines.

20D Composition of transformations
Composition as matrix multiplication
The matrix representation of linear transformations makes it easy to find the effect of one
transformation followed by another. Suppose that we would like to:

1 reflect the point (x, y) in the y-axis
2 then dilate the result by a factor of 2 from the x-axis.

To reflect the point (x, y), we would first evaluate−1 0
0 1

 x
y


To dilate the result by a factor of 2 from the x-axis, we would then multiply1 0

0 2

 −1 0
0 1

 x
y


Therefore the matrix that will achieve both transformations is the product1 0

0 2

 −1 0
0 1

 =

−1 0
0 2
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If matrices A and B correspond to two different linear transformations, then:

� AB is the matrix of transformation B followed by A
� BA is the matrix of transformation A followed by B.

Find the matrix that corresponds to:

a a reflection in the x-axis and then a rotation about the origin by 90◦ anticlockwise
b a rotation about the origin by 90◦ anticlockwise and then a reflection in the x-axis.

Example 9

Solution Explanation

a
0 −1
1 0

 1 0
0 −1

 =

0 1
1 0


b

1 0
0 −1

 0 −1
1 0

 =

 0 −1
−1 0



A reflection in the x-axis has matrix1 0
0 −1


An anticlockwise rotation by 90◦ has matrixcos 90◦ − sin 90◦

sin 90◦ cos 90◦

 =

0 −1
1 0


We then multiply these two matrices together in
the correct order.

Note: In this example, we get a different matrix when the same two transformations take
place in reverse order. This should not be a surprise, as matrix multiplication is not
commutative in general.

Compositions involving translations

a Find the rule for the transformation that will reflect (x, y) in the x-axis and then translate

the result by the vector
−3

4

.
b Find the rule for the transformation if the translation takes place before the reflection.

Example 10

Solutionx′

y′

 =

1 0
0 −1

 x
y

 +

−3
4


=

 x
−y

 +

−3
4


=

 x − 3
−y + 4


Therefore the transformation is
(x, y)→ (x − 3,−y + 4).

a
x′

y′

 =

1 0
0 −1

 ( x
y

 +

−3
4

 )
=

1 0
0 −1

 x − 3
y + 4


=

 x − 3
−y − 4


Therefore the transformation is
(x, y)→ (x − 3,−y − 4).

b
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Summary 20D
If matrices A and B correspond to two different linear transformations, then:

� AB is the matrix of transformation B followed by A
� BA is the matrix of transformation A followed by B.

The order is important, as matrix multiplication is not commutative in general.

Exercise 20DSkill-
sheet

1Example 9 Find the matrix that represents a reflection in the y-axis followed by a dilation of
factor 3 from the x-axis.

2 Find the matrix that represents a rotation about the origin by 90◦ anticlockwise followed
by a reflection in the x-axis.

3 a Find the matrix that represents a reflection in the x-axis followed by a reflection in
the y-axis.

b Show that this matrix corresponds to a rotation about the origin by 180◦.

4 Consider these two transformations:

� T1: A reflection in the x-axis.
� T2: A dilation of factor 2 from the y-axis.

Find the matrix of T1 followed by T2.a Find the matrix of T2 followed by T1.b
Does the order of transformation matter in this instance?c

5 Consider these two transformations:

� T1: A rotation about the origin by 90◦ clockwise.
� T2: A reflection in the line y = x.

Find the matrix of T1 followed by T2.a Find the matrix of T2 followed by T1.b
Does the order of transformation matter in this instance?c

6Example 10 Consider these two transformations:

� T1: A reflection in the y-axis.
� T2: A translation of −3 units in the x-direction and 5 units in the y-direction.

Find the rule for T1 followed by T2.a Find the rule for T2 followed by T1.b
Does the order of transformation matter in this instance?c

7 Express each of the following transformation matrices as the product of a dilation
matrix and a reflection matrix:2 0

0 −1

a
1 0
0 −3

b
0 1
2 0

c
 0 −2
−1 0

d
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8 a Find the matrix for the transformation that is a reflection in the x-axis followed by a
reflection in the line y = x.

b Show that these two reflections can be achieved with one rotation.

9 Suppose that matrix A gives a rotation about the origin by angle θ anticlockwise and
that matrix B gives a reflection in the line y = x. If AB = BA, find the angle θ.

10 Suppose that matrix A rotates the plane about the origin by angle θ anticlockwise.

a Through what angle will the matrix A2 rotate the plane?
b Evaluate A2.
c Hence find formulas for cos(2θ) and sin(2θ).

11 A transformation T consists of a reflection in the line y = x followed by a translation by

the vector
12

.
a Find the rule for the transformation T .
b Show that the transformation T can also be obtained by a translation and then a

reflection in the line y = x. Find the translation vector.

12 a Find the rotation matrix for an angle of 60◦ anticlockwise.
b Find the rotation matrix for an angle of 45◦ clockwise.
c By multiplying these two matrices, find the rotation matrix for an angle of 15◦

anticlockwise.
d Hence write down the exact values of sin 15◦ and cos 15◦.

13 A transformation consists of a reflection in the line y = x tanϕ and then in the line
y = x tan θ. Show that this is equivalent to a single rotation.

20E Inverse transformations
If transformation T maps the point (x, y) to the point (x′, y′), then the inverse transformation
T−1 maps the point (x′, y′) to the point (x, y).

For a linear transformation T , we can writex′

y′

 =

a b
c d

 x
y


X′ = AX

If the inverse matrix A−1 exists, then we have

A−1X′ = A−1AX

A−1X′ = IX

X = A−1X′

Therefore A−1 is the matrix of the inverse transformation T−1.
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If the matrix of a linear transformation is

A =

a b
c d


then the matrix of the inverse transformation is

A−1 =
1

ad − bc

 d −b
−c a


The inverse exists if and only if det(A) = ad − bc , 0.

Find the inverse of the transformation with rule (x, y)→ (3x + 2y, 5x + 4y).

Example 11

Solution
Since the matrix of this linear transformation is

A =

3 2
5 4


the inverse transformation will have matrix

A−1 =
1

ad − bc

 d −b
−c a


=

1
3 × 4 − 2 × 5

 4 −2
−5 3


=

1
2

 4 −2
−5 3


=

 2 −1
− 5

2
3
2


Therefore the rule of the inverse transformation is (x, y)→ (2x − y,− 5

2 x + 3
2 y).

Find the matrix of the linear transformation such that (4, 3)→ (9, 10) and (2, 1)→ (5, 6).

Example 12

Solution
We need to find a matrix A such that

A
43

 =

 9
10

 and A
21

 =

56


This can be written as a single equation:

A
4 2
3 1

 =

 9 5
10 6


Therefore

A =

 9 5
10 6

 4 2
3 1

−1

=

3 −1
4 −2
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Inverses of important transformations
For important geometric transformations, it is often obvious what the inverse transformation
should be.

Let R be the matrix corresponding to a rotation of the plane by angle θ anticlockwise.
Show that R−1 corresponds to a rotation by angle θ clockwise.

Example 13

Solution Explanationcos θ − sin θ
sin θ cos θ

−1

=
1

cos2 θ + sin2
θ

 cos θ sin θ
− sin θ cos θ


=

 cos θ sin θ
− sin θ cos θ


=

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)


This matrix corresponds to a rotation of the plane by
angle θ clockwise.

We find the inverse matrix using
the formula

A−1 =
1

ad − bc

 d −b
−c a


We also use the symmetry
properties:

sin(−θ) = − sin θ

cos(−θ) = cos θ

The following table summarises the important geometric transformations along with their
inverses. You will demonstrate some of these results in the exercises.

Transformation Matrix A Inverse matrix A−1 Inverse
transformation

Dilation from
the y-axis

k 0
0 1

  1
k 0
0 1

 Dilation from
the y-axis

Dilation from
the x-axis

1 0
0 k

 1 0
0 1

k

 Dilation from
the x-axis

Shear parallel to
the x-axis

1 k
0 1

 1 −k
0 1

 Shear parallel to
the x-axis

Rotation by θ
anticlockwise

cos θ − sin θ
sin θ cos θ

 cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

 Rotation by θ
clockwise

Reflection in
the x-axis

1 0
0 −1

 1 0
0 −1

 Reflection in
the x-axis

Reflection in
the y-axis

−1 0
0 1

 −1 0
0 1

 Reflection in
the y-axis

Reflection in
the line y = mx

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

 cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

 Reflection in
the line y = mx
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Summary 20E
If the matrix of a linear transformation is

A =

a b
c d


then the matrix of the inverse transformation is

A−1 =
1

ad − bc

 d −b
−c a


Exercise 20E

1 Find the inverse matrix of each of the following transformation matrices:4 1
3 1

a
3 1
2 −4

b

 0 3
−2 4

c
−1 3
−4 5

d

2Example 11 For each of the following transformations, find the rule for their inverse:

(x, y)→ (5x − 2y, 2x − y)a (x, y)→ (x − y, x)b

3 Find the point (x, y) that is mapped to (1, 1) by the transformation with matrix:1 2
0 1

a
4 3
2 2

b

4Example 12 Find the matrix of the linear transformation such that (1, 2)→ (2, 1) and (2, 3)→ (1, 1).

5 Find the vertices of the rectangle that is mapped to the unit square by the transformation

with matrix
1 −1
2 −1

.
6Example 13 Consider a dilation of factor k from the y-axis, where k > 0.

a Write down the matrix of this transformation.
b Show that the inverse matrix corresponds to a dilation of factor 1

k from the y-axis.

7 Consider a shear of factor k parallel to the x-axis.

a Write down the matrix of this transformation.
b Show that the inverse matrix corresponds to a shear of factor −k parallel to

the x-axis.

8 Consider the transformation that reflects each point in the x-axis.

a Write down the matrix A of this transformation.
b Show that A−1 = A, and explain why you should expect this result.
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9 Consider the transformation that reflects each point in the line y = mx = x tan θ.

a Write down the matrix B of this transformation.
b Show that B−1 = B, and explain why you should expect this result.

20F Transformations of straight lines and other graphs
We have considered the effect of various transformations on points and figures in the plane.
We will now turn our attention to graphs.

Here, we will aim to find the equations of transformed graphs. We will also investigate the
effects of linear transformations on straight lines. You will study this topic in much greater
detail in Mathematical Methods.

Linear transformations of straight lines
We will first investigate the effect of linear transformations on straight lines.

Find the equation of the image of the line y = 2x + 3 under a reflection in the x-axis
followed by a dilation of factor 2 from the y-axis.

Example 14

Solution
The matrix of the combined transformation is2 0

0 1

 1 0
0 −1

 =

2 0
0 −1


If (x′, y′) are the coordinates of the image of (x, y), thenx′

y′

 =

2 0
0 −1

 x
y

 =

2x
−y


Therefore

x′ = 2x and y′ = −y

Rearranging gives

x =
x′

2
and y = −y′

Therefore the equation y = 2x + 3 becomes

−y′ = 2
( x′

2

)
+ 3

−y′ = x′ + 3

y′ = −x′ − 3

We now ignore the dashes, and so the equation of the image is simply

y = −x − 3



678 Chapter 20: Transformations of the plane

Consider the graph of y = x + 1. Find the equation of its image under the linear
transformation (x, y)→ (x + 2y, y).

Example 15

Solution
Let (x′, y′) be the coordinates of the image of (x, y). Then this transformation can be
written in matrix form asx′

y′

 =

1 2
0 1

 x
y


Thereforex

y

 =

1 2
0 1

−1 x′

y′

 =

1 −2
0 1

 x′

y′

 =

x′ − 2y′

y′


and so x = x′ − 2y′ and y = y′.

The equation y = x + 1 becomes

y′ = x′ − 2y′ + 1

3y′ = x′ + 1

y′ =
x′

3
+

1
3

The equation of the image is y =
x
3

+
1
3

.

In the previous two examples, you will have noticed that the image of each straight line was
another straight line. In fact, linear transformations get their name in part from the following
fact, which is proved in the exercises.

The image of any straight line under an invertible linear transformation is a straight line.

Find a matrix that transforms the line y = x + 2 to the line y = −2x + 4.

Example 16

Solution
Let’s find the matrix that maps the x-axis intercept of
the first line to the x-axis intercept of the second line,
and likewise for the y-axis intercepts.

We want

(−2, 0)→ (2, 0) and (0, 2)→ (0, 4)

This can be achieved by a reflection in the y-axis and
then a dilation of factor 2 from the x-axis.

This transformation has the matrix
−1 0

0 2

.

y

y = x + 2

y = –2x + 4

20

2

4

–2
x
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Transformations of other graphs
The method for finding the image of a straight line can be used for other graphs.

Find the image of the graph of y = x2 + 1 under a translation by the vector
 2
−1

 followed
by a reflection in the y-axis.

Example 17

Solution
Let (x′, y′) be the image of (x, y). Then the transformation is given byx′

y′

 =

−1 0
0 1

 ( x
y

 +

 2
−1

 )
=

−1 0
0 1

 x + 2
y − 1

 =

−x − 2
y − 1


Therefore x′ = −x − 2 and y′ = y − 1.

This gives x = −x′ − 2 and y = y′ + 1.

The equation y = x2 + 1 becomes

y′ + 1 = (−x′ − 2)2 + 1

y′ = (−x′ − 2)2

= (x′ + 2)2

The equation of the image is y = (x + 2)2.

Find the image of the unit circle, x2 + y2 = 1, under a dilation of factor 2 from the y-axis
and then a rotation about the origin by 90◦ anticlockwise. Sketch the circle and its image.

Example 18

Solution
The dilation matrix is

2 0
0 1

.
The rotation matrix is

cos 90◦ − sin 90◦

sin 90◦ cos 90◦

 =

0 −1
1 0

.
Let (x′, y′) be the image of (x, y). Then the transformation
is given byx′

y′

 =

0 −1
1 0

 2 0
0 1

 x
y

 =

0 −1
2 0

 x
y

 =

−y
2x


Thus x′ = −y and y′ = 2x, giving y = −x′ and x =

y′

2
.

The equation x2 + y2 = 1 becomes
(y′

2

)2
+ (−x′)2 = 1.

Hence the image is the ellipse with equation x2 +
y2

22 = 1.

y

2

1

–1

–1

–2

0 1
x
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Exercise 20F

1Example 14 Find the equation of the image of the graph of y = 3x + 1 under:

a a reflection in the x-axis
b a dilation of factor 2 from the y-axis
c a dilation of factor 3 from the x-axis and factor 2 from the y-axis
d a reflection in the x-axis and then in the y-axis
e a reflection in the y-axis and then a dilation of factor 3 from the x-axis
f a rotation about the origin by 90◦ anticlockwise
g a rotation about the origin by 90◦ clockwise and then a reflection in the x-axis.

2Example 15 Find the image of y = 2 − 3x under each of the following transformations:

(x, y)→ (2x, 3y)a (x, y)→ (−y, x)b
(x, y)→ (x − 2y, y)c (x, y)→ (3x + 5y, x + 2y)d

3Example 16 Find a matrix that transforms the line x + y = 1 to the line x + y = 2.

4 Find a matrix that transforms the line y = x + 1 to the line y = 6 − 2x.

5Example 17 Find the equation of the image of the graph of y = x2 − 1 under a translation by the

vector
−1

2

 and then a reflection in the x-axis.

6 Find the equation of the image of the graph of y = (x − 1)2 under a reflection in

the y-axis and then a translation by the vector
 2
−3

.
7Example 18 Find the image of the unit circle, x2 + y2 = 1, under a dilation of factor 3 from the

x-axis and then a rotation about the origin by 90◦ anticlockwise. Sketch the circle and
its image.

8 Consider any invertible linear transformation

(x, y)→ (ax + by, cx + dy)

Show that the image of the straight line px + qy = r is a straight line.

9 Rotate the graph of y =
1
x

by 45◦ anticlockwise. Show that the equation of the image

is y2 − x2 = 2.

Note: This shows that the two curves are congruent hyperbolas.
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20G Area and determinant
If we apply a linear transformation to some region of the plane, then the area may change.

For example, if we dilate the unit square by a factor of 2 from the y-axis, then the area
increases by a factor of 2.

y

1 20

1

2

x

2 0
0 1

 y

1 20

1

2

x

Notice that this increase corresponds to the determinant of the transformation matrix:

det
2 0
0 1

 = 2

On the other hand, if we shear the unit square by a factor of 1 parallel to the x-axis, then the
area is unchanged.

y

1 20

1

2

x

1 1
0 1

 y

1 20

1

2

x

Notice that the determinant of this transformation matrix is

det
1 1
0 1

 = 1

More generally, we can prove the following remarkable result.

If a region of the plane is transformed by matrix B, then

Area of image = |det(B)| × Area of region

Proof We will prove the result when the unit square is transformed by matrix

B =

a b
c d


The result can be extended to other regions by approximating them by squares.

We will assume that a, b, c and d are all positive and that det(B) > 0. The proof can
easily be adapted if we relax these assumptions.
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The image of the unit square under transformation B is a parallelogram.

(a, c)

x

y

(b, d )

(a + b, c + d )

(a, c)
(b, d)

(a + b, c + d)

d

d

a b
x

y

c

b a

c

To find the area of the image, we draw a rectangle around it as shown, and subtract the
area of the two small rectangles and four triangles from the total area:

Area of image = (a + b)(c + d) − bc − bc −
ac
2
−

ac
2
−

bd
2
−

bd
2

= (a + b)(c + d) − 2bc − ac − bd

= ac + ad + bc + bd − 2bc − ac − bd

= ad − bc

This is equal to the determinant of matrix B.

The triangular region with vertices (1, 1), (2, 1) and (1, 2) is transformed by the rule
(x, y)→ (−x + 2y, 2x + y).

a Find the matrix of the linear transformation.
b On the same set of axes, sketch the region and its image.
c Find the area of the image.

Example 19

Solution
a The matrix is given by B =

−1 2
2 1

.
b The region is shown in blue and its image in red.

c The area of the original region is
1
2

.

The determinant of the transformation matrix is

det
−1 2

2 1

 = (−1) × 1 − 2 × 2 = −5

Therefore

Area of image = |det(B)| × Area of region

= |−5| ×
1
2

=
5
2

1

1

A

C

C¢

B¢

A¢

B

0

2

2

3

3

4

5

x

y
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The unit square is mapped to a parallelogram of area 3 by the matrix

B =

m 2
m m


Find the possible values of m.

Example 20

Solution
The original area is 1. Therefore

Area of image = |det(B)| × Area of region

3 = |ad − bc| × 1

3 = |m2 − 2m|

Therefore either m2 − 2m = 3 or m2 − 2m = −3.

Case 1:

m2 − 2m = 3

m2 − 2m − 3 = 0

(m + 1)(m − 3) = 0

m = −1 or m = 3

Case 2:

m2 − 2m = −3

m2 − 2m + 3 = 0

This quadratic equation has no solutions,
since the discriminant is

∆ = b2 − 4ac

= (−2)2 − 4(1)(3) = 4 − 12 < 0

The connection between area and determinant has many important applications. In the next
example, we see how it can be used to find the area of an ellipse. Alternative approaches to
finding this area are much more sophisticated.

The circle with equation x2 + y2 = 1 is mapped to an ellipse by the rule (x, y)→ (ax, by),
where both a and b are positive.

a Find the equation of the ellipse and sketch its graph.
b Find the area of the ellipse.

Example 21

Solution
a We have x′ = ax and y′ = by.

This gives x =
x′

a
and y =

y′

b
.

The equation x2 + y2 = 1 becomes( x′

a

)2
+

(y′

b

)2
= 1

Hence the equation of the ellipse is
x2

a2 +
y2

b2 = 1. -b

-a

b

a
x

y

0
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b The area of the original circle of radius 1 is π.

The determinant of the transformation matrix is

det
a 0
0 b

 = a × b − 0 × 0 = ab

Therefore the area of the ellipse is πab.

Note: When a = b = r, this formula gives the area of a circle of radius r.

Summary 20G
If a region of the plane is transformed by matrix B, then

Area of image = |det(B)| × Area of region

Exercise 20G

1 Each of the following matrices maps the unit square to a parallelogram. Sketch each
parallelogram and find its area.3 1

1 1

a
−1 1

1 3

b
 1 −1
−2 1

c
 2 1
−1 3

d

2Example 19 The matrix
1 3
2 1

 maps the triangle with vertices (0, 1), (1, 1) and (0, 0) to a

new triangle.

a Sketch the original triangle and its image.
b Find the areas of both triangles.

3 The matrix
2 1
1 3

 maps the triangle with vertices (−1, 1), (1, 1) and (1, 0) to a

new triangle.

a Sketch the original triangle and its image.
b Find the areas of both triangles.

4Example 20 The matrix
 m 2
−1 m

 maps the unit square to a parallelogram of area 6 square units.

Find the value(s) of m.

5 The matrix
m m
1 m

 maps the unit square to a parallelogram of area 2 square units.

Find the value(s) of m.
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6 a By evaluating a determinant, show that each of the following transformations will not
change the area of any region:

i a shear of factor k parallel to the x-axis
ii an anticlockwise rotation about the origin by angle θ
iii a reflection in any straight line through the origin

Note: We say that each of these transformations preserves area.

b Let k > 0. A linear transformation has matrix
k 0
0 1

k

.
i Describe the geometric effect of the transformation.
ii Show that this transformation preserves area.

7 For each x ∈ R, the matrix
 x 1
−2 x + 2

 maps the unit square to a parallelogram.

a Show that the area of the parallelogram is (x + 1)2 + 1.
b For what value of x is the area of the parallelogram a minimum?

8 For what values of m does the matrix
m 2
3 4

 map the unit square to a parallelogram of
area greater than 2?

9 Find all matrices that will map the unit square to a rhombus of area
1
2

with one vertex
at (0, 0) and another at (1, 0).

10 a Find a matrix that transforms the triangle with vertices (0, 0), (1, 0) and (0, 1) to the
triangle with vertices (0, 0), (a, c) and (b, d).

b Hence show that the area of the triangle with vertices (0, 0), (a, c) and (b, d) is given
by the formula

A =
1
2
|ad − bc|

c Hence prove that if a, b, c and d are rational numbers, then the area of this triangle
is rational.

d A rational point has coordinates (x, y) such that both x and y are rational numbers.
Prove that no equilateral triangle can be drawn in the Cartesian plane so that all three
of its vertices are rational points.

Hint: You can assume that the vertices of the triangle are (0, 0), (a, c) and (b, d).
Find another expression for the area of the triangle using Pythagoras’ theorem.
You can also assume that

√
3 is irrational.
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20H General transformations
Earlier in this chapter we considered rotations about the origin. But what if we want to
rotate a figure about a point that is not the origin? In this section we will see how a more
complicated transformation can be achieved by a sequence of simpler transformations.

Rotation about the point (a, b)
If we want to rotate the plane about the point (a, b) by angle θ anticlockwise, we can do this
in a sequence of three steps:

Step 1 Translate the plane so that the centre of rotation is now the origin, by adding
−a
−b

.
Step 2 Rotate the plane through angle θ anticlockwise, by multiplying by

cos θ − sin θ
sin θ cos θ

.
Step 3 Translate the plane back to its original position, by adding

ab
.

Chaining these three transformations together gives the overall transformationx′

y′

 =

cos θ − sin θ
sin θ cos θ

 x − a
y − b

 +

ab


a Find the transformation that rotates the plane by 90◦ anticlockwise about the
point (1, 1).

b Check your answer by showing that (0, 1) is mapped to the correct point.

Example 22

Solution
a We do this in a sequence of three steps, starting with the initial point (x, y):

Initial point Translate Rotate 90◦ anticlockwise Translate backx
y

 x − 1
y − 1

 0 −1
1 0

 x − 1
y − 1

 0 −1
1 0

 x − 1
y − 1

 +

11


This gives the overall transformationx′

y′

 =

0 −1
1 0

 x − 1
y − 1

 +

11
 =

−y + 2
x


b We check our answer by finding the image of (0, 1).

Let x = 0 and y = 1. Thenx′

y′

 =

−1 + 2
0

 =

10


Therefore (0, 1)→ (1, 0), as expected.

(1, 1)

(1, 0)
x

y

(0, 1)

O
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Reflection in the line y = x tan θ + c
To reflect the plane in a line y = x tan θ + c that does not go through the origin, we can also do
this in a sequence of three steps:

Step 1 Translate the plane so that the line passes through the origin, by adding
 0
−c

.
Step 2 Reflect the plane in the line y = x tan θ, by multiplying by

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

.
Step 3 Translate the plane back to its original position, by adding

0c
.

a Find the transformation that reflects the plane in the line y = −x + 1.
b Check your answer by finding the image of the point (1, 1).

Example 23

Solution
a We do this in a sequence of three steps, starting with the initial point (x, y). The first

step translates the line y = −x + 1 so that it passes through the origin.

Initial point Translate Reflect in line y = −x Translate backx
y

  x
y − 1

  0 −1
−1 0

  x
y − 1

  0 −1
−1 0

  x
y − 1

 +

01


This gives the overall transformationx′

y′

 =

 0 −1
−1 0

  x
y − 1

 +

01


=

−y + 1
−x + 1


b We check our answer by finding the image of (1, 1).

Let x = 1 and y = 1. Thenx′

y′

 =

−1 + 1
−1 + 1

 =

00


Therefore (1, 1)→ (0, 0), as expected.

(1, 1)

1
x

y

0

1
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Summary 20H
More difficult transformations can be achieved by combining simpler transformations.

� To rotate the plane about the point (a, b):

1 Translate the plane so that the origin is the centre of rotation.
2 Rotate the plane about the origin.
3 Translate the plane back to its original position.

� To reflect the plane in the line y = mx + c:

1 Translate the plane so that the line passes through the origin.
2 Reflect the plane in the line y = mx.
3 Translate the plane back to its original position.

Exercise 20H

1Example 22 Find the transformation that rotates the plane by 90◦ clockwise about the point (2, 2).
Check your answer by showing that the point (2, 1) is mapped to the correct point.

2 Find the transformation that rotates the plane by 180◦ anticlockwise about the
point (−1, 1). Check your answer by showing that the point (−1, 0) is mapped to the
correct point.

3Example 23 Find the transformation that reflects the plane in each of the following lines. Check your
answer by showing that the point (0, 0) is mapped to the correct point.

y = x − 1a y = −x − 1b
y = 1c x = −2d

4 a Write down the matrix A for a rotation about the origin by angle θ clockwise.
b Write down the matrix B for a dilation of factor k from the x-axis.
c Write down the matrix C for a rotation about the origin by angle θ anticlockwise.
d Hence find the matrix that increases the perpendicular distance from the line

y = x tan θ by a factor of k.

5 Find the transformation matrix that projects the point (x, y) onto the line y = x tan θ.
Hint: First rotate the plane clockwise by angle θ.

6 Consider these two transformations:

� T1: A reflection in the line y = x + 1.
� T2: A reflection in the line y = x.

Show that T1 followed by T2 is a translation.
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Chapter summary

� A linear transformation is defined by a rule of the form (x, y)→ (ax + by, cx + dy).
� Linear transformations can be represented using matrix multiplication:x′

y′

 =

a b
c d

 x
y


The point (x′, y′) is called the image of the point (x, y).

� The matrix of a composition of two linear transformations can be found by multiplying the
two transformation matrices in the correct order.

� If A is the matrix of a linear transformation, then A−1 is the matrix of the inverse
transformation.

� If a region of the plane is transformed by matrix B, then

Area of image = |det(B)| × Area of region

� Difficult transformations can be achieved by combining simpler transformations.

Transformation Matrix Transformation Matrix

Reflection in
the x-axis

1 0
0 −1

 Reflection in
the y-axis

−1 0
0 1


Reflection in
the line y = x

0 1
1 0

 Reflection in
the line y = −x

 0 −1
−1 0


Dilation from
the y-axis

c 0
0 1

 Dilation from
the x-axis

1 0
0 c


Shear parallel to
the x-axis

1 c
0 1

 Shear parallel to
the y-axis

1 0
c 1


Projection onto
the x-axis

1 0
0 0

 Projection onto
the y-axis

0 0
0 1


Rotation by θ
anticlockwise

cos θ − sin θ
sin θ cos θ

 Reflection in
the line y = x tan θ

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)



Technology-free questions

1 The rule for a transformation is (x, y)→ (2x + y,−x + 2y).

a Find the image of the point (2, 3).
b Find the matrix of this transformation.
c Sketch the image of the unit square and find its area.
d Find the rule for the inverse transformation.
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2 Find the matrix corresponding to each of the following linear transformations:

reflection in the y-axisa dilation of factor 5 from the x-axisb
shear of factor −3 parallel to the x-axisc projection onto the x-axisd
rotation by 30◦ anticlockwisee reflection in the line y = xf

3 a Find the matrix that will reflect the plane in the line y = 3x.
b Find the image of the point (2, 4) under this transformation.

4 Find the transformation matrix that corresponds to:

a a reflection in the x-axis and then a reflection in the line y = −x

b a rotation about the origin by 90◦ anticlockwise and then a dilation of factor 2 from
the x-axis

c a reflection in the line y = x and then a shear of factor 2 parallel to the y-axis.

5 a Find the rule for the transformation that will reflect (x, y) in the x-axis and then

translate the result by the vector
−3

4

.
b Find the rule for the transformation if the translation takes place before the reflection.

6 a Write down the matrix for a shear of factor k parallel to the y-axis.
b Show that the inverse matrix corresponds to a shear of factor −k parallel to

the y-axis.

7 Each of the following matrices maps the unit square to a parallelogram. Sketch each
parallelogram and find its area. 2 1
−1 1

a
2 1
1 −2

b

8 a Find the rule for the transformation that rotates the plane about the point (1,−1)
by 90◦ anticlockwise. (Hint: Translate the point (1,−1) to the origin, rotate the
plane, and then translate the point back to its original position.)

b Find the image of the point (2,−1) under this transformation.
c Sketch the unit square and its image under this transformation.

Multiple-choice questions

1 The image of the point (2,−1) under the transformation (x, y)→ (2x − 3y,−x + 4y) is

(1,−6)A (7,−6)B (7, 6)C (7, 2)D (1, 2)E

2 The matrix that will reflect the plane in the line y = −x is−1 0
0 1

A
1 0
0 −1

B
0 1
1 0

C
 0 −1
−1 0

D
0 −1
1 0

E
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3 The matrix that corresponds to a dilation of factor 2 from the y-axis followed by a
reflection in the x-axis is2 0

0 −1

A
−2 0

0 1

B
1 0
0 2

C
−1 0

0 2

D
−1 0

0 −2

E

4 The matrix


1
2

√
3

2
√

3
2

−
1
2

 will

rotate the plane by 30◦A rotate the plane by −30◦B
rotate the plane by −60◦C reflect the plane in the line y = x tan 30◦D
reflect the plane in the line y = x tan 60◦E

5 The transformation that translates (x, y) by the vector
 2
−3

 and then rotates the result
about the origin by 90◦ anticlockwise is given by

(x, y)→ (y − 3, x + 2)A (x, y)→ (−y + 3,−x − 2)B
(x, y)→ (−y + 3, x + 2)C (x, y)→ (−x − 2,−y + 3)D
(x, y)→ (x + 2,−y − 3)E

6 The matrix
−1 0

0 −2

 corresponds to

A a rotation by 180◦ and then a dilation of factor 2 from the x-axis
B a rotation by 90◦ clockwise and then a dilation of factor 2 from the x-axis
C a rotation by 180◦ and then a dilation of factor 2 from the y-axis
D a reflection in the y-axis and then a dilation of factor 2 from the y-axis
E a reflection in the x-axis and then a dilation of factor 2 from the x-axis

7 Which of the following shows the image of the graph of y = (x − 1)2 under the linear

transformation with matrix
−1 0

0 −1

?

x

y

(1, 0)

A

(1, 0)
x

yB

(-1, 0)
x

yC

(-1, 0)
x

yD

(1, 0)

x

yE
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8 Which of these matrices maps the unit square to a parallelogram of area 2 square units?2 1
1 2

A
2 −1
1 2

B
 2 1
−1 2

C
2 1
1 1

D
2 −1
0 1

E

9 The matrix R will rotate the plane through angle 40◦. The smallest value of m such that
Rm = I, where I is the identity matrix, is

6A 7B 8C 9D 10E

Extended-response questions

1 a Find the matrix that will rotate the plane by 45◦ anticlockwise.
b Find the matrix that will rotate the plane by 30◦ anticlockwise.
c Hence find the matrix that will rotate the plane by 75◦ anticlockwise.
d Hence deduce exact values for cos 75◦ and sin 75◦.

2 The triangle with vertices (0, 0), (2, 0) and (0, 2) is transformed by the matrix
1 0
2 3

.
a Sketch the triangle and its image on the same set of axes.
b Find the area of the triangle and its image.
c The image of the triangle is revolved around the y-axis to create a three-dimensional

solid. Find the volume of this solid.

3 Consider the transformation with rule (x, y)→ (x + y, y).

a Write down the matrix of this transformation.
b What name is given to this type of transformation?
c Find the images of the points (−1, 1), (0, 0) and (1, 1) under this transformation.
d Hence sketch the graph of y = x2 and its image under this transformation.

4 A square with vertices (±1,±1) is rotated about the origin by 45◦ anticlockwise.

a Find the coordinates of the vertices of its image.
b Sketch the square and its image on the same set of axes.
c When these two squares are combined, the resulting figure is called a Star of

Lakshmi. Find its area.

5 In this chapter we investigated two important transformation matrices. These were the
rotation and reflection matrices, which we will now denote by

Rot(θ) =

cos θ − sin θ
sin θ cos θ

 and Ref(θ) =

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)


a Using matrix multiplication and an application of trigonometric identities, prove the

following four matrix equations:

Rot(θ) Rot(ϕ) = Rot(θ + ϕ)i Ref(θ) Ref(ϕ) = Rot(2θ − 2ϕ)ii
Rot(θ) Ref(ϕ) = Ref(ϕ + 1

2θ)iii Ref(θ) Rot(ϕ) = Ref(θ − 1
2ϕ)iv

b Explain in words what each of the above four equations shows.
c Using these identities, find the matrix Rot(60◦) Ref(60◦) Ref(60◦) Rot(60◦).
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6 An ant is at point A(−3, 1). His friend is at point B(1, 3).
The ant wants to walk from A to B, but first wants to
visit the straight line y = 1

2 x. Being an economical
ant, he wants the total length of his path to be as short
as possible.

a Find the matrix that will reflect the plane in the
line y = 1

2 x.
b Find the image A′ of the point A when reflected in

the line y = 1
2 x.

c Find the distance from point A′ to point B.

2
y =

x

y

x

B(1, 3)

A(–3, 1)

d The straight line A′B intersects the line y = 1
2 x at the point C. What type of triangle

is ACA′?
e Suppose that D is any other point on the line y = 1

2 x. Show that

AD + DB ≥ AC + CB

f Hence find the shortest possible distance travelled by the ant.

7 A rectangle R1 has vertices (0, 0), (a, 0), (0, b) and (a, b), where a and b are positive
real numbers.

a Sketch the rectangle R1.
b The rectangle R1 is rotated about the origin by angle θ anticlockwise, where

0◦ ≤ θ ≤ 90◦. The image is another rectangle R2. Find the coordinates of the vertices
of rectangle R2 in terms of a, b and θ.

c The vertices of R2 lie on another rectangle R3 that has edges parallel to the
coordinate axes. Show that the area of rectangle R3 is

A =
1
2

(a2 + b2) sin(2θ) + ab

d Hence show that the maximum area of rectangle R3 is
1
2

(a + b)2, which occurs
when θ = 45◦.

8 The graphs of the unit circle x2 + y2 = 1 and
the line y = mx are shown. Lines L1 and L2 are
perpendicular to the line y = mx and go through the
points (1, 0) and (0, 1) respectively.

a Find the equation of the line L1, and find where
it intersects the unit circle in terms of m.

b Find the equation of the line L2, and find where
it intersects the unit circle in terms of m.

c Hence deduce the formula for the matrix that
reflects the point (x, y) in the line y = mx.
Hint: Recall that the columns of the matrix will
be the images of the standard unit vectors.

–1

1

L2

L1

–1

0 1
x

y

y = mx
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Vectors in the plane

Objectives
I To understand the concept of a vector and to apply the basic operations on vectors.

I To recognise when two vectors are parallel.

I To use the unit vectors i and j to represent vectors in two dimensions.

I To find the scalar product of two vectors.

I To use the scalar product to find the magnitude of the angle between two vectors.

I To use the scalar product to recognise when two vectors are perpendicular.

I To resolve a vector into rectangular components.

I To apply vectors to displacement, velocity, relative velocity and equilibrium.

I To use the unit vectors i, j and k to represent vectors in three dimensions.

In scientific experiments, some of the things that are measured are completely determined by
their magnitude. Mass, length and time are determined by a number and an appropriate unit
of measurement.

length 30 cm is the length of the page of a particular book

time 10 s is the time for one athlete to run 100 m

More is required to describe displacement, velocity or force. The direction must be recorded
as well as the magnitude.

displacement 30 km in the direction north

velocity 60 km/h in the direction south-east

A quantity that has both a magnitude and a direction is called a vector. Our study of vectors
will tie together different ideas from previous chapters, including trigonometry, complex
numbers and transformations.
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21A Introduction to vectors
Suppose that you are asked: ‘Where is your school in relation to your house?’

It is not enough to give an answer such as ‘four kilometres’. You need to specify a direction
as well as a distance. You could give the answer ‘four kilometres north-east’.

Position is an example of a vector quantity.

Directed line segments
A quantity that has a direction as well as a magnitude can be represented by an arrow:

� the arrow points in the direction of the action
� the length of the arrow gives the magnitude of the quantity in terms of a suitably

chosen unit.

Arrows with the same length and direction are regarded as equivalent. These arrows are
directed line segments and the sets of equivalent segments are called vectors.

The five directed line segments shown all have the same length
and direction, and so they are equivalent.

A directed line segment from a point A to a point B is denoted
by
−−→
AB.

For simplicity of language, this is also called vector
−−→
AB.

That is, the set of equivalent segments can be named through
one member of the set.

Note:
−−→
AB =

−−→
CD =

−−→
OP =

−−→
EF =

−−→
GH

y

A

B D

C

O

P

x
F

E
G

H

Column vectors
In Chapter 20, we introduced vectors in the context
of translations of the plane. We represented each
translation by a column of numbers, which was called
a vector.

This is consistent with the approach here, as the column
of numbers corresponds to a set of equivalent directed
line segments.

For example, the column
32

 corresponds to the directed

line segments which go 3 across and 2 up.

x

y

B

2 units

3 units
A

0

Vector notation
A vector is often denoted by a single bold lowercase letter. The vector from A to B can be
denoted by

−−→
AB or by a single letter, such as v. We can write v =

−−→
AB.

When a vector is handwritten, the notation is v
∼

.
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Draw a directed line segment corresponding to
 3
−2

.
Example 1

Solution Explanation

x

y

A

B

4320

–1

1

1

The vector
 3
−2

 is ‘3 across to the right and 2 down’.

Note: Here the segment starts at (1, 1) and goes to (4,−1).
It can start at any point.

The vector u is defined by the directed line segment from (2, 6) to (3, 1).

If u =

ab
, find a and b.

Example 2

Solution Explanation
The vector is

u =

3 − 2
1 − 6

 =

 1
−5


Hence a = 1 and b = −5.

x

y

A(2, 6)

0
B(3, 1)

Addition of vectors
Adding vectors geometrically
Two vectors u and v can be added geometrically by drawing
a line segment representing u from A to B and then a line
segment representing v from B to C.

The sum u + v is the vector from A to C. That is,

u + v =
−−→
AC

C

v

B

u

A

u  v+

The same result is achieved if the order is reversed. This is
represented in the diagram on the right:

u + v =
−−→
AC

= v + u

Hence addition of vectors is commutative.

C

v

B

u

u  v

u

D

v

A

+
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Adding column vectors
Two vectors can be added using column-vector notation.

For example, if u =

41
 and v =

−1
3

, then

u + v =

41
 +

−1
3

 =

34


3

v

u

1

4

4

1

3
u + v

Scalar multiplication
Multiplication by a real number (scalar) changes the length
of the vector. For example:

� 2u is twice the length of u

�
1
2

u is half the length of u

We have 2u = u + u and
1
2

u +
1
2

u = u.

In general, for k ∈ R+, the vector ku has the same direction
as u, but its length is multiplied by a factor of k.

u

2u

u
1
2

When a vector is multiplied by −2, the vector’s direction is
reversed and the length is doubled.

When a vector is multiplied by −1, the vector’s direction is
reversed and the length remains the same.

If u =

32
, then −u =

−3
−2

, 2u =

64
 and −2u =

−6
−4

. u

–2u

If u =
−−→
AB, then

−u = −
−−→
AB =

−−→
BA

The directed line segment −
−−→
AB goes from B to A.

Zero vector
The zero vector is denoted by 0 and represents a line segment of zero length. The zero vector
has no direction.

Subtraction of vectors
To find u − v, we add −v to u.

That is, we define

u − v = u + (−v)
u

v

–v

uu – v
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For the vectors u =

 3
−1

 and v =

−2
2

, find:

2u + 3va 2u − 3vb

Example 3

Solution

2u + 3v = 2
 3
−1

 + 3
−2

2


=

 6
−2

 +

−6
6


=

04


a 2u − 3v = 2
 3
−1

 − 3
−2

2


=

 6
−2

 − −6
6


=

12
−8



b

Polygons of vectors
For two vectors

−−→
AB and

−−→
BC, we have

−−→
AB +

−−→
BC =

−−→
AC

� For a polygon ABCDEF, we have
−−→
AB +

−−→
BC +

−−→
CD +

−−→
DE +

−−→
EF +

−−→
FA = 0

�

B

A

C B C

F E

DA

Parallel vectors
Two parallel vectors have the same direction or opposite directions.

Two non-zero vectors u and v are parallel if there is some k ∈ R \ {0} such that u = kv.

For example, if u =

−2
3

 and v =

−6
9

, then the vectors u and v are parallel as v = 3u.

Position vectors
We can use a point O, the origin, as a starting point for a vector to indicate the position of a
point A in space relative to O.

For most of this chapter, we study vectors in two dimensions and the point O is the origin of
the Cartesian plane. (Vectors in three dimensions are studied in Section 21I.)

For a point A, the position vector is
−−→
OA.
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Linear combinations of non-parallel vectors

If two non-zero vectors a and b are not parallel, then

ma + nb = pa + qb implies m = p and n = q

Proof Assume that ma + nb = pa + qb. Then

ma − pa = qb − nb

(m − p)a = (q − n)b∴

If m , p or n , q, we could therefore write

a =
q − n
m − p

b or b =
m − p
q − n

a

But this is not possible, as a and b are non-zero vectors that are not parallel.
Therefore m = p and n = q.

Parallelograms
A parallelogram ABCD is a quadrilateral whose opposite
sides are parallel. Therefore

−−→
DC = k

−−→
AB and

−−→
BC = `

−−→
AD,

for some k, ` ∈ R \ {0}. But we have
−−→
AB +

−−→
BC =

−−→
AD +

−−→
DC

−−→
AB + `

−−→
AD =

−−→
AD + k

−−→
AB∴

So the previous result gives k = 1 and ` = 1. We have shown
that every parallelogram is spanned by two vectors a and b,
as illustrated on the right.

A

B C

D

A

B C

D

a a

b

b

Let A, B and C be the vertices of a triangle, and let D be
the midpoint of BC.

Let a =
−−→
AB and b =

−−→
BC.

Find each of the following in terms of a and b:

a
−−→
BD b

−−→
DC c

−−→
AC d

−−→
AD e

−−→
CA

B
D

C

A

Example 4

Solution Explanation

a
−−→
BD =

1
2
−−→
BC =

1
2

b Same direction and half the length

b
−−→
DC =

−−→
BD =

1
2

b Equivalent vectors

c
−−→
AC =

−−→
AB +

−−→
BC = a + b

d
−−→
AD =

−−→
AB +

−−→
BD = a +

1
2

b

e
−−→
CA = −

−−→
AC = −(a + b)
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In the figure,
−−→
DC = kp where k ∈ R \ {0}.

a Express p in terms of k, q and r.

b Express
−−→
FE in terms of k and p to show that FE is

parallel to DC.

c If
−−→
FE = 4

−−→
AB, find the value of k.

A
p

B

rq

D C

r

F

q

E

Example 5

Solution

p =
−−→
AB

=
−−→
AD +

−−→
DC +

−−→
CB

= q + kp− r

Therefore

(1 − k)p = q − r

a
−−→
FE = −2q + p + 2r

= 2(r − q) + p

From part a, we have

r − q = kp− p

= (k − 1)p

Therefore
−−→
FE = 2(k − 1)p + p

= 2kp− 2p + p

= (2k − 1)p

b
−−→
FE = 4

−−→
AB

(2k − 1)p = 4p

2k − 1 = 4

∴ k =
5
2

c

Summary 21A
� A vector is a set of equivalent directed line segments.

� Addition of vectors
If u =

−−→
AB and v =

−−→
BC, then u + v =

−−→
AB +

−−→
BC =

−−→
AC.

� Scalar multiplication
• For k ∈ R+, the vector ku has the same direction

as u, but its length is multiplied by a factor of k.
• If u =

−−→
AB, then −u = −

−−→
AB =

−−→
BA.

� Zero vector
The zero vector, denoted by 0, has zero length and
has no direction.

C

v

B

u

A

u  v+

� Subtraction of vectors
u − v = u + (−v) u

v

–v

uu – v

� Parallel vectors
Two non-zero vectors u and v are parallel if there is some k ∈ R \ {0} such that u = kv.
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Exercise 21ASkill-
sheet

1Example 1 On the same set of axes, draw arrows which represent the following vectors:15
a

 0
−2

b
−1
−2

c
−4

3

d

2Example 2 The vector u is defined by the directed line segment from (1, 5) to (6, 6).

If u =

ab
, find a and b.

3 The vector v is defined by the directed line segment from (−1, 5) to (2,−10).

If v =

ab
, find a and b.

4 Let A = (1,−2), B = (3, 0) and C = (2,−3) and let O be the origin.

Express each of the following vectors in the form
ab

:
−−→
OAa

−−→
ABb

−−→
BCc

−−→
COd

−−→
CBe

5Example 3 Let a =

12
, b =

 1
−3

 and c =

−2
1

.
a Find:

i a + b ii 2c − a iii a + b − c

b Show that a + b is parallel to c.

6 If A = (2,−3), B = (4, 0), C = (1,−4) and O is the origin, sketch the following vectors:
−−→
OAa

−−→
ABb

−−→
BCc

−−→
COd

−−→
CBe

7 On graph paper, sketch the vectors joining the following pairs of points in the direction
indicated:

(0, 0)→ (2, 1)a (3, 4)→ (0, 0)b (1, 3)→ (3, 4)c
(2, 4)→ (4, 3)d (−2, 2)→ (5,−1)e (−1,−3)→ (3, 0)f

8 Identify vectors from Question 7 which are parallel to each other.

9 a Plot the points A(−1, 0), B(1, 4), C(4, 3) and D(2,−1) on a set of coordinate axes.
b Sketch the vectors

−−→
AB,
−−→
BC,
−−→
AD and

−−→
DC.

c Show that:

i
−−→
AB =

−−→
DC ii

−−→
BC =

−−→
AD

d Describe the shape of the quadrilateral ABCD.

10 Find the values of m and n such that m
 3
−3

 + n
24

 =

−19
61
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11Example 4 Points A, B, C, D are the vertices of a parallelogram, and
M and N are the midpoints of AB and DC respectively.
Let a =

−−→
AB and b =

−−→
AD.

a Express the following in terms of a and b:

i
−−−→
MD ii

−−−→
MN

b Find the relationship between
−−−→
MN and

−−→
AD.

A
M

B

C
N

D

12 The figure represents the triangle ABC, where M and N
are the midpoints of AB and AC respectively.
Let a =

−−→
AB and b =

−−→
AC.

a Express
−−→
CB and

−−−→
MN in terms of a and b.

b Hence describe the relation between the two vectors. A
M

C

N

B

13Example 5 The figure shows a regular hexagon ABCDEF.
Let a =

−−→
AF and b =

−−→
AB.

Express the following vectors in terms of a and b:

a
−−→
CD b

−−→
ED c

−−→
BE d

−−→
FC

e
−−→
FA f

−−→
FB g

−−→
FE

B E

A F

DC

14 In parallelogram ABCD, let a =
−−→
AB and b =

−−→
BC. Express each of the following vectors

in terms of a and b:
−−→
DCa

−−→
DAb

−−→
ACc

−−→
CAd

−−→
BDe

15 In triangle OAB, let a =
−−→
OA and b =

−−→
OB. The point P on AB is such that

−−→
AP = 2

−−→
PB and

the point Q is such that
−−→
OP = 3

−−→
PQ. Express each of the following vectors in terms of a

and b:
−−→
BAa

−−→
PBb

−−→
OPc

−−→
PQd

−−→
BQe

16 PQRS is a quadrilateral in which
−−→
PQ = u,

−−→
QR = v and

−−→
RS = w. Express each of the

following vectors in terms of u, v and w:
−−→
PRa

−−→
QSb

−−→
PSc

17 OABC is a parallelogram. Let u =
−−→
OA and v =

−−→
OC. Let M be the midpoint of AB.

a Express
−−→
OB and

−−→
OM in terms of u and v.

b Express
−−→
CM in terms of u and v.

c If P is a point on CM and
−−→
CP =

2
3
−−→
CM, express

−−→
CP in terms of u and v.

d Find
−−→
OP and hence show that P lies on the line segment OB.

e Find the ratio OP : PB.
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21B Components of vectors

The vector
−−→
AB in the diagram is described by the column vector

34
.

From the diagram, we see that the vector
−−→
AB can also be expressed

as the sum
−−→
AB =

−−→
AX +

−−→
XB

Using column-vector notation:34
 =

30
 +

04


This suggests the introduction of two important vectors.

x

y B(5, 7)

A(2, 3) X

O

Standard unit vectors in two dimensions

� Let i be the vector of unit length in the positive direction of
the x-axis.

� Let j be the vector of unit length in the positive direction of
the y-axis.

Using column-vector notation, we have i =

10
 and j =

01
. x

y

O

j

i

Note: These two vectors also played an important role in our study of linear transformations
using matrices in Chapter 20.

For the example above, we have
−−→
AX = 3i and

−−→
XB = 4 j. Therefore

−−→
AB = 3i + 4 j

It is possible to describe any two-dimensional vector in this way.

Component form

� We can write the vector u =

x
y

 as u = xi + y j.

We say that u is the sum of the two components xi and y j.

� The magnitude of vector u = xi + y j is denoted by |u| and
is given by |u| =

√
x2 + y2. O

x

y

u y j

x i

Operations with vectors now look more like basic algebra:

� (xi + y j) + (mi + n j) = (x + m)i + (y + n) j
� k(xi + y j) = kxi + ky j

Two vectors are equal if and only if their components are equal:

xi + y j = mi + n j if and only if x = m and y = n
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Find
−−→
AB if

−−→
OA = 3i and

−−→
OB = 2i − j.a Find |2i − 3 j|.b

Example 6

Solution
−−→
AB =

−−→
AO +

−−→
OB

= −
−−→
OA +

−−→
OB

= −3i + (2i − j)

= −i − j

a |2i − 3 j| =
√

22 + (−3)2

=
√

4 + 9

=
√

13

b

Let A and B be points in the Cartesian plane such that
−−→
OA = 2i + j and

−−→
OB = i − 3 j.

Find
−−→
AB and |

−−→
AB|.

Example 7

Solution
−−→
AB =

−−→
AO +

−−→
OB

= −
−−→
OA +

−−→
OB

−−→
AB = −(2i + j) + i − 3 j∴

= −i − 4 j

|
−−→
AB| =

√
1 + 16 =

√
17∴

Unit vectors
A unit vector is a vector of length one unit. For example, both i and j are unit vectors.

The unit vector in the direction of a is denoted by â. (We say ‘a hat’.)

Since |â| = 1, we have

|a| â = a

â =
1
|a|

a∴

Let a = 3i + 4 j.

Find |a|, the magnitude of a, and hence find the unit vector in the direction of a.

Example 8

Solution

|a| =
√

9 + 16 = 5

â =
1
|a|

a =
1
5

(3i + 4 j)∴



21B 21B Components of vectors 705

Summary 21B
� A unit vector is a vector of length one unit.

� Each vector u in the plane can be written in component form
as u = xi + y j, where:

• i is the unit vector in the positive direction of the x-axis
• j is the unit vector in the positive direction of the y-axis.

� The magnitude of vector u = xi + y j is given by |u| =
√

x2 + y2.
O

x

y

u y j

x i

� The unit vector in the direction of vector a is given by â =
1
|a|

a.

Exercise 21BSkill-
sheet

1Example 6a If A and B are points in the plane such that
−−→
OA = i + 2 j and

−−→
OB = 3i − 5 j, find

−−→
AB.

2 OAPB is a rectangle with
−−→
OA = 5i and

−−→
OB = 6 j. Express each of the following vectors

in terms of i and j:
−−→
OPa

−−→
ABb

−−→
BAc

3Example 6b Determine the magnitude of each of the following vectors:

5ia −2 jb 3i + 4 jc −5i + 12 jd

4 The vectors u and v are given by u = 7i + 8 j and v = 2i − 4 j.

a Find |u − v|.
b Find constants x and y such that xu + yv = 44 j.

5 Points A and B have position vectors
−−→
OA = 10i and

−−→
OB = 4i + 5 j. If M is the midpoint

of AB, find
−−→
OM in terms of i and j.

6 OPAQ is a rectangle with
−−→
OP = 2i and

−−→
OQ = j. Let M be the point on OP such that

OM =
1
5

OP and let N be the point on MQ such that MN =
1
6

MQ.

a Find each of the following vectors in terms of i and j:

i
−−→
OM ii

−−−→
MQ iii

−−−→
MN iv

−−→
ON v

−−→
OA

b i Hence show that N is on the diagonal OA.
ii State the ratio of the lengths ON : NA.

7 The position vectors of A and B are given by
−−→
OA =

13
 and

−−→
OB =

 5
−1

. Find the
distance between A and B.

8 Find the pronumerals in the following equations:

i + 3 j = 2(`i + k j)a (x − 1)i + y j = 5i + (x − 4) jb
(x + y)i + (x − y) j = 6ic k(i + j) = 3i − 2 j + `(2i − j)d

9Example 7 Let A = (2, 3) and B = (5, 1). Find
−−→
AB and |

−−→
AB|.



706 Chapter 21: Vectors in the plane 21B

10 Let
−−→
OA = 3i,

−−→
OB = i + 4 j and

−−→
OC = −3i + j. Find:

−−→
ABa

−−→
ACb |

−−→
BC|c

11 Let A = (5, 1), B = (0, 4) and C = (−1, 0). Find:

D such that
−−→
AB =

−−→
CDa F such that

−−→
AF =

−−→
BCb G such that

−−→
AB = 2

−−→
GCc

12 Let a = i + 4 j and b = −2i + 2 j. Points A, B and C are such that
−−→
AO = a,

−−→
OB = b and

−−→
BC = 2a, where O is the origin. Find the coordinates of A, B and C.

13 A, B, C and D are the vertices of a parallelogram and O is the origin.
A = (2,−1), B = (−5, 4) and C = (1, 7).

a Find:

i
−−→
OA ii

−−→
OB iii

−−→
OC iv

−−→
BC v

−−→
AD

b Hence find the coordinates of D.

14 The diagram shows a parallelogram OPQR.
The points P and Q have coordinates (12, 5) and (18, 13)
respectively. Find:

a
−−→
OP and

−−→
PQ b |

−−→
RQ| and |

−−→
OR|

x

y

O

R
Q

P

15 A(1, 6), B(3, 1) and C(13, 5) are the vertices of a triangle ABC.

a Find:

i |
−−→
AB| ii |

−−→
BC| iii |

−−→
CA|

b Hence show that ABC is a right-angled triangle.

16 A(4, 4), B(3, 1) and C(7, 3) are the vertices of a triangle ABC.

a Find the vectors:

i
−−→
AB ii

−−→
BC iii

−−→
CA

b Find:

i |
−−→
AB| ii |

−−→
BC| iii |

−−→
CA|

c Hence show that triangle ABC is a right-angled isosceles triangle.

17 A(−3, 2) and B(0, 7) are points in the Cartesian plane, O is the origin and M is the
midpoint of AB.

a Find:

i
−−→
OA ii

−−→
OB iii

−−→
BA iv

−−→
BM

b Hence find the coordinates of M. (Hint:
−−→
OM =

−−→
OB +

−−→
BM.)

18Example 8 Find the unit vector in the direction of each of the following vectors:

a = 3i + 4 ja b = 3i − jb c = −i + jc

d = i − jd e =
1
2

i +
1
3

je f = 6i − 4 jf

19 a Find a vector of length 4 in the direction of the vector a = 4i + 3 j.
b Find a vector of length 10 in the direction of the vector b = −3i − 4 j.
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21C Scalar product of vectors
The scalar product is an operation that takes two vectors and gives a real number.

Definition of the scalar product

We define the scalar product of two vectors a = a1i + a2 j and b = b1i + b2 j by

a · b = a1b1 + a2b2

For example:

(2i + 3 j) · (i − 4 j) = 2 × 1 + 3 × (−4) = −10

The scalar product is often called the dot product.

Note: If a = 0 or b = 0, then a · b = 0.

Geometric description of the scalar product

For vectors a and b, we have

a · b = |a| |b| cos θ

where θ is the angle between a and b.
θ

b

a

Proof Let a = a1i + a2 j and b = b1i + b2 j. Then using the cosine rule
in 4OAB gives

|a|2 + |b|2 − 2|a| |b| cos θ = |a − b|2

(a2
1 + a2

2) + (b2
1 + b2

2) − 2|a| |b| cos θ = (a1 − b1)2 + (a2 − b2)2

2(a1b1 + a2b2) = 2|a| |b| cos θ

a1b1 + a2b2 = |a| |b| cos θ

∴ a · b = |a| |b| cos θ

a – b

a
θ

b

O

B

A

a If |a| = 4, |b| = 5 and the angle between a and b is 30◦, find a · b.
b If |a| = 4, |b| = 5 and the angle between a and b is 150◦, find a · b.

Example 9

Solution
a · b = 4 × 5 × cos 30◦

= 20 ×

√
3

2
= 10

√
3

a a · b = 4 × 5 × cos 150◦

= 20 ×
(
−

√
3

2

)
= −10

√
3

b

b

a
30°

b

a 150°
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Properties of the scalar product
� a · b = b · a � k(a · b) = (ka) · b = a · (kb) � a · 0 = 0
� a · (b + c) = a · b + a · c � a · a = |a|2

� If the vectors a and b are perpendicular, then a · b = 0.
� If a · b = 0 for non-zero vectors a and b, then the vectors a and b are perpendicular.

Note: In a more advanced treatment of vectors, it is useful to define two vectors a and b to
be orthogonal if a · b = 0. We will not need this definition in this chapter.

Finding the magnitude of the angle between two vectors
One important use of the scalar product is to find the angle between two vectors. Consider the
two different forms of the scalar product:

a · b = |a| |b| cos θ and a · b = a1b1 + a2b2

Therefore

cos θ =
a · b
|a| |b|

=
a1b1 + a2b2

|a| |b|

A, B and C are points defined by the position vectors a, b and c respectively, where

a = i + 3 j, b = 2i + j and c = i − 2 j

Find the magnitude of ∠ABC.

Example 10

Solution
∠ABC is the angle between vectors

−−→
BA and

−−→
BC.

−−→
BA = a − b = −i + 2 j
−−→
BC = c − b = −i − 3 j

We will apply the scalar product:
−−→
BA ·

−−→
BC = |

−−→
BA| |
−−→
BC| cos(∠ABC)

We have
−−→
BA ·

−−→
BC = (−i + 2 j) · (−i − 3 j) = 1 − 6 = −5

|
−−→
BA| =

√
1 + 4 =

√
5

|
−−→
BC| =

√
1 + 9 =

√
10

Therefore

cos(∠ABC) =

−−→
BA ·

−−→
BC

|
−−→
BA| |
−−→
BC|

=
−5
√

5
√

10
= −

1
√

2

Hence ∠ABC =
3π
4

.
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Summary 21C
� The scalar product of vectors a = a1i + a2 j and b = b1i + b2 j is given by

a · b = a1b1 + a2b2

� The scalar product can be described geometrically by

a · b = |a| |b| cos θ

where θ is the angle between a and b.
θ

b

a

� Therefore a · a = |a|2.
� Two non-zero vectors a and b are perpendicular if and only if a · b = 0.

Exercise 21CSkill-
sheet

1 Let a = i − 4 j, b = 2i + 3 j and c = −2i − 2 j. Find:

a · aa b · bb c · cc a · bd
a · (b + c)e (a + b) · (a + c)f (a + 2b) · (3c − b)g

2 Let a = 2i − j, b = 3i − 2 j and c = −i + 3 j. Find:

a · aa b · bb a · bc
a · cd a · (a + b)e

3 aExample 9 If |a| = 5, |b| = 6 and the angle between a and b is 45◦, find a · b.
b If |a| = 5, |b| = 6 and the angle between a and b is 135◦, find a · b.

4 Expand and simplify:

(a + 2b) · (a + 2b)a |a + b|2 − |a − b|2b

a · (a + b) − b · (a + b)c
a · (a + b) − a · b

|a|
d

5 Let C and D be points with position vectors c and d respectively. If |c| = 5, |d| = 7 and
c · d = 4, find |

−−→
CD|.

6 Solve each of the following equations:

(i + 2 j) · (5i + x j) = −6a (xi + 7 j) · (−4i + x j) = 10b
(xi + j) · (−2i − 3 j) = xc x(2i + 3 j) · (i + x j) = 6d

7 Points A and B are defined by the position vectors a = i + 4 j
and b = 2i + 5 j. Let P be the point on OB such that AP is
perpendicular to OB. Then

−−→
OP = qb, for a constant q.

a Express
−−→
AP in terms of q, a and b.

b Use the fact that
−−→
AP ·

−−→
OB = 0 to find the value of q.

c Find the coordinates of the point P.
O

P

A

B
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8Example 10 Find the angle, in degrees, between each of the following pairs of vectors, correct to two
decimal places:

i + 2 j and i − 4 ja −2i + j and −2i − 2 jb
2i − j and 4ic 7i + j and −i + jd

9 If A and B are points defined by the position vectors a = 2i + 2 j and b = −i + 3 j
respectively, find:

a
−−→
AB

b |
−−→
AB|

c the magnitude of the angle between vectors
−−→
AB and a.

10 Let a and b be non-zero vectors such that a · b = 0. Use the geometric description of the
scalar product to show that a and b are perpendicular vectors.

For Questions 11–12, find the angles in degrees correct to two decimal places.

11 Let A and B be the points defined by the position vectors a = i + j and b = 2i − j
respectively. Let M be the midpoint of AB. Find:
−−→
OMa ∠AOMb ∠BMOc

12 Let A, B and C be the points defined by the position vectors 3i, 4 j and −2i + 6 j
respectively. Let M and N be the midpoints of AB and AC respectively. Find:

i
−−→
OM ii

−−→
ONa ∠MONb ∠MOCc

21D Vector projections
It is often useful to decompose a vector a into a sum of two vectors, one parallel to a given
vector b and the other perpendicular to b.

From the diagram, it can be seen that

a = u + w

where u = kb and so w = a − u = a − kb.

For w to be perpendicular to b, we must have

w · b = 0

(a − kb) · b = 0

a · b − k(b · b) = 0

a

u
θ

b

w

Hence k =
a · b
b · b

and therefore u =
a · b
b · b

b.

This vector u is called the vector projection (or vector resolute) of a in the direction of b.
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Vector resolute

The vector resolute of a in the direction of b can be expressed in any one of the following
equivalent forms:

u =
a · b
b · b

b =
a · b
|b|2

b =

(
a ·

b
|b|

) ( b
|b|

)
= (a · b̂) b̂

Note: The quantity a · b̂ =
a · b
|b|

is the ‘signed length’ of the vector resolute u and is called

the scalar resolute of a in the direction of b.

Note that, from our previous calculation, we have w = a − u = a −
a · b
b · b

b.

Expressing a as the sum of the two components, the first parallel to b and the second
perpendicular to b, gives

a =
a · b
b · b

b +

(
a −

a · b
b · b

b
)

This is sometimes described as resolving the vector a into rectangular components, one
parallel to b and the other perpendicular to b.

Let a = i + 3 j and b = i − j. Find the vector resolute of:

a in the direction of ba b in the direction of a.b

Example 11

Solution
a · b = 1 − 3 = −2

b · b = 1 + 1 = 2

The vector resolute of a in the
direction of b is

a · b
b · b

b =
−2
2

(i − j)

= −1(i − j)

= −i + j

a b · a = a · b = −2

a · a = 1 + 9 = 10

The vector resolute of b in the
direction of a is

b · a
a · a

a =
−2
10

(i + 3 j)

= −
1
5

(i + 3 j)

b

Find the scalar resolute of a = 2i + 2 j in the direction of b = −i + 3 j.

Example 12

Solution

a · b = −2 + 6 = 4

|b| =
√

1 + 9 =
√

10

The scalar resolute of a in the direction of b is

a · b
|b|

=
4
√

10
=

2
√

10
5
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Resolve i + 3 j into rectangular components, one of which is parallel to 2i − 2 j.

Example 13

Solution
Let a = i + 3 j and b = 2i − 2 j.

The vector resolute of a in the direction of b is given by
a · b
b · b

b.

We have

a · b = 2 − 6 = −4

b · b = 4 + 4 = 8

Therefore the vector resolute is
−4
8

(
2i − 2 j

)
= −

1
2
(
2i − 2 j

)
= −i + j

The perpendicular component is

a − (−i + j) = (i + 3 j) − (−i + j)

= 2i + 2 j

Hence we can write

i + 3 j = (−i + j) + (2i + 2 j)

Check: We can check our calculation by verifying that the second component is indeed
perpendicular to b. We have (2i + 2 j) · (2i − 2 j) = 4 − 4 = 0, as expected.

Summary 21D
� Resolving a vector a into rectangular components is expressing the vector a as a sum

of two vectors, one parallel to a given vector b and the other perpendicular to b.

� The vector resolute of a in the direction of b

is given by u =
a · b
b · b

b.

� The scalar resolute of a in the direction of b
is the ‘signed length’ of the vector resolute u

and is given by
a · b
|b|

.

a

u
θ

b

w

Exercise 21D

1 Points A and B are defined by the position vectors a = i + 3 j and b = 2i + 2 j.

Find â.a Find b̂.b Find ĉ, where c =
−−→
AB.c
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2 Let a = 3i + 4 j and b = i − j.

a Find:

i â ii |b|

b Find the vector with the same magnitude as b and with the same direction as a.

3 Points A and B are defined by the position vectors a = 3i + 4 j and b = 5i + 12 j.

a Find:

i â ii b̂

b Find the unit vector which bisects ∠AOB.

4Example 11 For each pair of vectors, find the vector resolute of a in the direction of b:

a = i + 3 j and b = i − 4 ja a = i − 3 j and b = i − 4 jb
a = 4i − j and b = 4ic

5Example 12 For each of the following pairs of vectors, find the scalar resolute of the first vector in
the direction of the second vector:

a = 2i + j and b = ia a = 3i + j and c = i − 2 jb
b = 2 j and a = 2i +

√
3 jc b = i −

√
5 j and c = −i + 4 jd

6Example 13 For each of the following pairs of vectors, find the resolution of the vector a into
rectangular components, one of which is parallel to b:

a = 2i + j, b = 5ia a = 3i + j, b = i + jb
a = −i + j, b = 2i + 2 jc

7 Let A and B be the points defined by the position vectors a = i + 3 j and b = i + j
respectively. Find:

a the vector resolute of a in the direction of b
b a unit vector perpendicular to OB

8 Let A and B be the points defined by the position vectors a = 4i + j and b = i − j
respectively. Find:

a the vector resolute of a in the direction of b
b the vector component of a perpendicular to b
c the shortest distance from A to line OB

9 Points A, B and C have position vectors a = i + 2 j, b = 2i + j and c = 2i − 3 j. Find:

a i
−−→
AB ii

−−→
AC

b the vector resolute of
−−→
AB in the direction of

−−→
AC

c the shortest distance from B to line AC

d the area of triangle ABC
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21E Geometric proofs
In this section we see how vectors can be used as a tool for proving geometric results.

We require the following two definitions:

� Collinear points Three or more points are collinear if they
all lie on a single line.

� Concurrent lines Three or more lines are concurrent if they
all pass through a single point.

Here are some properties of vectors that will be useful:

Parallel vectors
� For k ∈ R+, the vector ka is in the same direction as a and has magnitude k|a|, and

the vector −ka is in the opposite direction to a and has magnitude k|a|.
� Two non-zero vectors a and b are parallel if and only if b = ka for some k ∈ R \ {0}.
� If a and b are parallel with at least one point in common, then a and b lie on the same

straight line. For example, if
−−→
AB = k

−−→
BC for some k ∈ R \ {0}, then A, B and C are collinear.

Scalar product
� Two non-zero vectors a and b are perpendicular if and only if a · b = 0.
� a · a = |a|2

Linear combinations of non-parallel vectors
� For two non-zero vectors a and b that are not parallel, if ma + nb = pa + qb, then m = p

and n = q.

Three points P, Q and R have position vectors p, q and k(2p + q) respectively, relative to a
fixed origin O. The points O, P and Q are not collinear. Find the value of k if:
−−→
QR is parallel to pa

−−→
PR is parallel to qb P, Q and R are collinear.c

Example 14

Solution
−−→
QR =

−−→
QO +

−−→
OR

= −q + k(2p + q)

= 2kp + (k − 1)q

If
−−→
QR is parallel to p, then there is

some λ ∈ R \ {0} such that

2kp + (k − 1)q = λp

This implies that

2k = λ and k − 1 = 0

Hence k = 1.

a
−−→
PR =

−−→
PO +

−−→
OR

= −p + k(2p + q)

= (2k − 1)p + kq

If
−−→
PR is parallel to q, then there is

some m ∈ R \ {0} such that

(2k − 1)p + kq = mq

This implies that

2k − 1 = 0 and k = m

Hence k = 1
2 .

b

Note: Since points O, P and Q are not collinear, the vectors p and q are not parallel.
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c If points P, Q and R are collinear, then there exists n ∈ R \ {0} such that

n
−−→
PQ =

−−→
QR

n(−p + q) = 2kp + (k − 1)q

−np + nq = 2kp + (k − 1)q∴

This implies that

−n = 2k and n = k − 1

Therefore 3k − 1 = 0 and so k = 1
3 .

Exercise 21E

1 Consider a triangle ABC. Let P be the midpoint of
side AB and let Q be the midpoint of side AC. Prove

that PQ =
1
2

BC and that PQ is parallel to BC.

A

B

C

P

Q

2 In the diagram, OR =
4
5

OP, p =
−−→
OP, q =

−−→
OQ and

PS : SQ = 1 : 4.

a Express each of the following in terms of p and q:

i
−−→
OR ii

−−→
RP iii

−−→
PO

iv
−−→
PS v

−−→
RS

b What can be said about line segments RS and OQ?
c What type of quadrilateral is ORSQ?
d The area of triangle PRS is 5 cm2. What is the area of ORSQ?

q

Q

O

p

P S

R

3 The position vectors of three points A, B and C relative to an origin O are a, b and ka
respectively. The point P lies on AB and is such that AP = 2PB. The point Q lies on BC
and is such that CQ = 6QB.

a Find in terms of a and b:

i the position vector of P

ii the position vector of Q

b Given that OPQ is a straight line, find:

i the value of k

ii the ratio
OP
PQ

c The position vector of a point R is
7
3

a. Show that PR is parallel to BC.
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4Example 14 The position vectors of two points A and B relative to an origin O are 3i + 3.5 j and
6i − 1.5 j respectively.

a i Given that
−−→
OD =

1
3
−−→
OB and

−−→
AE =

1
4
−−→
AB, write down the position vectors of D

and E.
ii Hence find |

−−→
ED|.

b Given that OE and AD intersect at X and that
−−→
OX = p

−−→
OE and

−−→
XD = q

−−→
AD, find the

position vector of X in terms of:

i p ii q

c Hence determine the values of p and q.

5 Points P and Q have position vectors p and q, with reference to an origin O, and M is
the point on PQ such that

β
−−→
PM = α

−−−→
MQ

a Prove that the position vector of M is given by m =
βp + αq
α + β

.

b Write the position vectors of P and Q as p = ka and q = `b, where k and ` are
positive real numbers and a and b are unit vectors.

i Prove that the position vector of any point on the internal bisector of ∠POQ has
the form λ(a + b).

ii If M is the point where the internal bisector of ∠POQ meets PQ, show that
α

β
=

k
`

6 A rhombus is a parallelogram with all sides of equal length. Suppose that OABC is a
rhombus. Let a =

−−→
OA and c =

−−→
OC.

a Express each of the following vectors in terms of a and c:

i
−−→
AB ii

−−→
OB iii

−−→
AC

b Find
−−→
OB ·

−−→
AC.

c Prove that the diagonals of a rhombus intersect at right angles.

7 Suppose that ORST is a parallelogram, where O is the origin. Let U be the midpoint
of RS and let V be the midpoint of ST . Denote the position vectors of R, S , T , U and V
by r, s, t, u and v respectively.

a Express s in terms of r and t.
b Express v in terms of s and t.
c Hence, or otherwise, show that 4(u + v) = 3(r + s + t).

8 Prove that, for any quadrilateral, the midpoints of the four sides are the vertices of a
parallelogram.

9 Prove that the diagonals of a square are of equal length and bisect each other.

10 Prove that the diagonals of a parallelogram bisect each other.
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11 Apollonius’ theorem
For 4OAB, the point C is the midpoint of side AB. Prove that:

a 4
−−→
OC ·

−−→
OC = OA2 + OB2 + 2

−−→
OA ·

−−→
OB

b 4
−−→
AC ·

−−→
AC = OA2 + OB2 − 2

−−→
OA ·

−−→
OB

c 2OC2 + 2AC2 = OA2 + OB2

12 If P is any point in the plane of rectangle ABCD, prove that PA2 + PC2 = PB2 + PD2.

13 A median of a triangle is a line segment from a vertex to the midpoint of the opposite
side. Prove that the medians bisecting the equal sides of an isosceles triangle are equal.

14 a Prove that if (c − b) · a = 0 and (c − a) · b = 0, then (b − a) · c = 0.
b An altitude of a triangle is a line segment from a vertex to the opposite side

(possibly extended) which forms a right angle where it meets the opposite side.
Use part a to prove that the altitudes of a triangle are concurrent.

15 For a parallelogram OABC, prove that

OB2 + AC2 = 2OA2 + 2OC2

That is, prove that the sum of the squares of the lengths
of the diagonals of a parallelogram is equal to the sum
of the squares of the lengths of the sides. A

BC

O

21F Applications of vectors: displacement and velocity
For the next three sections, we will be working with vector and scalar quantities:

� A vector quantity has both magnitude and direction. We will introduce the vector
quantities displacement, velocity and force.

� A scalar quantity has only magnitude. We will use the scalar quantities distance, time,
speed and mass.

Displacement
We have been describing points in the plane using position vectors. Points A and B have
position vectors

−−→
OA and

−−→
OB respectively.

If an object moves from point A to point B, then the displacement of the object is the change
in position of the object; it is described by the vector

−−→
AB.

For example, suppose that a person walks 4 km north
and then 4 km east.

The person’s displacement is 4
√

2 km north-east.

Note: The total distance that the person has walked
is 8 km, which is not equal to the magnitude of
the displacement vector.

4 km

4 km

A

B

AB
N→
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A particle moves from point A(2, 2) to point B(−1, 3). Express the displacement vector of
the particle in component form.

Example 15

Solution

We have
−−→
OA = 2i + 2 j and

−−→
OB = −i + 3 j.

The displacement vector is
−−→
AB =

−−→
AO +

−−→
OB

= −(2i + 2 j) + (−i + 3 j)

= −3i + j
O

A

B

i

j

Displacement problems involving bearings can be solved using the trigonometric techniques
demonstrated in Section 15F.

Velocity
Velocity is the rate of change of position with respect to time.

Velocity is a vector quantity; it has magnitude and direction. The units of velocity which will
be used in this chapter are metres per second (m/s) and kilometres per hour (km/h).

Some examples of velocity vectors are:

� 80 km/h in the direction north
� 10 km/h on a bearing of 080◦

� 3i + 4 j m/s

The first two vectors have magnitudes 80 km/h and 10 km/h respectively. The third vector has
magnitude |3i + 4 j| =

√
32 + 42 = 5 m/s. The magnitude of velocity is called speed.

Motion with constant velocity
In this chapter, we only deal with constant velocity (that is, the velocity does not change over
a particular time interval). Consider the following two examples:

� If a car travels for 2 hours with a constant velocity of 80 km/h north, then its displacement
is 2 × 80 = 160 km north.

� If a particle starts at the origin and moves with a velocity of 3i + 4 j m/s for 2 seconds, then
its position is 2(3i + 4 j) = 6i + 8 j m.

If an object moves with a constant velocity of v m/s for t seconds, then its displacement
vector, s m, is given by

s = tv

Note: Here s and v are vector quantities and t is a scalar quantity. So this is an example of
scalar multiplication.



21F Applications of vectors: displacement and velocity 719

A particle starts at the point A with position vector
−−→
OA = i + 3 j, where the unit is metres.

The particle begins moving with a constant velocity of 2i + 4 j m/s. Find the position
vector of the particle after:

5 secondsa t seconds.b

Example 16

Solution
Let P be the point that the particle
reaches after 5 seconds. Then

−−→
OP =

−−→
OA + 5(2i + 4 j)

= i + 3 j + 10i + 20 j

= 11i + 23 j

a Let Q be the point that the particle
reaches after t seconds. Then

−−→
OQ =

−−→
OA + t(2i + 4 j)

= i + 3 j + 2ti + 4t j

= (1 + 2t)i + (3 + 4t) j

b

Direction of motion
The velocity vector is in the direction of motion. We often use the unit vector of the velocity
vector to describe the direction of motion.

For example, if v = 3i + 4 j, then the unit vector v̂ =
1
5

(3i + 4 j) is in the direction of motion.

Particle A starts moving from point O with a constant velocity of vA = 3i + 4 j m/s.
Three seconds later, particle B starts from O and moves in the same direction as A with a
constant speed of 7 m/s. When and where will B catch up to A?

Example 17

Solution
At time t seconds, particle A is at the point with position vector

−−→
OPA = t(3i + 4 j)

At time t seconds, for t ≥ 3, particle B has been moving for t − 3 seconds and is at the
point with position vector

−−→
OPB =

7(t − 3)
5

(3i + 4 j)

The two particles are at the same point when

7(t − 3)
5

= t

7(t − 3) = 5t

2t = 21

t =
21
2

∴

Particle B catches up to particle A at time t = 10.5 seconds.

At this time, both particles have position vector 31.5i + 42 j.
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A particle starts from O with a constant velocity of v1 = 3i + 4 j m/s. At the same time,
a second particle starts moving with constant velocity from point B, where

−−→
OB = 25 j.

Given that the two particles meet and their paths are at right angles, find:

a the position vector of the point where they meet
b the velocity of the second particle.

Example 18

Solution
a Assume that the particles meet at the point P at time t seconds. Since their paths are at

right angles, we have
−−→
OP ·

−−→
BP = 0

At time t seconds, the position vector of the first particle is
−−→
OP = t(3i + 4 j) = 3ti + 4t j

Therefore
−−→
BP =

−−→
BO +

−−→
OP

= −25 j + (3ti + 4t j)

= 3ti + (4t − 25) j

Since
−−→
OP ·

−−→
BP = 0, we obtain

(3ti + 4t j) ·
(
3ti + (4t − 25) j

)
= 0

9t2 + 4t(4t − 25) = 0

25t2 − 100t = 0

t(t − 4) = 0∴

The particles do not meet at time 0 s, so they meet at time t = 4 s.

The position vector of the point where they meet is
−−→
OP = 4(3i + 4 j) = 12i + 16 j

b Let v m/s be the velocity of the second particle. We use the formula s = tv.

At time t = 4, the displacement of the second particle is
−−→
BP. Therefore

−−→
BP = 4v

−−→
BO +

−−→
OP = 4v

−25 j + (12i + 16 j) = 4v

12i − 9 j = 4v

Hence the velocity of the second particle is v = 3i −
9
4

j m/s.
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Summary 21F
� The displacement of a particle is the change in its position. If a particle moves from

point A to point B, then its displacement is
−−→
AB.

� The velocity of a particle is the rate of change of its position with respect to time.
� Displacement and velocity are vector quantities. The magnitude of velocity is speed.
� Motion with constant velocity If a particle moves with a constant velocity of v m/s

for t seconds, then its displacement vector, s m, is given by s = tv.

Exercise 21F

1Example 15 For each of the following, find the displacement vector in component form for a particle
that moves from point A to point B:

A(3, 7), B(2,−4)a A(−2, 4), B(3,−2)b A(3, 1), B(4, 6)c
A(3, 7), B(3,−4)d A(−2,−7), B(2,−7)e A(5,−6), B(11, 5)f

2 From the point O, a hiker walks 5 km north and then 8 km on a bearing of 330◦,
finishing at a point A. Describe the displacement vector

−−→
OA by giving a distance and

a bearing. (Hint: Use the cosine rule and the sine rule.)

3 From the point O, a yacht sails 3 km east and then 5 km on a bearing of 060◦, finishing
at a point A. Describe the displacement vector

−−→
OA by giving a distance and a bearing.

4 Give the corresponding speed for each of the following velocity vectors:

5i + 4 j m/sa 3i − 4 j m/sb −i + 4 j m/sc
−2i − 6 j m/sd 5i − 12 j m/se −7i + 11 j m/sf

In each of the following questions, the unit of distance is metres.

5Example 16 A particle starts from the point A with position vector
−−→
OA = −i + 2 j and moves with a

constant velocity of 5i + 12 j m/s. Find the position vector of the particle after:

5 secondsa t seconds.b

6 An object takes 5 seconds to move with constant velocity from point A to point B,
where

−−→
OA = 5i + 4 j and

−−→
OB = −15i + 24 j. Find the velocity of the object.

7 A particle starts from the point B with position vector
−−→
OB = −2i + 3 j and moves with a

constant velocity of 7i + 24 j m/s.

a Find the position vector of the particle after:

i 4 seconds ii t seconds.

b Find the particle’s distance from the origin after:

i 4 seconds ii t seconds.
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8 Let O be the origin and let A and B be the points with
−−→
OA = 5i + 2 j and

−−→
OB = −5i − 3 j.

A particle moves with constant velocity from A to B in 10 seconds. Find:

the velocity of the particlea the speed of the particle.b

9Example 17 Particle A starts moving from point O with a constant velocity of vA = i + 2 j m/s.
Two seconds later, particle B starts from O and moves in the same direction as A with a
constant speed of 6 m/s. When and where will B catch up to A?

10Example 18 A particle starts from O with a constant velocity of v1 = 2i + j m/s. At the same time,
a second particle starts moving with constant velocity from point B, where

−−→
OB = 20 j.

Given that the two particles meet and their paths are at right angles, find:

a the position vector of the point where they meet
b the velocity of the second particle.

11 Points A and B have position vectors
−−→
OA = 10 j and

−−→
OB = 20i. A particle starts moving

from point A with a constant velocity of v1 = 2i m/s. At the same time, a second particle
starts moving from point B with constant velocity. Given that the two particles meet and
their paths are at right angles, find:

a the position vector of the point where they meet
b the velocity of the second particle.

21G Applications of vectors: relative velocity
Resultant velocity
If two or more velocity vectors are added, then the sum is called a resultant velocity.

A river is flowing north at 5 km/h. Mila can swim at 2 km/h in still water. She dives in
from the west bank of the river and swims towards the opposite bank.

In which direction does she travel?a What is her actual speed?b

Example 19

Solution
The swimmer’s actual velocity, v, is the vector sum of her velocity relative to the water
(2 km/h east) and the water’s velocity (5 km/h north).

a From the diagram, we have

tan θ =
2
5

θ ≈ 21.8◦∴

She is travelling on a bearing of 022◦.

b Her actual speed is

|v| =
√

22 + 52 ≈ 5.39 km/h

θ

2 km/h

5 km/h v

N



21G Applications of vectors: relative velocity 723

Relative velocity
In the previous example, the velocity of the water is given relative to the bank and the
velocity of the swimmer is given relative to the water. The velocity of the swimmer relative
to the bank is found by taking the vector sum. That is:

Velocity of swimmer
relative to bank

=
Velocity of swimmer
relative to water

+
Velocity of water
relative to bank

The relative velocity of an object A with respect to another object B is the velocity that
object A would appear to have to an observer moving along with object B.

Consider another example: A train is travelling north at 60 km/h, and a passenger walks
at 3 km/h along the corridor towards the back of the train.

Velocity of passenger
relative to Earth

=
Velocity of passenger
relative to train

+
Velocity of train
relative to Earth

The passenger is moving with a velocity of 57 km/h north relative to Earth.

In general, if an object A is in motion relative to another object B, then we can find the
velocity of A using a vector sum:

Velocity of A
relative to Earth

=
Velocity of A
relative to B

+
Velocity of B
relative to Earth

Velocities measured relative to Earth are often called true velocities or actual velocities.

A train is moving with a constant velocity of 80 km/h north. A passenger walks straight
across a carriage from the west side to the east side at 3 km/h. What is the true velocity of
the passenger?

Example 20

Solution
The passenger’s true velocity, v, is the vector sum of his velocity relative to the train
(3 km/h east) and the train’s velocity (80 km/h north).

|v| =
√

802 + 32Speed:

=
√

6409

≈ 80.06 km/h

tan θ =
3
80

Direction:

∴ θ ≈ 2.15◦

The passengers’s true velocity is 80.06 km/h on a bearing of 002◦.

θ

3 km/h

80 km/h v

N
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Car A is moving with a velocity of 50 km/h due north, while car B is moving with a
velocity of 120 km/h due west. What is the velocity of car A relative to car B?

Example 21

Solution
Let vA be the velocity of car A, and let vB be the velocity of car B.

The velocity of car A relative to car B is given by v = vA − vB.

|v| =
√

502 + 1202Speed:

= 130 km/h

θ = tan−1
(12

5

)
Direction:

≈ 67.38◦

θ(50 km/h)
v = vA - vB

vB (120 km/h)

vA N

The velocity of car A relative to car B is 130 km/h on a bearing of 067◦.

Wind e�ect on flight paths
The airspeed of an aircraft is its speed relative to air. In the next example, we see how the
wind affects the actual velocity of an aircraft.

A light aircraft has an airspeed of 250 km/h. The pilot sets a course due north. If the
wind is blowing from the north-west at 80 km/h, what is the true speed and direction of
the aircraft?

Example 22

Solution
We can use the cosine rule to find the true speed:

|v| =
√

2502 + 802 − 2 × 250 × 80 cos 45◦

= 201.5334 . . . km/h

We can now use the sine rule to find the angle θ:

80
sin θ

=
|v|

sin 45◦

sin θ =
80 sin 45◦

|v|

= 0.2806 . . .

θ ≈ 16.30◦∴

The aircraft is flying at 201.53 km/h on a bearing of 016◦.

θ

80 km/h

250 km/h

v

N

45°
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To fly an aircraft in a given direction, the pilot must compensate for the effect of the wind.

An aeroplane is scheduled to travel from a point P to a point Q, which is 1000 km
due west of P. The aeroplane’s airspeed is 500 km/h and the wind is blowing from the
south-west at 100 km/h.

a In which direction should the pilot set the course?
b How long will the flight take?

Example 23

Solution
We want to ensure that the plane’s
true velocity, v, is due west.

θ
135°100 km/h

500 km/h

v

N

Use the sine rule to find θ:

500
sin 135◦

=
100
sin θ

sin θ =
100 sin 135◦

500

= 0.1414 . . .

θ = (8.130 . . . )◦∴

The pilot should head on a bearing
of 262◦.

a Use the sine rule to find |v|:

500
sin 135◦

=
|v|

sin(36.869 . . . )◦

|v| =
500 sin(36.869 . . . )◦

sin 135◦
∴

= 424.264 . . .

≈ 424.26 km/h

The plane’s speed relative to the ground is
approximately 424 km/h. The flight will
take approximately 2.4 hours.

b

Summary 21G
� If two or more velocity vectors are added, then the sum is called a resultant velocity.
� The relative velocity of an object A with respect to another object B is the velocity that

object A would appear to have to an observer moving along with object B.
� If an object A is in motion relative to another object B, we can find the velocity of A

using a vector sum:

Velocity of A
relative to Earth

=
Velocity of A
relative to B

+
Velocity of B
relative to Earth

Exercise 21G

1Example 19 A river is flowing south at 4 km/h. Max can swim at 3 km/h in still water. He dives in
from the west bank of the river and swims towards the opposite bank.

In which direction does he travel?a What is his actual speed?b
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2Example 20 A train is moving due north at 100 km/h. A passenger walks straight across a carriage
from the east side to the west side at 4 km/h. What is the true velocity of the passenger?

3 Cars A and B are driving along a straight level road that runs east–west.

a If car A has a velocity of 100 km/h west and car B has a velocity of 80 km/h west,
what is the velocity of car A relative to car B?

b If car A has a velocity of 100 km/h west and car B has a velocity of 80 km/h east,
what is the velocity of car A relative to car B?

4 A cricketer is on a moving walkway which runs from south to north at 2 m/s. He bowls
his fastest delivery, which is 45 m/s, again in a direction north. What is the velocity of
the ball (relative to Earth)?

5 A ship is moving in a straight line at 15 m/s. A bird flies horizontally from the front of
the ship towards the back of the ship at a speed of 5 m/s relative to the ship. What is the
speed of the bird relative to the sea?

6 Car A is travelling north at 60 km/h along a straight level road. Car B is on the same
road travelling north at 40 km/h. Find:

the velocity of car A relative to car Ba the velocity of car B relative to car A.b

7 A plane is heading due north, its airspeed is 240 km/h and there is an 80 km/h wind
blowing from west to east. What is the velocity of the plane relative to Earth?

8Example 21 Car A is moving with a velocity of 60 km/h due north, while car B is moving with a
velocity of 80 km/h due west. What is the velocity of car A relative to car B?

9 A glider P is travelling due north at 60 km/h, and another glider Q is travelling
north-west at 40 km/h. Find the velocity of P relative to Q.

10 Two particles, A and B, are moving with constant velocities of vA = 4i − 3 j m/s and
vB = 5i − 7 j m/s respectively.

a Find the velocity of B relative to A.
b Find the magnitude of this relative velocity.

11 A ship is moving in a straight line at 15 m/s. A bird flies at an angle of 18◦ to the
horizontal from the front of the ship towards the back of the ship at a speed of 5 m/s
relative to the ship. What is the speed of the bird relative to the sea?

12Example 22 A light aircraft has an airspeed of 240 km/h. The pilot sets a course due north. The
wind is blowing from the north-east at 70 km/h. What is the true speed and direction of
the aircraft?

13Example 23 An aeroplane with an airspeed of 200 km/h is flying to an airport south-west of its
present position. There is a wind blowing at 70 km/h from the east.

a Find the course that the pilot must set.
b Find the speed of the aeroplane relative to the ground.
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14 A canoeist can paddle at 2 m/s in still water. He wishes to go straight across a river so
that his path is at right angles to the banks of the river. The river is flowing at 1.5 m/s.

a Find the direction in which he must paddle.
b If the river is 60 m wide, how long will it take him to cross the river?

21H Applications of vectors: forces and equilibrium
A force is a measure of the strength of a push or pull. Forces can start motion, stop motion,
make objects move faster or slower, and change the direction of motion.

Force can be defined as the physical quantity that causes a change in motion.

We will focus on situations where the forces ‘cancel each other out’. For example, if an
inflatable raft is floating in a swimming pool, then the water is exerting an upwards force on
the raft (called the buoyant force) that cancels out the downwards force of gravity.

Introduction to forces
A force has both magnitude and direction – it may be represented by a vector.

When considering the forces that act on an object, it is convenient to treat the forces as acting
on a single particle. The single particle may be thought of as a point at which the entire mass
of the object is concentrated.

Weight and units of force
Every object near the surface of the Earth is subject to the force of gravity. We refer to this
force as the weight of the object. Weight is a force that acts vertically downwards on an
object (actually towards the centre of the Earth).

The unit of force used in this section is the kilogram weight (kg wt). If an object has a mass
of 1 kg, then the force due to gravity acting on the object is 1 kg wt.

This unit is convenient for objects near the Earth’s surface. An object with a mass of 1 kg
would have a different weight on the moon.

Note: The standard unit of force is the newton (N). At the Earth’s surface, a mass of m kg
has a force of m kg wt = mg N acting on it, where g m/s2 is the acceleration due to
gravity (g ≈ 9.8).

Resultant force and equilibrium
When a number of forces act simultaneously on an object, their combined effect is called the
resultant force. The resultant force is the vector sum of the forces acting on the particle.

If the resultant force acting on an object is zero, the object will remain at rest or continue
moving with constant velocity. The object is said to be in equilibrium.

Note: Planet Earth is moving and our galaxy is moving, but we use Earth as our frame of
reference and so our observation of an object being at rest is determined in this way.
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Normal force
Any mass placed on a surface, either horizontal or inclined, experiences a force perpendicular
to the surface. This force is referred to as a normal force.

N

W kg wt 

N

W kg wt

For example, a book sitting on a table is obviously being subjected to a force due to gravity.
But the fact that it does not fall to the ground indicates that there must be a second force on
the book. The table is exerting a force on the book equal in magnitude to gravity, but in the
opposite direction. Hence the book remains at rest; it is in equilibrium.

Tension force
The diagram shows a string attached to the ceiling supporting a mass,
which is at rest. The force of gravity, W kg wt, acts downwards on
the mass and the string exerts an equal force, T kg wt, upwards on the
mass. The force exerted by the string is called the tension force.

Note that there is a force, equal in magnitude but opposite in direction,
acting on the ceiling at the point of contact.

T kg wt

T kg wt

W kg wt

Triangle of forces
If three forces are acting on a point in equilibrium, then they can be represented by three
vectors forming a triangle.

Suppose that three forces F1, F2 and F3 are acting on a particle in equilibrium, as shown in
the diagram on the left. Since the particle is in equilibrium, we must have F1 + F2 + F3 = 0.
Therefore the three forces can be rearranged into a triangle as shown on the right.

F1 F2

F3

F1

F2

F3

The magnitudes of the forces and the angles between the forces can now be found using
trigonometric ratios (if the triangle contains a right angle) or using the sine or cosine rule.
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In the following examples and exercise, strings and ropes are considered to have negligible
mass. A smooth light pulley is considered to have negligible mass and the friction between a
rope and pulley is considered to be negligible.

A particle of mass 8 kg is suspended by two strings
attached to two points in the same horizontal plane.
If the two strings make angles of 30◦ and 40◦ to the
horizontal, find the tension in each string.

8 kg wt

T1 kg wt
T2 kg wt

30° 40°
Example 24

Solution
Represent the forces in a triangle. The sine rule gives

T1

sin 50◦
=

T2

sin 60◦
=

8
sin 70◦

T1 =
8 sin 50◦

sin 70◦
≈ 6.52 kg wt

T2 =
8 sin 60◦

sin 70◦
≈ 7.37 kg wt

8 kg wt

T1 kg wt

T2 kg wt

70°

60°

50°

A particle of mass 15 kg is suspended vertically from a
point P by a string. The particle is pulled horizontally by a
force of F kg wt so that the string makes an angle of 30◦

with the vertical.

Find the value of F and the tension in the string.

T kg wt

15 kg wt

F kg wt

P

30°

Example 25

Solution
Representing the forces in a triangle gives

F
15

= tan 30◦

F = 15 tan 30◦ = 5
√

3

15
T

= cos 30◦and

T =
15

cos 30◦
= 10

√
3

The tension in the string is 10
√

3 kg wt.

T kg wt
15 kg wt

F kg wt

30°
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A body of mass 20 kg is placed on a smooth plane inclined
at 30◦ to the horizontal. A string is attached to a point
further up the plane which prevents the body from moving.
Find the tension in the string and the magnitude of the force
exerted on the body by the plane. 20 kg wt

F 

30°

N

Example 26

Solution
The three forces form a triangle (as the
body is in equilibrium). Therefore

F = 20 sin 30◦ = 10 kg wt

N = 20 cos 30◦ = 10
√

3 kg wt
150°

90°
120°

20 kg wt

N kg wt F kg wt 60°
90°

30°

20 kg wt

N kg wt

F kg wt

Note: Force is a vector quantity, but it is often useful to employ only the magnitude of a
force in calculations, and the direction is evident from the context. In this section, and
in particular in diagrams, we often denote the magnitude of a force (for example, F)
by the same unbolded letter (in this case, F).

Resolution of forces
Obviously there are many situations where more than three forces (or in fact only two forces)
will be acting on a body. An alternative method is required to solve such problems.

If all forces under consideration are acting in the same plane, then these forces and the
resultant force can each be expressed as a sum of its i- and j-components.

If a force F acts at an angle of θ to the x-axis,
then F can be written as the sum of two forces,
one ‘horizontal’ and the other ‘vertical’:

F = |F| cos θ i + |F| sin θ j

The force F is resolved into two components:

� the i-component is parallel to the x-axis
� the j-component is parallel to the y-axis.

y

xθ

F

|F | cos θ i

|F | sin θ j

 

j

i

For a particle that is in equilibrium, if all the forces acting on the particle are resolved into
their i- and j-components, then:

� the sum of all the i-components is zero
� the sum of all the j-components is zero.
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A particle of mass 8 kg is suspended by two
strings attached to two points in the same
horizontal plane. If the two strings make
angles of 30◦ and 60◦ to the horizontal, find
the tension in each string.

8 kg wt

T1 kg wt T2 kg wt

30° 60°

Example 27

Solution

8

T1 kg wt

T2 kg wt

30°

30°

60°

j

i

Resolution in the j-direction:

T1 sin 30◦ + T2 sin 60◦ − 8 = 0

T1

(1
2

)
+ T2

(√3
2

)
− 8 = 0 (1)

Resolution in the i-direction:

−T1 cos 30◦ + T2 cos 60◦ = 0

−T1

(√3
2

)
+ T2

(1
2

)
= 0 (2)

√
3 T1 = T2From (2):

Substituting in (1) gives

T1

(1
2

)
+
√

3 T1

(√3
2

)
− 8 = 0

4T1 = 16

∴ T1 = 4

Hence T1 = 4 and T2 = 4
√

3.

The tensions in the strings are 4 kg wt and 4
√

3 kg wt.
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A body of mass 10 kg is held at rest on a smooth plane
inclined at 20◦ by a string with tension 5 kg wt as shown.

Find the angle between the string and the inclined plane.

5 kg wt

10 kg wt

θ

N

20°

j
i

Example 28

Solution
We resolve the forces parallel and perpendicular to the plane. Then the normal force N has
no parallel component, since it is perpendicular to the plane.

Resolving in the i-direction:

5 cos θ − 10 sin 20◦ = 0

cos θ =
10 sin 20◦

5

= 0.6840 . . .

∴ θ ≈ 46.84◦

The angle between the string and the inclined plane is 46.84◦.

Summary 21H
� Force is a vector quantity.

� The magnitude of a force can be measured using kilogram weight (kg wt).
If an object near the surface of the Earth has a mass of 1 kg, then the force due to
gravity acting on the object is 1 kg wt.

� Triangle of forces
If three forces are acting on a
point in equilibrium, then they
can be represented by three
vectors forming a triangle.

F1 F2

F3

F1

F2

F3

� Resolution of forces
• A force F is resolved into components by writing it in the form F = xi + y j.
• If forces are acting on a particle that is in equilibrium, then:

- the sum of the i-components of all the forces is zero
- the sum of the j-components of all the forces is zero.
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Exercise 21HSkill-
sheet

Complete Questions 1–10 using triangles of forces.

1Example 24 A particle of mass 5 kg is suspended by two strings
attached to two points in the same horizontal plane. If
the two strings make angles of 45◦ with the horizontal,
find the tension in each string.

5 kg wt

T1 kg wt T2 kg wt

45° 45°

2 Using strings and pulleys, three weights of
mass 6 kg, 8 kg and 10 kg are suspended in
equilibrium as shown. Calculate the magnitude of
the angle ACB.

A B

C

6 kg
8 kg

10 kg

3 A mass of 20 kg is suspended from two strings of
length 10 cm and 12 cm, the ends of the strings
being attached to two points in a horizontal line,
15 cm apart. Find the tension in each string.

20 kg wt

10 cm T1 T2

15 cm

12 cm

4Example 25 A boat is being pulled by a force of 40 kg wt towards the east and by a force of 30 kg wt
towards the north-west. What third force must be acting on the boat if it remains
stationary? Give the magnitude and direction.

5Example 26 A body of mass 104 kg is placed on a smooth
inclined plane which rises 5 cm vertically for
every 12 cm horizontally. A string is attached to a
point further up the plane which prevents the body
from moving. Find the tension in the string and
the magnitude of the force exerted on the body by
the plane.

5

104 kg wt

12

N
T

6 A body of mass 12 kg is kept at rest on a smooth
inclined plane of 30◦ by a force acting at an angle
of 20◦ to the plane. Find the magnitude of the force.

30°

20°

12 kg wt

N F
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7 In each of the following cases, determine whether the particle is in equilibrium:

610

8

160°
80°

a

120°
150°

4

2

2√3

b

8 Three forces of magnitude 4 kg wt, 7 kg wt and 10 kg wt are in equilibrium. Determine
the magnitudes of the angles between the forces.

9 A mass of 15 kg is maintained at rest on a smooth inclined plane by a string that is
parallel to the plane. Determine the tension in the string if:

a the plane is at 30◦ to the horizontal
b the plane is at 40◦ to the horizontal
c the plane is at 30◦ to the horizontal, but the string is held at an angle of 10◦ to

the plane.

10 The two ends of a string are connected to two points A and D in a horizontal line, and
masses of 12 kg and W kg are attached at points B and C on the string. Given that C
is lower than B and that AB, BC and CD make angles of 40◦, 20◦ and 50◦ respectively
with the horizontal, calculate the tensions in the string and the value of W.

Complete Questions 11–17 using resolution of forces.

11 A force of F kg wt makes an angle of 40◦ with the
horizontal. If its horizontal component is a force
of 10 kg wt, find the value of F.

40°

F

12Example 27 Find the magnitude of the force, acting on a smooth
inclined plane of angle 35◦, required to support a
mass of 10 kg resting on the plane.

10 kg wt

N F

35°

13 A body of mass 8 kg rests on a smooth inclined
plane of angle 25◦ under the action of a horizontal
force. Find the magnitude of the force and the
reaction of the plane on the body.

8 kg wt

N

F

25°
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14Example 28 A body of mass 10 kg rests on a smooth inclined
plane of angle 20◦. Find the force that will keep it in
equilibrium when it acts at an angle of 54◦ with the
horizontal.

10 kg wt

20° 54°

N
F

15 If a body of mass 12 kg is suspended by a string, find the horizontal force required to
hold it at an angle of 30◦ from the vertical.

16 A force of 20 kg wt acting directly up a smooth plane inclined at an angle of 40◦

maintains a body in equilibrium on the plane. Calculate the mass of the body and the
force it exerts on the plane.

17 Two men are supporting a block by ropes. One exerts a force of 20 kg wt, his rope
making an angle of 35◦ with the vertical, and the other exerts a force of 30 kg wt.
Determine the mass of the block and the angle of direction of the second rope.

21I Vectors in three dimensions
Points in three dimensions are represented using three
perpendicular axes as shown.

Vectors in three dimensions are of the form

a =


x
y
z

 = xi + y j + zk

i =


1
0
0

 , j =


0
1
0

 and k =


0
0
1

where

The vectors i, j and k are the standard unit vectors for
three dimensions.

The position vector for point A(x, y, z) is
−−→
OA = xi + y j + zk

Using Pythagoras’ theorem twice:

OA2 = OB2 + BA2

= OB2 + z2

= x2 + y2 + z2

∴ |
−−→
OA| =

√
x2 + y2 + z2

y

x

(x, y, z)

z

y

z

k

i
j

1
1

1

x

z

A

yj
zk

Bx

xiO y
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Let a = i + j − k and b = i + 7k. Find:

a + ba b − 3ab |a|c

Example 29

Solution
a + b

= i + j − k + i + 7k

= 2i + j + 6k

a b − 3a

= i + 7k − 3(i + j − k)

= −2i − 3 j + 10k

b |a| =
√

12 + 12 + (−1)2

=
√

3

c

OABCDEFG is a cuboid such that
−−→
OA = 3 j,

−−→
OC = k

and
−−→
OD = i.

a Express each of the following in terms of i, j and k:

i
−−→
OE ii

−−→
OF iii

−−→
GF iv

−−→
GB

b Let M and N be the midpoints of OD and GF
respectively. Find MN.

D

G

C

O

F

B

A

E

Example 30

Solution

a i
−−→
OE =

−−→
OA +

−−→
AE = 3 j + i (as

−−→
AE =

−−→
OD)

ii
−−→
OF =

−−→
OE +

−−→
EF = 3 j + i + k (as

−−→
EF =

−−→
OC)

iii
−−→
GF =

−−→
OA = 3 j

iv
−−→
GB =

−−→
DA =

−−→
DO +

−−→
OA = −i + 3 j

b
−−−→
MN =

−−−→
MD +

−−→
DG +

−−→
GN

=
1
2
−−→
OD +

−−→
OC +

1
2
−−→
OA

=
1
2

i + k +
3
2

j

|
−−−→
MN | =

√
1
4

+ 1 +
9
4

=

√
14
2

If a = 3i + 2 j + 2k, find â.

Example 31

Solution

|a| =
√

9 + 4 + 4 =
√

17

â =
1
√

17

(
3i + 2 j + 2k

)
∴
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Summary 21I
In three dimensions:

� The standard unit vectors are i, j and k.

� Each vector can be written in the form u = xi + y j + zk.

� If u = xi + y j + zk, then |u| =
√

x2 + y2 + z2.
y

z

k

i
j

1
1

1

x

Exercise 21ISkill-
sheet

1Example 29 Let a = i + j + 2k, b = 2i − j + 3k and c = −i + k. Find:

a − ba 3b − 2a + cb |b|c
|b + c|d 3(a − b) + 2ce

2Example 30 OABCDEFG is a cuboid such that
−−→
OA = 2 j,

−−→
OC = 2k and

−−→
OD = i

Express the following vectors in terms of i, j and k:

a
−−→
OB b

−−→
OE c

−−→
OG

d
−−→
OF e

−−→
ED f

−−→
EG

g
−−→
CE h

−−→
BD

G

D

C

O

F

B

E

A

3Example 31 Let a = 3i + j − k.

a i Find â.
ii Find −2â.

b Find the vector b in the direction of a such that |b| = 5.

4 If a = i − j + 5k and b = 2i − j − 3k, find the vector c in the direction of a such
that |c| = |b|.

5 Let P and Q be the points defined by the position vectors i + 2 j − k and 2i − j − k
respectively. Let M be the midpoint of PQ. Find:

a
−−→
PQ b |

−−→
PQ| c

−−→
OM

6 OABCDEFG is a cuboid such that
−−→
OA = 3 j,

−−→
OC = 2k and

−−→
OD = i

The point M is such that
−−→
OM =

1
3
−−→
OE, and N is the

midpoint of BF. Find:

a
−−−→
MN b |

−−−→
MN|

G

D

C

O

F
B

E

A
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Assign-
ment

Nrich

Chapter summary

� A vector is a set of equivalent directed line segments.

� A directed line segment from a point A to a point B is denoted by
−−→
AB.

� The position vector of a point A is the vector
−−→
OA, where O is the origin.

� A vector can be written as a column of numbers. The vector
23

 is ‘2 across and 3 up’.

Basic operations on vectors
� Addition

• If u =

ab
 and v =

c
d

, then u + v =

a + c
b + d

.
• The sum u + v can also be obtained geometrically as shown.

� Scalar multiplication
• For k ∈ R+, the vector ku has the same direction as u, but

its length is multiplied by a factor of k. A

B

v

u

u + v

C

• The vector −v has the same length as v, but the opposite direction.
• Two non-zero vectors u and v are parallel if there exists k ∈ R \ {0} such that u = kv.

� Subtraction u − v = u + (−v)

Component form
� In two dimensions, each vector u can be written in the form

u = xi + y j, where:

• i is the unit vector in the positive direction of the x-axis
• j is the unit vector in the positive direction of the y-axis.

� The magnitude of vector u = xi + y j is given by |u| =
√

x2 + y2. O
x

y

u y j

x i

� The unit vector in the direction of vector a is given by â =
1
|a|

a.

Scalar product and vector projections
� The scalar product of vectors a = a1i + a2 j and b = b1i + b2 j is given by

a · b = a1b1 + a2b2

� The scalar product is described geometrically by a · b = |a| |b| cos θ,
where θ is the angle between a and b.

� Therefore a · a = |a|2.
θ

b

a

� Two non-zero vectors a and b are perpendicular if and only if a · b = 0.
� Resolving a vector a into rectangular components is expressing the vector a as a sum of

two vectors, one parallel to a given vector b and the other perpendicular to b.

� The vector resolute of a in the direction of b is
a · b
b · b

b.

� The scalar resolute of a in the direction of b is
a · b
|b|

.
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Displacement and velocity
� The displacement of a particle is the change in its position. If a particle moves from

point A to point B, then its displacement is
−−→
AB.

� The velocity of a particle is the rate of change of its position with respect to time.
� Motion with constant velocity If a particle moves with a constant velocity of v m/s for

t seconds, then its displacement vector, s m, is given by s = tv.

Relative velocity
� The relative velocity of an object A with respect to another object B is the velocity that

object A would appear to have to an observer moving along with object B.
� If an object A is in motion relative to another object B, we can find the velocity of A using

a vector sum:

Velocity of A
relative to Earth

=
Velocity of A
relative to B

+
Velocity of B
relative to Earth

Forces and equilibrium
� Resultant force When a number of forces act simultaneously on an object, their

combined effect is called the resultant force.
� Equilibrium If the resultant force acting on an object is zero, then the object is said to be

in equilibrium; it will remain at rest or continue moving with constant velocity.
� Triangle of forces If three forces are acting on a particle in equilibrium, then the vectors

representing the forces may be arranged to form a triangle. The magnitudes of the forces
and the angles between them can be found using trigonometric ratios (if the triangle
contains a right angle) or using the sine or cosine rule.

� Resolution of forces
If all forces on a particle are acting in
two dimensions, then each force can be
expressed in terms of its components in
the i- and j-directions:

F = |F| cos θ i + |F| sin θ j

y
F

x

j

θ i
|F | cos θ i

|F | sin θ j

For the particle to be in equilibrium, the sum of all the i-components must be zero and the
sum of all the j-components must be zero.

Vectors in three dimensions
� In three dimensions, each

vector u can be written in
the form u = xi + y j + zk,
where i, j and k are unit
vectors as shown.

y

z

x

(x, y, z)

y

k

i
j

x

z

� If u = xi + y j + zk, then |u| =
√

x2 + y2 + z2.
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Technology-free questions

1 Given that a = 7i + 6 j and b = 2i + x j, find the values of x for which:

a is parallel to ba a and b have the same magnitude.b

2 ABCD is a parallelogram where
−−→
OA = 2i − j,

−−→
AB = 3i + 4 j and

−−→
AD = −2i + 5 j. Find the

coordinates of the four vertices of the parallelogram.

3 Let a = 2i − 3 j + k, b = 2i − 4 j + 5k and c = −i − 4 j + 2k. Find the values of p and q
such that a + pb + qc is parallel to the x-axis.

4 The position vectors of P and Q are 2i − 2 j + 4k and 3i − 7 j + 12k respectively.

Find |
−−→
PQ|.a Find the unit vector in the direction of

−−→
PQ.b

5 The position vectors of A, B and C are 2 j + 2k, 4i + 10 j + 18k and xi + 14 j + 26k
respectively. Find x if A, B and C are collinear.

6
−−→
OA = 4i + 3 j and C is a point on OA such that |

−−→
OC| =

16
5

.

a Find the unit vector in the direction of
−−→
OA.

b Hence find
−−→
OC.

7 In the diagram, ST = 2TQ,
−−→
PQ = a,

−→
SR = 2a and

−→
SP = b.

a Find each of the following in terms of a and b:

i
−−→
SQ ii

−−→
TQ iii

−−→
RQ iv

−−→
PT v

−−→
TR

b Show that P, T and R are collinear.

R

Q

a

P
b S

T

2a

8 If a = 5i − s j + 2k and b = ti + 2 j + uk are equal vectors.

Find s, t and u.a Find |a|.b

9 The vector p has magnitude 7 units and bearing 050◦ and the vector q has magnitude
12 units and bearing 170◦. (These are compass bearings on the horizontal plane.) Draw
a diagram (not to scale) showing p, q and p + q. Calculate the magnitude of p + q.

10 If a = 5i + 2 j + k and b = 3i − 2 j + k, find:

a + 2ba |a|b âc a − bd

11 Let O, A and B be the points (0, 0), (3, 4) and (4,−6) respectively.

a If C is the point such that
−−→
OA =

−−→
OC +

−−→
OB, find the coordinates of C.

b If D is the point (1, 24) and
−−→
OD = h

−−→
OA + k

−−→
OB, find the values of h and k.

12 Let p = 3i + 7 j and q = 2i − 5 j. Find the values of m and n such that mp + nq = 8i + 9 j.

13 The points A, B and C have position vectors a, b and c relative to an origin O. Write
down an equation connecting a, b and c for each of the following cases:

a OABC is a parallelogram
b B divides AC in the ratio 3 : 2. That is, AB : BC = 3 : 2.
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14 Let a = 2i − 3 j, b = −i + 3 j and c = −2i − 2 j. Find:

a · aa b · bb c · cc a · bd
a · (b + c)e (a + b) · (a + c)f (a + 2b) · (3c − b)g

15 Points A, B and C have position vectors a = 4i + j, b = 3i + 5 j and c = −5i + 3 j
respectively. Evaluate

−−→
AB ·

−−→
BC and hence show that 4ABC is right-angled at B.

16 Given the vectors p = 5i + 3 j and q = 2i + t j, find the values of t for which:

a p + q is parallel to p− q
b p− 2q is perpendicular to p + 2q
c |p− q| = |q|

17 Points A, B and C have position vectors a = 2i + 2 j, b = i + 2 j and c = 2i − 3 j. Find:

a i
−−→
AB ii

−−→
AC

b the vector resolute of
−−→
AB in the direction of

−−→
AC

c the shortest distance from B to the line AC.

18 Priya can swim at a speed of 1.6 m/s in still water. She swims across a river that is
48 metres wide and flows at 1.2 m/s between parallel banks.

a Find the speed of the swimmer relative to the river bank.
b Find the time that it takes her to cross the river.
c Describe the position at which she arrives on the opposite bank.

19 A mass of 15 kg is suspended from two strings of
length 6 cm and 8 cm, the ends of the strings being
attached to two points in a horizontal line, 10 cm apart.
Find the tension in each string.

10 cm

6 cm8 cm

15 kg wt

20 A body of mass 70 kg is placed on a smooth
inclined plane which rises 6 cm vertically for
every 12 cm horizontally. A string is attached to
a point further up the plane which prevents the
body from moving. Find the tension in the string
and the magnitude of the force exerted on the
body by the plane.

12 cm

70 kg wt
6 cm

21 A body of mass 15 kg is kept at rest on a smooth
inclined plane of 30◦ by a force acting at an
angle of 30◦ to the plane. Find the magnitude of
the force.

30°

30°

15 kg wt

F
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Multiple-choice questions

1 The vector v is defined by the directed line segment from (1, 1) to (3, 5).
If v = ai + b j, then

a = 3 and b = 5A a = −2 and b = −4B a = 2 and b = 4C
a = 2 and b = 3D a = 4 and b = 2E

2 If vector
−−→
AB = u and vector

−−→
AC = v, then vector

−−→
CB is equal to

u + vA v − uB u − vC u × vD v + uE

3 If vector a =

 3
−2

 and vector b =

−1
3

, then 2a − 3b = 9
−13

A
97

B
 9
−7

C
 3
−13

D
35

E

4 PQRS is a parallelogram. If
−−→
PQ = p and

−−→
QR = q, then

−−→
SQ is equal to

p + qA p− qB q − pC 2qD 2pE

5 |3i − 5 j| =

2A
√

34B 34C 8D −16E

6 If
−−→
OA = 2i + 3 j and

−−→
OB = i − 2 j, then

−−→
AB equals

−i − 5 jA −i + 5 jB −i − jC −i + jD i + jE

7 If
−−→
OA = 2i + 3 j and

−−→
OB = i − 2 j, then |

−−→
AB| equals

6A 26B
√

26C
√

24D 36E

8 If a = 2i + 3 j, then the unit vector in the direction of a is

2i + 3 jA
1

13
(2i + 3 j)B

1
√

5
(2i + 3 j)C

1
√

13
(2i + 3 j)D

√
13 (2i + 3 j)E

9 An aircraft has an airspeed of 100 km/h. The aircraft is heading in the direction 3i − 4 j
and the wind is blowing with a velocity of −5i + 20 j km/h. The velocity of the aircraft
relative to the ground (in km/h) is

55i − 60 jA 65i − 60 jB 305i − 420 jC 60i − 40 jD 295i − 380 jE

10 The velocity of a ship is 20i km/h and the velocity of the wind is −4i + 3 j km/h. The
direction of the smoke trail coming from the ship’s funnel is given by

16i + 3 jA −24i + 3 jB −4i + 3 jC −16i − 3 jD 24i − 3 jE

11 A force F of magnitude 50 kg wt acts as shown in the diagram.
The magnitude of the component of F in the i-direction is

A 300 kg wt B 50 kg wt C 40 kg wt
D 20 kg wt E 25 kg wt

60°
i

50 kg wt
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12 Two perpendicular forces have magnitudes 5 kg wt and 4 kg wt. The magnitude of the
resultant force is

3 kg wtA
√

11 kg wtB
√

41 kg wtC 1 kg wtD 9 kg wtE

13 A particle is acted on by a force of magnitude 7 kg wt acting on a bearing of 45◦ and
by a force of magnitude a kg wt acting on a bearing of 135◦. If the magnitude of the
resultant force is 9 kg wt, then the value of a must be

2A 4
√

2B
√

130C 16D 32E

14 Two forces of magnitude 20 kg wt act on a particle at O as shown.
The magnitude of the resultant force (in kg wt) is

A 40 B 20
√

3 C 0
D 20 E 10 20O

20

60°

Extended-response questions

1 Let
10

 represent a displacement 1 km due east.

Let
01

 represent a displacement 1 km due north.

The diagram shows a circle of radius 25 km with
centre at O(0, 0). A lighthouse entirely surrounded
by sea is located at O. The lighthouse is not visible
from points outside the circle.

A ship is initially at point P, which is 31 km west
and 32 km south of the lighthouse.

x
O

P

y

20

10

30

–10
–10 10 20 30

–20

–20

–30

–30

a Write down the vector
−−→
OP.

The ship is travelling in the direction of vector u =

43
 with speed 20 km/h.

An hour after leaving P, the ship is at point R.

b Show that
−−→
PR =

16
12

 and hence find the vector
−−→
OR.

c Show that the lighthouse first becomes visible when the ship reaches R.

2 Given that p = 3i + j and q = −2i + 4 j, find:

|p− q|a |p| − |q|b r such that p + 2q + r = 0c

3 The quadrilateral PQRS is a parallelogram. The point P has coordinates (5, 8), the

point R has coordinates (32, 17) and the vector
−−→
PQ is given by

−−→
PQ =

 20
−15

.
a Find the coordinates of Q and write down the vector

−−→
QR.

b Write down the vector
−−→
RS and show that the coordinates of S are (12, 32).
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4 Let a =


−2

1
2

, b =


11
7
3

, c =


7
9
7

 and d =


26
12
2

.
a Find the value of the scalar k such that a + 2b − c = kd.
b Find the scalars x and y such that xa + yb = d.
c Use your answers to a and b to find scalars p, q and r (not all zero) such that

pa + qb + rc = 0.

5 The diagram shows the path of a light beam
from its source at O in the direction of the

vector r =

31
.

At point P, the beam is reflected by an
adjustable mirror and meets the x-axis at M.
The position of M varies, depending on the
adjustment of the mirror at P. O

P

M

r

θ

a Given that
−−→
OP = 4r, find the coordinates of P.

b The point M has coordinates (k, 0). Find an expression, in terms of k, for vector
−−→
PM.

c Find the magnitudes of vectors
−−→
OP,
−−→
OM and

−−→
PM, and hence find the value of k for

which θ is equal to 90◦.
d Find the value θ for which M has coordinates (9, 0).

6 A helicopter can fly at 150 km/h in still air. The wind is blowing at 30 km/h from
the east.

a How long in total would it take the helicopter to fly directly to a point 180 km due
east and back again?

b On what bearing should the helicopter head in order to fly directly to a point 90 km
due north? How long would this take?

c On what bearing should the helicopter head in order to fly due south?

7 The unit vectors i and j represent 1 km east and 1 km north respectively. Two motor
boats, A and B, are moving with velocities vA = 12i + 16 j km/h and vB = 8i + α j km/h,
where α is a real number.

a Find an expression for the velocity of boat A relative to boat B.
b When the two boats first sight each other, boat A is 10 km due west of boat B.

i Find the value of α for which the two boats would collide if they maintained their
current velocities.

ii Find the time between the boats first sighting each other and the collision.
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22A Technology-free questions
1 A transformation has rule (x, y)→ (2x + y,−x − 2y).

a Find the image of the point (2, 3).
b Find the matrix of this transformation.
c Sketch the image of the unit square and find its area.
d Find the rule for the inverse transformation.

2 Find the matrix corresponding to each of the following linear transformations:

reflection in the x-axisa dilation of factor 3 from the y-axisb
shear of factor 2 parallel to the y-axisc projection onto the y-axisd
rotation by 45◦ anticlockwisee rotation by 30◦ clockwisef
reflection in the line y = −xg reflection in the line y = x tan 30◦h

3 a Find the matrix that will reflect the plane in the line y = 4x.
b Find the image of the point (2, 4) under this transformation.

4 Find the transformation matrix that corresponds to:

a a reflection in the y-axis and then a dilation of factor 2 from the x-axis
b a rotation by 90◦ anticlockwise and then a reflection in the line y = x

c a reflection in the line y = −x and then a shear of factor 2 parallel to the x-axis

5 a Find the rule for the transformation that will reflect (x, y) in the y-axis then translate

the result by the vector
 2
−1

.
b Find the rule for the transformation if the translation takes place before the reflection.
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6 Each of the following matrices maps the unit square to a parallelogram. Sketch each
parallelogram and find its area. 1 2
−1 1

a
2 1
1 −2

b

7 a Find the rule for the transformation that will reflect the plane in the line y = x − 1.
Hint: Translate the plane 1 unit in the y-direction, reflect in the line y = x, and then

translate the plane back to its original position.
b Find the image of the point (0, 0) under this transformation.
c Sketch the unit square and its image under this transformation.

8 Let a = 2i + 6 j.

a Find |a|.
b Find the unit vector in the direction of a.
c Write down a vector of magnitude 8 that has the same direction as a.
d Write down a vector of magnitude 2 that has the opposite direction to a.

9 Let a = 2i − 3 j, b = −2i + 3 j and c = −3i − 2 j. Find:

a · aa b · bb c · cc a · bd
a · (b + c)e (a + b) · (a + c)f (a + 2b) · (3c − b)g

10 The points A, B, C and D have position vectors
−−→
OA = 4i + 2 j,

−−→
OB = −i + 7 j,

−−→
OC = 8i + 6 j and

−−→
OD = pi − 2 j.

a Find the values of m and n such that m
−−→
OA + n

−−→
BC = 2i + 10 j.

b Find the value of p such that
−−→
OB is perpendicular to

−−→
CD.

c Find the values of p such that |
−−→
AD| =

√
17.

11 A motorboat heads due east at 16 m/s across a river that flows due north at 9 m/s.

a What is the resultant velocity of the boat?
b If the river is 136 m wide, how long does it take the boat to cross the river?
c How far downstream is the boat when it reaches the other side of the river?

12 Two forces of equal magnitude F kg wt act on a particle and they have a resultant
force of magnitude 6 kg wt. When one of the forces is doubled in magnitude, the
resultant force is 11 kg wt. Find the value of F and the cosine of the angle between
the two forces.

13 A block of mass 10 kg is maintained at rest on a smooth plane inclined at 30◦ to the
horizontal by a string. Calculate the tension in the string and the reaction of the plane if:

the string is parallel to the planea the string is horizontal.b

14 A mass of 10 kg is suspended by two strings of lengths 5 cm and 12 cm that are
attached to fixed points on the same horizontal level 13 cm apart. Find the tension in
each string.
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22B Multiple-choice questions
1 The point (a, b) is reflected in the line with equation x = m. The image has coordinates

(2m − a, b)A (a, 2m − b)B (a − m, b)C (a, b − m)D (2m + a, b)E

2 The image of the line { (x, y) : x + y = 4 } under a dilation of factor
1
2

from the y-axis
followed by a reflection in the line x = 4 is

{ (x, y) : y = 2x }A { (x, y) : y + 2 = 0 }B { (x, y) : y + 2x − 16 = 0 }C
{ (x, y) : x + y = 0 }D { (x, y) : y = 2x − 12 }E

3 The image of { (x, y) : y = x2 } under a translation by the vector
32

 followed by a
reflection in the x-axis is

{ (x, y) : y = (x − 3)2 + 2 }A { (x, y) : −(x − 3)2 = y + 2 }B
{ (x, y) : y = (x + 3)2 + 2 }C { (x, y) : −y + 2 = (x − 3)2 }D
none of theseE

4 The image of the graph of y = 2x under a dilation of factor 2 from the x-axis followed

by a dilation of factor
1
3

from the y-axis has the equation

y =
1
3
× 23xA y = 3 × 2

x
2B y = 2 × 23xC y = 2 × 2

x
3D none of theseE

5 Consider these two transformations:

� T1: A reflection in the line with equation x = 2.

� T2: A translation by the vector
23

.
The rule for T1 followed by T2 is given by

(x, y)→ (2 − x, y + 3)A (x, y)→ (−x, y + 3)B (x, y)→ (x + 2, y + 3)C
(x, y)→ (6 − x, y + 3)D none of theseE

6 A transformation has rule (x, y)→ (4x + 3y, 5x + 4y). The rule for the inverse
transformation is

(x, y)→ (3x + 4y, 5x + 4y)A (x, y)→ (3x − 4y, 5x − 4y)B
(x, y)→ (4x + 3y, 5x + 4y)C (x, y)→ (4x − 3y,−5x + 4y)D
(x, y)→ (−4x + 3y, 5x − 4y)E

7 Transformation T rotates the plane about the origin by 35◦ clockwise.
Transformation S rotates the plane about the origin by 15◦ anticlockwise.
The matrix of T followed by S iscos 50◦ − sin 50◦

sin 50◦ cos 50◦

A
cos 20◦ − sin 20◦

sin 20◦ cos 20◦

B
 cos 50◦ sin 50◦

− sin 50◦ cos 50◦

C cos 20◦ sin 20◦

− sin 20◦ cos 20◦

D
cos 50◦ sin 50◦

sin 50◦ − cos 50◦

E
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8 The linear transformation determined by the matrix
cos 40◦ − sin 40◦

sin 40◦ cos 40◦

 is

clockwise rotation by 40◦A anticlockwise rotation by 40◦B
reflection in the line y = x tan 40◦C reflection in the line y = x tan 20◦D
anticlockwise rotation by 20◦E

9 The unit vector in the direction of vector a = 3i − 4 j is

i − jA
1
5

(3i − 4 j)B i + jC
1

25
(3i − 4 j)D

3
5

i +
4
5

jE

10 If
−−→
OA = 2i − 4 j + k and

−−→
OB = 3i + 4 j + k, then

−−→
AB equals

5i + 2kA −i − 8 jB i + 8 j + 2kC i + 8 jD iE

11 If a = 2i + 4 j and b = 3i − 2 j, then a − b equals

5i − 6 jA −i + 6 jB 5i − 2 jC 5i + 2 jD i − 6 jE

12 The magnitude of vector a = 2i − j + 4k is
√

21A 21B 19C
√

19D 7E

13 In the diagram, AB is parallel to OC, DC is parallel to OB,
b =
−−→
OB, c =

−−→
OC and AB = OB = OC = DC.

Vector
−−→
AD is equal to

A b + c B 2(c − b) C 2(b − c)
D 2b + 2c E |b + c|

B C

A
O D

b c

14 If r = 2i − j + k and s = −i + j + 3k, then 2r − s equals

3i − j + 5kA 3i − 3 j − kB 5i − j + 5kC 5i − 3 j − kD 6i − 4 j − 4kE

15 PQR is a straight line and PQ = 2QR. If
−−→
OQ = 2i − 3 j and

−−→
OR = i + 2 j, then

−−→
OP could be equal to

A 4i − 13 j B 3i − j C 2i − 10 j
D 3i + j E i − 5 j

R
Q

P

16 Let u = i + a j − 5k and v = bi − 3 j + 6k. Vectors u and v are parallel when

a = −3 and b = −1A a =
5
2

and b = −
6
5

B a = 3 and b = −1C

a = −
5
6

and b =
6
5

D a =
2
5

and b =
5
6

E

17 Let a = 3i + 4 j, b = 2i − j and x = i + 5 j. If x = sa + tb, then the scalars s and t are
given by

s = −1 and t = −1A s = −1 and t = 1B s = 1 and t = −1C
s = 1 and t = 1D s = 5 and t = 5E
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18 In this diagram, OABC is a trapezium.
If a =

−−→
OA, c =

−−→
OC and

−−→
OA = 3

−−→
CB, then

−−→
AB equals

A 3c B c −
2
3

a C 3c − 2a

D
2
3

a − c E
4
3

a + c

C B

O a

c

A

19 In this diagram, a =
−−→
OA, b =

−−→
OB, c =

−−→
OC and

AC : AB = 2 : 1. The vector c is equal to

A a + 2b B 3a − 2b C 2a + b
D 2a − b E 3a + b

C

c

O b

a A

B

20 A bus and a car are on a straight level road that runs east–west. The bus is moving east
at 20 m/s and the car is moving west at 20 m/s. If a man walks from the back to the
front of the bus at 2 m/s, what is the velocity of the man relative to the car?

38 m/s eastA 38 m/s westB 42 m/s eastC 42 m/s westD 22 m/s eastE

Questions 21–22 refer to this system of forces, which is
in equilibrium.

21 The magnitude of force F1 is approximately

A 10.78 kg wt B 5.94 kg wt C 9.10 kg wt
D 12.26 kg wt E 7.04 kg wt

F1

F2

8 kg wt

100°
120°

22 The magnitude of force F2 is approximately

10.78 kg wtA 5.94 kg wtB 9.10 kg wtC 12.26 kg wtD 7.04 kg wtE

Questions 23–24 refer to the following information:

A 10 kg block is resting on a smooth plane inclined at 25◦ to
the horizontal and is prevented from slipping down the plane
by a string, as shown in the diagram.

N F

25°

10 kg wt

23 The magnitude, N, of the normal reaction force is approximately

4.23 kg wtA 9.06 kg wtB 8.19 kg wtC 2.59 kg wtD 10 kg wtE

24 The magnitude, F, of the tension in the string is approximately

4.23 kg wtA 9.06 kg wtB 8.19 kg wtC 2.59 kg wtD 10 kg wtE
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22C Extended-response questions
1 The coordinates of A, B and C are (−4, 1),

(−2, 1) and (−2, 5) respectively.

a Find the rule of the transformation that
maps triangle ABC to triangle A′B′C′.

b On graph paper, draw triangle ABC
and its image under a reflection in
the x-axis.

c On the same set of axes, draw the
image of ABC under a dilation of
factor 2 from the y-axis.

y

2 40

1

8

4
5

–4 –2

A B

C

C ¢

A¢ B¢

x

d Find the image of the parabola y = x2 under a dilation of factor 2 from the x-axis

followed by a translation by the vector
−3

2

.
e Find the rule for the transformation that maps the graph of y = x2 to the graph

of y = −2(x − 3)2 + 4.

2 A linear transformation is represented by the matrix

M =

 3
5 − 4

5

4
5

3
5


a Show that this transformation is a rotation.
b Let C be the circle that passes through the origin and has its centre at (0, 1).

i Find the equation of C.
ii Find the equation of C′, the image of C under the transformation defined by M.

c Find the coordinates of the points of intersection of C and C′.

3 Let R be the transformation matrix for a rotation about the origin by
π

4
anticlockwise.

a Give the 2 × 2 matrix R.
b Find the inverse of this matrix.
c If the image of (a, b) is (1, 1), find the values of a and b.
d If the image of (c, d) is (1, 2), find the values of c and d.
e i If (x, y)→ (x′, y′) under this transformation, use the result of b to find x and y in

terms of x′ and y′.
ii Find the image of y = x2 under this transformation.

4 Consider lines y = x and y = 2x.

a Sketch these two lines on the same set of axes.
b The acute angle between the two lines, θ radians, can be written in the form
θ = tan−1(a) − b. What are the values of a and b?

c Hence find a rotation matrix that will rotate the line y = x to the line y = 2x. You will
need to use the compound angle formulas for sine and cosine.
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5 Let M be the transformation that reflects the plane in the line y = x.

a i Find the image of the point A(1, 3) under this transformation.
ii The image of the triangle with vertices A(1, 3), B(1, 5) and C(3, 3) is another

triangle. Find the coordinates of the vertices of the image.
iii Sketch triangle ABC and its image on a set of axes, with both axes from −5 to 5.

b i Show that the equation of the image of the graph of y = x2 − 2 under the
transformation M is x = y2 − 2.

ii Find the coordinates of the points of intersection of y = x2 − 2 and the line y = x.
iii Show that the x-coordinates of the points of intersection of y = x2 − 2 and its

image may be determined by the equation x4 − 4x2 − x + 2 = 0.
iv Two solutions of the equation x4 − 4x2 − x + 2 = 0 are

x =
1
2

(−1 +
√

5) and x =
1
2

(−1 −
√

5)

Use this result and the result of b ii to find the coordinates of the points of
intersection of y = x2 − 2 and its image under M.

6 In the diagram, D is the midpoint of AC and E is
the point on BC such that BE : EC = 1 : t, where
t > 0. Suppose that DE is extended to a point F
such that DE : EF = 1 : 7.

Let a =
−−→
AD and b =

−−→
AB.

a Express
−−→
AE in terms of t, a and b.

b Express
−−→
AE in terms of a and

−−→
AF.

c Show that
−−→
AF =

9 − 7t
1 + t

a +
8t

1 + t
b.

d If A, B and F are collinear, find the value of t.

B

A

E

D
C

7 The vertices A, B and C of a triangle have position
vectors a, b and c respectively, relative to an origin in
the plane ABC.

a Let P be an arbitrary point on the line segment AB.
Show that the position vector of P can be written in
the form

ma + nb, where m ≥ 0, n ≥ 0 and m + n = 1

Hint: Assume that P divides AB in the ratio x : y.

A

B

C

b Find
−−→
PC in terms of a, b and c.

c Let Q be an arbitrary point on the line segment PC. Show that the position vector
of Q can be written in the form

λa + µb + γc, where λ ≥ 0, µ ≥ 0, γ ≥ 0 and λ + µ + γ = 1

Note: The triple of numbers (λ, µ, γ) are known as the barycentric coordinates of
the point Q in the triangle ABC.
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8 a A man walks north at a rate of 4 km/h and notices that the wind appears to blow
from the west. He doubles his speed and now the wind appears to blow from the
north-west. What is the velocity of the wind?
Note: Both the direction and the magnitude must be given.

b A river 400 m wide flows from east to west at a steady speed of 1 km/h.
A swimmer, whose speed in still water is 2 km/h, starts from the south bank and
heads north across the river. Find the swimmer’s speed over the river bed and how far
downstream he is when he reaches the north bank.

c To a motorcyclist travelling due north at 50 km/h, the wind appears to come from the
north-west at 60 km/h. What is the true velocity of the wind?

d A dinghy in distress is 6 km on a bearing of 230◦ from a lifeboat and is drifting in a
direction of 150◦ at 5 km/h. In what direction should the lifeboat travel to reach the
dinghy as quickly as possible if the maximum speed of the lifeboat is 35 km/h?

9 a Let points O, A, B and C be coplanar and let a =
−−→
OA, b =

−−→
OB and c =

−−→
OC. Assume

that a and b are not parallel. If points A, B and C are collinear with

c = αa + βb where α, β ∈ R

show that α + β = 1.
b In the figure, the point G is the centroid of a triangle

(i.e. the point where the lines joining each vertex to the
midpoint of the opposite side meet).
A line passing through G meets ZX and ZY at points H
and K respectively, with ZH = hZX and ZK = kZY .

i Prove that
−−→
ZG =

2
3
−−→
ZM.

ii Express
−−→
ZG in terms of h, k,

−−→
ZH and

−−→
ZK.

H

X
M

G K

Y

Z

iii Find the value of
1
h

+
1
k

. (Use the result from a.)

iv If h = k, find the value of h and describe geometrically what this implies.
v If the area of triangle XYZ is 1 cm2, find the area of triangle HKZ when h = k.
vi If k = 2h, find the value of h and describe geometrically what this implies.
vii Describe the restrictions on h and k, and sketch the graph of h against k for

suitable values of k.
viii Investigate the area, A cm2, of triangle HKZ as a ratio with respect to the area

of triangle XYZ, as k varies. Sketch the graph of A against k. Be careful with
the domain.
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23
Kinematics

Objectives
I To model motion in a straight line.

I To apply di�erentiation to problems involving motion in a straight line.

I To apply antidi�erentiation to problems involving motion in a straight line.

I To use the formulas for motion with constant acceleration.

I To use graphical methods to solve problems involving motion in a straight line.

Kinematics is the study of motion without reference to the cause of the motion.

In this chapter, we will consider the motion of a particle in a straight line only. This simple
model can be applied in various real-life situations. For example:

� finding the braking distance of a car travelling at 60 km/h
� finding the maximum height reached by a stone thrown into the air
� finding the time required for a train to travel between two stations.

When studying motion, it is important to make a distinction between vector quantities and
scalar quantities:

Vector quantities Position, displacement, velocity and acceleration must be specified by
both magnitude and direction.

Scalar quantities Distance, time and speed are specified by their magnitude only.

Since we are considering movement in a straight line, the direction of each vector quantity is
simply specified by the sign of the numerical value.

This chapter uses your knowledge of differential calculus from Mathematical Methods
Units 1 & 2.
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23A Position, velocity and acceleration 841

23A Position, velocity and acceleration
Position
The position of a particle moving in a straight line is determined by its distance from a
fixed point O on the line, called the origin, and whether it is to the right or left of O. By
convention, the direction to the right of the origin is considered to be positive.

PO

x

Consider a particle which starts at O and begins to move. The position of the particle at any
instant can be specified by a real number x. For example, if the unit is metres and if x = −3,
the position is 3 m to the left of O; while if x = 3, the position is 3 m to the right of O.

Sometimes there is a rule that enables the position at any instant to be calculated. In this case,
we can view x as being a function of t. Hence x(t) is the position at time t.

For example, imagine that a stone is dropped from the top of a vertical cliff 45 metres
high. Assume that the stone is a particle travelling in a straight line. Let x(t) metres be the
downwards position of the particle from O, the top of the cliff, t seconds after the particle is
dropped. If air resistance is neglected, then an approximate model for the position is

x(t) = 5t2 for 0 ≤ t ≤ 3

A particle moves in a straight line so that its position, x cm, relative to O at time t seconds
is given by x = t2 − 7t + 6, t ≥ 0.

a Find its initial position. b Find its position at t = 4.

Example 1

Solution
a At t = 0, x = +6, i.e. the particle is 6 cm to the right of O.
b At t = 4, x = (4)2 − 7(4) + 6 = −6, i.e. the particle is 6 cm to the left of O.

Displacement and distance
The displacement of a particle is defined as the change in position of the particle.

It is important to distinguish between the scalar quantity distance and the vector quantity
displacement (which has a direction). For example, consider a particle that starts at O and
moves first 5 units to the right to point P, and then 7 units to the left to point Q.

1 2 3 4 5 60–1–2–3–4

POQ

The difference between its final position and its initial position is −2. So the displacement of
the particle is −2 units. However, the distance it has travelled is 12 units.
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842 Chapter 23: Kinematics

Velocity and speed
You are already familiar with rates of change through your studies in Mathematical Methods.

Average velocity
The average rate of change of position with respect to time is average velocity.

A particle’s average velocity for a time interval [t1, t2] is given by

average velocity =
change in position

change in time
=

x2 − x1

t2 − t1
where x1 is the position at time t1 and x2 is the position at time t2.

Instantaneous velocity
The instantaneous rate of change of position with respect to time is instantaneous velocity.
We will refer to the instantaneous velocity as simply the velocity.

If a particle’s position, x, at time t is given as a function of t, then the velocity of the particle
at time t is determined by differentiating the rule for position with respect to time.

If x is the position of a particle at time t, then

velocity v =
dx
dt

Velocity may be positive, negative or zero. If the velocity is positive, the particle is moving to
the right, and if it is negative, the particle is moving to the left. A velocity of zero means the
particle is instantaneously at rest.

Speed and average speed

� Speed is the magnitude of the velocity.

� Average speed for a time interval [t1, t2] is given by
distance travelled

t2 − t1

Units of measurement
Common units for velocity (and speed) are:

1 metre per second = 1 m/s = 1 m s−1

1 centimetre per second = 1 cm/s = 1 cm s−1

1 kilometre per hour = 1 km/h = 1 km h−1

The first and third units are connected in the following way:

1 km/h = 1000 m/h =
1000

60 × 60
m/s =

5
18

m/s

∴ 1 m/s =
18
5

km/h
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23A Position, velocity and acceleration 843

A particle moves in a straight line so that its position, x cm, relative to O at time t seconds
is given by x = t2 − 7t + 6, t ≥ 0.

a Find its initial velocity.
b When does its velocity equal zero, and what is its position at this time?
c What is its average velocity for the first 4 seconds?
d Determine its average speed for the first 4 seconds.

Example 2

Solution

a x = t2 − 7t + 6

v =
dx
dt

= 2t − 7

At t = 0, v = −7. The particle is initially moving to the left at 7 cm/s.

b
dx
dt

= 0 implies 2t − 7 = 0, i.e. t = 3.5

When t = 3.5, x = (3.5)2 − 7(3.5) + 6

= −6.25

So, at t = 3.5 seconds, the particle is at rest 6.25 cm to the left of O.

c Average velocity =
change in position

change in time

Position is given by x = t2 − 7t + 6. So at t = 4, x = −6, and at t = 0, x = 6.

∴ Average velocity =
−6 − 6

4
= −3 cm/s

d Average speed =
distance travelled

change in time

1 2 3 4 5 60–1–2–3–4–5–6

O

t = 4
t = 0t = 3.5 

1
4

–6

The particle stopped at t = 3.5 and began to move in the opposite direction. So we must
consider the distance travelled in the first 3.5 seconds (from x = 6 to x = −6.25) and
then the distance travelled in the final 0.5 seconds (from x = −6.25 to x = −6).

Total distance travelled = 12.25 + 0.25 = 12.5

∴ Average speed =
12.5

4
= 3.125 cm/s

Note: Remember that speed is the magnitude of the velocity. However, we can see from this
example that average speed is not the magnitude of the average velocity.

ISBN 978-1-009-11053-2 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2022 Cambridge University Press



i
i

“2021002006c23txt” — 2022/2/14 — 11:10 — page 844 — #5 i
i

i
i

i
i

844 Chapter 23: Kinematics

Acceleration
The acceleration of a particle is the rate of change of its velocity with respect to time.

� Average acceleration for the time interval [t1, t2] is given by
v2 − v1

t2 − t1
, where v2 is the

velocity at time t2 and v1 is the velocity at time t1.

� Instantaneous acceleration a =
dv
dt

=
d
dt

(dx
dt

)
=

d2x
dt2

Note: The second derivative
d2x
dt2 is just the derivative of the derivative.

Acceleration may be positive, negative or zero. Zero acceleration means the particle is
moving at a constant velocity.

The direction of motion and the acceleration need not coincide. For example, a particle
may have a positive velocity, indicating it is moving to the right, but a negative acceleration,
indicating it is slowing down.

Also, although a particle may be instantaneously at rest, its acceleration at that instant need
not be zero. If acceleration has the same sign as velocity, then the particle is ‘speeding up’. If
the sign is opposite, the particle is ‘slowing down’.

The most commonly used units for acceleration are cm/s2 and m/s2.

A particle moves in a straight line so that its position, x cm, relative to O at time t seconds
is given by x = t3 − 6t2 + 5, t ≥ 0.

a Find its initial position, velocity and acceleration, and hence describe its motion.
b Find the times when it is instantaneously at rest and determine its position and

acceleration at those times.

Example 3

Solution

a x = t3 − 6t2 + 5

v =
dx
dt

= 3t2 − 12t

a =
dv
dt

= 6t − 12

So when t = 0, we have x = 5, v = 0 and a = −12.

Initially, the particle is instantaneously at rest 5 cm to the right of O, with an
acceleration of −12 cm/s2.

b v = 0 implies 3t2 − 12t = 0

3t(t − 4) = 0

∴ t = 0 or t = 4
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23A 23A Position, velocity and acceleration 845

The particle is initially at rest and stops again after 4 seconds.

At t = 0, x = 5 and a = −12.
At t = 4, x = (4)3 − 6(4)2 + 5 = −27 and a = 6(4) − 12 = 12.

After 4 seconds, the particle’s position is 27 cm to the left of O, and its acceleration
is 12 cm/s2.

Summary 23A
� The position of a particle moving in a straight line is determined by its distance from

a fixed point O on the line, called the origin, and whether it is to the right or left of O.
By convention, the direction to the right of the origin is positive.

� Average velocity for a time interval [t1, t2] is given by

average velocity =
change in position

change in time
=

x2 − x1

t2 − t1
where x2 is the position at time t2 and x1 is the position at time t1.

� The instantaneous rate of change of position with respect to time is called the
instantaneous velocity, or simply the velocity.

If x is the position of the particle at time t, then its velocity is v =
dx
dt

� Speed is the magnitude of the velocity.

� Average speed for a time interval [t1, t2] is
distance travelled

t2 − t1

� Average acceleration for a time interval [t1, t2] is given by
v2 − v1

t2 − t1
, where v2 is the

velocity at time t2 and v1 is the velocity at time t1.

� Instantaneous acceleration a =
dv
dt

=
d
dt

(dx
dt

)
=

d2x
dt2

Exercise 23ASkill-
sheet

1Example 1

Example 2

A particle moves in a straight line so that its position, x cm, relative to O at time
t seconds (t ≥ 0) is given by x = t2 − 7t + 12. Find:

its initial positiona its position at t = 5b
its initial velocityc when and where its velocity equals zerod
its average velocity in the first 5 se its average speed in the first 5 s.f

2Example 3 The position, x metres, at time t seconds (t ≥ 0) of a particle moving in a straight line is
given by x = t2 − 7t + 10. Find:

when its velocity equals zeroa its acceleration at this timeb
the distance travelled in the first 5 sc when and where its velocity is −2 m/s.d
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846 Chapter 23: Kinematics 23A

3 A particle moving in a straight line has position x cm relative to the point O at time
t seconds (t ≥ 0), where x = t3 − 11t2 + 24t − 3. Find:

its initial position and velocitya its velocity at any time tb
at what times the particle is stationaryc where the particle is stationaryd
for how long the particle’s velocity is negativee
its acceleration at any time tf
when the particle’s acceleration is zero and its velocity and position at that time.g

4 A particle moves in a straight line so that its position, x cm, relative to O at time
t seconds (t ≥ 0) is given by x = 2t3 − 5t2 + 4t − 5. Find:

a when its velocity is zero and its acceleration at that time
b when its acceleration is zero and its velocity at that time.

5 A particle is moving in a straight line in such a way that its position, x cm, relative to
the point O at time t seconds (t ≥ 0) satisfies x = t3 − 13t2 + 46t − 48. When does the
particle pass through O, and what is its velocity and acceleration at those times?

6 Two particles are moving along a straight path so that their positions, x1 cm and
x2 cm, relative to a fixed point P at any time t seconds are given by x1 = t + 2 and
x2 = t2 − 2t − 2. Find:

a the time when the particles are at the same position
b the time when they are moving with the same velocity.

23B Applications of antidi�erentiation to kinematics
In the previous section, we considered examples in which we were given a rule for the
position of a particle in terms of time, and from it we derived rules for the velocity and the
acceleration by differentiation.

We may be given a rule for acceleration and, by using antidifferentiation and some additional
information, we can deduce rules for both velocity and position.

A body starts from O and moves in a straight line. After t seconds (t ≥ 0) its velocity,
v m/s, is given by v = 2t − 4.

a Find its position x in terms of t.
b Find its position after 3 seconds.
c What is the distance travelled in the first 3 seconds?
d Find its average velocity in the first 3 seconds.
e Find its average speed in the first 3 seconds.

Example 4
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Solution
a We are given the velocity:

v = 2t − 4

Find the position by antidifferentiating:

x = t2 − 4t + c

When t = 0, x = 0, and so c = 0.

∴ x = t2 − 4t

b When t = 3, x = −3. The body is 3 m to the left of O.

c First find when the body is at rest: v = 0 implies 2t − 4 = 0, i.e. t = 2.

When t = 2, x = −4.

Therefore the body goes from x = 0 to x = −4 in the first 2 seconds, and then back to
x = −3 in the next second.

Thus it has travelled 5 m in the first 3 seconds.

d Average velocity =
−3 − 0

3
= −1 m/s

e From part c, the distance travelled is 5 m.

∴ Average speed =
5
3

m/s

A particle starts from rest 3 metres from a fixed point and moves in a straight line with an
acceleration of a = 6t + 8. Find its position and velocity at any time t seconds.

Example 5

Solution
We are given the acceleration:

a =
dv
dt

= 6t + 8

Find the velocity by antidifferentiating:

v = 3t2 + 8t + c

At t = 0, v = 0, and so c = 0.

∴ v = 3t2 + 8t

Find the position by antidifferentiating again:

x = t3 + 4t2 + d

At t = 0, x = 3, and so d = 3.

∴ x = t3 + 4t2 + 3
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848 Chapter 23: Kinematics

A stone is projected vertically upwards from the top of a 20 m high building with an initial
velocity of 15 m/s.

a Find the time taken for the stone to reach its maximum height.
b Find the maximum height reached by the stone.
c What is the time taken for the stone to reach the ground?
d What is the velocity of the stone as it hits the ground?

In this case we only consider the stone’s motion in a vertical direction, so we can treat it
as motion in a straight line. Also we will assume that the acceleration due to gravity is
approximately −10 m/s2. (Note that downwards is considered the negative direction.)

Example 6

Solution
We have

a = −10

v = −10t + c

At t = 0, v = 15, so c = 15.

∴ v = −10t + 15

x = −5t2 + 15t + d

At t = 0, x = 20, so d = 20.

∴ x = −5t2 + 15t + 20

a The stone will reach its maximum height when v = 0, i.e. when −10t + 15 = 0, which
implies t = 1.5.

The stone reaches its maximum height when t = 1.5 seconds.

b At t = 1.5, x = −5(1.5)2 + 15(1.5) + 20

= 31.25

The maximum height reached by the stone is 31.25 metres.

c The stone reaches the ground when x = 0:

−5t2 + 15t + 20 = 0

−5(t2 − 3t − 4) = 0

−5(t − 4)(t + 1) = 0

Thus t = 4. (The solution of t = −1 is rejected, since t ≥ 0.)

The stone takes 4 seconds to reach the ground.

d At t = 4, v = −10(4) + 15

= −25

Thus its velocity on impact is −25 m/s.
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23B 23B Applications of antidi�erentiation to kinematics 849

Summary 23B
Antidifferentiation may be used to go from acceleration to velocity, and from velocity to
position.

Exercise 23BSkill-
sheet

1Example 4 A body starts from O and moves in a straight line. After t seconds (t ≥ 0) its velocity,
v cm/s, is given by v = 4t − 6. Find:

a its position x in terms of t

b its position after 3 s
c the distance travelled in the first 3 s
d its average velocity in the first 3 s
e its average speed in the first 3 s.

2 The velocity of a particle, v m/s, at time t seconds (t ≥ 0) is given by v = 3t2 − 8t + 5.
It is initially 4 m to the right of a point O. Find:

a its position and acceleration at any time t

b its position when the velocity is zero
c its acceleration when the velocity is zero.

3Example 5 A body moves in a straight line with an acceleration of 10 m/s2. If after 2 s it passes
through O and after 3 s it is 25 m from O, find its initial position relative to O.

4 A body moves in a straight line so that its acceleration, a m/s2, after time t seconds
(t ≥ 0) is given by a = 2t − 3. If the initial position of the body is 2 m to the right of a
point O and its velocity is 3 m/s, find the particle’s position and velocity after 10 s.

5Example 6 An object is projected vertically upwards with a velocity of 25 m/s. (Its acceleration due
to gravity is −10 m/s2.) Find:

a the object’s velocity at any time t

b its height above the point of projection at any time t

c the time it takes to reach its maximum height
d the maximum height reached
e the time taken to return to the point of projection.

6 The lift in a tall building passes the 50th floor with a velocity of −8 m/s and an
acceleration of 1

9 (t − 5) m/s2. If each floor spans a height of 6 metres, find at which floor
the lift will stop.
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850 Chapter 23: Kinematics

23C Constant acceleration
If an object is moving due to a constant force (for example, gravity), then its acceleration is
constant. There are several useful formulas that apply in this situation.

Formulas for constant acceleration

For a particle moving in a straight line with constant acceleration a, we can use the
following formulas, where u is the initial velocity, v is the final velocity, s is the
displacement and t is the time taken:

v = u + at1 s = ut +
1
2

at22 v2 = u2 + 2as3 s =
1
2

(u + v)t4

Proof 1 We can write
dv
dt

= a

where a is a constant and v is the velocity at time t. By antidifferentiating with
respect to t, we obtain

v = at + c

where the constant c is the initial velocity. We denote the initial velocity by u, and
therefore v = u + at.

2 We now write
dx
dt

= v = u + at

where x is the position at time t. By antidifferentiating again, we have

x = ut +
1
2

at2 + d

where the constant d is the initial position. The particle’s displacement (change in
position) is given by s = x − d, and so we obtain the second equation.

3 Transform the first equation v = u + at to make t the subject:

t =
v − u

a

Now substitute this into the second equation:

s = ut +
1
2

at2

s =
u(v − u)

a
+

a(v − u)2

2a2

2as = 2u(v − u) + (v − u)2

= 2uv − 2u2 + v2 − 2uv + u2

= v2 − u2

4 Similarly, the fourth equation can be derived from the first and second equations.
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23C Constant acceleration 851

These four formulas are very useful, but it must be remembered that they only apply when
the acceleration is constant.

When approaching problems involving constant acceleration, it is a good idea to list the
quantities you are given, establish which quantity or quantities you require, and then use the
appropriate formula. Ensure that all quantities are converted to compatible units.

An object is moving in a straight line with uniform acceleration. Its initial velocity
is 12 m/s and after 5 seconds its velocity is 20 m/s. Find:

a the acceleration
b the distance travelled during the first 5 seconds
c the time taken to travel a distance of 200 m.

Example 7

Solution
We are given u = 12, v = 20 and t = 5.

Find a using

v = u + at

20 = 12 + 5a

a = 1.6

The acceleration is 1.6 m/s2.

a Find s using

s = ut +
1
2

at2

= 12(5) +
1
2

(1.6)52 = 80

The distance travelled is 80 m.

b

Note: Since the object is moving in one direction, the distance travelled is equal to
the displacement.

c We are now given a = 1.6, u = 12 and s = 200.

s = ut +
1
2

at2Find t using

200 = 12t +
1
2
× 1.6 × t2

200 = 12t +
4
5

t2

1000 = 60t + 4t2

250 = 15t + t2

t2 + 15t − 250 = 0

(t − 10)(t + 25) = 0

t = 10 or t = −25∴

As t ≥ 0, the only allowable solution is t = 10.

The object takes 10 s to travel a distance of 200 m.
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852 Chapter 23: Kinematics 23C

Summary 23C
Constant acceleration

If acceleration is constant, then the following formulas can be used (for acceleration a,
initial velocity u, final velocity v, displacement s and time taken t):

v = u + at1 s = ut +
1
2

at22 v2 = u2 + 2as3 s =
1
2

(u + v)t4

Exercise 23CSkill-
sheet

1 How long does it take for an object that is initially at rest to travel a distance of 30 m if
it is accelerated at 1.5 m/s2?

2 A car is travelling at 25 m/s when the brakes are applied. It is brought to rest with
uniform deceleration in 3 s. How far did it travel after the brakes were applied?

3Example 7 A motorcycle accelerates uniformly from 3 m/s to 30 m/s in 9 seconds. Find:

a the acceleration
b the time it will take to increase in speed from 30 m/s to 50 m/s
c the distance travelled in the first 15 seconds (assuming it starts from rest)
d the time taken to reach a speed of 200 km/h (assuming it starts from rest).

4 A car accelerating uniformly from rest reaches a speed of 45 km/h in 5 seconds.

a Find its acceleration.
b Find the distance travelled in the 5 seconds.

5 A train starts from rest at a station and accelerates uniformly at 0.5 m/s2 until it reaches
a speed of 90 km/h.

a How long does the train take to reach this speed?
b How far does the train travel in reaching this speed?

6 A train travelling at 54 km/h begins to climb an incline of constant gradient that
produces a deceleration of 0.25 m/s2.

a How long will the train take to travel a distance of 250 m?
b What will the train’s speed be then?

For Questions 7–11, assume that the acceleration due to gravity is −9.8 m/s2 and ignore air
resistance. Upward motion is considered to be in the positive direction.

7 A stone is projected vertically upwards from O with a speed of 20 m/s. Find:

a the velocity of the stone after 4 s
b the position of the stone relative to O after 4 s.

8 Repeat Question 7 for the stone being projected downwards from O with the
same speed.
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23C 23D Velocity–time graphs 853

9 An object is projected vertically upwards with a velocity of 49 m/s.

a After what time will the object return to the point of projection?
b When will the object be at a height of 102.9 m above the point of projection?

10 A man dives from a springboard where his centre of gravity is initially 3 m above the
water and his initial velocity is 4.9 m/s upwards. Regarding the diver as a particle at his
centre of gravity and assuming that the diver’s motion is vertical, find:

a the diver’s velocity after t seconds
b the diver’s height above the water after t seconds
c the maximum height of the diver above the water
d the time taken for the diver to reach the water.

11 A stone is thrown vertically upwards from the top edge of a cliff 24.5 m high with a
speed of 19.6 m/s. Find:

a the time taken for the stone to reach its maximum height
b the maximum height above the base of the cliff reached by the stone
c the time taken for the stone to return to the point of projection
d the time taken for the stone to reach the base of the cliff.

12 A body is travelling at 20 m/s when it passes point P and 40 m/s when it passes point Q.
Find its speed when it is halfway from P to Q, assuming uniform acceleration.

23D Velocity–time graphs
Many kinematics problems can be solved using velocity–time graphs. These are particularly
useful if acceleration is constant, but with a broader knowledge of integral calculus they can
also be used when acceleration is variable. (Integration will not be used in this chapter.)

We begin with examples where the velocity is always positive.

Constant velocity
When a particle is moving with constant velocity, the corresponding velocity–time graph
(v against t) is a straight line parallel to the t-axis.

The velocity–time graph for a particle moving at 8 m/s
for 4 seconds is shown.

The shaded region is a rectangle of area 8 × 4 = 32,
which is the product of the velocity and the time
taken. Therefore this area is equal to the particle’s
displacement, 32 m, over the 4 seconds.

0 4
t

8

v
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854 Chapter 23: Kinematics

Constant acceleration
If a particle moves with constant acceleration a, its velocity v at time t is given by v = u + at,
where u is the initial velocity. The velocity–time graph is a straight line with gradient a.

This graph shows the motion of a particle with initial
velocity u = 1 m/s and acceleration a = 2 m/s2. The
equation of the straight line is v = 1 + 2t.

The particle’s displacement over the 4 seconds is

s =
1
2

(u + v)t =
1
2

(1 + 9)4 = 20 m

This is the area of the shaded trapezium. 0 4
t

1

9

v

Variable acceleration
If the velocity is always positive, then the
displacement is equal to the distance travelled.

The total area of the region(s) between
the velocity–time graph and the t-axis
corresponds to the distance travelled by the
particle between times t1 and t2.

area =
displacement

v

tt2t1

Note: You may have met the fundamental theorem of calculus in Mathematical Methods.

Since v =
dx
dt

, it follows that
∫ t2

t1
v(t) dt = x(t2) − x(t1).

A velocity–time graph is particularly useful in situations where there are several stages to the
particle’s motion.

A car starts from rest and accelerates uniformly for 25 s until it is travelling at 25 m/s.
It maintains this velocity for 3 minutes, before decelerating uniformly until it stops in
another 15 s. Construct a velocity–time graph and use it to determine the total distance
travelled in kilometres.

Example 8

Solution
From the graph we can calculate the area
of the trapezium:

Area =
1
2

(a + b)h

=
1
2

(220 + 180)25

= 5000 m

= 5 km

The total distance travelled is 5 km.

25

25 205 220
O t (s)

v (m/s)

ISBN 978-1-009-11053-2 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2022 Cambridge University Press



i
i

“2021002006c23txt” — 2022/2/14 — 11:10 — page 855 — #16 i
i

i
i

i
i

23D Velocity–time graphs 855

A motorist is travelling at a constant speed of 120 km/h when he passes a stationary police
car. He continues at that speed for another 15 s before uniformly decelerating to 100 km/h
in 5 s. The police car takes off after the motorist the instant that he passes. It accelerates
uniformly for 25 s, by which time it has reached 130 km/h. It continues at that speed until
it catches up to the motorist. After how long does the police car catch up to the motorist
and how far has he travelled in that time?

Example 9

Solution
We start by representing the information on a
velocity–time graph.

The distances travelled by the motorist and the
police car will be the same, so the areas under
the two velocity–time graphs will be equal.
This fact can be used to find T , the time taken
for the police car to catch up to the motorist.

130

100

2015 25

120

t (s)

v (km/h)

police car

motorist

TO

Note: The factor
5
18

changes velocities from km/h to m/s.

The distances travelled (in metres) after T seconds are given by

Distance for motorist =
5
18

(
120 × 15 +

1
2

(120 + 100) × 5 + 100(T − 20)
)

=
5
18
(
1800 + 550 + 100T − 2000

)
=

5
18
(
100T + 350

)
Distance for police car =

5
18

(1
2
× 25 × 130 + 130(T − 25)

)
=

5
18
(
130T − 1625

)
When the police car catches up to the motorist:

100T + 350 = 130T − 1625

30T = 1975

T =
395

6
The police car catches up to the motorist after 65.83 s.

Distance for motorist =
5
18
(
100T + 350

)
where T =

395
6

∴

=
52 000

27
m

= 1.926 km

The motorist has travelled 1.926 km when the police car catches up.
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856 Chapter 23: Kinematics

Signed area
This graph shows the motion of a particle with a
velocity of −8 m/s for 4 seconds. The shaded region
represents a displacement of −32 m. The region has a
signed area of −32.

� A region above the t-axis has positive signed area.
� A region below the t-axis has negative signed area.

0 4
t

-8

v

A particle is moving in a straight line. The initial velocity of the particle is 10 m/s and it
has a constant acceleration of −2 m/s2.

a Sketch the velocity–time graph for the motion.
b Describe the motion of the particle during the first 8 seconds.
c Find the total distance travelled in the first 8 seconds of motion.
d Find the displacement of the particle after the first 8 seconds of motion.

Example 10

Solution
a We are given u = 10 and a = −2.

The equation of the line is

v = −2t + 10

where v m/s is the velocity at time t s.

b From t = 0 to t = 5, the particle has
positive velocity; it is moving to the right.

At t = 5, the particle has velocity zero;
it is momentarily stationary.

From t = 5 to t = 8, the particle has
negative velocity; it is moving to the left.

t (s)

v (m/s)

5 8

10

–6

0

c Distance travelled = total area =
1
2
× 5 × 10 +

1
2
× 3 × 6 = 34 metres

d Displacement = total signed area =
1
2
× 5 × 10 −

1
2
× 3 × 6 = 16 metres

Summary 23D
� Distance travelled is given by the sum of the areas of the regions between the

velocity–time graph and the t-axis.
� Displacement is given by the sum of the signed areas of the regions between the

velocity–time graph and the t-axis.
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23D 23D Velocity–time graphs 857

Exercise 23DSkill-
sheet

It is suggested that you draw a velocity–time graph for each of the following questions.

1Example 8 A particle starts from rest and accelerates uniformly for 5 s until it reaches a speed
of 10 m/s. It immediately decelerates uniformly until it comes to rest after a further 8 s.
How far did it travel?

2 A car accelerates uniformly from rest for 10 s to a speed of 15 m/s. It maintains this
speed for 25 s before decelerating uniformly to rest after a further 15 s. Find:

a the total distance travelled by the car
b the distance it had travelled when it started to decelerate
c the time taken for it to reach the halfway point of its journey.

3 A particle starts from rest and travels 1 km before coming to rest again. For the first
5 s it accelerates uniformly. It next maintains a constant speed for 500 m, and then
decelerates uniformly for the last 10 s. Find the maximum speed of the particle.

4 A car passes point P with a speed of 36 km/h and continues at this speed for 12 s before
accelerating to a speed of 72 km/h in 6 s. How far from P is the car when it reaches a
speed of 72 km/h?

5 A tram decelerates uniformly from a speed of 60 km/h to rest in 60 s. Find:

a the distance travelled by the tram
b how far it had travelled by the time it had reduced its speed by half
c the time taken for it to travel half the total distance.

6Example 9 A car passes a point A with a speed of 15 m/s and continues travelling at that speed.
A second car is stationary at point A. At the moment when the first car passes A, the
second car accelerates uniformly until it reaches a speed of 25 m/s in 10 s. Both cars
continue with a constant speed on to point B, which they reach at the same time.

a How long does it take for both cars to reach point B?
b How far is it from A to B?

7Example 10 A particle is moving in a straight line. The initial velocity of the particle is 20 m/s and it
has a constant acceleration of −2 m/s2.

a Sketch the velocity–time graph for the motion.
b Describe the motion of the particle during the first 14 seconds.
c Find the total distance travelled in the first 14 seconds of motion.
d Find the displacement of the particle after the first 14 seconds of motion.
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858 Chapter 23: Kinematics 23D

8 The velocity–time graph for the
motion of a particle is shown.

a Find the acceleration for the first
10 seconds.

b Find the acceleration for the period
from t = 20 to t = 30, where t is the
time in seconds from the beginning
of the motion.

c Find the total distance travelled in
the first 30 seconds.

d Find the displacement of the
particle after 30 seconds.

50

-15 (30, -15)

(20, 10)(10, 10)

-10

-5

5

10

10 15 20 25 30
t (s)

v (m/s)

9 A particle moves in a straight line, starting from rest at a point O. It first moves in
a positive direction with an acceleration of 2 m/s2, until its velocity reaches 10 m/s.
It then continues with a constant velocity of 10 m/s for some time, before decelerating
to rest after a total time of 20 seconds. The total distance travelled is 160 m.

a Sketch the velocity–time graph.
b Find the magnitude of the deceleration.

10 Two stations A and B are 14 km apart. A train passes through station A, heading
towards B, maintaining a constant speed of 60 km/h. At the instant that it passes
through A, a second train on the same track leaves station B, heading towards A,
and accelerates uniformly. After 5 minutes, the alarm is raised at both stations
simultaneously that a collision is imminent. Both trains are radioed and instructed
to brake. The first train decelerates uniformly so that it will stop in 2.5 minutes.
The second train, which has reached a speed of 80 km/h, will take 4 minutes to stop.
Will they collide?

11 Two tram stops are 800 m apart. A tram starts from rest at the first stop and accelerates
at a constant rate of a m/s2 for a certain time and then decelerates at a constant rate
of 2a m/s2, before coming to rest at the second stop. The time taken to travel between
the two stops is 1 minute 40 seconds. Find:

a the maximum speed reached by the tram (in km/h)
b the time at which the brakes are applied
c the value of a.
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Chapter 23 review 859

Assign-
ment

Nrich

Chapter summary

� The position of a particle moving in a straight line is determined by its distance from
a fixed point O on the line, called the origin, and whether it is to the right or left of O.
By convention, the direction to the right of the origin is considered to be positive.

� Average velocity =
change in position

change in time

� For a particle moving in a straight line with position x at time t:

• velocity (v) is the rate of change of position with respect to time
• acceleration (a) is the rate of change of velocity with respect to time

v =
dx
dt

, a =
dv
dt

=
d2x
dt2

� Displacement is the change in position (i.e. final position minus initial position).

� Scalar quantities:

• Distance travelled means the total distance travelled.
• Speed is the magnitude of the velocity.

• Average speed =
distance travelled

change in time

� Constant acceleration
If acceleration is constant, then the following formulas can be used (for acceleration a,
initial velocity u, final velocity v, displacement s and time taken t):

v = u + at1 s = ut +
1
2

at22 v2 = u2 + 2as3 s =
1
2

(u + v)t4

� Velocity–time graphs

• Distance travelled is given by the sum of the areas of the regions between the
velocity–time graph and the t-axis.

• Displacement is given by the sum of the signed areas of the regions between the
velocity–time graph and the t-axis.

Technology-free questions

1 A particle moves in a straight line so that its position, x cm, relative to O at time
t seconds (t ≥ 0) is given by x = t2 − 4t − 5. Find:

its initial positiona its position at t = 3b
its initial velocityc when and where its velocity equals zerod
its average velocity in the first 3 se its average speed in the first 3 s.f

2 A particle moves in a straight line so that its position, x cm, relative to O at time
t seconds (t ≥ 0) is given by x = t3 − 2t2 + 8. Find:

a its initial position, velocity and acceleration and hence describe its motion
b the times when it is stationary and its position and acceleration at those times.
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860 Chapter 23: Kinematics

3 A particle moving in a straight line has position x cm relative to the point O at time
t seconds (t ≥ 0), where x = −2t3 + 3t2 + 12t + 7. Find:

a when the particle passes through O and its velocity and its acceleration at those times
b when the particle is at rest
c the distance travelled in the first 3 seconds.

4 Two particles A and B are moving in a straight line such that their positions, xA cm and
xB cm, relative to the point O at time t seconds (t ≥ 0) are given by

xA(t) = t3 − t2 and xB(t) = t2

a Find:

i the position of A after 1
2 s

ii the acceleration of A after 1
2 s

iii the velocity of B after 1
2 s.

b Find:

i the times when A and B collide (i.e. have the same position)
ii the maximum distance between A and B during the first 2 s of motion.

5 A particle moving in a straight line has an acceleration of 6t m/s2 at time t seconds
(t ≥ 0). If the particle starts from rest at the origin O, find:

a the velocity after 2 s
b the position at any time t.

6 A particle moving in a straight line has an acceleration of (3 − 2t) m/s2 at time t seconds
(t ≥ 0). If the particle starts at the origin O with a velocity of 4 m/s, find:

a the time when the particle comes to rest
b the position of the particle at the instant it comes to rest
c the acceleration at this instant
d the time when the acceleration is zero
e the velocity at this time.

7 A particle moves in a straight line and, at time t seconds after it starts from point O, its
velocity is (2t2 − 3t3) m/s. Find:

a the position after 1 s
b the velocity after 1 s
c the acceleration after 1 s.

8 For a particle moving in a straight line, the velocity function is v : R+ → R, v(t) =
1

2t2 .
Find:

a the acceleration at time t

b the position at time t, given that the particle is at O when t = 1.
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Chapter 23 review 861

9 The velocity, v m/s, of an object t seconds after it starts moving from O along a straight
line is given by v = t3 − 11t2 + 24t, t ≥ 0.

a Find the acceleration at time t.
b Find the acceleration at the instant when the object first changes direction.
c Find the displacement of the object from O after 5 s, and the total distance travelled

in the first 5 s.

10 A car is travelling at 20 m/s when the brakes are applied. It is brought to rest with
uniform deceleration in 4 s. How far did it travel after the brakes were applied?

11 A car accelerates uniformly from 0 m/s to 30 m/s in 12 seconds. Find:

a the acceleration
b the time it will take to increase in speed from 30 m/s to 50 m/s
c the distance travelled in the first 20 seconds
d the time taken to reach a speed of 100 km/h.

12 A train starts from rest at a station and accelerates uniformly at 0.4 m/s2 until it reaches
a speed of 60 km/h.

a How long does the train take to reach this speed?
b How far does the train travel in reaching this speed?

For Questions 13–14, assume that the acceleration due to gravity is −9.8 m/s2 and ignore air
resistance. Upward motion is considered to be in the positive direction.

13 An object is projected vertically upwards with a velocity of 35 m/s.

a After what time will the object return to the point of projection?
b When will the object be at a height of 60 m above the point of projection?

14 A stone is projected vertically upwards from the top of a cliff 20 m high with a speed
of 19.6 m/s. Find:

a the time taken for the stone to reach its maximum height
b the maximum height reached with respect to the base of the cliff
c the time taken for the stone to return to the point of projection
d the time taken for the stone to reach the base of the cliff.

It is suggested that you draw a velocity–time graph for each of Questions 15–18.

15 A particle starts from rest and accelerates uniformly for 15 s until it reaches a
speed of 25 m/s. It immediately decelerates uniformly until it comes to rest after a
further 20 s. How far did it travel?

16 A car accelerates uniformly from rest for 8 s to a speed of 12 m/s. It maintains this
speed for 15 s before decelerating uniformly to rest after a further 10 s. Find:

a the total distance travelled by the car
b the time taken for it to reach the halfway point of its journey.
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862 Chapter 23: Kinematics

17 A vehicle starts from rest and travels 1 km before coming to rest again. For the first 15 s
it accelerates uniformly, before maintaining a constant speed for 800 m and then finally
decelerating uniformly to rest in 10 s. Find the maximum speed of the vehicle.

18 A car travels at a constant speed of 12 m/s along a straight road. It passes a second
stationary car, which sets off in pursuit 3 s later. Find the constant acceleration required
for the second car so that it catches the first car after a further 27 s has passed.

19 A particle moves in a straight line so that t seconds after passing a fixed point O in the

line its velocity, v m/s, is given by v =
t2

4
− 3t + 5. Calculate:

a the velocity after 10 s
b the acceleration when t = 0
c the minimum velocity
d the distance travelled in the first 2 s
e the distance travelled in the 3rd second.

20 A spot of light moves along a straight line so that its acceleration t seconds after passing
a fixed point O on the line is (2 − 2t) cm/s2. Three seconds after passing O, the spot has
a velocity of 5 cm/s. Find an expression, in terms of t, for:

a the velocity of the spot of light after t seconds
b the position of the spot relative to O after t seconds.

21 A particle P is moving along a straight line. It passes through a point O with a velocity
of 6 m/s. At time t seconds after passing through O, its acceleration is (4 − 4t) m/s2.

a Show that, at time t seconds, the velocity of P is (6 + 4t − 2t2) m/s.
b Calculate:

i the maximum velocity of P

ii the value of t when the velocity of P is again 6 m/s
iii the distance OP when the velocity of P is zero.

22 A particle travelling in a straight line passes a fixed point O with velocity 5 m/s.
Its acceleration, a m/s2, is given by a = 27 − 4t2, where t seconds is the time after
passing O. Calculate:

a the acceleration of the particle as it passes O

b its velocity when t = 3
c the value of t when its velocity is again 5 m/s.

23 A particle passes a fixed point O with a velocity of 2 m/s and moves in a straight line
with an acceleration of 3(1 − t) m/s2, where t is the time in seconds after passing O.
Calculate:

a the velocity when t = 4
b the position of the particle at this instant.
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Chapter 23 review 863

24 A particle P travels in a straight line starting at a fixed point O so that its velocity, v m/s,
is given by v = t2 − 10t + 24, where t is the time in seconds after leaving O. Find:

a the values of t for which P is instantaneously at rest
b the distance OP when t = 3
c the range of values of t for which the acceleration is negative.

Multiple-choice questions

1 A particle moves in a straight line so that its position, x cm, relative to a fixed point O at
time t seconds (t ≥ 0) is given by x = −t3 + 7t2 − 12t. The initial position of the particle
relative to O is

0 cmA −6 cmB 12 cmC −20 cmD 5 cmE

2 A particle moves in a straight line so that its position, x cm, relative to a fixed point O
at time t seconds (t ≥ 0) is given by x = −t3 + 7t2 − 12t. The average velocity of the
particle in the first 2 seconds, correct to two decimal places, is

4 cm/sA −4 cm/sB 2 cm/sC 4.06 cm/sD −2 cm/sE

3 A particle moves in a straight line with an acceleration of 4 − 6t m/s2 at time t seconds.
The particle has an initial velocity of −1 m/s and an initial position of 4 m relative to a
fixed point O. The velocity of the particle when t = 1 is

−1 m/sA 6 m/sB 0 m/sC 4 m/sD −2 m/sE

4 A body starts from rest with a uniform acceleration of 1.8 m/s2. The time it will take for
the body to travel 90 m is

5 sA
√

10 sB 10 sC
√

10D 10
√

2 sE

5 A car accelerating uniformly from rest reaches a speed of 60 km/h in 4 s. The car’s
acceleration is

15 km/h2A 15 m/s2B 54 m/s2C
25
6

km/h2D
25
6

m/s2E

6 A car accelerating uniformly from rest reaches a speed of 60 km/h in 4 s. The distance
travelled by the car in the 4 s is

200 mA 100 kmB
100
3

mC 100 mD 360 mE

7 This velocity–time graph shows the motion of
a car. The total distance travelled by the car
over the 15 s is

A 75 m B 315 m
C 182.5 m D 167.5 m
E 375 m

10

25

20

15

15

10

t (s)

v (m/s)

5 60

5

4
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864 Chapter 23: Kinematics

8 A rock falls from the top of a cliff 40 m high. Assuming that the acceleration due to
gravity is 9.8 m/s2, the rock’s speed just before it hits the ground is

20 m/sA 22 m/sB 24 m/sC 26 m/sD 28 m/sE

9 A body initially travelling at 20 m/s is subject to a constant deceleration of 4 m/s2.
The time it takes to come to rest (t seconds) and the distance travelled before it comes to
rest (s metres) are given by

t = 5, s = 50A t = 5, s = 45B t = 4, s = 20C
t = 5, s = 40D t = 4, s = 35E

10 A particle moves in a straight line with an acceleration of 12t − 5 m/s2 at time t seconds.
The particle has an initial velocity of 1 m/s and an initial position of 0 m relative to a
fixed point O. The velocity of the particle at time t = 1 is

1 m/sA −5 m/sB 7 m/sC 2 m/sD 3 m/sE

Extended-response questions

1 A particle moves in a straight line so that its position, x cm, relative to point O at time
t seconds is given by

x =
1
3

t3 − 2t2 + 4t − 2 1
3

a Find its initial position.
b Find its initial velocity.
c Find its acceleration after 3 seconds.
d When is its velocity zero?
e What is its position when the velocity is zero?
f When is the particle at point O?

2 A particle moves in a straight line so that its position, x cm, relative to O at time
t seconds (t ≥ 0) is given by x = t4 + 2t2 − 8t. Show that:

a the particle moves first to the left
b the greatest distance of the particle to the left of O occurs after 1 second
c after this time, the particle always moves to the right.

3 A defective rocket rises vertically upwards into the air and then crashes back to the
ground. The rocket’s height above the ground, h metres, at time t seconds after take-off

is given by h = 6t2 − t3. (This is an approximate model.)

a When does the rocket crash and what is its velocity at this time?
b At what time is the speed of the rocket zero, and what is its maximum height?
c When does the acceleration of the rocket become negative?
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4 An object is projected vertically upwards at 20 m/s from the top of a tower 10 m high
on the edge of a vertical cliff. At time t seconds after projection, the object has position
x(t) metres relative to the base of the tower, where x(t) = −4.9t2 + 20t + 10 for t ≥ 0.
Use a CAS calculator to evaluate the values

x(1) − x(0), x(2) − x(1), x(3) − x(2), . . . , x(10) − x(9)

Analyse your results and draw some inference about the motion of the object.

5 A particle is projected vertically upwards with an initial speed of u m/s, and the
magnitude of the acceleration due to gravity is g m/s2. Prove that:

a the time taken by the particle to reach its highest point is
u
g

seconds

b the total time taken for the particle to return to the point of projection is
2u
g

seconds
c the particle’s speed when returning to the point of projection is u m/s.

6 A stone is projected vertically upwards with a speed of 14 m/s from a point O at the
top of a mine shaft. Five seconds earlier, a lift began to descend the mine shaft from O
with a constant speed of 3.5 m/s. Find the depth of the lift (to the nearest metre) at the
instant when the stone falls on it. (Neglect air resistance and take the acceleration due to
gravity to be 9.8 m/s2.)

7 A car is travelling along a straight road at 90 km/h when the brakes are applied. The
car comes to rest in 5 seconds and, during this time, its velocity decreases linearly
with time. Find:

a the rule for the velocity function after the brakes are applied
b the distance travelled in the 5 seconds.

8 A particle moves in a straight line so that its position, x cm, relative to point O at time
t seconds (t ≥ 0) is given by x = 3t4 − 4t3 + 24t2 − 48t. Show that the particle moves at
first to the left, comes to rest at a point A and then moves always to the right. Find the
position of A.

9 A particle is projected vertically upwards with a velocity of u m/s from a point O on the
ground, and T seconds later a second particle is projected vertically upwards from O
with the same velocity. Let g m/s2 be the magnitude of the acceleration due to gravity.

a Prove that:

i the time taken for the two particles to collide is
u
g

+
T
2

seconds after the first
particle was launched

ii the height of the particles when they collide is
4u2 − g2T 2

8g
metres above O.

b Interpret the case where T =
2u
g

.

c What happens if T >
2u
g

?

ISBN 978-1-009-11053-2 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2022 Cambridge University Press



G
lossary

A

Glossary

A
Absolute value function [p. 557] The absolute
value of a real number x is defined by

|x| =

x if x ≥ 0
−x if x < 0

Also called the modulus function

Addition of complex numbers [p. 606]
If z1 = a + bi and z2 = c + di, then
z1 + z2 = (a + c) + (b + d)i.

Addition of vectors [p. 696]
If a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k,
then a + b = (a1 + b1)i + (a2 + b2) j + (a3 + b3)k.

Addition principle [p. 290] Suppose there are
m ways of performing one task and n ways of
performing another task. If we cannot perform
both tasks, then there are m + n ways to perform
one of the tasks.

Adjacency matrix [p. 383] a matrix that
represents a graph. The entries of the matrix give
the number of edges joining each pair of vertices.
For example:

v1 v2

v3 
v1 v2 v3

v1 1 1 0
v2 1 0 2
v3 0 2 0


Adjacent vertices [p. 383] Two vertices of a
graph are adjacent if they are joined by an edge.

Algebra of sets [p. 205] general statements
involving the operations ∪, ∩ and ′ acting on the
set of all subsets of a given set ξ; e.g. A ∪ A′ = ξ

Algorithm [p. 250] a finite, unambiguous
sequence of instructions for performing a
specific task

Altitude of a triangle [p. 717] a line segment
from a vertex to the opposite side (possibly
extended) which forms a right angle where it meets
the opposite side

Angle between planes [p. 506] For any point P
on the common line of two planes Π1 and Π2,
if lines PA and PB are drawn at right angles to the
common line so that PA is in Π1 and PB is in Π2,
then ∠APB is the angle between Π1 and Π2.

Π1

Π2

P
θ

B

A

Angle between two vectors [p. 708] can be
found using the scalar product:
a · b = |a| |b| cos θ
where θ is the angle between a and b

Angle of depression [p. 498] the angle between
the horizontal and a direction below the horizontal

eye level
angle of depression

cliff line of sight

Angle of elevation [p. 498] the angle between
the horizontal and a direction above the horizontal

eye level
angle of elevation
line of sight
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Arc [p. 493] Two points on a circle divide the
circle into arcs; the shorter is the minor arc, and
the longer is the major arc.

Arc length [p. 494]
The length of
arc ACB is given
by ` = rθ, where
θc = ∠AOB.

D O

A

B

Cθ

r

Arccos see inverse cosine function

Arcsin see inverse sine function

Arctan see inverse tangent function

Area of a triangle [p. 490] given by half the
product of the lengths of two sides and the sine of
the angle included between them.

Area =
1
2

bh

Area =
1
2

bc sin A
CA

h

b

B

Area of image [p. 681] If a linear transformation
(with matrix B) is applied to a region of the plane,
then Area of image = |det(B)| × Area of region.

Argand diagram [p. 616] a geometric
representation of the set of complex numbers

Im(z)

Re(z)

P

0

b

z = a + bi 

a
θ

Argument of a complex number [p. 626]
� The argument of z is an angle θ from the

positive direction of the x-axis to the line
joining the origin to z.
� The principal value of the argument, denoted

by Arg z, is the angle in the interval (−π,π].

Arithmetic sequence [p. 75] a sequence
in which each successive term is found by
adding a fixed amount to the previous term;
e.g. 2, 5, 8, 11, . . . . An arithmetic sequence has a
recurrence relation of the form tn = tn−1 + d, where
d is the common difference. The nth term can be
found using tn = a + (n − 1)d, where a = t1.

Arithmetic series [p. 79] the sum of the terms
in an arithmetic sequence. The sum of the first
n terms is given by the formula

Sn =
n
2

(
2a + (n − 1)d

)
where a = t1 and d is the common difference.

Arrangement [p. 293] see permutation

Asymptote [p. 576] A straight line is an
asymptote of the graph of a function y = f (x) if
the graph of y = f (x) gets arbitrarily close to the
straight line. An asymptote can be horizontal,
vertical or oblique.

Asymptotes of hyperbolas [p. 576]
The hyperbola with equation
(x − h)2

a2 −
(y − k)2

b2 = 1

has asymptotes given by

y − k = ±
b
a

(
x − h

)

B
Bearing [p. 499] the compass bearing;
the direction measured from north clockwise

Binary number system [p. 252] uses only the
digits 0 and 1 to represent numbers. The positions
of the digits correspond to different powers of 2.

Boolean algebra [p. 214] a set B equipped
with operations ∨, ∧, ′ that are analogous to the
set-theoretic operations ∪, ∩, ′ and also to the
logical connectives ‘or’, ‘and’, ‘not’

Boolean expression [p. 216] an expression
formed using ∨, ∧, ′, 0 and 1; e.g. x ∧ (y ∨ x)′

Boolean function [p. 216] a function with one
or more inputs from {0, 1} and outputs in {0, 1};
e.g. f : {0, 1}3 → {0, 1}, f (x, y, z) = x ∧ (y ∨ x)′

C
Ã [p. 605] the set of complex numbers:
C = { a + bi : a, b ∈ R }

Cartesian equation [p. 564] an equation
that describes a curve in the plane by giving the
relationship between the x- and y-coordinates of
the points on the curve; e.g. y = x2 + 1

Cartesian form of a complex number
[p. 605] A complex number is expressed in
Cartesian form as z = a + bi, where a is the real
part of z and b is the imaginary part of z.

Im(z)

Re(z)

P

0

b

z = a + bi 

a
θ
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Chord [p. 493]
a line segment with
endpoints on a circle

Chord length [p. 494]

AB = 2r sin
(
θ

2

)
where θc = ∠AOB

O

A

B

θ

r

r

Circle, general Cartesian equation [p. 564]
The circle with radius r and centre (h, k) has
equation (x − h)2 + (y − k)2 = r2.

Circular functions [pp. 478, 479] the sine,
cosine and tangent functions

Circular functions, exact values

θ 0
π

6
π

4
π

3
π

2

sin θ 0
1
2

1
√

2

√
3

2
1

cos θ 1

√
3

2
1
√

2

1
2

0

tan θ 0
1
√

3
1

√
3 undef

cis θ [p. 626] cos θ + i sin θ

Collinear points [p. 714] Three or more points
are collinear if they all lie on a single line.

Column vector [pp. 657, 695] an n × 1 matrix.

A column vector
[
a
b

]
can be used to represent

a vector in the plane, an ordered pair, a point in the
Cartesian plane or a translation of the plane.

Combination [p. 304] a selection where order
is not important. The number of combinations of
n objects taken r at a time is given by
nCr =

n!
r! (n − r)!

An alternative notation for nCr is
(
n
r

)
.

Common di�erence, d [p. 75] the difference
between two consecutive terms of an arithmetic
sequence, i.e. d = tn − tn−1

Common ratio, r [p. 85] the quotient of two
consecutive terms of a geometric sequence, i.e.

r =
tn

tn−1

Compass bearing [p. 499] the direction
measured from north clockwise

Complement of a set [p. 40] The complement
of a set A, written A′, is the set of all elements of ξ
that are not elements of A.

Complement of a simple graph [p. 406]
If G is a simple graph, then its complement G is
the simple graph with the same vertices as G such
that two vertices are adjacent in G if and only if
they are not adjacent in G.

Complex conjugate, z [p. 609]
� If z = a + bi, then z = a − bi.
� If z = r cis θ, then z = r cis(−θ).

Complex conjugate, properties [p. 610]
� z + z = 2 Re(z) � zz = |z|2

� z1 + z2 = z1 + z2 � z1 · z2 = z1 · z2

Complex number [p. 605] an expression of the
form a + bi, where a and b are real numbers

Complex plane [p. 616] see Argand diagram

Composite [p. 52] A natural number m is a
composite number if it can be written as a product
m = a × b, where a and b are natural numbers
greater than 1 and less than m.

Compound angle formulas [p. 523]
� cos(x + y) = cos x cos y − sin x sin y
� cos(x − y) = cos x cos y + sin x sin y
� sin(x + y) = sin x cos y + cos x sin y
� sin(x − y) = sin x cos y − cos x sin y

� tan(x + y) =
tan x + tan y

1 − tan x tan y

� tan(x − y) =
tan x − tan y

1 + tan x tan y

Concurrent lines [p. 714] Three or more
lines are concurrent if they all pass through a
single point.

Conditional statement [pp. 169, 224]
a statement of the form ‘If P is true, then Q is
true’, which can be abbreviated to P⇒ Q

Congruence tests Two triangles are congruent
if one of the following conditions holds:
� SSS the three sides of one triangle are equal to

the three sides of the other triangle
� SAS two sides and the included angle of one

triangle are equal to two sides and the included
angle of the other triangle
� AAS two angles and one side of one triangle are

equal to two angles and the matching side of the
other triangle
� RHS the hypotenuse and one side of a

right-angled triangle are equal to the hypotenuse
and one side of another right-angled triangle.

Congruent figures have exactly the same shape
and size
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Conjugate root theorem [p. 624] Let P(z) be
a polynomial with real coefficients. If a + bi is a
solution of the equation P(z) = 0, with a and b real
numbers, then the complex conjugate a − bi is also
a solution.

Constant velocity [p. 718] If a particle moves
with a constant velocity of v m/s for t seconds,
then its displacement vector, s m, is given
by s = tv.

Contradiction [p. 223] a statement which is
false under all circumstances; see also proof by
contradiction

Contrapositive [pp. 175, 226]
The contrapositive of P⇒ Q is the statement
(not Q)⇒ (not P). The contrapositive is
equivalent to the original statement.

Convergent series [p. 109] An infinite
series t1 + t2 + t3 + · · · is convergent if the sum
of the first n terms, Sn, approaches a limiting
value as n→ ∞. An infinite geometric series is
convergent if −1 < r < 1, where r is the common
ratio.

Converse [pp. 182, 226] The converse of
P⇒ Q is the statement Q⇒ P.

Conversion between Cartesian and polar
forms [pp. 589, 626]
x = r cos θ, y = r sin θ, r2 = x2 + y2

Cosecant function [pp. 518, 554]

cosec θ =
1

sin θ
for sin θ , 0

Cosine function [p. 478] cosine θ is defined as
the x-coordinate of the point P on the unit circle
where OP forms an angle of θ radians with the
positive direction of the x-axis.

x

y

–1

–1

1

1O
cos θ

sin θ

P(θ) = (cos θ, sin θ) 

θ

Cosine rule [p. 487] used to find unknown
quantities in a triangle given two sides and the
included angle, or given three sides. For4ABC:
a2 = b2 + c2 − 2bc cos A

A

B

C

ac

b

Cotangent function [pp. 518, 554]

cot θ =
cos θ
sin θ

for sin θ , 0

Counterexample [p. 186] an example that
shows that a universal statement is false. For
example, the number 2 is a counterexample to the
claim ‘Every prime number is odd.’

Cycle [pp. 398, 405] a walk in a graph that starts
and ends at the same vertex and otherwise does not
repeat any vertices or edges

D
De Morgan’s laws [pp. 174, 216]
� ‘not (P and Q)’ is ‘(not P) or (not Q)’
� ‘not (P or Q)’ is ‘(not P) and (not Q)’

Degree of a polynomial [p. 120] given by the
highest power of x with a non-zero coefficient;
e.g. the polynomial 2x5 − 7x2 + 4 has degree 5

Degree of a vertex [p. 386] the number of
edges that end at the vertex, with each edge that is
a loop counted twice. For example:

v1 v2

v3 Vertex Degree
v1 3
v2 3
v3 2

Desk check [p. 266] To carry out a desk check
of an algorithm, you carefully follow the algorithm
step by step, and construct a table of the values of
all the variables after each step.

Determinant of a matrix [pp. 359, 368]
Associated with each square matrix A, there is a
real number called the determinant of A, which
is denoted by det(A). A square matrix A has an
inverse if and only if det(A) , 0.

If A =

[
a b
c d

]
, then det(A) = ad − bc.

Diameter [p. 493] a chord of a circle that passes
through the centre

Dilation [p. 662] A dilation scales the x- or
y-coordinate of each point in the plane.
� Dilation from the x-axis: (x, y)→ (x, cy)
� Dilation from the y-axis: (x, y)→ (cx, y)

Direct proof [p. 170] To give a direct proof of a
conditional statement P⇒ Q, we assume that P is
true and show that Q follows.

Discrete random variable [p. 440] a random
variable X which can take only a countable number
of values, usually whole numbers
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Discriminant, ∆, of a quadratic [p. 125]
the expression b2 − 4ac, which is part of the
quadratic formula. For the quadratic equation
ax2 + bx + c = 0:
� If b2 − 4ac > 0, there are two real solutions.
� If b2 − 4ac = 0, there is one real solution.
� If b2 − 4ac < 0, there are no real solutions.

Disjoint sets [p. 39] Sets A and B are said to
be disjoint if they have no elements in common,
i.e. if A ∩ B = ∅.

Displacement [p. 717] the change in position.
If a particle moves from point A to point B, then its
displacement is described by the vector

−−→
AB.

Distance in the complex plane [p. 631] The
distance between complex numbers z1 and z2 is
equal to |z2 − z1|.

Division of complex numbers [pp. 611, 628]
z1

z2
=

z1

z2
×

z2

z2
=

z1z2

|z2|
2

If z1 = r1 cis θ1 and z2 = r2 cis θ2, then
z1

z2
=

r1

r2
cis(θ1 − θ2)

Dot product [p. 707] see scalar product

Double angle formulas [p. 526]
� cos(2x) = cos2 x − sin2 x

= 2 cos2 x − 1

= 1 − 2 sin2 x

� sin(2x) = 2 sin x cos x

� tan(2x) =
2 tan x

1 − tan2 x

E
Ellipse [p. 571] The graph of the equation
(x − h)2

a2 +
(y − k)2

b2 = 1

is an ellipse centred at the point (h, k).

Equality of complex numbers [p. 606]
a + bi = c + di if and only if a = c and b = d

Equilibrium [p. 727] A particle is said to be in
equilibrium if the resultant force acting on it is
zero; the particle will remain at rest or continue
moving with constant velocity.

Equivalence of vectors [p. 703]
Let a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k.
If a = b, then a1 = b1, a2 = b2 and a3 = b3.

Equivalent statements [pp. 183, 225]
Statements P and Q are equivalent if P⇒ Q
and Q⇒ P; this is abbreviated to P⇔ Q.
For equivalent statements P and Q, we also say
‘P is true if and only if Q is true’.

Euclidean algorithm [p. 254] a method for
finding the highest common factor of two natural
numbers

Euler circuit [pp. 392, 393] a walk in a graph
that uses every edge exactly once and that starts
and ends at the same vertex. A connected graph
has an Euler circuit if and only if every vertex has
even degree.

Euler trail [pp. 392, 394] a walk in a graph
that uses every edge exactly once. A connected
graph has an Euler trail if and only if every vertex
has even degree or exactly two vertices have odd
degree.

Euler’s formula [p. 415] If G is a connected
planar graph with v vertices, e edges and f faces,
then v − e + f = 2.

Existence statement [pp. 185, 187]
a statement claiming that a property holds for
some member of a given set. Such a statement can
be written using the quantifier ‘there exists’.

Expected value of a random variable, E(X)
[p. 442] also called the mean, µ. For a discrete
random variable X:

E(X) =
∑

x

x · Pr(X = x) =
∑

x

x · p(x)

F
Factor [p. 52] A natural number a is a factor of a
natural number b if there exists a natural number k
such that b = ak.

Factor theorem [p. 623] A polynomial P(z) has
z − α as a factor if and only if P(α) = 0.

Factorial notation [p. 293] The notation n!
(read as ‘n factorial’) is an abbreviation for the
product of all the integers from n down to 1:
n! = n × (n − 1) × (n − 2) × (n − 3) × · · · × 2 × 1

Force [p. 727] causes a change in motion;
e.g. gravitational force, tension force, normal
reaction force. Force is a vector quantity.

Formula [p. 19] an equation containing symbols
that states a relationship between two or more
quantities; e.g. A = `w (area = length × width).
The value of A, the subject of the formula, can be
found by substituting given values of ` and w.
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Fundamental theorem of algebra [p. 623]
For n ≥ 1, every polynomial of degree n can be
expressed as a product of n linear factors over the
complex numbers. Therefore every polynomial
equation of degree n has n solutions (counting
multiplicity).

Fundamental theorem of arithmetic [p. 53]
Every natural number greater than 1 either is a
prime number or can be represented as a product
of prime numbers. Furthermore, this representation
is unique apart from rearrangement of the order of
the prime factors.

G
Geometric mean [p. 87] For a, b, c ∈ R+,

if
c
a

=
b
c

, then c is the geometric mean of a and b.

Geometric sequence [p. 85] a sequence
in which each successive term is found by
multiplying the previous term by a fixed amount;
e.g. 2, 6, 18, 54, . . . . A geometric sequence has a
recurrence relation of the form tn = rtn−1, where
r is the common ratio. The nth term can be found
using tn = arn−1, where a = t1.

Geometric series [p. 90] the sum of the terms
in a geometric sequence. The sum of the first
n terms is given by the formula

Sn =
a(rn − 1)

r − 1
=

a(1 − rn)
1 − r

where a = t1 and r is the common ratio.

Graph [p. 383] A graph consists of a finite
non-empty set of vertices, a finite set of edges and
an edge-endpoint function that maps each edge to
a set of either one or two vertices. A graph can be
represented by a diagram, where the vertices are
shown as points and the edges as lines connecting
the vertices. For example:

v1 v2

v3

e1 e2

e3 e4

Edge Endpoints
e1 {v1}

e2 {v1, v2}

e3 {v2, v3}

e4 {v2, v3}

Graph, bipartite [p. 407] The vertices of a
bipartite graph can be divided into two disjoint
subsets A and B such that every edge of the graph
joins a vertex in A to a vertex in B.

Graph, complete [p. 405] A complete graph
is a simple graph with one edge joining each pair
of distinct vertices. The complete graph with
n vertices is denoted by Kn.

Graph, complete bipartite [p. 407]
A complete bipartite graph is a simple graph
whose vertices can be divided into two disjoint
subsets A and B such that:
� every edge joins a vertex in A to a vertex in B
� every vertex in A is joined to every vertex in B.
The complete bipartite graph where |A| = m and
|B| = n is denoted by Km,n.

Graph, connected [p. 391] A graph is said to
be connected if there is a walk between each pair
of distinct vertices.

Graph, disconnected [p. 391] A graph is said
to be disconnected if there are two distinct vertices
that are not connected by a walk.

Graph, planar [p. 414] A planar graph can be
drawn in the plane so that its edges do not cross.

Graph, regular [p. 405] A graph is said to be
regular if all its vertices have the same degree.

Graph, simple [p. 387] A simple graph has no
loops or multiple edges.

Graphs, isomorphic [p. 385] Two graphs are
isomorphic if there is a one-to-one correspondence
between their vertices that preserves the ways the
vertices are connected by edges.

H
Hamiltonian cycle [p. 398] a walk in a graph
that starts and ends at the same vertex and visits
every other vertex exactly once (without repeating
any edges)

Hamiltonian path [p. 398] a walk in a graph
that visits every vertex exactly once (and therefore
cannot repeat any edges)

Handshaking lemma [p. 386] The sum of the
degrees of all the vertices of a graph is equal to
twice the number of edges.

Highest common factor [p. 54] The highest
common factor of two natural numbers a and b,
denoted by HCF(a, b), is the largest natural
number that is a factor of both a and b.

Hyperbola [p. 575] The graph of the equation
(x − h)2

a2 −
(y − k)2

b2 = 1

is a hyperbola centred at the point (h, k);
the asymptotes are given by

y − k = ±
b
a

(
x − h

)
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I
Imaginary number i [p. 605] i 2 = −1

Imaginary part of a complex number
[p. 606] If z = a + bi, then Im(z) = b. Note that
Im(z) is a real number.

Implication [pp. 169, 224] see conditional
statement

Inclusion–exclusion principle [p. 320]
allows us to count the number of elements
in a union of sets. In the case of two sets:
|A ∪ B| = |A| + |B| − |A ∩ B|

Index laws [p. 2]
� am × an = am+n � am ÷ an = am−n

� (am)n = amn � (ab)n = anbn

�
(a

b

)n

=
an

bn � a−n =
1
an

�
1

a−n = an � a0 = 1

� a
1
n = n√a � a

m
n =

(
a

1
n
)m

Infinite geometric series [p. 109] For an
infinite geometric series with −1 < r < 1, the
sum to infinity is given by

S∞ =
a

1 − r
where a = t1 and r is the common ratio.

Integers [p. 42] Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Intersection of sets [p. 40] The intersection
of two sets A and B, written A ∩ B, is the set of all
elements common to A and B.

Interval [p. 45] a subset of the real numbers of
the form [a, b], [a, b), (a,∞), etc.

Inverse cosine function (arccos) [p. 544]
cos−1 x = y if cos y = x,
for x ∈ [−1, 1] and y ∈ [0,π]

Inverse sine function (arcsin) [p. 543]
sin−1 x = y if sin y = x,

for x ∈ [−1, 1] and y ∈
[
−
π

2
,
π

2

]
Inverse tangent function (arctan) [p. 544]
tan−1 x = y if tan y = x,

for x ∈ R and y ∈
(
−
π

2
,
π

2

)
Irrational number [p. 42] a real number that is
not rational; e.g. π and

√
2

Iteration [p. 258] In an algorithm, we can use
looping constructs to repeat steps in a controlled
way; e.g. for loops and while loops.

Iterative rule [p. 68] see recurrence relation

K
Karnaugh map [p. 240] a special form of truth
table used for simplifying Boolean expressions

Kilogram weight, kg wt [p. 727] a unit of force.
If an object on the surface of the Earth has a mass
of 1 kg, then the gravitational force acting on this
object is 1 kg wt.

L
Like surds [p. 48] surds with the same irrational
factor; e.g. 2

√
7 and 9

√
7

Linear equation [p. 8] a polynomial equation of
degree 1; e.g. 2x + 1 = 0

Linear transformation [p. 657]
a transformation of the plane with a rule of
the form (x, y)→ (ax + by, cx + dy). Each
linear transformation can be represented by
a 2 × 2 matrix:[
x′

y′

]
=

[
a b
c d

] [
x
y

]
Linear transformation, inverse [p. 673]
If A is the matrix of a linear transformation and
A is invertible, then A−1 is the matrix of the
inverse transformation.

Linear transformations, composition
[p. 670] If A and B are the matrices of two linear
transformations, then the product BA is the matrix
of the transformation A followed by B.

Literal equation [p. 25] an equation for the
variable x in which the coefficients of x, including
the constants, are pronumerals; e.g. ax + b = c

Locus [p. 564] a set of points described by a
geometric condition; e.g. the locus of points P that
satisfy PO = 3, where O is the origin, is the circle
of radius 3 centred at the origin

Logic circuit [p. 235] an electronic circuit built
using logic gates. Every Boolean function can be
realised as a logic circuit, where 0 corresponds to
‘low voltage’ and 1 to ‘high voltage’.

Logic gates [p. 235] the components of logic
circuits. Logic gates carry out logical operations
such as ‘or’ (∨), ‘and’ (∧) and ‘not’ (¬).

Logical connectives [p. 221] used to combine
statements together to form new statements;
e.g. ‘and’, ‘or’, ‘not’, ‘implies’

Logically equivalent [p. 223] Two compound
statements (each expressed in terms of simple
statements A, B, C, . . . ) are logically equivalent
if they have the same truth value for all possible
combinations of the truth values of A, B, C, . . . .



G
lo
ss

ar
y

M
760 Glossary

Loop in a graph [p. 384] an edge that joins a
vertex to itself

Loop in an algorithm [p. 258] a sequence of
instructions that is to be repeated. Each repeat is a
pass of the loop.

Lowest common multiple [p. 55] The lowest
common multiple of two natural numbers a and b,
denoted by LCM(a, b), is the smallest natural
number that is a multiple of both a and b.

M
Magnitude of a vector [p. 703] the length of a
directed line segment corresponding to the vector.
� If u = xi + y j, then |u| =

√
x2 + y2.

� If u = xi + y j + zk, then |u| =
√

x2 + y2 + z2.

Mass [p. 727] The mass of an object is the
amount of matter it contains, and can be measured
in kilograms. Mass is not the same as weight.

Mathematical induction [p. 189] a proof
technique for showing that a statement is true
for all natural numbers; uses the principle of
mathematical induction

Matrices, addition [p. 350] Addition is defined
for two matrices of the same size. The sum is
found by adding corresponding entries. For
example:[
1 0
0 2

]
+

[
0 −3
4 1

]
=

[
1 −3
4 3

]
Matrices, equal [p. 348] Two matrices A and B
are equal, and we can write A = B, when:
� they have the same size, and
� they have the same entry at corresponding

positions.

Matrices, multiplication [p. 354] The product
of two matrices A and B is defined only if the
number of columns of A is the same as the number
of rows of B. If A is an m × n matrix and B is an
n × r matrix, then the product AB is the m × r
matrix whose entries are determined as follows:

To find the entry in row i and column j of AB,
single out row i in matrix A and column j in
matrix B. Multiply the corresponding entries
from the row and column and then add up the
resulting products.

Matrix, identity [pp. 357, 365] For square
matrices of a given size (e.g. 2 × 2), there is
a multiplicative identity matrix I.

For 2 × 2 matrices, the identity is I =

[
1 0
0 1

]
,

and AI = A = IA for each 2 × 2 matrix A.

Matrix, inverse [pp. 358, 365] If A is a square
matrix and there exists a matrix B such that
AB = I = BA, then B is called the inverse of A.
When it exists, the inverse of a square matrix A is
unique and is denoted by A−1.

If A =

[
a b
c d

]
, then A−1 =

1
ad − bc

[
d −b
−c a

]
provided ad − bc , 0.

Matrix, invertible [p. 358] A square matrix is
said to be invertible if its inverse exists.

Matrix, multiplication by a scalar [p. 350]
If A is an m × n matrix and k is a real number, then
kA is an m × n matrix whose entries are k times the
corresponding entries of A. For example:

3
[
2 −2
0 1

]
=

[
6 −6
0 3

]
Matrix, non-invertible [p. 358] A square
matrix is said to be non-invertible if it does not
have an inverse.

Matrix, size [p. 346] A matrix with m rows and
n columns is said to be an m × n matrix.

Matrix, square [p. 355] A matrix with the same
number of rows and columns is called a square
matrix; e.g. a 2 × 2 matrix.

Matrix, zero [p. 351] The m × n matrix with all
entries equal to zero is called the zero matrix and
is usually denoted by O.

Matrix algebra [pp. 350–357] Some properties
of arithmetic operations on n × n matrices:
� A + B = B + A commutative law
� (A + B) + C = A + (B + C) associative law
� A + O = A zero matrix
� A + (−A) = O additive inverse
� (AB)C = A(BC) associative law
� AI = A = IA identity matrix
� A(B + C) = AB + AC distributive law
� (B + C)A = BA + CA distributive law
Note: Matrix multiplication is not commutative.

Mean of a random variable, µ [p. 442]
see expected value of a random variable, E(X)

Median of a triangle [p. 717] a line segment
from a vertex to the midpoint of the opposite side

Modulus–argument form [p. 626]
see polar form of a complex number

Modulus function [p. 557] The modulus of a
real number x is defined by

|x| =

x if x ≥ 0
−x if x < 0

Also called the absolute value function
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Modulus of a complex number, |z| [pp. 610,
626] the distance of the complex number from the
origin. If z = a + bi, then |z| =

√
a2 + b2.

Modulus, properties [pp. 611, 628]
For complex numbers z1 and z2:
� |z1z2| = |z1| |z2| (the modulus of a product is

the product of the moduli)

�

∣∣∣∣∣ z1

z2

∣∣∣∣∣ =
|z1|

|z2|
(the modulus of a quotient is
the quotient of the moduli)

Multiple [p. 55] A natural number a is a multiple
of a natural number b if there exists a natural
number k such that a = kb.

Multiple edges [p. 384] A graph is said to have
multiple edges if it has a pair of vertices joined by
more than one edge.

Multiple of a random variable [p. 452] If X is
a random variable and k is a positive number, then:
� E(kX) = k E(X)
� Var(kX) = k2 Var(X)

Multiplication of a complex number by i
[pp. 618, 628] corresponds to a rotation about the
origin by 90◦ anticlockwise. If z = a + bi, then
iz = i(a + bi) = −b + ai.

Multiplication of a vector by a scalar
[p. 697] If a = a1i + a2 j + a3 k and m ∈ R, then
ma = ma1i + ma2 j + ma3 k.

Multiplication of complex numbers
[pp. 609, 628] If z1 = a + bi and z2 = c + di, then
z1z2 = (ac − bd) + (ad + bc)i
If z1 = r1 cis θ1 and z2 = r2 cis θ2, then
z1z2 = r1r2 cis(θ1 + θ2)

Multiplication principle [p. 289] If there are
m ways of performing one task and then there are
n ways of performing another task, then there are
m × n ways of performing both tasks.

N
n! [p. 293] The notation n! (read as ‘n factorial’)
is an abbreviation for the product of all the integers
from n down to 1:
n! = n × (n − 1) × (n − 2) × (n − 3) × · · · × 2 × 1

Natural numbers [p. 42] N = {1, 2, 3, 4, . . . }

Negation [pp. 174, 222] The negation of a
statement P is the opposite statement, called
‘not P’ and written ¬P. For example, if P is the
statement ‘n is odd’, then ¬P is the statement
‘n is even’.

Normal distribution [p. 464] a symmetric,
bell-shaped distribution that often occurs for a
measure in a population (e.g. height, weight, IQ);
its centre is determined by the mean, µ, and its
width by the standard deviation, σ.

Normal reaction force [p. 728] A mass placed
on a surface (horizontal or inclined) experiences
a force perpendicular to the surface, called the
normal force.

O
Ordered pair [p. 43] a pair of elements, denoted
(x, y), where x is the first coordinate and y is the
second coordinate

P
Parallelogram [p. 699] a quadrilateral with both
pairs of opposite sides parallel

Parametric equations [p. 580] a pair of
equations x = f (t) and y = g(t) describing a curve
in the plane, where t is called the parameter of
the curve

Partial fractions [p. 135] Some rational
functions may be expressed as a sum of partial
fractions; e.g.

A
ax + b

+
B

cx + d
+

C
(cx + d)2 +

Dx + E
ex2 + f x + g

Particle model [p. 727] an object is considered
as a point. This can be done when the size of the
object can be neglected in comparison with other
lengths in the problem being considered, or when
rotational motion effects can be ignored.

Pascal’s triangle [p. 313] a triangular pattern of
numbers formed by the values of nCr. Each entry
of Pascal’s triangle is the sum of the two entries
immediately above.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Path [p. 398] a walk in a graph that does not
repeat any vertices

Permutation [p. 293] an ordered arrangement of
objects. The number of permutations of n objects
taken r at a time is given by
nPr =

n!
(n − r)!
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Pigeonhole principle [p. 316] If n + 1 or more
objects are placed into n holes, then some hole
contains at least two objects.

Polar coordinates [p. 589] A point P in the
plane has polar coordinates [r, θ], where:
� r is the distance from the origin O to P
� θ is the angle between the positive direction of

the x-axis and the ray OP.

P

xq

r

O

y

Polar form of a complex number [p. 626]
A complex number is expressed in polar form
as z = r cis θ, where r is the modulus of z
and θ is an argument of z. This is also called
modulus–argument form.

Im(z)

Re(z)

P

0

b

z = a + bi 

a

r

θ

Polynomial function [p. 120] A polynomial has
a rule of the type
y = an xn + an−1 xn−1 + · · · + a1 x + a0, n ∈ N ∪ {0}
where a0, a1, . . . , an are numbers called
coefficients.

Population [p. 456] the set of all eligible
members of a group which we intend to study

Population mean, µ [p. 459] the mean of all
values of a measure in the entire population

Population parameter [pp. 442, 460]
a statistical measure that is based on the whole
population; the value is constant for a given
population

Position vector [p. 698] A position vector,
−−→
OP, indicates the position in space of the point P
relative to the origin O.

Prime [p. 52] A natural number greater than 1 is
a prime number if its only factors are itself and 1.

Prime decomposition [p. 53] expressing a
composite number as a product of powers of prime
numbers; e.g. 500 = 22 × 53

Principle of mathematical induction [p. 189]
used to prove that a statement is true for all natural
numbers

Probability distribution [p. 441] a function,
denoted p(x) or Pr(X = x), which assigns a
probability to each value of a discrete random
variable X

Product-to-sum identities [p. 533]
� 2 cos x cos y = cos(x − y) + cos(x + y)
� 2 sin x sin y = cos(x − y) − cos(x + y)
� 2 sin x cos y = sin(x + y) + sin(x − y)

Projection [p. 664] A projection maps each
point in the plane onto an axis.
� Projection onto the x-axis: (x, y)→ (x, 0)
� Projection onto the y-axis: (x, y)→ (0, y)

Proof by contradiction [p. 178] a proof that
begins by assuming the negation of what is to
be proved

Pseudocode [p. 263] a notation for describing
algorithms that is less formal than a programming
language

Pythagorean identity [p. 520]
� cos2 θ + sin2

θ = 1
� 1 + tan2 θ = sec2 θ

� cot2 θ + 1 = cosec2 θ

Q
Quadratic formula [p. 124] An equation of the
form az2 + bz + c = 0, with a , 0, may be solved
quickly by using the quadratic formula:

z =
−b ±

√
b2 − 4ac

2a

Quadratic function [p. 124] A quadratic has a
rule of the form y = ax2 + bx + c, where a, b and c
are constants and a , 0.

Quadratic surd [p. 47] a number of the
form

√
a, where a is a rational number which is not

the square of another rational number

Quantifier [p. 185] see existence statement,
universal statement

R
Ò+ [p. 46] { x : x > 0 }, positive real numbers

Ò− [p. 46] { x : x < 0 }, negative real numbers

Ò \ {0} [p. 46] real numbers excluding 0

Ò2 [p. 43] { (x, y) : x, y ∈ R }; i.e. R2 is the set of
all ordered pairs of real numbers
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Radian [p. 494] One radian (written 1c) is the
angle subtended at the centre of the unit circle by
an arc of length 1 unit:

1c =
180◦

π
and 1◦ =

πc

180

Random sample [p. 456] a sample chosen using
a random process so that each member of the
population has an equal chance of being included

Random variable [p. 440] a variable that
takes its value from the outcome of a random
experiment; e.g. the number of heads observed
when a coin is tossed three times

Rate [p. 130] describes how a certain quantity
changes with respect to the change in another
quantity (often time)

Rational function [p. 135] a function with a
rule of the form

f (x) =
P(x)
Q(x)

where P(x) and Q(x) are polynomials

Rational number [p. 42] a number that can be
written as

p
q

, for some integers p and q with q , 0

Real part of a complex number [p. 606]
If z = a + bi, then Re(z) = a.

Reciprocal circular functions [pp. 518, 553]
the secant, cosecant and cotangent functions

Reciprocal function [p. 549] The reciprocal of

the function y = f (x) is defined by y =
1

f (x)
.

Recurrence relation [p. 68] a rule which
enables each subsequent term of a sequence
to be found from previous terms; e.g. t1 = 1,
tn = tn−1 + 2

Recurrence relation, first-order linear
[p. 105] a recurrence relation tn = f (n) tn−1 + g(n).
In the special case that
tn = rtn−1 + d
where r and d are constants with r , 1, we can find
an explicit formula for tn of the form
tn = Arn−1 + B
for constants A and B.

Reflection [p. 661] A reflection in a line ` maps
each point in the plane to its mirror image on the
other side of the line.
� Reflection in the x-axis: (x, y)→ (x,−y)
� Reflection in the y-axis: (x, y)→ (−x, y)
� Reflection in the line y = x: (x, y)→ (y, x)
� Reflection in the line y = −x: (x, y)→ (−y,−x)

Reflection matrix [p. 668] A reflection in the
line y = mx = x tan θ is expressed using matrix
multiplication as[
x′

y′

]
=

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
x
y

]
Regular polygon a polygon in which all the
angles are equal and all the sides are equal

Resultant force [p. 727] the vector sum of the
forces acting at a point

Rhombus [p. 716] a parallelogram with all sides
of equal length

Rotation matrix [p. 667] A rotation about the
origin by angle θ anticlockwise is expressed using
matrix multiplication as[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]

S
Sample [p. 456] a subset of the population which
we select in order to make inferences about the
whole population

Sample mean, x̄ [p. 459] the mean of all values
of a measure in a particular sample. The values x̄
are the values of a random variable X̄.

Sample statistic [pp. 442, 460] a statistical
measure that is based on a sample from the
population; the value varies from sample to
sample

Sampling distribution [p. 461] the distribution
of a statistic which is calculated from a sample

Scalar [p. 697] a real number; name used when
working with vectors or matrices

Scalar product [p. 707] The scalar product of
two vectors a = a1i + a2 j and b = b1i + b2 j is
given by
a · b = a1b1 + a2b2

Scalar product, properties [p. 708]
� a · b = b · a
� k(a · b) = (ka) · b = a · (kb)
� a · 0 = 0
� a · (b + c) = a · b + a · c
� a · a = |a|2

Scalar quantity [p. 717] a quantity determined
by its magnitude; e.g. distance, time, speed, mass

Scientific notation [p. 5] A number is in
standard form when written as a product of a
number between 1 and 10 and an integer power
of 10; e.g. 6.626 × 10−34.
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Secant function [pp. 518, 553] sec θ =
1

cos θ
for cos θ , 0

Sector [pp. 493, 494] Two radii and an arc
define a region called a sector. In this diagram, the
shaded region is a minor sector and the unshaded
region is a major sector.

Area of sector =
1
2

r2θ

where θc = ∠AOB

A

C

B

OD θ

Segment [pp. 493, 496] Every chord divides
the interior of a circle into two regions called
segments; the smaller is the minor segment
(shaded), and the larger is the major segment.

Area of segment

=
1
2

r2(θ − sin θ
)

where θc = ∠AOB

A

B

O

r

θ

Selection [p. 260] In an algorithm, we can use
decision-making constructs to specify whether
certain steps should be followed based on some
condition; e.g. if-then blocks.
see also combination

Sequence [p. 67] a list of numbers, with the
order being important; e.g. 1, 1, 2, 3, 5, 8, 13, . . .
The numbers of a sequence are called its terms,
and the nth term is often denoted by tn.

Series [p. 79] the sum of the terms in a
sequence

Set notation [p. 39]
∈ means ‘is an element of’
< means ‘is not an element of’
⊆ means ‘is a subset of’
∪ means ‘union’
∩ means ‘intersection’
∅ is the empty set, containing no elements
ξ is the universal set, containing all elements

being considered
A′ is the complement of a set A
|A| is the number of elements in a finite set A

Sets of numbers [pp. 42, 605]
N is the set of natural numbers
Z is the set of integers
Q is the set of rational numbers
R is the set of real numbers
C is the set of complex numbers

Shear [p. 663] A shear moves each point in the
plane by an amount proportional to its distance
from an axis.
� Shear parallel to the x-axis: (x, y)→ (x + cy, y)
� Shear parallel to the y-axis: (x, y)→ (x, cx + y)

Simplest form [p. 47] A surd
√

a is in simplest
form if the number under the square root has no
factors which are squares of a rational number.

Simulation [p. 464] using technology (calcu-
lators or computers) to repeat a random process
many times; e.g. random sampling

Simultaneous equations [pp. 8, 142, 362, 372]
equations of two or more lines or curves in the
Cartesian plane, the solutions of which are the
points of intersection of the lines or curves

Sine function [p. 478] sine θ is defined as the
y-coordinate of the point P on the unit circle where
OP forms an angle of θ radians with the positive
direction of the x-axis.

x

y

–1

–1

1

1O
cos θ

sin θ

P(θ) = (cos θ, sin θ) 

θ

Sine rule [p. 483] used to find unknown
quantities in a triangle given one side and two
angles, or given two sides and a non-included
angle. For4ABC:

a
sin A

=
b

sin B
=

c
sin C

A

B

C

ac

b

Speed [p. 718] the magnitude of velocity

Standard deviation of a random variable, σ
[p. 444] a measure of the spread or variability,
given by sd(X) =

√
Var(X)

Standard form [p. 5] A number is in standard
form when written as a product of a number
between 1 and 10 and an integer power of 10;
e.g. 6.626 × 10−34. Also called scientific notation

Subgraph [p. 387] a graph whose vertices and
edges are subsets of another graph

Subset [p. 39] A set B is called a subset of a
set A if every element of B is also an element of A.
We write B ⊆ A.
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Subtraction of complex numbers [p. 607]
If z1 = a + bi and z2 = c + di, then
z1 − z2 = (a − c) + (b − d)i.

Subtraction of vectors [p. 697]
If a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k,
then a − b = (a1 − b1)i + (a2 − b2) j + (a3 − b3)k.

Sum of independent random variables
[p. 447] If X and Y are independent random
variables, then:
� E(X + Y) = E(X) + E(Y)
� Var(X + Y) = Var(X) + Var(Y)

Sum to infinity [p. 109] The sum to infinity
of an infinite geometric series exists provided
−1 < r < 1 and is given by

S∞ =
a

1 − r
where a = t1 and r is the common ratio.

Sum-to-product identities [p. 534]

� cos x + cos y = 2 cos
( x + y

2

)
cos

( x − y
2

)
� cos x − cos y = −2 sin

( x + y
2

)
sin

( x − y
2

)
� sin x + sin y = 2 sin

( x + y
2

)
cos

( x − y
2

)
� sin x − sin y = 2 sin

( x − y
2

)
cos

( x + y
2

)
Surd of order n [p. 47] a number of the
form n√a, where a is a rational number which is not
a perfect nth power

Surd, quadratic [p. 47] a number of the
form

√
a, where a is a rational number which is not

the square of another rational number

Switching circuit [p. 210] an electrical circuit
built using combinations of switches in series and
in parallel. A switching circuit can be represented
by a Boolean expression.

T
Tangent function [p. 479] tan θ =

sin θ
cos θ

for cos θ , 0

Tautology [p. 223] a statement which is true
under all circumstances

Tension force [p. 728] the pulling force exerted
by a string that connects two objects. The forces at
each end of the string have equal magnitude.

Total degree of a graph [p. 386] the sum of the
degrees of all the vertices of the graph. The total
degree is equal to twice the number of edges.

Transformation [p. 657] A transformation of
the plane maps each point (x, y) in the plane to a
new point (x′, y′). We say that (x′, y′) is the image
of (x, y).

Translation [p. 665] a transformation that
moves each point in the plane in the same direction
and over the same distance: (x, y)→ (x + a, y + b)

Tree [p. 410] a connected graph with no cycles.
A tree with n vertices has n − 1 edges.

Tree, spanning [p. 411] If G is a connected
graph, then a spanning tree of G is a subgraph of G
that is a tree with the same set of vertices as G.

Triangle of forces [p. 728] If three forces are
acting on a point in equilibrium, then they can be
represented by three vectors forming a triangle.

F1

F2
F3

F1

F2

F3

Trigonometric ratios [p. 478]

sin θ =
opposite

hypotenuse

cos θ =
adjacent

hypotenuse

tan θ =
opposite
adjacent

opposite side

adjacent side

hypotenuse

θ

Truth table [p. 221] gives the truth value of
a compound statement for each combination of
truth values of the constituent statements

U
Union of sets [p. 39] The union of two sets A
and B, written A ∪ B, is the set of all elements
which are in A or B or both.

Unit vector [p. 704] a vector of magnitude 1.
The unit vectors in the positive directions of the
x-, y- and z-axes are i, j and k respectively. The
unit vector in the direction of a is given by

â =
1
|a|

a

Universal statement [pp. 185, 186] a statement
claiming that a property holds for all members of
a given set. Such a statement can be written using
the quantifier ‘for all’.
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V
Valid argument [p. 230] An argument is said to
be valid if whenever all the premises are true, the
conclusion is also true.

Variance of a random variable, σ2 [p. 443]
a measure of the spread or variability, defined by
Var(X) = E[(X − µ)2]
An alternative (computational) formula is
Var(X) = E(X2) −

[
E(X)

]2

Vector [p. 695] a set of equivalent directed line
segments

Vector quantity [p. 717] a quantity determined
by its magnitude and direction; e.g. position,
displacement, velocity, force

Vectors, parallel [p. 698] Two non-zero vectors
a and b are parallel if and only if a = kb for some
k ∈ R \ {0}.

Vectors, perpendicular [p. 708] Two non-zero
vectors a and b are perpendicular if and only if
a · b = 0.

Vectors, properties [pp. 695–697]
� a + b = b + a commutative law
� (a + b) + c = a + (b + c) associative law
� a + 0 = a zero vector
� a + (−a) = 0 additive inverse
� m(a + b) = ma + mb distributive law

Vectors, resolution [p. 710] A vector a is
resolved into rectangular components by writing
it as a sum of two vectors, one parallel to a given
vector b and the other perpendicular to b.
The vector resolute of a in the direction of b is
given by

u =
a · b
b · b

b

Velocity [p. 718] the rate of change of position
with respect to time. Velocity is a vector quantity.

Velocity, relative [p. 723] The relative velocity
of an object A with respect to another object B is
the velocity that object A would appear to have to
an observer moving along with object B.

Velocity, resultant [p. 722] the sum of two or
more velocity vectors. For example, if a train is
travelling north at 60 km/h and a passenger walks
at 3 km/h towards the back of the train, then the
passenger’s resultant velocity is 57 km/h north.

Velocity, true [p. 723] the velocity of an object
measured relative to Earth

W
Walk [pp. 391, 402] A walk in a graph is an
alternating sequence of vertices and edges
v1, e1, v2, e2, . . . , vn−1, en−1, vn

where the edge ei joins the vertices vi and vi+1.
� The length of a walk is the number of edges in

the walk, counting repetitions.
� If A is the adjacency matrix of a graph G, then

the matrix An gives the number of walks of
length n between each pair of vertices of G.

Weight [p. 727] On the Earth’s surface, a mass of
m kg has a force of m kg wt acting on it; this force
is known as the weight.

Z
Zero vector, 0 [p. 697] a line segment of zero
length with no direction
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Chapter 1
Exercise 1A
1 a x7 b a2 c x3 d y−4

e x12 f p−7 g a−
1
6 h a−8

i y14 j x15 k a−12 l x2

m n2 n 8x
7
2 o a p x4

q
1

2n6 r −8x2 s a−2b5 t 1

2 a 5 b 4 c
4
3

d
1
4

e
6
7

f 3 g 12 h 16

i 27 j
3
2

k 1 l 8

3 a 18.92 b 79.63 c 5.89
d 125 000 e 0.9 f 1.23
g 0.14 h 1.84 i 0.4

4 a a4b7 b 64a4b7 c b

d a6b9 e 2a4b7 f
a2b5

128
5 22n−4

6 63x

7 a
(1

2

) 1
6

b a
11
20 c 2

5
6 d 2

19
6 e 2

3
5

8 a a
1
3 b b a

5
2 b

1
2 c ab

1
5

d
(b

a

) 1
2

e a
5
2 b

1
2 c−4 f a

1
5 b

3
5

g a−4b
7
2 c5

Exercise 1B
1 a 4.78 × 10 b 6.728 × 103 c 7.923 × 10

d 4.358 × 104 e 2.3 × 10−3 f 5.6 × 10−7

g 1.200 034 × 10 h 5.0 × 107

i 2.3 × 1010 j 1.3 × 10−9 k 1.65 × 105

l 1.4567 × 10−5

2 a 1.0 × 10−8 b 1.67 × 10−24

c 5 × 10−5 d 1.853 18 × 103

e 9.461 × 1012 f 2.998 × 1010

3 a 81 280 000 000 000 b 270 000 000
c 0.000 000 000 000 28

4 a 4.569 × 102 b 3.5 × 104

c 5.6791 × 103 d 4.5 × 10−2

e 9.0 × 10−2 f 4.5682 × 103

5 a 0.000 0567 b
262

2625
6 a 11.8 b 4.76 × 107

Exercise 1C

1 a x =
8
3

b x = 48 c x = −
20
3

d x = 63 e x = −0.7 f x = 2.4

g x = 0.3 h x = −6 i x = −
15
92

j x = −
21
17

2 a x =
160

9
b x = 19.2 c x = −4

d x =
80
51

e x = 6.75 f x = −
85
38

g x =
487
13

h x =
191
91

3 a x =
18
13

, y = −
14
13

b x =
16
11

, y = −
18
11

c x = 12, y = 17 d x = 8, y = 2
e x = 0, y = 2 f x = 1, y = 6

Exercise 1D
1 a 4(x − 2) = 60; x = 17

b
(2x + 7

4

)2

= 49; x = 10.5

c x − 5 = 2(12 − x); x =
29
3

d y = 6x − 4 e Q = np
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f R = 1.1pS g
60n
5

= 2400

h a =
π

3
(x + 3)

2 $2500
3 Eight dresses and three handbags
4 8.375 m by 25.125 m
5 $56.50 6 Nine
7 20, 34 and 17
8 Annie 165, Belinda 150, Cassie 189
9 15 km/h 10 2.04 × 10−23 g

11 30 pearls
12 Oldest $48, middle $36, youngest $12
13 98% 14 25 students
15 After 20 minutes
16 a 40 minutes b 90 minutes c 20 minutes
17 200 km
18 39 km/h

Exercise 1E
1 140.625 km 2 50 guests
3 10 000 adults 4 Men $220, boys $160
5 127 and 85
6 252 litres 40% and 448 litres 15%
7 120 and 100; 60 8 $370 588
9 500 adults, 1100 students

10 18 draws

Exercise 1F
1 a 25 b 330 c 340.47 d 1653.48

e 612.01 f 77.95 g 2.42 h 2.1
i ±9.43 j ±9.54

2 a a =
v − u

t
b ` =

2S
n
− a c b =

2A
h

d I = ±

√
P
R

e a =
2(s − ut)

t2

f v = ±

√
2E
m

g h =
Q2

2g
h x = −

z
y

i x =
−b(c + y)

a − c
j x =

−b(c + 1)
m − c

3 a 82.4◦F b C =
5(F − 32)

9
; 57.22◦C

4 a 1080◦ b n =
S

180
+ 2; 9 sides

5 a 115.45 cm3 b 12.53 cm c 5.00 cm
6 a 66.5 b 4 c 11

Exercise 1G

1 a
13x
6

b
5a
4

c −
h
8

d
5x − 2y

12

e
3y + 2x

xy
f

7x − 2
x(x − 1)

g
5x − 1

(x − 2)(x + 1)
h
−7x2 − 36x + 27
2(x + 3)(x − 3)

i
4x + 7

(x + 1)2 j
5a2 + 8a − 16

8a

k
4(x2 + 1)

5x
l

2x + 5
(x + 4)2

m
3x + 14

(x − 1)(x + 4)
n

x + 14
(x − 2)(x + 2)

o
7x2 + 28x + 16

(x − 2)(x + 2)(x + 3)
p

(x − y)2 − 1
x − y

q
4x + 3
x − 1

r
3 − 2x
x − 2

2 a 2xy2 b
xy
8

c
2
x

d
x
y2

e
a
3

f
1
2x

g
x − 1
x + 4

h x + 2

i
x − 1

x
j

a
4b

k
2x

x + 2
l

x − 1
4x

m
x + 1
2x

n
1
3

x(x + 3)

o
x − 2

3x(3x − 2)(x + 5)

3 a
3

x − 3
b

4x − 14
x2 − 7x + 12

c
5x − 1

x2 + x − 12
d

2x2 + 10x − 6
x2 + x − 12

e
2x − 9

x2 − 10x + 25
f

5x − 8
(x − 4)2

g
1

3 − x
h

23 − 3x
x2 + x − 12

i
5x2 − 3x

x2 − 9
j

11 − 2x
x2 − 10x + 25

k
12

(x − 6)3 l
9x − 25

x2 − 7x + 12

4 a
3 − x
√

1 − x
b

2
√

x − 4 + 6

3
√

x − 4
c

5
√

x + 4

d
x + 7
√

x + 4
e −

12x2

√
x + 4

f
9x2(x + 2)

2
√

x + 3

5 a
6x − 4

(6x − 3)
2
3

b
3

(2x + 3)
2
3

c
3 − 3x

(x − 3)
2
3

Exercise 1H

1 a x =
m − n

a
b x =

b
b − a

c x = −
bc
a

d x =
5

p − q
e x =

m + n
n − m

f x =
ab

1 − b

g x = 3a h x = −mn i x =
a2 − b2

2ab

j x =
p − q
p + q

k x =
3ab

b − a
l x =

1
3a − b

m x =
p2 + p2t + t2

q(p + t)
n x = −

5a
3
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4 a x =
d − bc
1 − ab

, y =
c − ad
1 − ab

b x =
a2 + ab + b2

a + b
, y =

ab
a + b

c x =
t + s
2a

, y =
t − s
2b

d x = a + b, y = a − b

e x = c, y = −a f x = a + 1, y = a − 1

5 a s = a(2a + 1) b s =
2a2

1 − a

c s =
a2 + a + 1
a(a + 1)

d s =
a

(a − 1)2

e s = 3a3(3a + 1) f s =
3a

a + 2

g s = 2a2 − 1 +
1
a2 h s =

5a2

a2 + 6

Exercise 1I
1 a x = a − b b x = 7

c x = −
a ±
√

a2 + 4ab − 4b2

2
d x =

a + c
2

2 a (x − 1)(x + 1)(y − 1)(y + 1)
b (x − 1)(x + 1)(x + 2)
c (a2 − 12b)(a2 + 4b) d (a − c)(a − 2b + c)

3 a x =
a + b + c

a + b
, y =

a + b
c

b x =
−(a − b − c)

a + b − c
, y =

a − b + c
a + b − c

Chapter 1 review
Technology-free questions

1 a x12 b y−9 c −15x
11
2 d x−1

2 3.84 × 108

3 a
2x + y

10
b

4y − 7x
xy

c
7x − 1

(x + 2)(x − 1)
d

7x + 20
(x + 2)(x + 4)

e
13x2 + 2x + 40
2(x + 4)(x − 2)

f
3(x − 4)
(x − 2)2

4 a
2
x

b
x − 4
4x

c
x2 − 4

3
d 4x2

5 106 seconds or 11 31
54 days

6 50
7 12
8 88 crime, 80 science fiction, 252 romance

9 a 300π cm3 b h =
V
πr2 ;

117
5π

cm

c r =

√
V
πh

;

√
128
π

cm =
8
√

2
√
π

cm

10 a x =
b

a + y
b x =

a + b
c

c x =
2ab

b − a
d x =

ab + b2d − d2

d(a + b)

11 a
p2 + q2

p2 − q2 b
x + y

x(y − x)

c (x − 2)(2x − 1) d
2
a

12 A 36; B 12; C 2
13 a a = 8, b = 18 b x = p + q, y = 2q
14 x = 3.5

15 a 4n2k2 b
40cx2

ab2

16 x = −1

Multiple-choice questions
1 A 2 A 3 C 4 A 5 B 6 E
7 B 8 B 9 B 10 B 11 E

Extended-response questions

1 a
5x
4

hours b
4x
7

hours c
19x
28

hours

d i x =
14
19
≈ 0.737

ii Jack
140
19
≈ 7 km; Benny

560
19
≈ 29 km

2 a 18 000 cm3 per minute b V = 18 000t

c h =
45t
4π

d After

3 a Thomas a; George
3a
2

; Sally a − 18;

Zeb
a
3

; Henry
5a
6

b
3a
2

+ a − 18 +
a
3

= a +
5a
6

+ 6

c a = 24; Thomas 24; Henry 20; George 36;
Sally 6; Zeb 8

4 a 1.9 × 10−8 N b m1 =
Fr21011

6.67m2
c 9.8 × 1024 kg

5 a V = (1.8 × 107)d b 5.4 × 108 m3

c k = 9.81 × 103 d 1.325 × 1015 J
e 1202 days (to the nearest day)

6
10
√

3
3

cm 7 −40◦ 8
240
11

km/h

9 a h = 20 − r

b i V =

(
20r2 −

r3

3

)
π

ii r = 5.94 cm; h = 14.06 cm

10 a
2
3

litre from A;
1
3

litre from B

b 600 mL from A; 400 mL from B

c
(p − q)(n + m)

2(np − qm)
litres from A,

(n − m)(p + q)
2(np − qm)

litres from B,

where
n
m
,

q
p

and one of
n
m

or
q
p

is ≥ 1 and

the other is ≤ 1
11 a h = 2(10 − r) b V = 2πr2(10 − r)

c r = 3.4985, h = 13 or r = 9.022, h = 1.955
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Chapter 2
Exercise 2A
1

3
1

x

5
4 BA
4

3
1

5
2

a {4} b {1, 3, 5} c {1, 2, 3, 4, 5} = ξ

d ∅ e ∅
2

3

159

1 5 7 11 13

426

12
14

8 10
16

P Q

x

a {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16}
b {1, 3, 5, 7, 9, 11, 13, 15}
c {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16}
d {1, 5, 7, 11, 13} e {1, 5, 7, 11, 13}

3

AB

1 3

7
5

9

11

8
12

462

10

ξ

a {1, 2, 3, 5, 6, 7, 9, 10, 11}
b {1, 3, 5, 7, 9, 11} c {2, 4, 6, 8, 10, 12}
d {1, 3, 5, 7, 9, 11} e {1, 3, 5, 7, 9, 11}

4

r

w
X

p
ξ

Y
t

s

q

v

u

a {p, q, u, v} b {p, r, w} c {p}
d {p, q, r, u, v, w} e {q, r, s, t, u, v, w} f {p}

5 5  7  9     11

1
3

2
6 12

4X

x

Y
8
10

a {5, 7, 8, 9, 10, 11} b {1, 3, 5, 7, 9, 11}
c {1, 3, 5, 7, 8, 9, 10, 11}
d {1, 3, 5, 7, 8, 9, 10, 11}
e {1, 2, 3, 4, 6, 8, 10, 12} f {5, 7, 9, 11}

6 a BA b BA

c BA d BA

e BA f BA

7

G

A

B L
A N

E

R

x

a {R} b {G, R} c {L, E, A, N}
d {A, N, G, E, L} e {R} f {G, R}

8

BA
I

C

A

T

S

E

HMξ

a {E, H, M, S} b {C, H, I, M}
c {A, T} d {H, M} e {C, E, H, I, M, S}
f {H, M}

9 a 10 b 10
c If you have chosen a 2-element subset of C,

its complement is a 3-element subset of C.

Exercise 2B
1 a Yes b Yes c Yes
2 a No b No c No

3 a
9

20
b

2
9

c
3

11
d

3
25

e
4
11

f
2
7

4 a 0.2̇85714̇ b 0.4̇5̇ c 0.35
d 0.3̇07692̇ e 0.0̇588235294117647̇

5 a
−2 −1 0 1 2 3 4 5

b
−3 −2 −1 0 1 2 3 4

c
−3 −2 −1 0 1 2 3 4

d
−2 −1 0 1 2 3 4 5

e
−2 −1 0 1 2 3 4 5

6 a (−∞, 3) b [−3,∞) c (−∞,−3]
d (5,∞) e [−2, 3) f [−2, 3]
g (−2, 3] h (−5, 3)

Exercise 2C
1 a 2

√
2 b 2

√
3 c 3

√
3 d 5

√
2

e 3
√

5 f 11
√

10 g 7
√

2 h 6
√

3
i 5 j 5

√
3 k 16

√
2

2 a 3
√

2 b 6
√

3 c 4
√

7
d 5
√

10 e 28
√

2 f 0
3 a 11

√
3 +
√

14 b 5
√

7
c 0 d

√
2 +
√

3
e 5
√

2 + 15
√

3 f
√

2 +
√

5

4 a
√

5
5

b
√

7
7

c −
√

2
2

d
2
√

3
3

e
√

6
2

f
√

2
4
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g
√

2 − 1 h 2 +
√

3 i
4 +
√

10
6

j
√

6 − 2 k
√

5 +
√

3
2

l 3(
√

6 +
√

5)

m 3 + 2
√

2
5 a 6 + 4

√
2 b 9 + 4

√
5 c −1 +

√
2

d 4 − 2
√

3 e
2
√

3
9

f
8 + 5

√
3

11

g
3 +
√

5
2

h
6 + 5

√
2

14
6 a 4a − 4

√
a + 1

b 3 + 2x + 2
√

(x + 1)(x + 2)
7 3
√

5, 4
√

3, 7, 5
√

2
8 a 5 − 3

√
2 b 7 − 2

√
6

9 a
3
√

2
b
√

5
2

c
√

5
5

d
8
√

3
10 a b = 0, c = −3 b b = 0, c = −12

c b = −2, c = −1 d b = −4, c = 1
e b = −6, c = 1
f b = −7 + 5

√
5, c = −58 − 13

√
5

11
3
√

2 + 2
√

3 −
√

30
12

12 b −1 − 2
1
3 − 2

2
3

13 3

Exercise 2D
1 a 22 × 3 × 5 b 22 × 132

c 22 × 3 × 19 d 22 × 32 × 52

e 22 × 32 × 7 f 22 × 32 × 52 × 7
g 25 × 3 × 5 × 11 × 13
h 25 × 3 × 7 × 11 × 13
i 25 × 7 × 11 × 13
j 25 × 7 × 11 × 13 × 17

2 a 1 b 27 c 5 d 31 e 6
3 a 18: 1, 2, 3, 6, 9, 18;

36 : 1, 2, 3, 4, 6, 9, 12, 18, 36
b 36 is a square number (36 = 6 × 6)
c 121 has factors 1, 11 and 121

4 5, 14 and 15 5 n = 121
6 15 7 105
8 8 9 4

10 1:12 p.m.
11 600 and 108 000; 2400 and 27 000;

3000 and 21 600; 5400 and 12 000

Exercise 2E
1 a

1459

EH
ξ

b i 19 ii 9 iii 23

2 a
14

3 5 9

4

2
6

7
C

A Bξ

3
95

7

6
4

2

b i 23 ii 37 iii 9
3 20%
4 a 5 b 10
5 45
6 a x = 5 b 16 c 0
7 a

X
22

35
26

34

23

29
28

31

32 25

1

49

4 16

9
36

3033

24 27

21

12

3
6

15

3918

Y

Z

ξ

22

35
26

34

23

29
28

31

32

3033

24 27

1

49

4 16

25 9
36

b i X ∩ Y ∩ Z = {36} ii |X ∩ Y | = 5
8 31 students; 15 black, 12 green, 20 red
9 |M ∩ F| = 11 10 1

11 x = 6; 16 students 12 102 students

Chapter 2 review
Technology-free questions

1 a
7

90
b

5
11

c
1

200

d
81

200
e

4
15

f
6

35
2 23 × 32 × 7

3 a
2
√

6 −
√

2
2

b 4
√

5 + 9 c 2
√

6 + 5

4 −23 − 12
√

3

5 a 2
√

6 + 6 b
a −
√

a2 − b2

b
6 a 15 b 15
7 a 1 b 22 c 22
8 5 9 2 cm2 10 −15

√
7

11 x = ±2 12
√

5 −
√

6 13
51
√

3
5

14 2
√

2 + 3
15 a 57 b 3 c 32

Multiple-choice questions
1 A 2 D 3 D 4 D 5 C 6 D
7 B 8 B 9 C 10 A 11 D 12 B
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Extended-response questions
1 c i

√
11 +

√
3

ii 2
√

2 −
√

7 or
√

7 − 2
√

2
iii 3
√

3 − 2
√

6 or 2
√

6 − 3
√

3
2 a a = 6, b = 5 b p = 26, q = 16

c a = −1, b =
2
3

d i
12
√

3 − 19
71

ii 3 ±
√

3 iii
1 ±
√

3
2

e Q = { a + 0
√

3 : a ∈ Q }
3 a (20, 21, 29)
4 a i 4 factors ii 8 factors

b n + 1 factors
c i 32 factors ii (n + 1)(m + 1) factors
d (α1 + 1)(α2 + 1) · · · (αn + 1) factors
e 24

5 a 1080 = 23 × 33 × 5;
25 200 = 24 × 32 × 52 × 7

b 75 600
d i 3470, 3472, 3474, 3476

ii 1735, 1736, 1737, 1738
6 a i Students shorter than or equal to 180 cm

ii Students who are female or taller than
180 cm

iii Students who are not female and shorter
than or equal to 180 cm

b BA (A ∪ B)′ = A′ ∩ B′

is shaded

8 a i Region 8
ii non-female, red hair, blue eyes
iii non-female, not red hair, blue eyes

b i 5 ii 182
9 a

BA

C
80

80

65 35 205

35

|A ∩ C | = 0

20565 35

80

80

b 160 c 65 d 0

Chapter 3
Exercise 3A
1 a 3, 7, 11, 15, 19 b 5, 19, 61, 187, 565

c 1, 5, 25, 125, 625 d −1, 1, 3, 5, 7
e 1, 3, 7, 17, 41

2 a tn = tn−1 + 3, t1 = 3 b tn = 2tn−1, t1 = 1
c tn = −2tn−1, t1 = 3 d tn = tn−1 + 3, t1 = 4
e tn = tn−1 + 5, t1 = 4

3 a 1,
1
2

,
1
3

,
1
4

b 2, 5, 10, 17

c 2, 4, 6, 8 d 2, 4, 8, 16
e 5, 8, 11, 14 f −1, 8, −27, 64
g 3, 5, 7, 9 h 2, 6, 18, 54

4 a tn = 3n b tn = 2n−1

c tn =
1
n2 d tn = 3(−2)n−1

e tn = 3n + 1 f tn = 5n − 1
5 tn+1 = 3n + 4, t2n = 6n + 1
6 a t1 = 15, tn = tn−1 + 3

b tn = 12 + 3n c t13 = 51
7 a t1 = 94.3, tn = 0.96tn−1

b tn = 94.3(0.96)n−1 c t9 = 68.03
8 a t0 = 100, tn = 1.8tn−1 + 20

b t1 = 200, t2 = 380, t3 = 704, t4 = 1287,
t5 = 2336

9 a 1st year $2120; 2nd year $2671.20;
3rd year $3255.47

b tn = 1.06(tn−1 + 400), t1 = 2120
c $8454.02

10 a 1, 4, 7, 10, 13, 16 b 3, 1, −1, −3, −5, −7

c
1
2

, 1, 2, 4, 8, 16 d 32, 16, 8, 4, 2, 1

11 a 1.1, 1.21, 1.4641, 2.144, 4.595, 21.114

b 27, 18, 12, 8,
16
3

,
32
9

c −1, 3, 11, 27, 59, 123
d −3, 7, −3, 7, −3, 7

12 a t1 = 1, t2 = 2, t3 = 4
b u1 = 1, u2 = 2, u3 = 4
c t1 = u1, t2 = u2, t3 = u3

d t4 = 8, u4 = 7
13 S1 = a + b, S2 = 4a + 2b, S3 = 9a + 3b,

Sn+1 − Sn = 2an + a + b

14 t2 =
3
2

, t3 =
17
12

, t4 =
577
408

; the number is
√

2

15 F3 = 2, F4 = 3, F5 = 5

Exercise 3B
1 a 0, 2, 4, 6 b −3, 2, 7, 12

c −
√

5, −2
√

5, −3
√

5, −4
√

5 d 11, 9, 7, 5
2 a −31 b 24 c 5 d 6

√
3

3 a a = 3, d = 4, tn = 4n − 1
b a = 3, d = −4, tn = 7 − 4n

c a = −
1
2

, d = 2, tn = 2n −
5
2

d a = 5 −
√

5, d =
√

5, tn =
√

5n + 5 − 2
√

5
4 a 13 b 8 c 20 d 56
5 a = −2, d = 3, t7 = 16
6 tn = 156n − 450
7 −2
8 54
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9 27
√

3 − 60
10 a 672 b 91st week
11 a 70 b 94 c Row F
12 117

13
218

9
14 7, 9, 11, 13

15 tn = a −
a(n − 1)
m − 1

16 a 11.5 b
2
√

2
7

17 16
18 5
20 3

Exercise 3C
1 a 426 b 55 c 60

√
2 d 108

2 112
3 680
4 2450
5 a 14 b 322
6 a 20 b −280
7 a 12 b 105
8 a 180 b n = 9
9 11

10 20
11 0
12 a 16.5 km b 45 km c 7 walks d 189 km
13 a 10 days b 25 per day
14 a 86 b 2600 c 224 d 2376

e 5 extra rows
15 $176 400
16 a = −15, d = 3, t6 = 0, S6 = −45
17 2160
18 266

19 a tn =
5
4

n +
11
4

b tn =
46
√

5
5
− 2
√

5n

20 a b b
n
2

(b + bn)

21 t5 = −10, S25 = −1250
22 1575d
23 a Sn−1 = 23n − 3n2 − 20

b tn = 20 − 6n c a = 14, d = −6
24 7, 12, 17
27 4860
28 Sequence of four positive integers such

that 2a + 3d = 50; therefore a = 1 + 3t and
d = 16 − 2t for 0 ≤ t ≤ 16. (The sequence
25, 25, 25, 25 is included.)

29 60 (the equilateral case is included with
common difference 0)

Exercise 3D
1 a 3, 6, 12, 24 b 3, −6, 12, −24

c 10 000, 1000, 100, 10 d 3, 9, 27, 81

2 a
5

567
b

1
256

c 32 d ax+5

3 a tn = 3
(2

3

)n−1

b tn = 2(−2)n−1

c tn = 2(
√

5)n−1

4 a 3 b ±
2
5

5 t9

6 a 6 b 9 c 9 d 6 e 8

7
2
35

8 16
√

2
9 a 24 b 12 288

10 a 21 870 m2 b 9th day
11 47.46 cm
12 a $5397.31 b 48th year
13 a 57.4 km b 14th day
14 $5 369 000 15 t10 = 2048
16 t6 = 729 17 5 weeks
18 a 60 b 2.5 c 1 d x4y7

19 3 or 1

20 a =
1 ±
√

5
2

21 a 168.07 mL b 20 times

22 a Side length
a + b

2
b Side length

√
ab

Exercise 3E

1 a 5115 b −182 c −
57
64

2 a 1094 b −684 c 7812
3 10
4 7
5 a 1062.9 mL b 5692.30 mL c 11 days
6 a 49 minutes (to nearest minute)

b 164 minutes c Friday

7
481 835

6561
≈ 73.44 m

8 a $18 232.59 b $82 884.47

9 a 155 b
15
√

2
2

+ 15

10 a 8 b { n : n > 19 }

11
x2m+2 + 1

x2 + 1
12 a 54 976 km b 43 times
13 Option 1: $52 000 000;

Option 2: Approx. $45 036 000 000 000

14
(1

3

) 1
50



A
ns

w
er

s
3F
→

3H
774 Answers

Exercise 3F
1 a $7092.60 b 12 years
2 $3005.61
3 a 60 000(1.15)n−1 b 23rd year

c 400 000(1.15n − 1)
4 a $39 918.13 b During the 5th year
5 11.6% p.a.
6 During the 9th year
7 $330 169.68
8 $1587.24
9 a $279 432.85 b 8 years

10 a $37 110.54
b At the end of the 15th year, the final

repayment is $2107.18
11 $4497.06
12 Bianca $3247.32; Andrew $3000
13 a i 21 000 ii 22 150 iii 23 473

b Pn = 1.15Pn−1 − 2000

c Pn = 20 000 × 1.15n −
40 000

3
(1.15n − 1)

d 67 580
14 a i $290 000 ii $279 000 iii $266 900

b An = 1.1An−1 − 40 000
c An = 300 000 × 1.1n − 400 000(1.1n − 1)
d At the end of the 15th year, the final

payment is $22 275.18

Exercise 3G
1 a 6, 22, 70, 214 b 1, 8, 50, 302

c 6, 14, 38, 110 d 2, 9, 37, 149

2 a d = −4 b r =
3
2

c d = −100
d a = 5

3 a r = 2, d = 1 b r =
1
2

, d = −64

c a = 1, d = 5 d r = 3, d = −100
4 a a2 = 5k + 3, a3 = 25k + 18

b S4 = 156k + 114
5 a tn = 2n−1 + 6 b tn = 2 − 2n−1

c tn = 20 d tn = 28 −
8

2n−1

e tn =
40

2n−1 − 20 f tn = 1

6 a tn = 10 −
4

2n−1 b 6, 8, 9, 9.5

c As n gets larger, the value of tn gets closer
to 10 from below

7 a tn =
1
3

(
10 +

8
(−2)n−1

)
b 6, 2, 4, 3

c Values of tn oscillate about
10
3

, getting
closer as n gets larger

8 tn = 12 × 3n−1 − 5

9 tn = 22 ×
(1

2

)n−1

− 6

10 a r = 2, d = 4 b n = 9
c tn+1 − tn = 3 × 2n > 0 for all n ∈ N;

hence tn+1 > tn for all n ∈ N
11 tn = 5 + (n − 1)(n + 2) = n2 + n + 3
12 tn = 5 + (n − 1)(n + 3) = n2 + 2n + 2

13 a a1 = 11, a3 = 171 b an =
1
3

(32× 4n−1 + 1)

14 a sn = 2 −
(
−

1
2

)n−1

b 1,
5
2

,
7
4

,
17
8

,
31
16

c

1

2

n

sn

1 2 3 4 5

5
2

d Values of sn oscillate about 2, getting closer
as n gets larger

15 a Nn = 1.22Nn−1 − 250, N1 = 1356
b Deer population is still increasing

16 a tn = 1.085tn + 250, t1 = 3000

b tn =
1
17

(
101 000 × 1.085n−1 − 50 000

)
c t11 ≈ 10 492 d 2013

17 a tn = 1.27tn−1 − 20, t1 = 200

b tn =
200
27

(
17 × 1.27n−1 + 10

)
c 1156 goats

18 a An+1 = 1.007An − 400, A1 = 15 000

b An =
1
7
(
400 000 − 295 000 × 1.007n−1)

c Paid off at the start of the 45th month
19 a tn = 150 − 118 × 0.6n−1

b tn+1 − tn =
236

5
× 0.6n−1 > 0 for all n ∈ N

c n = 23 f d = 80

Exercise 3H

1 a
5
4

b
3
5

2 Perimeter p
(1

2

)n−1

; Area
p2
√

3
9 × 4n ;

Sum of perimeters 2p; Sum of areas
p2
√

3
27

3 3333 1
3 m

4 Yes, as the number of hours approaches
infinity, but the problem becomes unrealistic
after 4 to 5 hours

5 S∞ = 8 m 6 12 m 7 75 m

8 a
4
9

b
1

30
c

31
3

d
7

198
e 1 f

37
9
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9 b S∞ =
a2

b

10 a −1 < x < 1, S∞ =
1

1 − x

b 0 < a < 1, S∞ =
a

2(1 − a)

c x <
1
4

or x >
1
2

, S∞ =
(3x − 1)2

x(2x − 1)

d x < −
1
√

2
or −

1
2
< x <

1
2

or x >
1
√

2
,

S∞ =
(3x2 − 1)2

x2(2x2 − 1)

11 r =
1
2

, t1 = 16, t2 = 8;

r = −
1
2

, t1 = 48, t2 = −24

12
5
8

13
2
3

Chapter 3 review
Technology-free questions
1 a 3, −1, −5, −9, −13, −17

b 5, 12, 26, 54, 110, 222
2 a 2, 4, 6, 8, 10, 12

b −1, −4, −7, −10, −13, −16
3 a $5250, $6037.50

b t1 = 5250, tn = 1.05(tn−1 + 500)
4 147 5 −0.1
6 −258.75 7 {12}
8 1 9 1000 × 1.035n

10 tn = 2n−1 + 3

11 t2 = 6, t4 =
8
3

or t2 = −6, t4 = −
8
3

12 96 13 −9840

14
3
4

15 x = 8 or x = −2

Multiple-choice questions
1 D 2 B 3 A 4 A 5 B
6 D 7 E 8 C 9 E 10 D

11 B 12 E 13 B

Extended-response questions
1 a 0.8, 1.5, 2.2, . . . b Yes c 8.5 m
2 a Yes b tn = 25n + 25 c 650
3 22 1

7 km from town A; 9 6
7 km from town B

4 a Dn = 7n − 5 b 27
5 472 mm
6 520
7 a 99.9999 mg b 100 mg

8 a
1

729
m b 1.499 m

No, maximum height of water is 1.5 m
9 a 27.49 b 1680.8

10 a 7 1
9 m b 405 m

11 264 − 1 = 1.845 × 1019

12 a i tn = 3750 + 250n
ii Sn = 3875n + 125n2

iii n = 22

iv m =
T − 4000

250
+ 1

v p = 51
b i Sn = 37 500(1.08n − 1)

ii QB − QA = 37 500(1.08n − 1) − 3875n −
125n2; n = 18

13 a Old Swamp 338; New Swamp 64.5
b Q0 = 30 and Qn = 1.15Qn−1 + 30 for n ∈ N
c Pn = 120(1.15)n + 200,

Qn = 230(1.15)n − 200
d i P5 = 441.363, Q5 = 262.612

ii 9 years

14 a 3n−1 b
(1

2

)n−1

c
(3

4

)n−1

d Area of white region approaches zero

15 a 8n−1 b
(1

3

)n−1

c
(8

9

)n−1

d Area of white region approaches zero

Chapter 4
Exercise 4A
1 a = 10, b = 0, c = −7
2 a = 1, b = −2
3 a = 2, b = −1, c = 7
4 a = 2, b = 1, c = 3
5 (x + 2)2 − 4(x + 2) + 4
6 (x + 1)3 − 3(x + 1)2 + 3(x + 1) − 1
7 a = 1, b = −2, c = −1
8 a It is impossible to find a, b and c such that

a = 3, 3ab = −9, 3ab2 = 8 and ab3 + c = 2
b a = 3, b = −1, c = 5

9 a = 1, b = −6, c = 7, d = −1

10 a If a = −
5
3

b and a = −3b, then both a and b
are zero, but then a + b = 1 is not satisfied

b (n + 1)(n + 2) − 3(n + 1) + 1
11 a ax2 + 2abx + ab2 + c

b a
(
x +

b
2a

)2

+ c −
b2

4a

13 a = −3, b = −
1
3

, c = 3 or

a = −
1
3

, b = −3, c = 3

14 a = 3, b = −3, c = 1
15 If c = 5, then a = 1 and b = −5;

if c = −27, then a = −3 and b = 3
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Exercise 4B
1 a x = 1 b x = 3

c x = 1 ±

√
30
5

d x = 1 ±

√
2

2

e x = −1 ±
3
√

2
2

f x =
−13 ±

√
145

12

2 a m >
9
4

b m <
25
4

c m = −
25
32

d m < −6 or m > 6 e −4 < m < 4
f m = 0 or m = −16

3 a x =
1 ±
√

32t + 1
4

, t ≥ −
1
32

b x =
−1 ±

√
t + 3

2
, t ≥ −3

c x =
−2 ±

√
5t − 46

5
, t ≥

46
5

d x = −2 ±
√

5t(t − 2)
t

, t < 0 or t ≥ 2

4 a x =
−p ±

√
p2 + 64

2
b p = 0 or p = 6

5 a ∆ = (3p − 4)2 b p =
4
3

c i x = 1 or x =
1
2

ii x = 1 or x = 2

iii x = 1 or x = −
5
2

6 a ∆ = 16(2p − 3)2 b p =
3
2

c i x =
3
2

or x =
1
2

ii x =
1
2

or x =
3

10

iii x =
1
2

or x = −
3

14
7 x = 2
8 Side length 37.5 cm
9 a x = 4 or x = 36 b x = 16 c x = 49

d x = 1 or x = 512 e x = 27 or x = −8
f x = 16 or x = 625

10 a = 3, b = −
5
6

, c = −
13
12

; Minimum −
13
12

12 x = 1 or x =
a − b
b − c

13 m = 8
14 a ∆ = (a − c)2 + 2b2 ≥ 0

b a = c and b = 0
15 −8 < k < 0
16 p = 10

Exercise 4C

1 a
18

x(x + 3)
b x = −6 or x = 3

2 x = −30 or x = 25
3 17 and 19

4 a
40
x

hours b
40

x − 2
hours c 10 km/h

5 a Car
600

x
km/h; Plane

(600
x

+ 220
)

km/h

b Car 80 km/h; Plane 300 km/h
6 x = 20
7 6 km/h
8 a x = 50 b 72 minutes
9 Slow train 30 km/h; Express train 50 km/h

10 60 km/h
11 Small pipe 25 minutes; Large pipe 20 minutes
12 Each pipe running alone takes 14 minutes
13 Rail 43 km/h; Sea 18 km/h
14 22 km
15 10 litres
16 32.23 km/h, 37.23 km/h
17 a a +

√
a2 − 24a minutes,

a − 24 +
√

a2 − 24a minutes
b i 84 minutes, 60 minutes

ii 48 minutes, 24 minutes
iii 36 minutes, 12 minutes
iv 30 minutes, 6 minutes

18 a 120 km b 20 km/h, 30 km/h

Exercise 4D

1 a
2

x − 1
+

3
x + 2

b
1

x + 1
−

2
2x + 1

c
2

x + 2
+

1
x − 2

d
1

x + 3
+

3
x − 2

e
3

5(x − 4)
−

8
5(x + 1)

2 a
2

x − 3
+

9
(x − 3)2

b
4

1 + 2x
+

2
1 − x

+
3

(1 − x)2

c
−4

9(x + 1)
+

4
9(x − 2)

+
2

3(x − 2)2

3 a
−2

x + 1
+

2x + 3
x2 + x + 1

b
x + 1
x2 + 2

+
2

x + 1

c
x − 2
x2 + 1

−
1

2(x + 3)

4 3 +
3

x − 1
+

2
x − 2

5 It is impossible to find A and C such that
A = 0, C − 2A = 2 and A + C = 10

6 a
1

2(x − 1)
−

1
2(x + 1)

b
2

5(x − 2)
+

3
5(x + 3)

c
1

x − 2
+

2
x + 5

d
2

5(2x − 1)
−

1
5(x + 2)

e
3

3x − 2
−

1
2x + 1

f
2

x − 1
−

2
x

g
1
x

+
3 − x
x2 + 1

h
2
x

+
x

x2 + 4
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i
1

4(x − 4)
−

1
4x

j
7

4(x − 4)
−

3
4x

k x +
1
x
−

1
x − 1

l −x − 1 −
3
x
−

1
2 − x

m
2

3(x + 1)
+

x − 4
3(x2 + 2)

n
2

3(x − 2)
+

1
3(x + 1)

−
1

(x + 1)2

o
2
x

+
1

x2 + 4
p

8
2x + 3

−
5

x + 2

q
26

9(x + 2)
+

1
9(x − 1)

−
1

3(x − 1)2

r
16

9(2x + 1)
−

8
9(x − 1)

+
4

3(x − 1)2

s x − 2 +
1

4(x + 2)
+

3
4(x − 2)

t x −
1

x + 1
+

2
x − 1

u
3

x + 1
−

7
3x + 2

Exercise 4E

1 a (1, 1), (0, 0) b (0, 0),
(1

2
,

1
2

)
c

(3 +
√

13
2

, 4 +
√

13
)
,
(3 −

√
13

2
, 4 −

√
13

)
2 a (13, 3), (3, 13) b (10, 5), (5, 10)

c (−8,−11), (11, 8) d (9, 4), (4, 9)
e (9, 5), (−5,−9)

3 a (11, 17), (17, 11) b (37, 14), (14, 37)
c (14, 9), (−9,−14)

4 (0, 0), (2, 4)

5
(5 +

√
5

2
,

5 +
√

5
2

)
,
(5 −

√
5

2
,

5 −
√

5
2

)
6

(15
2

,
5
2

)
, (3, 1)

7
(
−130 + 80

√
2

41
,

60 + 64
√

2
41

)
,(

−130 − 80
√

2
41

,
60 − 64

√
2

41

)
8

(1 +
√

21
2

,
−1 −

√
21

2

)
,
(1 −

√
21

2
,
−1 +

√
21

2

)
9

(4
9

, 2
)

10
(
−

6
√

5
5

,
3
√

5
5

)
11

(
−2,

1
2

)
12 (0,−1), (3, 2)

13 a
(2

3
,−

7
9

)
b

(
−

1
2

, 0
)
, (1, 0)

c
(
−

3
2

,
7
4

)
d (−1, 4), (0, 2)

14 a =
26
3

, b =
3
2

; x = −
75
31

, y =
179
31

Chapter 4 review
Technology-free questions
1 a = 3, b = 2, c = 1
2 (x − 1)3 + 3(x − 1)2 + 3(x − 1) + 1
5 a x = −4 or x = 3 b x = −1 or x = 2

c x = −2 or x = 5 d x =
2 ±
√

2
2

e x =
1 ±
√

3t − 14
3

f x =
t ±
√

t2 − 16t
2t

6 x =
−3 ±

√
73

2

7 a
−1

x − 3
−

2
x + 2

b
3

x + 2
+

4
x − 2

c
1

2(x − 3)
−

3
2(x + 5)

d
1

x − 5
+

2
x + 1

e
13

x + 2
−

13
x + 3

−
10

(x + 2)2

f
4

x + 4
+

2
x − 1

−
3

(x − 1)2

g
1

x + 1
−

6
x2 + 2

h
1

x − 1
−

x + 3
x2 + x + 1

i
1

3 − x
−

3
x + 4

j
2

7(x − 3)
−

16
7(x + 4)

8 a
1

x − 3
−

x − 10
x2 + x + 2

b
1

4(x + 1)
−

x − 2
4(x2 − x + 2)

c 3x + 15 +
64

x − 4
−

1
x − 1

9 a (0, 0), (−1, 1) b (0, 4), (4, 0)
c (1, 4), (4, 1)

10 (−4,−1), (2, 1)

11 a t =
135

x
b t =

135
x − 15

c x = 60

d 60 km/h, 45 km/h

Multiple-choice questions
1 C 2 D 3 D 4 C 5 C 6 D
7 B 8 B 9 C 10 B 11 B

Extended-response questions
1 a b = −4, c = 1 b x = 2 +

√
3

2 a 24 km/h

b Speed =
a +
√

a(a + 480)
2

, a > 0;

When a = 60, speed = 120 km/h, which is
a very fast constant speed for a train. If we
choose this as the upper limit for the speed,
then 0 < a < 60 and 0 < speed < 120

c a 1 8 14 22 34 43 56 77 118
speed 16 20 24 30 40 48 60 80 120
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3 a
a +
√

a2 + 4abc
2ac

b e.g. a = 3, b = 1, c =
4
3

4 a Smaller pipe (b +
√

b2 − ab) minutes;
Larger pipe (b − a +

√
b2 − ab) minutes

b Smaller pipe 48 minutes;
Larger pipe 24 minutes

c a 3 8 15 24 35
b 4 9 16 25 36

5 a k = −2 or k = 1 b −10 < c < 10 c p = 5
6 a i −3p ii 3 + 2p2

b m = 3p, n = 3 + 2p2

7 b P
( 2

p
,

1
q

)
d i y =

1
4

x2 ii P(2, 1) iii PX =
√

2

iv Q(−2, 1)

–1
0

1

2–2

(–2, 1) (2, 1)
x

y

8 b P
( p

p2 + q2 ,
q

p2 + q2

)
c i x2 + y2 =

1
2

ii P
(1

2
,

1
2

)
iii Q

(
−

1
2

,
1
2

)

– 1
2

1
2( ), 1

2
1
2( ),

–1

–1

1

1
x

y

0

9 a i (x − 3)2 + (y − 4)2 = 1; C(3, 4), r = 1
ii

30

4

x

y
y = m2x

y = m1x

iii m1 =
6 −
√

6
4

, m2 =
6 +
√

6
4

iv P1

(72 + 8
√

6
25

,
96 − 6

√
6

25

)
,

P2

(72 − 8
√

6
25

,
96 + 6

√
6

25

)

b i a2 =
4
5

, (x − 3)2 + (y − 4)2 =
4
5

ii
(11

5
,

22
5

)
iii m3 =

38
41

c i h = k =
√

5

ii Q1

(3
√

5
5

,
6
√

5
5

)
, Q2

(6
√

5
5

,
3
√

5
5

)

Chapter 5
Technology-free questions
1 a 2 × 7 × 11 × 13 b 3 × 5 × 37

c 72 × 11 × 13 d 24 × 54

2
1

m + p

3 a
√

6 −
√

3 −
√

2 + 3 b 21
√

2 + 33
c 4x − 12

√
x + 9 d −6

√
x − 2 + x + 7

4 a −
√

2 + 3
7

b
3(
√

5 + 1)
4

c
4
√

2 + 2
7

d
3(
√

5 +
√

3)
2

e
√

7 +
√

2
5

f
2
√

5 +
√

3
17

5 a a < −1 or a > 1, S∞ =
a5

a + 1

b −1 <
b
a
< 1, S∞ =

1
a + b

c x < −1 or x > −
1
3

, S∞ =
(2x + 1)2

x(3x + 1)

d x >
3
4

or x <
1
4

, S∞ =
4x − 2
4x − 1

6 b i x =
−1 −

√
5

2
ii x =

−1 +
√

5
2

7 a = −7, b = −5, c = 1
9 a 576 = 26 × 32,

√
576 = 24

b 1225 = 52 × 72,
√

1225 = 35
c 1936 = 42 × 112,

√
1936 = 44

d 1296 = 64,
√

1296 = 36
10 x = −b − c

11 x =
2ab

a + b
12 a 333 667 b 166 333

13 a = −
1
3

, b = −2, λ = −
4
3

;

a = −
1
2

, b = −1, λ = −
3
2

14 k = 6

15 a tn =
2

2n−1 b tn =
1
2

(9 − 5n)

c tn =
7

2n−1 − 5

16 8 m 17 16 cm
18 a = 12; d = −51 or d = 9
19 (1,−4), (−1, 4) 20 x = −3
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21 64 km/h 22
√

6 − 2

23 a
1

3(x − 2)
+

1
3(x + 2)

b
1

x + 2
+

1
x + 3

c
2

x + 2
+

3x − 2
x2 + 4

d
1

x + 1
+

1
x − 1

−
2

(x − 1)2

e
x

x2 + 1
+

1
x − 3

f
x + 1
x2 + 4

+
2

x − 2

Multiple-choice questions
1 E 2 B 3 D 4 B 5 C
6 C 7 A 8 C 9 C 10 A

11 B 12 D 13 B 14 B 15 A
16 D 17 A 18 B 19 A 20 B
21 A 22 C 23 C 24 A 25 E
26 C 27 C 28 E 29 D 30 C
31 A 32 C 33 C 34 D 35 A
36 A 37 D 38 C

Extended-response questions
1 a 8 b 7.7 c 6 cm d 15 cm
2 a a = 6000, b = −15 000 b $57 000

c 2021
3 a i 178 ii 179 iii 179.5 iv 179.95

b i 180 ii Circle
c 20 d n =

360
180 − A

e Square

4 a Volume of hemisphere =
2
3
πt3,

Volume of cylinder = πt2 s,

Volume of cone =
1
3
πt2w

b i 6 : 2 : 3 ii 54π cubic units
5 a 140 b 180 c 20 d 10

6 a i OC1 = R − r1 ii r1 =
R
3

b i OC2 =
R
3
− r2 ii r2 =

R
9

c i r =
1
3

ii rn =
R
3n

iii S∞ =
R
2

iv S∞ =
πR2

8
7 a i 80n + 920

ii A: 2840 tonnes; B: 2465 tonnes
iii 40n(n + 24)
iv A: 46 080 tonnes; B: 39 083 tonnes

b April 2021
8 a 4 b 6 c 8 d 2

e i 10 ii Pn = Pn−1 + 2 iii Pn = 2n + 2
iv 1

1

1

1
2

1
2

1
2 1

4 1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8 1

81
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
4

1
4

1
4

1
4

1
4

1
41

4

1
4

1
2

1
2

9 b 3 ways c 8 ways
10 a 8x cm b 28 − 8x cm c 7 − 2x cm

e

20

21

49

A

7
2

x

147
4

f A = 21 when x = 2

11 b i x =
1
24

ii x =
25
24

12 c 11, 24 and 39
13 a 14 m b tn = 1.5n − 1 c 53 d 330 m
14 a i a = 50 000, d = 5000

ii 11th month iii 4 950 000 litres
b i qn = 12 000(1.1)n−1 ii 256 611 litres
c 31st month

15 a 1 hour 35 minutes b 2.5 km
16 a 90 km b 70 km/h
17 a 91 b 42 857
18 a 0,±6,±15 b ±9,±12,±21

c 11, 20, 27, 32, 35, 36

20 a c =
b2 − 4

4
b c =

2b2

9
+ 3

c b = ±12, c = 35
21 a m = 5, n = 2 b b = 4, c = −1
22 a |B′ ∩C′ ∩ T | = |C ∩ T |,

|B ∩C′ ∩ T ′| = 3|B′ ∩C ∩ T ′|,
|B ∩C′ ∩ T | = 4

b

B C

T
13

421 5 8 7

18

|x| = 76

c i 5 ii 0
23 a i 606 ii 612 iii 619

b tn = 1.05tn−1 − 24

c tn = 600 × 1.05n −
24(1.05n − 1)

0.05
d 696
e i 534 ii 478 iii 223
f The population stabilises to 160 after

approximately 42 years
24 a 1.075 million b 1.779 million

c Beta (1.373 million)
d Alpha (1.779 million) will be greater than

Beta (1.658 million)
e 2 years (1.426 million)
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26 a i 262 144 ii n = 10

b i
1

262 144
ii 1.333

c i 349 526.333 ii Sn =
1
3

(4n − 41−n) + 1

Investigations
See solutions supplement

Chapter 6
See solutions supplement

Chapter 7
Exercise 7A
1 a {8} b {7, 10, 11}

c {7, 8, 9, 10, 11} = ξ d ∅ e ∅
2 a X ∩ Y b X ∩ Y ′ c X′ ∩ Y ′

3 a

BA

C
b

BA

C

c

BA

C
d

BA

C

e

BA

C
f

BA

C

4 a A ∩C b A ∩ B′ c B ∩C d A′ ∩ B
e B′ ∪C

5 a (A ∩ ∅) ∪ (A ∪ ξ) = ξ

b If A ∪ B = ξ, then A′ ∩ B = A′.
c A ∪ B ⊇ A ∩ B

7 a X ∪ Y b Y c ∅ d X
e X f X ∩ (Y ′ ∪ Z′) g X ∩ Y
h X ∪ Y i ∅ j X k X′

l X′ ∩ Y ′

Exercise 7B
1 a 1 b 0 c 1 d 1 e 1 f 0 g 1 h 1
2 a x y y′ x ∨ y′

0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1

b x y y′ x ∧ y′

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

c x y x′ y′ x′ ∧ y′

0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 0 0 0

d x y x′ y′ x′ ∨ y′

0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0

3 a i x

zy

ii x y z y ∧ z x ∨ (y ∧ z)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

b i x y

z

ii x y z x ∧ y (x ∧ y) ∨ z
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

c i z

x

y

ii x y z y ∨ z x ∧ (y ∨ z)
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1
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d i y

yx

x

ii x y x ∨ y x ∧ y (x ∨ y) ∧ (x ∧ y)
0 0 0 0 0
0 1 1 0 0
1 0 1 0 0
1 1 1 1 1

e i y

z

x

y'

ii x y z a = x ∨ y′ b = y ∨ z a ∧ b
0 0 0 1 0 0
0 0 1 1 1 1
0 1 0 0 1 0
0 1 1 0 1 0
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1

f i

z

x

y'

x y

ii x y z a = x ∧ y b = (z ∨ x) ∧ y′ a ∨ b
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 0 1

Exercise 7C
1 a 0 b 0 c 1

d 1 e a′ ∧ b f a ∨ b
g a ∧ b h b i 1

3 0
4 a x y f (x, y)

0 0 0
0 1 1
1 0 0
1 1 0

b x y f (x, y)
0 0 1
0 1 0
1 0 1
1 1 0

c x y f (x, y)
0 0 0
0 1 0
1 0 0
1 1 0

d x y z f (x, y, z)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

e x y z f (x, y, z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

f x y z f (x, y, z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

5 a (x ∧ y) ∨ x = x b (x ∨ y) ∧ x = x
c (x ∧ y′) ∨ (x ∧ y′) = x ∧ y′

d (x ∧ y′) ∨ (x′ ∧ y′) = y′

e (x′ ∧ y′) ∨ (x′ ∧ z) = x′ ∧ (y′ ∨ z)
f (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) = x ∨ y

6 a (x′ ∧ y′) ∨ (x′ ∧ y) ∨ (x ∧ y)
b (x′ ∧ y′) ∨ (x′ ∧ y)
c (x′ ∧ y′ ∧ z′) ∨ (x′ ∧ y ∧ z) ∨ (x ∧ y ∧ z)
d (x′ ∧ y′ ∧ z) ∨ (x ∧ y′ ∧ z′) ∨ (x ∧ y′ ∧ z)

Exercise 7D
1 a Your eyes are not blue.

b The sky is not grey. c This integer is even.
d I do not live in Switzerland. e x ≤ 2
f This number is greater than or equal to 100.

2 a It is dark or it is cold.
b It is dark and cold. c It is light and cold.
d It is light or hot. e It is good or light.
f It is light and hard. g It is dark or hard.

3 a B ∧ A b D ∨C
c ¬C ∧ D d ¬A ∧ ¬B
e ¬D ∧ ¬C f B ∨ A

4 a It is wet or rough. b It is wet and rough.
c It is dry and rough. d It is dry or smooth.
e It is difficult or dry.
f It is dry and inexpensive.
g It is wet or inexpensive.

5 a n is a prime number or an even number.
b n is divisible by 6. c n is 2.
d n is an even number greater than 2.
e n is not 2. f n is not prime.
g n is neither prime nor divisible by 6.
h n is not divisible by 6.
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6 A B A ∧ B ¬(A ∧ B)
T T T F
T F F T
F T F T
F F F T

7 A B A ∨ B ¬B (A ∨ B) ∧ (¬B)
T T T F F
T F T T T
F T T F F
F F F T F

12 a A B A ∧ B (A ∧ B)⇒ A
T T T T
T F F T
F T F T
F F F T

b A B A ∨ B (A ∨ B)⇒ A
T T T T
T F T T
F T T F
F F F T

c A B ¬A ¬B C: ¬B ∨ ¬A C ⇒ A
T T F F F T
T F F T T T
F T T F T F
F F T T T F

d A B ¬B ¬B ∧ A (¬B ∧ A)⇒ A
T T F F T
T F T T T
F T F F T
F F T F T

e A B ¬A B ∨ ¬A (B ∨ ¬A)⇒ ¬A
T T F T F
T F F F T
F T T T T
F F T T T

f A B C: ¬B ∨ ¬A D: ¬B ∧ A C ⇒ D
T T F F T
T F T T T
F T T F F
F F T F F

g A B C: ¬B ∨ A D: ¬(B ∧ A) C ⇒ D
T T T F F
T F T T T
F T F T T
F F T T T

h A B ¬B ¬B⇒ A ¬B ∧ (¬B⇒ A)
T T F T F
T F T T T
F T F T F
F F T F F

15
BA

(A ∪ B)′ = A′ ∩ B′

16 a A B A ↓ B B ↓ A
T T F F
T F F F
F T F F
F F T T

19 a i If x is an even integer, then x = 6.
ii If x is not an even integer, then x , 6.
iii x = 6 and x is not an even integer.

b i If public transport improves, then I was
elected.

ii If public transport does not improve, then
I was not elected.

iii I was elected and public transport did not
improve.

c i If I qualify as an actuary, then I passed
the exam.

ii If I do not qualify as an actuary, then I
failed the exam.

iii I passed the exam and I did not qualify as
an actuary.

Exercise 7E
1 A B A ∨ B ¬A

T T T F
T F T F
F T T T
F F F T

Valid

2 A B A ∨ B ¬A ¬B
T T T F F
T F T F T
F T T T F
F F F T T

Not valid

3 A B C A⇒ B B⇒ C
T T T T T
T T F T F
T F T F T
T F F F T
F T T T T
F T F T F
F F T T T
F F F T T

Valid
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4 Prem 1 Conc Prem 2
A B A⇒ B
T T T
T F F
F T T
F F T

Valid

5 Prem 1 Conc Prem 2
A B B⇒ A
T T T
T F T
F T F
F F T

Not valid

6 P1 P2 P3 C
C M L C ∨ M (C ∧ M)⇒ L M ∧ (¬L) ¬C
T T T T T F F
T T F T F T F
T F T T T F F
T F F T T F F
F T T T T F T
F T F T T T T
F F T F T F T
F F F F T F T

Argument is valid
7 a Valid b Valid

c Not valid d Not valid
8 a Valid b Not valid
9 a

[
(J ⇒ W) ∧W

]
⇒ J is not a tautology;

argument is invalid
b

[
(¬S ⇒ ¬R) ∧ R

]
⇒ S is a tautology;

argument is valid
c

[
(K ⇒ J) ∧ (J ⇒ S )

]
⇒ (K ⇒ S ) is a

tautology; argument is valid

Exercise 7F
1 a A

B

b A

B

c A

B

Note: Equivalent to A

d
A

B

2 a ¬(A ∧ B)

A B A ∧ B ¬(A ∧ B)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

b ¬A ∧ ¬B

A B ¬A ¬B ¬A ∧ ¬B
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 0 0 0

c ¬X ∨ (X ∧ Y) ≡ ¬X ∨ Y

X Y ¬X X ∧ Y ¬X ∨ (X ∧ Y)
0 0 1 0 1
0 1 1 0 1
1 0 0 0 0
1 1 0 1 1

d ¬A ∧ (A ∨ B) ≡ ¬A ∧ B

A B ¬A A ∨ B ¬A ∧ (A ∨ B)
0 0 1 0 0
0 1 1 1 1
1 0 0 1 0
1 1 0 1 0

3
[
(X ∧ ¬Y) ∨ Y

]
∨ Z = (X ∨ Y ∨ Z)

4 a
P

Q

R

b A

B

C

Note: Equivalent to A ∨ B
5 a (¬A ∧ B) ∨ (A ∧ ¬B) ∨ (A ∧ B)

b A B

c A ∨ B; A
B
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6 (¬A ∧ B) ∨ (A ∧ ¬B)
A B

7 a (¬A ∨ ¬B) ∧ (¬A ∨ B) ∧ (A ∨ ¬B)
b ¬A ∧ ¬B
c A

B

d A
B

Exercise 7G
1 a y b x′ ∨ y′ c x ∨ y′

2 a y b y′ ∨ z′ c (x ∧ y′) ∨ (x′ ∧ z′)
3 a (x ∧ y′) ∨ (x ∧ z) ∨ (x′ ∧ y ∧ z′)

b (x ∧ y) ∨ (x′ ∧ z′)
c (x ∧ y′) ∨ (x′ ∧ z′) ∨ (y ∧ z)

or (x ∧ z) ∨ (x′ ∧ y) ∨ (y′ ∧ z′)
4 a x′ ∨ y′ b x ∨ (y ∧ z′)
5 a X Y Output

0 0 1
0 1 0
1 0 1
1 1 0

b ¬Y

6 a X Y Z Output
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

b ¬Y ∨ Z

Chapter 7 review
Technology-free questions
1 True: a, b, d, e, f; False: c
2 a It is not raining. b It is raining.

c x , 5 or y , 5
d x , 3 and x , 5 (i.e. x < {3, 5})
e It is raining or it is windy.
f It is snowing and it is not cold.

3 a A B A ⊕ B A ⊕ (A ⊕ B)
T T F T
T F T F
F T T T
F F F F

Note: A ⊕ (A ⊕ B) ≡ B
b A B A ∨ B A ⊕ (A ∨ B)

T T T F
T F T F
F T T T
F F F F

6 a
A

B

b A

B

C

c A

B

Multiple-choice questions
1 B 2 C 3 C 4 D 5 B
6 D 7 A 8 B 9 D 10 E

Extended-response questions
1 a

BA

2 a x y Light
0 0 0
0 1 1
1 0 1
1 1 0

b (x′ ∧ y) ∨ (x ∧ y′)

c x' y

y'x

3 a x y z Light
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
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b (x′ ∧ y ∧ z) ∨ (x ∧ y′ ∧ z) ∨ (x ∧ y ∧ z′) ∨
(x ∧ y ∧ z)

c (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)
d x

y

z

4 a i ` = 1 ii h = 30
b LCM(x, x′) = 30 = h, for all x ∈ B;

HCF(x, x′) = 1 = `, for all x ∈ B
5 a i d ii 1 iii 0

b d ∨ d′ = d , 1 and d ∧ d′ = d , 0

Chapter 8
Exercise 8A
1 a 3404; F = 27, G = 14, H = 110, K = 69

b 1118; F = 8, G = 18, H = 56, K = 30
c 513; F = 2, G = 63, H = 90, K = 25
d 1311; F = 10, G = 21, H = 60, K = 29

2 a 101010110 b 1111111
c 11011110001 d 100110100100

3 a Step 1 Input n.
Step 2 Let q be the quotient when n is

divided by 8.
Step 3 Let r be the remainder when n is

divided by 8.
Step 4 Record r.
Step 5 Let n have the value of q.
Step 6 If n > 0, then repeat from Step 2.
Step 7 Write the recorded values of r in

reverse order.
b i 526 ii 13056 iii 705 iv 22657

4 a 1 b 27 c 6 d 5
5 a ((2)x + 3)x + 4

b (((1)x + 3)x − 4)x + 5
c (((4)x + 6)x − 5)x − 4

7 a Step 1 Choose an initial estimate x for
√

N.

Step 2 Let xnew =
1
2

(
x +

N
x

)
.

Step 3 Let x have the value of xnew.
Step 4 Repeat from Step 2 unless

−0.01 < x2 − N < 0.01.
Step 5 The required estimate is x.

b i 2.2 ii 18.6 iii 39.5 iv 88.6
8 Circled: 2, 3, 5, 7; Unmarked: 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97

Exercise 8B
1 a Step 1 T ← 6 and n← 1

Step 2 Print n and print T
Step 3 T ← T + 3 and n← n + 1
Step 4 Print n and print T
Step 5 Repeat from Step 3 while n < 6

c n 1 2 3 4 5 6
T 6 9 12 15 18 21

2 a Step 1 A← 100 000 and i← 0
Step 2 A← 1.025A and i← i + 1
Step 3 Print i and print A
Step 4 Repeat from Step 2 while i < 5

c i A
0 100 000
1 102 500
2 105 063
3 107 689
4 110 381
5 113 141

3 a n 1 2 3 4 5 6
A 10 15 20 25 30 35

b n 1 2 3 4 5
A 2 6 18 54 162

4 a Step 1 sum← 0 and n← 1

Step 2 sum← sum +
1
n2

Step 3 n← n + 1
Step 4 Repeat from Step 2 while n ≤ N

b Step 1 sum← 0 and n← 1

Step 2 sum← sum +
1
n

Step 3 n← n + 1
Step 4 Repeat from Step 2 while n ≤ N

5 a Step 1 n← 1
Step 2 If n is even, then T ← 5 − 2n

Otherwise T ← n2 + 1
Step 3 Print T
Step 4 n← n + 1
Step 5 Repeat from Step 2 while n ≤ N

b n 1 2 3 4 5 6 7
T 2 1 10 −3 26 −7

6 a P(3) = 37

p i
0 3
1 2
5 1

12 0
37 −1

b P(3) = 55

p i
0 3
2 2
5 1

19 0
55 −1

c P(3) = −94

p i
0 3
−4 2
−10 1
−31 0
−94 −1
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7 b Step 1 n← 1
Step 2 Draw forwards for 3 cm
Step 3 Turn through 90◦ anticlockwise
Step 4 n← n + 1
Step 5 Repeat from Step 2 while n ≤ 4

c Step 1 n← 1
Step 2 Draw forwards for 3 cm
Step 3 Turn through 60◦ anticlockwise
Step 4 n← n + 1
Step 5 Repeat from Step 2 while n ≤ 6

d

8 a Step 1 Input n
Step 2 Print n
Step 3 If n = 1, then stop
Step 4 If n is even, then n← n ÷ 2

Otherwise n← 3n + 1
Step 5 Repeat from Step 2

b i 5, 16, 8, 4, 2, 1
ii 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10,

5, 16, 8, 4, 2, 1
iii 8, 4, 2, 1

Exercise 8C
1
input a, b
if a ≤ b then
print a

else

print b
end if

2
input mark
if mark ≥ 95 then
print ‘A’

else if mark ≥ 85 then
print ‘B’

else if mark ≥ 65 then
print ‘C’

else if mark ≥ 55 then
print ‘D’

else

print ‘E’

end if

3 a 15 b 16 c 20
4 a 0 b 5 c 25
5 a 5 b 6 c 10
6 a a = 6, b = 15 b a = 8, b = 29

c a = 7, b = 18

7 a input n
sum← 0
for i from 1 to n

sum← sum + 2i

end for

print sum

b input n
product ← 1
for i from 1 to n

product ← product × 2i

end for

print product

8 input n
sum← 0
for i from 1 to n

sum← sum + i3

end for

print sum

9 a b
8 6
2 18
2 6

−22 −18
410 366

10 n← 1
x← 4
while x ≤ 1000

n← n + 1
x← 3x + 2

end while

print n

n x
1 4
2 14
3 44
4 134
5 404
6 1214

11 n← 0
sum← 0
while sum ≤ 1 000 000

n← n + 1
sum← sum + nn

end while

print n

n sum
0 0
1 1
2 5
3 32
4 288
5 3413
6 50 069
7 873 612
8 17 650 828

12 n← 1
while 2n ≤ 10n2

n← n + 1
end while

print n

n = 10
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13 n← 0
x← 3
y← 1000
while x ≤ y

n← n + 1
x← 2n + 3
y← 0.9n × 1000

end while

print n

n = 28

14 a i Prints 8 ii Prints 20 iii Prints 16
b Prints the highest common factor of a and b

Exercise 8D
1 Change instruction inside for loop:

a sum← sum + i3

b sum← sum + 2i

c sum← sum + i × (i + 1)
2 a Initialise the variable A as an empty list

b Change for loop:

for i from 1 to n
append 2i to A

end for

c Change for loop:

for i from 0 to n − 1
append 2n−i to A

end for

3
define min(A):

min← A[1]
for i from 1 to length(A)
if A[i] < min then

min← A[i]
end if

end for

return min

4 a
define sum(n):

sum← 0
for i from 1 to n

sum← sum + factorial(i)
end for

return sum

b n← 1
while factorial(n) ≤ 10n

n← n + 1
end while

print n

5 a a b c
1 1 1
1 2 2
1 3 3
2 1 4
2 2 5
2 3 6
3 1 7
3 2 8
3 3 9

b a b c
2 3 6
2 4 14
3 3 23
3 4 35

6 a i tally
0

1 1
2 10
3 35
4 99

b Finds the sum of the
squares of the entries
in list A

7 a i A
[1, 1]

1 [1, 1, 2] A[1] + A[2] = 2
2 [1, 1, 2, 3] A[2] + A[3] = 3
3 [1, 1, 2, 3, 5] A[3] + A[4] = 5
4 [1, 1, 2, 3, 5, 8] A[4] + A[5] = 8
5 [1, 1, 2, 3, 5, 8, 13] A[5] + A[6] = 13

b A← [1, 1]
i← 1
while A[i] ≤ 1000
append A[i] + A[i + 1] to A
i← i + 1

end while

print A[i]

c
define fibonacci(n):

A← [1, 1]
for i from 1 to n − 2
append A[i] + A[i + 1] to A

end for

return A[n]

d A← [0, 1, 1]
for i from 1 to 7
append A[i] + A[i + 1] + A[i + 2] to A

end for

print A

8 a A[5] = 25
b Change while loop:

while n3 ≤ 100 000
append n3 to A
n← n + 1

end while

c 46 entries
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9
for x from 1 to 10
for y from 1 to 6
for z from 1 to 4
if 3x + 5y + 7z = 30 then
print (x, y, z)

end if

end for

end for

end for

Printed solutions: (1, 4, 1), (2, 2, 2), (6, 1, 1)
10 a

for x from 1 to 5
for y from 1 to 5
for z from 1 to 3
if x2 + y2 + 10z = 30 then
print (x, y, z)

end if

end for

end for

end for

b (1, 3, 2), (2, 4, 1), (3, 1, 2), (4, 2, 1)
c Change condition on if-then block:

if x2 + y2 + 10z = 30 and x + y + z = 7
then

Printed solutions: (2, 4, 1), (4, 2, 1)
11

define f (n):
A← [ ]
for x from 0 to n
for y from 0 to n
if x2 + y2 = n then
append [x, y] to A

end if

end for

end for

return A

12 Finds the number and proportion of cases in
which the quadratic equation ax2 + bx + c = 0
has no real solutions, where a, b, c are integers
between −10 and 10 inclusive (a , 0)

Note: There is more than one correct way to
answer Questions 13–16.

13 a
input N
if length(factors(N)) = 2 then
print ‘prime’

else

print ‘not prime’

end if

b
define prime(n):

i← 0
count ← 0
while count < n

i← i + 1
if length(factors(i)) = 2 then

count ← count + 1
end if

end while

return i

14 a
define power(n):

i← 0
while remainder(n, 2i) = 0

i← i + 1
end while

return i − 1

b
define number(n):

m← n − 1
found ← false
while found = false

m← m + 1
found ← true
for i from 1 to n
if remainder(m, i) , 0 then

found ← false
end if

end for

end while

return m

15 a
define pell(n):

A← [1, 2]
for i from 1 to n − 2
append A[i] + 2 × A[i + 1] to A

end for

return A[n]

b sum← 0
for i from 1 to n

sum← sum + pell(i)
end for

print sum

c A← [1, 2]
i← 1
while A[i] < 10999

append A[i] + 2 × A[i + 1] to A
i← i + 1

end while

print A[i]



A
nsw

ers
8

review
Answers 789

16 a
input a, b
print (a, b)
i← 0
while a , b and i < 100

[insert given if-then block]
print (a, b)
i← i + 1

end while

Note: The variable i is not necessary, but is
used to ensure that the program stops.

b i Cycles indefinitely: (21, 28), (42, 7),
(35, 14), (21, 28), . . .

ii Cycles indefinitely: (21, 49), (42, 28),
(14, 56), (28, 42), (56, 14), (42, 28), . . .

iii (35, 105), (70, 70)
iv (19, 133), (38, 114), (76, 76)
v (37, 259), (74, 222), (148, 148)

Chapter 8 review
Technology-free questions
1 a 8 b 18 c 93 d 9, 75
2 Change for loop:

a
for n from 1 to 6

sum← sum + nn

end for

b
for n from 1 to 6

sum← sum + (−1)n+1 × n × (7 − n)
end for

3 n a b c
1 2 4 4
2 4 12 12
3 12 44 44
4 44 200 200
5 200 1088 1088

4 a 2, 8, 26
b a← 0
for i from 1 to 50

a← 3a + 2
end for

print a

c a← 0
sum← 0
for i from 1 to 50

a← 3a + 2
sum← sum + a

end for

print sum

5 a
input N
for n from 1 to N
if remainder(n, 2) = 0 then

T ← 6 − 2n
else

T ← 3n + 1
end if

print T
end for

b n 1 2 3 4 5
T 4 2 10 −2 16

c
input N
sum← 0
for n from 1 to N
if remainder(n, 2) = 0 then

sum← sum + 6 − 2n
else

sum← sum + 3n + 1
end if

end for

print sum

6
for a from −6 to 6
for b from −6 to 6
if 9 ≤ a2 + b2 ≤ 36 then
print (a, b)

end if

end for

end for

7 a a m b f (a) f (m) f (b)
0 1 2 −2 −1 2

1
3
2

2 −1
1
4

2

1
5
4

3
2
−1 −

7
16

1
4

5
4

11
8

3
2
−

7
16

−
7
64

1
4

11
8

23
16

3
2

b
define f (x):
return x2 − 3

a← 0
b← 3
m← 1.5
while b − a > 2 × 0.01

[inside while loop is unchanged]
end while

print m
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Multiple-choice questions
1 E 2 D 3 C 4 E 5 A
6 C 7 C 8 E 9 E 10 C

Extended-response questions
1 a i [1, 0, 0, 0, 0, 0, 1]

ii [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1]
iii [1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0]

b i [1, 0, 1] ii [1, 0, 7, 2, 7]
iii [1, 5, 3, 0, 0, 2]

c i Output B = [10, 8, 6, 4, 2]
ii Output A = [10, 8, 6, 8, 10]

2 a i j A[1] A[2] A[3] A[4] A[5] A[6]
1 9 3 2 7 6

1 1 1 9 3 2 7 6 NS
1 2 1 3 9 2 7 6 S
1 3 1 3 2 9 7 6 S
1 4 1 3 2 7 9 6 S
1 5 1 3 2 7 6 9 S
2 1 1 3 2 7 6 9 NS
2 2 1 2 3 7 6 9 S
2 3 1 2 3 7 6 9 NS
2 4 1 2 3 6 7 9 S

b Gives both entries the value of A[ j + 1]
instead of swapping their values

c Change conditions on for loops:

for i from 1 to length(A)
for j from 1 to length(A) − i

3 a a n reverse
5678 0

8 567 8
7 56 87
6 5 876
5 0 8765

b Reverses the digits of a given natural
number n

c
for n from 1 to 1000
if R(n2) = n2 then

print n2

end if

end for

4 a i 4321 ii 5555 iii 8765 iv 14443
c n R(n) n + R(n)

1756 6571 15565
15565 56551 72116
72116 61127 133243

133243 342331 475574
d Output 9889; 82 inputs

5 a 8, 15 b 12, 35

Chapter 9
Exercise 9A
1 45 2 8 3 120
4 a

9

87

8

97

7

98

b

9

987

8

987

7

987

5 a 27 b 6
6 30
7 a 6 b 18 c 20 d 15
8 BB, BR, BG, RB, RG, GB, GR, GG
9 12

10 9
11 a 6 b 13
12 16

Exercise 9B
1 1, 1, 2, 6, 24, 120, 720, 5040, 40 320, 362 880,

3 628 800
2 a 5 b 90 c 66 d 161 700

3 a n + 1 b n + 2 c n(n − 1) d
n + 2

(n + 1)!
4 1, 4, 12, 24, 24
5 DOG, DGO, ODG, OGD, GOD, GDO
6 120
7 362 880
8 FR, FO, FG, RF, RO, RG, OF, OR, OG,

GF, GR, GO
9 a 720 b 720 c 360

10 a 120 b 120 c 60
11 20 160
12 a 125 b 60
13 a 120 b 360 c 720
14 60
15 a 17 576 000 b 11 232 000
16 (m, n) = (6, 0), (6, 1), (5, 3)
17 (n2 − n) · (n − 2)! = n · (n − 1) · (n − 2)! = n!
18 a 384 b 3072
19 30

Exercise 9C
1 a 120 b 72 c 24 d 96
2 a 120 b 48 c 72 d 12
3 a 360 b 144 c 144 d 72
4 a 1152 b 1152
5 a 600 b 108 c 431 d 52
6 a 720 b 48 c 144 d 96 e 48
7 a 900 b 900
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8 84
9 32

10 a 480 b 192
11 144

Exercise 9D
1 35 2 34 650
3 4 989 600 4 56
5 27 720
6 a 420 b 105 c 90 d 12 e 105
7 35

8 a 15 b
(m + n)!
m! · n!

9 a 52! b
104!
(2!)52 c

(52n)!
(n!)52

10 4900
11 89

Exercise 9E
1 1, 5, 10, 10, 5, 1
2 a 7 b 6 c 66 d 56 e 100

f 499 500

3 a n b
n(n − 1)

2
c n d n + 1

e
(n + 2)(n + 1)

2
f

n(n + 1)
2

4 a 720 b 120
5 2 598 960
6 a 10 b 45 c 45 d 10
7 45 379 620
8 56
9 a 45 b 16

10 15
14 462
16 a 2300 b 152 c 2148

Exercise 9F
1 153 2 126
3 1176 4 140
5 a 1716 b 700 c 980 d 1568
6 a 25 200 b 4200
7 a 1 392 554 592 b 5 250 960
8 a 15 504 b 10 800 c 15 252
9 a 21 b 10 c 11

10 2100
11 a 204 490 b 7 250 100
12 a 48 b 210
13 1440 14 3600
15 14 400 16 150
17 3744

Exercise 9G
1 7C2 = 21, 6C2 = 15, 6C1 = 6
2 1, 7, 21, 35, 35, 21, 7, 1; 7C2 = 21, 7C4 = 35
3 1, 8, 28, 56, 70, 56, 28, 8, 1;

8C4 = 70, 8C6 = 28
4 26 = 64 5 25 = 32
6 210 = 1024 7 26 − 1 = 63
8 28 − 8C1 −

8C0 = 247
9 28 = 256 10 24 − 1 = 15

11 a 128 b 44

Exercise 9H
1 4
4 a 3 b 5 c 14

11 At least 26 students

Exercise 9I
1 a {1, 3, 4} b {1, 3, 4, 5, 6} c {4}

d {1, 2, 3, 4, 5, 6} e 3
f ∅, {4}, {5}, {6}, {4, 5}, {4, 6}, {5, 6}, {4, 5, 6}

2 36 3 4 4 150
5 a 64 b 32
6 a 48 b 48 c 12 d 84
7 a 12 b 38
8 88 9 80 10 4

11 a 756 b 700 c 360 d 1096
12 1 452 555 13 3417 14 5

Chapter 9 review
Technology-free questions
1 a 20 b 190 c 300 d 4950
2 11
3 a 27 b 6
4 120 5 60 6 18 7 31
8 10 9 3 10 12 11 192

Multiple-choice questions
1 C 2 B 3 A 4 D 5 B 6 B
7 C 8 D 9 C 10 C 11 A

Extended-response questions
1 a 120 b 360 c 72 d 144
2 a 20 b 80 c 60
3 a 210 b 84 c 90 d 195
4 a 420 b 15 c 105 d 12
5 a i 20 ii 10 iii 64

b 8
6 a 210 b 10 c 80
7 a 676 b 235 c 74

8 a 24 b 4 c 24 d
3
4
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9 a 924
b There are at least 365 × 3 = 1095 days in

three years and there are 924 different paths,
so some path is taken at least twice.

c i 6 ii 70 iii 420
d 624

10 196

Chapter 10
Technology-free questions
3 a If n is odd, then 5n + 3 is even.

c If n is even, then 5n + 3 is odd.
10 b

BA

C

11 a ∅ b ξ c A ∪ B d A ∩ B
e ∅ f ξ g ∅ h ξ

i A j A ∩ B k ∅ l A ∩ B′

12 a x b x c 0 d 1
e 1 f x ∧ y g 0 h 1
i 0 j x′ k x ∧ y l 0

13 (x′ ∧ y′) ∨ (x ∧ y′) = y′

14 a ¬A b A ∧ B c A⇒ ¬B
d A ∨ (¬A⇒ B) e (A ∧ B) ∨ (¬A ∧ ¬B)

15 a i P ∧ Q ii P⇒ Q
b Yasmin is not in the school orchestra if and

only if Yasmin does not play the violin.
17 a I was not paid. b Q⇒ P
19 a ¬X ∨ (X ∧ Y) b ¬X ∨ Y

c X
Y

20 a Not valid b Valid
21 Not valid
22 a A = [1, 2, 4, 7, 10, 13, 16]

b A = [1, 2, 4, 8, 16]
c Entries are consecutive powers of 2

23 a Evaluates 12 + 22 + · · · + n2, i.e. the sum of
the squares of the first n natural numbers

b function(4) = 30
c function(5) = 55
d
define function(n):

product ← 1
for i from 1 to n

product ← product × i3

end for

return product

24 a 3
b Returns the index of the highest power of 2

that is a factor of n
c Inputs of the form 8m, where m is an odd

natural number
25 24
26 360
27 a 125 b 60
28 a 9 b 25
29 a 24 b 30 c 28 d 45
30 a 120 b 120
31 a 120 b 36
32 a 96 b 24 c 72 d 60
33 10
34 a 20 b 325 c 210 d 56
35 a 28 b 21 c 28 = 256
36 60 37 120 38 7 39 51 40 80

Multiple-choice questions
1 E 2 E 3 D 4 C 5 E
6 E 7 B 8 B 9 A 10 B

11 E 12 C 13 D 14 A 15 B
16 B 17 A 18 E 19 E 20 B
21 A 22 E 23 E 24 D 25 A
26 C 27 C 28 A 29 B 30 D
31 D 32 D 33 A 34 E 35 B

Extended-response questions
1 a No

b Yes; both a and b are odd, and c is even
2 a (a, b, c) = (2, 3, 6)

b (a, b, c, d) = (1, 2, 3, 4) or
(a, b, c, d) = (1, 2, 3, 5)

4 a 10
5 a 49, 50, 51 and 52 b 93 and 94 d 44
6 b 21 coins c 10
8 a No b n = 4k or n = 4k − 1

10 a a = 1, b = 3, c = 1 c 412

11 a n 1 2 3 4 5 6 7 8 9 10
tally 0 1 3 0 4 9 3 10 2 11 1

b
input A
tally← 0
for i from 1 to length(A)
if tally − A[i] ≥ 0 then

tally← tally − A[i]
else

tally← tally + A[i]
end if

end for

print tally

c One possibility: [1, 4, 2, 3, 5, 8, 6, 7, 9, 10]
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12 a A B ¬(A ∨ B)
0 0 1
0 1 0
1 0 0
1 1 0

b A B ¬(A ∧ B)
0 0 1
0 1 1
1 0 1
1 1 0

c i A

ii A

B
iii A

B

d i A

ii A

B
iii A

B

13 a 2160 b 360 c 900 d 1260
14 a 70 b 30 c 15 d 55
15 a 20 b 4 c 68
16 a 420 b 60 c 120 d 24
17 a 300 b 10 and 15
18 a n 1 2 3 4 5

xn 0.111 0.051 0.061 0.055 0.056
yn 0.182 0.151 0.168 0.165 0.167

b x =
1
18

, y =
1
6

c n 1 2 3 4 5
xn 0.625 0.587 0.599 0.598 0.598
yn 0.308 0.212 0.217 0.216 0.216

d i x = −1, y = −1
ii n 1 2 3 4 5

xn 0.500 1.250 2.375 4.063 6.594
yn 0.500 1.250 2.375 4.063 6.594

19 a 495 b 60
c The two points diametrically opposite

d 15 e
1

33
20 a i (0, 0) ii (1, 1) iii (0, 1)

iv (0, 1) v (0, 1) vi (0, 0)
b i (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
ii (0, 0, 0), (1, 0, 1)

c 2n

Investigations
See solutions supplement

Chapter 11
Exercise 11A
1 a 2 × 2 b 2 × 3 c 1 × 4 d 4 × 1

2 a


1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1


b


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



3 a


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


b


0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0



c


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


4

[
200 180 135 110 56 28
110 117 98 89 53 33

]
5 a

[
0 x

]
=

[
0 4

]
if x = 4

b
[
4 7
1 −2

]
=

[
x 7
1 −2

]
if x = 4

c
[

2 x 4
−1 10 3

]
=

[
y 0 4
−1 10 3

]
=[

2 0 4
−1 10 3

]
if x = 0, y = 2

6 a x = 2, y = 3 b x = 3, y = 2
c x = 4, y = −3 d x = 3, y = −2

7


21 5 5

8 2 3
4 1 1

14 8 60
0 1 2


Exercise 11B

1 X + Y =

[
4
−2

]
2X =

[
2
−4

]
4Y + X =

[
13
−2

]
X − Y =

[
−2
−2

]
−3A =

[
−3 3
−6 −9

]
−3A + B =

[
1 3
−7 −7

]
2 2A =

[
2 −2
0 4

]
−3A =

[
−3 3

0 −6

]
−6A =

[
−6 6

0 −12

]
3 a Yes b Yes

4 a
[

6 4
−4 −4

]
b

[
0 −9

12 3

]
c

[
6 −5
8 −1

]
d

[
−6 −13
16 7

]
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5 a
[
0 1
2 3

]
b

[
−2 3

6 3

]
c

[
3 3
−1 7

]

6 X =

[
2 4
0 −3

]
, Y =


−

9
2
−

23
2

−
1
2

11


7 X + Y =

[
310 180 220 90
200 0 125 0

]
represents the total production at two factories
in two successive weeks

Exercise 11C

1 AX =

[
4
−5

]
BX =

[
4
1

]
AY =

[
−5

8

]
IX =

[
2
−1

]
AC =

[
0 −1
1 2

]
CA =

[
1 −1
0 1

]
(AC)X =

1
0


C(BX) =

[
9
5

]
AI =

[
1 −2
−1 3

]
IB =

[
3 2
1 1

]
AB =

[
1 0
0 1

]
BA =

[
1 0
0 1

]
A2 =

[
3 −8
−4 11

]
B2 =

[
11 8

4 3

]
A(CA) =

[
1 −3
−1 4

]
A2C =

[
−2 −5

3 7

]
2 Defined: AY, CI;

Not defined: YA, XY, X2, XI

3 AB =

[
0 0
0 0

]
4 No

5 One possible answer is A =

[
1 1
−1 −1

]
6 LX =

[
7
]
, XL =

[
4 −2
−6 3

]
7 AB and BA are not defined unless m = n

8 b
[
1 0
0 1

]
9 One possible answer is

A =

[
1 2
3 4

]
, B =

[
−2 1
1.5 −0.5

]
10 One possible answer is

A =

[
1 2
4 3

]
, B =

[
0 1
2 3

]
, C =

[
−1 2
−2 1

]
,

A(B + C) =

[
−1 11
−4 24

]
, AB + AC =

[
−1 11
−4 24

]
,

(B + C)A =

[
11 7
16 12

]

11 For example: A =

[
1 1
−1 −1

]
and B =

[
2 3
4 5

]
12 a

[
29

8.50

]
, John took 29 minutes to eat food

costing $8.50

b
[

29 22 12
8.50 8.00 3.00

]
,

John’s friends took 22 and 12 minutes to eat
food costing $8.00 and $3.00 respectively

13 A2 =

[
−3 4
−4 −3

]
, A4 =

[
−7 −24
24 −7

]
,

A8 =

[
−527 336
−336 −527

]
14 A2 =

[
1 2
0 1

]
, A3 =

[
1 3
0 1

]
, A4 =

[
1 4
0 1

]
,

An =

[
1 n
0 1

]

Exercise 11D

1 a 1 b
[

2 −1
−3 2

]
c 2 d

1
2

[
2 2
−3 −2

]

2 a
[
−1 1
−4 3

]
b


2
7
−

1
14

1
7

3
14


c


1 0

0
1
k

 d
[

cos θ sin θ
− sin θ cos θ

]

3 a A−1 =

 1
2

1
2

0 −1

, B−1 =

[
1 0
−3 1

]
b AB =

[
5 1
−3 −1

]
, (AB)−1 =

 1
2

1
2

− 3
2 − 5

2


c A−1B−1 =

−1 1
2

3 −1

,
B−1A−1 =

 1
2

1
2

− 3
2 − 5

2

, (AB)−1 = B−1A−1

4 a

−
1
2

3
2

1 −2

 b
[
0 7
1 −8

]
c


5
2

−
7
2

11
2

−
21
2


5 a


−

3
8

11
8

1
16

7
16

 b


−

11
16

17
16

−
1
4

3
4


8


1

a11
0

0
1

a22


10 x ∈ R \

{
−1,− 1

3

}
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11 a a = 3

b
[
1 0
0 1

]
,
[
−1 0

0 −1

]
,

[
1 0
k −1

]
,
[
−1 0

k 1

]
,[

1 k
0 −1

]
,
[
−1 k

0 1

]
, k ∈ R, a b

1 − a2

b
−a

, a ∈ R, b ∈ R \ {0}

12 a = ±
√

2

Exercise 11E

1 a
[

3
10

]
b

[
5

17

]
2 a x = −

1
7

, y =
10
7

b x = 4, y = 1.5

c x = −6, y = 12 d x = −210, y = 231
3 (2,−1)
4 Book $12, game $18

5 a
[
2 −3
4 −6

] [
x
y

]
=

[
3
6

]
b

[
2 −3
4 −6

]
is non-invertible

c System has solutions (not a unique solution)
d Solution set contains infinitely many pairs

6 a A−1C b B−1A−1C c A−1CB−1

d A−1C − B e A−1(C − B)
f (A − B)A−1 = I − BA−1

Exercise 11F

1 a


1 0 0

0
1
2

0

0 0
1
5

 b



1 −2
1
5

0
1
2
−

3
10

0 0
1
5


3 AB =


7 0 0
0 7 0
0 0 7

; A−1 =
1
7

B

4 A2 =


9 0 0
0 9 0
0 0 9

; A−1 =
1
9

A

5 A2 =


4 0 0
0 4 0
0 0 4

; A−1 =
1
4

A

6 a


2 1 −10
3 2 −17
−5 −3 28


b

1
29


8 −13 14
2 4 −11
−9 11 6



c
1

37


6 4 −7 −17

−13 −21 46 43
8 30 −34 −35
−4 −15 17 36


d

1
37


6 −13 8 −4
4 −21 30 −15
−7 46 −34 17
−17 43 −35 36


7 a −36 b 1
8 a i −2 ii −2

b i −4 ii −16
9 a det(A) = −2p + 6 b p = 3

10 a det(A) = −2(p − 2)(p − 1)
b p = 2 or p = 1

Exercise 11G
1 a x = 2, y = 3, z = 1 b x = −3, y = 5, z = 2

c x = 5, y = 0, z = 7 d x = 6, y = 5, z = 1
e x = 5, y = 2, z = 4, w = −1

2 a


1 2 3
−1 −3 2
−1 −4 7



x
y
z

 =


13

2
17


b det(A) = 0, so A is non-invertible
c i −y + 5z = 15, −y + 5z = 15

ii The two equations are the same
iii y = 5λ − 15
iv x = 43 − 13λ

Chapter 11 review
Technology-free questions

1 a
[

0 0
12 8

]
b

[
0 0
8 8

]
2

[
a

2 − 3
4 a

]
, a ∈ R

3 a Exist: AC, CD, BE; Does not exist: AB

b DA =
[
14 0

]
, A−1 =

1
7

[
1 2
3 −1

]
4 AB =

[
2 0
2 −2

]
, C−1 =

[
−2 1

3
2 − 1

2

]
5

[
−1 2
−3 5

]

6 A2 =


4 0 0
0 4 0
0 0 4

, A−1 =


1
2 0 0

0 0 1
2

0 1
2 0


7 x = 8

8 a i
[
3 −5
5 8

]
ii

[
1 −18

18 19

]
iii

1
7

[
3 1
−1 2

]
b x = 2, y = 1

Multiple-choice questions
1 B 2 E 3 C 4 E 5 C
6 A 7 E 8 A 9 E 10 D
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Extended-response questions

1 a i
[
2 −3
4 1

] [
x
y

]
=

[
3
5

]
ii det(A) = 14, A−1 =

1
14

[
1 3
−4 2

]
iii

1
7

[
9
−1

]
iv Two lines intersect at point

(
9
7

,−
1
7

)
b i

[
2 1
4 2

] [
x
y

]
=

[
3
8

]
ii det(A) = 0, so A is non-invertible

c Two parallel lines

2 a
[
79 78 80
80 78 82

]
b


0.2
0.3
0.5


c Semester 1: 79.2; Semester 2: 80.4
d Semester 1: 83.8; Semester 2: 75.2
e No, total score is 318.6
f 3 marks

3 a


10 2

8 4
8 8
6 10

 b
[
70
60

]
c Term 1: $820; Term 2: $800;

Term 3: $1040; Term 4: $1020

d


2 2 1
2 2 1
3 4 2
3 4 2

 e


60
55
40


f Term 1: $270; Term 2: $270;

Term 3: $480; Term 4: $480
g Term 1: $1090; Term 2: $1070;

Term 3: $1520; Term 4: $1500
4 Brad 20; Flynn 10; Lina 15

Chapter 12
Exercise 12A
1 a

G W E B

X Y

b

G W E B

X

Y

c 

X Y G W E B
X 0 0 1 1 1 1
Y 0 0 1 1 1 1
G 1 1 0 0 0 0
W 1 1 0 0 0 0
E 1 1 0 0 0 0
B 1 1 0 0 0 0


2 a i 3 ii 2 iii 1

b 

A B C D H
A 0 1 1 1 0
B 1 0 1 0 0
C 1 1 0 2 0
D 1 0 2 0 1
H 0 0 0 1 0


c Not simple, as two edges join C and D

3 a

D

C A B E

b 

A B C D E
A 0 1 2 1 0
B 1 0 0 1 2
C 2 0 0 1 0
D 1 1 1 0 0
E 0 2 0 0 0


c Two edges join A and C, and also B and E

4 a b

c

5

SA
VIC

NSW
ACT

TAS

WA

QLDNT

6 a 
A B C D

A 0 1 1 0
B 1 0 1 1
C 1 1 0 0
D 0 1 0 0


b 

A B C D
A 0 1 1 0
B 1 0 0 1
C 1 0 0 1
D 0 1 1 0
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c 
A B C D

A 0 1 0 0
B 1 0 0 0
C 0 0 0 1
D 0 0 1 0


d [ A

A 1
] e 

A B C D
A 0 1 1 1
B 1 0 1 1
C 1 1 0 1
D 1 1 1 0


f 

A B C D E F
A 0 1 1 0 0 0
B 1 0 0 1 0 0
C 1 0 0 1 0 0
D 0 1 1 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 1 0


g 

A B C
A 0 0 0
B 0 1 1
C 0 1 1


h 

A B C D
A 0 1 1 1
B 1 0 1 0
C 1 1 0 1
D 1 0 1 0


7 a, b, c, e, f, h
8 a Loop at vertex v1

b Two edges join vertices v1 and v2

9 a The degree of vertex vi is the sum of the
entries in row i (or column i)

b Sum of all the entries
c Half the sum of all of the entries

10 a

v1 v4

v3v2 b

v1

v3v2

c

v1 v4

v3v2 d

v1

v3v2

12

13

v1 v2

v3

v1 v2

v3

v1 v2

v3

v1 v2

v3

15 a

b The total degree of the graph would be 9,
but the total degree must be even.

c

16 a v1 v2 v3 v4

b The total degree of the graph would be 7,
but the total degree must be even.

17 Four different graphs:

18

20 a For example:

Exercise 12B

1 a � v1, v2, v3, v4, v2 � v1, v2, v4, v3, v2

� v2, v3, v4, v2, v1 � v2, v4, v3, v2, v1

b It has vertices of odd degree (v1 and v2).
2 a It has vertices of odd degree (v1 and v3).

b Exactly two vertices have odd degree.
3 Many possible answers. For example:

a v3, v4, v1, v3, v2, v1

b v1, v2, v3, v4, v1, v5, v4, v2, v5

c v2, v3, v4, v1, v2, v6, v7, v8, v5, v6, v8, v4

d v1, v3, v5, v4, v2, v3, v5, v6

e v1, v2, v3, v4, v5, v3, v1

f v5, v1, v2, v3, v4, v6, v5, v2, v4, v5

4 � Cannot have an Euler circuit, as it has a
vertex of odd degree.
� Can have an Euler trail. For example, the

following graph has Euler trail v1, v2, v2.

v2v1
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5 a Yes b No c Yes
6 Yes
7 a One edge b Two edges
8 a

9 a 1 × n for n ∈ N, m × 1 for m ∈ N,
2 × 2, 2 × 3, 3 × 2

b 1 × 1, 2 × 2

Exercise 12C
Note: Questions 1–3 have many correct answers.
1 a v1, v2, v3, v8, v7, v6, v5, v4

b v6, v1, v4, v5, v8, v3, v2, v7

2 a v1, v2, v3, v4 b v3, v5, v6, v4, v1, v2

c v1, v3, v2, v4 d v1, v2, v3, v4, v5, v6, v7

3 a v1, v4, v3, v2, v1 b v1, v2, v3, v5, v6, v4, v1

c v1, v5, v2, v3, v4, v1

d v1, v2, v5, v7, v6, v4, v3, v1

4 b Two: v1, v4, v2, v5, v3 and v3, v5, v2, v4, v1

c {v1, v3}

5 b 8
6 a b c d

7 a False b True c True d False e True
8 a Yes, as there is a Hamiltonian cycle:

I, H, D, G, B, E, F, A, C, I
b Yes, as there is a Hamiltonian path:

A, G, E, D, B, F, I, C, H
9 a b In each Hamiltonian

cycle, the edges have
two alternating colours.

Exercise 12D
1 a i 4 ii 0 iii 5 iv 2

b i 9 ii 9 iii 8 iv 2
2 a 

v1 v2 v3

v1 0 3 1
v2 3 0 2
v3 1 2 0


b i 2 ii 13 iii 6
c 18
d 14
e i 42 ii 12 iii 14
f 36

3 a A =


v1 v2 v3 v4

v1 0 1 0 1
v2 1 0 1 0
v3 0 1 0 1
v4 1 0 1 1



4 a A =



v1 v2 v3 v4 v5

v1 0 1 1 1 1
v2 1 0 1 1 1
v3 1 1 0 1 1
v4 1 1 1 0 1
v5 1 1 1 1 0



b A2 =



v1 v2 v3 v4 v5

v1 4 3 3 3 3
v2 3 4 3 3 3
v3 3 3 4 3 3
v4 3 3 3 4 3
v5 3 3 3 3 4



c A3 =



v1 v2 v3 v4 v5

v1 12 13 13 13 13
v2 13 12 13 13 13
v3 13 13 12 13 13
v4 13 13 13 12 13
v5 13 13 13 13 12



5 a A =



v1 v2 v3 v4 v5 v6

v1 0 1 0 0 0 1
v2 1 0 1 0 0 0
v3 0 1 0 1 0 0
v4 0 0 1 0 1 0
v5 0 0 0 1 0 1
v6 1 0 0 0 1 0


b 0 c 0 d All 0

6 a A =


v1 v2 v3

v1 1 2 1
v2 2 1 1
v3 1 1 1


b 

v1 v2 v3

v1 105 104 76
v2 104 105 76
v3 76 76 57


c 104

Exercise 12E
1 Many possible answers. For example:

2 C4 C4

3 a 15 b
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4 a b The total degree of the
corresponding graph would
be 5 × 3 = 15, but the
total degree must be even.

5 a 21 b

c

C7 C7

6 a

K3,3 K3,3

b No; the complement of K3,3 is not bipartite.
7 28

8 Many possible answers. For example:
a b

c

9 a a1

b1 b2 b3


a1 b1 b2 b3

a1 0 1 1 1
b1 1 0 0 0
b2 1 0 0 0
b3 1 0 0 0


b a1 a2

b1 b2 b3



a1 a2 b1 b2 b3

a1 0 0 1 1 1
a2 0 0 1 1 1
b1 1 1 0 0 0
b2 1 1 0 0 0
b3 1 1 0 0 0



10 A

C D

B E

H G

F

K2,2 C4

One isomorphism is
A↔ E, D↔ F,
B↔ G, C ↔ H

11 a b

13 b

1 3 5 7

2

4

Euler circuit:
1, 2, 3, 4, 5, 2, 7, 4, 1

Exercise 12F
1

2 a

b

c
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3 a B D

A C E F

b B F

A C D E

G

c B D

A C E G

F

4 Many possible answers. For example:
a b

c d

5 a Each spanning tree is a path of length 2:

b

Exercise 12G
1 Many possible answers. For example:

a

A

C

B

D b

A

D
B

E

C

F
c BA

E F

DC

d

BA
D

C

E
2 a v − e + f = 8 − 12 + 6 = 2

b v − e + f = 6 − 12 + 8 = 2
c v − e + f = 7 − 12 + 7 = 2
d v − e + f = 7 − 9 + 4 = 2

4 a v − e + f = 12 − 17 + 7 = 2
5 a

6 a

7 a � Cube: v − e + f = 8 − 12 + 6 = 2
� Tetrahedron: v − e + f = 4 − 6 + 4 = 2

b 20 vertices c 30 edges
8 a b v − e + f = 6 − 9 + 5 = 2

9

b1 b2 · · · bn

a1

a2

Exercise 12H
See solutions supplement

Chapter 12 review
Technology-free questions
1 a i ii iii

b The total degree of the corresponding graph
would be 7 × 3 = 21, but the total degree
must be even.

2 a A simple graph is a graph with no loops or
multiple edges.

b

c

3 d 20
4 a 2 b 0 c 

A B C D
A 0 1 0 1
B 1 0 1 0
C 0 1 0 1
D 1 0 1 0


5 a b

6 a v = 3, e = 6, f = 5
b For example:
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7 a For example:

b v − e + f = 4 − 7 + 5 = 2
8 a For example:

Multiple-choice questions
1 C 2 D 3 D 4 E 5 E
6 B 7 B 8 A 9 B 10 A

11 D 12 D 13 C 14 D

Extended-response questions
2 a

B R

G Y b

c

B R

G Y

d

B R

G Y1

1

1
4

3

32 2 42

3
4

f

B R

G Y

1

4

3 2

g

1

2

3

4

3 a

A

B C

DE
F

b v − e + f = 6 − 8 + 4 = 2
d

A

B C

DE
F

f i Edge joining A and B
ii Red {C, E, F}, green {A, B, D}

Chapter 13
Technology-free questions
1 a All defined except AB

b DA =
[
6 −12

]
, A−1 =


1
9

4
9

2
9
−

1
9


2 a

[
−2 4
18 −24

]
b

[
−10 −19

7 −16

]
3 x = 16

4 A =

[
t

3t − 5

]
, t ∈ R

5 AB =

[
−9 −8
−15 10

]
, C−1 =


2 1
3
2

1
2


6 a (C − B)A−1 b B−1C − A

c I − A−1BA d −A

e
1
2

B f I − A−1

7 a
[
−1
−10

]
b

[
4
5

]
c

[
4 24
7 4

]
8 w = −5 or w = 2
9 x = 3

10 a = 0, b = −1

12 a
[
1 − 2b 0

ab 2a

]
b a =

1
2

, b = 0

13 (0, 0, 0), (1, 0,−1)
14 a A

E

C

D

B

b 

A B C D E
A 0 0 1 1 0
B 0 0 1 0 0
C 1 1 0 1 1
D 1 0 1 0 0
E 0 0 1 0 0


15 Two vertices of degree 2 and one vertex of

degree 3
16

17 6 vertices

18 a


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 b 7 walks

19 b
(n − 1)!

2
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20 No
21 No
22

b1 b2 b3

a1

a2

23 8 faces
25 a v1, v3, v5, v2, v4, v1

b v1, v3, v5, v2, v6, v4, v1

26 For example:
a b

27 20 vertices, 30 edges, 12 faces
28 a a1 a2 a3

b1 b2 b3 b4
b Four vertices have odd degree (b1, b2, b3, b4)
c One edge (for example: {b1, b2})
d Two edges (for example: {b1, b2}, {b3, b4})

Multiple-choice questions
1 A 2 B 3 E 4 A 5 B
6 C 7 A 8 B 9 D 10 C

11 D 12 B 13 B 14 D 15 D
16 E 17 A 18 B 19 E

Extended-response questions

1 a i
[
a2 + bc ab + bd
ac + dc d2 + bc

]
ii

[
3a 3b
3c 3d

]
3 g

[
0 0
0 0

]
,
[
1 0
0 1

]
,

[
1 0
k 0

]
,
[
0 0
k 1

]
, k ∈ R, a b

a − a2

b
1 − a

, a ∈ R, b ∈ R \ {0}

4 c
[
1 0
0 1

]
,
[
−1 0

0 −1

]
,

[
1 0
k −1

]
,
[
−1 0

k 1

]
,[

1 k
0 −1

]
,
[
−1 k

0 1

]
, k ∈ R, a b

1 − a2

b
−a

, a ∈ R, b ∈ R \ {0}

5 a m2 − (a + d)m + ad − bc
c m = a − c

d i m = 1 or m = −9 ii
[
x
y

]
=

[
k
k

]
, k ∈ R

iii
[
x
y

]
=

 k

−
3k
2

, k ∈ R

6 a No, as the total degree of the graph would
be 15, but the total degree must be even.

b i One vertex has degree 6 and there are
only five other vertices, so the graph
must have a loop or multiple edges.

ii The graph has an Euler circuit as all
vertices have even degree.

c i 10, which is the total degree of a tree
with 6 vertices

ii 2, 4
d i Vertex degrees 2, 2, 4, 4, 4, 4

ii

Investigations
See solutions supplement

Chapter 14
Exercise 14A

1 a k =
1
15

b Pr(X ≥ 3) =
4
5

2 a 4.6 b 0.5 c 1.89 d 0
3 $6000
4 A loss of 33c
5 a Var(X) = 3.84 b Var(X) = 1.25

6 a p =
1

16
b E(X) = 1.625

c Var(X) = 0.9844 d sd(X) = 0.9922

7 a k =
1
10

b E(X) = 1

c Var(X) = 1 d sd(X) = 1

Exercise 14B
1 a z −4 −2 0 48 50 100

p(z) 0.64 0.24 0.0225 0.08 0.015 0.0025

b Pr(X1 + X2 ≥ 50) = 0.0175
2 a z 2 3 4 5 6 7

p(z) 0.04 0.08 0.12 0.16 0.16 0.16

z 8 9 10 11 12
p(z) 0.12 0.08 0.05 0.02 0.01

b Pr(X1 + X2 > 10) = 0.03
3 a E(X) = 3, Var(X) = 2

b z 2 3 4 5 6
p(z) 0.04 0.08 0.12 0.16 0.2

z 7 8 9 10
p(z) 0.16 0.12 0.08 0.04

c Pr(X1 + X2 is even) = 0.52
d E(X1 + X2) = 6, Var(X1 + X2) = 4
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4 a E(X) = −3.85, Var(X) = 33.428,
sd(X) = 5.782

b z −10 −5 0 5 10
p(z) 0.81 0.108 0.0576 0.0036 0.0009

z 45 50 55 100
p(z) 0.018 0.0012 0.0006 0.0001

c E(X1 + X2) = −7.70, Var(X1 + X2) = 66.855,
sd(X1 + X2) = 8.176

5 a E(X1 + X2 + X3 + X4) = 400
b Var(X1 + X2 + X3 + X4) = 64
c sd(X1 + X2 + X3 + X4) = 8

6 a E(X1 + X2 + X3) = 90
b Var(X1 + X2 + X3) = 21
c sd(X1 + X2 + X3) = 4.583

7 E(X1 + X2 + X3) = −11.55,
Var(X1 + X2 + X3) = 100.283,
sd(X1 + X2 + X3) = 10.014

8 a i E(4X) = 400 ii Var(4X) = 256
iii sd(4X) = 16

b The means are the same, but 4X has a much
higher variability than X1 + X2 + X3 + X4

9 a E(10X) = 34 b Var(10X) = 120
c sd(10X) = 10.954

10 a E(X) = 0.63, Var(X) = 0.513,
sd(X) = 0.716

b E(X1 + · · · + X10) = 6.3,
Var(X1 + · · · + X10) = 5.131,
sd(X1 + · · · + X10) = 2.265

c E(40X) = 25.2, Var(40X) = 820.8,
sd(40X) = 28.650

Exercise 14C
1 No, as students who do not use email will not

be included in the sample.
2 No, as customers who use the restaurant on

weekdays or at other times on the weekend
will not be included in the sample.

3 a Yes, as every student in the school has the
same probability of being included in the
sample.

b x̄ = 2.7
4 Answers will vary
5 a All Australian adults b µ = 4 c x̄ = 3.5

Exercise 14D
1 45.6 minutes per day
2 $3130
3 a Pr(X̄ ≥ 25) ≈ 0.02 b Pr(X̄ ≤ 23) ≈ 0.01
4 a Pr(X̄ ≥ 163) ≈ 0.04 b Pr(X̄ ≤ 158) ≈ 0.05
5 Answers will vary
6 Answers will vary

7 a E(X1 + · · · + X25) = −27.5,
Var(X1 + · · · + X25) = 1427.25

b E(X̄) = −1.10, Var(X̄) = 2.284
8 a E(X1 + · · · + X10) = 6.3,

Var(X1 + · · · + X10) = 5.131
b E(X̄) = 0.63, Var(X̄) = 0.0513

9 a E(X̄) = 30, sd(X̄) = 1.4
b E(X̄) = 30, sd(X̄) = 0.14
c E(X̄) = 30, sd(X̄) = 0.014

10 a E(X̄) = 16.77, sd(X̄) = 0.775
b E(X̄) = 16.77, sd(X̄) = 0.245
c E(X̄) = 16.77, sd(X̄) = 0.0775

11 a E(P) = −2, sd(P) = 8.718
b i E(P̄) = −2, sd(P̄) = 2.757

ii E(P̄) = −2, sd(P̄) = 0.872
iii E(P̄) = −2, sd(P̄) = 0.276

Chapter 14 review
Technology-free questions

1 a
1
4

b
5
2

c
5
4

2 a
1

10
b

6
5

c
39
25

3 a E(X1 + X2 + X3 + X4) = 200
b Var(X1 + X2 + X3 + X4) = 100
c sd(X1 + X2 + X3 + X4) = 10

4 a E(10X) = 300
b Var(10X) = 1600
c sd(10X) = 40

5 No, as it is likely that students who are not
interested in yoga will not respond to the
survey.

6 a People with Type II diabetes
b Population is too large and dispersed
c Unknown d x̄ = 1.5

7 1.6 m

8 a E(X̄) = 10, sd(X̄) =
2
3

b E(X̄) = 10, sd(X̄) =
2
5

c E(X̄) = 10, sd(X̄) =
1
5

Multiple-choice questions
1 C 2 E 3 D 4 E 5 D
6 C 7 E 8 B 9 C 10 A

11 B 12 E 13 C

Extended-response questions
1 Answers will vary
2 a iii mean ≈ 50, s.d. ≈ 1.12

b iii mean ≈ 50, s.d. ≈ 0.71
c iii mean ≈ 50, s.d. ≈ 0.50
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3 a E(X) = 1.2, Var(X) = 0.36, sd(X) = 0.6
b i z 0 1 2 3 4

p(z) 0.01 0.12 0.42 0.36 0.09
ii Pr(X1 + X2 > 3) = 0.09
iii E(X1 + X2) = 2.4, Var(X1 + X2) = 0.72
iv E(X̄) = 1.2, Var(X̄) = 0.18

c i E(X1 + · · · + X7) = 8.4,
Var(X1 + · · · + X7) = 2.52

ii E(X̄) = 1.2, Var(X̄) = 0.051

Chapter 15
Exercise 15A
1 a 4.10 b 0.87 c 2.94

d 4.08 e 33.69◦ f 11.92

2
40
√

3
3

cm

3 66.42◦, 66.42◦, 47.16◦

4 23 m
5 a 9.59◦ b

√
35 m

6 a 60◦ b 17.32 m
7 a 6.84 m b 6.15 m
8 12.51◦

9 182.7 m
10 1451 m
11 a 5

√
2 cm b 90◦

12 3.07 cm 13 37.8 cm
14 31.24 m 15 4.38 m

16 57.74 m 17
2
√

3

2 −
√

3
≈ 12.93 m

18
10

1 +
√

3
≈ 3.66 19 ∠APB = 47.16◦

Exercise 15B
1 a 8.15 b 3.98 c 11.75 d 9.46
2 a 56.32◦ b 36.22◦ c 49.54◦

d 98.16◦ or 5.84◦

3 a A = 48◦, b = 13.84, c = 15.44
b a = 7.26, C = 56.45◦, c = 6.26
c B = 19.8◦, b = 4.66, c = 8.27
d C = 117◦, b = 24.68, c = 34.21
e C = 30◦, a = 5.40, c = 15.56

4 a B = 59.12◦, A = 72.63◦, a = 19.57 or
B = 120.88◦, A = 10.87◦, a = 3.87

b C = 26.69◦, A = 24.31◦, a = 4.18
c B = 55.77◦, C = 95.88◦, c = 17.81 or

B = 124.23◦, C = 27.42◦, c = 8.24
5 554.26 m
6 35.64 m
7 1659.86 m
8 a 26.60 m b 75.12 m

Exercise 15C
1 5.93 cm
2 ∠ABC = 97.90◦, ∠ACB = 52.41◦

3 a 26 b 11.74 c 49.29◦ d 73
e 68.70 f 47.22◦ g 7.59 h 38.05◦

4 2.626 km
5 3.23 km
6 55.93 cm
7 a 8.23 cm b 3.77 cm
8 a 7.326 cm b 5.53 cm
9 a 83.62◦ b 64.46◦

10 a 87.61 m b 67.7 m

Exercise 15D
1 a 11.28 cm2 b 15.10 cm2

c 10.99 cm2 d 9.58 cm2

2 a 6.267 cm2 b 15.754 cm2

c 19.015 cm2 d 13.274 cm2

e 24.105 cm2 or 29.401 cm2

f 2.069 cm2

Exercise 15E
1 45.81 cm
2 a 95.5◦ b 112.88◦

3 a 6.20 cm b 2.73 cm2

4

x

y

4

2

0 4

−4

−4
A

y = 2 
B

Area of A ∩ B = 9.83 square units
5 61.42 cm2

6 a 125.66 m b 41.96%
7 a 10.47 m b 20.94 m2

8 6.64 cm2

9 r = 7 cm, θ =

(18
7

)c

or r = 9 cm, θ =

(14
9

)c

10 247.33 cm
11 a 81.96 cm b 4.03 cm2

Exercise 15F
1 400.10 m 2 34.77 m
3 575.18 m 4 109.90 m
5 16.51 m 6 056◦

7 a 034◦ b 214◦

8 a 3583.04 m b 353◦

9 027◦ 10 113◦

11 22.01◦
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12 a ∠BAC = 49◦ b 264.24 km
13 10.63 km

Exercise 15G
1 a 13 cm b 15.26 cm

c 31.61◦ d 38.17◦

2 a 4 cm b 71.57◦ c 12.65 cm
d 13.27 cm e 72.45◦ f 266.39 cm2

3 10.31◦ at B; 14.43◦ at A and C
4 a 85 m b 45.04 m
5 17.58◦

6 1702.55 m
7 a 24.78◦ b 65.22◦ c 20.44◦

8 42.40 m
9 1945.54 m

10 a 6.96 cm b 16.25 cm2

11 a 5 km b 215.65◦ c 6.56◦

Exercise 15H
1 a 4a2, 3a2 and 12a2 square units respectively

b 14.04◦ c 18.43◦ d 11.31◦

2 a 35.26◦ b 45◦

3 a 0.28 b 15.78◦

4 a 15.51 cm b 20 cm c 45.64◦

5 a i 107 m ii 87 m iii 138 m
b 43.00◦

6 a 5
√

11 cm b 64.76◦ c 71.57◦ d 95.74◦

7 26.57◦

8 a 54.74◦ b 70.53◦

9 1.67 km
10 a 141.42 m b 20.70◦

11 16 cm
12 34.14 cm

13 a
a
√

3
2

cm b
a
2

cm

14 a 26.57◦ b 39.81◦ c 38.66◦

Chapter 15 review
Technology-free questions
1 a 5

√
3 ±
√

11

b sin−1
(5

6

)
or π − sin−1

(5
6

)
2 a ∠ABC = 30◦, ∠ACB = 120◦ b 40

√
3 cm

c 20 cm
3 4
√

19 km

4 a 5
√

3 cm b
25
√

3
4

cm2

c
105
4

cm2 d
5(21 + 5

√
3)

4
cm2

5 143◦ 6
17
28

7
3
√

93
31

8
(11

6

)c

9 a i 30◦ ii 15◦

b AT = 300(1 +
√

3) m, BT = 150(
√

6 +
√

2) m
10
√

181 km

11 a AC =
12
√

3
5

km, BC = 2.4 km

b 57.6 km/h
12 180 cm2

13 21.4 cm

14 a 26 tan−1
(12

5

)
cm

b 169
(
π − tan−1

(12
5

))
cm2

15 11 m

Multiple-choice questions
1 D 2 C 3 C 4 B 5 A
6 A 7 D 8 B 9 C 10 A

Extended-response questions
1 a ∠ACB = 12◦, ∠CBO = 53◦, ∠CBA = 127◦

b 189.33 m c 113.94 m
2 a 4.77 cm b 180 cm2 c 9.55 cm
3 a ∠T AB = 3◦, ∠ABT = 97◦, ∠AT B = 80◦

b 2069.87 m c 252.25 m
4 a 184.78 m b 199.71 m c 14.93 m
5 a 370.17 m b 287.94 m c 185.08 m
6 a 8

√
2 cm b 10 cm c 10 cm d 68.90◦

7 Area =
L2 sinα sin β sin γ

2(sinα + sin β + sin γ)2

Chapter 16
Exercise 16A

1 a −1 b −
√

2 c −
2
√

3
= −

2
√

3
3

d 1 e −2 f 2 g
1
√

3
=

√
3

3
h 2

2 a −1 b −
2
√

3
= −

2
√

3
3

c 1

d
1
√

3
=

√
3

3
e −
√

2 f
2
√

3
=

2
√

3
3

g −1 h −
2
√

3
= −

2
√

3
3

i
1
√

3
=

√
3

3

3 a
π

6
,

5π
6

b
π

6
,

7π
6

c
3π
4

,
5π
4

d
π

4
,

5π
4

4 a −
8

17
b

15
17

c −
15
8

5 cos θ =
24
25

, sin θ = −
7
25
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6 −
√

29
5

7
8
31

8
15

4(9 +
√

5)
=

15(6 −
√

5)
124

Exercise 16B

1 a
√

2 +
√

6
4

b
1 −
√

3

2
√

2
=

√
2 −
√

6
4

2 a
√

6 −
√

2
4

b
√

3 + 1
√

3 − 1
= 2 +

√
3

3 a
√

3 − 1

2
√

2
=

√
6 −
√

2
4

b
√

3 − 1

2
√

2
=

√
6 −
√

2
4

c
1 −
√

3

1 +
√

3
= −2 +

√
3

4 For x, y ∈
(
0,
π

2

)
, sin(x + y) =

63
65

;

For x, y ∈
(π

2
,π

)
, sin(x + y) = −

63
65

;

For x ∈
(
0,
π

2

)
, y ∈

(π
2

,π
)
, sin(x + y) = −

33
65

;

For x ∈
(π

2
,π

)
, y ∈

(
0,
π

2

)
, sin(x + y) =

33
65

5 a
√

3
2

sin θ +
1
2

cos θ b
1
√

2
(cosϕ + sinϕ)

c
tan θ +

√
3

1 −
√

3 tan θ
d

1
√

2
(sin θ − cos θ)

6 a sin u b cos u

7 a −
119
169

b
24
25

c
24
7

d −
169
119

e −
33
65

f −
16
65

g −
65
33

h
7
24

8 a
63
16

b −
24
7

c
56
65

d
24
25

9 a
7

25
b

3
5

c
117
44

d −
336
625

10 a −
√

3
2

for θ =
5π
3

b −
1
2

11 a 1 − sin(2θ) b cos(2θ)

Exercise 16C
1 a 5, −5 b 2, −2

c
√

2, −
√

2 d
√

2, −
√

2
e 2
√

3, −2
√

3 f 2, −2
g 4, 0 h 5 +

√
13, 5 −

√
13

2 a
π

2
, π b 0,

2π
3

, 2π

c
π

6
,

3π
2

d 0,
5π
3

, 2π

e 53.13◦ f 95.26◦, 155.26◦

3 2 cos
(
2x +

π

6

)
4
√

2 sin
(
3x −

5π
4

)
5 a f (x) = sin x − cos x =

√
2 cos

(
x −

3π
4

)
=
√

2 sin
(
x +

7π
4

)
=
√

2 sin
(
x −

π

4

)

x

y

−√2

√2

0

−1
2ππ

π
4

3π
4

5π
4

7π
4

b f (x) =
√

3 sin x + cos x

= 2 cos
(
x −

π

3

)
= 2 sin

(
x +

π

6

)

x

y

2

0

1

2ππ

π
3

4π
3

5π
6

11π
6

–2

c f (x) = sin x + cos x

=
√

2 cos
(
x −

π

4

)
=
√

2 sin
(
x +

π

4

)

x

y

–√2

√2

0

1

2πππ
4

7π
4

3π
4

5π
4

d f (x) = sin x −
√

3 cos x = 2 cos
(
x −

5π
6

)
= 2 sin

(
x +

5π
3

)
= 2 sin

(
x −

π

3

)
y

−2

0

2

1

x
π

π
3

5π
6

4π
3

11π
6

2π
−√3

Exercise 16D

1 a sin(5πt) + sin(πt) b
1
2
(
sin 50◦ − sin 10◦

)
c sin(πx) + sin

(
πx
2

)
d sin(A) + sin(B + C)

2 cos(θ) − cos(5θ)
3 sin x − sin y
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5 a 2 sin 39◦ cos 17◦ b 2 cos 39◦ cos 17◦

c 2 cos 39◦ sin 17◦ d −2 sin 39◦ sin 17◦

6 a 2 sin(4A) cos(2A) b 2 cos
(3x

2

)
cos

( x
2

)
c 2 sin

( x
2

)
cos

(7x
2

)
d −2 sin(2A) sin(A)

11 a −
5π
6

,−
3π
4

,−
π

2
,−
π

4
,
π

6
,
π

2
,

3π
4

,
5π
6

,
−π

6
,
π

4

b −π,−
2π
3

,−
π

2
,−
π

3
, 0,

π

3
,
π

2
,

2π
3

,π

c −π,−
3π
4

,−
2π
3

,−
π

3
,−
π

4
, 0,

π

4
,
π

3
,

2π
3

,
3π
4

,π

d −π,−
5π
6

,−
π

2
,−
π

6
, 0,

π

6
,
π

2
,

5π
6

,π

12 a
π

6
,

5π
6

b 0,
π

6
,
π

3
,

2π
3

,
5π
6

,π

c 0,
π

12
,
π

3
,

5π
12

,
7π
12

,
2π
3

,
11π
12

,π

d
π

10
,
π

6
,

3π
10

,
π

2
,

7π
10

,
5π
6

,
9π
10

17
1 − cos(100x)

2 sin(x)

Chapter 16 review
Technology-free questions

2 a
π

6
,

5π
6

,
7π
6

,
11π

6
b

π

12
,

5π
12

,
13π
12

,
17π
12

c
π

18
,

11π
18

,
13π
18

,
23π
18

,
25π
18

,
35π
18

d
π

4
,

3π
4

,
5π
4

,
7π
4

e
π

6
,

5π
6

,
7π
6

,
11π

6

f
3π
8

,
7π
8

,
11π

8
,

15π
8

g
π

2
,

7π
6

,
11π

6

h
π

8
,

7π
8

,
9π
8

,
15π

8
3 60◦, 300◦, 0◦, 180◦, 360◦

4 a
140
221

b −
21

221
c

171
140

5 a
1
2

b 1

6 a 1 b 0

8 a −
1
9

b −
4
√

5
9

c
8
√

5
81

10 2 −
√

3

11 a 0,
π

2
, 2π b

7π
6

,
11π

6
c 0, π, 2π

d
π

2
,

3π
2

e
π

6
,
π

3
,

7π
6

,
4π
3

f
7π
12

,
3π
4

,
19π
12

,
7π
4

12 a y

x

(0, 2) (π, 2)

(   , 0)π
2

b y

x
(0, 0) (π, 0)

(   , 2)π
2

13
2
9

14 a
√

85 cos(θ − α) where α = cos−1
( 2
√

85

)
b i

√
85 ii

2
√

85

iii θ = cos−1
( 2
√

85

)
+ cos−1

( 1
√

85

)
15 a 0,

π

3
,
π

2
,

2π
3

,π b 0,
π

3
,π

Multiple-choice questions
1 A 2 A 3 B 4 A 5 C
6 E 7 E 8 A 9 D 10 E

Extended-response questions

1 b P = 10
√

5 cos(θ − α) where α = cos−1
( 2
√

5

)
;

θ = 70.88◦

c k = 25 d θ = 45◦

2 a AD = cos θ + 2 sin θ
b AD =

√
5 cos(θ − α) where

α = cos−1
( 1
√

5

)
≈ 63◦

c Max length of AD is
√

5 m when θ = 63◦

d θ = 79.38◦

3 b ii a = 1, b = 1

c
1 +
√

2 −
√

3

1 +
√

3 +
√

6
=

2
√

2 −
√

3 − 1
√

3 − 1

=
√

6 +
√

2 −
√

3 − 2
4 a i h1 = cos θ

ii h2 = sin θ cos θ
iii h3 = sin2

θ cos θ
iv hn = sinn−1

θ cos θ for n ∈ N
c 19.47◦

5 a ii 2 cos
(
π

5

)
b iii 4 cos2

(
π

5

)
− 2 cos

(
π

5

)
− 1 = 0

iv
1 +
√

5
4

6 b −
2
3

or
1
2
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Chapter 17
Exercise 17A

1 a Domain = R; Range =

(
−
π

2
,
π

2

)
y

x

π
2

−π
2

0

1

−π
4

0,

b Domain = [−2, 0]; Range = [0,π]
y

x

π
2

π

−2 0

c Domain =

[
−

3
2

,
1
2

]
; Range = [−π,π]

y

x

π
3

1
2

π

−π

1
2

−3
2−

0

d Domain = R; Range =

(
−
π

2
,

3π
2

)
y

x
−1 0

3π
2

π
2

π
2

−

e Domain =

[
−

1
2

,
1
2

]
; Range = [0,π]

y

x

π

0

π
2

2
1

2
1−

f Domain =

[
−

1
3

,
1
3

]
; Range =

[
0,
π

2

]
y

x
0

π
2

π
4

3
1

3
1−

2 a
π

2
b −

π

4
c
π

6
d

5π
6

e
π

3

f
π

4
g −

π

3
h
π

6
i π

3 a
√

3
2

b −
π

3
c −1 d

√
2

2
e
π

4

f
√

3 g
π

3
h −

π

3
i −

π

4
j

5π
6

k π l −
π

4
4 a f −1 : [−1, 1]→ R, f −1(x) = y,

where sin y = x and y ∈
[
π

2
,

3π
2

]
( f −1(x) = π − sin−1(x))

b i 1 ii
√

2
2

iii −
1
2

iv
3π
2

v π vi
5π
6

5 a [1, 3],
[
−
π

2
,
π

2

]
b

[
−

3π
4

,
π

4

]
, [−1, 1]

c
[
−

5
2

,−
3
2

]
,
[
−
π

2
,
π

2

]
d

[
−
π

18
,

5π
18

]
, [−1, 1]

e
[
π

6
,

7π
6

]
, [−1, 1] f [−2, 0], [0,π]

g [−1, 1],
[
0,
π

2

]
h

[
−
π

3
,
π

6

]
, [−1, 1]

i R,
[
0,
π

2

)
j
(
0,
π

2

)
, R k R,

(
−
π

2
,
π

2

)
l
(
−

√
2π
2

,

√
2π
2

)
, [0,∞)

6 a
3
5

b
12
5

c
24
25

d
40
9

e
√

3 f
√

5
3

g −
2
√

5
5

h
2
√

10
7

7 a i
4
5

ii
12
13

Exercise 17B
1 a

x

y

3

−3 0
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b

x

y

1

-1 10

c

x

y

4

0

d

x

y

1–1
–1

0

e

x

y

2–2

4

0

f

x

y

20

g

x

y

3–1 0

h

x

y

1–3

4

0

i

x

y

-1 0

2 a

1

0
x

−1
π
2

y

3π
2

b

0
x

π

y

2π

c

x

y

0

π−π

d

x

y

0

2

π 2π 3π 4π
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e

x

y

0 2ππ−π−2π

f y

x

(π, −3)

2π
−1

0

π, −
3
1(    )

g

x
2π

(2π, 2)

0

2

π

y

2
π

, 1(   )
2

3π
, 3(    )

2
3π

3
1

, (     ) 2
1

2π, (    )

h

x

y

0

5

5
1−π, (    ) 5

1π, (    )    

(π, 5)(−π, 5)

−π π

 1

3 a (−1, 1) b

x
1

1

2

−1

4 a

x

y

0

1

1

b
(5 ± 3

√
5

10
,−1

)
,
(5 ±

√
5

10
, 1

)

5 y

x
0

2ππ

2
3π

2
1

, ( )

2
3π

, 2( )2
π

, 2( )
1

2
π

2
,( )

6 y

x0
1

1

7 a f (x) = (x + k)2 + 1 − k2

b i −1 < k < 1 ii k = ±1 iii k > 1 or k < −1
c i

(–k, 1 – k2)
x

ii

(–k, 0)
x

iii

(–k, 1 – k2)

x

Exercise 17C
1 a

5π
4

1

0
–1 2ππ

4
3π
4

7π
4

x

y
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b

5π
4

2π�π
4

π
2

3π
2

3π
4

7π
4

x

y

0

c

3

−3 2ππ
2

3π
2

x

y

π
0

d

2

0
−2 2πππ

2
3π
2

x

y

e

−1

1
0

2π�π
2

3π�
2

x

y

π

f

0 x
−2

2

π
22

y

π 2π3π

2 a

0−1

1

π 2π3π
2

π
2

y

x

b

5π
4

1

0
2ππ

4
3π
4

7π
4

x

y

c

0 x
−1

1

2ππ
2

π 3π
2

y

d

−2

2

0 ππ
2

3π
2

2π
x

y

e

1
3

0 x

y

π π
2

3π
2

2π

f

π
2

3π
4

3π
2

7π
4

2π
x

y

2

0
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3 � Reflection in the x-axis
� Dilation of factor 2 from the x-axis

� Translation
π

2
units to the right

−π −2

2

0
− π

2
π

x

y

π
2

4 � Reflection in the y-axis
� Dilation of factor 1

2 from the y-axis
� Translation 1 unit up

2

0
x

y

ππ
2

2π3π
2

5 � Reflection in the x-axis
� Dilation of factor 1

2 from the y-axis

� Translation
π

4
units to the right and

1 unit down

π
8

π
4

5π
8

3π
4

9π
8

5π
4

13π
8

2π7π
4

x

y

−1 0

6

−1
1

0
ππ

2

π, √2
4( )

5π,−√2
4( )

2π3π
2

x

y

Exercise 17D
1 a 8 b 8 c 2 d −2

e −2 f 4

2 a 3, −1 b
7
2

, −
1
2

c
12
5

, −
6
5

d 12, −6

e −1, 7 f
4
3

, −4 g −
2
5

, −4

3 a (−3, 3)

−5 −4 −3 −2 −1 0 1 2 3 4 5

b (−∞,−5] ∪ [5,∞)

−4−5−6 −3 −2 −1 0 1 2 3 4 5 6

c [1, 3]

−4−5 −3 −2 −1 0 1 2 3 4 5

d (−1, 5)

−4−5 −3 −2 −1 0 1 2 3 4 5

e (−∞,−8] ∪ [2,∞)

−4−5−6−7−8−9 −3 −2 −1 0 1 2 3

f [−3,−1]

−5 −4 −3 −2 −1 0 1 2 3 4 5

4 a Range = [1,∞)

x(4, 1)

y

O

5

b Range = (−∞, 2]

x

y

3

−5 −1−1

(−3, 2)

c Range = [−1,∞)

x

y

3

−5 −3
(−4, −1)

d Range = (−∞, 2]

x

y

−1 3

(1, 2)

1

5 a −5 ≤ x ≤ 5 b x ≤ −2 or x ≥ 2

c 1 ≤ x ≤ 2 d −
1
5
< x < 1

e x ≤ −4 or x ≥ 10 f 1 ≤ x ≤ 3
6 a

0
x

4

y

y = |4 − x|y = 4 − |x|

−4 4

b 0 ≤ x ≤ 4
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7 a

0 2 3 4−1 1−2−4 −3
x

2

4

6

8
9

10

y

b

0 2 3 4−1 1−2−4 −3
x

2

4

6

8

y

c

0 2 3 4−1 1−2−4 −3
x

2
4

6
8

10
12

y

d

0 2 3 4 5 6 7 8 9−1 1−2−3−4−5−6
x

10

20

30

40

y

e

0 2

2

4

6

8

10

6 84−2−4−6

y

x

f

0 2 64−2−4−6
x

y

2
3
4

6

8

10

8 a

0 2 64−2
−2

−4

4

−4−6

y

x

b

0 2 4−2
1

−4

y

x

c

0 2

12

3 4 6−2−3−4−6

y

x

d

−12

0 2 4 6−2−4−6

y

x

e

0 2 43 6−2

−12

−4−3−6

y

x

f

O

y

x

9 a
2 −
√

6
2

,
2 +
√

6
2

,
2 −
√

2
2

,
2 +
√

2
2

b 1 −
√

2, 1 +
√

2, 1 c −2, 4
d 3 −

√
17, 3 +

√
17, 2, 4 e −2, 8

f 3 − 3
√

2, 3 + 3
√

2, 3
10 a x ≤ −2 b x = −9 or x = 11

c x = −
5
4

or x =
15
4

11 a = 1, b = 1

Exercise 17E
1 (x − 1)2 + (y + 2)2 = 42

2 (x + 4)2 + (y − 3)2 = 52
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3 a y

x
2

(0, 0)

b y

x

3

(0, 0)

c y

x

4

(1, 0)

d y

x

3(0, – 1)

e y

x

2

(1, 2)

f y

x

3

(– 2, 1)

g y

x

2

(3, 2)

h y

x

2

(– 3, – 2)

4 (x + 2)2 + (y − 1)2 = 4 y

x
– 2 – √3 – 2 + √3

1
(−2, 1)

5 a (x − 1)2 + y2 = 5
b (x − 2)2 + (y − 5)2 = 52

6 a y = −x

7 a y =
1
2

x +
3
4

8 (0, 3) or (3, 0)

9
( 9

10
,

3
10

)
10 (6, 8) or

(72
17

,
154
17

)
11 a 2y − x = 1 b x + y = 2 c (1, 1)

d (x − 1)2 + (y − 1)2 = 52

12 y = 2x + 1
13 y = 6
14 a The lines x = 0 and y = 0

b
(
x −

1
2

)2

+

(
y −

1
2

)2

=
1
2

15 (x − 4)2 + y2 = 4
16 The lines y = 1 and y = 5
17 3 moves

Exercise 17F

1 y =
x2

12
2 y = −

x2

12
− 1 3 x =

y2

12
− 1

4 a x =
y2

4c
b

( 1
12

, 0
)

5 a y =
1

2b − 2c
(x2 − 2ax + a2 + b2 − c2)

b y = −
1
2

(x2 − 2x − 4)

6 y = −1 or y = 19
7 (2, 1 +

√
3) or (2, 1 −

√
3)

Exercise 17G
1 a

3–3

–8

8

x

y b

10

5

–5

–10
x

y

c

8

3

–3

–8
x

y d

3

5

–5

–3
x

y

2 a

x

y

(3, 4)

3

4

b
-24

5
-6

5
x

y

-4(-3, -4)

c

3
(2, 3)

x

y

4 –
2
Ö7 4 +

2
Ö7

d

x

y

3

(5, 0)

(8, 0)

(5, 5)

(5, –5)

(2, 0)
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3 a
x2

25
+

y2

16
= 1 b

(x − 2)2

9
+

y2

4
= 1

c
(x + 1)2

4
+ (y − 1)2 = 1

4
x2

4
+

y2

3
= 1

5
x2

5
+

y2

9
= 1

6
(x − 4)2

16
+

y2

12
= 1

7
x2

25
+

y2

9
= 1

Exercise 17H
1 a

x

y

–2 2

y = 
3x
2

y = –
3x
2

b

x

y

–1 1

y = 2x

y = –2x

c

x

y

–5

5
y = x

2

y = –
x
2

d

x

y

–3 3

y = 
5x
3

y = –
5x
3

2 a

x

y

–2
(1, –2)

y = x – 3

y = –x – 1

1 +Ö51 –Ö5

b

x

y

(–1, 2)

–3

5

y = 2x + 4

y = –2x

–1 – √ 5–1 + √

c

x

y

53 – 3√

53 + 3√

2

(2, 3)

y = 3x – 3

y = –3x + 9

d

x

y

7
3

5√

7
3

5√
–

y = 3
5 (x – 4)

y = – 3
5 (x – 4)

(4, 0)

1 7

e

x

y

y =
2
x

 – 2

y = –
2
x

(2, –1)
52√2 – 52√2 +

f

x

y

y = – 5
3x

+ 6

y = 5
3x

(5, 3)
3

25√5 +
25√5 –
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3
x2

9
−

y2

7
= 1 4 5x2 − 4y2 = 20

5
(x + 3)2

16
−

y2

48
= 1 6

(y + 5)2

4
−

x2

12
= 1

Exercise 17I
1 a y = x2 + 2x b

x

y

t = 1

t = 0

t = 2

2 a y = 2x − 1

x

y

, 0( (1
 2

(0, –1)

b y = 2(x + 1)2 + 1

x

y

(0, 3)

(–1, 1)

c y = x3

x
x ≥ 0 

y

(1, 1)

d y =
1

x − 1

x

y

(0, –1)

x = 1

3 a x2 + y2 = 22

b
(x + 1)2

32 +
(y − 2)2

22 = 1

c x = 3 cos t − 3 and y = 3 sin t + 2
(other answers are possible)

d x = 3 cos t − 2 and y = 2 sin t + 1
(other answers are possible)

4 x = t and y = 3t + 1
(other answers are possible)

5 a
( x − 1

2

)2

−

( y + 2
3

)2

= 1

b x = sec t + 2 and y = 2 tan t − 1
6 a y = −2x2 where −1 ≤ x ≤ 1

b

(–1, –2) (1, –2)

x

y

7
(
−

3
5

,−
4
5

)
,
(3

5
,

4
5

)

8 a y = 2x2 + 1 b −1 ≤ x ≤ 1 c 1 ≤ y ≤ 3
d

(–1, 3) (1, 3)

x

y

9 a y = x2 + 1 b x > 0 c y > 1
d

(0, 1)

x

y

10 y = −1 + 2x2 where −1 ≤ x ≤ 1

x

y

(–1, 1) (1, 1)

2
√2

2

–1

√2–

11 b y

(2, 0)
x

12 a y

x

(0, 1)

2

c x =
2t

t2 + 1

y =
2

t2 + 1

13

t = 5 t = 1

t = 3 t = 0 t = 4

t = 2 t = 6

y

x
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Exercise 17J
1 a (0, 1)

x

y

A

1

b (−
√

2,
√

2)

x

y

42

B 3p

c (0,−3)

2
−3

C

x

y

p

d (−
√

2,−
√

2)

4
2

–2

D

p

x

y

e (1, 0)

x

y

E
–11

p

f (0, 0)

F

y

x

g (−2
√

3,−2)

x

G

y

6

4
5π–

h (1,−
√

3)

x

y

32

–2

H

2p

i (−
√

2,
√

2)

x

y

42

–2
I

p–

2 a
[√

2,−
π

4

]
,
[
−
√

2,
3π
4

]
b

[
2,
π

3

]
,
[
−2,

4π
3

]
c

[
2
√

2,−
π

4

]
,
[
−2
√

2,
3π
4

]
d

[
2,−

3π
4

]
,
[
−2,

π

4

]
e [3, 0], [−3,π]

f
[
2,−

π

2

]
,
[
−2,

π

2

]
3
√

7
4 PQ =

√
(r1)2 + (r2)2 − 2r1r2 cos(θ2 − θ1)

Exercise 17K
1

x

y

–2 –1

–1

0 1 2
0

1

2

–2

2 a r =
4

cos θ
b r = tan θ sec θ

c r = 3 or r = −3 d r2 =
1

cos(2θ)

e r =
5

2 cos θ − 3 sin θ
3 a x = 2 b x2 + y2 = 22

c y = x d 3x − 2y = 4
4 a (x − 3)2 + y2 = 9 b x2 + (y − 2)2 = 4

c (x + 3)2 + y2 = 9 d x2 + (y + 4)2 = 16
5 (x − a)2 + y2 = a2

6 a Equation x = a b r =
a

sin θ
8 a

[1, [1, 0]
0, 

2

2, 
2

x

y

9 a y

x
[1, 0]

3
–1,[    ]

[     ]3
1,

b y

x

61,[    ]

1,[    ]

[     ]6

2

1,
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10 a y

x

23

14

4
1,[    ]

4
1,[     ]

4
–1,[     ]

4
–1,[     ]

Chapter 17 review
Technology-free questions

1 a
π

2
b
π

3
c

3π
4

d
π

3
e
√

3
2

f
π

4

2 a Domain = [−2, 0]; Range =

[
−
π

2
,
π

2

]

–1

(0,   )π
2

y

x

(−2,       )π
2

−

b Domain =

[
−

3
2

,
1
2

]
; Range = [−π,π]

y

x

( ,3
2− π )

( ,1
2 − π)

1
2−

π
3−

c Domain = R; Range =

[
−

3π
4

,
5π
4

]
y

x
tan (   )

y = 5π
4

π
8

y = 3π
4

−

π
4

3 a 9 b
1

400
c 4

d 4 e π − 3 f 4 − π
4 x = 0, x = 2 or x = 4

5 a Range = [0,∞)
y

x

(2, 4)

(4, 0)(0, 0)

b Range = [−3,∞)
y

x

(2, 1)

(4, − 3)(0, − 3)

c Range = (−∞, 3]

y

x

(4, 3)(0, 3)

(2, −1)

6 a n = ±2,±4
b i x = ±1 ii x ≤ 0
c x < −1 or x > 1

7 a y

x
2–2

–2

1
2

–

b y

x

2

1
2(–1, 1)
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c y

x

2

–

2
3p 2p

2
p

1
2

d y

x

2

0 2p

(2p, 2)

p

3p
2

, 1(   )
p
2 3

, (    )1 2p,(   )21

p
2

, 3 (   )

8 a

(0, 2) (2π, 2)

(π,  −2)

y

x
x = π2 x = 3π

2

b y

x

x = 2π

x = π

π
2

(  , 2)
3π
2

(  , 0)

c y

x

π
4

3π
4

5π
4

7π
4

x = π2

x = 3π
2

x = π

x = 2π

9 (x − 3)2 + (y − 2)2 = 62

10 a y

x

(0, 2)

0

4

b y

x

(3, 1)

1 5

11 C(−2, 4), r =
√

20

12 a

x

y

3

2

–2

–3

b

x

y

2 + 3
4Ö22 – 3

4Ö2

(2, –1)

(2, 2)

(4, –1)

(2, –4)

(0, –1)

13 C(−2, 0); Intercepts (0, 0), (−4, 0)
14 a

x

y

y = 2x
y = –2x

–1 1

b

x

y

y = –2x – 3

1 + 4Ö2

1 – 4Ö2

y = 2x + 5

(1, –2)

15
(x − 2)2

4
−

(y − 5)2

12
= 1

16 a y = 4 − 2x b x2 + y2 = 22

c
(x − 1)2

32 +
(y + 1)2

52 = 1

d y = 1 − 3x2 where −1 ≤ x ≤ 1
17 a y = 2(x + 1)2 − 1 b −1 ≤ x ≤ 1

c −1 ≤ y ≤ 7
d

(–1, 1)

(0, 1)

(1, 7)

x

y
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18 (−
√

2,
√

2)

19
[
4,−

π

3

]
,
[
−4,

2π
3

]
20 r =

5
2 cos θ + 3 sin θ

21 x2 + (y − 3)2 = 9

Multiple-choice questions
1 A 2 D 3 B 4 B 5 A 6 D
7 D 8 D 9 C 10 C 11 E 12 B

Extended-response questions

2 a −
2
m

b 0 < m < 1

c i y = −
1
m

x + 2

ii
( 4m

1 − m2 ,
2(m2 + 1)

m2 − 1

)
iii The line ` is parallel to the graph of

y = f (x) for x < −2
iv m = 3

3 a i

0 21

1
x

y

ii (0, 0), (a, 0) iii
(a

2
,

a2

4

)
iv a = 3 or a = −5

b i

0 x

y

−2 −1 −1
1 2

ii (0, 0), (a, 0), (−a, 0)

iii
(a

2
,−

a2

4

)
,
(
−

a
2

,−
a2

4

)
iv a = −3

c x = 0 or x ≥ a
d x ≥ 0

4 a y = 2x −
9
2

b (x − 8)2 + (y + 1)2 = 20

5 a y =
x2

12
+ 1 b

x2

12
+

(y − 6)2

16
= 1

c
(y + 4)2

16
−

x2

48
= 1

6 a y =
1

20
x(40 − x)

b

x

y

0

0 20

10

20
(20, 20)

30 40

c 20 metres d y = −
1

20
(x − 20)(x − 60)

e y

20

10

0

605040302010
x

(20, 20)

(30, 15)ball 1 ball 2

(40, 20)

f (30, 15)
g Yes (same position at same time)

7 c (x − 4)2 + (y − 7)2 = 25
9 a

x

y

1

0

543

1 1

21

2√

b Distance =
π

2
(2 +
√

2)

c y

x

a
b

a2 + b2

Distance =
π

2
(a +
√

a2 + b2 + b)

d Area =
π

2
(a2 + b2) + ab

Chapter 18
Exercise 18A
1 Re(z) Im(z) Re(z) Im(z)

a 2 3 b 4 5

c
1
2

−
3
2

d −4 0

e 0 3 f
√

2 −2
√

2

2 a a = 2, b = −2
b a = 3, b = 2 or a = 2, b = 3

c a = 5, b = 0 d a =
2
3

, b = −
1
3
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3 a 6 − 8i b 6 − i c −6 − 2i
d 7 − 3

√
2i e −2 − 3i f 4 + 2i

g 6 − 4i h −4 + 6i i −1 + 11i
j −1

4 a 4i b 6i c
√

2i
d −i e −1 f 1
g −2 h −12 i −4

5 a 1 + 2i b −3 + 4i
c −
√

2 − 2i d −
√

6 − 3i

Exercise 18B
1 a 15 + 8i b −8i c −2 + 16i

d 2i e 5 f −4 + 19i
2 a −2 b 7
3 a 2 + 5i b −1 − 3i c

√
5 + 2i d 5i

4 a 25 b 2 c 13 d 5
5 a 2 + i b −3 − 2i c −4 + 7i d −4 − 7i

e −4 − 7i f −1 + i g −1 − i h −1 − i
6 a 5

√
2 b 5

√
2 c 5 d

√
130

7 a 2 + 4i b 20 c 4
d 8 − 16i e −8i f 8

g
1
10

(1 + 2i) h −4 − 2i

8 a =
1

29
, b = −

17
29

9 a
7

17
−

6
17

i b i c
7
2
−

1
2

i

d −
1
2
−

1
2

i e
2

13
+

3
13

i f
3
20

+
1

20
i

10 a =
5
2

, b = −
3
2

11 a −
42
5

(1 − 2i) b −
1
2

(1 − i) c
1
17

(4 + i)

d
1

130
(6 + 43i) e 2 − 2i

12 a = 2, b = 3 or a = −2, b = −3

13 a = 2 or a =
9
2

Exercise 18C
1 A = 3 + i, B = 2i, C = −3 − 4i

D = 2 − 2i, E = −3, F = −1 − i

2

10

1

2 3 4−1−1

−2

−3

−4

−2−3−4−5

Im(z)

Re(z)

a

e

c

f

d

b

3 a z1 + z2 = 3 − i

0

4

63−1
−1−2−3

−5

Im(z)

Re(z)
z1 + z2

z1

z2

b z1 − z2 = 9 − 9i
Im(z)

Re(z)960

4

−3

−5

−9

z1

z2

z1 − z2

4 Im(z)

Re(z)

−3

−8

6

3

10

c (−8 + 6i)

d (−1 − 3i)
b (1 − 3i)

a (1 + 3i)

1
10

3
10

i−e

5 Im(z)

Re(z)0 2

−2

−2

−5

−5

2

5

5

b (5 + 2i)

c (−2 + 5i) 

d (−5 − 2i) 

a, e (2 − 5i)

Exercise 18D

1 a ±i b ±3i c ±4i d ±
5
2

i e ±
√

2i

f ±2i g ±5i h ±
1
2

i i ±
3
4

i j ±
√

3i

k ±
√

5i l −1 ± i m 2 ±
√

5i
n −3 ±

√
3i o 2 ± 2i
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2 a −1 ±
√

2i b 2 ± i c −3 ±
√

3i

d 2 ± i e
1
3

(−1 ±
√

2i) f
1
2

(−1 ± i)

3 a
1
2

(−3 ±
√

3i) b 2 ± i c −3 ±
√

3i

d 2 ± 2i e
1
3

(−1 ±
√

2i) f
1
4

(
√

2 ±
√

6i)

4 a ±2i b ±3i c ±
√

5i d 2 ± 4i

e −1 ± 7i f 1 ±
√

2i g
1
2

(−3 ±
√

3i)

h
1
4

(−5 ±
√

7i) i
1
6

(1 ±
√

23i) j 1 ± 2i

k
1
2

(3 ±
√

11i) l 3 ±
√

5i

5 a b = −2, c = 2 b b = 4, c = 29

Exercise 18E
1 2, −2 ± i 2 −1, 1 ± i
3 3, 3 ± 2i 4 2, 1 ±

√
2i

5 3, ±2i 6 −2, 1, ±3i
7 a 1, ±i b 1, 1 ± 2i

c 2, 1 ± i d 3, −3 ±
√

3i
8 a = −5, b = 8, c = −6
9 c = 12

Exercise 18F

1 a 2 cis
(
π

3

)
b
√

2 cis
(
−
π

4

)
c 4 cis

(5π
6

)
d 4
√

2 cis
(
−

3π
4

)
e 24 cis

(
−
π

3

)
f

1
√

2
cis

(3π
4

)
2 a 3i b

1
√

2
(1 +
√

3i) =

√
2

2
(1 +
√

3i)

c
√

3 + i d −
5
√

2
(1 − i) = −

5
√

2
2

(1 − i)

e −6(
√

3 − i) f 3(1 − i)

g −
5
2

(1 +
√

3i) h −
5
2

(1 +
√

3i)

3 a 3
√

2(1 + i) b 6(1 +
√

3i)

c −
5
2

(1 −
√

3i) d 18(1 +
√

3i)

e −18(1 +
√

3i) f
√

3(1 + i)
g
√

3 + i h −4

i −4(1 −
√

3i) j −
5
2

4 a
(5 − 2

√
3

2
,

5
√

3 + 2
2

)
b

( 5
√

2
,
−1
√

2

)
c (x cos θ − y sin θ, x sin θ + y cos θ)

Exercise 18G
1 a 5 b

√
2 c 13 d 2

√
2 e 13 f

√
3

2 a Im(z)

Re(z)
2

b Im(z)

Re(z)
−1

c Im(z)

Re(z)

(1, 3)

d Im(z)

Re(z)
4

3

e Im(z)

Re(z)
(1, 1)

f Im(z)

Re(z)
1
4

1
2

g Im(z)

Re(z)
3

h Im(z)

Re(z)
2

3 a Im(z)

Re(z)
π
4

b Im(z)

Re(z)

– 5π
6

c Im(z)

Re(z)

d Im(z)

Re(z)
(1, 0)

3π
4

e Im(z)

Re(z)
(0,−1)

f Im(z)

Re(z)
(1,−1)

6 Im(z)

Re(z)
2

(2, 2)
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7 a Im(z)

Re(z)
3

b Im(z)

Re(z)
2

c Im(z)

Re(z)
2

d Im(z)

Re(z)
(1, 0)

2

e Im(z)

Re(z)
2(0, 1)

f Im(z)

Re(z)
(– 2, 0)

3

g Im(z)

Re(z)
2(0,−2)

h Im(z)

Re(z)
(1, 1)

3

i Im(z)

Re(z)
(−1, 2)
3

8 a Im(z)

Re(z)
3

b Im(z)

Re(z)

c Im(z)

Re(z)

d Im(z)

Re(z)
3

e Im(z)

Re(z)

3

f Im(z)

Re(z)

g Im(z)

Re(z)
−3

h Im(z)

Re(z)
3

9 a (x − 1)2 + y2 ≥ 1
b Im(z)

Re(z)
(1, 0)

c Im(z)

Re(z)

d Im(z)

Re(z)

(1, 1)
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10 Centre (0, 0), radius 1

11 x =
1
2

(y2 − 2y)

12 b Im(z)

Re(z)
4

13 Centre (−9, 0), radius 3
14 a Im(z)

Re(z)
(1, 0)

b i Im(z)

Re(z)
(2, 0)

ii Im(z)

Re(z)
(1, 1)

iii Im(z)

Re(z)
(2, 0)

iv Im(z)

Re(z)
(0, 1)

Chapter 18 review
Technology-free questions
1 a (2m + 3p) + (2n + 3q)i b p − qi

c (mp + nq) + (np − mq)i

d
(mp + nq) + (np − mq)i

p2 + q2 e 2m

f (m2 − n2 − p2 + q2) + (2mn − 2pq)i

g
m − ni
m2 + n2 h

(mp + nq) + (mq − np)i
m2 + n2

i
3
(
(mp + nq) + (np − mq)i

)
p2 + q2

2

0 2

2

4
−2

−2

−4

−4−6−8

Im(z)

Re(z)
a

e
c

f

d

b

a 1 −
√

3i b −2 − 2
√

3i

c −8 d
1
4

(1 +
√

3i)

e 1 +
√

3i f
1
4

(1 −
√

3i)

3 a
√

2 cis
(
π

4

)
b 2 cis

(
−
π

3

)
c
√

13 cis
(
tan−1

(√3
6

))
d 6 cis

(
π

4

)
e 6 cis

(
−

3π
4

)
f 2 cis

(
−
π

6

)
4 a −1 −

√
3i b

3
√

2
2

+
3
√

2
2

i

c −
3
√

2
2

+
3
√

2
2

i d
3
√

2
2

+
3
√

2
2

i

e −
3
√

3
2
−

3
2

i f 1 − i

5 Im(z)

Re(z)
0

z =
1
z

= cis − π
3

z2 = cis 2π
3

a z2 = cis
(2π

3

)
b z = cis

(
−
π

3

)
c

1
z

= cis
(
−
π

3

)
d cis

(2π
3

)
6 Im(z)

Re(z)
0

z =
1
z

= −iz = cis − π
4

iz = cis 3π
4

a iz = cis
(3π

4

)
b z = cis

(
−
π

4

)
c

1
z

= cis
(
−
π

4

)
d −iz = cis

(
−
π

4

)
7 a ±2i b ±

√
3i c −2 ± i

d
1
4

(3 ±
√

23i)
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8 2, ±2i

9 b
11
12

, ±i c n = 1

10 a Im(z)

Re(z)
(1, 0)

3

b Im(z)

Re(z)
2

c Im(z)

Re(z)
− 3π

4

11 a z2 = (x2 − y2) + (2xy)i
b Im(z)

Re(z)
1−1

y = −x

y = x

c Im(z)

Re(z)

Multiple-choice questions
1 C 2 D 3 C 4 D 5 D 6 E
7 D 8 D 9 B 10 D 11 A

Extended-response questions
1 a z =

√
3 + i or z =

√
3 − i

b i Im(z)

Re(z)0

1

-1

√3

z = √3 + i

z = √3 - i

ii x2 + y2 = 4 iii a = 2
2 a i 6

√
2 ii 6

3 a Im(z)

Re(z)O A

Z P

Q

b
√

2 + 1

6 a |z + 1| =
√

2 + 2 cos θ = 2 cos
(
θ

2

)
,

Arg(z + 1) =
θ

2
b |z − 1| =

√
2 − 2 cos θ = 2 sin

(
θ

2

)
,

Arg(z − 1) =
π + θ

2

c
∣∣∣∣∣ z − 1
z + 1

∣∣∣∣∣ = tan
(
θ

2

)
, Arg

( z − 1
z + 1

)
=
π

2
7 a ∆ = b2 − 4ac

b b2 < 4ac

c i −
b
a

,
√

ac
a

ii
b2

2ac
− 1

8 a z1 =
1
2

(−1 +
√

3i), z2 =
1
2

(−1 −
√

3i)

c |z1| = 1, Arg(z1) =
2π
3

;

|z2| = 1, Arg(z2) = −
2π
3

d
√

3
4

Chapter 19
Technology-free questions

1 a
5
4

b
4
3

c −
√

3
3

d
2
√

3
3

2 ±
√

6
3

4 a 6 b 4i c 13 d 10
e 36 f −16 g 24i h 24i

5 a 3 − 5i b −1 + i c −4 − 7i d
8 − i
13

e 2 + i f
−2 + i

5
g −2 − i h

8 + i
5

i
13 − i

34
j 3 − i k

−1 − 3i
2

l −3 − 4i

6 a (z − 7i)(z + 7i)
b (z − 1 − 3i)(z − 1 + 3i)

c 9
(
z −

1
3
−

2
3

i
)(

z −
1
3

+
2
3

i
)

d 4
(
z +

3
2
− i

)(
z +

3
2

+ i
)
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7 a 2 − i, −2 + i
b z = −i or z = −1 − i

8 a = −4, b = −10, c = −12
9 a Im(z)

Re(z)
(1, 1)

b

π
3

Im(z)

Re(z)

c Im(z)

Re(z)
(1, 1)

10 a

(0, 0)

(2,−π)

x

y

b
(− 1

2 , π
2 )

( 1
2 ,− π

2 )

x

y

c y

x

π
4

(0, ) (1, 0)

y = π
4

−

y = 3π
4

11 a

(3, 5)

y

x
(2, 0)(−2, 0)

(−3, 5)

(0, −4)

(0, 2)

b (−3, 5), (3, 5)

12 a y

x
(1, 0)(0, 0)

b y

x
(1, 0)(0, 0)

c y

x
(1, 0)(−1, 0)

(0, 0)

d y

x
(1, 0)(0, 0)(−1, 0)

13 a

x

y

2

0–1–2

1
 2

, –4( (–3
 2

b

x

y

2
(1, 1)

1
 2
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c

x

y

0

1

, 2( (p
 2

, ( (p
 2

1
 2

2p

(2p, 1)

pp
 2

p
 2

d

x

y

0

3

1
 3

2p , ( (1
 3

2p

(2p, 3)

(p, 1)

14 a
y

x
π
2

− π
2

(0, 3)

(−π, −1) (π, −1)

b
y

xπ
2

π
2

−−π π
−1

1

c

ππ
2

π
2

y

x
−−π

15 a

x

y

4

5

–5

–4

b

x

y

3
–3 – 2Ö5

3
–3 + 2Ö5

2
4 – 3Ö3

2
4 + 3Ö3

(–1, 2)

16 a

y = –3x

y = 3x

x

y

1–1

b

y = 2x–5
–1 + 4Ö2

(2, –1)
y = –2x+3

x

y
C ¢

–1 – 4Ö2

17 2x + 4y = 17

18
(x − 1)2

4
+

(y − 1)2

3
= 1

19 y =
x2

8
− 1

20 a 3x + 2y = 7 b x2 + y2 = 1

c
(x − 2)2

4
+

(y − 3)2

9
= 1

d
y2

9
−

x2

4
= 1

21 a y = 1 − 2(x + 1)2 b −1 ≤ x ≤ 1
c −7 ≤ y ≤ 1
d

(–1, 1)

(1, –7)

x

y

–1

2

Ö2  – 2

22 (−
√

3,−1)
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23
[
2
√

2,−
π

4

]
,
[
−2
√

2,
3π
4

]
24 a x2 + y2 = 52 b y =

√
3x c y = 3

d 3y + 4x = 2 e y =
1
2x

25 a

(0, 2)

x

y

4

Multiple-choice questions
1 B 2 B 3 D 4 E 5 A 6 D
7 E 8 D 9 E 10 C 11 E 12 E

13 D 14 C 15 B 16 C 17 B 18 D
19 E 20 C 21 C 22 A 23 C 24 E
25 C 26 D 27 E 28 C 29 B 30 A
31 B 32 C 33 B 34 B 35 C 36 B
37 D 38 A 39 E 40 D 41 A

Extended-response questions
1 a i ∠BCA = 138.19◦, ∠ABC = 11.81◦

ii ∠BC′A = 41.81◦, ∠ABC′ = 108.19◦

b i 24.56 ii 114.00 iii 89.44
c i 1788.85 ii 3027.87 iii 1239.01

3 a 155 m
b i 16.00 m ii 29.04 m iii 17◦

c 32.7 cm2

4 a 12:05 p.m. b 2752 km
c 26.1◦

5 a x =

√
p2

4
+

q2

4
−

pq
2

cos θ

b y =

√
p2

4
+

p2

4
+

pq
2

cos θ

d
√

31 cm
6 b i 51.48 cm ii 4764.95 cm2

iii 94.80%
7 b (−6, 2, 6), (−6,−2, 6), (−8, 3, 3), (−3,−3, 8)
8 a i

2p
x

y

(2p, 1)

0

1

p
3p
2

, –1(    )

p
2

1
3

,(    )

p
2

, 3(   )
7p
6

x =
11p

6
x =

ii y

x
0 2π

(0, 3)
(2π, 3)

π

3π
2

, 1(    )
(    )π

2 5
, (    )1

π
2

5, (   )

2π,
3
10,(   )3

1

b k = 2
c

p
2 4

, (    )1 2p,(   )21

p
2

 4(   )
y

x

3p
2

x =

0 2p

(2p, 2)

p

,

9 a y =
x
4
−

3
8

c
√

17
2

km

10 c x = t and y = −t + 3

e k >
8
√

5
or k < −

8
√

5
11 a

12 m

2 m

2 m

10 m

b 110π m2

c A(x) =


3πx2

4
− 6πx + 110π, 0 ≤ x ≤ 2

πx2

2
− 5πx + 109π, 2 < x ≤ 5

d

110p

5
x

A

(2, 101p)
2(       )5, 193p

e i x = 0 ii x = 5
12 a Length of rope, π, is equal to the arc length

from S to the opposite side of the circle
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b

–3

x

y

2 3 41–1

–1

–2

1

2

3

0

c i θ ii π − θ iii θ
iv (π − θ) sin θ v (π − θ) cos θ

d x = cos θ − (π − θ) sin θ and
y = sin θ + (π − θ) cos θ

13 b i tan−1
(1

2

)
ii tan−1

(1
3

)
iii

π

4

14 c P = 14 + 6
√

2, θ =
π

4
d 0.1845, 1.3861 e A = 9 + 12

√
2

f A ≈ 28.67, θ ≈ 1.1
g

1.1
2

0

24
28.67

θ

A

h A ≈ 28.67, x ≈ 5.36

Investigations
See solutions supplement

Chapter 20
Exercise 20A
1 a (−2, 6) b (−8, 22)

c (26, 2) d (−4,−2)
2 a (3, 2) b (−4, 9) c (8, 3) d (7, 11)

3 a
[
2 3
4 5

]
b

[
11 −3

3 −8

]
c

[
2 0
1 −3

]
d

[
0 1
−1 0

]
4 Unit square is blue; image is red

a

0

1

–1

0 1 2
x

y

(1, –1)

(1, 1)

b

0

1

2

3

4

0 1 2
x

y

(2, 3)

(1, 1)

c

0

1

2

0 1 2
x

y

(1, 1)

(1, 2)

d

–1

–1

0

1

2

3

0 1 2 3
x

y

(2, 1)

(–1, 2)

(3, –1)

(1, 1)

5

0

1

2

3

4

5

y

x
0 1 2 3

6
[
3 5
4 6

] [
−2

4

]
=

[
14
16

]
7

[
−3 1

2 −1

] [
2
3

]
=

[
−3

1

]
8 a

[
1 1
−1 2

]
or

[
1 1
2 −1

]
b

[
1 −2
−1 1

]
or

[
−2 1

1 −1

]
c

[
1 −2
−1 −3

]
or

[
−2 1
−3 −1

]
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Exercise 20B

1 a i
[
1 0
0 2

]
ii

x

y

2

1

0
0

1 2

b i
[
3 0
0 1

]
ii

x

y

2

1

0
0

1 2 3

c i
[
1 3
0 1

]
ii

x

y

0

1

–1
0 1 2 3

d i
[

1 0
−1 1

]
ii

x

y

0

1

–1
0 1

e i
[
1 0
0 −1

]
ii

x

y

0

1

–1
0 10 1111

f i
[

0 −1
−1 0

]
ii

x

y

0

1

–1

–1 0 1

1

1

11

11

2 a i
[
x′

y′

]
=

[
x
y

]
+

[
2
0

]
=

[
x + 2

y

]
ii

0
0

1

–1

1 2 3
x

y

b i
[
x′

y′

]
=

[
x
y

]
+

[
0
−3

]
=

[
x

y − 3

]
ii

–1

0

0

1

–2

–3

y

x

c i
[
x′

y′

]
=

[
x
y

]
+

[
−2
−4

]
=

[
x − 2
y − 4

]
ii

–1 0
x

y

–1

0

–2

–3

–4

–2

d i
[
x′

y′

]
=

[
x
y

]
+

[
0
2

]
=

[
x

y + 2

]
ii

x

y

210

0

1

2

3

e i
[
x′

y′

]
=

[
x
y

]
+

[
−1

2

]
=

[
x − 1
y + 2

]
ii

1

0

0–1–2
x

y

3

2

Exercise 20C

1 a
[

0 1
−1 0

]
b


√

3
2

−
1
2

1
2

√
3

2


c


1
2

√
3

2

−

√
3

2
1
2

 d


−

1
√

2

1
√

2

−
1
√

2
−

1
√

2
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2 a (−3, 2) b
(5
√

2
2

,

√
2

2

)

3 a
[
0 1
1 0

]
b


−

1
2

√
3

2√
3

2
1
2


c


1
2

−

√
3

2

−

√
3

2
−

1
2

 d


√

3
2

1
2

1
2

−

√
3

2


4 a


−

4
5

3
5

3
5

4
5

 b


−

12
13

5
13

5
13

12
13


c


5
13

12
13

12
13

−
5

13

 d


−

4
5
−

3
5

−
3
5

4
5


5 a


1 − m2

m2 + 1
2m

m2 + 1
2m

m2 + 1
m2 − 1
m2 + 1

 b
(
−

23
37

,
47
37

)

6 a


√

2
2

−

√
2

2√
2

2

√
2

2


b y

x

1

0
0 1

c
√

2 − 1

7 a B
(
−

1
2

,

√
3

2

)
, C

(
−

1
2

,−

√
3

2

)
b Equilateral
c y = −

√
3x, y = 0, y =

√
3x

Exercise 20D

1
[
−1 0

0 3

]
2

[
0 −1
−1 0

]
3 a

[
−1 0

0 −1

]
b

[
cos 180◦ − sin 180◦

sin 180◦ cos 180◦

]
=

[
−1 0

0 −1

]
4 a

[
2 0
0 −1

]
b

[
2 0
0 −1

]
c No

5 a
[
−1 0

0 1

]
b

[
1 0
0 −1

]
c Yes

6 a (x, y)→ (−x − 3, y + 5)
b (x, y)→ (−x + 3, y + 5) c Yes

7 a
[
2 0
0 1

] [
1 0
0 −1

]
b

[
1 0
0 3

] [
1 0
0 −1

]
c

[
1 0
0 2

] [
0 1
1 0

]
d

[
2 0
0 1

] [
0 −1
−1 0

]
8 a

[
0 −1
1 0

]
b

[
cos 90◦ − sin 90◦

sin 90◦ cos 90◦

]
=

[
0 −1
1 0

]
9 θ = 180◦k, where k ∈ Z

10 a 2θ

b
[
cos2 θ − sin2

θ −2 sin θ cos θ
2 sin θ cos θ cos2 θ − sin2

θ

]
c cos(2θ) = cos2

θ − sin2
θ

sin(2θ) = 2 sin θ cos θ
11 a (x, y)→ (y + 1, x + 2)

b
[
2
1

]

12 a


1
2
−

√
3

2√
3

2
1
2

 b


√

2
2

√
2

2

−

√
2

2

√
2

2


c


√

2 +
√

6
4

√
2 −
√

6
4√

6 −
√

2
4

√
6 +
√

2
2


d cos 15◦ =

√
2 +
√

6
4

, sin 15◦ =

√
6 −
√

2
4

13
[
cos(2θ − 2ϕ) − sin(2θ − 2ϕ)
sin(2θ − 2ϕ) cos(2θ − 2ϕ)

]
,

rotation matrix for angle 2θ − 2ϕ

Exercise 20E

1 a
[

1 −1
−3 4

]
b


2
7

1
14

1
7
−

3
14


c


2
3
−

1
2

1
3

0

 d


5
7
−

3
7

4
7
−

1
7


2 a (x, y)→ (x − 2y, 2x − 5y)

b (x, y)→ (y,−x + y)

3 a (−1, 1) b
(
−

1
2

, 1
)

4
[
−4 3
−1 1

]
5 (0, 0), (−1,−2), (1, 1), (0,−1)

6 a A =

[
k 0
0 1

]
b A−1 =


1
k

0

0 1


7 a A =

[
1 k
0 1

]
b A−1 =

[
1 −k
0 1

]
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8 a
[
1 0
0 −1

]
b Reflecting twice in the same axis will return

any point (x, y) to its original position

9 a
[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
b Reflecting twice in the same line will return

any point (x, y) to its original position

Exercise 20F

1 a y = −3x − 1 b y =
3x
2

+ 1 c y =
9x
2

+ 3

d y = 3x − 1 e y = −9x + 3 f y =
−x − 1

3
g y =

x − 1
3

2 a y = 6 −
9x
2

b y =
x + 2

3

c y =
2 − 3x

7
d y =

5x − 2
12

3
[
2 0
0 2

]
4

[
−3 0

0 6

]
5 y = −(x + 1)2 − 1
6 y = (x − 1)2 − 3

7
x2

32 + y2 = 1

x

y

0–1–2–3 1 2 3

1

–1

Exercise 20G
1 a Area = 2

x

y

0

1 2 3 4

1

2

b Area = 4

x

y

–1 10

1

2

3

4

c Area = 1

0

1

y

x
0 1–1

–1

–2

0

0

0

0

d Area = 7

0

1

2

3

y

x
0 1 2 3

–1

11 2211

2 a

0

1

2

3

4

1 2 3 4
x

y

b Original area =
1
2

; Image area =
5
2

3 a

0

1

2

3

4

–1
–1

1 2 3
x

y

b Original area = 1; Image area = 5
4 m = ±2
5 m = −1, 2

6 a i det
[
1 k
0 1

]
= 1

ii det
[
cos θ − sin θ
sin θ cos θ

]
= 1

iii det
[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
= −1

b i Dilation of factor k from the y-axis and

dilation of factor
1
k

from the x-axis
ii Determinant of matrix is 1

7 b x = −1
8 m > 2 or m < 1

9


1 ±

√
3

2

0 ±
1
2

 or


±

√
3

2
1

±
1
2

0


10 a

[
a b
c d

]
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Exercise 20H

1
[
x′

y′

]
=

[
y

−x + 4

]
2

[
x′

y′

]
=

[
−x − 2
−y + 2

]
3 a

[
x′

y′

]
=

[
y + 1
x − 1

]
b

[
x′

y′

]
=

[
−y − 1
−x − 1

]
c

[
x′

y′

]
=

[
x

−y + 2

]
d

[
x′

y′

]
=

[
−x − 4

y

]
4 a A =

[
cos θ sin θ
− sin θ cos θ

]
b B =

[
1 0
0 k

]
c C =

[
cos θ − sin θ
sin θ cos θ

]
d CBA =[

cos2 θ + k sin2 θ cos θ sin θ − k sin θ cos θ
cos θ sin θ − k sin θ cos θ sin2 θ + k cos2 θ

]
5

[
cos2 θ cos θ sin θ

cos θ sin θ sin2
θ

]
6

[
x′

y′

]
=

[
x + 1
y − 1

]

Chapter 20 review
Technology-free questions

1 a (7, 4) b
[

2 1
−1 2

]
c Area = 5

–1

1

10 2 3
x

y

2

3

d (x, y)→
(2

5
x −

1
5

y,
1
5

x +
2
5

y
)

2 a
[
−1 0

0 1

]
b

[
1 0
0 5

]
c

[
1 −3
0 1

]

d
[
1 0
0 0

]
e


√

3
2

−
1
2

1
2

√
3

2

 f
[
0 1
1 0

]

3 a


−

4
5

3
5

3
5

4
5

 b
(4

5
,

22
5

)

4 a
[

0 1
−1 0

]
b

[
0 −1
2 0

]
c

[
0 1
1 2

]

5 a (x, y)→ (x − 3,−y + 4)
b (x, y)→ (x − 3,−y − 4)

6 a A =

[
1 0
k 1

]
b A−1 =

[
1 0
−k 1

]
7 a Image area = 3 square units

–1

1

10 2 3
x

y

b Image area = 5 square units

–1

1

10 2 3
x

y

–2

8 a
[
x′

y′

]
=

[
−y

x − 2

]
b (1, 0)

c

(1, –1)
–1

1

–1 10

–2

x

y

Multiple-choice questions
1 B 2 D 3 A 4 D 5 C
6 A 7 D 8 E 9 D

Extended-response questions

1 a


1
√

2
−

1
√

2
1
√

2

1
√

2

 b


√

3
2

−
1
2

1
2

√
3

2


c Product of these two matrices:
−1 +

√
3

2
√

2
−

1 +
√

3

2
√

2
1 +
√

3

2
√

2

−1 +
√

3

2
√

2


d cos 75◦ =

−1 +
√

3

2
√

2
=
−
√

2 +
√

6
4

sin 75◦ =
1 +
√

3

2
√

2
=

√
2 +
√

6
4
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2 a

0
0 1 2

x

y

1

2

3

4

5

6

b Original area = 2 square units;
Image area = 6 square units

c 8π cubic units

3 a
[
1 1
0 1

]
b Shear of factor 1 parallel to the x-axis
c (0, 0), (2, 1), (0, 1)
d

(1, 1)(–1, 1)

0
0 1 2–1

1

y

x

(2, 1)

4 a (0,
√

2), (
√

2, 0), (0,−
√

2), (−
√

2, 0)
b

(0, √2)

0
0 1

1

–1

–1

(0, –√2)

(–√2, 0) (√2, 0)

y

x

c 16 − 8
√

2 square units
5 b i The composition of two rotations is a

rotation
ii The composition of two reflections is a

rotation
iii The composition of a reflection followed

by a rotation is a reflection
iv The composition of a rotation followed

by a reflection is a reflection

c


−

1
2
−

√
3

2√
3

2
−

1
2



6 a


3
5

4
5

4
5
−

3
5

 b A′(−1,−3) c 2
√

10

d Isosceles f 2
√

10
7 a

x

y

(a, b)
(0, b)

(a, 0)(0, 0)

b O(0, 0), A(a cos θ, a sin θ),
B(−b sin θ, b cos θ),
C(a cos θ − b sin θ, a sin θ + b cos θ)

8 a y =
1
m
−

x
m

; (1, 0),
(1 − m2

1 + m2 ,
2m

1 + m2

)
b y = 1 −

x
m

; (0, 1),
( 2m

1 + m2 ,
m2 − 1
1 + m2

)

c


1 − m2

1 + m2

2m
1 + m2

2m
1 + m2

m2 − 1
1 + m2


Chapter 21
Exercise 21A
1 a

5

1

b

2}
c 1

2

d

3

4

2 a = 5, b = 1
3 a = 3, b = −15

4 a
[

1
−2

]
b

[
2
2

]
c

[
−1
−3

]
d

[
−2

3

]
e

[
1
3

]
5 a i

[
2
−1

]
ii

[
−5

0

]
iii

[
4
−2

]
b a + b = −c

6 a

x

y

0

2

−3

b

x

y

0

2 4

-3
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c

x

y

0
1 4

-4

d

x

y

0 1

−4

e

x

y

0 1 4

−4

7 a

x

y

0

1

2

b

x

y

0

4

3

c

x

y

0

4
3

31

d

x

y

0

4
3

2 4

e

x

y

0
2

−2 −1

5

f

x
0−1

−3

3

y

8 a and c
9 a b

x

y

0

−1−1 3

3

2

2

1

1

4

4
C

D

B

A

d Parallelogram

10 m = −11, n = 7

11 a i b −
1
2

a ii b

b −−−→MN =
−−→
AD

12 a −−→CB = a − b,
−−−→
MN =

1
2

(b − a)

b −−→CB = −2
−−−→
MN

13 a a b b c 2a d 2b
e −a f b − a g a + b

14 a a b −b c a + b
d −a − b e b − a

15 a a − b b
1
3

(b − a) c
1
3

(a + 2b)

d
1
9

(a + 2b) e
1
9

(4a − b)

16 a u + v b v + w c u + v + w

17 a −−→OB = u + v,
−−→
OM = u +

1
2

v b u −
1
2

v

c
2
3

(
u −

1
2

v
)

d −−→OP =
2
3

(u + v) =
2
3
−−→
OB e 2 : 1

Exercise 21B
1 2i − 7 j
2 a 5i + 6 j b −5i + 6 j c 5i − 6 j
3 a 5 b 2 c 5 d 13
4 a 13 b x = 2, y = −7

5 7i +
5
2

j

6 a i
2
5

i ii −
2
5

i + j iii
1
6

(
−

2
5

i + j
)

iv
1
3

i +
1
6

j v 2i + j

b i −−→ON =
1
6
−−→
OA ii 1 : 5

7 4
√

2 units

8 a k =
3
2

, ` =
1
2

b x = 6, y = 2

c x = 3, y = 3 d k = −
1
3

, ` = −
5
3

9 3i − 2 j,
√

13
10 a −2i + 4 j b −6i + j c 5

11 a D(−6, 3) b F(4,−3) c G
(3

2
,−

3
2

)
12 A(−1,−4), B(−2, 2), C(0, 10)
13 a i 2i − j ii −5i + 4 j iii i + 7 j

iv 6i + 3 j v 6i + 3 j
b D(8, 2)

14 a −−→OP = 12i + 5 j,
−−→
PQ = 6i + 8 j b 13, 10

15 a i
√

29 ii
√

116 iii
√

145
b (
√

29)2 + (
√

116)2 = (
√

145)2

16 a i −i − 3 j ii 4i + 2 j iii −3i + j
b i

√
10 ii 2

√
5 iii

√
10

17 a i −3i + 2 j ii 7 j

iii −3i − 5 j iv
1
2

(−3i − 5 j)

b M
(
−

3
2

,
9
2

)
18 a

1
5

(3i + 4 j) b
1
√

10
(3i − j)

c
1
√

2
(−i + j) d

1
√

2
(i − j)
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e
6
√

13

(1
2

i +
1
3

j
)

f
1
√

13
(3i − 2 j)

19 a
4
5

(4i + 3 j) b −6i − 8 j

Exercise 21C
1 a 17 b 13 c 8 d −10

e −4 f 3 g −58
2 a 5 b 13 c 8 d −5 e 13
3 a 15

√
2 b −15

√
2

4 a |a|2 + 4|b|2 + 4a · b b 4a · b
c |a|2 − |b|2 d |a|

5
√

66

6 a −
11
2

b
10
3

c −1 d
−2 ±

√
76

6

7 a −a + qb b
22
29

c
(44

29
,

110
29

)
8 a 139.40◦ b 71.57◦ c 26.57◦ d 126.87◦

9 a −3i + j b
√

10 c 116.57◦

11 a
3
2

i b 45◦ c 116.57◦

12 a i
3
2

i + 2 j ii
1
2

i + 3 j

b 27.41◦

c 55.30◦

Exercise 21D

1 a
1
√

10
(i + 3 j) b

1
√

2
(i + j) c

1
√

2
(i − j)

2 a i
1
5

(3i + 4 j) ii
√

2

b
√

2
5

(3i + 4 j)

3 a i
1
5

(3i + 4 j) ii
1

13
(5i + 12 j)

b
1
√

65
(4i + 7 j)

4 a −
11
17

(i − 4 j) b
13
17

(i − 4 j) c 4i

5 a 2 b
1
√

5
c

2
√

3
√

7
d
−1 − 4

√
5

√
17

6 a a = u + w where u = 2i and w = j
b a = u + w where u = 2i + 2 j and w = i − j
c a = u + w where u = 0 and w = −i + j

7 a 2i + 2 j b
1
√

2
(−i + j)

8 a
3
2

(i − j) b
5
2

(i + j) c
5
√

2
2

9 a i i − j ii i − 5 j

b
3

13
(i − 5 j) c

√
104
13

d 2

Exercise 21E

2 a i
4
5

p ii
1
5

p iii −p iv
1
5

(q − p) v
1
5

q

b RS and OQ are parallel
c Trapezium
d 120 cm2

3 a i
1
3

a +
2
3

b ii
k
7

a +
6
7

b

b i 3 ii
7
2

4 a i −−→OD = 2i − 0.5 j,
−−→
OE =

15
4

i +
9
4

j

ii
√

170
4

b i p
(15

4
i +

9
4

j
)

ii (q + 2)i + (4q − 0.5) j

c p =
2
3

, q =
1
2

6 a i −−→AB = c ii −−→OB = a + c iii −−→AC = c − a
b |c|2 − |a|2

7 a r + t b
1
2

(s + t)

Exercise 21F
1 a −i − 11 j b 5i − 6 j c i + 5 j

d −11 j e 4i f 6i + 11 j
2 12.58 km on a bearing of 341.46◦

3 7.74 km on a bearing of 071.17◦

4 a
√

41 m/s b 5 m/s c
√

17 m/s
d 2
√

10 m/s e 13 m/s f
√

170 m/s
5 a 24i + 62 j b (5t − 1)i + (12t + 2) j
6 −4i + 4 j m/s
7 a i 26i + 99 j

ii (7t − 2)i + (24t + 3) j
b i 102.36 m

ii
√

(7t − 2)2 + (24t + 3)2 m

8 a −i −
1
2

j m/s b
√

5
2

m/s

9 After
12(6 +

√
5)

31
seconds;

position vector
12(6 +

√
5)

31
(i + 2 j)

10 a 8i + 4 j b 2i − 4 j m/s
11 a 20i + 10 j b j m/s

Exercise 21G
1 a On a bearing of 143.13◦

b 5 km/h
2 100.08 km/h on a bearing of 357.71◦

3 a 20 km/h west b 180 km/h west
4 47 m/s north
5 10 m/s
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6 a 20 km/h north b 20 km/h south
7 252.98 km/h on a bearing of 018.43◦

8 100 km/h on a bearing of 053.13◦

9 42.5 km/h on a bearing of 41.73◦

10 a i − 4 j m/s b 4.12 m/s
11 10.36 m/s
12 196.83 km/h on a bearing of 345.44◦

13 a Bearing 210.67◦

b 243.28 km/h
14 a Upstream at an angle of 48.59◦ to his

desired path
b 45.36 seconds

Exercise 21H

1 T1 = T2 =
5
√

2
2

kg wt

2 90◦

3 T1 = 14.99 kg wt, T2 = 12.10 kg wt
4 28.34 kg wt, W48.5◦S
5 T = 40 kg wt, N = 96 kg wt
6 F = 6.39 kg wt
7 a No b Yes
8 146.88◦, 51.32◦, 161.8◦

9 a 7.5 kg wt b 9.64 kg wt c 7.62 kg wt
10 32.97 kg wt, 26.88 kg wt, 39.29 kg wt,

W = 39.29 kg
11 13.05 kg wt
12 5.74 kg wt
13 3.73 kg wt, 8.83 kg wt
14 4.13 kg wt
15 6.93 kg wt
16 31.11 kg, 23.84 kg wt
17 44.10 kg, 22.48◦ to the vertical

Exercise 21I
1 a −i + 2 j − k b 3i − 5 j + 6k c

√
14

d 3
√

2 e −5i + 6 j − k
2 a 2 j + 2k b i + 2 j c i + 2k

d i + 2 j + 2k e −2 j f −2 j + 2k
g i + 2 j − 2k h i − 2 j − 2k

3 a i
3
√

11
i +

1
√

11
j −

1
√

11
k

ii −
6
√

11
i −

2
√

11
j +

2
√

11
k

b
15
√

11
i +

5
√

11
j −

5
√

11
k

4
√

14

3
√

3
(i − j + 5k)

5 a i − 3 j b
√

10 c
3
2

i +
1
2

j − k

6 a
1
6

i + 2 j + 2k b
17
6

Chapter 21 review
Technology-free questions

1 a
12
7

b ±9

2 A(2,−1), B(5, 3), C(3, 8), D(0, 4)

3 p =
1
6

, q = −
11
12

4 a 3
√

10 b
1

3
√

10
(i − 5 j + 8k)

5 x = 6

6 a
1
5

(4i + 3 j) b
16
25

(4i + 3 j)

7 a i a + b ii
1
3

(a + b) iii b − a

iv
1
3

(2a − b) v
2
3

(2a − b)

b −−→TR = 2
−−→
PT , so P, T and R are collinear

8 a s = −2, t = 5, u = 2
b
√

33
9
√

109 units
10 a 11i − 2 j + 3k b

√
30

c
1
√

30
(5i + 2 j + k) d 2i + 4 j

11 a (−1, 10) b h = 3, k = −2
12 m = 2, n = 1

13 a b = a + c b b =
2
5

a +
3
5

c

14 a 13 b 10 c 8 d −11
e −9 f 0 g −27

16 a
6
5

b ±
3
√

2
c

7
3

17 a i −−→AB = −i ii −−→AC = −5 j
b 0
c 1

18 a 2 m/s b 30 seconds
c 36 m downstream of her starting point

19 9 kg wt, 12 kg wt
20 14

√
5 kg wt, 28

√
5 kg wt

21 5
√

3 kg wt

Multiple-choice questions
1 C 2 C 3 A 4 B 5 B
6 A 7 C 8 D 9 A 10 B

11 E 12 C 13 B 14 B

Extended-response questions

1 a
[
−31
−32

]
b

[
−15
−20

]
c |OR| = 25

2 a
√

34 b
√

10 −
√

20
c r = i − 9 j
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3 a (25,−7),
[

7
24

]
b

[
−20

15

]
4 a k =

1
2

b x = −2, y = 2

c p = 2k, q = k, r = k
k ∈ R\{0}

5 a (12, 4) b
[
k − 12
−4

]
c
√

160, k,
√

(k − 12)2 + 16, k =
40
3

d 34.7◦

6 a 2.5 hours
b 011.54◦, 36.7 minutes
c 168.46◦

7 a 4i + (16 − α) j km/h
b i α = 16 ii 2.5 hours

Chapter 22
Technology-free questions

1 a (7,−8) b
[

2 1
−1 −2

]
c Area = 3

x

y

1

0

–1

–2

0 1 2 3 4

–3

00 1

d (x, y)→
(2

3
x +

1
3

y,−
1
3

x −
2
3

y
)

2 a
[
1 0
0 −1

]
b

[
3 0
0 1

]
c

[
1 0
2 1

]

d
[
0 0
0 1

]
e


√

2
2

−

√
2

2√
2

2

√
2

2


f


√

3
2

1
2

−
1
2

√
3

2

 g
[

0 −1
−1 0

]
h


1
2

√
3

2√
3

2
−

1
2


3 a


−

15
17

8
17

8
17

15
17

 b
( 2

17
,

76
17

)

4 a
[
−1 0

0 2

]
b

[
1 0
0 −1

]
c

[
−2 −1
−1 0

]
5 a (x, y)→ (−x + 2, y − 1)

b (x, y)→ (−x − 2, y − 1)

6 a Area = 3

x

y

2

1

0

–1

–2

0 1 2 3

b Area = 5

x

y

2

1

0

–1

–2

0 1 2 3

7 a
[
x′

y′

]
=

[
y + 1
x − 1

]
b (0, 0)→ (1, 1)

c

x

y

0

1

–1

0 1 2

2

–2
8 a 2

√
10 b

1
√

10
(i + 3 j)

c
8
√

10
(i + 3 j) d −

2
√

10
(i + 3 j)

9 a 13 b 13 c 13 d −13
e −13 f 0 g −13

10 a m =
46
11

, n = −
18
11

b p = −48

c p = 3, 5

11 a
√

337 m/s on a bearing of tan−1
(16

9

)
b 8.5 seconds c 76.5 m

12 F = 7 kg wt, cos θ =
31
49

13 a T = 5 kg wt, N = 5
√

3 kg wt

b T =
10
√

3
3

kg wt, N =
20
√

3
3

kg wt

14
50
13

kg wt,
120
13

kg wt
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Multiple-choice questions
1 A 2 E 3 B 4 C 5 D 6 D
7 D 8 B 9 B 10 D 11 B 12 A

13 B 14 D 15 A 16 B 17 C 18 B
19 B 20 C 21 A 22 D 23 B 24 A

Extended-response questions

1 a
[
x′

y′

]
=

[
x + 6
y + 3

]
b

x

y

–1
–1 1 2–2–3–4

–2

–3

–4

–5

5

4

3

2

1

c

0

–1–2–3–4–5–6–7–8

2

4

6

x

y

d y = 2(x + 3)2 + 2 e
[
x′

y′

]
=

[
x + 3
−2y + 4

]
2 b i x2 + (y − 1)2 = 1

ii
(
x +

4
5

)2

+

(
y −

3
5

)2

= 1

c (0, 0),
(
−

4
5

,
8
5

)

3 a


√

2
2

−

√
2

2√
2

2

√
2

2

 b


√

2
2

√
2

2

−

√
2

2

√
2

2


c a =

√
2, b = 0 d c =

3
√

2
2

, d =

√
2

2

e i
[
x
y

]
=


√

2
2

x′ +

√
2

2
y′

−

√
2

2
x′ +

√
2

2
y′


ii
√

2(y − x) = (x + y)2

4 a

x

y

y = 2x

y = x

b a = 2, b =
π

4

c


3
√

10
−

1
√

10
1
√

10

3
√

10


5 a i (3, 1) ii A′(3, 1), B′(5, 1), C′(3, 3)

iii

0
x

y

1

1

2

3

4

5

2 3 4 5–5 –4 –3 –2 –1
–1

–2

–3

–4

–5

b ii (−1,−1), (2, 2)
iv (−1,−1), (2, 2),(1

2
(−1 +

√
5),

1
2

(−1 −
√

5)
)
,(1

2
(−1 −

√
5),

1
2

(−1 +
√

5)
)

6 a −−→AE =
1

t + 1
(2a + tb)

b −−→AE =
1
8

(7a +
−−→
AF) d t =

9
7

7 b (n − 1)a − nb + c
8 a 4

√
2 km/h blowing from the south-west

b
√

5 km/h; 200 m downstream
c 43.1 km/h on a bearing of 080◦ d 222◦

9 b ii −−→ZG =
1
3h
−−→
ZH +

1
3k
−−→
ZK

iii
1
h

+
1
k

= 3

iv h =
2
3

; similarity

v
4
9

cm2

vi h =
1
2

; H is midpoint of ZX, K = Y

vii

1

11
2

1
2
1
2

1
2

≤ k ≤ 1;

≤ h ≤ 1

k

h

viii

1

11
2

1
2

2
3
, 4
9

k

A
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Chapter 23
Exercise 23A
1 a 12 cm to the right of O

b 2 cm to the right of O
c Moving to the left at 7 cm/s
d When t = 3.5 s and the particle is 0.25 cm to

the left of O
e −2 cm/s
f 2.9 cm/s

2 a After 3.5 s b 2 m/s2 c 14.5 m
d When t = 2.5 s and the particle is 1.25 m to

the left of O
3 a 3 cm to the left of O moving to the right

at 24 cm/s
b v = 3t2 − 22t + 24

c After
4
3

s and 6 s

d 11 22
27 cm to the right of O and 39 cm to the

left of O
e 4 2

3 s
f a = 6t − 22

g When t =
11
3

s and the particle is 13 16
27 cm

left of O moving to the left at 16 1
3 cm/s

4 a When t =
2
3

s and a = −2 cm/s2;

when t = 1 s and a = 2 cm/s2

b When t =
5
6

s and the particle is moving to

the left at
1
6

cm/s

5 When t = 2 s, v = 6 cm/s, a = −14 cm/s2;
when t = 3 s, v = −5 cm/s, a = −8 cm/s2;
when t = 8 s, v = 30 cm/s, a = 22 cm/s2

6 a t = 4 s and t = −1 s

b t =
3
2

s

Exercise 23B
1 a x = 2t2 − 6t b At the origin O

c 9 cm d 0 cm/s e 3 cm/s
2 a x = t3 − 4t2 + 5t + 4, a = 6t − 8

b When t = 1, x = 6; when t =
5
3

, x = 5 23
27

c When t = 1, a = −2 m/s2;

when t =
5
3

, a = 2 m/s2

3 20 m to the left of O
4 x = 215 1

3 m, v = 73 m/s
5 a v = −10t + 25 b x = −5t2 + 25t

c 2.5 s d 31 1
4 m e 5 s

6 29th floor

Exercise 23C
1 2
√

10 s
2 37.5 m

3 a 3 m/s2 b 6 2
3 s c 337.5 m d

500
27

s

4 a 2.5 m/s2 b 31.25 m
5 a 50 s b 625 m
6 a 20 s b 10 m/s
7 a −19.2 m/s b 1.6 m
8 a −59.2 m/s b −158.4 m
9 a 10 s b After 3 s and 7 s

10 a 4.9(1 − 2t) m/s b 4.9t(1 − t) + 3 m

c 4.225 m d
10
7

s

11 a 2 s b 44.1 m c 4 s d 5 s
12 10

√
10 m/s

Exercise 23D
1 65 m
2 a 562.5 m b 450 m c 23.75 s

3
200

3
m/s

4 210 m
5 a 500 m b 375 m c 17.57 s
6 a 12.5 s b 187.5 m
7 a

0 10 14
t

20

b From initial position O, the particle moves
to the right with initial velocity 20 m/s.
It slows until after 10 seconds it is 100 m
from O and momentarily stops. It then
moves to the left towards O, getting faster.

c 116 m
d 84 m to the right of initial position

8 a 1 m/s2 b −2.5 m/s2 c 215 m
d 125 m to the right of initial position

9 a
10

50 17 20
t

b
10
3

m/s2

10 No, the first train will stop after 6.25 km and
the second train will stop after 6 km.
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11 a 57.6 km/h b 1 minute 6 2
3 seconds

c a = 0.24

Chapter 23 review
Technology-free questions
1 a 5 cm to the left of O

b 8 cm to the left of O c −4 cm/s
d t = 2 s, 9 cm to the left of O e −1 cm/s
f 1 2

3 cm/s
2 a 8 cm to the right, 0 cm/s, −4 cm/s2

b At t = 0 s, 8 cm to the right, −4 cm/s2;

at t =
4
3

s, 6 22
27 cm to the right, 4 cm/s2

3 a 3.5 s, −40.5 cm/s, −36 cm/s2 b 2 s
c 31 cm

4 a i
1
8

cm to the left ii 1 cm/s2 iii 1 cm/s

b i 0 s, 2 s ii
32
27

cm

5 a 12 m/s b x = t3

6 a 4 s b 18 2
3 m to the right c −5 m/s2

d 1.5 s e 6 1
4 m/s

7 a
1

12
m to the left b −1 m/s c −5 m/s2

8 a a = −
1
t3 b x =

1
2
−

1
2t

9 a a = 3t2 − 22t + 24 b −15 m/s2

c 2 1
12 m to the left, 60 7

12 m
10 40 m

11 a 2.5 m/s2 b 8 s c 500 m d
100

9
s

12 a 41 2
3 s b 347 2

9 m
13 a 7.143 s b 2 6

7 s, 4 2
7 s

14 a 2 s b 39.6 m c 4 s d 4.84 s
15 437.5 m
16 a 288 m b 16 s
17 16 m/s

18
80
81

m/s2

19 a 0 m/s b −3 m/s2 c −4 m/s

d 4 2
3 m e

11
12

m

20 a 2t − t2 + 8 b t2 −
t3

3
+ 8t

21 b i 8 m/s ii 2 s iii 18 m
22 a 27 m/s2 b 50 m/s c 4.5 s
23 a −10 m/s b 0 m
24 a 4 s, 6 s b 36 m c 0 ≤ t < 5

Multiple-choice questions
1 A 2 E 3 C 4 C 5 E
6 C 7 D 8 E 9 A 10 D

Extended-response questions
1 a 2 1

3 cm to the left of O b 4 cm/s
c 2 cm/s2 d At 2 s

e
1
3

cm to the right of O f At 1 s

3 a After 6 s at −36 m/s
b When t = 0 or t = 4; when t = 4, the

maximum height is 32 m
c After 2 s

4 x(1) − x(0) = 15.1, x(2) − x(1) = 5.3,

x(3) − x(2) = −4.5, x(4) − x(3) = −14.3,

x(5) − x(4) = −24.1, x(6) − x(5) = −33.9,

x(7) − x(6) = −43.7, x(8) − x(7) = −53.5,

x(9) − x(8) = −63.3, x(10) − x(9) = −73.1

The constant difference between successive
numbers is −9.8 (acceleration due to gravity)

6 33 m
7 a v = −5t + 25, 0 ≤ t ≤ 5 b 62.5 m
8 25 m to the left of O
9 b The second particle is projected upwards at

the instant the first particle lands.
c The second particle is projected upwards

after the first particle has landed, so there is
no collision.
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