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Introduction and
overview

Cambridge Specialist Mathematics VCE Units 3&4 Second Edition provides a complete
teaching and learning resource for the VCE Study Design to be first implemented in 2023.
It has been written with understanding as its chief aim, and with ample practice offered
through the worked examples and exercises. The work has been trialled in the classroom,
and the approaches offered are based on classroom experience and the helpful feedback of
teachers to earlier editions.

Specialist Mathematics Units 3 and 4 provide a study of elementary functions, algebra,
calculus, and probability and statistics and their applications in a variety of practical and
theoretical contexts. This book has been carefully prepared to meet the requirements of the
new Study Design.

The book begins with a review of some topics from Specialist Mathematics Units 1 and 2,
including algorithms and pseudocode, circular functions and proof.

The concept of proof now features more strongly throughout the course. To account for
this, we have a specially written Proof chapter that involves topics such as divisibility;
inequalities; graph theory; combinatorics; sequences and series, including partial sums and
partial products and related notations; complex numbers; matrices; vectors and calculus.
Other chapters also feature exercises aimed to further develop your students’ skills in
mathematical reasoning.

In addition to the online appendices on the general use of calculators, there are three online
appendices for using both the programming language Python and the inbuilt capabilities
of students’ CAS calculators.

The four revision chapters provide technology-free, multiple-choice and extended-response
questions. Each of the first three revision chapters contain a section on algorithms and
pseudocode.

The TI-Nspire calculator examples and instructions have been completed by Peter Flynn,
and those for the Casio ClassPad by Mark Jelinek, and we thank them for their helpful
contributions.
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Overview of the print book
1 Graded step-by-step worked examples with precise explanations (and video versions)

encourage independent learning, and are linked to exercise questions.
2 Section summaries provide important concepts in boxes for easy reference.
3 Additional linked resources in the Interactive Textbook are indicated by icons, such as

skillsheets and video versions of examples.
4 Questions that suit the use of a CAS calculator to solve them are identified within

exercises.
5 Chapter reviews contain a chapter summary and technology-free, multiple-choice, and

extended-response questions.
6 Revision chapters provide comprehensive revision and preparation for assessment,

including new practice Investigations.
7 The glossary includes page numbers of the main explanation of each term.
8 In addition to coverage within chapters, print and online appendices provide additional

support for learning and applying algorithms and pseudocode, including the use of Python
and TI-Nspire and Casio ClassPad for coding.

Numbers refer to descriptions above.
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x Introduction

Overview of the
downloadable PDF
textbook
9 The convenience of a downloadable PDF

textbook has been retained for times when
users cannot go online.

10 PDF annotation and search features are
enabled.

Overview of the Interactive Textbook
The Interactive Textbook (ITB) is an online HTML version of the print textbook powered
by the HOTmaths platform, included with the print book or available as a separate purchase.

11 The material is formatted for on screen use with a convenient and easy-to-use navigation
system and links to all resources.

12 Workspaces for all questions, which can be enabled or disabled by the teacher, allow
students to enter working and answers online and to save them. Input is by typing, with
the help of a symbol palette, handwriting and drawing on tablets, or by uploading images
of writing or drawing done on paper.

13 Self-assessment tools enable students to check answers, mark their own work, and rate
their confidence level in their work. This helps develop responsibility for learning and
communicates progress and performance to the teacher. Student accounts can be linked to
the learning management system used by the teacher in the Online Teaching Suite, so that
teachers can review student self-assessment and provide feedback or adjust marks.

14 All worked examples have video versions to encourage independent learning.
15 Worked solutions are included and can be enabled or disabled in the student ITB

accounts by the teacher.
16 An expanded and revised set of Desmos interactives and activities based on embedded

graphics calculator and geometry tool windows demonstrate key concepts and enable
students to visualise the mathematics.

17 The Desmos graphics calculator, scientific calculator, and geometry tool are also
embedded for students to use for their own calculations and exploration.

18 Revision of prior knowledge is provided with links to diagnostic tests and Year 10
HOTmaths lessons.

19 Quick quizzes containing automarked multiple-choice questions have been thoroughly
expanded and revised, enabling students to check their understanding.

20 Definitions pop up for key terms in the text, and are also provided in a dictionary.
21 Messages from the teacher assign tasks and tests.
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Introduction and overview xi

INTERACTIVE TEXTBOOK POWERED BY THE HOTmaths
PLATFORM
A selection of features is shown. Numbers refer to the descriptions on pages xi–xii.
HOTmaths platform features are updated regularly

WORKSPACES AND SELF-ASSESSMENT

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



xii Introduction

Overview of the Online Teaching Suite powered by the
HOTmaths platform
The Online Teaching Suite is automatically enabled with a teacher account and is integrated
with the teacher’s copy of the Interactive Textbook. All the teacher resources are in one place
for easy access. The features include:

22 The HOTmaths learning management system with class and student analytics and reports,
and communication tools.

23 Teacher’s view of a student’s working and self-assessment which enables them to modify
the student’s self-assessed marks, and respond where students flag that they had diffculty.

24 A HOTmaths-style test generator.
25 An expanded and revised suite of chapter tests, assignments and sample investigations.
26 Editable curriculum grids and teaching programs.
27 A brand-new Exam Generator, allowing the creation of customised printable and online

trial exams (see below for more).

More about the Exam Generator
The Online Teaching Suite includes a comprehensive bank of VCAA exam questions,
augmented by exam-style questions written by experts, to allow teachers to create custom
trial exams.

Custom exams can model end-of-year exams, or target specific topics or types of questions
that students may be having difficulty with.

Features include:

� Filtering by question-type, topic and degree of difficulty
� Searchable by key words
� Answers provided to teachers
� Worked solutions for all questions
� VCAA marking scheme
� Multiple-choice exams can be auto-marked if completed online, with filterable reports
� All custom exams can be printed and completed under exam-like conditions or used as

revision.
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1
Preliminary topics

Objectives
I To revise the properties of sine, cosine and tangent.

I To revise the sine rule and the cosine rule.

I To revise arithmetic sequences and series.

I To revise geometric sequences and series.

I To revise infinite geometric series.

I To revise sequences defined by a recurrence relation of the form tn = rtn−1 + d, where
r and d are constants.

I To revise the modulus function.

I To sketch graphs of circles, ellipses and hyperbolas from their Cartesian equations.

I To revise the use of parametric equations to describe curves in the plane.

I To revise the use of pseudocode to describe algorithms.

In this chapter, we revise some of the knowledge and skills from Specialist Mathematics
Units 1 & 2 that will be required in this course. We start by revising basic trigonometry,
including the sine and cosine rules. There is further revision of trigonometry in Chapter 3.

We also revise sequences and series, the modulus function and the description of circles,
ellipses and hyperbolas in the plane by Cartesian equations and by parametric equations.
Finally, we revise the use of pseudocode to describe algorithms. For further details on these
topics, refer to the relevant chapters of Specialist Mathematics Units 1 & 2.

We will be building on the introduction to parametric equations given in Section 1G in
several new contexts in later chapters of this book.
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2 Chapter 1: Preliminary topics

1A Circular functions
Defining sine, cosine and tangent
The unit circle is a circle of radius 1 with centre at the
origin. It is the graph of the relation x2 + y2 = 1.

We can define the sine and cosine of any angle by using
the unit circle.

(0, 1)

(1, 0)

(0, −1)

(−1, 0) O
x

y

Definition of sine and cosine

For each angle θ◦, there is a point P on the
unit circle as shown. The angle is measured
anticlockwise from the positive direction of
the x-axis.

� cos(θ◦) is defined as the x-coordinate of the point P

� sin(θ◦) is defined as the y-coordinate of the point P

O
x

y

θ°

P(cos (θ°), sin (θ°))

For example:

O
x

y

135°

(−0.7071, 0.7071)

O
x

y

(0.8660, 0.5)

30° x

y

100°

(−0.1736, 0.9848)

O

sin 30◦ = 0.5 (exact value) sin 135◦ =
1
√

2
≈ 0.7071 sin 100◦ ≈ 0.9848

cos 30◦ =

√
3

2
≈ 0.8660 cos 135◦ =

−1
√

2
≈ −0.7071 cos 100◦ ≈ −0.1736

Definition of tangent

tan(θ◦) =
sin(θ◦)
cos(θ◦)

The value of tan(θ◦) can be illustrated geometrically
through the unit circle.

By considering similar triangles OPP′ and OTT ′, it
can be seen that

TT ′

OT ′
=

PP′

OP′

TT ′ =
sin(θ◦)
cos(θ◦)

= tan(θ◦)i.e.

x

y

T(1, tan (θ°))

P′O

P

sin (θ°) = PP′

T ′
θ°
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1A Circular functions 3

The trigonometric ratios
For a right-angled triangle OBC, we can construct a similar
triangle OB′C′ that lies in the unit circle. From the diagram:

B′C′ = sin(θ◦) and OC′ = cos(θ◦)

As triangles OBC and OB′C′ are similar, we have

BC
OB

=
B′C′

1
and

OC
OB

=
OC′

1

BC
OB

= sin(θ◦) and
OC
OB

= cos(θ◦)∴

B ′

B

1

C ′

θ°
O

C

This gives the ratio definition of sine and cosine for a
right-angled triangle. The naming of sides with respect to
an angle θ◦ is as shown.

sin(θ◦) =
opposite

hypotenuse

cos(θ◦) =
adjacent

hypotenuse

tan(θ◦) =
opposite
adjacent

hypotenuse

B

adjacent CO
θ°

opposite

Definition of a radian
In moving around the unit circle a distance of 1 unit from A to P,
the angle POA is defined. The measure of this angle is 1 radian.

One radian (written 1c) is the angle subtended at the centre of
the unit circle by an arc of length 1 unit.

Note: Angles formed by moving anticlockwise around the unit
circle are defined as positive; those formed by moving
clockwise are defined as negative.

1 unit

1

1
P

A
1c

−1

−1

y

O

Degrees and radians
The angle, in radians, swept out in one revolution of a circle is 2πc.

2πc = 360◦

π
c = 180◦∴

1c =
180◦

π
or 1◦ =

πc

180
∴

Usually the symbol for radians, c, is omitted. Any angle is assumed to be measured in radians
unless indicated otherwise.
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4 Chapter 1: Preliminary topics

The following table displays the conversions of some special angles from degrees to radians.

Angle in degrees 0◦ 30◦ 45◦ 60◦ 90◦ 180◦ 360◦

Angle in radians 0
π

6
π

4
π

3
π

2
π 2π

Some values for the trigonometric functions are given in the following table.

θ 0
π

6
π

4
π

3
π

2

sin θ 0
1
2

1
√

2

√
3

2
1

cos θ 1

√
3

2
1
√

2

1
2

0

tan θ 0
1
√

3
1

√
3 undef

The graphs of sine and cosine
A sketch of the graph of

f : R→ R, f (x) = sin x

is shown opposite.

As sin(x + 2π) = sin x for all x ∈ R, the
sine function is periodic. The period
is 2π. The amplitude is 1.

y

x
−π π 2π−π π

2
3π

−1

1

O

f(x) = sin x

2 2

A sketch of the graph of

f : R→ R, f (x) = cos x

is shown opposite. The period of the
cosine function is 2π. The amplitude is 1.

y

x
−π π 2π

−1

1

O
−π

2
π
2

3π
2

f (x) = cos x

For the graphs of y = a sin(nx) and y = a cos(nx), where a > 0 and n > 0:

Period =
2π
n

� Amplitude = a� Range = [−a, a]�
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1A Circular functions 5

Symmetry properties of sine and cosine
The following results may be obtained from the graphs of the functions or from the
unit-circle definitions:

sin(π − θ) = sin θ cos(π − θ) = − cos θ

sin(π + θ) = − sin θ cos(π + θ) = − cos θ

sin(2π − θ) = − sin θ cos(2π − θ) = cos θ

sin(−θ) = − sin θ cos(−θ) = cos θ

sin(θ + 2nπ) = sin θ cos(θ + 2nπ) = cos θ for n ∈ Z

sin
(
π

2
− θ

)
= cos θ cos

(
π

2
− θ

)
= sin θ

a Convert 135◦ to radians. b Convert 1.5c to degrees, correct to two decimal places.

Example 1

Solution

a 135◦ =
135 × πc

180
=

3πc

4
b 1.5c =

1.5 × 180◦

π
= 85.94◦ to two decimal places

Find the exact value of:

sin 150◦a cos(−585◦)b

Example 2

Solution
sin 150◦ = sin(180◦ − 150◦)

= sin 30◦

=
1
2

a cos(−585◦) = cos 585◦

= cos(585◦ − 360◦)

= cos 225◦

= − cos 45◦

= −
1
√

2

b

Find the exact value of:

sin
(11π

6

)
a cos

(
−

45π
6

)
b

Example 3

Solution

sin
(11π

6

)
= sin

(
2π −

π

6

)
= − sin

(
π

6

)
= −

1
2

a cos
(
−

45π
6

)
= cos(−7 1

2 × π)

= cos
(
π

2

)
= 0

b
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6 Chapter 1: Preliminary topics

The Pythagorean identity
For any value of θ:

cos2
θ + sin2

θ = 1

If sin x = 0.3 and 0 < x <
π

2
, find:

cos xa tan xb

Example 4

Solution
cos2 x + sin2 x = 1

cos2 x + 0.09 = 1

cos2 x = 0.91

∴ cos x = ±
√

0.91

Since 0 < x <
π

2
, this gives

cos x =
√

0.91 =

√
91

100
=

√
91

10

a tan x =
sin x
cos x

=
0.3
√

0.91

=
3
√

91

=
3
√

91
91

b

Solution of equations involving sine and cosine
If a trigonometric equation has a solution, then it will have a corresponding solution in
each ‘cycle’ of its domain. Such an equation is solved by using the symmetry of the graph
to obtain solutions within one ‘cycle’ of the function. Other solutions may be obtained by
adding multiples of the period to these solutions.

The graph of y = f (x) for

f : [0, 2π]→ R, f (x) = sin x

is shown.

For each pronumeral marked on the x-axis, find
the other x-value which has the same y-value.

y

x
a

c
b

d

1

O

−1

π 2π

Example 5

Solution
For x = a, the other value is π − a.

For x = b, the other value is π − b.

For x = c, the other value is 2π − (c − π) = 3π − c.

For x = d, the other value is π + (2π − d) = 3π − d.
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1A Circular functions 7

Solve the equation sin
(
2x +

π

3

)
=

1
2

for x ∈ [0, 2π].

Example 6

Solution

Let θ = 2x +
π

3
. Note that

0 ≤ x ≤ 2π ⇔ 0 ≤ 2x ≤ 4π

⇔
π

3
≤ 2x +

π

3
≤

13π
3

⇔
π

3
≤ θ ≤

13π
3

To solve sin
(
2x +

π

3

)
=

1
2

for x ∈ [0, 2π], we first solve sin θ =
1
2

for
π

3
≤ θ ≤

13π
3

.

Consider sin θ =
1
2

.

θ =
π

6
or

5π
6

or 2π +
π

6
or 2π +

5π
6

or 4π +
π

6
or 4π +

5π
6

or . . .∴

The solutions
π

6
and

29π
6

are not required, as they lie outside the restricted domain for θ.

For
π

3
≤ θ ≤

13π
3

:

θ =
5π
6

or
13π

6
or

17π
6

or
25π

6

2x +
2π
6

=
5π
6

or
13π

6
or

17π
6

or
25π

6
∴

2x =
3π
6

or
11π

6
or

15π
6

or
23π

6
∴

x =
π

4
or

11π
12

or
5π
4

or
23π
12

∴

Using the TI-Nspire
� Ensure your calculator is in radian mode.

(To change the angle mode, either go to
con > Settings > Document Settings or else
hover the cursor over RAD or DEG at the top of
the screen and click to toggle modes.)

� Complete as shown.

Note: The Graph application has its own settings, which are accessed from a Graph page
using menu > Settings.
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8 Chapter 1: Preliminary topics

Using the Casio ClassPad
� Open theMapplication.
� Ensure your calculator is in radian mode (with Rad

in the status bar at the bottom of the main screen).
� Enter and highlight

sin
(
2x +

π

3

)
=

1
2

∣∣∣ 0 ≤ x ≤ 2π

� Select Interactive > Equation/Inequality > solve.
� Tap I on the solution line to view the entire solution.

Transformations of the graphs of sine and cosine
The graphs of functions with rules of the form

f (x) = a sin(nx + ε) + b and f (x) = a cos(nx + ε) + b

can be obtained from the graphs of y = sin x and y = cos x by transformations.

Sketch the graph of the function

h : [0, 2π]→ R, h(x) = 3 cos
(
2x +

π

3

)
+ 1

Example 7

Solution
We can write h(x) = 3 cos

(
2
(
x +

π

6

))
+ 1.

The graph of y = h(x) is obtained from the graph of y = cos x by:

� a dilation of factor 1
2 from the y-axis

� a dilation of factor 3 from the x-axis
� a translation of

π

6
units in the negative direction of the x-axis

� a translation of 1 unit in the positive direction of the y-axis.

First apply the two
dilations to the graph
of y = cos x.

y

x

3

O

−3

y = 3 cos(2x)

π 2ππ
4

π
2

3π
4

5π
4

3π
2

7π
4
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1A Circular functions 9

Next apply the
translation

π

6
units in

the negative direction
of the x-axis.

3

6

3
2

3
2

−π
12
π

3
π

2π,

3
 4π

6
 5π

6
π

12
 7π

12
 13π

12
 19π

12
 25π

6
 11π

−3

x

y

y = 3 cos 2 x +

O

Apply the final translation and restrict
the graph to the required domain.

2
2π,

3
4π

6
5π

3
π

6
11π

5
2
5

4

O

−2

x

y

The graph of tan
A sketch of the graph of y = tan θ is shown below.

y

5π
2π 3ππ

π
−π

3π
2 2

−π
2 2

O θ

Notes:
� The domain of tan is R \

{ (2n + 1)π
2

: n ∈ Z
}
.

� The range of tan is R.
� The graph repeats itself every π units, i.e. the period of tan is π.

� The vertical asymptotes have equations θ =
(2n + 1)π

2
, for n ∈ Z.
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10 Chapter 1: Preliminary topics

Using the TI-Nspire
� Open a Graphs application and define

f 1(x) = tan(x).
� Press enter to obtain the graph.
� To change the viewing window, go to menu >

Window/Zoom > Window Settings.

Using the Casio ClassPad
� Open the menum; select Graph & Table .
� Enter tan(x) in y1, tick the box and tap$.
� If necessary, select Zoom > Quick > Quick Trig or tap6 to manually adjust the

window. In the graph shown below, the x-axis scale has been set to π

2 .

Symmetry properties of tan
The following results are obtained from the definition of tan:

tan(π − θ) = − tan θ tan(2π − θ) = − tan θ

tan(π + θ) = tan θ tan(−θ) = − tan θ

Find the exact value of:

tan 330◦a tan
(4π

3

)
b

Example 8

Solution
tan 330◦ = tan(360◦ − 30◦)

= − tan 30◦

= −
1
√

3

a tan
(4π

3

)
= tan

(
π +

π

3

)
= tan

(
π

3

)
=
√

3

b
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1A 1A Circular functions 11

Solution of equations involving tan
The procedure here is similar to that used for solving equations involving sin and cos, except
that only one solution needs to be selected then all other solutions are one period length apart.

Solve the following equations:

tan x = −1 for x ∈ [0, 4π]a tan(2x − π) =
√

3 for x ∈ [−π,π]b

Example 9

Solution
a tan x = −1

Now tan
(3π

4

)
= −1

x =
3π
4

or
3π
4

+ π or
3π
4

+ 2π or
3π
4

+ 3π∴

x =
3π
4

or
7π
4

or
11π

4
or

15π
4

∴

b Let θ = 2x − π. Then

−π ≤ x ≤ π ⇔ −2π ≤ 2x ≤ 2π

⇔ −3π ≤ 2x − π ≤ π

⇔ −3π ≤ θ ≤ π

To solve tan(2x − π) =
√

3, we first solve tan θ =
√

3.

θ =
π

3
or

π

3
− π or

π

3
− 2π or

π

3
− 3π

θ =
π

3
or −

2π
3

or −
5π
2

or −
8π
3

∴

2x − π =
π

3
or −

2π
3

or −
5π
3

or −
8π
3

∴

2x =
4π
3

or
π

3
or −

2π
3

or −
5π
3

∴

x =
2π
3

or
π

6
or −

π

3
or −

5π
6

∴

Exercise 1ASkill-
sheet

1 aExample 1 Convert the following angles from degrees to exact values in radians:

720◦i 540◦ii −450◦iii 15◦iv −10◦v −315◦vi

b Convert the following angles from radians to degrees:
5π
4

i −
2π
3

ii
7π
12

iii −
11π

6
iv

13π
9

v −
11π
12

vi
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12 Chapter 1: Preliminary topics 1A

2 Perform the correct conversion on each of the following angles, giving the answer
correct to two decimal places.

a Convert from degrees to radians:

7◦i −100◦ii −25◦iii 51◦iv 206◦v −410◦vi

b Convert from radians to degrees:

1.7ci −0.87cii 2.8ciii 0.1civ −3cv −8.9cvi

3Example 2 Find the exact value of each of the following:

sin(135◦)a cos(−300◦)b sin(480◦)c
cos(240◦)d sin(−225◦)e sin(420◦)f

4Example 3 Find the exact value of each of the following:

sin
(2π

3

)
a cos

(3π
4

)
b cos

(
−
π

3

)
c

cos
(5π

4

)
d cos

(9π
4

)
e sin

(11π
3

)
f

cos
(31π

6

)
g cos

(29π
6

)
h sin

(
−

23π
6

)
i

5Example 4 If sin x = 0.5 and
π

2
< x < π, find:

cos xa tan xb

6 If cos x = −0.7 and π < x <
3π
2

, find:

sin xa tan xb

7 If sin x = −0.5 and π < x <
3π
2

, find:

cos xa tan xb

8 If sin x = −0.3 and
3π
2
< x < 2π, find:

cos xa tan xb

9Example 5 The graph of y = f (x) for

f : [0, 2π]→ R, f (x) = cos x

is shown.

For each pronumeral marked on the
x-axis, find the other x-value which
has the same y-value.

a b
c d

O π 2π
x

−1

1

y
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1A 1A Circular functions 13

10Example 6 Solve each of the following for x ∈ [0, 2π]:

sin x = −

√
3

2
a sin(2x) = −

√
3

2
b

2 cos(2x) = −1c sin
(
x +

π

3

)
= −

1
2

d

2 cos
(
2
(
x +

π

3

))
= −1e 2 sin

(
2x +

π

3

)
= −
√

3f

11Example 7 Sketch the graph of each of the following for the stated domain:

f (x) = sin(2x), x ∈ [0, 2π]a f (x) = cos
(
x +

π

3

)
, x ∈

[
−
π

3
,π

]
b

f (x) = cos
(
2
(
x +

π

3

))
, x ∈ [0,π]c f (x) = 2 sin(3x) + 1, x ∈ [0,π]d

f (x) = 2 sin
(
x −

π

4

)
+
√

3, x ∈ [0, 2π]e

12Example 8 Find the exact value of each of the following:

tan
(5π

4

)
a tan

(
−

2π
3

)
b tan

(
−

29π
6

)
c tan 240◦d

13 If tan x =
1
4

and π ≤ x ≤
3π
2

, find the exact value of:

sin xa cos xb tan(−x)c tan(π − x)d

14 If tan x = −

√
3

2
and

π

2
≤ x ≤ π, find the exact value of:

sin xa cos xb tan(−x)c tan(x − π)d

15Example 9 Solve each of the following for x ∈ [0, 2π]:

tan x = −
√

3a tan
(
3x −

π

6

)
=

√
3

3
b

2 tan
( x
2

)
+ 2 = 0c 3 tan

(
π

2
+ 2x

)
= −3d

16 Sketch the graph of each of the following for x ∈ [0,π], clearly labelling all intercepts
with the axes and all asymptotes:

f (x) = tan(2x)a f (x) = tan
(
x −

π

3

)
b

f (x) = 2 tan
(
2x +

π

3

)
c f (x) = 2 tan

(
2x +

π

3

)
− 2d
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14 Chapter 1: Preliminary topics

1B The sine and cosine rules
In this section, we revise methods for finding unknown quantities (side lengths or angles) in a
non-right-angled triangle.

Labelling triangles
The following convention is used in the remainder of this chapter:

� Interior angles are denoted by uppercase letters.
� The length of the side opposite an angle is denoted by

the corresponding lowercase letter.

B

A C

ac

b

For example, the magnitude of angle BAC is denoted by A, and the length of side BC is
denoted by a.

The sine rule
The sine rule is used to find unknown quantities in a triangle in the following two situations:

1 one side and two angles are given
2 two sides and a non-included angle are given.

In the first case, the triangle is uniquely defined up to congruence. In the second case, there
may be two triangles.

Sine rule

For triangle ABC:

a
sin A

=
b

sin B
=

c
sin C

B

A C

ac

b

Proof We will give a proof for acute-angled triangles. The proof for obtuse-angled triangles
is similar.

In triangle ACD:

sin A =
h
b

h = b sin A∴

In triangle BCD:

sin B =
h
a

a sin B = b sin A∴

a
sin A

=
b

sin B
i.e.

ab

C

D
A B

h

Similarly, starting with a perpendicular from A to BC would give
b

sin B
=

c
sin C
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1B The sine and cosine rules 15

Use the sine rule to find the length of AB. B

70°
c

A 10 cm
31°

C

Example 10

Solution
c

sin 31◦
=

10
sin 70◦

∴ c =
10 sin 31◦

sin 70◦

= 5.4809 . . .

The length of AB is 5.48 cm, correct to two decimal places.

Use the sine rule to find the magnitude of angle XZY ,
given that Y = 25◦, y = 5 and z = 6.

Z
5 cm

6 cm
25°

YX

Example 11

Solution

5
sin 25◦

=
6

sin Z

sin Z
6

=
sin 25◦

5

sin Z =
6 sin 25◦

5
= 0.5071 . . .

Z = (30.473 . . . )◦ or Z = (180 − 30.473 . . . )◦∴

25°

30.47°
149.53°

6 cm

5 cm

5 cm

X
Y

Z2

Z1

Hence Z = 30.47◦ or Z = 149.53◦, correct to two decimal places.

Notes:
� Remember that sin(180 − θ)◦ = sin(θ◦).
� When you are given two sides and a non-included angle, you must consider the possibility

that there are two such triangles. An angle found using the sine rule is possible if the sum
of the given angle and the found angle is less than 180◦.
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16 Chapter 1: Preliminary topics

The cosine rule
The cosine rule can be used to find unknown quantities in a triangle in the following two
situations:

1 two sides and the included angle are given
2 three sides are given.

In each case, the triangle is uniquely defined up to congruence.

Cosine rule

For triangle ABC:

a2 = b2 + c2 − 2bc cos A

or equivalently

cos A =
b2 + c2 − a2

2bc

B

A C

ac

b

The symmetrical results also hold:

� b2 = a2 + c2 − 2ac cos B

� c2 = a2 + b2 − 2ab cos C

Proof We will give a proof for acute-angled triangles. The proof for obtuse-angled triangles
is similar.

In triangle ACD:

cos A =
x
b

x = b cos A∴

Using Pythagoras’ theorem in triangles ACD
and BCD:

b2 = x2 + h2

a2 = (c − x)2 + h2

A B

C

D

ab

x

h

c

Expanding gives

a2 = c2 − 2cx + x2 + h2

= c2 − 2cx + b2 (as b2 = x2 + h2)

a2 = b2 + c2 − 2bc cos A (as x = b cos A)∴

For triangle ABC, find the length of AB in centimetres correct to
two decimal places. c

A

B

5 cm

67°
10 cm

C

Example 12
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1B The sine and cosine rules 17

Solution

c2 = 52 + 102 − 2 × 5 × 10 cos 67◦

= 85.9268 . . .

∴ c = 9.2696 . . .

The length of AB is 9.27 cm, correct to two decimal places.

For triangle ABC, find the magnitude of angle ABC
correct to two decimal places.

B
12 cm

15 cm

6 cm

A C

Example 13

Solution

cos B =
a2 + c2 − b2

2ac

=
122 + 62 − 152

2 × 12 × 6

= −0.3125

∴ B = (108.2099 . . . )◦

The magnitude of angle ABC is 108.21◦, correct to two decimal places.

In 4ABC, ∠CAB = 82◦, AC = 12 cm and AB = 15 cm.

Find correct to two decimal places:

a BC

b ∠ACB

15 cm12 cm

a cm

82°

A

BC

Example 14

Solution
Find BC using the cosine rule:

a2 = b2 + c2 − 2bc cos A

= 122 + 152 − 2 × 12 × 15 cos 82◦

= 144 + 225 − 360 cos 82◦

= 318.8976 . . .

a = 17.8577 . . .

a Find ∠ACB using the sine rule:
a

sin A
=

c
sin C

sin C =
c sin A

a
∴

=
15 sin 82◦

17.8577

b

Thus BC = a = 17.86 cm, correct to
two decimal places.

Thus ∠ACB = 56.28◦, correct to two
decimal places.

Note: In part b, the angle C = 123.72◦ is also a solution to the equation, but it is discarded
as a possible answer because it is inconsistent with the given angle A = 82◦.
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18 Chapter 1: Preliminary topics 1B

Exercise 1BSkill-
sheet

1Example 10 In triangle ABC, ∠BAC = 73◦, ∠ACB = 55◦ and AB = 10 cm. Find correct to two
decimal places:

BCa ACb

2Example 11 In 4ABC, ∠ACB = 34◦, AC = 8.5 cm and AB = 5.6 cm. Find correct to two decimal
places:

a the two possible values of ∠ABC (one acute and one obtuse)
b BC in each case.

3Example 12 In triangle ABC, ∠ABC = 58◦, AB = 6.5 cm and BC = 8 cm. Find correct to two
decimal places:

ACa ∠BCAb

4Example 13

Example 14

In 4ABC, AB = 5 cm, BC = 12 cm and AC = 10 cm. Find:

a the magnitude of ∠ABC, correct to two decimal places
b the magnitude of ∠BAC, correct to two decimal places.

5 The adjacent sides of a parallelogram are 9 cm and 11 cm. One of its angles is 67◦. Find
the length of the longer diagonal, correct to two decimal places.

6Example 14 In 4ABC, ∠ABC = 35◦, AB = 10 cm and BC = 4.7 cm. Find correct to two decimal
places:

ACa ∠ACBb

7 In 4ABC, ∠ABC = 45◦, ∠ACB = 60◦ and AC = 12 cm. Find AB.

8 In 4PQR, ∠QPR = 60◦, PQ = 2 cm and PR = 3 cm. Find QR.

9 In 4ABC, the angle ABC has magnitude 40◦, AC = 20 cm and AB = 18 cm. Find the
distance BC correct to two decimal places.

10 In 4ABC, the angle ACB has magnitude 30◦, AC = 10 cm and AB = 8 cm. Find the
distance BC using the cosine rule.
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1C Sequences and series 19

1C Sequences and series
The following are examples of sequences of numbers:

1, 3, 5, 7, 9, . . .a 10, 7, 4, 1, −2, . . .b 0.6, 1.7, 2.8, . . . , 9.4c

1
3

,
1
9

,
1
27

,
1
81

, . . .d 0.1, 0.11, 0.111, 0.1111, 0.11111, . . .e

Each sequence is a list of numbers, with order being important.

The numbers of a sequence are called its terms. The nth term of a sequence is denoted by the
symbol tn. So the first term is t1, the 12th term is t12, and so on.

A sequence may be defined by a rule which enables each subsequent term to be found from
the previous term. This type of rule is called a recurrence relation, a recursive formula or
an iterative rule. For example:

� The sequence 1, 3, 5, 7, 9, . . . may be defined by t1 = 1 and tn = tn−1 + 2.

� The sequence
1
3

,
1
9

,
1

27
,

1
81

, . . . may be defined by t1 =
1
3

and tn =
1
3

tn−1.

Use the recurrence relation to find the first four terms of the sequence

t1 = 3, tn = tn−1 + 5

Example 15

Solution

t1 = 3

t2 = t1 + 5 = 8

t3 = t2 + 5 = 13

t4 = t3 + 5 = 18

The first four terms are 3, 8, 13, 18.

Find a possible recurrence relation for the following sequence:

9,−3, 1,−
1
3

, . . .

Example 16

Solution

−3 = −
1
3
× 9 i.e. t2 = −

1
3

t1

1 = −
1
3
× −3 i.e. t3 = −

1
3

t2

The sequence is defined by t1 = 9 and tn = −
1
3

tn−1.
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20 Chapter 1: Preliminary topics

A sequence may also be defined explicitly by a rule that is stated in terms of n. For example:

� The rule tn = 2n defines the sequence t1 = 2, t2 = 4, t3 = 6, t4 = 8, . . .
� The rule tn = 2n−1 defines the sequence t1 = 1, t2 = 2, t3 = 4, t4 = 8, . . .
� The sequence 1, 3, 5, 7, 9, . . . can be defined by tn = 2n − 1.

� The sequence t1 =
1
3

, tn =
1
3

tn−1 can be defined by tn =
1
3n .

Find the first four terms of the sequence defined by the rule tn = 2n + 3.

Example 17

Solution

t1 = 2(1) + 3 = 5

t2 = 2(2) + 3 = 7

t3 = 2(3) + 3 = 9

t4 = 2(4) + 3 = 11

The first four terms are 5, 7, 9, 11.

Arithmetic sequences
A sequence in which each successive term is found by adding a fixed amount to the previous
term is called an arithmetic sequence. That is, an arithmetic sequence has a recurrence
relation of the form tn = tn−1 + d, where d is a constant.

For example: 2, 5, 8, 11, 14, 17, . . . is an arithmetic sequence.

The nth term of an arithmetic sequence is given by

tn = a + (n − 1)d

where a is the first term and d is the common difference between successive terms, that is,
d = tk − tk−1, for all k > 1.

Find the 10th term of the arithmetic sequence −4,−1, 2, 5, . . . .

Example 18

Solution
a = −4, d = 3

tn = a + (n − 1)d

∴ t10 = −4 + (10 − 1) × 3

= 23
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1C Sequences and series 21

Arithmetic series
The sum of the terms in a sequence is called a series. If the sequence is arithmetic, then the
series is called an arithmetic series.

The symbol Sn is used to denote the sum of the first n terms of a sequence. That is,

Sn = a + (a + d) + (a + 2d) + · · · +
(
a + (n − 1)d

)
Writing this sum in reverse order, we have

Sn =
(
a + (n − 1)d

)
+

(
a + (n − 2)d

)
+ · · · + (a + d) + a

Adding these two expressions together gives

2Sn = n
(
2a + (n − 1)d

)
Therefore

Sn =
n
2

(
2a + (n − 1)d

)
Since the last term ` = tn = a + (n − 1)d, we can also write

Sn =
n
2

(
a + `

)
Geometric sequences
A sequence in which each successive term is found by multiplying the previous term by a
fixed amount is called a geometric sequence. That is, a geometric sequence has a recurrence
relation of the form tn = rtn−1, where r is a constant.

For example: 2, 6, 18, 54, . . . is a geometric sequence.

The nth term of a geometric sequence is given by

tn = arn−1

where a is the first term and r is the common ratio of successive terms, that is, r =
tk

tk−1
,

for all k > 1.

Find the 10th term of the geometric sequence 2, 6, 18, . . . .

Example 19

Solution
a = 2, r = 3

tn = arn−1

∴ t10 = 2 × 310−1

= 39 366
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22 Chapter 1: Preliminary topics

Geometric series
The sum of the terms in a geometric sequence is called a geometric series. An expression
for Sn, the sum of the first n terms of a geometric sequence, can be found using a similar
method to that used for arithmetic series.

Sn = a + ar + ar2 + · · · + arn−1 (1)Let

rSn = ar + ar2 + ar3 + · · · + arn (2)Then

Subtract (1) from (2):

rSn − Sn = arn − a

Sn(r − 1) = a(rn − 1)

Therefore

Sn =
a(rn − 1)

r − 1

For values of r such that −1 < r < 1, it is often more convenient to use the equivalent formula

Sn =
a(1 − rn)

1 − r

which is obtained by multiplying both the numerator and the denominator by −1.

Find the sum of the first nine terms of the sequence
1
3

,
1
9

,
1
27

,
1

81
, . . . .

Example 20

Solution

a =
1
3

, r =
1
3

, n = 9

∴ S9 =

1
3

(
1 −

( 1
3
)9
)

1 − 1
3

=
1
2

(
1 −

(1
3

)9)
≈ 0.499975

Infinite geometric series
If a geometric sequence has a common ratio with magnitude less than 1, that is, if −1 < r < 1,
then each successive term is closer to zero. For example, consider the sequence

1
3

,
1
9

,
1
27

,
1
81

, . . .

In Example 20 we found that the sum of the first 9 terms is S9 ≈ 0.499975. The sum of the
first 20 terms is S20 ≈ 0.49999999986. We might conjecture that, as we add more and more
terms of the sequence, the sum will get closer and closer to 0.5, that is, Sn → 0.5 as n→ ∞.
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1C Sequences and series 23

An infinite series t1 + t2 + t3 + · · · is said to be convergent if the sum of the first n terms, Sn,
approaches a limiting value as n→ ∞. This limit is called the sum to infinity of the series.

If −1 < r < 1, then the infinite geometric series a + ar + ar2 + · · · is convergent and the
sum to infinity is given by

S∞ =
a

1 − r

Proof We know that

Sn =
a(1 − rn)

1 − r

=
a

1 − r
−

arn

1 − r

As n→ ∞, we have rn → 0 and so
arn

1 − r
→ 0. Hence Sn →

a
1 − r

as n→ ∞.

Find the sum to infinity of the series
1
2

+
1
4

+
1
8

+ · · · .

Example 21

Solution

a =
1
2

, r =
1
2

and therefore

S∞ =
a

1 − r
=

1
2

1 − 1
2

= 1

Using a CAS calculator with sequences

Use a calculator to generate terms of the geometric sequence defined by

tn = 512(0.5)n−1 for n = 1, 2, 3, . . .

Example 22

Using the TI-Nspire
Sequences defined in terms of n can be
investigated in a Calculator application.

� To generate the first 15 terms of the sequence
defined by the rule tn = 512(0.5)n−1, complete
as shown.

Note: Alternatively, assign these values to n by entering n := seq(k, k, 1, 15, 1).
Assigning (storing) the resulting list as tn enables the sequence to be graphed.
The lists n and tn can also be created in a Lists & Spreadsheet application.
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24 Chapter 1: Preliminary topics

Using the Casio ClassPad
� Open the menum; select Sequence .
� Ensure that the Explicit window is activated.
� Tap the cursor next to anE and enter 512 × 0.5n−1.

(The variable n can be entered by tapping onB
in the toolbar.)

� Tick the box or tap EXE .
� Tap# to view the sequence values.
� Tap8 to open the Sequence Table Input window

and complete as shown below; tap OK .

Use a CAS calculator to plot the graph of the arithmetic sequence defined by the
recurrence relation tn = tn−1 + 4 and t1 = 8.

Example 23

Using the TI-Nspire
� In a Lists & Spreadsheet page, name the first

two columns n and tn respectively.
� Enter 1 in cell A1 and enter 8 in cell B1.
� Enter = a1 + 1 in cell A2 and enter = b1 + 4

in cell B2.
� Highlight the cells A2 and B2 using shift and

the arrows.
� Use menu > Data > Fill to fill down to row 10

and press enter . This generates the first
10 terms of the sequence.

� To graph the sequence, open a Graphs
application ( ctrl I > Add Graphs).

� Create a scatter plot using menu > Graph
Entry/Edit > Scatter Plot. Enter the list
variables as n and tn in their respective fields.

� Set an appropriate window using menu >

Window/Zoom > Zoom – Data.

Note: It is possible to see the coordinates of the points: menu > Trace > Graph Trace.
The scatter plot can also be graphed in a Data & Statistics page.
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1C Sequences and series 25

� Alternatively, the sequence can be graphed
directly in the sequence plotter ( menu >

Graph Entry/Edit > Sequence > Sequence)
with initial value 8.

Using the Casio ClassPad
� Open the menum; select Sequence .
� Ensure that the Recursive window is activated.
� Select the setting& as shown below.

� Tap the cursor next to an+1 and enter an + 4.

Note: The symbol an can be found in the dropdown
menu n,an.

� Enter 8 for the value of the first term, a1.
� Tick the box. Tap# to view the sequence values.

� Tap! to view the graph.
� Tap6 and adjust the window setting for the first

15 terms as shown below.

� Select Analysis > Trace and use the cursor I to
view each value in the sequence.
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26 Chapter 1: Preliminary topics

Recurrence relations of the form tn = rtn−1 + d
We now consider a generalisation of arithmetic and geometric sequences. We shall study
sequences defined by a recurrence relation of the form

tn = rtn−1 + d

where r and d are constants.

Note: The case where r = 1 corresponds to an arithmetic sequence.
The case where d = 0 corresponds to a geometric sequence.

We can establish a general formula for the nth term of the sequence.

For a sequence defined by a recurrence relation of the form tn = rtn−1 + d, where r , 1,
the nth term is given by

tn = rn−1t1 +
d(rn−1 − 1)

r − 1

where t1 is the first term.

Proof We can establish the formula by checking that it gives the correct first term and that it
satisfies the recurrence relation.

First term Using the formula to find the first term (n = 1) gives

r1−1t1 +
d(r1−1 − 1)

r − 1
= 1 × t1 + 0 = t1

which is correct.

Recurrence relation We now check that the formula satisfies the recurrence
relation tn = rtn−1 + d. Starting from the right-hand side:

rtn−1 + d = r
(
rn−2t1 +

d(rn−2 − 1)
r − 1

)
+ d (using the formula for tn−1)

= rn−1t1 +
d(rn−1 − r)

r − 1
+ d

= rn−1t1 +
d(rn−1 − r)

r − 1
+

d(r − 1)
r − 1

= rn−1t1 +
d(rn−1 − 1)

r − 1
= tn (using the formula for tn)

So the recurrence relation holds.

We have shown that the formula gives the correct value for t1. Since it satisfies the
recurrence relation, this means that t2 is correct, and then this means that t3 is correct,
and so on. (This proof uses mathematical induction, which is revised in Chapter 2.)

Note: This general formula for tn can be rewritten into a rule of the form tn = Arn−1 + B, for
constants A and B. We use this observation in Example 25.
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1C Sequences and series 27

Find a formula for the nth term of the sequence defined by the recurrence relation

tn = 2tn−1 + 1, t1 = 10

Example 24

Solution
We will use the general formula

tn = rn−1t1 +
d(rn−1 − 1)

r − 1

Here r = 2 and d = 1. Hence

tn = 2n−1 × 10 +
1 × (2n−1 − 1)

2 − 1

= 10 × 2n−1 + 2n−1 − 1

= 11 × 2n−1 − 1

The sequence 5, 16, 38, . . . is defined by a recurrence relation tn = rtn−1 + d. Determine a
formula for the nth term of this sequence by recognising that it can be written in the form
tn = Arn−1 + B, for constants A and B.

Example 25

Solution
From the first three terms, we have

t1 = A + B = 5 (1)

t2 = Ar + B = 16 (2)

t3 = Ar2 + B = 38 (3)

Subtract equation (1) from both (2) and (3):

A(r − 1) = 11 (4)

A(r2 − 1) = 33 (5)

Divide (5) by (4):

r2 − 1
r − 1

= 3

(r + 1)(r − 1)
r − 1

= 3

r + 1 = 3

r = 2

Using (4) now gives A = 11, and using (1) gives B = −6.

The formula for the nth term is

tn = 11 × 2n−1 − 6
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Exercise 1C

1Example 15 Use the recurrence relation to find the first four terms of the sequence t1 = 3,
tn = tn−1 − 4.

2Example 16 Find a possible recurrence relation for the sequence −2, 6,−18, . . . .

3Example 17 Find the first four terms of the sequence defined by tn = 2n − 3 for n ∈ N.

4 The Fibonacci sequence is given by the recurrence relation Fn+2 = Fn+1 + Fn, where
F1 = F2 = 1. Find the first 10 terms of the Fibonacci sequence.

5Example 18 Find the 10th term of the arithmetic sequence −4,−7,−10, . . . .

6Example 19 Calculate the 10th term of the geometric sequence 2,−6, 18, . . . .

7 Find the sum of the first 10 terms of an arithmetic sequence with first term 3 and
common difference 4.

8Example 20 Find the sum of the first eight terms of a geometric sequence with first term 6 and
common ratio −3.

9Example 21 Find the sum to infinity of 1 −
1
3

+
1
9
−

1
27

+ · · · .

10 The first, second and third terms of a geometric sequence are x + 5, x and x − 4
respectively. Find:

a the value of x

b the common ratio
c the difference between the sum to infinity and the sum of the first 10 terms.

11 Find the sum to infinity of the geometric sequence a,
a
√

2
,

a
2

,
a

2
√

2
, . . . in terms of a.

12 Consider the sum

Sn = 1 +
x
2

+
x2

4
+ · · · +

xn−1

2n−1

a Calculate S10 when x = 1.5.
b i Find the possible values of x for which the sum to infinity S∞ exists.

ii Find the values of x for which S∞ = 2S10.

13 a Find an expression for the sum to infinity of the infinite geometric series

1 + sin θ + sin2
θ + · · ·

b Find the values of θ for which the sum to infinity is 2.

14Example 23 A sequence is defined recursively by t1 = 6, tn+1 = 3tn − 1. Find t2 and t3. Use a
CAS calculator to find t8.

15 A sequence is defined recursively by y1 = 5, yn+1 = 2yn + 6. Find y2 and y3. Use a
CAS calculator to find y10 and to plot a graph showing the first 10 terms.
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1C 1D The modulus function 29

16Example 24 For each of the following recurrence relations, determine an expression for the nth term
of the sequence in terms of n:

tn = 2tn−1 − 8, t1 = 8a tn = 2tn−1 − 2, t1 = 10b tn+1 =
1
2

tn + 6, t1 = 40c

17Example 25 The sequence 6, 7, 9, . . . is defined by a recurrence relation tn = rtn−1 + d. Determine
a formula for the nth term of this sequence by recognising that it can be written in the
form tn = Arn−1 + B, for constants A and B.

18 The sequence 8, 23, 98, . . . is defined by a recurrence relation tn = rtn−1 + d. Determine
a formula for the nth term of this sequence by recognising that it can be written in the
form tn = Arn−1 + B, for constants A and B.

1D The modulus function
The modulus or absolute value of a real number x is denoted by |x| and is defined by

|x| =

x if x ≥ 0

−x if x < 0

It may also be defined as |x| =
√

x2. For example: |5| = 5 and |−5| = 5.

Evaluate each of the following:

a i |−3 × 2| ii |−3| × |2|

b i
∣∣∣∣∣−4

2

∣∣∣∣∣ ii
|−4|
|2|

c i |−6 + 2| ii |−6| + |2|

Example 26

Solution
a i |−3 × 2| = |−6| = 6 ii |−3| × |2| = 3 × 2 = 6 Note: |−3 × 2| = |−3| × |2|

b i
∣∣∣∣∣−4

2

∣∣∣∣∣ = |−2| = 2 ii
|−4|
|2|

=
4
2

= 2 Note:
∣∣∣∣∣−4

2

∣∣∣∣∣ =
|−4|
|2|

c i |−6 + 2| = |−4| = 4 ii |−6| + |2| = 6 + 2 = 8 Note: |−6 + 2| , |−6| + |2|

Properties of the modulus function

� |ab| = |a| |b| and
∣∣∣∣∣ab

∣∣∣∣∣ =
|a|
|b|

� |x| = a implies x = a or x = −a

� |a + b| ≤ |a| + |b|

� If a and b are both positive or both negative, then |a + b| = |a| + |b|.
� If a ≥ 0, then |x| ≤ a is equivalent to −a ≤ x ≤ a.
� If a ≥ 0, then |x − k| ≤ a is equivalent to k − a ≤ x ≤ k + a.
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30 Chapter 1: Preliminary topics

The modulus function as a measure of distance
Consider two points A and B on a number line:

O A B

ba

On a number line, the distance between points A and B is |a − b| = |b − a|.

Thus |x − 2| ≤ 3 can be read as ‘the distance of x from 2 is less than or equal to 3’,
and |x| ≤ 3 can be read as ‘the distance of x from the origin is less than or equal to 3’.
Note that |x| ≤ 3 is equivalent to −3 ≤ x ≤ 3 or x ∈ [−3, 3].

Illustrate each set on a number line and represent the set using interval notation:

a
{

x : |x| < 4
}

b
{

x : |x| ≥ 4
}

c
{

x : |x − 1| ≤ 4
}

Example 27

Solution
a (−4, 4)

0 1 2 3 4 5 6−6 −5 −4 −3 −2 −1

b (−∞,−4] ∪ [4,∞)
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

c [−3, 5]
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

The graph of y = |x|
The graph of the function f : R→ R,
f (x) = |x| is shown here.

This graph is symmetric about the y-axis,
since |x| = |−x|. x

(−1, 1)

O

(1, 1)

y

For each of the following functions, sketch the graph and state the range:

a f (x) = |x − 3| + 1 b f (x) = −|x − 3| + 1

Example 28

Solution
Note that |a − b| = a − b if a ≥ b, and |a − b| = b − a if b ≥ a.

a f (x) = |x − 3| + 1 =

x − 3 + 1 if x ≥ 3

3 − x + 1 if x < 3

=

x − 2 if x ≥ 3

4 − x if x < 3

Range = [1,∞)
x

(3, 1)

(0, 4)

y

O
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1D The modulus function 31

b f (x) = −|x − 3| + 1 =

−(x − 3) + 1 if x ≥ 3

−(3 − x) + 1 if x < 3

=

−x + 4 if x ≥ 3

−2 + x if x < 3

Range = (−∞, 1]

x
O 2 4

(3, 1)

(0, −2)

y

Using the TI-Nspire
� Use menu > Actions > Define to define the

function f (x) = abs(x − 3) + 1.

Note: The absolute value function can be
obtained by typing abs( ) or using the
2D-template palette t.

� Open a Graphs application ( ctrl I >

Graphs) and let f 1(x) = f (x).
� Press enter to obtain the graph.

Note: The expression abs(x − 3) + 1 could have
been entered directly for f 1(x).

Using the Casio ClassPad
� InM, define the function f (x) = |x − 3| + 1:

• Selectd andf from the Math3 keyboard.
• Complete the rule for f as shown by using4

from the Math1 keyboard.
• Tap EXE .

� Open the Graph & Table application .
� Enter f (x) in y1. Tick the box or tap EXE .
� Tap$ to view the graph.
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32 Chapter 1: Preliminary topics

Functions with rules of the form y = |f(x)| and y = f(|x|)
If the graph of y = f (x) is known, then we can sketch the graph of y = | f (x)| using the
following observation:

| f (x)| = f (x) if f (x) ≥ 0 and | f (x)| = − f (x) if f (x) < 0

Sketch the graph of each of the following:

y = |x2 − 4|a y = |2x − 1|b

Example 29

Solution

x
O−2 2

ya

x

y = −1 

y = 1 

O

yb

The graph of y = x2 − 4 is drawn and the
negative part reflected in the x-axis.

The graph of y = 2x − 1 is drawn and the
negative part reflected in the x-axis.

The graph of y = f (|x|), for x ∈ R, is sketched by reflecting the graph of y = f (x), for x ≥ 0,
in the y-axis.

Sketch the graph of each of the following:

y = |x|2 − 2|x|a y = 2|x|b

Example 30

Solution

x
−2 2O

ya

x
1

O

yb

The graph of y = x2 − 2x, x ≥ 0, is
reflected in the y-axis.

The graph of y = 2x, x ≥ 0, is reflected in
the y-axis.
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1D 1D The modulus function 33

Exercise 1DSkill-
sheet

1Example 26 Evaluate each of the following:

|−5| + 3a |−5| + |−3|b |−5| − |−3|c
|−5| − |−3| − 4d |−5| − |−3| − |−4|e |−5| + |−3| − |−4|f

2 Solve each of the following equations for x:

|x − 1| = 2a |2x − 3| = 4b |5x − 3| = 9c |x − 3| − 9 = 0d
|3 − x| = 4e |3x + 4| = 8f |5x + 11| = 9g

3Example 27 For each of the following, illustrate the set on a number line and represent the set using
interval notation:

{ x : |x| < 3 }a { x : |x| ≥ 5 }b { x : |x − 2| ≤ 1 }c
{ x : |x − 2| < 3 }d { x : |x + 3| ≥ 5 }e { x : |x + 2| ≤ 1 }f

4Example 28 For each of the following functions, sketch the graph and state the range:

f (x) = |x − 4| + 1a f (x) = −|x + 3| + 2b
f (x) = |x + 4| − 1c f (x) = 2 − |x − 1|d

5 Solve each of the following inequalities, giving your answer using set notation:

{ x : |x| ≤ 5 }a { x : |x| ≥ 2 }b { x : |2x − 3| ≤ 1 }c
{ x : |5x − 2| < 3 }d { x : |−x + 3| ≥ 7 }e { x : |−x + 2| ≤ 1 }f

6 Solve each of the following for x:

|x − 4| − |x + 2| = 6a |2x − 5| − |4 − x| = 10b |2x − 1| + |4 − 2x| = 10c

7Example 29 Sketch the graph of each of the following:

y = |x2 − 9|a y = |3x − 3|b y = |x2 − x − 12|c
y = |x2 − 3x − 40|d y = |x2 − 2x − 8|e y = |2x − 4|f

8Example 30 Sketch the graph of each of the following:

y = |x|2 − 4|x|a y = 3|x|b y = |x|2 − 7|x| + 12c
y = |x|2 − |x| − 12d y = |x|2 + |x| − 12e y = −3|x| + 1f

9 If f (x) = |x − a| + b with f (3) = 3 and f (−1) = 3, find the values of a and b.
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34 Chapter 1: Preliminary topics

1E Circles
Consider a circle with centre at the origin and radius r.

If a point with coordinates (x, y) lies on the circle, then
Pythagoras’ theorem gives

x2 + y2 = r2

The converse is also true. That is, a point with coordinates (x, y)
such that x2 + y2 = r2 lies on the circle.

x

y

O A

r
P(x, y)

Cartesian equation of a circle

The circle with centre (h, k) and radius r is the graph of the equation

(x − h)2 + (y − k)2 = r2

Note: This circle is obtained from the circle with equation x2 + y2 = r2 by the translation
defined by (x, y)→ (x + h, y + k).

Sketch the graph of the circle with centre (−2, 5) and radius 2, and state the Cartesian
equation for this circle.

Example 31

Solution
The equation is

(x + 2)2 + (y − 5)2 = 4

which may also be written as

x2 + y2 + 4x − 10y + 25 = 0

7

5

3

−4 −2 O
x

y

The equation x2 + y2 + 4x − 10y + 25 = 0 can be ‘unsimplified’ by completing the square:

x2 + y2 + 4x − 10y + 25 = 0

x2 + 4x + 4 + y2 − 10y + 25 + 25 = 29

(x + 2)2 + (y − 5)2 = 4

This suggests a general form of the equation of a circle:

x2 + y2 + Dx + Ey + F = 0

Completing the square gives

x2 + Dx +
D2

4
+ y2 + Ey +

E2

4
+ F =

D2 + E2

4(
x +

D
2

)2
+

(
y +

E
2

)2
=

D2 + E2 − 4F
4

i.e.
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1E 1E Circles 35

� If D2 + E2 − 4F > 0, then this equation represents a circle.

� If D2 + E2 − 4F = 0, then this equation represents one point
(
−

D
2

,−
E
2

)
.

� If D2 + E2 − 4F < 0, then this equation has no representation in the Cartesian plane.

Sketch the graph of x2 + y2 + 4x + 6y − 12 = 0. State the coordinates of the centre and
the radius.

Example 32

Solution
Complete the square in both x and y:

x2 + y2 + 4x + 6y − 12 = 0

x2 + 4x + 4 + y2 + 6y + 9 − 12 = 13

(x + 2)2 + (y + 3)2 = 25

The circle has centre (−2,−3) and radius 5.

√21−3 +

√21−3 −

−6 2O

(−2, −3)

x

y

Sketch a graph of the region of the plane such that x2 + y2 < 9 and x ≥ 1.

Example 33

Solution

x = 1
y

−3

−3

3

3

x

required region

O

Exercise 1E

1Example 31 For each of the following, find the equation of the circle with the given centre
and radius:

centre (2, 3); radius 1a centre (−3, 4); radius 5b
centre (0,−5); radius 5c centre (3, 0); radius

√
2d

2Example 32 Find the radius and the coordinates of the centre of the circle with equation:

x2 + y2 + 4x − 6y + 12 = 0a x2 + y2 − 2x − 4y + 1 = 0b
x2 + y2 − 3x = 0c x2 + y2 + 4x − 10y + 25 = 0d
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36 Chapter 1: Preliminary topics 1E

3 Sketch the graph of each of the following:

2x2 + 2y2 + x + y = 0a x2 + y2 + 3x − 4y = 6b
x2 + y2 + 8x − 10y + 16 = 0c x2 + y2 − 8x − 10y + 16 = 0d
2x2 + 2y2 − 8x + 5y + 10 = 0e 3x2 + 3y2 + 6x − 9y = 100f

4Example 33 For each of the following, sketch the graph of the specified region of the plane:

x2 + y2 ≤ 16a x2 + y2 ≥ 9b
(x − 2)2 + (y − 2)2 < 4c (x − 3)2 + (y + 2)2 > 16d
x2 + y2 ≤ 16 and x ≤ 2e x2 + y2 ≤ 9 and y ≥ −1f

5 The points (8, 4) and (2, 2) are the ends of a diameter of a circle. Find the coordinates of
the centre and the radius of the circle.

6 Find the equation of the circle with centre (2,−3) that touches the x-axis.

7 Find the equation of the circle that passes through (3, 1), (8, 2) and (2, 6).

8 Consider the circles with equations

4x2 + 4y2 − 60x − 76y + 536 = 0 and x2 + y2 − 10x − 14y + 49 = 0

a Find the radius and the coordinates of the centre of each circle.
b Find the coordinates of the points of intersection of the two circles.

9 Find the coordinates of the points of intersection of the circle with equation x2 + y2 = 25
and the line with equation:

y = xa y = 2xb

1F Ellipses and hyperbolas
Ellipses and hyperbolas will arise in our study of vector calculus in Chapter 13. In this
section, we revise sketching graphs of ellipses and hyperbolas from their Cartesian equations.

Ellipses
For positive constants a and b, the curve with equation

x2

a2 +
y2

b2 = 1

is obtained from the unit circle x2 + y2 = 1 by applying the following dilations:

� a dilation of factor a from the y-axis, i.e. (x, y)→ (ax, y)
� a dilation of factor b from the x-axis, i.e. (x, y)→ (x, by).

The result is the transformation (x, y)→ (ax, by).
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1F Ellipses and hyperbolas 37

x x x

yy
y

1−1

11

−1 −1

OOO

(x, y) (ax, y) (x, y) (x, by)

−a
−a

−b

b

a a

The curve with equation

x2

a2 +
y2

b2 = 1

is an ellipse centred at the origin with x-axis intercepts at (−a, 0) and (a, 0) and with y-axis
intercepts at (0,−b) and (0, b).

If a = b, then the ellipse is a circle centred at the origin with radius a.

Ellipse
x2

a2 +
y2

b2 = 1 where a > b Ellipse
x2

a2 +
y2

b2 = 1 where b > a

A′ A

B′

B

−b

−a

b

aO

y

x A′ A

−b B′

b

−a a

B

O

y

x

AA′ is the major axis AA′ is the minor axis

BB′ is the minor axis BB′ is the major axis

Cartesian equation of an ellipse

The graph of the equation

(x − h)2

a2 +
(y − k)2

b2 = 1

is an ellipse with centre (h, k). It is
obtained from the ellipse

x2

a2 +
y2

b2 = 1

by the translation (x, y)→ (x + h, y + k).

(h, k + b)

(h, k − b)

(h + a, k)(h − a, k) (h, k)

x

y

O
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38 Chapter 1: Preliminary topics

Sketch the graph of each of the following ellipses. Give the coordinates of the centre and
the axis intercepts.

x2

9
+

y2

4
= 1a

x2

4
+

y2

9
= 1b

(x − 2)2

9
+

(y − 3)2

16
= 1c 3x2 + 24x + y2 + 36 = 0d

Example 34

Solution
Centre (0, 0)
Axis intercepts (±3, 0) and (0,±2)

3

2

−3

−2

O
x

y

a Centre (0, 0)
Axis intercepts (±2, 0) and (0,±3)

3

2−2

−3

O
x

y

b

c Centre (2, 3)

y-axis intercepts
4
9

+
(y − 3)2

16
= 1When x = 0:

(y − 3)2

16
=

5
9

(y − 3)2 =
16 × 5

9

∴ y = 3 ±
4
√

5
3

x-axis intercepts
(x − 2)2

9
+

9
16

= 1When y = 0:

(x − 2)2

9
=

7
16

(x − 2)2 =
9 × 7

16

∴ x = 2 ±
3
√

7
4

(2, 7)

(5, 3)

(2, −1)

(2, 3)
(−1, 3)

3 +

3
4√5

3
4√5

3 −

3√7
4

2 −
3√7

4
2 +O

x

y
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1F Ellipses and hyperbolas 39

d Completing the square:

3x2 + 24x + y2 + 36 = 0

3(x2 + 8x + 16) + y2 + 36 − 48 = 0

3(x + 4)2 + y2 = 12

(x + 4)2

4
+

y2

12
= 1i.e.

Centre (−4, 0)
Axis intercepts (−6, 0) and (−2, 0)

(−6, 0) (−4, 0) (−2, 0)
O x

y

(−4, 2√3)

(−4, −2√3) 

Given an equation of the form

Ax2 + By2 + Dx + Ey + F = 0

where both A and B are positive, there are three possibilities for the corresponding graph.
The graph may be an ellipse (which includes the special case where the graph is a circle), the
graph may be a single point, or there may be no pairs (x, y) that satisfy the equation.

Hyperbolas
The curve with equation

x2

a2 −
y2

b2 = 1

is a hyperbola centred at the origin with axis intercepts (a, 0) and (−a, 0).

The hyperbola has asymptotes y =
b
a

x and y = −
b
a

x.

To see why this should be the case, we rearrange the
equation of the hyperbola as follows:

x2

a2 −
y2

b2 = 1

y2

b2 =
x2

a2 − 1

y2 =
b2x2

a2

(
1 −

a2

x2

)
∴

As x→ ±∞, we have
a2

x2 → 0. This suggests that

y2 →
b2x2

a2

y→ ±
bx
a

i.e.

(a, 0)(−a, 0)

y =
−b
a

x
y = a

x

x

b

y

O
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40 Chapter 1: Preliminary topics

Cartesian equation of a hyperbola

The graph of the equation

(x − h)2

a2 −
(y − k)2

b2 = 1

is a hyperbola with centre (h, k). The asymptotes are

y − k = ±
b
a

(
x − h

)
Note: This hyperbola is obtained from the hyperbola with equation

x2

a2 −
y2

b2 = 1 by the
translation defined by (x, y)→ (x + h, y + k).

For each of the following equations, sketch the graph of the corresponding hyperbola.
Give the coordinates of the centre, the axis intercepts and the equations of the asymptotes.

x2

9
−

y2

4
= 1a

y2

9
−

x2

4
= 1b

(x − 1)2 − (y + 2)2 = 1c
(y − 1)2

4
−

(x + 2)2

9
= 1d

Example 35

Solution

a Since
x2

9
−

y2

4
= 1, we have

y2 =
4x2

9

(
1 −

9
x2

)
Thus the equations of the asymptotes are y = ±

2
3

x.

If y = 0, then x2 = 9 and so x = ±3. The x-axis
intercepts are (3, 0) and (−3, 0). The centre is (0, 0).

y = − y = 
2
3

x
2
3

x

(−3, 0) (3, 0)
x

y

O

b Since
y2

9
−

x2

4
= 1, we have

y2 =
9x2

4

(
1 +

4
x2

)
Thus the equations of the asymptotes are y = ±

3
2

x.

The y-axis intercepts are (0, 3) and (0,−3).
The centre is (0, 0).

(0, −3)

(0, 3)

x

y

O

y = − 3
2

x y = 
3
2

x
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1F Ellipses and hyperbolas 41

c First sketch the graph of x2 − y2 = 1. The asymptotes
are y = x and y = −x. The centre is (0, 0) and the axis
intercepts are (1, 0) and (−1, 0).

Note: This is called a rectangular hyperbola, as its
asymptotes are perpendicular.

Now to sketch the graph of

(x − 1)2 − (y + 2)2 = 1

we apply the translation (x, y)→ (x + 1, y − 2).

x

y

y = −x y = x

(1, 0)(−1, 0) O

The new centre is (1,−2) and the asymptotes
have equations y + 2 = ±(x − 1). That is,
y = x − 3 and y = −x − 1.

Axis intercepts
If x = 0, then y = −2.
If y = 0, then (x − 1)2 = 5 and so x = 1 ±

√
5.

Therefore the axis intercepts are (0,−2)
and (1 ±

√
5, 0).

x

y

y = −x −1 y = x − 3 

O

(2, −2) (0, −2)

(1 − √5, 0) (1 + √5, 0)
(1, −2)

d The graph of
(y − 1)2

4
−

(x + 2)2

9
= 1 is obtained from the hyperbola

y2

4
−

x2

9
= 1

through the translation (x, y)→ (x − 2, y + 1). Its centre will be (−2, 1).

x

y

(0, _2)

(0, 2)

Oy2

4

x2

9
− = 1

y = −

y = 
2
3

x

 
2
3

x

x

y

( y − 1)2

4
(x + 2)2

9
− = 1

2
3
_ 7

3
_x +y =

2
3
_ 1

3
_x −y = −

(−2, −1)

(−2, 1)

(−2, 3)

O

The axis intercepts are
(
0, 1 ±

2
√

13
3

)
.

Note: The hyperbolas
y2

4
−

x2

9
= 1 and

x2

9
−

y2

4
= 1 have the same asymptotes; they are

called conjugate hyperbolas.
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42 Chapter 1: Preliminary topics 1F

Exercise 1FSkill-
sheet

1Example 34 Sketch the graph of each of the following. Label the axis intercepts and state the
coordinates of the centre.

x2

9
+

y2

16
= 1a 25x2 + 16y2 = 400b

(x − 4)2

9
+

(y − 1)2

16
= 1c x2 +

(y − 2)2

9
= 1d

9x2 + 25y2 − 54x − 100y = 44e 9x2 + 25y2 = 225f

5x2 + 9y2 + 20x − 18y − 16 = 0g 16x2 + 25y2 − 32x + 100y − 284 = 0h

(x − 2)2

4
+

(y − 3)2

9
= 1i 2(x − 2)2 + 4(y − 1)2 = 16j

2Example 35 Sketch the graph of each of the following. Label the axis intercepts and give the
equations of the asymptotes.

x2

16
−

y2

9
= 1a

y2

16
−

x2

9
= 1b

x2 − y2 = 4c 2x2 − y2 = 4d

x2 − 4y2 − 4x − 8y − 16 = 0e 9x2 − 25y2 − 90x + 150y = 225f

(x − 2)2

4
−

(y − 3)2

9
= 1g 4x2 − 8x − y2 + 2y = 0h

9x2 − 16y2 − 18x + 32y − 151 = 0i 25x2 − 16y2 = 400j

3 Find the coordinates of the points of intersection of y =
1
2

x with:

x2 − y2 = 1a
x2

4
+ y2 = 1b

4 Show that there is no intersection point of the line y = x + 5 with the ellipse x2 +
y2

4
= 1.

5 Let a, b > 0. Prove that the curves
x2

a2 +
y2

b2 = 1 and
x2

b2 +
y2

a2 = 1 intersect on the vertices
of a square.

6 Find the coordinates of the points of intersection of
x2

16
+

y2

25
= 1 and the line with

equation 5x = 4y.

7 On the one set of axes, sketch the graphs of x2 + y2 = 9 and x2 − y2 = 9.
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1G Parametric equations 43

1G Parametric equations
In Chapter 13, we will study motion along a curve. A parameter (usually t representing
time) will be used to help describe these curves. In Chapter 5, we will use a parameter to
describe lines in two- or three-dimensional space.

This section gives an introduction to parametric equations of curves in the plane.

The unit circle
The unit circle can be expressed in Cartesian form as

{
(x, y) : x2 + y2 = 1

}
. We have seen in

Section 1A that the unit circle can also be expressed as{
(x, y) : x = cos t and y = sin t, for some t ∈ R

}
The set notation is often omitted, and we can describe the unit circle by the equations

x = cos t and y = sin t for t ∈ R

These are the parametric equations for the unit circle.

We still obtain the entire unit circle if we restrict the values of t to the interval [0, 2π].
The following three diagrams illustrate the graphs obtained from the parametric equations
x = cos t and y = sin t for three different sets of values of t.

t ∈ [0, 2π] t ∈ [0,π] t ∈
[
0,
π

2

]

x

y

−1

−1

1

1O
x

y

O−1

1

1

y

x
O

1

1

Circles
Parametric equations for a circle centred at the origin

The circle with centre the origin and radius a is described by the parametric equations

x = a cos t and y = a sin t

The entire circle is obtained by taking t ∈ [0, 2π].

Note: To obtain the Cartesian equation, first rearrange the parametric equations as

x
a

= cos t and
y
a

= sin t

Square and add these equations to obtain

x2

a2 +
y2

a2 = cos2 t + sin2 t = 1

This equation can be written as x2 + y2 = a2, which is the Cartesian equation of the
circle with centre the origin and radius a.
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44 Chapter 1: Preliminary topics

The domain and range of the circle can be found from the parametric equations:

� Domain The range of the function with rule x = a cos t is [−a, a].
Hence the domain of the relation x2 + y2 = a2 is [−a, a].

� Range The range of the function with rule y = a sin t is [−a, a].
Hence the range of the relation x2 + y2 = a2 is [−a, a].

A circle is defined by the parametric equations

x = 2 + 3 cos θ and y = 1 + 3 sin θ for θ ∈ [0, 2π]

Find the Cartesian equation of the circle, and state the domain and range of this relation.

Example 36

Solution
Domain The range of the function with rule x = 2 + 3 cos θ is [−1, 5]. Hence the domain
of the corresponding Cartesian relation is [−1, 5].

Range The range of the function with rule y = 1 + 3 sin θ is [−2, 4]. Hence the range of
the corresponding Cartesian relation is [−2, 4].

Cartesian equation
Rewrite the parametric equations as

x − 2
3

= cos θ and
y − 1

3
= sin θ

Square both sides of each of these equations and add:

(x − 2)2

9
+

(y − 1)2

9
= cos2

θ + sin2
θ = 1

(x − 2)2 + (y − 1)2 = 9i.e.

Parametric equations for a circle

The circle with centre (h, k) and radius a is described by the parametric equations

x = h + a cos t and y = k + a sin t

The entire circle is obtained by taking t ∈ [0, 2π].

Parametric equations in general
A parametric curve in the plane is defined by a pair of functions

x = f (t) and y = g(t)

The variable t is called the parameter. Each value of t gives a point
(
f (t), g(t)

)
in the plane.

The set of all such points will be a curve in the plane.
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1G Parametric equations 45

Note: If x = f (t) and y = g(t) are parametric equations for a curve C and you eliminate the
parameter t between the two equations, then each point of the curve C lies on the
curve represented by the resulting Cartesian equation.

A curve is defined parametrically by the equations

x = at2 and y = 2at for t ∈ R

where a is a positive constant. Find:

a the Cartesian equation of the curve
b the equation of the line passing through the points where t = 1 and t = −2
c the length of the chord joining the points where t = 1 and t = −2.

Example 37

Solution

a The second equation gives t =
y

2a
.

Substitute this into the first equation:

x = at2 = a
( y
2a

)2

= a
( y2

4a2

)
=

y2

4a

This can be written as y2 = 4ax.

(at2, 2at)

O
x

y

b At t = 1, x = a and y = 2a. This is the point (a, 2a).
At t = −2, x = 4a and y = −4a. This is the point (4a,−4a).

The gradient of the line is

m =
2a − (−4a)

a − 4a
=

6a
−3a

= −2

Therefore the equation of the line is

y − 2a = −2(x − a)

which simplifies to y = −2x + 4a.

c The chord joining (a, 2a) and (4a,−4a) has length√
(a − 4a)2 + (2a − (−4a))2 =

√
9a2 + 36a2

=
√

45a2

= 3
√

5 a (since a > 0)
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46 Chapter 1: Preliminary topics

Ellipses

Parametric equations for an ellipse

The ellipse with the Cartesian equation
x2

a2 +
y2

b2 = 1 can be described by the parametric
equations

x = a cos t and y = b sin t

The entire ellipse is obtained by taking t ∈ [0, 2π].

Note: We can rearrange these parametric equations as

x
a

= cos t and
y
b

= sin t

Square and add these equations to obtain

x2

a2 +
y2

b2 = cos2 t + sin2 t = 1

The domain and range of the ellipse can be found from the parametric equations:

� Domain The range of the function with rule x = a cos t is [−a, a].

Hence the domain of the relation
x2

a2 +
y2

b2 = 1 is [−a, a].

� Range The range of the function with rule y = b sin t is [−b, b].

Hence the range of the relation
x2

a2 +
y2

b2 = 1 is [−b, b].

Find the Cartesian equation of the curve with parametric equations

x = 3 + 3 sin t and y = 2 − 2 cos t for t ∈ R

and describe the graph.

Example 38

Solution
We can rearrange the two equations as

x − 3
3

= sin t and
2 − y

2
= cos t

Now square both sides of each equation and add:

(x − 3)2

9
+

(2 − y)2

4
= sin2 t + cos2 t = 1

Since (2 − y)2 = (y − 2)2, this equation can be written more neatly as

(x − 3)2

9
+

(y − 2)2

4
= 1

This is the equation of an ellipse with centre (3, 2) and axis intercepts at (3, 0) and (0, 2).
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1G Parametric equations 47

Hyperbolas
In order to give parametric equations for hyperbolas, we will be using the secant function,
which is defined by

sec θ =
1

cos θ
if cos θ , 0

The graphs of y = sec θ and y = cos θ
are shown here on the same set of axes.
The secant function is studied further in
Chapter 3.

We will also use an alternative form of
the Pythagorean identity

cos2
θ + sin2

θ = 1

Dividing both sides by cos2 θ gives

1 + tan2
θ = sec2

θ

We will use this identity in the form

sec2
θ − tan2

θ = 1

−π π 2π

y

θ
y = cos θ

y = sec θ

1

O

−1

−π
2

π
2

3π
2

Parametric equations for a hyperbola

The hyperbola with the Cartesian equation
x2

a2 −
y2

b2 = 1 can be described by the
parametric equations

x = a sec t and y = b tan t for t ∈
(
−
π

2
,
π

2

)
∪

(π
2

,
3π
2

)
Note: We can rearrange these parametric equations as

x
a

= sec t and
y
b

= tan t

Square and subtract these equations to obtain

x2

a2 −
y2

b2 = sec2 t − tan2 t = 1

The domain and range of the hyperbola can be determined from the parametric equations.

� Domain There are two cases, giving the left and right branches of the hyperbola:

• For t ∈
(
−
π

2
,
π

2

)
, the range of the function with rule x = a sec t is [a,∞).

The domain [a,∞) gives the right branch of the hyperbola.

• For t ∈
(π

2
,

3π
2

)
, the range of the function with rule x = a sec t is (−∞, a].

The domain (−∞, a] gives the left branch of the hyperbola.

� Range For both sections of the domain, the range of the function with rule y = b tan t
is R.
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48 Chapter 1: Preliminary topics

Find the Cartesian equation of the curve with parametric equations

x = 3 sec t and y = 4 tan t for t ∈
(π

2
,

3π
2

)
Describe the curve.

Example 39

Solution
Rearrange the two equations:

x
3

= sec t and
y
4

= tan t

Square both sides of each equation and subtract:

x2

9
−

y2

16
= sec2 t − tan2 t = 1

The Cartesian equation of the curve is
x2

9
−

y2

16
= 1.

The range of the function with rule x = 3 sec t for t ∈
(π

2
,

3π
2

)
is (−∞,−3]. Hence the

domain for the graph is (−∞,−3].

The curve is the left branch of a hyperbola centred at the origin with x-axis intercept

at (−3, 0). The equations of the asymptotes are y =
4x
3

and y = −
4x
3

.

Finding parametric equations for a curve
When converting from a Cartesian equation to a pair of parametric equations, there are many
different possible choices.

Give parametric equations for each of the following:

a x2 + y2 = 9

b
x2

16
+

y2

4
= 1

c
(x − 1)2

9
−

(y + 1)2

4
= 1

Example 40

Solution
a One possible solution is x = 3 cos t and y = 3 sin t for t ∈ [0, 2π].

Another solution is x = −3 cos(2t) and y = 3 sin(2t) for t ∈ [0,π].

Yet another solution is x = 3 sin t and y = 3 cos t for t ∈ R.

b One possible solution is x = 4 cos t and y = 2 sin t.

c One possible solution is x − 1 = 3 sec t and y + 1 = 2 tan t.
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1G 1G Parametric equations 49

Using the TI-Nspire
� Open a Graphs application ( con > New > Add Graphs).
� Use menu > Graph Entry/Edit > Parametric to show the entry line for parametric

equations.
� Enter x1(t) = 2 cos(3t) and y1(t) = 2 sin(3t) as shown.

Using the Casio ClassPad
� Open the Graph & Table application .
� From the toolbar, select Type > ParamType.

� Use the Trig keyboard to enter the equations as
shown on the right.

� Tick the box and tap$.
� Use6 to adjust the window.

Exercise 1GSkill-
sheet

1Example 36 Find the Cartesian equation of the curve with parametric equations x = 2 cos(3t) and
y = 2 sin(3t), and determine the domain and range of the corresponding relation.

2Example 37 A curve is defined parametrically by the equations x = 4t2 and y = 8t for t ∈ R. Find:

a the Cartesian equation of the curve
b the equation of the line passing through the points where t = 1 and t = −1
c the length of the chord joining the points where t = 1 and t = −3.
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50 Chapter 1: Preliminary topics 1G

3Example 38 Find the Cartesian equation of the curve with parametric equations x = 2 + 3 sin t and
y = 3 − 2 cos t for t ∈ R, and describe the graph.

4Example 39 Find the Cartesian equation of the curve with parametric equations x = 2 sec t and

y = 3 tan t for t ∈
(π

2
,

3π
2

)
, and describe the curve.

5 Find the corresponding Cartesian equation for each pair of parametric equations:

x = 4 cos(2t) and y = 4 sin(2t)a x = 2 sin(2t) and y = 2 cos(2t)b
x = 4 cos t and y = 3 sin tc x = 4 sin t and y = 3 cos td
x = 2 tan(2t) and y = 3 sec(2t)e x = 1 − t and y = t2 − 4f

x = t + 2 and y =
1
t

g x = t2 − 1 and y = t2 + 1h

x = t −
1
t

and y = 2
(
t +

1
t

)
i

6 For each of the following pairs of parametric equations, determine the Cartesian
equation of the curve and sketch its graph:

a x = sec t, y = tan t, t ∈
(π

2
,

3π
2

)
b x = 3 cos(2t), y = −4 sin(2t)

c x = 3 − 3 cos t, y = 2 + 2 sin t d x = 3 sin t, y = 4 cos t, t ∈
[
−
π

2
,
π

2

]
e x = sec t, y = tan t, t ∈

(
−
π

2
,
π

2

)
f x = 1 − sec(2t), y = 1 + tan(2t), t ∈

(π
4

,
3π
4

)
7 A circle is defined by the parametric equations

x = 2 cos(2t) and y = −2 sin(2t) for t ∈ R

a Find the coordinates of the point P on the circle where t =
4π
3

.

b Find the equation of the tangent to the circle at P.

8Example 40 Give parametric equations corresponding to each of the following:

x2 + y2 = 16a
x2

9
−

y2

4
= 1b

(x − 1)2 + (y + 2)2 = 9c
(x − 1)2

9
+

(y + 3)2

4
= 9d

9 A circle has centre (1, 3) and radius 2. If parametric equations for this circle are
x = a + b cos(2πt) and y = c + d sin(2πt), where a, b, c and d are positive constants,
state the values of a, b, c and d.

10 An ellipse has x-axis intercepts (−4, 0) and (4, 0) and y-axis intercepts (0, 3) and (0,−3).
State a possible pair of parametric equations for this ellipse.

11 The circle with parametric equations x = 2 cos(2t) and y = 2 sin(2t) is dilated by a factor
of 3 from the x-axis. For the image curve, state:

a a possible pair of parametric equations
b the Cartesian equation.
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1G 1H Algorithms and pseudocode 51

12 The ellipse with parametric equations x = 3− 2 cos
( t
2

)
and y = 4 + 3 sin

( t
2

)
is translated

3 units in the negative direction of the x-axis and 2 units in the negative direction of
the y-axis. For the image curve, state:

a possible pair of parametric equationsa the Cartesian equation.b

13 Sketch the graph of the curve with parametric equations x = 2 + 3 sin(2πt) and
y = 4 + 2 cos(2πt) for:

t ∈
[
0, 1

4
]

a t ∈
[
0, 1

2
]

b t ∈
[
0, 3

2
]

c

For each of these graphs, state the domain and range.

1H Algorithms and pseudocode
An algorithm is a finite, unambiguous sequence of instructions for performing a specific
task. An algorithm can be described using step-by-step instructions, illustrated by a
flowchart, or written out in pseudocode.

You have seen many examples of algorithms in Year 11 and you will meet several new
algorithms throughout this book. This section gives a summary of writing algorithms in
pseudocode.

Note: The Interactive Textbook includes online appendices that provide an introduction
to coding using the language Python and also to coding using the TI-Nspire and the
Casio ClassPad.

Assigning values to variables
A variable is a string of one or more letters that acts as a placeholder that can be assigned
different values. For example, the notation

x← 3

means ‘assign the value 3 to the variable x’.

Controlling the flow of steps
The steps of an algorithm are typically carried out one after the other. However, there are
constructs that allow us to control the flow of steps.

� If–then blocks This construct provides a means
of making decisions within an algorithm. Certain
instructions are only followed if a condition is
satisfied.

if condition then

follow these instructions

end if

� For loops This construct provides a means of
repeatedly executing the same set of instructions in
a controlled way. In the template on the right, this
is achieved by performing one iteration for each
value of i in the sequence 1, 2, 3, . . . , n.

for i from 1 to n

follow these instructions

end for
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52 Chapter 1: Preliminary topics

� While loops This construct provides another
means of repeatedly executing the same set of
instructions in a controlled way. This is achieved
by performing iterations indefinitely, as long as
some condition remains true.

while condition

follow these instructions

end while

In the following example, we construct a table of values to demonstrate the algorithm. This
is called a desk check. In general, we carry out a desk check of an algorithm by carefully
following the algorithm step by step, and constructing a table of the values of all the variables
after each step.

Consider the sequence defined by the rule

xn+1 = 3xn − 2, where x1 = 3

Write an algorithm that will determine the smallest value of n for which xn > 1000. Show
a desk check to test the operation of the algorithm.

Example 41

Solution
We use a while loop, since we don’t know how many iterations will be required.

The variable x is used for the current term of the sequence, and the variable n is used to
keep track of the number of iterations.

n← 1

x← 3

while x ≤ 1000

n← n + 1

x← 3x − 2

end while

print n

n x

1 3

2 7

3 19

4 55

5 163

6 487

7 1459

Note: The output is 7.

Functions
A function takes one or more input values and returns
an output value. Functions can be defined and then
used in other algorithms.

define function(input):

follow these instructions

return output
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1H Algorithms and pseudocode 53

Construct a function that inputs a natural number n and outputs the value of

n! = 1 × 2 × · · · × n

Example 42

Solution

define factorial(n):

product ← 1

for i from 1 to n

product ← product × i

end for

return product

For example, calling factorial(4) will return the value 24.

Lists
In programming languages, a finite sequence is often called a list. We will write lists using
square brackets. For example, we can define a list A by

A← [2, 3, 5, 7, 11]

The notation A[n] refers to the nth entry of the list. So A[1] = 2 and A[5] = 11.

We can add an entry to the end of a list using append. For example, the instruction

append 9 to A

would result in A = [2, 3, 5, 7, 11, 9].

Write a function that returns a list of the first n square numbers for a given natural
number n.

Example 43

Solution

define squares(n):

A← [ ]

for i from 1 to n

append i2 to A

end for

return A

For example, calling squares(5) will return the list [1, 4, 9, 16, 25].
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54 Chapter 1: Preliminary topics 1H

Nested loops
The next example illustrates how we can use loops within loops.

Using pseudocode, write an algorithm to find the positive integer solutions of the equation

11x + 19y + 13z = 200

Example 44

Solution
We use three loops to run through all the possible positive integer values of x, y and z.
We first note that

200 ÷ 11 ≈ 18.2, 200 ÷ 19 ≈ 10.5, 200 ÷ 13 ≈ 15.4

Therefore we know that we will find all the solutions from the following nest of
three loops.

for x from 1 to 18

for y from 1 to 10

for z from 1 to 15

if 11x + 19y + 13z = 200 then

print (x, y, z)

end if

end for

end for

end for

This algorithm prints the five solutions (2, 8, 2), (3, 4, 7), (6, 5, 3), (7, 1, 8) and (10, 2, 4).

Exercise 1HSkill-
sheet

1Example 41 Consider the sequence defined by the rule

xn+1 = 2xn + 3, where x1 = 3

Write an algorithm that will determine the smallest value of n for which xn > 100. Show
a desk check to test the operation of the algorithm.

2Example 42 Construct a function that inputs a natural number n and outputs the product of the
first n even natural numbers.

3Example 43 Write a function that returns a list of the first n powers of 2 for a given natural
number n.

4Example 44 For each of the following, use pseudocode to describe an algorithm that will find all the
positive integer solutions of the equation:

x2 + y2 + z2 = 500a x3 + y3 + z3 = 1 000 000b
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1H 1H Algorithms and pseudocode 55

5 The sine function can be given by an infinite sum:

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

The following pseudocode function evaluates the sum of the first n terms for a given
value of x. (The code uses the factorial function from Example 42.)

define sinsum(x, n):

sum← 0

for k from 1 to n

sum← sum + (−1)k+1 ×
x2k−1

factorial(2k − 1)
end for

return sum

a Perform a desk check to evaluate:

i sinsum(0.1, 4) ii sinsum(1, 4) iii sinsum(2, 4)

b Compare the values found in part a with the values of sin 0.1, sin 1 and sin 2.
c Using a device, investigate the function sinsum(x, n) for a range of input values.

6 The cosine function can be given by an infinite sum:

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · ·

a Modify the pseudocode function sinsum(x, n) from the previous question to give
approximations of the cosine function.

b Find an approximation for cos 2 using the first four terms of the sum.

7 Riemann sums The block of pseudocode on the
right finds an approximation to the area under the
curve y = x3 + 2x2 + 3 between x = 0 and x = 5. This
is done by summing the areas of 10 rectangular strips,
as shown in the diagram below.

y

134.625

99

70.375
48

19

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x

a Carry out a desk check for the algorithm.
b Modify the algorithm to use 50 trapezoidal strips.

define f (x):

return x3 + 2x2 + 3

a← 0

b← 5

n← 10

h←
b − a

n
left ← a

sum← 0

for i from 1 to n

strip← f (left) × h

sum← sum + strip

left ← left + h

end for

print sum

Note: We will use similar algorithms for length, surface area and volume in Chapter 14.
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56 Chapter 1: Preliminary topics 1H

8 Newton’s method You met Newton’s method in Mathematical Methods Units 1 & 2.
We aim to find an approximate solution to an equation of the form f (x) = 0, where
f : R→ R is a differentiable function. We start from an initial estimate x = x0 and
construct a sequence of approximations x1, x2, x3, . . . using the iterative formula:

xn+1 = xn −
f (xn)
f ′(xn)

where n = 0, 1, 2, . . .

The following algorithm uses this method for the equation −x3 + 5x2 − 3x + 4 = 0. The
table shows a desk check of the algorithm.

define f (x):

return −x3 + 5x2 − 3x + 4

define D f (x):

return −3x2 + 10x − 3

x← 3.8

while | f (x)| > 10−6

x← x −
f (x)

D f (x)

print x, f (x)

end while

x f (x)

Initial 3.8 9.928

Pass 1 4.99326923 −10.81199119

Pass 2 4.60526316 −1.44403339

Pass 3 4.53507148 −0.04308844

Pass 4 4.53284468 −0.00004266

Pass 5 4.53284247 0.00000000

a Modify this algorithm for the equation x3 − 2 = 0 and the initial estimate x0 = 2.

Carry out a desk check to determine an approximation of 2
1
3 .

b In Mathematical Methods Units 3 & 4, you will learn that if f (x) = sin x, then
f ′(x) = cos x. Use this fact and Newton’s method to find an approximation of π.
Start with the initial estimate x0 = 3.

Note: We will use a similar method in Chapter 11 for the numerical solution of
differential equations.
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Assign-
ment

Nrich

Chapter summary

Triangles
� Labelling triangles
• Interior angles are denoted by uppercase letters.
• The length of the side opposite an angle is denoted by

the corresponding lowercase letter.

B

A C
b

c a

� Sine rule
For triangle ABC:

a
sin A

=
b

sin B
=

c
sin C

A
C

B

b

c a

� Cosine rule
For triangle ABC:

a2 = b2 + c2 − 2bc cos A

cos A =
b2 + c2 − a2

2bc

A
C

B

b

c a

Sequences and series
� The nth term of a sequence is denoted by tn.
� A recurrence relation enables each subsequent term to be found from previous terms.

A sequence specified in this way is said to be defined recursively.

t1 = 1, tn = tn−1 + 2e.g.

� A sequence may also be defined by a rule that is stated in terms of n.

tn = 2n − 1e.g.

� Arithmetic sequences and series
• An arithmetic sequence has a rule of the form tn = a + (n − 1)d, where a is the first

term and d is the common difference (i.e. d = tk − tk−1 for all k > 1).
• The sum of the first n terms of an arithmetic sequence is given by

Sn =
n
2

(
2a + (n − 1)d

)
or Sn =

n
2
(
a + `

)
, where ` = tn

� Geometric sequences and series
• A geometric sequence has a rule of the form tn = arn−1, where a is the first term and

r is the common ratio (i.e. r =
tk

tk−1
for all k > 1).

• For r , 1, the sum of the first n terms of a geometric sequence is given by

Sn =
a(rn − 1)

r − 1
or Sn =

a(1 − rn)
1 − r

• For −1 < r < 1, the sum Sn approaches a limiting value as n→ ∞, and the series is said
to be convergent. This limit is called the sum to infinity and is given by S∞ =

a
1 − r

.
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58 Chapter 1: Preliminary topics

� Recurrence relations of the form tn = rtn−1 + d
Let t1, t2, t3, . . . be a sequence defined by a recurrence relation of the form tn = rtn−1 + d,
where r and d are constants. Then the nth term of the sequence is given by

tn = rn−1t1 +
d(rn−1 − 1)

r − 1
(provided r , 1)

The modulus function
� The modulus or absolute value of a real number x is

|x| =

x if x ≥ 0

−x if x < 0

For example: |5| = 5 and |−5| = 5.
� On the number line, the distance between two numbers a and b is given by |a − b| = |b − a|.

For example: |x − 2| < 5 can be read as ‘the distance of x from 2 is less than 5’.

Circles
� The circle with centre at the origin and radius a has Cartesian equation x2 + y2 = a2.
� The circle with centre (h, k) and radius a has equation (x − h)2 + (y − k)2 = a2.

Ellipses

� The curve with equation
x2

a2 +
y2

b2 = 1 is an ellipse centred at the origin with axis intercepts

(±a, 0) and (0,±b).

a > b y

x
O

A′

−bB′

b

A
−a a

B

b > a
y

xO
A′

B′

B

A
−a

−b

a

b

� The curve with equation
(x − h)2

a2 +
(y − k)2

b2 = 1 is an ellipse with centre (h, k).

Hyperbolas

� The curve with equation
x2

a2 −
y2

b2 = 1 is a hyperbola
centred at the origin.

• The axis intercepts are (±a, 0).

• The asymptotes have equations y = ±
b
a

x.

x

y

(−a, 0) (a, 0)

y = −b
a x

x

y = b
a

O
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� The curve with equation
(x − h)2

a2 −
(y − k)2

b2 = 1 is a hyperbola with centre (h, k). The

asymptotes have equations y − k =
b
a

(x − h) and y − k = −
b
a

(x − h).

Parametric equations
� A parametric curve in the plane is defined by a pair of functions

x = f (t) and y = g(t)

where t is called the parameter of the curve.
� Parameterisations of familiar curves:

Cartesian equation Parametric equations

Circle x2 + y2 = a2 x = a cos t and y = a sin t

Ellipse
x2

a2 +
y2

b2 = 1 x = a cos t and y = b sin t

Hyperbola
x2

a2 −
y2

b2 = 1 x = a sec t and y = b tan t

Note: To obtain the entire circle or the entire ellipse using these parametric equations,
it suffices to take t ∈ [0, 2π].

� Translations of parametric curves: The circle with equation (x − h)2 + (y − k)2 = a2 can
also be described by the parametric equations x = h + a cos t and y = k + a sin t.

Technology-free questions

1 A sequence is defined recursively by fn = 5 fn−1 and f0 = 1. Find fn in terms of n.

Write down the equation
of the ellipse shown.

(0, 3)

(−2, 7)

x

y

O

2 Find sin θ◦.

78

θ°

3 Find x.

9 cmx cm
30°

4

5 a Find the exact value of cos 315◦.

b Given that tan x◦ =
3
4

and 180 < x < 270, find the exact value of cos x◦.

c Find an angle A◦ (with A , 330) such that sin A◦ = sin 330◦.
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60 Chapter 1: Preliminary topics

6 ABC is a horizontal right-angled triangle with the right angle
at B. The point P is 3 cm directly above B. The length of AB
is 1 cm and the length of BC is 1 cm. Find the angle that the
triangle ACP makes with the horizontal.

A

B
C

P

7 a Solve 2 cos(2x + π) − 1 = 0 for −π ≤ x ≤ π.
b Sketch the graph of y = 2 cos(2x + π) − 1 for −π ≤ x ≤ π, clearly labelling the axis

intercepts.
c Solve 2 cos(2x + π) < 1 for −π ≤ x ≤ π.

8 The triangular base ABC of a tetrahedron has side lengths AB = 15 cm, BC = 12 cm
and AC = 9 cm. The apex D is 9 cm vertically above C.

a Find the angle C of the triangular base.
b Find the angles that the sloping edges make with the horizontal.

9 Two ships sail from port at the same time. One sails 24 nautical miles due east in
3 hours, and the other sails 33 nautical miles on a bearing of 030◦ in the same time.

a How far apart are the ships 3 hours after leaving port?
b How far apart would they be in 5 hours if they maintained the same bearings and

constant speed?

10 Find x.

30° 45°

18 cm x cm

11 An airport A is 480 km due east of airport B. A pilot flies on a bearing of 225◦ from A
to C and then on a bearing of 315◦ from C to B.

a Make a sketch of the situation.
b Determine how far the pilot flies from A to C.
c Determine the total distance the pilot flies.

12 Find the equations of the asymptotes of the hyperbola with rule x2 −
(y − 2)2

9
= 15.

13 A curve is defined by the parametric equations x = 3 cos(2t) + 4 and y = sin(2t) − 6.
Give the Cartesian equation of the curve.

14 A curve is defined by the parametric equations x = 2 cos(πt) and y = 2 sin(πt) + 2.
Give the Cartesian equation of the curve.

15 a Sketch the graphs of y = −2 cos x and y = −2 cos
(
x −

π

4

)
on the same set of axes,

for x ∈ [0, 2π].

b Solve −2 cos
(
x −

π

4

)
= 0 for x ∈ [0, 2π].

c Solve −2 cos x < 0 for x ∈ [0, 2π].
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16 Find all angles θ with 0 ≤ θ ≤ 2π, where:

sin θ =
1
2

a cos θ =

√
3

2
b tan θ = 1c

17 A circle has centre (1, 2) and radius 3. If parametric equations for this circle are
x = a + b cos(2πt) and y = c + d sin(2πt), where a, b, c and d are positive constants,
state the values of a, b, c and d.

18 Find the centre and radius of the circle with equation x2 + 8x + y2 − 12y + 3 = 0.

19 Find the x- and y-axis intercepts of the ellipse with equation
x2

81
+

y2

9
= 1.

20 The first term of an arithmetic sequence is 3p + 5, where p is a positive integer. The last
term is 17p + 17 and the common difference is 2.

a Find in terms of p:

i the number of terms ii the sum of the sequence.

b Show that the sum of the sequence is divisible by 14 only when p is odd.

21 A sequence is formed by using rising powers of 3 as follows: 30, 31, 32, . . . .

a Find the nth term.
b Find the product of the first 20 terms.

22 State the value of each of the following without using the absolute value function in
your answer:

|−9|a
∣∣∣∣∣− 1

400

∣∣∣∣∣b |9 − 5|c |5 − 9|d |π − 3|e |π − 4|f

23 a Let f :
{

x : |x| > 100
}
→ R, f (x) =

1
x2 . State the range of f .

b Let f :
{

x : |x| < 0.1
}
→ R, f (x) =

1
x2 . State the range of f .

24 Let f (x) = |x2 − 3x|. Solve the equation f (x) = x.

25 For each of the following, sketch the graph of y = f (x) and state the range of f :

a f : [0, 2π]→ R, f (x) = 2|sin x|

b f : R→ R, f (x) = |x2 − 4x| − 3
c f : R→ R, f (x) = 3 − |x2 − 4x|

Multiple-choice questions

1 The 3rd term of a geometric sequence is 4 and the 8th term is 128. The 1st term is

2A 1B 32C 5D none of theseE

2 If the numbers 5, x and y are in arithmetic sequence, then

y = x + 5A y = x − 5B y = 2x + 5C y = 2x − 5D none of theseE
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3 If 2 cos x◦ −
√

2 = 0, then the value of the acute angle x◦ is

30◦A 60◦B 45◦C 25◦D 27.5◦E

4 The equation of the graph shown is

A y = sin
(
2
(
x −

π

4

))
B y = cos

(
x +

π

4

)
C y = sin(2x)

D y = −2 sin(x)

E y = sin
(
x +

π

4

)
2ππ

x

1

0

−1

y

5 Which of the following recurrence relations generates the sequence 2, 6, 22, 86, 342, . . . ?

t1 = 2, tn+1 = tn + 4A t1 = 2, tn+1 = 2tn + 2B t1 = 2, tn+1 = 3tnC
t1 = 2, tn+1 = 4tn − 2D t1 = 2, tn+1 = 5tn − 4E

6 In a geometric sequence, t2 = 24 and t4 = 54. If the common ratio is positive, then the
sum of the first five terms is

130A 211B 238C 316.5D 810E

7 In a triangle ABC, a = 30, b = 21 and cos C =
51
53

. The value of c to the nearest whole
number is

9A 10B 11C 81D 129E

8 The coordinates of the centre of the circle with equation x2 − 8x + y2 − 2y = 8 are

(−8,−2)A (8, 2)B (−4,−1)C (4, 1)D (1, 4)E

9 The equation of the graph shown is

A
(x + 2)2

27
−

y2

108
= 1

B
(x − 2)2

9
−

y2

34
= 1

C
(x + 2)2

81
−

y2

324
= 1

D
(x − 2)2

81
−

y2

324
= 1

E
(x + 2)2

9
−

y2

36
= 1

2

4

11O−7

−4

y

x
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Extended-response questions

1 a Find the values of a, y, z, w and x.
b Hence deduce exact values for sin 15◦, cos 15◦ and tan 15◦.
c Find the exact values of sin 75◦, cos 75◦ and tan 75◦. 30°

45°

x

w

y

az° 1

2 A hiker walks from point A on a bearing of 010◦ for 5 km and then on a bearing of 075◦

for 7 km to reach point B.

a Find the length of AB.
b Find the bearing of B from the start point A.

A second hiker walks from point A on a bearing of 080◦ for 4 km to a point P, and then
walks in a straight line to B.

c i Find the total distance travelled by the second hiker.
ii Find the bearing on which the hiker must travel in order to reach B from P.

A third hiker also walks from point A on a bearing of 080◦ and continues on that
bearing until he reaches point C. He then turns and walks towards B. In doing so, the
two legs of the journey are of equal length.

d Find the total distance travelled by the third hiker to reach B.

3 An ellipse is defined by the rule
x2

2
+

(y + 3)2

5
= 1.

a Find:

i the domain of the relation
ii the range of the relation
iii the centre of the ellipse.

An ellipse E is given by the rule
(x − h)2

a2 +
(y − k)2

b2 = 1. The domain of E is [−1, 3]
and its range is [−1, 5].

b Find the values of a, b, h and k.

The line y = x − 2 intersects the ellipse E at A(1,−1) and at P.

c Find the coordinates of the point P.

A line perpendicular to the line y = x − 2 is drawn at P. This line intersects the y-axis at
the point Q.

d Find the coordinates of Q.
e Find the equation of the circle through A, P and Q.
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4 a Show that the circle with equation x2 + y2 − 2ax − 2ay + a2 = 0 touches both the
x-axis and the y-axis.

b Show that every circle that touches both the x-axis and the y-axis has an equation of a
similar form.

c Hence show that there are exactly two circles that pass through the point (2, 4) and
just touch the x-axis and the y-axis, and give their equations.

d For each of these two circles, state the coordinates of the centre and give the radius.
e For each circle, find the gradient of the line which passes through the centre and the

point (2, 4).
f For each circle, find the equation of the tangent to the circle at the point (2, 4).

5 A circle is defined by the parametric equations x = a cos t and y = a sin t. Let P be the
point with coordinates (a cos t, a sin t).

a Find the equation of the straight line which passes through the origin and the point P.
b State the coordinates, in terms of t, of the other point of intersection of the circle with

the straight line through the origin and P.
c Find the equation of the tangent to the circle at the point P.
d Find the coordinates of the points of intersection A and B of the tangent with the

x-axis and the y-axis respectively.
e Find the area of triangle OAB in terms of t if 0 < t <

π

2
. Find the value of t for which

the area of this triangle is a minimum.

6 This diagram shows a straight track through points A, S and B, where A is 10 km
northwest of B and S is exactly halfway between A and B. A surveyor is required to
reroute the track through P from A to B to avoid a major subsidence at S . The surveyor
determines that A is on a bearing of 330◦ from P and that B is on a bearing of 070◦

from P. Assume the region under consideration is flat.
Find:

a the magnitudes of angles APB, PAB and PBA

b the distance from P to B and from P to S

c the bearing of S from P

d the distance from A to B through P, if the surveyor
chooses to reroute the track along a circular arc.

A

S

B

P

7 Consider the function with rule f (x) = |x2 − ax|, where a is a positive constant.

a State the coordinates of the x-axis intercepts.
b State the coordinates of the y-axis intercept.
c Find the maximum value of the function in the interval [0, a].
d Find the possible values of a for which the point (−1, 4) lies on the graph of y = f (x).
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2
Logic and proof

Objectives
I To revise the concept of divisibility for integers.

I To revise basic concepts of proof, including:

conditional statementsB equivalent statementsB

proof by contrapositiveB proof by contradictionB

counterexamples.B

I To prove results involving inequalities.

I To evaluate telescoping series.

I To understand the principle of mathematical induction.

I To use mathematical induction to prove results involving:

B divisibility
B partial sums and products of sequences.

A mathematical proof is an argument that confirms the truth of a mathematical statement. It
shows that a list of stated assumptions will guarantee a conclusion.

For example, consider the following simple claim involving even and odd numbers.

Assumption Conclusion

Claim If m and n are odd integers then m + n is an even integer.

The truth of this claim is suggested by the picture on the right;
an odd number of red dots can be combined with an odd number
of yellow dots to give an even aggregate of dots.
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66 Chapter 2: Logic and proof

However, a more rigorous argument would proceed as follows. Assume that both m and n are
odd integers. Then m = 2a + 1 and n = 2b + 1, for integers a and b. Therefore

m + n = (2a + 1) + (2b + 1)

= 2a + 2b + 2

= 2(a + b + 1)

= 2k

where k = a + b + 1 is an integer. Hence m + n is even.

The next claim has only one assumption.

Assumption Conclusion

Claim If n is a natural number then 1 + 3 + 5 + · · · + (2n − 1) = n2.

This claim is illustrated by the picture on the right. Each L-shaped
configuration of dots represents a different odd number. These can be
nestled perfectly into the shape of a square.

So this picture gives great insight into why the claim is true. However,
the picture alone does not constitute a proof. We need to show that the
equation holds for every natural number n. We can prove results like this
using mathematical induction.

In this chapter, we first revise concepts of logic and proof from Specialist Mathematics
Units 1 & 2, before moving on to other applications of proof and mathematical induction.

Note: In the Interactive Textbook, each section of this chapter includes a skillsheet to
provide further practice in areas such as sequences and series, combinatorics, matrices
and graph theory.

2A Revision of proof techniques
We start by revising the fundamental ideas of proof introduced in Specialist Mathematics
Units 1 & 2.

Divisibility of integers
� The set of natural numbers is N = {1, 2, 3, 4, . . . }.
� The set of integers is Z = { . . . ,−2,−1, 0, 1, 2, . . . }.

Divisibility

Let a and b be integers. Then we say that a is divisible by b if there exists an integer k
such that a = kb. In this case, we also say that b is a divisor of a.

Note: Alternatively, we can say that a is a multiple of b and that b is a factor of a.
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2A Revision of proof techniques 67

For example:

� 12 is divisible by 3, since 12 = 4 × 3
� −6 is divisible by 2, since −6 = −3 × 2
� 0 is divisible by any integer n, since 0 = 0 × n.

On the other hand, the integer 14 is not divisible by 3. In this case, the best we can write is

14 = 4 × 3 + 2

We say that 14 leaves a remainder of 2 when divided by 3. More generally, we have the
following important result.

Euclidean division

If a and b are integers with b , 0, then there are unique integers q and r such that

a = qb + r where 0 ≤ r < |b|

Note: Here q is the quotient and r is the remainder when a is divided by b.

Let n ∈ Z. Prove that n3 − n is divisible by 3.

Example 1

Solution
Method 1
Note that n3 − n = n(n − 1)(n + 1).

When the integer n is divided by 3, the remainder must be 0, 1 or 2.
Therefore n can be written in the form 3k, 3k + 1 or 3k + 2, for some integer k.

Case 1: n = 3k. Then n3 − n = n(n − 1)(n + 1)

= 3k(3k − 1)(3k + 1)

Case 2: n = 3k + 1. Then n3 − n = n(n − 1)(n + 1)

= (3k + 1)(3k)(3k + 2)

= 3k(3k + 1)(3k + 2)

Case 3: n = 3k + 2. Then n3 − n = n(n − 1)(n + 1)

= (3k + 2)(3k + 1)(3k + 3)

= 3(k + 1)(3k + 1)(3k + 2)

In all three cases, we see that n3 − n is divisible by 3.

Method 2
Note that n3 − n is the product of the three consecutive integers n − 1, n and n + 1.

In any set of three consecutive integers, one of the integers must be a multiple of 3.
(This fact, although true, actually requires its own proof!) Therefore the product of three
consecutive integers must also be a multiple of 3.
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68 Chapter 2: Logic and proof

Conditional statements and direct proof
The statement proved in Example 1 can be broken down into two parts:

Statement If n is an integer then n3 − n is divisible by 3.

This is an example of a conditional statement and has the form:

Statement If P is true then Q is true.

This can be abbreviated as P⇒ Q, which is read as ‘P implies Q’. We call P the hypothesis
and Q the conclusion.

To give a direct proof of a conditional statement P⇒ Q, we assume that the hypothesis P
is true, and then show that the conclusion Q follows.

Show that if n is an odd integer, then it is the sum of two consecutive integers.

Example 2

Solution
Assume that n is an odd integer. Then n = 2k + 1 for some integer k. We can write

n = 2k + 1

= k + (k + 1)

Hence n is the sum of the consecutive integers k and k + 1.

The negation of a statement
To negate a statement P we write its very opposite, which we call ‘not P’. Negation turns a
true statement into a false statement, and a false statement into a true statement.

Statement The sum of any two odd numbers is even. (true)

Negation There are two odd numbers whose sum is odd. (false)

Negating statements that involve ‘and’ and ‘or’ requires the use of De Morgan’s laws.

De Morgan’s laws

not (P and Q) is the same as (not P) or (not Q)

not (P or Q) is the same as (not P) and (not Q)

For example, we can use the second law to negate the following statement about integers a
and b:

Statement a is odd or b is odd

Negation a is even and b is even
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2A Revision of proof techniques 69

Note: When negating a statement involving variables, it helps to know the set that each
variable takes its value from. For example, if we know that a is an integer, then the
negation of ‘a is odd’ is ‘a is even’.

Proof by contrapositive
Consider this statement about an integer n:

Statement If n2 + 2n is odd then n is odd.

By switching the hypothesis and the conclusion and negating both, we obtain the
contrapositive statement:

Contrapositive If n is even then n2 + 2n is even.

Note that a conditional statement and its contrapositive are always logically equivalent:

� If the original statement is true, then the contrapositive is true.
� If the original statement is false, then the contrapositive is false.

This means that to prove a conditional statement, we can instead prove its contrapositive.
This is helpful, as it is often easier to prove the contrapositive than the original statement.

� The contrapositive of P⇒ Q is the statement (not Q)⇒ (not P).
� To prove P⇒ Q, we can prove the contrapositive instead.

Let n ∈ Z. Prove that if n2 + 2n is odd, then n is odd.

Example 3

Solution
We will prove the contrapositive statement: If n is even, then n2 + 2n is even.

Assume that n is even. Then n = 2k for some k ∈ Z. Therefore

n2 + 2n = (2k)2 + 2(2k)

= 4k2 + 4k

= 2(2k2 + 2k)

Hence n2 + 2n is even, since 2k2 + 2k ∈ Z.

As the contrapositive is equivalent to the original statement, we have proved the claim.

Proof by contradiction
The basic outline of a proof by contradiction is:

1 Assume that the statement we want to prove is false.
2 Show that this assumption leads to mathematical nonsense.
3 Conclude that we were wrong to assume that the statement is false.
4 Conclude that the statement must be true.
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70 Chapter 2: Logic and proof

Suppose x satisfies 2x = 5. Using a proof by contradiction, show that x is irrational.

Example 4

Solution
Suppose that x is rational. Since x must be positive, we can write x =

m
n

where m, n ∈ N.
Therefore

2x = 5 ⇒ 2
m
n = 5

⇒
(
2

m
n
)n

= 5n (raise both sides to the power n)

⇒ 2m = 5n

The left-hand side of this equation is even and the right-hand side is odd. This gives a
contradiction, and so x is not rational.

The converse of a conditional statement
Consider this statement about integers m and n:

Statement If m and n are odd then m + n is even. (true)

By switching the hypothesis and the conclusion, we obtain the converse statement.

Converse If m + n is even then m and n are odd. (false)

The converse of a true statement may not be true.

When we switch the hypothesis and the conclusion of a conditional statement, P⇒ Q,
we obtain the converse statement, Q⇒ P.

a Let n be an integer. Statement: If n2 is divisible by 2, then n is divisible by 2.

Write the converse statement and show that it is true.

b Let S be a quadrilateral. Statement: If S is a square, then S has equal diagonals.

Write the converse statement and show that it is not true.

Example 5

Solution
a Converse: If n is divisible by 2, then n2 is divisible by 2.

Assume that n is divisible by 2. Then n = 2k for some integer k. Therefore

n2 = (2k)2 = 2(2k2)

which is divisible by 2.

b Converse: If S has equal diagonals, then S is a square.

The converse statement is false, since any rectangle has equal diagonals.
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2A 2A Revision of proof techniques 71

Equivalent statements
Now consider the following two statements about a particular triangle:

P: The triangle has three equal sides.

Q: The triangle has three equal angles.

Both P⇒ Q and its converse Q⇒ P are true statements. In this case, we say that P and Q
are equivalent statements. We write P⇔ Q.

We can also say that P is true if and only if Q is true. So in the above example, we can say
that a triangle has three equal sides if and only if it has three equal angles.

To prove that two statements P and Q are equivalent, you have to prove two things:

P⇒ Q and Q⇒ P

Let n ∈ Z. Prove that n is divisible by 3 if and only if n2 is divisible by 3.

Example 6

Solution
(⇒) Assume that n is divisible by 3. We want to show that n2 is divisible by 3.

Since n is divisible by 3, there exists an integer k such that n = 3k. Therefore
n2 = (3k)2 = 3(3k2). Hence n2 is divisible by 3.

(⇐) Assume that n2 is divisible by 3. We want to show that n is divisible by 3.

When the integer n is divided by 3, the remainder must be 0, 1 or 2.
Therefore n can be written in the form 3k, 3k + 1 or 3k + 2, for some integer k.

Case 1: n = 3k. This is the case where n is divisible by 3.

Case 2: n = 3k + 1. Then n2 = 9k2 + 6k + 1, which leaves remainder 1
when divided by 3. This contradicts our assumption
that n2 is divisible by 3. So this case cannot occur.

Case 3: n = 3k + 2. Then n2 = 9k2 + 12k + 4, which leaves remainder 1
when divided by 3. This contradicts our assumption
that n2 is divisible by 3. So this case cannot occur.

Hence n must be divisible by 3.

Exercise 2ASkill-
sheet

Divisibility of integers

1 Let n be an even integer. Prove that n2 + 2n is divisible by 4.

2 Let m and n be integers. Prove that (2m + n)2 − (2m − n)2 is divisible by 8.
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72 Chapter 2: Logic and proof 2A

3 Assume that m is divisible by 3 and n is divisible by 5. Prove that:

a mn is divisible by 15
b m2n is divisible by 45.

4 aExample 1 Let n ∈ Z. Prove that n2 − n is even by considering the cases when n is odd and
n is even.

b Provide another proof by factorising n2 − n.

5 Consider integers m, n, a and b. Prove that if m is a divisor of a and n is a divisor of b,
then mn is a divisor of ab.

Direct proof

6Example 2 Show that if n is an odd integer, then n2 + 8n + 3 is even.

7 Prove that if m and n are perfect cubes, then mn is a perfect cube.

8 a Factorise the expression n4 + 2n3 − n2 − 2n.
b Use your factorised expression to provide a simple proof that n4 + 2n3 − n2 − 2n is

divisible by 24 for all n ∈ Z.

9 a Prove that if n is an odd integer, then there is an integer m such that n2 = 8m + 1.
b Hence, prove that there is only one integer whose square has the form 2k − 1,

where k ∈ N.

10 Every integer n is of the form n = 3k, n = 3k + 1 or n = 3k + 2, for some integer k.

a Using this fact, prove that the cube of every integer n is of the form 9m, 9m + 1 or
9m + 8, for some integer m.

b Explain why there are no cubes in the sequence 92, 992, 9992, 99992, . . . .

11 Let n ∈ Z. Prove that 3n2 + 7n + 11 is odd.
Hint: Consider the cases when n is odd and n is even.

12 Prove that, for any two positive integers that are not divisible by 3, the difference
between their squares is divisible by 3.
Hint: If an integer n is not divisible by 3, then n = 3k + 1 or n = 3k + 2 for some k ∈ Z.

13 a Prove that every square number is of the form 5k, 5k + 1 or 5k + 4, where k ∈ Z.
Hint: Every natural number is of the form 5m, 5m + 1, 5m + 2, 5m + 3 or 5m + 4,

where m ∈ Z.
b Hence, explain why no square number has a final digit equal to 2 or 3.
c Hence, determine how many square numbers appear in this list:

1!, 1! + 2!, 1! + 2! + 3!, 1! + 2! + 3! + 4!, . . .
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2A 2A Revision of proof techniques 73

Proof by contrapositive

14Example 3 Let a, b ∈ Z. Consider the statement: If ab is even, then a is even or b is even.

a Write down the contrapositive of the statement.
b Prove that the contrapositive is true.

15 Let m, n ∈ Z. Consider the statement: If m2 + n2 is even, then m + n is even.

a Write down the contrapositive of the statement.
b Prove that the contrapositive is true.

16 Let n ∈ N. Consider the statement: If 8n − 1 is prime, then n is odd.

a Write down the contrapositive of the statement.
b Prove that the contrapositive is true.
c Is there anything special about the number 8 here? Can you generalise your proof?

17 Let n ∈ Z. Prove that if n is even, then n cannot be expressed as the sum of two
consecutive integers.

18 Let x ∈ R. Prove that if x is irrational, then 2x − 3 is irrational.

Proof by contradiction

19Example 4 Use proof by contradiction for each of the following:

a Prove that there is no largest natural number.
b Let a, b ∈ R such that a + b > 100. Show that a > 50 or b > 50.
c Let a and b be positive integers. Show that a ≤

√
ab or b ≤

√
ab.

d Prove that log2 7 is irrational.
e Let a, b ∈ R such that a is rational and b is irrational. Show that a + b is irrational.
f Prove that the product of two consecutive natural numbers is never a square number.
g Let n ∈ N and assume that n, n + 2 and n + 4 are all prime. Show that n = 3.

20 Define the function f : R \ {1} → R by f (x) =
x

x − 1
. Prove, by way of contradiction,

that 1 does not belong to the range of f .

21 Define the function f : R \ {1} → R by f (x) =
x2

x − 1
. Prove, by way of contradiction,

that 1 does not belong to the range of f .

The converse of a conditional statement

22Example 5 Let m and n be integers. For each of the following statements, write down the converse
statement. Decide whether the converse is true or false, and explain why.

a If 3n is odd, then n is odd.
b If m is even and n is odd, then mn is even.
c If n is divisible by 6, then n is divisible by 2 and 3.
d If n is divisible by 24, then n is divisible by 4 and 6.
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Equivalent statements

23 Let n be an integer. Prove that n is even if and only if n + 1 is odd.

24 Let a, m and n be integers, where m , 0. Prove that nm is a divisor of am if and only if
n is a divisor of a.

25 aExample 6 Let n ∈ N. Prove that n is divisible by 2 if and only if n2 is divisible by 2.
b Hence, prove that

√
2q is irrational, whenever q is an odd natural number.

c Using this fact, prove that
√

2 +
√

3 is irrational.

26 Let n be an integer. Prove that n is divisible by 3 if and only if n3 is divisible by 9.

27 a Write the number 99 as the sum of three consecutive integers.
b Let n be an integer. Prove that n is divisible by 3 if and only if n can be written as the

sum of three consecutive integers.

Mixed proof questions

28 Prove that the sum of three consecutive positive integers is a divisor of the sum of
their cubes.

29 Let k ∈ N. Prove that the product of k consecutive positive integers is divisible by k!.
Hint: Consider the binomial coefficient n+kCk.

30 We will say that a natural number n is stackable if it is
possible to form a tower of n blocks with at least two rows
in such a way that every row above the bottom row has
exactly one less block than the row below. For example,
the number 9 is stackable, as shown in the diagram.

Prove that no power of 2 is stackable. Hint: Use a proof by contradiction.

31 Notice that

1 = 12, 2 = −12 − 22 − 32 + 42, 3 = −12 + 22

a Let m be an integer. Prove that

(m + 1)2 − (m + 2)2 − (m + 3)2 + (m + 4)2 = 4

b Hence, prove that every natural number can be written in the form

±12 ± 22 ± 32 ± · · · ± n2

for some value of n and a suitable choice of sign for each term.

32 In this question, we will give a proof that there are infinitely many prime numbers.

a Let m ∈ N. Prove that if d is a divisor of both m and m + 1, then d = 1.
b Now let n ∈ N and assume that p is a prime factor of n! + 1. Prove that p > n.

Hint: Suppose that p ≤ n.
c Why does this mean that there are infinitely many primes?
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2B Quantifiers and counterexamples
Quantification using ‘for all’ and ‘there exists’
For all
A universal statement claims that a property holds for all members of a given set. Such a
statement can be written using the quantifier ‘for all’. For example:

Statement For all real numbers x and y, we have x2 + 5y2 ≥ 2xy.

To prove that this statement is true, we need to give a general argument that applies for every
choice of real numbers x and y. We will prove inequalities like this in the next section.

There exists
An existence statement claims that a property holds for at least one member of a given set.
Such a statement can be written using the quantifier ‘there exists’. For example:

Statement There exists a triple of integers (a, b, c) such that a2 + b2 = c2.

To prove that this statement is true, we just need to give one instance. The triple (3, 4, 5)
provides an example, since 32 + 42 = 52.

Rewrite each statement using either ‘for all’ or ‘there exists’:

a Some real numbers are irrational.
b Every integer that is divisible by 4 is also divisible by 2.

Example 7

Solution
a There exists x ∈ R such that x < Q.
b For all m ∈ Z, if m is divisible by 4, then m is divisible by 2.

Negation without quantifiers
We discussed negation in the previous section, and we used De Morgan’s laws to negate
statements involving ‘and’ and ‘or’. It is also helpful to be able to negate statements
involving ‘implies’.

Consider the conditional statement ‘If you study Mathematics, then you study Physics’.
The only way this can be false is if you are studying Mathematics but not Physics. So the
negation of the statement is ‘You study Mathematics and you do not study Physics’.

Negations of basic compound statements

� not (P and Q) is equivalent to (not P) or (not Q)

� not (P or Q) is equivalent to (not P) and (not Q)

� not (P⇒ Q) is equivalent to P and (not Q)
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76 Chapter 2: Logic and proof

Negation with quantifiers
To negate a statement involving a quantifier, we interchange ‘for all’ with ‘there exists’ and
then negate the rest of the statement.

Write down the negation of each of the following statements:

a For all natural numbers n, we have 2n ≥ n + 1.
b There exists an integer m such that m2 = 4 and m3 = −8.
c For all real numbers x and y, if x < y, then x2 < y2.

Example 8

Solution
a There exists a natural number n such that 2n < n + 1.
b For all integers m, we have m2 , 4 or m3 , −8.
c There exist real numbers x and y such that x < y and x2 ≥ y2.

Notation for quantifiers
The words ‘for all’ can be abbreviated using the turned A symbol, ∀. The words ‘there exists’
can be abbreviated using the turned E symbol, ∃. For example, the two statements considered
at the start of this section can be written in symbols as follows:

�
(
∀x, y ∈ R

)
x2 + 5y2 ≥ 2xy

�
(
∃(a, b, c) ∈ Z3) a2 + b2 = c2

Despite the ability of these new symbols to make certain sentences more concise, we do not
believe that they make written sentences clearer. Therefore we have avoided using them in
this chapter.

Disproving universal statements
We have seen that a universal statement claims that a property holds for all members of a
given set. For example:

Statement For all real numbers x, the number x2 − x is positive.

So to disprove a universal statement, we simply need to give one example where the property
does not hold. Such an example is called a counterexample.

Disprove the statement: For all real numbers x, the number x2 − x is positive.

Example 9

Solution
When x = 0, we obtain x2 − x = 0, which is not positive.
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A function f : R→ R is strictly increasing if a < b implies f (a) < f (b), for all a, b ∈ R.

Disprove the statement: If a function f : R→ R is strictly increasing and differentiable,
then f ′(x) > 0 for all x ∈ R.

Example 10

Solution
The statement is not true, as the function f (x) = x3 is a counterexample. The function f is
strictly increasing and differentiable, but f ′(0) = 0.

Note that the negation of a universal statement is an existence statement. For example:

Statement For all x, y ∈ R, if x < y, then x2 < y2.

Negation There exist x, y ∈ R such that x < y and x2 ≥ y2.

Clearly, the universal statement above is false, because there exist real numbers for which the
property does not hold. For example: −1 < 0 but (−1)2 ≥ 02.

Disproving existence statements
Consider this existence statement:

Statement There exists n ∈ N such that n2 + 7n + 12 is a prime number.

To show that such a statement is false, we prove that its negation is true:

Negation For all n ∈ N, the number n2 + 7n + 12 is not a prime number.

The negation is easy to prove, since

n2 + 7n + 12 = (n + 3)(n + 4)

is clearly a composite number for each n ∈ N. As this example demonstrates, the negation of
an existence statement is a universal statement.

Disprove each of the following statements:

a There exists n ∈ N such that n2 + 15n + 56 is a prime number.
b There exists some real number x such that x2 = −1.

Example 11

Solution
a We need to prove that, for all n ∈ N, the number n2 + 15n + 56 is not prime.

This is true, since

n2 + 15n + 56 = (n + 7)(n + 8)

is a composite number for each n ∈ N.

b We need to prove that, for all real numbers x, we have x2 , −1.
This is true, since for every real number x, we have x2 ≥ 0 and so x2 , −1.
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Exercise 2BSkill-
sheet

1Example 7 Which of the following are universal statements (‘for all’) and which are existence
statements (‘there exists’)?

a For each n ∈ N, the number (2n + 1)2 is odd.
b There is an even prime number.
c For every integer n, the integer n(n + 1) is even.
d All squares have four sides.
e Some natural numbers are composites.
f At least one real number x satisfies the equation x2 − 2x − 5 = 0.
g Any real number has a cube root.
h The angle sum of a quadrilateral is 360◦.

2Example 8 Write down the negation of each of the following statements:

a For all x ∈ R, we have x2 ≥ 0.
b For every natural number n, the number n2 + n + 11 is prime.
c There exist prime numbers p and q for which p + q = 100.
d For all x ∈ R, if x > 0, then x3 > x.
e There exist integers a, b and c such that a3 + b3 = c3.
f For all x, y ∈ R, we have (x + y)3 = x3 + y3.
g There exist x, y ∈ R such that x ≥ y and x2 ≤ y2.
h There exists a real number x such that x2 + x + 1 = 0.
i For all natural numbers n, if n is not divisible by 3, then n2 + 2 is divisible by 3.
j For every integer m, if m > 2 or m < −2, then m2 > 4.
k For all integers m and n, we have that mn is even or m + n is even.
l There exists a rational number a for which

√
2 · a is rational.

m For all real numbers x, if x ∈ (−1, 1), then x2 < 1.
n There exist real numbers x and y such that xy > 0 and x + y < 0.

3Example 9

Example 10

Provide a counterexample for each of the following statements:

a For all natural numbers n, the number n2 + n + 1 is prime.
b For all real numbers x, we have x2 > 0.
c For all a, b ∈ R, if a and b are irrational, then a + b is irrational.
d For all a, b ∈ R, if a and b are irrational, then ab is irrational.
e For all real numbers a, b and c, if ab = ac, then b = c.
f For each n ∈ N, if n2 is divisible by 4, then n is divisible by 4.
g For all a, b, c ∈ Z, if c is a divisor of ab, then c is a divisor of a or c is a divisor of b.
h For all integers m and n, if n2 is a divisor of m3, then n is a divisor of m.
i If a function f : R→ R is strictly increasing, then its graph crosses the x-axis.
j If f is a differentiable function and f ′(0) = 0, then f has a turning point at (0, f (0)).
k If every vertex of a graph has degree at least 1, then the graph is connected.
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2B 2C Proving inequalities 79

4 The 2 × 2 identity matrix is I =

1 0
0 1

 and the 2 × 2 zero matrix is O =

0 0
0 0

.
Provide a counterexample for each of the following statements:

a For all 2 × 2 matrices A and B, we have AB = BA.
b For each 2 × 2 matrix A, if A2 = O, then A = O.
c For each 2 × 2 matrix A, if A2 = A, then A = O or A = I.

5Example 11 Show that each of the following existence statements is false:

a There exists n ∈ N such that 25n2 − 9 is a prime number.
b There exists n ∈ N such that n2 + 11n + 30 is a prime number.
c There exists x ∈ R such that 5 + 2x2 = 1 + x2.

2C Proving inequalities
An inequality is a statement that orders two real numbers.

x < y x is less than y

x ≤ y x is less than or equal to y

x > y x is greater than y

x ≥ y x is greater than or equal to y

Possibly the most important inequality is the statement that x2 ≥ 0 for every real number x.
This simply says that the square of any real number is non-negative. It important because so
many inequalities depend on this result.

Let x and y be real numbers. Prove that x2 + 5y2 ≥ 2xy.

Example 12

Solution
We will prove this result by showing that

x2 − 2xy + 5y2 ≥ 0

To show this, we can complete the square (thinking of x as the variable and y as a
constant). We find that

x2 − 2xy + 5y2 = (x2 − 2xy + y2) − y2 + 5y2

= (x − y)2 + 4y2

= (x − y)2 + (2y)2

≥ 0
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80 Chapter 2: Logic and proof

Prove that the area of a rectangle is no more than the area of a square with the same
perimeter.

Example 13

Solution
Let x and y be the side lengths of a rectangle. Its perimeter is 2x + 2y.

The side length of a square with the same perimeter is
1
4

(2x + 2y) =
x + y

2
.

Therefore

Area of square − Area of rectangle =

( x + y
2

)2
− xy

=
x2 + 2xy + y2

4
−

4xy
4

=
x2 − 2xy + y2

4

=

( x − y
2

)2
≥ 0

In the above example, we see a proof of the following useful inequality.

AM–GM inequality

For x, y ≥ 0, the arithmetic mean is greater than or equal to the geometric mean:

x + y
2
≥
√

xy

Note: The two means are equal if and only if x = y.

We can use this inequality to give quick proofs of many results.

a Suppose a, b > 0 and ab = 24. Using the AM–GM inequality, prove that 2a + 3b ≥ 24.
b Suppose a, b ≥ 0 and 2a + 3b = 12. Using the AM–GM inequality, prove that ab ≤ 6.

Example 14

Solution
Assume ab = 24.
Using the AM–GM inequality
(with x = 4a and y = 6b) we find

2a + 3b =
4a + 6b

2

≥
√

(4a)(6b)

=
√

24ab

=
√

24 × 24

= 24

a Assume 2a + 3b = 12.
Using the AM–GM inequality
(with x = 2a and y = 3b) we find

ab =
1
6

(2a)(3b)

≤
1
6

(2a + 3b
2

)2

=
1
6

(12
2

)2

= 6

b

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



2C 2C Proving inequalities 81

Exercise 2CSkill-
sheet

1Example 12 Let b ≥ a ≥ 0. Prove that
b

b + 1
≥

a
a + 1

.

2 Given that a and b are positive real numbers, prove that a3 + b3 ≥ a2b + ab2.

3 a Prove that 11
√

10 ≥ 10
√

11.
b We can prove a much more general statement. Let a ≥ b ≥ 0. Prove that a

√
b ≥ b

√
a.

4 Let a > 0. Prove that a +
1
a
≥ 2.

5 a Prove that
x
y

+
y
x
≥ 2 when x, y ∈ R+.

b Prove that
(1

x
+

1
y

)
(x + y) ≥ 4 when x, y ∈ R+.

c Prove that
(1

x
+

1
y

+
1
z

)
(x + y + z) ≥ 9 when x, y, z ∈ R+.

6 aExample 13 Let x, y ≥ 0. Prove that( x + y
2

)2
≤

x2 + y2

2
b Two pieces of string are used to form two squares, with sides of length x and y

respectively. These two pieces of string are joined together and then cut in half.
The two new pieces of string are used to form two squares of equal size. Prove that
the total area has not increased.

7Example 14 Let a, b, c ≥ 0. Use the AM–GM inequality to prove each of the following:

If ab = 9, then a + b ≥ 6.a If a + b = 4, then ab ≤ 4.b
If ab = 48, then 3a + 4b ≥ 24.c If 3a + 4b = 24, then ab ≤ 12.d
If a + b + c = 1, then

√
ab +

√
bc +

√
ca ≤ 1.e

8 Use the AM–GM inequality to prove that (a + b)(b + c)(c + a) ≥ 8abc for all a, b, c ≥ 0.

9 a Assume 0 < a < 1. Prove that a > a2.
b Let θ be an acute angle. Using part a, prove that

cos θ + sin θ > 1

c Prove that

cos θ + sin θ ≤
√

2

10 Let a, b and c be real numbers.

a Prove that a2 + b2 ≥ 2ab.
b Hence, prove that a2 + b2 + c2 ≥ ab + bc + ca.
c Hence, prove that 3(a4 + b4 + c4) ≥ (a2 + b2 + c2)2.
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2D Telescoping series
The technique demonstrated in this section is called telescopic cancelling. In the solution of
the following example, you will notice that a sum with 2n terms cancels down to a sum with
just two terms. The sum collapses in a similar manner to a traditional extendable telescope.

This technique can be used to find the partial sums of some sequences. In the next section, we
will consider another approach to proving some of these results: mathematical induction.

a Find constants a and b such that
1

k(k + 1)
=

a
k

+
b

k + 1
for all k ∈ N.

b Hence, prove that

1
1 · 2

+
1

2 · 3
+ · · · +

1
n(n + 1)

=
n

n + 1

for all n ∈ N.

Example 15

Solution
a We aim to find the partial fraction decomposition of the left-hand side. We have

1
k(k + 1)

=
a
k

+
b

k + 1

1
k(k + 1)

=
a(k + 1) + bk

k(k + 1)
∴

1 = a(k + 1) + bk∴

1 = a + (a + b)k∴

Equating coefficients, we find that a = 1 and a + b = 0. Therefore b = −1. We have
found the partial fraction decomposition to be

1
k(k + 1)

=
1
k
−

1
k + 1

b We use the result from part a to expand each term of the series:

1
1 · 2

+
1

2 · 3
+ · · · +

1
(n − 1)n

+
1

n(n + 1)

=

(1
1
−

1
2

)
+

(1
2
−

1
3

)
+ · · · +

( 1
n − 1

−
1
n

)
+

(1
n
−

1
n + 1

)
=

1
1

+

(
−

1
2

+
1
2

)
+

(
−

1
3

+
1
3

)
+ · · · +

(
−

1
n

+
1
n

)
−

1
n + 1

(regrouping)

= 1 −
1

n + 1
(cancelling)

=
n

n + 1

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



2D 2D Telescoping series 83

Exercise 2DSkill-
sheet

1 aExample 15 Using partial fractions, find real numbers a and b such that

1
k(k + 2)

=
a
k

+
b

k + 2

b Hence, evaluate each of the following sums:

i
1

1 · 3
+

1
3 · 5

+ · · · +
1

97 · 99
ii

1
2 · 4

+
1

4 · 6
+ · · · +

1
98 · 100

2 Show that

log10

(1
2

)
+ log10

(2
3

)
+ log10

(3
4

)
+ · · · + log10

( 99
100

)
= −2

3 a Show that m · m! = (m + 1)! − m!.
b Hence, prove that

1 · 1! + 2 · 2! + 3 · 3! + · · · + n · n! = (n + 1)! − 1

4 a Show that
m

(m + 1)!
=

1
m!
−

1
(m + 1)!

.

b Hence, prove that
1
2!

+
2
3!

+ · · · +
n

(n + 1)!
= 1 −

1
(n + 1)!

5 a Show that

k(k + 1) =
1
3

(
k(k + 1)(k + 2) − (k − 1)k(k + 1)

)
b Let n ∈ N. Use part a to prove that

1 · 2 + 2 · 3 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3

6 a Using partial fractions, find real numbers a, b and c such that
1

k(k + 1)(k + 2)
=

a
k

+
b

k + 1
+

c
k + 2

b Hence, prove that
1

1 · 2 · 3
+

1
2 · 3 · 4

+ · · · +
1

n(n + 1)(n + 2)
=

n(n + 3)
4(n + 1)(n + 2)

7 a Show that
log10

( a
b
)

log10(a) log10(b)
=

1
log10(b)

−
1

log10(a)

b Hence, evaluate

log10
( 2

3
)

log10(2) log10(3)
+

log10
( 3

4
)

log10(3) log10(4)
+ · · · +

log10
( 19

20
)

log10(19) log10(20)
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2E Mathematical induction
In Example 15 from the previous section, we obtained the result

1
1 · 2

+
1

2 · 3
+ · · · +

1
n(n + 1)

=
n

n + 1

This result involves an infinite sequence of propositions, one for each natural number n:

P(1):
1

1 · 2
=

1
1 + 1

P(2):
1

1 · 2
+

1
2 · 3

=
2

2 + 1

P(3):
1

1 · 2
+

1
2 · 3

+
1

3 · 4
=

3
3 + 1

...

We proved that the proposition P(n) is true for every natural number n. In this section, we
give an alternative proof of this result using mathematical induction.

The principle of mathematical induction
Imagine a row of dominoes extending infinitely to the right. Each of these dominoes can be
knocked over provided two conditions are met:

1 The first domino is knocked over.
2 Each domino is sufficiently close to the next domino.

· · ·

This scenario provides an accurate physical model of the following proof technique.

Principle of mathematical induction

Let P(n) be some proposition about the natural number n.

We can prove that P(n) is true for every natural number n as follows:

a Show that P(1) is true.
b Show that, for every natural number k, if P(k) is true, then P(k + 1) is true.

The idea is simple: Condition a tells us that P(1) is true. But then condition b means that
P(2) will also be true. However, if P(2) is true, then condition b also guarantees that P(3) is
true, and so on. This process continues indefinitely, and so P(n) is true for all n ∈ N.

P(1) is true ⇒ P(2) is true ⇒ P(3) is true ⇒ · · ·

Let’s see how mathematical induction is used in practice.
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2E Mathematical induction 85

Using induction for partial sums
Mathematical induction is useful for proving many results about partial sums.

Using mathematical induction, prove that

1
1 · 2

+
1

2 · 3
+ · · · +

1
n(n + 1)

=
n

n + 1

Example 16

Solution
For each natural number n, let P(n) be the proposition:

1
1 · 2

+
1

2 · 3
+ · · · +

1
n(n + 1)

=
n

n + 1

Step 1 P(1) is the proposition
1

1 · 2
=

1
1 + 1

, that is,
1
2

=
1
2

. Therefore P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,

1
1 · 2

+
1

2 · 3
+ · · · +

1
k(k + 1)

=
k

k + 1

Step 3 We now have to prove that P(k + 1) is true, that is,

1
1 · 2

+
1

2 · 3
+ · · · +

1
k(k + 1)

+
1

(k + 1)(k + 2)
=

k + 1
k + 2

Notice that we have written the last and the second-last term in the summation.
This is so we can easily see how to use our assumption that P(k) is true.

We have

LHS of P(k + 1) =
1

1 · 2
+

1
2 · 3

+ · · · +
1

k(k + 1)
+

1
(k + 1)(k + 2)

=
k

k + 1
+

1
(k + 1)(k + 2)

(using P(k))

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1
k + 2

= RHS of P(k + 1)

We have proved that if P(k) is true, then P(k + 1) is true, for every natural
number k.

By the principle of mathematical induction, it follows that P(n) is true for every natural
number n.
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86 Chapter 2: Logic and proof

Using induction for divisibility results
We now use mathematical induction to prove results about divisibility. You should compare
the next example with Example 1 from the start of this chapter.

Use mathematical induction to prove that n3 − n is divisible by 3 for all n ∈ N.

Example 17

Solution
For each natural number n, let P(n) be the proposition:

n3 − n is divisible by 3

Step 1 P(1) is the proposition 13 − 1 = 0 is divisible by 3. Clearly, P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,

k3 − k = 3m

for some m ∈ Z.

Step 3 We now have to prove that P(k + 1) is true, that is, we have to prove that the
number (k + 1)3 − (k + 1) is divisible by 3. We have

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1 − k − 1

= k3 − k + 3k2 + 3k

= 3m + 3k2 + 3k (using P(k))

= 3(m + k2 + k)

Therefore (k + 1)3 − (k + 1) is divisible by 3.

We have proved that if P(k) is true, then P(k + 1) is true, for every natural
number k.

Therefore P(n) is true for all n ∈ N, by the principle of mathematical induction.

Prove by induction that 7n − 4 is divisible by 3 for all n ∈ N.

Example 18

Solution
For each natural number n, let P(n) be the proposition:

7n − 4 is divisible by 3

Step 1 P(1) is the proposition 71 − 4 = 3 is divisible by 3. So P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,

7k − 4 = 3m

for some m ∈ Z.
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2E Mathematical induction 87

Step 3 We now have to prove that P(k + 1) is true, that is, 7k+1 − 4 is divisible by 3.
We have

7k+1 − 4 = 7 · 7k − 4

= 7(3m + 4) − 4 (using P(k))

= 21m + 28 − 4

= 21m + 24

= 3(7m + 8)

Therefore 7k+1 − 4 is divisible by 3.

We have proved that if P(k) is true, then P(k + 1) is true, for every natural
number k.

Therefore P(n) is true for all n ∈ N, by the principle of mathematical induction.

Notation for sums
The sum of the first n squares can be written in two different ways:

12 + 22 + · · · + n2 =

n∑
i=1

i2

The notation on the right-hand side is called sigma notation, and is a convenient shorthand
for the expanded form you see on the left-hand side. The notation uses the symbol Σ, which
is the uppercase Greek letter sigma. This is the Greek equivalent to the Roman letter S, with
S here standing for the word sum.

More generally, if m and n are integers with m ≤ n, then
n∑

i=m

ai = am + am+1 + am+2 + · · · + an

This is read as ‘the sum of the numbers ai from i = m to i = n’.

Write
5∑

i=1

2i in expanded form and evaluate.

Example 19

Solution
5∑

i=1

2i = 21 + 22 + 23 + 24 + 25

= 2 + 4 + 8 + 16 + 32

= 62
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88 Chapter 2: Logic and proof

You may prefer to use this notation in induction proofs involving partial sums. The next
example uses this notation to give the sum of the cubes of the first n odd numbers.

Prove using the principle of mathematical induction that
n∑

i=1

(2i − 1)3 = n2(2n2 − 1)

Example 20

Solution
For each natural number n, let P(n) be the proposition:

n∑
i=1

(2i − 1)3 = n2(2n2 − 1)

Step 1 First consider P(1). Let n = 1 so that

LHS of P(1) =

1∑
i=1

(2i − 1)3 = (2 · 1 − 1)3 = 1

RHS of P(1) = 12(2 · 12 − 1
)

= 1

Therefore P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,
k∑

i=1

(2i − 1)3 = k2(2k2 − 1)

Step 3 We now have to prove that P(k + 1) is true, that is,
k+1∑
i=1

(2i − 1)3 = (k + 1)2(2(k + 1)2 − 1
)

We have

LHS of P(k + 1) =

k+1∑
i=1

(2i − 1)3

=

k∑
i=1

(2i − 1)3 +
(
2(k + 1) − 1

)3

= k2(2k2 − 1) + (2k + 1)3 (using P(k))

= 2k4 + 8k3 + 11k2 + 6k + 1

RHS of P(k + 1) = (k + 1)2(2(k + 1)2 − 1
)

= 2(k + 1)4 − (k + 1)2

= 2k4 + 8k3 + 11k2 + 6k + 1

Therefore P(k + 1) is true. Hence we have shown that P(k) implies P(k + 1), for
each k ∈ N.

By the principle of mathematical induction, it follows that P(n) is true for all n ∈ N.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



2E Mathematical induction 89

Notation for products
As with finite sums of numbers, we also have an efficient shorthand for expressing finite
products of numbers.

For example, the product of the first n odd numbers can be written as

1 × 3 × 5 × · · · × (2n − 1) =

n∏
i=1

(2i − 1)

The notation on the right-hand side is called pi notation, and is a convenient shorthand for
the expanded form you see on the left-hand side. The notation uses the symbol Π, which is
the uppercase Greek letter pi. This is the Greek equivalent to the Roman letter P, with P here
standing for the word product.

More generally, if m and n are integers with m ≤ n, then
n∏

i=m

ai = am × am+1 × am+2 × · · · × an

This is read as ‘the product of the numbers ai from i = m to i = n’.

Write each of the following in expanded form and evaluate:
3∏

i=1

ia
5∏

i=1

(2i − 1)b

Example 21

Solution

a
3∏

i=1

i = 1 × 2 × 3 = 6

b
5∏

i=1

(2i − 1) =
(
2 · 1 − 1

)
×

(
2 · 2 − 1

)
×

(
2 · 3 − 1

)
×

(
2 · 4 − 1

)
×

(
2 · 5 − 1

)
= 1 × 3 × 5 × 7 × 9

= 945

You may prefer to use this notation in induction proofs involving partial products.

In the next example, we give a proof by induction that(
1 +

1
1

)
×

(
1 +

1
2

)
×

(
1 +

1
3

)
× · · · ×

(
1 +

1
n

)
= n + 1

Using pi notation, this is expressed more compactly as
n∏

i=1

(
1 +

1
i

)
= n + 1
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90 Chapter 2: Logic and proof

Using the principle of mathematical induction, prove that
n∏

i=1

(
1 +

1
i

)
= n + 1

Example 22

Solution
For each natural number n, let P(n) be the proposition:

n∏
i=1

(
1 +

1
i

)
= n + 1

Step 1 First consider P(1). Let n = 1 so that

LHS of P(1) =

1∏
i=1

(
1 +

1
i

)
= 1 +

1
1

= 2

RHS of P(1) = 1 + 1 = 2

Therefore P(1) is true.

Step 2 Let k be any natural number, and assume P(k) is true. That is,
k∏

i=1

(
1 +

1
i

)
= k + 1

Step 3 We now have to prove that P(k + 1) is true, that is,
k+1∏
i=1

(
1 +

1
i

)
= (k + 1) + 1

We have

LHS of P(k + 1) =

k+1∏
i=1

(
1 +

1
i

)
=

(
1 +

1
k + 1

)
×

k∏
i=1

(
1 +

1
i

)
=

(
1 +

1
k + 1

)
(k + 1) (using P(k))

= k + 1 +
k + 1
k + 1

= (k + 1) + 1

= RHS of P(k + 1)

Therefore P(k + 1) is true. Hence we have shown that P(k) implies P(k + 1), for
each k ∈ N.

By the principle of mathematical induction, it follows that P(n) is true for all n ∈ N.
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2E Mathematical induction 91

Using induction to prove inequalities
Mathematical induction can also be used to prove various inequalities. For most induction
proofs, the base case is n = 1. In the next example, the base case is n = 4.

Prove by induction that 3n > n3 for all natural numbers n ≥ 4.

Example 23

Solution
For each natural number n ≥ 4, let P(n) be the proposition:

3n > n3

Step 1 First consider P(4). Let n = 4 so that

LHS of P(4) = 34 = 81

RHS of P(4) = 43 = 64

Therefore P(4) is true.

Step 2 Let k be a natural number with k ≥ 4, and assume P(k) is true. That is,

3k > k3

Step 3 We now have to prove that P(k + 1) is true, that is,

3k+1 > (k + 1)3

Note that the right-hand side of P(k + 1) expands to k3 + 3k2 + 3k + 1. This is
what we are aiming for in the calculation below.

We have

LHS of P(k + 1) = 3k+1

= 3 · 3k

> 3 · k3 (using P(k))

= k3 + k3 + k3

> k3 + 3k2 + 3k2 (since k ≥ 4)

= k3 + 3k2 + k2 + k2 + k2

> k3 + 3k2 + 3k + 1 (since k ≥ 4)

= (k + 1)3

= RHS of P(k + 1)

Therefore P(k + 1) is true. Hence we have shown that P(k) implies P(k + 1), for
each k ∈ N with k ≥ 4.

By the principle of mathematical induction, it follows that P(n) is true for all natural
numbers n ≥ 4.
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Exercise 2ESkill-
sheet

1Example 16 Prove each of the following using mathematical induction:

a 1 + 2 + 3 + · · · + n =
n(n + 1)

2

b 1 + 3 + 5 + · · · + (2n − 1) = n2

c 12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6

d 13 + 23 + 33 + · · · + n3 =
n2(n + 1)2

4

e 1 + x + x2 + · · · + xn =
1 − xn+1

1 − x
, where x , 1

f 1 · 2 + 2 · 3 + · · · + n(n + 1) =
n(n + 1)(n + 2)

3

g 2 · 21 + 3 · 22 + 4 · 23 + · · · + (n + 1) · 2n = n · 2n+1

h
1

1 · 3
+

1
3 · 5

+ · · · +
1

(2n − 1)(2n + 1)
=

n
2n + 1

2Example 17

Example 18

Prove that each of the following divisibility statements is true for all n ∈ N:

11n − 1 is divisible by 10a 7n − 3n is divisible by 4b
8n − (−6)n is divisible by 14c 23n+1 + 5 is divisible by 7d
42n+1 + 52n+1 is divisible by 9e

3 a Prove by induction that 22n − 1 is a multiple of 3 for all n ∈ N.
b Provide a different proof of this result by first writing 22n − 1 as the difference of

two squares.

4Example 19 Write each of the following in expanded form and evaluate:
4∑

i=1

i3a
5∑

k=1

3kb
3∑

i=0

(−1)i ic
1
5

5∑
i=1

id

4∑
i=1

2ie
4∑

k=1

(k − 1)2f
3∑

i=1

(i − 2)2g
4∑

i=1

(2i − 1)2h

3∑
i=1

rii
3∑

i=1

i · 2ij
3∑

i=0

33−ik
2∑

i=1

(x − 1)il

3∑
i=3

i2m
2∑

i=−2

in
n∑

i=1

1o
−2∑

i=−4

2ip
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5Example 20 Prove each of the following using mathematical induction:
n∑

m=1

(2m − 1)2 =
n(2n − 1)(2n + 1)

3
a

n∑
m=1

(−1)m+1m2 = (−1)n+1 n(n + 1)
2

b

6Example 21 Write each of the following in expanded form and evaluate:
4∏

i=1

ia
3∏

j=1

2 jb
3∏

k=1

k2c
2∏

i=0

10id

4∏
j=1

j
j + 1

e
5∏

k=1

√
kf

3∏
i=1

( i + 1
i

)2
g

4∏
i=0

1
2ih

7Example 22 Using mathematical induction, prove that
n∏

j=2

(
1 −

1
j2

)
=

n + 1
2n

for all natural numbers n ≥ 2.

8 a Prove by mathematical induction that n2 − n is even for all n ∈ N.
b Find a nicer proof involving factorisation that works for all n ∈ Z.

9Example 23 Use induction to prove each of the following. (Note that the base case is not n = 1.)

2n > n2 for all n ≥ 5a n! > 2n for all n ≥ 4b
4n > 2 × 3n for all n ≥ 3c 3n > 2n + 1 for all n ≥ 2d

10 a Prove, by mathematical induction, that n3 + 3n2 + 2n is divisible by 6 for all n ∈ N.
b Prove the result without mathematical induction by instead factorising the

expression.

11 a Show that (a2 + b2)(x2 + y2) = (ax + by)2 + (bx − ay)2.
b Write 13 as the sum of two squares.
c Hence, using mathematical induction, prove that 13n can be written as the sum of

two squares, for every natural number n.

12 Let m ∈ N. Prove by induction that if m is odd, then mn is odd, for every n ∈ N.

13 The Fibonacci sequence is defined by f1 = 1, f2 = 1 and fn+1 = fn + fn−1 for n ≥ 2.

a Find fn for n = 1, 2, . . . , 10.
b Prove that f1 + f2 + · · · + fn = fn+2 − 1.
c Evaluate f1 + f3 + · · · + f2n−1 for n = 1, 2, 3, 4.
d Try to find a general formula for the expression from part c.
e Confirm that your formula works using mathematical induction.
f Using induction, prove that f5n is divisible by 5 for all n ∈ N.
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14 A polygonal area can be triangulated if we can
add extra edges between the vertices so that the
polygon is a union of non-intersecting triangles.

a Using mathematical induction, prove that for
all n ≥ 3, every convex polygonal area with
n vertices can be triangulated.

b Consider a triangulation of a convex polygon with n vertices,
where n ≥ 3. Using mathematical induction, prove that we can
colour the vertices using three colours, in such a way that no two
adjacent vertices have the same colour.

15 Using induction, prove that
n∑

j=1

1
√

j
≥
√

n

for every natural number n.

16 The Fibonacci sequence is defined by f1 = 1, f2 = 1 and fn+1 = fn + fn−1 for n ≥ 2.
Prove that, for each n ≥ 2, the following matrix equation holds:1 1

1 0


n

=

 fn+1 fn
fn fn−1


17 a Prove by induction that 3n − (−2)n is divisible by 5 for all n ∈ N.

b Prove by induction that 4n − (−3)n is divisible by 7 for all n ∈ N.
c Generalise the previous two results. Prove your generalisation using induction.

18 Prove each of the following using mathematical induction:

a 1 · 3 + 2 · 4 + 3 · 5 + · · · + n(n + 2) =
1
6

n(n + 1)(2n + 7)

b 1 · 4 + 2 · 7 + 3 · 10 + · · · + n(3n + 1) = n(n + 1)2

19 Let f : [0, 1]→ R, f (x) =
x

2 − x
.

a Determine the rule for ( f ◦ f )(x) = f ( f (x)), the composition of f with itself.
b For x ∈ [0, 1] and n ∈ N, let

Fn(x) = ( f ◦ f ◦ · · · ◦ f︸           ︷︷           ︸
n copies of f

)(x)

Prove by mathematical induction that

Fn(x) =
x

2n − (2n − 1)x
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20 Suppose that we draw n lines in a plane so that no three are
concurrent and no two are parallel. Let Rn be the number of
regions into which these lines divide the plane.

For example, the diagram on the right illustrates that R3 = 7.

a By drawing diagrams, find R0, R1, R2, R3 and R4.
b Guess a formula for Rn in terms of n.
c Confirm that your formula is valid by using mathematical induction.

1
2

3

45
6

7

21 In this question, you will prove the binomial theorem, which states that

(a + b)n = nC0anb0 + nC1an−1b1 + nC2an−2b2 + · · · + nCn−1a1bn−1 + nCna0bn

for all n ∈ N.

a Pascal’s rule is the identity
nCr = n−1Cr−1 + n−1Cr (where 1 ≤ r < n)

Prove this identity by using the formula nCr =
n!

r! (n − r)!
.

b Prove the binomial theorem by using mathematical induction and Pascal’s rule.
c Using the binomial theorem, show that 2n = nC0 + nC1 + · · · + nCn for all n ∈ N.

22 In Question 8, you proved that if n is an integer, then n2 − n is even. In this question,
you will prove a generalisation of this result. The proof will use the binomial theorem.

a Let p be a prime number and let i be a positive integer less than p. Explain why pCi

is divisible by p.
b Fermat’s little theorem states:

If p is a prime number and n is any integer, then np − n is divisible by p.

Prove this theorem.
Hint: First prove the theorem in the case that n is positive. You can do this by using

mathematical induction, the binomial theorem and part a.

23 Consider the sequence defined by the recurrence relation tn = 2tn−1 + 3, where t1 = 3.
Prove by induction that tn = 3 × 2n − 3.

24 Consider the sequence defined by the recurrence relation tn = 2tn−1 − n, where t1 = 1.
Prove by induction that tn = n − 2n + 2.

25 Consider a cricket tournament with n teams, where each team plays every other team
exactly once. Assume that there are no draws. Show that it is always possible to label
the teams T1, T2, . . . , Tn in such a way that

T1 > T2 > · · · > Tn

where the notation Ti > Ti+1 means that team Ti beat team Ti+1.
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Assign-
ment

Nrich

Chapter summary

Basic concepts of proof
� A conditional statement has the form: If P is true, then Q is true.

This can be abbreviated as P⇒ Q, which is read ‘P implies Q’.

� To give a direct proof of a conditional statement P⇒ Q, we assume that P is true and
show that Q follows.

� The converse of P⇒ Q is Q⇒ P.

� Statements P and Q are equivalent if P⇒ Q and Q⇒ P. We write P⇔ Q.

� The contrapositive of P⇒ Q is (not Q)⇒ (not P).

� Proving the contrapositive of a statement may be easier than giving a direct proof.

� A proof by contradiction begins by assuming the negation of what is to be proved.

� A universal statement claims that a property holds for all members of a given set. Such a
statement can be written using the quantifier ‘for all’.

� An existence statement claims that a property holds for some member of a given set.
Such a statement can be written using the quantifier ‘there exists’.

� A counterexample can be used to demonstrate that a universal statement is false.

Proof by mathematical induction
� Mathematical induction is used to prove that a statement is true for all natural numbers.
� The basic outline of a proof by mathematical induction is:

0 Define the proposition P(n) for n ∈ N.
1 Show that P(1) is true.
2 Assume that P(k) is true for some k ∈ N.
3 Show that P(k + 1) is true.
4 Conclude that P(n) is true for all n ∈ N.

Technology-free questions

1 A Pythagorean triple (a, b, c) consists of natural numbers a, b, c such that a2 + b2 = c2.

a Let a and d be natural numbers and assume that (a, a + d, a + 2d) is a Pythagorean
triple. Prove that a = 3d.

b Assume that (p, q, r) is a Pythagorean triple, where p is a prime number. Prove that
p =

√
2q + 1.

2 When you reverse the digits of the three-digit number 435 you obtain 534. The
difference between the two numbers is divisible by 9, since

534 − 435 = 99 = 9 · 11

Prove that this works for any three-digit number.
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3 a Find real numbers a and b for which
1

x(x + 3)
=

a
x

+
b

x + 3

b Hence, evaluate

1
1 · 4

+
1

4 · 7
+ · · · +

1
97 · 100

4 Let a and b be positive real numbers.

a Prove that a > b if and only if a2 > b2.
b Hence, prove that

√
15 >

√
2 +
√

6.
c Also prove that

√
a +
√

b ≥
√

a + b.

5 Let n be an integer with n ≥ 2. Prove that logn(n + 1) is irrational.

6 Let n be an integer, and consider the statement:

If n + 1 is divisible by 3, then n3 + 1 is divisible by 3.

a Prove that the statement is true.
b Write down the contrapositive of the statement.
c Write down the converse of the statement.
d Is the converse statement true or false? If it is true, give a proof. Otherwise, give a

counterexample.

7 a Let b be a non-zero rational number. Prove by contradiction that
√

2 · b is irrational.
Note: You may assume that

√
2 is irrational.

b Hence, prove that every non-zero rational number b can be written as the product of
two irrational numbers.

8 Provide a counterexample for each of the following statements:

a If p is an odd prime, then p + 2 is also an odd prime.
b For all n ∈ N, if n3 is divisible by 8, then n is divisible by 8.
c For all real numbers a, b, c and d, if a < b and c < d, then ac < bd.
d For all n ∈ N, the numbers n, n + 4 and n + 6 cannot all be prime.

9 Let a, b and c be positive integers, and consider the statement:

If a2 + b2 = c2, then at least one of a, b or c is even.

a Write down the contrapositive of the statement.
b Prove the contrapositive statement.

10 a Prove that the square of any integer n is of the form 3k or 3k + 1, where k ∈ Z.
b Explain why this means that there are no square numbers in the sequence

11, 101, 1001, 10001, 100001, . . .
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11 Prove by mathematical induction that:

a 1 + 4 + 7 + · · · + (3n − 2) =
n(3n − 1)

2
for all n ∈ N

b 3−1 + 3−2 + · · · + 3−n =
3n − 1
2(3n)

for all n ∈ N

12 For every natural number n ≥ 2, prove that
n∑

j=2

4
j2 − 1

=
(n − 1)(3n + 2)

n(n + 1)

13 a Prove by induction that n3 > 2n + 1 for all n ≥ 2.
b Hence, prove by induction that n! > n2 for all n ≥ 4.

14 Prove by induction that 3n > n2 + n for all n ∈ N.

15 Prove each of the following divisibility results for every natural number n:

72n−1 + 5 is divisible by 12a n3 + (n + 1)3 + (n + 2)3 is divisible by 9b

Multiple-choice questions

1 Suppose that m is odd and n is even. Which one of the following statements is true?

m + n is evenA m2 + n2 is evenB (m + n)2 is evenC
3m + 2n is evenD 2m + 3n is evenE

2 Let n be an integer, and consider the statement: If n is odd, then n2 is odd.
The converse of this statement is

If n is even, then n2 is odd.A If n is odd, then n2 is even.B
If n2 is odd, then n is even.C If n2 is even, then n is odd.D
If n2 is odd, then n is odd.E

3 Let a be an integer, and consider the statement: If 1 + a + a2 is odd, then a is even.
The contrapositive of this statement is

If a is even, then 1 + a + a2 is odd.A If a is odd, then 1 + a + a2 is even.B
If 1 + a + a2 is even, then a is odd.C If 1 + a + a2 is odd, then a is odd.D
If 1 + a + a2 is even, then a is even.E

4 Consider the statement: There exists n ∈ N such that n is odd and n2 is even.
The negation of this statement is

A There exists n ∈ N such that n is even and n2 is odd.
B There exists n ∈ N such that n is even or n2 is odd.
C For all n ∈ N, we have that n is odd and n2 is even.
D For all n ∈ N, we have that n is odd or n2 is even.
E For all n ∈ N, we have that n is even or n2 is odd.
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5 Let a, b and c be real numbers such that ca = cb. Which one of the following statements
must be true?

a = b or c = 0A a = b and c = 1B a = bC
c = 1D c = 0E

6 Consider the statement:

� For every function f : R→ R, if f is strictly increasing, then the range of f is R.

Which one of the following functions shows that this statement is false?

f (x) = 0A f (x) = xB f (x) = 2xC f (x) = x2D f (x) = x3E

7 The sum
5∑

i=3

i2 is equal to

12A 24B 48C 50D 60E

8 If
n∏

i=1

i = 24, then

n = 2A n = 3B n = 4C n = 5D n = 6E

Extended-response questions

1 a Let m ∈ N. By expanding the right-hand side, prove that

xm − 1 = (x − 1)(1 + x + x2 + · · · + xm−1)

b Hence, prove the statement:

For all n ∈ N, if n is not prime, then 2n − 1 is not prime.

Hint: If n ∈ N \ {1} and n is not prime, then n = km for some k, m ∈ N \ {1}.
c Now consider the converse statement:

For all n ∈ N, if 2n − 1 is not prime, then n is not prime.

Find a counterexample to show that this statement is false.

2 Consider a Pythagorean triple (a, b, c). This means that a, b and c are natural numbers
such that a2 + b2 = c2, and therefore a, b and c are the side lengths of a right-angled
triangle with hypotenuse c.

a Show that if c is odd, then exactly one of a or b is odd.
b Prove that

abc
a + b + c

=
c(a + b − c)

2

c Hence, prove that the product of the side lengths of the triangle, abc, is divisible by
the perimeter, a + b + c.
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100 Chapter 2: Logic and proof

3 Consider a function f : R→ R.

� We say that f is even if f (−x) = f (x) for all x ∈ R.
� We say that f is odd if f (−x) = − f (x) for all x ∈ R.

For example, the function f (x) = x2 is even, since f (−x) = (−x)2 = x2 = f (x).

a Prove that f (x) = x3 is an odd function.
b Prove that the product of two even functions is even.
c Prove that the product of two odd functions is even.
d Prove that the sum of two odd functions is odd.
e Prove that the sum of two even functions is even.
f Prove that the graph of every odd function passes through the origin.
g Find the only function f : R→ R that is both even and odd.

4 For n ∈ N, the nth derivative of f (x) can be written as f (n)(x).

Let f (x) =
1

2x + 1
. Prove that f (n)(x) = (−1)n 2n · n!

(2x + 1)n+1 .

5 A sequence a1, a2, a3, . . . is given by a1 =
√

2 and an+1 =
√

2 + an. Using mathematical
induction, prove each of the following:

a an+1 > an for all n ∈ N

b an < 2 for all n ∈ N

6 Prove that, for any natural number n ≥ 3, you can find a set A consisting of n natural
numbers such that the sum of the numbers in A is divisible by each of the numbers in A.
Hint: This is an induction proof with the base case n = 3.

7 We say that a point P(x, y) in the Cartesian plane is a rational point if both x and y are
rational numbers. The unit circle x2 + y2 = 1 has infinitely many rational points. For
example, the rational points (1, 0) and ( 3

5 , 4
5 ) lie on the unit circle.

a Show that the curve x2 + y2 = 3 has no rational points.
Hint: This is a challenging proof by contradiction.

b Hence, prove that
√

3 is irrational.
c You have shown that the curve x2 + y2 = 3 has no rational points. Explain why this

implies that x2 + y2 = 3k has no rational points, where k is an odd natural number.
d Hence, prove that

√
3k is irrational, for every odd natural number k.
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3
Circular functions

Objectives
I To revise the reciprocal circular functions cosecant, secant and cotangent.

I To revise the di�erent forms of the Pythagorean identity.

I To revise the compound angle formulas and the double angle formulas.

I To revise the inverse circular functions sin−1, cos−1 and tan−1.

I To understand the graphs of the inverse circular functions.

I To solve equations involving circular functions.

I To revise the trigonometric identities for products of sines and cosines expressed as
sums or di�erences, and vice versa.

There are many interesting and useful relationships between the circular functions. The most
fundamental is the Pythagorean identity:

cos2 x + sin2 x = 1

Astronomy was the original motivation for these identities, many of which were discovered a
very long time ago.

For example, the following two results were discovered by the Indian mathematician
Bhāskara II in the twelfth century:

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

They are of great importance in many areas of mathematics, including calculus.

The sine, cosine and tangent functions are discussed in some detail in Section 1A. Several
new circular functions are introduced in this chapter. You have met most of the material in
this chapter in Specialist Mathematics Units 1 & 2.
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102 Chapter 3: Circular functions

3A The reciprocal circular functions
The cosecant function: y = cosec θ
The cosecant function is defined by

cosec θ =
1

sin θ

provided sin θ , 0.

The graphs of y = cosec θ and y = sin θ
are shown here on the same set of axes.

−π

y

θ
y = sin θ

y = cosec θ

1

O

−1

−π
2

ππ
2

2π3π
2

� Domain As sin θ = 0 when θ = nπ, n ∈ Z, the domain of y = cosec θ is R \ { nπ : n ∈ Z }.

� Range The range of y = sin θ is [−1, 1], so the range of y = cosec θ is R \ (−1, 1).

� Turning points The graph of y = sin θ has turning points at θ =
(2n + 1)π

2
, for n ∈ Z,

as does the graph of y = cosec θ.

� Asymptotes The graph of y = cosec θ has vertical asymptotes with equations θ = nπ,
for n ∈ Z.

The secant function: y = sec θ
The secant function is defined by

sec θ =
1

cos θ

provided cos θ , 0.

The graphs of y = sec θ and y = cos θ
are shown here on the same set of axes.

−π π 2π

y

θ

1

O

−1
2

−π π
2

3π
2

y = sec θ

y = cos θ

� Domain The domain of y = sec θ is R \
{ (2n + 1)π

2
: n ∈ Z

}
.

� Range The range of y = sec θ is R \ (−1, 1).

� Turning points The graph of y = sec θ has turning points at θ = nπ, for n ∈ Z.

� Asymptotes The vertical asymptotes have equations θ =
(2n + 1)π

2
, for n ∈ Z.

Since the graph of y = cos θ is a translation of the graph of y = sin θ, the graph of y = sec θ is
a translation of the graph of y = cosec θ, by

π

2
units in the negative direction of the θ-axis.
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3A The reciprocal circular functions 103

The cotangent function: y = cot θ
The cotangent function is defined by

cot θ =
cos θ
sin θ

provided sin θ , 0.

Using the complementary properties
of sine and cosine, we have

cot θ = tan
(
π

2
− θ

)
= − tan

(
π −

(π
2
− θ

))
= − tan

(
θ +

π

2

)

y

O
−π π 2π−π

2
π
2

3π
2

θ

Therefore the graph of y = cot θ, shown above, is obtained from the graph of y = tan θ

by a translation of
π

2
units in the negative direction of the θ-axis and then a reflection in

the θ-axis.

� Domain As sin θ = 0 when θ = nπ, n ∈ Z, the domain of y = cot θ is R \ { nπ : n ∈ Z }.

� Range The range of y = cot θ is R.

� Asymptotes The vertical asymptotes have equations θ = nπ, for n ∈ Z.

Note: cot θ =
1

tan θ
provided cos θ , 0

Sketch the graph of each of the following over the interval [0, 2π]:

y = cosec(2x)a y = sec
(
x +

π

3

)
b y = cot

(
x −

π

4

)
c

Example 1

Solution
a The graph of y = cosec(2x)

is obtained from the graph of
y = cosec x by a dilation of factor 1

2
from the y-axis.

The graph of y = sin(2x) is
also shown. π 2π

y

x

y = cosec 2x

y = sin 2x
1

O

−1

π
2

3π
2
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104 Chapter 3: Circular functions

b The graph of y = sec
(
x +

π

3

)
is obtained from

the graph of y = sec x by a translation of
π

3
units

in the negative direction of the x-axis.

The y-axis intercept is sec
(
π

3

)
= 2.

The asymptotes are x =
π

6
and x =

7π
6

.

π 2π

(2π, 2)

y

x

1

2

O

−1

−2

π
6

7π
6

c The graph of y = cot
(
x −

π

4

)
is obtained from

the graph of y = cot x by a translation of
π

4
units in the positive direction of the x-axis.

The y-axis intercept is cot
(
−
π

4

)
= −1.

The asymptotes are x =
π

4
and x =

5π
4

.

The x-axis intercepts are
3π
4

and
7π
4

.

π 2π
(2π, −1)

x

1
O

−1
π
4

5π
4

7π
4

3π
4

y

For right-angled triangles, the reciprocal functions can be defined through ratios:

cosec(x◦) =
hyp
opp

sec(x◦) =
hyp
adj

cot(x◦) =
adj
opp

A B

C

hyp
opp

adj

x°

In triangle ABC, ∠ABC = 90◦, ∠CAB = x◦, AB = 6 cm and
BC = 5 cm. Find:

a AC

b the trigonometric ratios related to x◦ BA

C

5

6

x°

Example 2

Solution
a By Pythagoras’ theorem,

∴

AC2 = 52 + 62 = 61

AC =
√

61 cm

b sin(x◦) =
5
√

61
cos(x◦) =

6
√

61
tan(x◦) =

5
6

cosec(x◦) =

√
61
5

sec(x◦) =

√
61
6

cot(x◦) =
6
5
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3A The reciprocal circular functions 105

Useful properties
The symmetry properties of sine, cosine and tangent can be used to establish the following:

sec(π − x) = − sec x cosec(π − x) = cosec x cot(π − x) = − cot x

sec(π + x) = − sec x cosec(π + x) = − cosec x cot(π + x) = cot x

sec(2π − x) = sec x cosec(2π − x) = − cosec x cot(2π − x) = − cot x

sec(−x) = sec x cosec(−x) = − cosec x cot(−x) = − cot x

The complementary properties are also useful:

sec
(
π

2
− x

)
= cosec x cosec

(
π

2
− x

)
= sec x

cot
(
π

2
− x

)
= tan x tan

(
π

2
− x

)
= cot x

Find the exact value of each of the following:

sec
(11π

4

)
a cosec

(
−

23π
4

)
b cot

(11π
3

)
c

Example 3

Solution

sec
(11π

4

)
= sec

(
2π +

3π
4

)
= sec

(3π
4

)
=

1
cos

( 3π
4
)

=
1
− 1
√

2

= −
√

2

a cosec
(
−

23π
4

)
= cosec

(
−6π +

π

4

)
= cosec

(
π

4

)
=

1
sin

(
π

4
)

=
1
1
√

2

=
√

2

b cot
(11π

3

)
= cot

(
4π −

π

3

)
= cot

(
−
π

3

)
= − cot

(
π

3

)
= −

1
tan

(
π

3
)

= −
1
√

3

c

The Pythagorean identity
We can establish two alternative forms of the Pythagorean identity cos2 x + sin2 x = 1.

1 + tan2 x = sec2 x provided cos x , 0

cot2 x + 1 = cosec2 x provided sin x , 0

Proof To obtain the first identity, divide each term in the Pythagorean identity by cos2 x:

cos2 x
cos2 x

+
sin2 x
cos2 x

=
1

cos2 x

1 + tan2 x = sec2 x∴

For the second identity, divide each term in the Pythagorean identity by sin2 x.
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106 Chapter 3: Circular functions

Simplify the expression

cos x − cos3 x
cot x

Example 4

Solution

cos x − cos3 x
cot x

=
cos x · (1 − cos2 x)

cot x

= cos x · sin2 x ·
sin x
cos x

= sin3 x

If tan x = 2 and x ∈
(
0,
π

2

)
, find:

sec xa cos xb sin xc cosec xd

Example 5

Solution
sec2 x = 1 + tan2 x

= 1 + 4

∴ sec x = ±
√

5

Since x ∈
(
0,
π

2

)
, we have sec x =

√
5.

a cos x =
1

sec x
=

√
5

5
b

sin x = tan x · cos x =
2
√

5
5

c cosec x =
1

sin x
=

√
5

2
d

Using the TI-Nspire
� Choose solve from the Algebra menu and complete as shown.
� Assign ( ctrl t ) or store ( ctrl var ) the answer as the variable a to obtain the

results.
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3A 3A The reciprocal circular functions 107

Using the Casio ClassPad

� InM, enter and highlight: tan(x) = 2
∣∣∣ 0 < x <

π

2
� Go to Interactive > Equation/Inequality > solve.
� Highlight the answer and drag it to the next entry line. Enter⇒ a.
� The results are obtained as shown.

Exercise 3A

1Example 1 Sketch the graph of each of the following over the interval [0, 2π]:

y = cosec
(
x +

π

4

)
a y = sec

(
x −

π

6

)
b y = cot

(
x +

π

3

)
c

y = sec
(
x +

2π
3

)
d y = cosec

(
x −

π

2

)
e y = cot

(
x −

3π
4

)
f

2 Sketch the graph of each of the following over the interval [0,π]:

y = sec(2x)a y = cosec(3x)b y = cot(4x)c

y = cosec
(
2x +

π

2

)
d y = sec(2x + π)e y = cot

(
2x −

π

3

)
f

3 Sketch the graph of each of the following over the interval [−π,π]:

y = sec
(
2x −

π

2

)
a y = cosec

(
2x +

π

3

)
b y = cot

(
2x −

2π
3

)
c

4Example 2 Find the trigonometric ratios cot(x◦), sec(x◦) and cosec(x◦) for each of the following
triangles:

5

8

x°
a

5

7
x°

b

9

7
x°

c
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108 Chapter 3: Circular functions 3A

5Example 3 Find the exact value of each of the following:

sin
(2π

3

)
a cos

(3π
4

)
b tan

(
−
π

4

)
c cosec

(
π

6

)
d

sec
(
π

4

)
e cot

(
−
π

6

)
f sin

(5π
4

)
g tan

(5π
6

)
h

sec
(
−
π

3

)
i cosec

(3π
4

)
j cot

(9π
4

)
k cos

(
−

7π
3

)
l

6Example 4 Simplify each of the following expressions:

sec2 x − tan2 xa cot2 x − cosec2 xb
tan2 x + 1

tan2 x
c

sin2 x
cos x

+ cos xd sin4 x − cos4 xe tan3 x + tan xf

7Example 5 If tan x = −4 and x ∈
(
−
π

2
, 0

)
, find:

sec xa cos xb cosec xc

8 If cot x = 3 and x ∈
(
π,

3π
2

)
, find:

cosec xa sin xb sec xc

9 If sec x = 10 and x ∈
(
−
π

2
, 0

)
, find:

tan xa sin xb

10 If cosec x = −6 and x ∈
(3π

2
, 2π

)
, find:

cot xa cos xb

11 If sin x◦ = 0.5 and 90 < x < 180, find:

cos x◦a cot x◦b cosec x◦c

12 If cosec x◦ = −3 and 180 < x < 270, find:

sin x◦a cos x◦b sec x◦c

13 If cos x◦ = −0.7 and 0 < x < 180, find:

sin x◦a tan x◦b cot x◦c

14 If sec x◦ = 5 and 180 < x < 360, find:

cos x◦a sin x◦b cot x◦c

15 Simplify each of the following expressions:

sec2 θ + cosec2 θ − sec2 θ cosec2 θa
(
sec θ − cos θ

)(
cosec θ − sin θ

)
b(

1 − cos2 θ
)(

1 + cot2 θ
)

c
sec2 θ − cosec2 θ

tan2 θ − cot2 θ
d

16 Let x = sec θ − tan θ. Prove that x +
1
x

= 2 sec θ and also find a simple expression

for x −
1
x

in terms of θ.
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3B Compound and double angle formulas 109

3B Compound and double angle formulas
The compound angle formulas
The following identities are known as the compound angle formulas.

Compound angle formulas

� cos(x + y) = cos x cos y − sin x sin y

� cos(x − y) = cos x cos y + sin x sin y

� sin(x + y) = sin x cos y + cos x sin y

� sin(x − y) = sin x cos y − cos x sin y

� tan(x + y) =
tan x + tan y

1 − tan x tan y

� tan(x − y) =
tan x − tan y

1 + tan x tan y

Proof of the initial identity
We start by proving the identity

cos(x − y) = cos x cos y + sin x sin y

The other identities will be derived from this result.

Consider a unit circle as shown:

arc length AB = y units

arc length AC = x units

arc length BC = x − y units

Rotate ∆OCB so that B is coincident with A.
Then C is moved to

P
(
cos(x − y), sin(x − y)

)
As the triangles CBO and PAO are congruent,
we have CB = PA.

Using the coordinate distance formula:

CB2 =
(
cos x − cos y

)2
+

(
sin x − sin y

)2

= 2 − 2
(
cos x cos y + sin x sin y

)
PA2 =

(
cos(x − y) − 1

)2
+

(
sin(x − y) − 0

)2

= 2 − 2 cos(x − y)

x

y

x − y

C

A

B

(cos x, sin x) 
(cosy, siny)

−1 O

1

1

x − yP

A
O−1

x

1

(1, 0)

(cos(x − y),  sin(x − y))

y

Since CB = PA, this gives

2 − 2 cos(x − y) = 2 − 2
(
cos x cos y + sin x sin y

)
cos(x − y) = cos x cos y + sin x sin y∴
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110 Chapter 3: Circular functions

Derivation of the other identities

cos(x + y) = cos
(
x − (−y)

)
= cos x cos(−y) + sin x sin(−y)

= cos x cos y − sin x sin y

sin(x − y) = cos
(
π

2
− x + y

)
= cos

(
π

2
− x

)
cos y − sin

(
π

2
− x

)
sin y

= sin x cos y − cos x sin y

tan(x − y) =
sin(x − y)
cos(x − y)

=
sin x cos y − cos x sin y
cos x cos y + sin x sin y

Dividing top and bottom by cos x cos y gives

tan(x − y) =

sin x cos y
cos x cos y

−
cos x sin y
cos x cos y

1 +
sin x sin y
cos x cos y

=
tan x − tan y

1 + tan x tan y

The derivation of the remaining two identities is left as an exercise.

Use
5π
12

=
π

6
+
π

4
to evaluate sin

(5π
12

)
.a Use

π

12
=
π

3
−
π

4
to evaluate cos

(
π

12

)
.b

Example 6

Solution

sin
(5π

12

)
= sin

(
π

6
+
π

4

)
= sin

(
π

6

)
cos

(
π

4

)
+ cos

(
π

6

)
sin

(
π

4

)
=

1
2
×

1
√

2
+

√
3

2
×

1
√

2

=

√
2

4
(
1 +
√

3
)

a cos
(
π

12

)
= cos

(
π

3
−
π

4

)
= cos

(
π

3

)
cos

(
π

4

)
+ sin

(
π

3

)
sin

(
π

4

)
=

1
2
×

1
√

2
+

√
3

2
×

1
√

2

=

√
2

4
(
1 +
√

3
)

b
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3B Compound and double angle formulas 111

If sin x = 0.2 and cos y = −0.4, where x ∈
[
0,
π

2

]
and y ∈

[
π,

3π
2

]
, find sin(x + y).

Example 7

Solution
We first find cos x and sin y.

cos x = ±
√

1 − 0.22 as sin x = 0.2

= ±
√

0.96

∴ cos x =
√

0.96 as x ∈
[
0,
π

2

]
=

2
√

6
5

sin y = ±
√

1 − (−0.4)2 as cos y = −0.4

= ±
√

0.84

∴ sin y = −
√

0.84 as y ∈
[
π,

3π
2

]
= −

√
21
5

Hence

sin(x + y) = sin x cos y + cos x sin y

= 0.2 × (−0.4) +
2
√

6
5
×

(
−

√
21
5

)
= −0.08 −

2
25
× 3
√

14

= −
2
25

(
1 + 3

√
14

)
Using the TI-Nspire

� First solve sin(x) = 0.2 for 0 ≤ x ≤
π

2
.

� Assign the result to a.

� Then solve cos(y) = −0.4 for π ≤ y ≤
3π
2

.
� Assign the result to b.

Note: If a decimal is entered, then the answer
will be given in approximate form, even
in Auto mode. To obtain an exact answer,
use exact( at the start of the entry or write
the decimal as a fraction.

� Use menu > Algebra > Trigonometry >

Expand to expand the expression sin(a + b).
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112 Chapter 3: Circular functions

Using the Casio ClassPad

� Solve sin(x) = 0.2
∣∣∣ 0 ≤ x ≤

π

2
for x.

� Solve cos(y) = −0.4
∣∣∣ π ≤ y ≤

3π
2

for y.

(Don’t forget to specify the solution
variable as y.)

� Paste the results to form the expression

sin
(
sin−1

(1
5

)
+ cos−1

(2
5

)
+ π

)
� Highlight and go to Interactive >

Transformation > tExpand.

The double angle formulas

Double angle formulas

� cos(2x) = cos2 x − sin2 x

= 2 cos2 x − 1

= 1 − 2 sin2 x

� sin(2x) = 2 sin x cos x � tan(2x) =
2 tan x

1 − tan2 x

Proof These formulas can be derived from the compound angle formulas. For example:

cos(x + y) = cos x cos y − sin x sin y

cos(x + x) = cos x cos x − sin x sin x∴

cos(2x) = cos2 x − sin2 x∴

The two other expressions for cos(2x) are obtained using the Pythagorean identity:

cos2 x − sin2 x = cos2 x − (1 − cos2 x)

= 2 cos2 x − 1

cos2 x − sin2 x = (1 − sin2 x) − sin2 xand

= 1 − 2 sin2 x

If sinα = 0.6 and α ∈
[
π

2
,π

]
, find sin(2α).

Example 8

Solution

cosα = ±
√

1 − 0.62 since sinα = 0.6

= ±0.8

cosα = −0.8 since α ∈
[
π

2
,π

]
∴
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3B 3B Compound and double angle formulas 113

Hence

sin(2α) = 2 sinα cosα

= 2 × 0.6 × (−0.8)

= −0.96

If cosα = 0.7 and α ∈
[3π

2
, 2π

]
, find sin

(
α

2

)
.

Example 9

Solution
We use a double angle formula:

cos(2x) = 1 − 2 sin2 x

cosα = 1 − 2 sin2
(
α

2

)
∴

2 sin2
(
α

2

)
= 1 − 0.7

= 0.3

sin
(
α

2

)
= ±
√

0.15

Since α ∈
[3π

2
, 2π

]
, we have

α

2
∈

[3π
4

,π
]
, so sin

(
α

2

)
is positive.

Hence

sin
(
α

2

)
=
√

0.15 =

√
15

10

Exercise 3BSkill-
sheet

1Example 6 Use the compound angle formulas and appropriate angles to find the exact value of each
of the following:

sin
(
π

12

)
a tan

(5π
12

)
b cos

(7π
12

)
c tan

(
π

12

)
d

2 Use the compound angle formulas to expand each of the following:

sin(2x − 5y)a cos(x2 + y)b tan
(
x + (y + z)

)
c

3 Simplify each of the following:

a sin(x) cos(2y) − cos(x) sin(2y) b cos(3x) cos(2x) + sin(3x) sin(2x)

c
tan A − tan(A − B)

1 + tan A tan(A − B)
d sin(A + B) cos(A − B) + cos(A + B) sin(A − B)

e cos(y) cos(−2y) − sin(y) sin(−2y)
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114 Chapter 3: Circular functions 3B

4 a Expand sin(x + 2x). b Hence express sin(3x) in terms of sin x.

5 a Expand cos(x + 2x). b Hence express cos(3x) in terms of cos x.

6Example 7 If sin x = 0.6 and tan y = 2.4, where x ∈
[
π

2
,π

]
and y ∈

[
0,
π

2

]
, find the exact value of

each of the following:

cos xa sec yb cos yc
sin yd tan xe cos(x − y)f
sin(x − y)g tan(x + y)h tan(x + 2y)i

7 If cos x = −0.7 and sin y = 0.4, where x ∈
[
π,

3π
2

]
and y ∈

[
0,
π

2

]
, find the value of each

of the following, correct to two decimal places:

sin xa cos yb tan(x − y)c cos(x + y)d

8 Simplify each of the following:
1
2 sin x cos xa sin2 x − cos2 xb

tan x
1 − tan2 x

c

sin4 x − cos4 x
cos(2x)

d
4 sin3 x − 2 sin x

cos x cos(2x)
e

4 sin2 x − 4 sin4 x
sin(2x)

f

9Example 8 If sin x = −0.8 and x ∈
[
π,

3π
2

]
, find:

sin(2x)a cos(2x)b tan(2x)c

10 If tan x = 3 and x ∈
(
0,
π

2

)
, find:

tan(2x)a tan(3x)b

11Example 9 If sin x = −0.75 and x ∈
[
π,

3π
2

]
, find correct to two decimal places:

cos xa sin
( 1

2 x
)

b

12 Use the double angle formula for tan(2x) and the fact that tan
(
π

4

)
= 1 to find the exact

value of tan
(
π

8

)
.

13 If cos x = 0.9 and x ∈
[
0,
π

2

]
, find cos

( 1
2 x

)
correct to two decimal places.

14 In a right-angled triangle GAP, AP = 12 m and GA = 5 m.
The point T on AP is such that ∠AGT = ∠TGP = xc. Without
using a calculator, find the exact values of the following:

a tan(2x)
b tan x, by using the double angle formula
c AT

5 m

12 m

G A

T

P
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3C The inverse circular functions 115

3C The inverse circular functions
As the circular functions sine, cosine and tangent are periodic, they are not one-to-one and
therefore they do not have inverse functions. However, by restricting their domains to form
one-to-one functions, we can define the inverse circular functions.

The inverse sine function: y = sin−1 x
Restricting the sine function
When the domain of the sine function is restricted to the

interval
[
−
π

2
,
π

2

]
, the resulting function is one-to-one and

therefore has an inverse function.

Note: Other intervals (defined through consecutive turning
points of the graph) could have been used for the
restricted domain, but this is the convention.

y

x

y = sin x
1

−1

π
2

−π
2

O

Defining the inverse function
The inverse of the restricted sine function is usually denoted by sin−1 or arcsin.

Inverse sine function

sin−1 : [−1, 1]→ R, sin−1 x = y, where sin y = x and y ∈
[
−
π

2
,
π

2

]
The graph of y = sin−1 x is obtained from the graph of y = sin x, x ∈

[
−
π

2
,
π

2

]
, through a

reflection in the line y = x.

y

x

y = sin x
1

−1

π
2

−π
2

O

y

x

y = sin−1x

y = sin x 

y = x 
1

−1 1

−1

π
2

π
2

π
2

O
−

π
2

−

x

y

−1 1
O

π
2

y = sin−1x

−π
2

� Domain Domain of sin−1 = range of restricted sine function = [−1, 1]

� Range Range of sin−1 = domain of restricted sine function =

[
−
π

2
,
π

2

]
� Inverse relationship
• sin(sin−1 x) = x for all x ∈ [−1, 1]

• sin−1(sin x) = x for all x ∈
[
−
π

2
,
π

2

]
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116 Chapter 3: Circular functions

The inverse cosine function: y = cos−1 x
The standard domain for the restricted cosine function is [0,π].

The restricted cosine function is one-to-one, and its inverse is denoted by cos−1 or arccos.

Inverse cosine function

cos−1 : [−1, 1]→ R, cos−1 x = y, where cos y = x and y ∈ [0,π]

The graph of y = cos−1 x is obtained from the graph of y = cos x, x ∈ [0,π], through a
reflection in the line y = x.

y

x

y = cos x

−1

1

O
π π
2

y = x

y

x
y = cos x 

1

O

−1
−1

π

ππ
2

y = cos−1x

y

x

 

O

−1 1

π

π
2 y = cos−1x

� Domain Domain of cos−1 = range of restricted cosine function = [−1, 1]
� Range Range of cos−1 = domain of restricted cosine function = [0,π]
� Inverse relationship
• cos(cos−1 x) = x for all x ∈ [−1, 1]
• cos−1(cos x) = x for all x ∈ [0,π]

The inverse tangent function: y = tan−1 x
The domain of the restricted tangent function is

(
−
π

2
,
π

2

)
.

The restricted tangent function is one-to-one, and its inverse is denoted by tan−1 or arctan.

Inverse tangent function

tan−1 : R→ R, tan−1 x = y, where tan y = x and y ∈
(
−
π

2
,
π

2

)
The graph of y = tan−1 x is obtained from the graph of y = tan x, x ∈

(
−
π

2
,
π

2

)
, through a

reflection in the line y = x.
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3C The inverse circular functions 117

y

x

y = tan x

O
π
2

π
2

−

y

O x

y = tan−1x

y = x 

y = tan x

π
2

π
2

π
2

−

π
2

−

y

x
y = tan−1x  

y = − 

O

y =

 π
2

π
2

π
2

π
2

−

� Domain Domain of tan−1 = range of restricted tangent function = R

� Range Range of tan−1 = domain of restricted tangent function =

(
−
π

2
,
π

2

)
� Inverse relationship
• tan(tan−1 x) = x for all x ∈ R

• tan−1(tan x) = x for all x ∈
(
−
π

2
,
π

2

)

Sketch the graph of each of the following functions for the maximal domain:

y = cos−1(2 − 3x)a y = tan−1(x + 2) +
π

2
b

Example 10

Solution

a cos−1(2 − 3x) is defined ⇔ −1 ≤ 2 − 3x ≤ 1

⇔ −3 ≤ −3x ≤ −1

⇔
1
3
≤ x ≤ 1

The implied domain is
[1
3

, 1
]
.

We can write y = cos−1
(
−3

(
x −

2
3

))
.

The graph is obtained from the graph of
y = cos−1 x by the following sequence of
transformations:
� a dilation of factor 1

3 from the y-axis
� a reflection in the y-axis
� a translation of 2

3 units in the positive
direction of the x-axis.

y

x

(1, π)

O 11
3
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118 Chapter 3: Circular functions

b The domain of tan−1 is R.

The graph of

y = tan−1(x + 2) +
π

2
is obtained from the graph of y = tan−1 x by a
translation of 2 units in the negative direction
of the x-axis and

π

2
units in the positive

direction of the y-axis.

y

x
O

y = π

 −2, π
2

a Evaluate sin−1
(
−

√
3

2

)
.

b Simplify:

sin−1
(
sin

(
π

6

))
i sin−1

(
sin

(5π
6

))
ii

sin−1
(
cos

(
π

3

))
iii sin

(
cos−1

( 1
√

2

))
iv

Example 11

Solution

a Evaluating sin−1
(
−

√
3

2

)
is equivalent to solving sin y = −

√
3

2
for y ∈

[
−
π

2
,
π

2

]
.

sin
(
π

3

)
=

√
3

2

sin
(
−
π

3

)
= −

√
3

2
∴

sin−1
(
−

√
3

2

)
= −

π

3
∴

b Since
π

6
∈

[
−
π

2
,
π

2

]
, by definition

we have

sin−1
(
sin

(
π

6

))
=
π

6

i sin−1
(
sin

(5π
6

))
= sin−1

(
sin

(
π −

5π
6

))
= sin−1

(
sin

(
π

6

))
=
π

6

ii

sin−1
(
cos

(
π

3

))
= sin−1

(
sin

(
π

2
−
π

3

))
= sin−1

(
sin

(
π

6

))
=
π

6

iii sin
(
cos−1

( 1
√

2

))
= sin

(
π

4

)
=

1
√

2

iv
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3C The inverse circular functions 119

Find the implied domain and range of:

y = sin−1(2x − 1)a y = 3 cos−1(2 − 2x)b

Example 12

Solution
For sin−1(2x − 1) to be defined:

−1 ≤ 2x − 1 ≤ 1

⇔ 0 ≤ 2x ≤ 2

⇔ 0 ≤ x ≤ 1

a For 3 cos−1(2 − 2x) to be defined:

−1 ≤ 2 − 2x ≤ 1

⇔ −3 ≤ −2x ≤ −1

⇔
1
2
≤ x ≤

3
2

b

Thus the implied domain is [0, 1]. Thus the implied domain is
[1
2

,
3
2

]
.

The range is
[
−
π

2
,
π

2

]
. The range is [0, 3π].

Find the implied domain and range of y = cos(− sin−1 x), where cos has the restricted
domain [0,π].

Example 13

Solution

Let y = cos u, u ∈ [0,π]. Let u = − sin−1 x.

y

O
u

π

−1

1

π
2

u

x
−1 1

−

π
2

π
2

O

From the graphs, it can be seen that the function u = − sin−1 x has range
[
−
π

2
,
π

2

]
.

But for y = cos u to be defined, the value of u must belong to the domain of y = cos u,

which is [0,π]. Hence the values of u must belong to the interval
[
0,
π

2

]
.

0 ≤ u ≤
π

2
⇔ 0 ≤ − sin−1 x ≤

π

2
(since u = − sin−1 x)

⇔ −
π

2
≤ sin−1 x ≤ 0

⇔ −1 ≤ x ≤ 0

Hence the domain of y = cos(− sin−1 x) is [−1, 0]. The range is [0, 1].
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Exercise 3CSkill-
sheet

1Example 10 Sketch the graphs of the following functions, stating clearly the implied domain and the
range of each:

y = tan−1(x − 1)a y = cos−1(x + 1)b y = 2 sin−1
(
x +

1
2

)
c

y = 2 tan−1(x) +
π

2
d y = cos−1(2x)e y =

1
2

sin−1(3x) +
π

4
f

2Example 11a Evaluate each of the following:

arcsin 1a arcsin
(
−

1
√

2

)
b arcsin 0.5c

cos−1
(
−

√
3

2

)
d cos−1 0.5e tan−1 1f

tan−1(−
√

3)g tan−1
( 1
√

3

)
h cos−1(−1)i

3Example 11b Simplify:

sin(cos−1 0.5)a sin−1
(
cos

(5π
6

))
b tan

(
sin−1

(
−

1
√

2

))
c

cos(tan−1 1)d tan−1
(
sin

(5π
2

))
e tan(cos−1 0.5)f

cos−1
(
cos

(7π
3

))
g sin−1

(
sin

(
−

2π
3

))
h tan−1

(
tan

(11π
4

))
i

cos−1
(
sin

(
−
π

3

))
j cos−1

(
tan

(
−
π

4

))
k sin−1

(
cos

(
−

3π
4

))
l

4 Let f :
[
π

2
,

3π
2

]
→ R, f (x) = sin x.

a Define f −1, clearly stating its domain and its range.
b Evaluate:

f
(
π

2

)
i f

(3π
4

)
ii f

(7π
6

)
iii

f −1(−1)iv f −1(0)v f −1(0.5)vi

5Example 12 Given that the domains of sin, cos and tan are restricted to
[
−
π

2
,
π

2

]
, [0,π] and

(
−
π

2
,
π

2

)
respectively, give the implied domain and range of each of the following:

y = sin−1(2 − x)a y = sin
(
x +

π

4

)
b y = sin−1(2x + 4)c

y = sin
(
3x −

π

3

)
d y = cos

(
x −

π

6

)
e y = cos−1(x + 1)f

y = cos−1(x2)g y = cos
(
2x +

2π
3

)
h y = tan−1(x2)i

y = tan
(
2x −

π

2

)
j y = tan−1(2x + 1)k y = tan(x2)l
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3C 3C The inverse circular functions 121

6 Simplify each of the following expressions, in an exact form:

cos
(
sin−1

(4
5

))
a tan

(
cos−1

( 5
13

))
b cos

(
tan−1

( 7
24

))
c

tan
(
sin−1

(40
41

))
d tan

(
cos−1

(1
2

))
e sin

(
cos−1

(2
3

))
f

sin(tan−1(−2))g cos
(
sin−1

(3
7

))
h sin(tan−1 0.7)i

7 Let sinα =
3
5

and sin β =
5

13
, where α ∈

[
0,
π

2

]
and β ∈

[
0,
π

2

]
.

a Find:

i cosα ii cos β

b Use a compound angle formula to show that:

i sin−1
(3
5

)
− sin−1

( 5
13

)
= sin−1

(16
65

)
ii sin−1

(3
5

)
+ sin−1

( 5
13

)
= cos−1

(33
65

)
8Example 13 Given that the domains of sin and cos are restricted to

[
−
π

2
,
π

2

]
and [0,π] respectively,

give the implied domain and range of each of the following:

y = sin−1(cos x)a y = cos(sin−1 x)b
y = cos−1(sin(2x)

)
c y = sin(− cos−1 x)d

y = cos(2 sin−1 x)e y = tan−1(cos x)f
y = cos(tan−1 x)g y = sin(tan−1 x)h

9 a Use a compound angle formula to show that tan−1(3) − tan−1
(1
2

)
=
π

4
.

b Hence show that tan−1 x − tan−1
( x − 1

x + 1

)
=
π

4
for x > −1.

10 Given that the domains of sin and cos are restricted to
[
−
π

2
,
π

2

]
and [0,π] respectively,

explain why each expression cannot be evaluated:

cos
(
arcsin(−0.5)

)
a sin

(
cos−1(−0.2)

)
b cos

(
tan−1(−1)

)
c

11 Consider the function f (x) = sin(cos−1 x).

a State the maximal domain of f .
b Explain why f (x) ≥ 0 for all x in the domain of f .
c By using the identity cos2 x + sin2 x = 1, show that f (x) =

√
1 − x2.

12 Consider the function f (x) = sin−1(sin x).

a State the maximal domain and range of f .

b Sketch the graph of y = f (x) for −
π

2
≤ x ≤

π

2
.

c Sketch the graph of y = f (x) for −π ≤ x ≤ 2π.
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122 Chapter 3: Circular functions

3D Solution of equations
In Section 1A, we looked at the solution of equations involving sine, cosine and tangent. In
this section, we introduce equations involving the reciprocal circular functions and the use
of the double angle formulas. We also consider equations that are not able to be solved by
analytic methods.

Solve the equation sec x = 2 for x ∈ [0, 2π].

Example 14

Solution

sec x = 2

cos x =
1
2

∴

We are looking for solutions in [0, 2π]:

x =
π

3
or x = 2π −

π

3

x =
π

3
or x =

5π
3

∴

y

x

y = cos x 

O

−1

0.5

1

2π

Solve the equation cosec
(
2x −

π

3

)
= −

2
√

3
3

for x ∈ [0, 2π].

Example 15

Solution

cosec
(
2x −

π

3

)
= −

2
√

3
3

sin
(
2x −

π

3

)
= −

3

2
√

3
= −

√
3

2
implies

Let θ = 2x −
π

3
where θ ∈

[
−
π

3
,

11π
3

]
.

sin θ = −

√
3

2
Then

θ = −
π

3
,

4π
3

,
5π
3

,
10π

3
or

11π
3

∴

2x −
π

3
= −

π

3
,

4π
3

,
5π
3

,
10π

3
or

11π
3

∴

2x = 0,
5π
3

, 2π,
11π

3
or 4π∴

x = 0,
5π
6

, π,
11π

6
or 2π∴
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3D Solution of equations 123

General solution of trigonometric equations
We recall the following from Mathematical Methods Units 3 & 4.

� For a ∈ [−1, 1], the general solution of the equation cos x = a is

x = 2nπ ± cos−1(a), where n ∈ Z

� For a ∈ R, the general solution of the equation tan x = a is

x = nπ + tan−1(a), where n ∈ Z

� For a ∈ [−1, 1], the general solution of the equation sin x = a is

x = 2nπ + sin−1(a) or x = (2n + 1)π − sin−1(a), where n ∈ Z

Note: An alternative and more concise way to express the general solution of sin x = a is
x = nπ + (−1)n sin−1(a), where n ∈ Z.

a Find all the values of x for which cot x = −1.

b Find all the values of x for which sec
(
2x −

π

3

)
= 2.

Example 16

Solution
a The period of the function y = cot x is π.

The solution of cot x = −1 in [0,π] is x =
3π
4

.

Therefore the solutions of the equation are

x =
3π
4

+ nπ where n ∈ Z

y

O
x

3π

π

4

−1
π
2

b First write the equation as

cos
(
2x −

π

3

)
=

1
2

We now proceed as usual to find the general solution:

2x −
π

3
= 2nπ ± cos−1

(1
2

)
2x −

π

3
= 2nπ ±

π

3

2x −
π

3
= 2nπ +

π

3
or 2x −

π

3
= 2nπ −

π

3

2x = 2nπ +
2π
3

or 2x = 2nπ

x = nπ +
π

3
or x = nπ where n ∈ Z∴
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124 Chapter 3: Circular functions

Using identities to solve equations
The double angle formulas can be used to help solve trigonometric equations.

Solve each of the following equations for x ∈ [0, 2π]:

sin(4x) = sin(2x)a cos x = sin
( x
2

)
b

Example 17

Solution

a sin(4x) = sin(2x)

2 sin(2x) cos(2x) = sin(2x)

sin(2x)
(
2 cos(2x) − 1

)
= 0 where 2x ∈ [0, 4π]

sin(2x) = 0 or 2 cos(2x) − 1 = 0Thus

sin(2x) = 0 or cos(2x) = 1
2i.e.

2x = 0, π, 2π, 3π, 4π or 2x =
π

3
,

5π
3

,
7π
3

,
11π

3
∴

x = 0,
π

2
, π,

3π
2

, 2π or x =
π

6
,

5π
6

,
7π
6

,
11π

6

Hence x = 0,
π

6
,
π

2
,

5π
6

, π,
7π
6

,
3π
2

,
11π

6
or 2π.

b cos x = sin
( x
2

)
1 − 2 sin2

( x
2

)
= sin

( x
2

)
2 sin2

( x
2

)
+ sin

( x
2

)
− 1 = 0 where

x
2
∈ [0,π]

Let a = sin
( x
2

)
. Then a ∈ [0, 1]. We have

2a2 + a − 1 = 0

(2a − 1)(a + 1) = 0∴

2a − 1 = 0 or a + 1 = 0∴

a = 1
2 or a = −1∴

Thus a = 1
2 , since a ∈ [0, 1]. We now have

sin
( x
2

)
=

1
2

x
2

=
π

6
or

5π
6

∴

x =
π

3
or

5π
3

∴
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3D Solution of equations 125

Maximum and minimum values
We know that −1 ≤ sin x ≤ 1 and −1 ≤ cos x ≤ 1. This can be used to find the maximum and
minimum values of trigonometric functions without using calculus.

For example:

� The function y = 2 sin x + 3 has a maximum value of 5 and a minimum value of 1. The
maximum value occurs when sin x = 1 and the minimum value occurs when sin x = −1.

� The function y =
1

2 sin x + 3
has a maximum value of 1 and a minimum value of

1
5

.

Find the maximum and minimum values of:

sin2(2x) + 2 sin(2x) + 2a
1

sin2(2x) + 2 sin(2x) + 2
b

Example 18

Solution
a Let a = sin(2x). Then

sin2(2x) + 2 sin(2x) + 2

= a2 + 2a + 2

= (a + 1)2 + 1

=
(
sin(2x) + 1

)2
+ 1

Now −1 ≤ sin(2x) ≤ 1.
Therefore the maximum value
is 5 and the minimum value is 1.

y

x

5

2

O

y =

−3π
2

3π
2

1
(sin (2x) + 1)2 + 1

y = (sin (2x) + 1)2 + 1

−π
2

π
2

−π π

b Note that sin2(2x) + 2 sin(2x) + 2 > 0 for all x. Thus its reciprocal also has this property.
A local maximum for the original function yields a local minimum for the reciprocal.
A local minimum for the original function yields a local maximum for the reciprocal.

Hence the maximum value is 1 and the minimum value is
1
5

.

Using the TI-Nspire
� To find the x-values for which the maximum

occurs, use menu > Calculus > Function
Maximum. The restriction is chosen to give
particular solutions.

� Use one of these x-values to find the
maximum value of the expression.

� Similarly, to find the x-values for which the
minimum occurs, use menu > Calculus >

Function Minimum.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



126 Chapter 3: Circular functions 3D

Using the Casio ClassPad
� InM, enter and highlight

(sin(2x))2 + 2 sin(2x) + 2.
� To find the maximum

value, select Interactive >

Calculation > fMax.
� Enter the domain: start at 0;

end at π.

Note: The minimum value can be found similarly by choosing fMin.

Using a CAS calculator to obtain approximate solutions
Many equations involving the circular functions cannot be solved using analytic techniques.
A CAS calculator can be used to solve such equations numerically.

Find the solutions of the equation 2 sin(3x) = x, correct to three decimal places.

Example 19

Solution
The graphs of y = 2 sin(3x)
and y = x are plotted using a
CAS calculator.

The solutions are x = 0, x ≈ 0.893
and x ≈ −0.893.

y

x

2

−2
(−0.8929..., −0.8929...)

y = 2 sin (3x)

y = x 

(0.8929..., 0.8929...)

O

Exercise 3DSkill-
sheet

1Example 14

Example 15

Solve each of the following equations for x ∈ [0, 2π]:

cosec x = −2a cosec
(
x −

π

4

)
= −2b 3 sec x = 2

√
3c

cosec(2x) + 1 = 2d cot x = −
√

3e cot
(
2x −

π

3

)
= −1f

2 Solve each of the following equations, giving solutions in the interval [0, 2π]:

sin x = 0.5a cos x = −

√
3

2
b tan x =

√
3c

cot x = −1d sec x = −2e cosec x = −
√

2f
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3D 3D Solution of equations 127

3Example 16 Find all the solutions to each of the following equations:

sin x =
1
√

2
a sec x = 1b cot x =

√
3c

cosec
(
2x −

π

3

)
= 2d cosec

(
3x −

π

3

)
=

2
√

3
3

e sec
(
3x −

π

6

)
=

2
√

3
3

f

cot
(
2x −

π

6

)
=
√

3g cot
(
2x −

π

4

)
= −1h cosec

(
2x −

π

4

)
= 1i

4 Solve each of the following in the interval [−π,π], giving the answers correct to two
decimal places:

sec x = 2.5a cosec x = −5b cot x = 0.6c

5Example 17 Solve each of the following equations for x ∈ [0, 2π]:

cos2 x − cos x sin x = 0a sin(2x) = sin xb
sin(2x) = cos xc sin(8x) = cos(4x)d
cos(2x) = cos xe cos(2x) = sin xf
sec2 x + tan x = 1g tan x (1 + cot x) = 0h
cot x + 3 tan x = 5 cosec xi sin x + cos x = 1j

6Example 18 Find the maximum and minimum values of each of the following:

2 + sin θa
1

2 + sin θ
b sin2

θ + 4c

1
sin2

θ + 4
d cos2 θ + 2 cos θe cos2 θ + 2 cos θ + 6f

7Example 19 Using a CAS calculator, find the coordinates of the points of intersection for the graphs
of the following pairs of functions. (Give values correct to two decimal places.)

y = 2x and y = 3 sin(2x)a y = x and y = 2 sin(2x)b
y = 3 − x and y = cos xc y = x and y = tan x, x ∈ [0, 2π]d

8 Let a ∈ [−1, 1] with a , −1. Consider the equation cos x = a for x ∈ [0, 2π]. If q is one
of the solutions, find the second solution in terms of q.

9 Let sinα = a where α ∈
(
0,
π

2

)
. Find, in terms of α, two values of x in [0, 2π] which

satisfy each of the following equations:

sin x = −aa cos x = ab

10 Let sec β = b where β ∈
(
π

2
,π

)
. Find, in terms of β, two values of x in [−π,π] which

satisfy each of the following equations:

sec x = −ba cosec x = bb

11 Let tan γ = c where γ ∈
(
π,

3π
2

)
. Find, in terms of γ, two values of x in [0, 2π] which

satisfy each of the following equations:

tan x = −ca cot x = cb
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128 Chapter 3: Circular functions 3D

12 Solve, correct to two decimal places, the equation sin2
θ =

θ

π
for θ ∈ [0,π].

13 Find the value of x, correct to two decimal places, such that tan−1 x = 4x − 5.

14 A curve on a light rail track is an arc of a circle of length 300 m and the straight line
joining the two ends of the curve is 270 m long.

a Show that, if the arc subtends an angle of 2θ◦ at the centre of the circle, then θ is a

solution of the equation sin θ◦ =
π

200
θ.

b Solve this equation for θ, correct to two decimal places.

15 Solve, correct to two decimal places, the equation tan x =
1
x

for x ∈ [0,π].

16 The area of a segment of a circle is given by the equation A = 1
2 r2(θ − sin θ), where θ is

the angle subtended at the centre of the circle. If the radius is 6 cm and the area of the
segment is 18 cm2, find the value of θ correct to two decimal places.

17 Two tangents are drawn from a point
so that the area of the shaded region
is equal to the area of the remaining
region of the circle.

a Show that θ satisfies the equation
tan θ = π − θ.

b Solve for θ, giving the answer
correct to three decimal places.

2θO

∠AOB = 2θ
B

X

A

18 Two particles A and B move in a straight line. At time t, their positions relative to a
point O are given by

xA = 0.5 sin t and xB = 0.25t2 + 0.05t

Find the times at which their positions are the same, and give this position. (Distances
are measured in centimetres and time in seconds.)

19 A string is wound around a disc and a horizontal length of the string AB is 20 cm long.
The radius of the disc is 10 cm. The string is then moved so that the end of the string,
B′, is moved to a point at the same level as O, the centre of the circle. The line B′P is a
tangent to the circle.

BA 20 cm

10 cm

O
θ

′B

BA
P

O

a Show that θ satisfies the equation
π

2
− θ + tan θ = 2.

b Find the value of θ, correct to two decimal places, which satisfies this equation.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



3E Sums and products of sines and cosines 129

3E Sums and products of sines and cosines
In Section 3B, we derived the compound angle formulas for sine and cosine. We use them in
this section to obtain new identities which allow us to rewrite products of sines and cosines as
sums or differences, and vice versa.

Expressing products as sums or di�erences

Product-to-sum identities

2 cos x cos y = cos(x − y) + cos(x + y)

2 sin x sin y = cos(x − y) − cos(x + y)

2 sin x cos y = sin(x + y) + sin(x − y)

Proof We use the compound angle formulas for sine and cosine:

cos(x + y) = cos x cos y − sin x sin y (1)

cos(x − y) = cos x cos y + sin x sin y (2)

sin(x + y) = sin x cos y + cos x sin y (3)

sin(x − y) = sin x cos y − cos x sin y (4)

The first product-to-sum identity is obtained by adding (2) and (1), the second identity
is obtained by subtracting (1) from (2), and the third by adding (3) and (4).

Express each of the following products as sums or differences:

a 2 sin(3θ) cos(θ)

b 2 sin 50◦ cos 60◦

c 2 cos
(
θ +

π

4

)
cos

(
θ −

π

4

)

Example 20

Solution
a Use the third product-to-sum identity:

2 sin(3θ) cos(θ) = sin(3θ + θ) + sin(3θ − θ)

= sin(4θ) + sin(2θ)

b Use the third product-to-sum identity:

2 sin 50◦ cos 60◦ = sin 110◦ + sin(−10)◦

= sin 110◦ − sin 10◦

c Use the first product-to-sum identity:

2 cos
(
θ +

π

4

)
cos

(
θ −

π

4

)
= cos

(
π

2

)
+ cos(2θ)

= cos(2θ)

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



130 Chapter 3: Circular functions

Expressing sums and di�erences as products

Sum-to-product identities

cos x + cos y = 2 cos
( x + y

2

)
cos

( x − y
2

)
cos x − cos y = −2 sin

( x + y
2

)
sin

( x − y
2

)
sin x + sin y = 2 sin

( x + y
2

)
cos

( x − y
2

)
sin x − sin y = 2 sin

( x − y
2

)
cos

( x + y
2

)
Proof Using the first product-to-sum identity, we have

2 cos
( x + y

2

)
cos

( x − y
2

)
= cos

( x + y
2
−

x − y
2

)
+ cos

( x + y
2

+
x − y

2

)
= cos y + cos x

= cos x + cos y

The other three sum-to-product identities can be obtained similarly.

Express each of the following as products:

sin 36◦ + sin 10◦a cos 36◦ + cos 10◦b
sin 36◦ − sin 10◦c cos 36◦ − cos 10◦d

Example 21

Solution
sin 36◦ + sin 10◦ = 2 sin 23◦ cos 13◦a cos 36◦ + cos 10◦ = 2 cos 23◦ cos 13◦b
sin 36◦ − sin 10◦ = 2 cos 23◦ sin 13◦c cos 36◦ − cos 10◦ = −2 sin 23◦ sin 13◦d

Prove that
cos(θ) − cos(3θ)
sin(3θ) − sin(θ)

= tan(2θ)

Example 22

Solution

LHS =
cos(θ) − cos(3θ)
sin(3θ) − sin(θ)

=
−2 sin(2θ) sin(−θ)

2 sin(θ) cos(2θ)

=
2 sin(2θ) sin(θ)
2 sin(θ) cos(2θ)

= tan(2θ)

= RHS
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3E 3E Sums and products of sines and cosines 131

Solve the equation sin(3x) + sin(11x) = 0 for x ∈ [0,π].

Example 23

Solution

sin(3x) + sin(11x) = 0

⇔ 2 sin(7x) cos(4x) = 0

⇔ sin(7x) = 0 or cos(4x) = 0

⇔ 7x = 0,π, 2π, 3π, 4π, 5π, 6π, 7π or 4x =
π

2
,

3π
2

,
5π
2

,
7π
2

⇔ x = 0,
π

7
,

2π
7

,
3π
7

,
4π
7

,
5π
7

,
6π
7

,π,
π

8
,

3π
8

,
5π
8

or
7π
8

Exercise 3ESkill-
sheet

1Example 20 Express each of the following products as sums or differences:

2 sin(4πt) cos(7πt)a sin 50◦ cos 10◦b

3 cos
(
πx
3

)
sin

(2πx
3

)
c 2 sin

(A + B + C
2

)
cos

(A − B −C
2

)
d

2 sin(x) sin
(3x

2

)
e 2 cos

(
πx
4

)
cos

(3πx
4

)
f

2 Express 2 sin(4θ) sin(θ) as a difference of cosines.

3 Use a product-to-sum identity to derive the expression for 2 sin
( x − y

2

)
cos

( x + y
2

)
as a

difference of sines.

4 Show that cos 75◦ cos 15◦ =
1
4

.

5Example 21 Express each of the following as products:

sin 66◦ + sin 34◦a cos 66◦ + cos 34◦b
sin 66◦ − sin 34◦c cos 66◦ − cos 34◦d

6 Express each of the following as products:

sin(8A) + sin(2A)a cos(x) + cos(4x)b
sin(6x) − sin(4x)c cos(5A) − cos(3A)d

7Example 22 Show that sin(A) + 2 sin(3A) + sin(5A) = 4 cos2(A) sin(3A).

8 For any three angles α, β and γ, show that

sin(α + β) sin(α − β) + sin(β + γ) sin(β − γ) + sin(γ + α) sin(γ − α) = 0
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132 Chapter 3: Circular functions 3E

9 Show that cos 70◦ + sin 40◦ = cos 10◦.

10 Show that cos 20◦ + cos 100◦ + cos 140◦ = 0.

11Example 23 Solve each of the following equations for x ∈ [−π,π]:

cos(5x) + cos(x) = 0a cos(5x) − cos(x) = 0b
sin(5x) + sin(x) = 0c sin(5x) − sin(x) = 0d

12 Solve the equation sin(3x) + sin(x) + cos(4x) = 1 for 0 ≤ x ≤ π.

13 Solve each of the following equations for θ ∈ [0,π]:

cos(2θ) − sin(θ) = 0a sin(5θ) − sin(3θ) + sin(θ) = 0b
sin(7θ) − sin(θ) = sin(3θ)c cos(3θ) − cos(5θ) + cos(7θ) = 0d

14 Evaluate each of the following sums:

a sin 1◦ + sin 2◦ + sin 3◦ + · · · + sin 358◦ + sin 359◦

b cos 1◦ + cos 2◦ + cos 3◦ + · · · + cos 358◦ + cos 359◦

15 a By first using the sum-to-product identities, prove that

sin(θ) + sin(2θ) + cos(θ) + cos(2θ) = 2
√

2 cos
(
θ

2

)
sin

(3θ
2

+
π

4

)
b Hence, solve the equation sin(θ) + sin(2θ) + cos(θ) + cos(2θ) = 0 for 0 ≤ θ ≤ 2π.

16 Prove the following identity:

sin(θ) + sin(3θ) + sin(5θ)
cos(θ) + cos(3θ) + cos(5θ)

= tan(3θ)

17 Given that
sin(2A) − cos(2B)
cos(2A) − sin(2B)

=
a
b

, prove that cot(A − B) =
b − a
b + a

.

18 Let ABC be a triangle.

a Prove that if 2 cos B sin C = sin A, then triangle ABC is isosceles.

b i Prove that
sin A + sin B
cos A + cos B

= cot
(C

2

)
.

ii Hence, prove that if
sin A + sin B
cos A + cos B

= sin C, then triangle ABC is right-angled
at C.

19 Let ABC be a triangle. Prove that:

a sin A + sin B + sin C = 4 cos
(A

2

)
cos

(B
2

)
cos

(C
2

)
b sin(2A) + sin(2B) + sin(2C) = 4 sin A sin B sin C
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Assign-
ment

Nrich

Chapter summary

Reciprocal circular functions
� Definitions

cosec x =
1

sin x
provided sin x , 0

sec x =
1

cos x
provided cos x , 0

cot x =
cos x
sin x

provided sin x , 0

� Symmetry properties

sec(π − x) = − sec x cosec(π − x) = cosec x cot(π − x) = − cot x

sec(π + x) = − sec x cosec(π + x) = − cosec x cot(π + x) = cot x

sec(2π − x) = sec x cosec(2π − x) = − cosec x cot(2π − x) = − cot x

sec(−x) = sec x cosec(−x) = − cosec x cot(−x) = − cot x

� Complementary properties

sec
(
π

2
− x

)
= cosec x cosec

(
π

2
− x

)
= sec x

cot
(
π

2
− x

)
= tan x tan

(
π

2
− x

)
= cot x

� Pythagorean identity

cos2 x + sin2 x = 1

1 + tan2 x = sec2 x

cot2 x + 1 = cosec2 x

Compound angle formulas

� cos(x + y) = cos x cos y − sin x sin y

� cos(x − y) = cos x cos y + sin x sin y

� sin(x + y) = sin x cos y + cos x sin y

� sin(x − y) = sin x cos y − cos x sin y

� tan(x + y) =
tan x + tan y

1 − tan x tan y

� tan(x − y) =
tan x − tan y

1 + tan x tan y

Double angle formulas

� cos(2x) = cos2 x − sin2 x

= 2 cos2 x − 1

= 1 − 2 sin2 x

� sin(2x) = 2 sin x cos x � tan(2x) =
2 tan x

1 − tan2 x
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Inverse circular functions

Inverse sine (arcsin)
sin−1 : [−1, 1]→ R, sin−1 x = y,

where sin y = x and y ∈
[
−
π

2
,
π

2

]
y

2

x
−

−

1 1

π

2
π

y = sin−1 x 

O

� Inverse cosine (arccos)
cos−1 : [−1, 1]→ R, cos−1 x = y,

where cos y = x and y ∈ [0,π]

y

x
−1 1

π

O

y = cos−1 x

�

Inverse tangent (arctan)
tan−1 : R→ R, tan−1 x = y,

where tan y = x and y ∈
(
−
π

2
,
π

2

)
�

x

y

π
2

π
2

O

y = tan−1 x

−

Product-to-sum identities

� 2 cos x cos y = cos(x − y) + cos(x + y)

� 2 sin x sin y = cos(x − y) − cos(x + y)

� 2 sin x cos y = sin(x + y) + sin(x − y)

Sum-to-product identities

� cos x + cos y = 2 cos
( x + y

2

)
cos

( x − y
2

)
� cos x − cos y = −2 sin

( x + y
2

)
sin

( x − y
2

)
� sin x + sin y = 2 sin

( x + y
2

)
cos

( x − y
2

)
� sin x − sin y = 2 sin

( x − y
2

)
cos

( x + y
2

)
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Technology-free questions

1 If θ is an acute angle and cos θ =
4
5

, find:

cos(2θ)a sin(2θ)b tan(2θ)c cosec θd cot θe

2 Solve each of the following equations for −π < x ≤ 2π:

sin(2x) = sin xa cos x − 1 = cos(2x)b sin(2x) = 2 cos xc
sin2 x cos3 x = cos xd sin2 x − 1

2 sin x − 1
2 = 0e 2 cos2 x − 3 cos x + 1 = 0f

3 Solve each of the following equations for 0 ≤ θ ≤ 2π, giving exact answers:

2 − sin θ = cos2 θ + 7 sin2
θa sec(2θ) = 2b

1
2
(
5 cos θ − 3 sin θ

)
= sin θc sec θ = 2 cos θd

4 Find the exact value of each of the following:

cosec
(
−

5π
3

)
a sec

(7π
3

)
b cosec

(5π
6

)
c cot

(
−

3π
4

)
d cot

(
−
π

6

)
e

5 Given that tanα = p, where α is an acute angle, find each of the following in terms of p:

tan(−α)a tan(π − α)b tan
(
π

2
− α

)
c tan

(3π
2

+ α

)
d tan(2π − α)e

6 Consider the function f (x) = tan(cos−1 x).

a State the maximal domain and range of f .

b Show that f (x) =

√
1 − x2

x
.

c Sketch the graph of f for its maximal domain.

7 Find:

sin−1
(√3

2

)
a cos

(
cos−1

(1
2

))
b cos−1

(
cos

(2π
3

))
c

cos−1
(
cos

(4π
3

))
d cos

(
sin−1

(
−

1
2

))
e cos

(
tan−1(−1)

)
f

8 Let a and b be real constants, with a > 0. State the maximal domain of each of the
following functions:

f (x) = sin−1(
√

ax + b)a f (x) = cos−1
( 2
ax

)
b

f (x) = sin−1
(ax

2
− 2

)
c f (x) = cos−1(

√
2 − ax)d

9 Sketch the graph of each of the following functions, stating the maximal domain and
range of each:

y = 2 tan−1 xa y = sin−1(3 − x)b y = 3 cos−1(2x + 1)c
y = − cos−1(2 − x)d y = 2 tan−1(1 − x)e

10 Solve the equation sin(3x) = sin(5x) for 0 ≤ x ≤ π.

11 Prove the identity
sin A + sin B − sin(A + B)
sin A + sin B + sin(A + B)

= tan
(A

2

)
tan

(B
2

)
.
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Multiple-choice questions

1 Which of the following is the graph of the function y = cos−1(x)?

ππ

1

x

y

−1

O

BA

ED

C

π

x
1−1 O

y

1O−1

π

y

x

1O−1

π

y

x

π

1

x

y

−1

O

2

π
2 π

2

π
2

π
2

A

ππ

1

x

y

−1

O

BA

ED

C

π

x
1−1 O

y

1O−1

π

y

x

1O−1

π

y

x

π

1

x

y

−1

O

2

π
2 π

2

π
2

π
2

B

ππ

1

x

y

−1

O

BA

ED

C

π

x
1−1 O

y

1O−1

π

y

x

1O−1

π

y

x

π

1

x

y

−1

O

2

π
2 π

2

π
2

π
2

C

ππ

1

x

y

−1

O

BA

ED

C

π

x
1−1 O

y

1O−1

π

y

x

1O−1

π

y

x

π

1

x

y

−1

O

2

π
2 π

2

π
2

π
2

D

ππ

1

x

y

−1

O

BA

ED

C

π

x
1−1 O

y

1O−1

π

y

x

1O−1

π

y

x

π

1

x

y

−1

O

2

π
2 π

2

π
2

π
2

E

2 If cos x = −
2
3

and 2π < x < 3π, then the exact value of sin x is

2π +

√
5

3
A 2π −

√
5

3
B

√
5

3
C −

√
5

3
D

5
9

E

3 Given that cos(x) = −
1
10

and x ∈
(
π

2
,π

)
, the value of cot(x) is

10

3
√

11
A 3

√
11B −3

√
11C

√
11

33
D −

√
11

33
E

4 The graph of the function y = 2 + sec(3x), for x ∈
(
−
π

6
,

7π
6

)
, has stationary points at

x =
π

3
,πA x =

π

6
,
π

2
,

5π
6

B x =
π

2
C

x = 0,
π

3
,

2π
3

,πD x = 0,
2π
3

E

5 If sin x = −
1
3

, then the possible values of cos x are

−
2
√

2
3

,
2
√

2
3

A −
2
3

,
2
3

B −
8
9

,
8
9

C −

√
2

3
,

√
2

3
D −

1
2

,
1
2

E

6 The maximal domain of y = cos−1(1 − 5x) is given by[
0,

2
5

]
A

[1 − π
5

,
1
5

]
B [−1, 1]C

(
0,

2
5

)
D

[
−

1
5

,
1
5

]
E

7 (1 + tan x)2 + (1 − tan x)2 is equal to

A 2 + tan x + 2 tan(2x) B 2 C −4 tan x D 2 + tan(2x) E 2 sec2 x
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8 The number of solutions of cos2(3x) =
1
4

, given that 0 ≤ x ≤ π, is

1A 2B 3C 6D 9E

9
tan(2θ)

1 + sec(2θ)
equals

tan(2θ)A tan(2θ) + 1B tan θ + 1C sin(2θ)D tan θE

10 If sin A = t and cos B = t, where
π

2
< A < π and 0 < B <

π

2
, then cos(B + A) is equal to

0A
√

1 − t2B 2t2 − 1C 1 − 2t2D −2t
√

1 − t2E

Extended-response questions

1 A horizontal rod is 1 m long. One end is
hinged at A, and the other end rests on a
support B. The rod can be rotated about A,
with the other end taking the two positions
B1 and B2, which are x m and 2x m above
the line AB respectively, where x < 0.5.

Let ∠BAB1 = α and ∠BAB2 = β.
x m

2x m B1

BA

B2

α
β

a Find each of the following in terms of x:

sinαi cosαii tanαiii sin βiv cos βv tan βvi

b Using the results of a, find:

sin(β − α)i cos(β − α)ii tan(β − α)iii
tan(2α)iv sin(2α)v cos(2α)vi

c If x = 0.3, find the magnitudes of ∠B2AB1 and 2α, correct to two decimal places.

2 a On the one set of axes, sketch the graphs of the following for x ∈ (0,π) ∪ (π, 2π):

i y = cosec(x) ii y = cot(x) iii y = cosec(x) − cot(x)
b i Show that cosec x − cot x > 0 for all x ∈ (0,π), and hence that cosec x > cot x for

all x ∈ (0,π).
ii Show that cosec x − cot x < 0 for all x ∈ (π, 2π), and hence that cosec x < cot x

for all x ∈ (π, 2π).

c On separate axes, sketch the graph of y = cot
( x
2

)
for x ∈ (0, 2π) and the graph

of y = cosec(x) + cot(x) for x ∈ (0, 2π) \ {π}.

d i Prove that cosec θ + cot θ = cot
(
θ

2

)
where sin θ , 0.

ii Use this result to find cot
(
π

8

)
and cot

(
π

12

)
.

iii Use the result cot2
(
π

8

)
+ 1 = cosec2

(
π

8

)
to find the exact value of sin

(
π

8

)
.

e Use the result of d to show that cosec(θ) + cosec(2θ) + cosec(4θ) can be expressed as
the difference of two cotangents.
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3 a ABCD is a rectangle with diagonal AC of length
10 units.

i Find the area of the rectangle in terms of θ.
ii Sketch the graph of R against θ, where R is

the area of the rectangle in square units,

for θ ∈
(
0,
π

2

)
.

10

B C

A D
θ

iii Find the maximum value of R. (Do not use calculus.)
iv Find the value of θ for which this maximum occurs.

b ABCDEFGH is a cuboid with

∠GAC =
θ

2
, ∠CAD = θ and AC = 10.

i Show that the volume, V , of the cuboid
is given by

V = 1000 cos θ sin θ tan
(
θ

2

)
D

C
HB

E

A

GF

θ

θ
2

ii Find the values of a and b such that V = a sin2
(
θ

2

)
+ b sin4

(
θ

2

)
.

iii Let p = sin2
(
θ

2

)
. Express V as a quadratic in p.

iv Find the possible values of p for 0 < θ <
π

2
.

v Sketch the graphs of V against θ and V against p with the help of a calculator.
vi Find the maximum volume of the cuboid and the values of p and θ for which this

occurs. (Determine the maximum through the quadratic found in b iii.)

c Now assume that the cuboid satisfies ∠CAD = θ, ∠GAC = θ and AC = 10.

Find V in terms of θ.i Sketch the graph of V against θ.ii
Discuss the relationship between V and θ using the graph of c ii.iii

4 ABCDE is a pentagon inscribed in a circle with
AB = BC = CD = DE = 1 and ∠BOA = 2θ.
The centre of the circle is O.

a Let p = AE. Show that p =
sin(4θ)
sin θ

.

b Express p as a function of cos θ.

Let x = cos θ.

c i If p =
√

3, show that 8x3 − 4x −
√

3 = 0.

A

B

C
D

EO2θ

ii Show that

√
3

2
is a solution to the equation and that it is the only real solution.

iii Find the value of θ for which p =
√

3.
iv Find the radius of the circle.

d Using a CAS calculator, sketch the graph of p against θ for θ ∈
(
0,
π

4

]
.

e If A = E, find the value of θ.
f i If AE = 1, show that 8x3 − 4x − 1 = 0.

ii Hence show that
1
4
(√

5 + 1
)

= cos
(
π

5

)
.
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5 a i Prove that tan x + cot x = 2 cosec(2x) for sin(2x) , 0.
ii Solve the equation tan x = cot x for x.
iii On the one set of axes, sketch the graphs of y = tan x, y = cot x and

y = 2 cosec(2x) for x ∈ (0, 2π).
b i Prove that cot(2x) + tan x = cosec(2x) for sin(2x) , 0.

ii Solve the equation cot(2x) = tan x for x.
iii On the one set of axes, sketch the graphs of y = cot(2x), y = tan x and

y = cosec(2x) for x ∈ (0, 2π).

c i Prove that cot(mx) + tan(nx) =
cos

(
(m − n)x

)
sin(mx) cos(nx)

, for all m, n ∈ Z.

ii Hence show that cot(6x) + tan(3x) = cosec(6x).

6 Triangle ABE is isosceles with AB = BE, and triangle
ACE is isosceles with AC = AE = 1.

a i Find the magnitudes of ∠BAE, ∠AEC and ∠ACE.
ii Hence find the magnitude of ∠BAC.

b Show that BD = 1 + sin 18◦.
c Use triangle ABD to prove that

cos 36◦ =
1 + sin 18◦

1 + 2 sin 18◦

d Hence show that 4 sin2 18◦ + 2 sin 18◦ − 1 = 0.
e Find sin 18◦ in exact form.

A E

36°

B

C

D

7 VABCD is a right pyramid, where the base ABCD
is a rectangle with diagonal length AC = 10.

a First assume that ∠CAD = θ◦ and ∠VAX = θ◦.

i Show that the volume, V , of the
pyramid is given by

V =
500

3
sin2(θ◦)

ii Sketch the graph of V against θ
for θ ∈ (0, 90).

iii Comment on the graph.

A D
θ°

C

V

B

X

b Now assume that ∠CAD = θ◦ and ∠VAX =
θ◦

2
.

i Show that the volume, V , of the pyramid is given by

V =
1000

3
sin2

(
θ◦

2

) (
1 − 2 sin2

(
θ◦

2

))
ii State the maximal domain of the function V(θ).

iii Let a = sin2
(
θ◦

2

)
and write V as a quadratic in a.

iv Hence find the maximum value of V and the value of θ for which this occurs.
v Sketch the graph of V against θ for the domain established in b ii.
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8 VABCD is a right pyramid, where the
base ABCD is a rectangle with diagonal
length AC = 10.

Assume that ∠CAD = θ◦ and AY = BY .

a If ∠VYX = θ◦, find:

i an expression for the volume of
the pyramid in terms of θ

ii the maximum volume and the
value of θ for which this occurs.

A D
θ°

C

V

B

Y X

b If ∠VYX =
θ◦

2
:

i show that V =
500

3
cos2(θ◦)

(
1 − cos(θ◦)

)
ii state the implied domain for the function.

c Let a = cos(θ◦). Then V =
500

3
a2(1 − a). Use a CAS calculator to find the maximum

value of V and the values of a and θ for which this maximum occurs.

9 A camera is in a position x m from a point A.
An object that is a metres in length is
projected vertically upwards from A.
When the object has moved b metres
vertically up:

a Show that

θ = tan−1
(a + b

x

)
− tan−1

(b
x

)
b Use the result of a to show that

tan θ =
ax

x2 + ba + b2

A
x m

b m

a m

θ

c If θ =
π

4
, find:

i x in terms of a and b

ii x if a = 2(1 +
√

2) and b = 1

d If a = 2(1 +
√

2), b = 1 and x = 1, find an approximate value of θ.
e Using a CAS calculator, plot the graphs of θ against b and tan θ against b for

constant values of a and x as follows:

i a = 1, x = 5
ii a = 1, x = 10
iii a = 1, x = 20

f Comment on these graphs.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
eview

Chapter 3 review 141

10 Points A, B and C lie on a circle with
centre O and radius 1 as shown.

a Give reasons why triangle ACD is
similar to triangle ABC.

b Give the coordinates of C in terms of
circular functions applied to 2θ.

c i Find CA in terms of θ from
triangle ABC. O D

C

BA
x

y

x2 + y2 = 1

θ 2θ

ii Find CB in terms of θ from triangle ABC.
d Use the results of b and c to show that sin(2θ) = 2 sin θ cos θ.
e Use the results of b and c to show that cos(2θ) = 2 cos2 θ − 1.

11 a Prove that if sin(x) , 0, then

cos(x) cos(2x) cos(4x) cos(8x) =
sin(16x)
16 sin(x)

b Prove that if sin(x) , 0, then for all n ∈ N we have
n∏

i=1

cos(2i−1x) =
sin(2nx)
2n sin(x)

12 Fix an angle θ and define a sequence by t1 = sin2
θ and tn = 4tn−1(1 − tn−1).

a Find t2 and t3 in terms of θ.
b Conjecture an expression for tn and prove this result by mathematical induction.

13 Let A, B, C and D be angles in [0,π].

a Prove that
sin A + sin B

2
≤ sin

(A + B
2

)
b Hence, prove that

sin A + sin B + sin C + sin D
4

≤ sin
(A + B + C + D

4

)
14 a Given that x +

1
x

= 2 cos θ, show that:

i x2 +
1
x2 = 2 cos(2θ)

ii x3 +
1
x3 = 2 cos(3θ)

b Given that x +
1
x

= 2 cos θ, prove by induction that

xn +
1
xn = 2 cos(nθ)

for all n ∈ N.
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15 a Use the identity cos θ = 2 cos2
(
θ

2

)
− 1 to find the exact value of cos

(
π

8

)
.

b Use the identity again and the answer to part a to find the exact value of cos
(
π

16

)
.

c Prove by mathematical induction that, for each n ∈ N, we have

cos
(
π

2n+1

)
=

√
2 +

√
2 + · · · +

√
2

2

where there are n square roots in total.

16 a Use a trigonometric identity to show that

2 sin(A) cos(kA) = sin
(
(k + 1)A

)
− sin

(
(k − 1)A

)
b Use part a and ‘telescopic cancelling’ to prove that

2 sin(A)
(
cos(A) + cos(3A) + · · · + cos

(
(2n − 1)A

))
= sin(2nA)

for all n ∈ N.
c Use mathematical induction to give an alternative proof of the result from part b.

17 a Use a trigonometric identity to show that

2 sin(A) sin(kA) = cos
(
(k − 1)A

)
− cos

(
(k + 1)A

)
b Use part a and ‘telescopic cancelling’ to prove that

sin(A) + sin(3A) + sin(5A) + · · · + sin
(
(2n − 1)A

)
= sin2(nA) cosec(A)

for all n ∈ N.
c Use mathematical induction to give an alternative proof of the result from part b.

18 a Show that

2 sin(A) cos(2kA) = sin
(
(2k + 1)A

)
− sin

(
(2k − 1)A

)
b Use part a and ‘telescopic cancelling’ to prove that

cos(2A) + cos(4A) + · · · + cos(2nA) =
sin(nA) cos

(
(n + 1)A

)
sin(A)

for all n ∈ N.
c Prove this result by induction.

19 Prove using mathematical induction that
n∑

r=1

sin(2rA) =
cos(A) − cos

(
(2n + 1)A

)
2 sin(A)

for every natural number n.
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4
Vectors

Objectives
I To understand the concept of a vector and to apply the basic operations on vectors.

I To recognise when two vectors are parallel.

I To understand linear dependence and linear independence.

I To use the unit vectors i and j to represent vectors in two dimensions.

I To use the unit vectors i, j and k to represent vectors in three dimensions.

I To find the scalar product of two vectors.

I To use the scalar product to find the magnitude of the angle between two vectors.

I To use the scalar product to recognise when two vectors are perpendicular.

I To understand vector resolutes and scalar resolutes.

I To apply vector techniques to geometric proofs in two and three dimensions.

In scientific experiments, some of the things that are measured are completely determined by
their magnitude. Mass, length and time are determined by a number and an appropriate unit
of measurement.

length 30 cm is the length of the page of a particular book

time 10 s is the time for one athlete to run 100 m

More is required to describe displacement, velocity or force. The direction must be recorded
as well as the magnitude.

displacement 30 km in the direction north

velocity 60 km/h in the direction south-east

A quantity that has both a magnitude and a direction is called a vector.
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4A Introduction to vectors
A quantity that has a direction as well as a magnitude can be represented by an arrow:

� the arrow points in the direction of the action
� the length of the arrow gives the magnitude of the quantity in terms of a suitably

chosen unit.

Arrows with the same length and direction are regarded as equivalent. These arrows are
directed line segments and the sets of equivalent segments are called vectors.

Directed line segments
The five directed line segments shown all have the same length
and direction, and so they are equivalent.

A directed line segment from a point A to a point B is denoted
by
−−→
AB.

For simplicity of language, this is also called vector
−−→
AB.

That is, the set of equivalent segments can be named through
one member of the set.

Note: The five directed line segments in the diagram all name
the same vector:

−−→
AB =

−−→
CD =

−−→
OP =

−−→
EF =

−−→
GH.

y

A

B D

C

O

P

x
F

E
G

H

Column vectors
An alternative way to represent a vector is as a column of
numbers. The column of numbers corresponds to a set of
equivalent directed line segments.

For example, the column
32

 corresponds to the directed

line segments which go 3 across to the right and 2 up.
x

y

B

2 units

3 units
A

O

Vector notation
A vector is often denoted by a single bold lowercase letter. The vector from A to B can be
denoted by

−−→
AB or by a single letter, such as v. We can write v =

−−→
AB.

When a vector is handwritten, the notation is v
∼

.

Magnitude of vectors
The magnitude of vector

−−→
AB is denoted by |

−−→
AB|. Likewise, the magnitude of vector v is

denoted by |v|. The magnitude of a vector is represented by the length of a directed line
segment corresponding to the vector.

For
−−→
AB in the diagram above, we have |

−−→
AB| =

√
32 + 22 =

√
13 using Pythagoras’ theorem.

In general, if
−−→
AB is represented by the column vector

x
y

, then its magnitude is given by

|
−−→
AB| =

√
x2 + y2
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Addition of vectors
Adding vectors geometrically
Two vectors u and v can be added geometrically by drawing
a line segment representing u from A to B and then a line
segment representing v from B to C.

The sum u + v is the vector from A to C. That is,

u + v =
−−→
AC

C

v

B

u

A

u + v

The same result is achieved if the order is reversed. This is
represented in the diagram on the right:

u + v =
−−→
AC

= v + u

Hence addition of vectors is commutative.

C

v

B

u

u + v

u

D

v

A

Adding column vectors
Two vectors can be added using column-vector notation.

For example, if u =

41
 and v =

−1
3

, then

u + v =

41
 +

−1
3

 =

34


3

v

u

1

4

4

1

3
u + v

Scalar multiplication
Multiplication by a real number (scalar) changes the length of
the vector. For example:

� 2u is twice the length of u
� 1

2 u is half the length of u

We have 2u = u + u and 1
2 u + 1

2 u = u.

In general, for k ∈ R+, the vector ku has the same direction as u,
but its length is multiplied by a factor of k.

u

2u

u1
2

When a vector is multiplied by −2, the vector’s direction is
reversed and the length is doubled.

When a vector is multiplied by −1, the vector’s direction is
reversed and the length remains the same.

If u =

32
, then −u =

−3
−2

, 2u =

64
 and −2u =

−6
−4

. u

−2u

If u =
−−→
AB, then −u = −

−−→
AB =

−−→
BA. The directed line segment −

−−→
AB goes from B to A.
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146 Chapter 4: Vectors

Zero vector
The zero vector is denoted by 0 and represents a line segment of zero length. The zero vector
has no direction. The magnitude of the zero vector is 0. Note that 0a = 0 and a + (−a) = 0.

In two dimensions, the zero vector can be written as 0 =

00
.

Subtraction of vectors
To find u − v, we add −v to u. u

v

−v

uu − v

Draw a directed line segment representing the vector
 3
−2

 and state the magnitude of
this vector.

Example 1

Solution Explanation

x

y

A

B

432O

−1

1

1

The magnitude is√
32 + (−2)2 =

√
13

The vector
 3
−2

 is ‘3 across to the right and 2 down’.

Note: Here the segment starts at (1, 1) and goes to (4,−1).
It can start at any point.

The vector u is defined by the directed line segment from (2, 6) to (3, 1).

If u =

ab
, find a and b.

Example 2

Solution
From the diagram:26

 + u =

31


u =

3 − 2
1 − 6

 =

 1
−5

∴

Hence a = 1 and b = −5. x

y

A

O

B (3, 1)

(2, 6)
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4A Introduction to vectors 147

Polygons of vectors
For two vectors

−−→
AB and

−−→
BC, we have

−−→
AB +

−−→
BC =

−−→
AC

� For a polygon ABCDEF, we have
−−→
AB +

−−→
BC +

−−→
CD +

−−→
DE +

−−→
EF +

−−→
FA = 0

�

B

A

C B C

F E

DA

Illustrate the vector sum
−−→
AB +

−−→
BC +

−−→
CD, where A, B, C and D are points in the plane.

Example 3

Solution
−−→
AB +

−−→
BC +

−−→
CD =

−−→
AD B

C

A D

Parallel vectors
Two parallel vectors have the same direction or opposite directions.

Two non-zero vectors u and v are parallel if there is some k ∈ R \ {0} such that u = kv.

For example, if u =

−2
3

 and v =

−6
9

, then the vectors u and v are parallel as v = 3u.

Position vectors
We can use a point O, the origin, as a starting point for a vector to indicate the position of a
point A in space relative to O.

For a point A, the position vector is
−−→
OA.

The two-dimensional vector

a =

a1

a2


is associated with the point (a1, a2). The vector a can be
represented by the directed line segment from the origin to
the point (a1, a2). x

y

O

a2

a

a1

(a1, a2)
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148 Chapter 4: Vectors

Properties of the basic operations on vectors
The following properties can be established from our definitions of the basic operations on
vectors. (In fact, these properties are used to generalise the concept of a vector, but this is
beyond the scope of the course.)

commutative law for vector addition a + b = b + a

associative law for vector addition (a + b) + c = a + (b + c)

zero vector a + 0 = a

additive inverse a + (−a) = 0

distributive laws m(a + b) = ma + mb for m ∈ R

(` + m)a = `a + ma for `, m ∈ R

compatibility of multiplication (`m)a = `(ma) for `, m ∈ R

identity of scalar multiplication 1a = a

Thus, many of the ordinary rules of algebra apply to vectors.

Simplify the following vector expression:

2(a − b + 3c) +
3
2

(b − 4c)

Example 4

Solution

2(a − b + 3c) +
3
2

(b − 4c) = 2a − 2b + 6c +
3
2

b − 6c

= 2a −
1
2

b

Vectors in three dimensions
The definition of a vector is, of course, also valid in three dimensions. The properties which
hold in two dimensions also hold in three dimensions.

For vectors in three dimensions, we use a third axis, denoted by z. The third axis is at right
angles to the other two axes. The x-axis is drawn at an angle to indicate a direction out of
the page towards you.

Vectors in three dimensions can also be written using
column-vector notation:

a =


a1

a2

a3


The vector a can be represented by the directed line segment
from the origin to the point A(a1, a2, a3).

y

x

z

O
Aa

a1

(0, a2, a3)

a2

a3
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4A Introduction to vectors 149

OABCDEFG is a cuboid as shown.

Let a =
−−→
OA, g =

−−→
OG and c =

−−→
OC.

Find the following vectors in terms of a, g and c:

a
−−→
OB b

−−→
OF c

−−→
GD d

−−→
GB e

−−→
FA C

O

F

G

E

B

D

A

Example 5

Solution
−−→
OB =

−−→
OA +

−−→
AB

= a + c (as
−−→
AB =

−−→
OC)

a
−−→
OF =

−−→
OC +

−−→
CF

= c + g (as
−−→
CF =

−−→
OG)

b

−−→
GD =

−−→
OA

= a

c
−−→
GB =

−−→
GO +

−−→
OA +

−−→
AB

= −g + a + c

d

−−→
FA =

−−→
FG +

−−→
GO +

−−→
OA

= −c − g + a

e

OABC is a tetrahedron,
M is the midpoint of AC,
N is the midpoint of OC,
P is the midpoint of OB.

Let a =
−−→
OA, b =

−−→
OB and c =

−−→
OC.

Find in terms of a, b and c:

a
−−→
AC b

−−→
OM c

−−→
CN d

−−−→
MN e

−−→
MP

A M
C

B

N

P

OExample 6

Solution
−−→
AC =

−−→
AO +

−−→
OC

= −a + c

a
−−→
OM =

−−→
OA +

−−→
AM

=
−−→
OA + 1

2
−−→
AC

= a + 1
2 (−a + c)

= 1
2 (a + c)

b
−−→
CN = 1

2
−−→
CO

= 1
2 (−c)

= − 1
2 c

c

−−−→
MN =

−−→
MO +

−−→
ON

= − 1
2 (a + c) + 1

2 c

= − 1
2 a − 1

2 c + 1
2 c

= − 1
2 a

(So MN is parallel to AO.)

d
−−→
MP =

−−→
MO +

−−→
OP

= − 1
2 (a + c) + 1

2 b

= 1
2 (b − a − c)

e
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150 Chapter 4: Vectors

Linear dependence and independence
A vector w is a linear combination of vectors v1, v2, . . . , vn if it can be expressed in the form

w = k1v1 + k2v2 + · · · + knvn

for some real numbers k1, k2, . . . , kn.

Definition of linear dependence and linear independence

� A set of vectors is said to be linearly dependent if at least one of its members can be
expressed as a linear combination of other vectors in the set.

� A set of vectors is said to be linearly independent if it is not linearly dependent.
That is, a set of vectors is linearly independent if no vector in the set is expressible as a
linear combination of other vectors in the set.

For example, it is easy to show that a set of two non-zero vectors is linearly dependent if and
only if the two vectors are parallel.

We can give a useful alternative description of linear dependence:

� Two vectors A set of two vectors a and b is linearly dependent if and only if there exist
real numbers k and `, not both zero, such that ka + `b = 0.

� Three vectors A set of three vectors a, b and c is linearly dependent if and only if there
exist real numbers k, ` and m, not all zero, such that ka + `b + mc = 0.

� In general A set of n vectors a1, a2, . . . , an is linearly dependent if and only if there exist
real numbers k1, k2, . . . , kn, not all zero, such that k1a1 + k2a2 + · · · + knan = 0.

Note: Any set that contains the zero vector is linearly dependent.
Any set of three or more two-dimensional vectors is linearly dependent.
Any set of four or more three-dimensional vectors is linearly dependent.

We will use the following method for checking whether three vectors are linearly dependent.

Linear dependence for three vectors

Let a and b be non-zero vectors that are not parallel. Then vectors a, b and c are linearly
dependent if and only if there exist real numbers m and n such that c = ma + nb.

This representation of a vector c in terms of two linearly independent vectors a and b is
unique, as demonstrated in the following important result.

Linear combinations of independent vectors

Let a and b be two linearly independent (i.e. not parallel) vectors. Then

ma + nb = pa + qb implies m = p and n = q

Proof Assume that ma + nb = pa + qb. Then (m − p)a + (n − q)b = 0. As vectors a and b
are linearly independent, it follows from the definition of linear independence that
m − p = 0 and n − q = 0. Hence m = p and n = q.

Note: This result can be extended to any finite number of linearly independent vectors.
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4A Introduction to vectors 151

Determine whether the following sets of vectors are linearly dependent:

a =

21
, b =

 3
−1

 and c =

56
a a =


3
4
−1

, b =


2
1
3

 and c =


−1

0
1

b

Example 7

Solution
Note that a and b are not parallel.

c = ma + nbSuppose

5 = 2m + 3nThen

6 = m − n

Solving the simultaneous equations,
we have m = 23

5 and n = − 7
5 .

This set of vectors is linearly dependent.

Note: In general, any set of three
or more two-dimensional vectors is
linearly dependent.

a Note that a and b are not parallel.

c = ma + nbSuppose

−1 = 3m + 2nThen

0 = 4m + n

1 = −m + 3n

Solving the first two equations, we have
m = 1

5 and n = − 4
5 .

But these values do not satisfy the third
equation, as −m + 3n = − 13

5 , 1.

The three equations have no solution, so
the vectors are linearly independent.

b

Points A and B have position vectors a and b respectively,
relative to an origin O.

The point D is such that
−−→
OD = k

−−→
OA and the point E is such that

−−→
AE = `

−−→
AB. The line segments BD and OE intersect at X.

Assume that
−−→
OX =

2
5
−−→
OE and

−−→
XB =

4
5
−−→
DB.

O D

X
E

A

B

Express
−−→
XB in terms of a, b and k.a Express

−−→
OX in terms of a, b and `.b

Express
−−→
XB in terms of a, b and `.c Find k and `.d

Example 8

Solution

a
−−→
XB =

4
5
−−→
DB

=
4
5
(
−
−−→
OD +

−−→
OB

)
=

4
5
(
−k
−−→
OA +

−−→
OB

)
=

4
5

(−ka + b)

= −
4k
5

a +
4
5

b

b
−−→
OX =

2
5
−−→
OE

=
2
5
(−−→
OA +

−−→
AE

)
=

2
5
(−−→
OA + `

−−→
AB

)
=

2
5
(
a + `(b − a)

)
=

2
5

(1 − `)a +
2`
5

b

c
−−→
XB =

−−→
XO +

−−→
OB

= −
−−→
OX +

−−→
OB

= −
2
5

(1 − `)a −
2`
5

b + b

=
2
5

(` − 1)a +

(
1 −

2`
5

)
b
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152 Chapter 4: Vectors 4A

d As a and b are linearly independent vectors, the vector
−−→
XB has a unique representation

in terms of a and b. From parts a and c, we have

−
4k
5

a +
4
5

b =
2
5

(` − 1)a +

(
1 −

2`
5

)
b

Hence

−
4k
5

=
2
5

(` − 1) (1) and
4
5

= 1 −
2`
5

(2)

From equation (2), we have

2`
5

=
1
5

` =
1
2

∴

Substitute in (1):

−
4k
5

=
2
5

(1
2
− 1

)
k =

1
4

∴

Exercise 4A

1Example 1 Draw a directed line segment representing the vector
−2

1

 and state the magnitude of
this vector.

2Example 2 The vector u is defined by the directed line segment from (−2, 4) to (1, 6).

If u =

ab
, find a and b.

3Example 3 Illustrate the vector sum
−−→
OA +

−−→
AB +

−−→
BC +

−−→
CD +

−−→
DE.

4 In the diagram,
−−→
OA = a and

−−→
OB = b.

a Find in terms of a and b:

i
−−→
OC ii

−−→
OE iii

−−→
OD

iv
−−→
DC v

−−→
DE

b If |a| = 1 and |b| = 2, find:

i |
−−→
OC| ii |

−−→
OE| iii |

−−→
OD| O

A

E

B

D

C

5 If the vector a has magnitude 3, find the magnitude of:

a 2a b
3
2

a c −
1
2

a

6Example 4 Simplify each of the following vector expressions:

3(a − b − 2c) +
5
2

(3a + b − 6c)a
1
2

(a + b− c) +
1
2

(b + c− a) +
1
2

(c + a− b)b
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4A 4A Introduction to vectors 153

7 In the figure, OA′ = A′A′′ = A′′A′′′ = A′′′A and
OB′ = B′B′′ = B′′B′′′ = B′′′B.

If a =
−−→
OA and b =

−−→
OB, find in terms of a and b:

a i
−−→
OA′ ii

−−→
OB′ iii

−−−→
A′B′ iv

−−→
AB

b i
−−−→
OA′′ ii

−−−→
OB′′ iii

−−−−→
A′′B′′

A

O

A′′′

A′′

A′ B ′

B′′′

B′′

B

8 The position vectors of two points A and B are a and b.
The point M is the midpoint of AB. Find:

a
−−→
AB b

−−→
AM c

−−→
OM

A

a

BM

O

b

9 Let ABCD be a trapezium with AB parallel to DC.
Let X and Y be the midpoints of AD and BC
respectively.

a Express
−−→
XY in terms of a and b, where a =

−−→
AB

and b =
−−→
DC.

b Show that XY is parallel to AB.

D

X

A

C

Y

B

10 Let ABCDEF be a regular hexagon with centre G.
The position vectors of A, B and C, relative to an origin O,
are a, b and c respectively.

a Express
−−→
OG in terms of a, b and c.

b Express
−−→
CD in terms of a, b and c.

C

B G

D

A

E

F

11Example 5

Example 6

For the cuboid shown, let a =
−−→
OA, c =

−−→
OC and g =

−−→
OG.

Let M be the midpoint of ED.
Find each of the following in terms of a, c and g:

a
−−→
EF b

−−→
AB c

−−→
EM d

−−→
OM e

−−→
AM

F

A

CO

E M

G D

B
12 Let OABCD be a right square pyramid with vertex O.

Let a =
−−→
OA, b =

−−→
OB, c =

−−→
OC and d =

−−→
OD.

a i Find
−−→
AB in terms of a and b.

ii Find
−−→
DC in terms of c and d.

iii Use the fact that
−−→
AB =

−−→
DC to find a relationship

between a, b, c and d.
b i Find

−−→
BC in terms of b and c.

ii Let M be the midpoint of DC and N the midpoint
of OB. Find

−−−→
MN in terms of a, b and c.

O

N

A
B

CMD
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13Example 7 Determine whether the following sets of vectors are linearly dependent:

a =


4
1
3

, b =


2
−1

3

 and c =


−4

2
6

a a =


3
1
2

, b =


4
2
1

 and c =


6
3
4

b

a =


1
1
−1

, b =


3
−1

4

 and c =


3
−5
11

c a =


4
−2

8

, b =


−2

1
4

 and c =


9
3
−5

d

14 Let a and b be non-zero vectors that are not parallel.

a If ka + `b = 3a + (1 − `)b, find the values of k and `.

b If 2(` − 1)a +

(
1 −
`

5

)
b = −

4k
5

a + 3b, find the values of k and `.

15Example 8 Points P, Q and R have position vectors 2a − b, 3a + b and a + 4b respectively, relative
to an origin O, where a and b are non-zero, non-parallel vectors. The lines OP and RQ
intersect at point S , with

−−→
OS = k

−−→
OP and

−−→
RS = m

−−→
RQ.

a Express
−−→
OS in terms of:

i k, a and b ii m, a and b

b Hence evaluate k and m.
c Hence write the position vector of S in terms of a and b.

16 The position vectors of points A and B, relative to an origin O, are a and b respectively,
where a and b are non-zero, non-parallel vectors. The point P is such that

−−→
OP = 4

−−→
OB.

The midpoint of AB is the point Q. The point R is such that
−−→
OR =

8
5
−−→
OQ.

a Find in terms of a and b:

i
−−→
OQ ii

−−→
OR iii

−−→
AR iv

−−→
RP

b Show that R lies on AP and state the ratio AR : RP.
c Given that the point S is such that

−−→
OS = λ

−−→
OQ, find the value of λ such that PS is

parallel to BA.

17 Let a =

21
 and b =

 1
−3

. Find the values of x and y for which:

a xa = (y − 1)b
b (2 − x)a = 3a + (7 − 3y)b
c (5 + 2x)(a + b) = y(3a + 2b)

18 Suppose that the point X lies between A and B on the line AB, with
−−→
AX = k

−−→
AB.

a Find
AX
AB

in terms of k. b Show that 0 < k < 1.

c Find
AX
XB

in terms of k. d Let m =
AX
XB

. Express k in terms of m.
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4B Resolution of a vector into rectangular components 155

4B Resolution of a vector into rectangular components
A unit vector is a vector of magnitude 1. For a non-zero vector a, the unit vector with the
same direction as a is denoted by â and given by

â =
1
|a|

a

� The unit vector in the positive direction of the x-axis is i.
� The unit vector in the positive direction of the y-axis is j.
� The unit vector in the positive direction of the z-axis is k.

In two dimensions: i =

10
 and j =

01
.

In three dimensions: i =


1
0
0

, j =


0
1
0

 and k =


0
0
1

. x

z

y

1

O
k

j

i 1

1

The vectors i, j and k are linearly independent. Every vector in two or three dimensions can
be expressed uniquely as a linear combination of i, j and k:

r =


r1

r2

r3

 =


r1

0
0

 +


0
r2

0

 +


0
0
r3

 = r1i + r2 j + r3 ke.g.

Two dimensions
For the point P(x, y):

−−→
OP = xi + y j

|
−−→
OP| =

√
x2 + y2

O

y

x
yj r

P (x, y)

xi

Three dimensions
For the point P(x, y, z):

−−→
OP = xi + y j + zk

|
−−→
OP| =

√
x2 + y2 + z2

Basic operations in component form
Let a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k.

a + b = (a1 + b1)i + (a2 + b2) j + (a3 + b3)kThen

a − b = (a1 − b1)i + (a2 − b2) j + (a3 − b3)k

ma = ma1i + ma2 j + ma3 k for a scalar mand

O

P
z

x

z

y

y
x

Equivalence Magnitude
If a = b, then a1 = b1, a2 = b2 and a3 = b3. |a| =

√
a2

1 + a2
2 + a2

3
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156 Chapter 4: Vectors

a Using the vectors i and j, give the vectors:

i
−−→
OA ii

−−→
OB iii

−−→
OC iv

−−→
OD

b Using the vectors i and j, give the vectors:

i
−−→
AB ii

−−→
BC

c Find the magnitudes of the vectors:

i
−−→
AB ii

−−→
BC O

C

B

AD

i
j

Example 9

Solution
a

−−→
OA = 2i + 3 ji

−−→
OB = 4i + jii

−−→
OC = i − 2 jiii

−−→
OD = −2i + 3 jiv

b
−−→
AB =

−−→
AO +

−−→
OB

= −2i − 3 j + 4i + j

= 2i − 2 j

i
−−→
BC =

−−→
BO +

−−→
OC

= −4i − j + i − 2 j

= −3i − 3 j

ii

c |
−−→
AB| =

√
22 + (−2)2

=
√

8

= 2
√

2

i |
−−→
BC| =

√
(−3)2 + (−3)2

=
√

18

= 3
√

2

ii

Let a = i + 2 j − k, b = 3i − 2k and c = 2i + j + k. Find:

a a + b b a − 2b c a + b + c d |a|

Example 10

Solution

a a + b = (i + 2 j − k) + (3i − 2k)

= 4i + 2 j − 3k

b a − 2b = (i + 2 j − k) − 2(3i − 2k)

= −5i + 2 j + 3k

c a + b + c = (i + 2 j − k) + (3i − 2k) + (2i + j + k)

= 6i + 3 j − 2k

d |a| =
√

12 + 22 + (−1)2 =
√

6
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4B Resolution of a vector into rectangular components 157

A cuboid is labelled as shown.
−−→
OA = 3i,

−−→
OB = 5 j,

−−→
OC = 4k

a Find in terms of i, j and k:

i
−−→
DB ii

−−→
OD iii

−−→
DF iv

−−→
OF

b Find |
−−→
OF|.

c If M is the midpoint of FG, find:

i
−−→
OM ii |

−−→
OM|

E

A D

B
O

F M

C G

Example 11

Solution
a

−−→
DB =

−−→
AO

= −
−−→
OA

= −3i

i
−−→
OD =

−−→
OB +

−−→
BD

= 5 j +
−−→
OA

= 5 j + 3i

= 3i + 5 j

ii

−−→
DF =

−−→
OC

= 4k

iii
−−→
OF =

−−→
OD +

−−→
DF

= 3i + 5 j + 4k

iv

b |
−−→
OF| =

√
9 + 25 + 16

=
√

50

= 5
√

2

c
−−→
OM =

−−→
OD +

−−→
DF +

−−→
FM

= 3i + 5 j + 4k +
1
2

(−
−−→
GF)

= 3i + 5 j + 4k +
1
2

(−3i)

=
3
2

i + 5 j + 4k

i |
−−→
OM| =

√
9
4

+ 25 + 16

=
1
2

√
9 + 100 + 64

=
1
2

√
173

ii

If a = xi + 3 j and b = 8i + 2y j such that a + b = −2i + 4 j, find the values of x and y.

Example 12

Solution
a + b = (x + 8)i + (2y + 3) j = −2i + 4 j

x + 8 = −2 and 2y + 3 = 4∴

x = −10 and y =
1
2

i.e.
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158 Chapter 4: Vectors

Let A = (2,−3), B = (1, 4) and C = (−1,−3). The origin is O. Find:

a i
−−→
OA ii

−−→
AB iii

−−→
BC

b F such that
−−→
OF = 1

2
−−→
OA

c G such that
−−→
AG = 3

−−→
BC

Example 13

Solution

a i
−−→
OA = 2i − 3 j ii

−−→
AB =

−−→
AO +

−−→
OB

= −2i + 3 j + i + 4 j

= −i + 7 j

iii
−−→
BC =

−−→
BO +

−−→
OC

= −i − 4 j − i − 3 j

= −2i − 7 j

b
−−→
OF = 1

2
−−→
OA = 1

2 (2i − 3 j) = i − 3
2 j

Hence F = (1,− 3
2 )

c
−−→
AG = 3

−−→
BC = 3(−2i − 7 j) = −6i − 21 j

Therefore
−−→
OG =

−−→
OA +

−−→
AG

= 2i − 3 j − 6i − 21 j

= −4i − 24 j

G = (−4,−24)Hence

Let A = (2,−4, 5) and B = (5, 1, 7). Find M, the midpoint of AB.

Example 14

Solution

We have
−−→
OA = 2i − 4 j + 5k and

−−→
OB = 5i + j + 7k.

−−→
AB =

−−→
AO +

−−→
OBThus

= −2i + 4 j − 5k + 5i + j + 7k

= 3i + 5 j + 2k

−−→
AM =

1
2

(3i + 5 j + 2k)and so

−−→
OM =

−−→
OA +

−−→
AMNow

= 2i − 4 j + 5k +
3
2

i +
5
2

j + k

=
7
2

i −
3
2

j + 6k

M =

(7
2

,−
3
2

, 6
)

Hence

M

O

B

A
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4B Resolution of a vector into rectangular components 159

a Show that the vectors a = 8i + 7 j + 3k, b = i − j + 3k and c = 2i + 3 j − k are linearly
dependent.

b Show that the vectors a = 8i + 7 j + 3k, b = i − j + 3k and c = 2i + 3 j + k are linearly
independent.

Example 15

Solution
a Vectors b and c are not parallel. We want to find constants m and n such that

a = mb + nc. Consider

8i + 7 j + 3k = m(i − j + 3k) + n(2i + 3 j − k)

This implies

8 = m + 2n (1) 7 = −m + 3n (2) 3 = 3m − n (3)

Adding (1) and (2) gives 15 = 5n, which implies n = 3.

Substitute in (1) to obtain m = 2.

The solution m = 2 and n = 3 must be verified for (3): 3m − n = 3 × 2 − 3 = 3.

Therefore

a = 2b + 3c or equivalently a − 2b − 3c = 0

Vectors a, b and c are linearly dependent.

b Equations (1) and (2) are unchanged, and equation (3) becomes

3 = 3m + n (3)

But substituting m = 2 and n = 3 gives 3m + n = 9 , 3.

The three equations have no solution, so the vectors are linearly independent.

Angle made by a vector with an axis
The direction of a vector can be given by the
angles which the vector makes with the i, j
and k directions.

If the vector a = a1i + a2 j + a3 k makes angles
α, β and γ with the positive directions of the
x-, y- and z-axes respectively, then

cosα =
a1

|a|
, cos β =

a2

|a|
, cos γ =

a3

|a|
The derivation of these results is left as an
exercise.

a1

a3

a2

a

O

x

z

y
α

β
γ
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160 Chapter 4: Vectors

Let a = 2i − j and b = i + 4 j − 3k.

For each of these vectors, find:

a its magnitude
b the angle the vector makes with the y-axis.

Example 16

Solution

a |a| =
√

22 + (−1)2 =
√

5

|b| =
√

12 + 42 + (−3)2 =
√

26

b The angle that a makes with the y-axis is

cos−1
(
−1
√

5

)
≈ 116.57◦

The angle that b makes with the y-axis is

cos−1
( 4
√

26

)
≈ 38.33◦

A position vector in two dimensions has magnitude 5 and its direction, measured
anticlockwise from the x-axis, is 150◦. Express this vector in terms of i and j.

Example 17

Solution
Let a = a1i + a2 j.

The vector a makes an angle of 150◦ with the x-axis
and an angle of 60◦ with the y-axis.

Therefore

cos 150◦ =
a1

|a|
and cos 60◦ =

a2

|a|
Since |a| = 5, this gives

a1 = |a| cos 150◦ = −
5
√

3
2

a2 = |a| cos 60◦ =
5
2

a = −
5
√

3
2

i +
5
2

j∴

x

y

O

a
60° 150°
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4B Resolution of a vector into rectangular components 161

Let i be a unit vector in the east direction and let j be a unit vector in the north direction,
with units in kilometres.

a Show that the unit vector on a bearing of 300◦ is −

√
3

2
i +

1
2

j.

b If a car drives 3 km on a bearing of 300◦, find the position vector of the car with respect
to its starting point.

c The car then drives 6.5 km due north. Find:

i the position vector of the car
ii the distance of the car from the starting point
iii the bearing of the car from the starting point.

Example 18

Solution
a Let r denote the unit vector in the direction with

bearing 300◦.

r = − cos 30◦i + cos 60◦ jThen

= −

√
3

2
i +

1
2

j

Note: |r| = 1

x

y

O

r

30°
60°

b The position vector is

3r = 3
(
−

√
3

2
i +

1
2

j
)

= −
3
√

3
2

i +
3
2

j

c Let r′ denote the new position vector.

r′ = 3r + 6.5 j

= −
3
√

3
2

i +
3
2

j +
13
2

j

= −
3
√

3
2

i + 8 j

i

E

N

3r

θ
6.5j r ′

|r′| =
√

9 × 3
4

+ 64

=

√
27 + 256

4

=
1
2

√
283

ii Since r′ = −
3
√

3
2

i + 8 j, we have

tan θ◦ =
3
√

3
16

∴ θ
◦ = tan−1

(3
√

3
16

)
≈ 18◦

The bearing is 342◦, correct to the
nearest degree.

iii
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162 Chapter 4: Vectors 4B

Exercise 4BSkill-
sheet

1Example 9 a Give each of the following vectors in
terms of i and j:

i
−−→
OA ii

−−→
OB iii

−−→
OC iv

−−→
OD

b Find each of the following:

i
−−→
AB ii

−−→
CD iii

−−→
DA

c Find the magnitude of each of the
following:

i
−−→
OA ii

−−→
AB iii

−−→
DA

j

O

A

B

i

C D

2Example 10 Let a = 2i + 2 j − k, b = −i + 2 j + k and c = 4k. Find:

a a + b b 2a + c c a + 2b − c d c − 4a e |b| f |c|

3Example 11 OABCDEFG is a cuboid set on Cartesian axes
with

−−→
OA = 5i,

−−→
OC = 2 j and

−−→
OG = 3k.

a Find:

i
−−→
BC ii

−−→
CF iii

−−→
AB

iv
−−→
OD v

−−→
OE vi

−−→
GE

vii
−−→
EC viii

−−→
DB ix

−−→
DC

x
−−→
BG xi

−−→
GB xii

−−→
FA

b Evaluate:

i |
−−→
OD| ii |

−−→
OE| iii |

−−→
GE|

c Let M be the midpoint of CB. Find:

i
−−→
CM ii

−−→
OM iii

−−−→
DM

C

BA

D E

FG

O

x

z

y

d Let N be the point on FG such that
−−→
FN = 2

−−→
NG. Find:

i
−−→
FN ii

−−→
GN iii

−−→
ON iv

−−→
NA v

−−−→
NM

e Evaluate:

i |
−−−→
NM| ii |

−−−→
DM| iii |

−−→
AN |

4Example 12 Find the values of x and y if:

a a = 4i − j, b = xi + 3y j, a + b = 7i − 2 j
b a = xi + 3 j, b = −2i + 5y j, a − b = 6i + j
c a = 6i + y j, b = xi − 4 j, a + 2b = 3i − j

5Example 13 Let A = (−2, 4), B = (1, 6) and C = (−1,−6). Let O be the origin. Find:

a i
−−→
OA ii

−−→
AB iii

−−→
BC

F such that
−−→
OF = 1

2
−−→
OAb G such that

−−→
AG = 3

−−→
BCc
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4B 4B Resolution of a vector into rectangular components 163

6Example 14 Let A = (1,−6, 7) and B = (5,−1, 9). Find M, the midpoint of AB.

7 Points A, B, C and D have position vectors a = i + 3 j − 2k, b = 5i + j − 6k, c = 5 j + 3k
and d = 2i + 4 j + k respectively.

a Find:

i
−−→
AB ii

−−→
BC iii

−−→
CD iv

−−→
DA

b Evaluate:

i |
−−→
AC| ii |

−−→
BD|

c Find the two parallel vectors in a.

8 Points A and B are defined by the position vectors a = i + j − 5k and b = 3i − 2 j − k
respectively. The point M is on the line segment AB such that AM : MB = 4 : 1.

a Find:

i
−−→
AB ii

−−→
AM iii

−−→
OM

b Find the coordinates of M.

9 aExample 15 Show that the vectors a = 8i + 5 j + 2k, b = 4i − 3 j + k and c = 2i − j +
1
2

k are
linearly dependent.

b Show that the vectors a = 8i + 5 j + 2k, b = 4i − 3 j + k and c = 2i − j + 2k are
linearly independent.

c Show that the vectors a = 8i + 5 j + 2k, b = 4i +
5
2

k and c = 2i − j + 2k are
linearly independent.

10 The vectors a = 2i−3 j + k, b = 4i + 3 j−2k and c = 2i−4 j + xk are linearly dependent.
Find the value of x.

11 Let A = (2, 1), B = (1,−3), C = (−5, 2) and D = (3, 5). Let O be the origin.

a Find:

i
−−→
OA ii

−−→
AB iii

−−→
BC iv

−−→
BD

b Show that
−−→
AB and

−−→
BD are parallel.

c What can be said about the points A, B and D?

12 Let A = (1, 4,−4), B = (2, 3, 1), C = (0,−1, 4) and D = (4, 5, 6).

a Find:

i
−−→
OB ii

−−→
AC iii

−−→
BD iv

−−→
CD

b Show that
−−→
OB and

−−→
CD are parallel.

13 Let A = (1, 4,−2), B = (3, 3, 0), C = (2, 5, 3) and D = (0, 6, 1).

a Find:

i
−−→
AB ii

−−→
BC iii

−−→
CD iv

−−→
DA

b Describe the quadrilateral ABCD.
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164 Chapter 4: Vectors 4B

14 Let A = (5, 1), B = (0, 4) and C = (−1, 0). Find:

D such that
−−→
AB =

−−→
CDa E such that

−−→
AE = −

−−→
BCb G such that

−−→
AB = 2

−−→
GCc

15 ABCD is a parallelogram, where A = (2, 1), B = (−5, 4), C = (1, 7) and D = (x, y).

a Find:

i
−−→
BC ii

−−→
AD (in terms of x and y)

b Hence find the coordinates of D.

16 a Let A = (1, 4, 3) and B = (2,−1, 5). Find M, the midpoint of AB.
b Use a similar method to find M, the midpoint of XY , where X and Y have coordinates

(x1, y1, z1) and (x2, y2, z2) respectively.

17 Let A = (5, 4, 1) and B = (3, 1,−4). Find M on line segment AB such that AM = 4MB.

18 Let A = (4,−3) and B = (7, 1). Find N such that
−−→
AN = 3

−−→
BN.

19 Find the point P on the line x − 6y = 11 such that
−−→
OP is parallel to the vector 3i + j.

20 The points A, B, C and D have position vectors a, b, c and d respectively. Show that
if ABCD is a parallelogram, then a + c = b + d.

21 Let a = 2i + 2 j, b = 3i − j and c = 4i + 5 j.

a Find:

i 1
2 a ii b − c iii 3b − a − 2c

b Find values for k and ` such that ka + `b = c.

22 Let a = 5i + j − 4k, b = 8i − 2 j + k and c = i − 7 j + 6k.

a Find:

i 2a − b ii a + b + c iii 0.5a + 0.4b

b Find values for k and ` such that ka + `b = c.

23Example 16 Let a = 5i + 2 j, b = 2i − 3 j, c = 2i + j + k and d = −i + 4 j + 2k.

a Find:

i |a| ii |b| iii |a + 2b| iv |c − d|

b Find, correct to two decimal places, the angle which each of the following vectors
makes with the positive direction of the x-axis:

i a ii a + 2b iii c − d

24Example 17 The table gives the magnitudes of vectors in two
dimensions and the angle they each make with
the x-axis (measured anticlockwise).
Express each of the vectors in terms of i and j,
correct to two decimal places.

Magnitude Angle

a 10 110◦

b 8.5 250◦

c 6 40◦

d 5 300◦
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4B 4B Resolution of a vector into rectangular components 165

25 The following table gives the magnitudes of vectors in three dimensions and the angles
they each make with the x-, y- and z-axes, correct to two decimal places. Express each
of the vectors in terms of i, j and k, correct to two decimal places.

Magnitude Angle with x-axis Angle with y-axis Angle with z-axis

a 10 130◦ 80◦ 41.75◦

b 8 50◦ 54.52◦ 120◦

c 7 28.93◦ 110◦ 110◦

d 12 121.43◦ 35.5◦ 75.2◦

26 a Show that if a vector in three dimensions makes angles α, β and γ with the x-, y- and
z-axes respectively, then cos2 α + cos2 β + cos2 γ = 1.

b Hence, show that a vector cannot make an angle of 60◦ with each of the x-, y- and
z-axes.

c Give an example of a vector that makes angles of 60◦, 60◦ and 45◦ with the x-, y- and
z-axes respectively.

27 Points A, B and C have position vectors a = −2i + j + 5k, b = 2 j + 3k and
c = −2i + 4 j + 5k respectively. Let M be the midpoint of BC.

a Show that 4ABC is isosceles.
b Find

−−→
OM.

c Find
−−→
AM.

d Find the area of 4ABC.

28 OABCV is a square-based right pyramid with V the vertex. The base diagonals OB
and AC intersect at the point M. If

−−→
OA = 5i,

−−→
OC = 5 j and

−−→
MV = 3k, find each of

the following:
−−→
OBa

−−→
OMb

−−→
OVc

−−→
BVd |

−−→
OV |e

29 Points A and B have position vectors a and b. Let M and N be the midpoints of OA
and OB respectively, where O is the origin.

a Show that
−−−→
MN = 1

2
−−→
AB.

b Hence describe the geometric relationships between line segments MN and AB.

30Example 18 Let i be the unit vector in the east direction and let j be the unit vector in the north
direction, with units in kilometres. A runner sets off on a bearing of 120◦.

a Find a unit vector in this direction.
b The runner covers 3 km. Find the position of the runner with respect to her

starting point.
c The runner now turns and runs for 5 km in a northerly direction. Find the position of

the runner with respect to her original starting point.
d Find the distance of the runner from her starting point.
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166 Chapter 4: Vectors 4B

31 A hang-glider jumps from point A at the top of a 50 m cliff,
as represented in the diagram.

a Give the position vector of point A with respect to O.
b After a short period of time, the hang-glider has position B

given by
−−→
OB = −80i + 20 j + 40k metres.

i Find the vector
−−→
AB. ii Find the magnitude of

−−→
AB.

c The hang-glider then moves 600 m in the j-direction and
60 m in the k-direction. Give the new position vector of the
hang-glider.

O

A

j
i

k
50

32 A light plane takes off (from a point which will be considered as the origin) so that its
position after a short period of time is given by r1 = 1.5i + 2 j + 0.9k, where i is a unit
vector in the east direction, j is a unit vector in the north direction and measurements
are in kilometres.

a Find the distance of the plane from the origin.
b The position of a second plane at the same time is given by r2 = 2i + 3 j + 0.8k.

i Find r1 − r2. ii Find the distance between the two aircraft.
c Give a unit vector which would describe the direction in which the first plane must

fly to pass over the origin at a height of 900 m.

33 Jan starts at a point O and walks on level ground 200 metres in a north-westerly
direction to P. She then walks 50 metres due north to Q, which is at the bottom of a
building. Jan then climbs to T , the top of the building, which is 30 metres vertically
above Q. Let i, j and k be unit vectors in the east, north and vertically upwards
directions respectively. Express each of the following in terms of i, j and k:

a
−−→
OP b

−−→
PQ c

−−→
OQ d

−−→
QT e

−−→
OT

34 A ship leaves a port (at the origin O) and sails 100 km north-east to point P. Let i and j
be the unit vectors in the east and north directions respectively, with units in kilometres.

a Find the position vector of point P.
b If B is the point on the shore with position vector

−−→
OB = 100i, find:

i
−−→
BP ii the bearing of P from B.

35 Given that a = i − j + 2k, b = i + 2 j + mk and c = 3i + n j + k are linearly dependent,
express m in terms of n in simplest fraction form.

36 Let a = i − j + 2k and b = i + 2 j − 4k.

a Find 2a − 3b.
b Hence find a value of m such that a, b and c are linearly dependent, where

c = mi + 6 j − 12k.

37 Let a = 4i − j − 2k, b = i − j + k and c = ma + (1 − m)b.

a Find c in terms of m, i, j and k.
b Hence find p if c = 7i − j + pk.
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4C Scalar product of vectors 167

4C Scalar product of vectors
The scalar product is an operation that takes two vectors and gives a real number.

Definition of the scalar product

We define the scalar product of two vectors in three dimensions a = a1i + a2 j + a3 k and
b = b1i + b2 j + b3 k by

a · b = a1b1 + a2b2 + a3b3

The scalar product of two vectors in two dimensions is defined similarly.

Note: If a = 0 or b = 0, then a · b = 0.

The scalar product is often called the dot product.

Let a = i − 2 j + 3k and b = −2i + 3 j + 4k. Find:

a · ba a · ab

Example 19

Solution
a · b = 1 × (−2) + (−2) × 3 + 3 × 4 = 4a a · a = 12 + (−2)2 + 32 = 14b

Geometric description of the scalar product

For vectors a and b, we have

a · b = |a| |b| cos θ

where θ is the angle between a and b.
θ

b

a

Proof Let a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k. The cosine rule in 4OAB gives

|a|2 + |b|2 − 2|a| |b| cos θ = |a − b|2

(a2
1 + a2

2 + a2
3) + (b2

1 + b2
2 + b2

3) − 2|a| |b| cos θ = (a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

2(a1b1 + a2b2 + a3b3) = 2|a| |b| cos θ

a1b1 + a2b2 + a3b3 = |a| |b| cos θ

∴ a · b = |a| |b| cos θ

O

B

b a − b

a A
θ

Note: When two non-zero vectors a and b are placed so that their initial points coincide, the
angle θ between a and b is chosen as shown in the diagrams. Note that 0 ≤ θ ≤ π.

θ

b

a

θ

a

b θ

ab
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168 Chapter 4: Vectors

a If |a| = 4, |b| = 5 and the angle between a and b is 30◦, find a · b.
b If |a| = 4, |b| = 5 and the angle between a and b is 150◦, find a · b.

Example 20

Solution
a · b = 4 × 5 × cos 30◦

= 20 ×

√
3

2
= 10

√
3

a a · b = 4 × 5 × cos 150◦

= 20 ×
(
−

√
3

2

)
= −10

√
3

b

Properties of the scalar product
The following properties can be established from the definition of the scalar product:

commutative law for scalar product a · b = b · a

distributive law a · (b + c) = a · b + a · c

compatibility with scalar multiplication k(a · b) = (ka) · b = a · (kb)

scalar product with zero a · 0 = 0

Several further properties follow from the geometric description of the scalar product:

� a · a = |a|2

� If the vectors a and b are perpendicular, then a · b = 0.
� If a · b = 0 for non-zero vectors a and b, then the vectors a and b are perpendicular.
� For parallel vectors a and b, we have

a · b =

 |a| |b| if a and b are parallel and in the same direction

−|a| |b| if a and b are parallel and in opposite directions

� For the unit vectors i, j and k, we have i · i = j · j = k · k = 1 and i · j = i · k = j · k = 0.

a Simplify a · (b + c) − b · (a − c).
b Expand the following:

i (a + b) · (a + b) ii (a + b) · (a − b)

Example 21

Solution

a a · (b + c) − b · (a − c) = a · b + a · c − b · a + b · c

= a · c + b · c

b i (a + b) · (a + b) = a · a + a · b + b · a + b · b

= a · a + 2(a · b) + b · b

ii (a + b) · (a − b) = a · a − a · b + b · a − b · b

= a · a − b · b
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4C Scalar product of vectors 169

Solve the equation (i + j − k) · (3i − x j + 2k) = 4 for x.

Example 22

Solution

(i + j − k) · (3i − x j + 2k) = 4

3 − x − 2 = 4

1 − x = 4

∴ x = −3

Finding the magnitude of the angle between two vectors
The angle between two vectors can be found by using the two forms of the scalar product:

a · b = |a| |b| cos θ and a · b = a1b1 + a2b2 + a3b3

Therefore

cos θ =
a · b
|a| |b|

=
a1b1 + a2b2 + a3b3

|a| |b|

A, B and C are points defined by the position vectors a, b and c respectively, where

a = i + 3 j − k, b = 2i + j and c = i − 2 j − 2k

Find the magnitude of ∠ABC, correct to one decimal place.

Example 23

Solution
∠ABC is the angle between vectors

−−→
BA and

−−→
BC.

−−→
BA = a − b = −i + 2 j − k
−−→
BC = c − b = −i − 3 j − 2k

We will apply the scalar product:
−−→
BA ·

−−→
BC = |

−−→
BA| |
−−→
BC| cos(∠ABC)

We have
−−→
BA ·

−−→
BC = 1 − 6 + 2 = −3

|
−−→
BA| =

√
1 + 4 + 1 =

√
6

|
−−→
BC| =

√
1 + 9 + 4 =

√
14

Therefore

cos(∠ABC) =

−−→
BA ·

−−→
BC

|
−−→
BA| |
−−→
BC|

=
−3
√

6
√

14

Hence ∠ABC = 109.1◦, correct to one decimal place.

(Alternatively, we can write ∠ABC = 1.9c, correct to one decimal place.)
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Exercise 4C

1Example 19 Let a = i − 4 j + 7k, b = 2i + 3 j + 3k and c = −i − 2 j + k. Find:

a · aa b · bb c · cc a · bd a · (b + c)e
(a + b) · (a + c)f (a + 2b) · (3c − b)g

2 Let a = 2i − j + 3k, b = 3i − 2k and c = −i + 3 j − k. Find:

a · aa b · bb a · bc a · cd a · (a + b)e

3 aExample 20 If |a| = 6, |b| = 7 and the angle between a and b is 60◦, find a · b.
b If |a| = 6, |b| = 7 and the angle between a and b is 120◦, find a · b.

4Example 21 Expand and simplify:

(a + 2b) · (a + 2b)a |a + b|2 − |a − b|2b

a · (a + b) − b · (a + b)c
a · (a + b) − a · b

|a|
d

5Example 22 Solve each of the following equations:

(i + 2 j − 3k) · (5i + x j + k) = −6a (xi + 7 j − k) · (−4i + x j + 5k) = 10b
(xi + 5k) · (−2i − 3 j + 3k) = xc x(2i + 3 j + k) · (i + j + xk) = 6d

6Example 23 If A and B are points defined by the position vectors a = i + 2 j − k and b = −i + j − 3k
respectively, find:

a
−−→
AB b |

−−→
AB| c the magnitude of the angle between vectors

−−→
AB and a.

7 Let C and D be points with position vectors c and d respectively. If |c| = 5, |d| = 7 and
c · d = 4, find |

−−→
CD|.

8 OABC is a rhombus with
−−→
OA = a and

−−→
OC = c.

a Express the following vectors in terms of a and c:

i
−−→
AB ii

−−→
OB iii

−−→
AC

b Find
−−→
OB ·

−−→
AC.

c Prove that the diagonals of a rhombus intersect at right angles.

9 From the following list, find three pairs of perpendicular vectors:

a = i + 3 j − k, b = −4i + j + 2k, c = −2i − 2 j − 3k,

d = −i + j + k, e = 2i − j − k, f = −i + 4 j − 5k

10 The four vertices of a regular tetrahedron have the following position vectors:

a = i + j + k, b = i − j − k, c = −i + j − k, d = −i − j + k

a Show that all the vertices are the same distance from the origin.
b Show that the angle between any two of these vectors is the same. Find this angle in

degrees correct to two decimal places.
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4C 4C Scalar product of vectors 171

11 Points A and B are defined by the position vectors
a = i + 4 j − 4k and b = 2i + 5 j − k.
Let P be the point on OB such that AP is perpendicular to OB.
Then

−−→
OP = qb, for a constant q.

a Express
−−→
AP in terms of q, a and b.

b Use the fact that
−−→
AP ·

−−→
OB = 0 to find the value of q.

c Find the coordinates of the point P. O

P

A

B

12 If xi + 2 j + yk is perpendicular to vectors i + j + k and 4i + j + 2k, find x and y.

13 Find the angle, in radians, between each of the following pairs of vectors, correct to
three significant figures:

i + 2 j − k and i − 4 j + ka −2i + j + 3k and −2i − 2 j + kb
2i − j − 3k and 4i − 2kc 7i + k and −i + j − 3kd

14 Let a and b be non-zero vectors such that a · b = 0. Use the geometric description of the
scalar product to show that a and b are perpendicular vectors.

For Questions 15–18, find the angles in degrees correct to two decimal places.

15 Let A and B be the points defined by the position vectors a = i + j + k and b = 2i + j− k
respectively. Let M be the midpoint of AB. Find:
−−→
OMa ∠AOMb ∠BMOc

16 OABCDEFG is a cuboid, set on axes at O, such that
−−→
OD = i,

−−→
OA = 3 j and

−−→
OC = 2k. Find:

a i
−−→
GB ii

−−→
GE

b ∠BGE

c the angle between diagonals
−−→
CE and

−−→
GA

C

G

D

AO
F

B

E

17 Let A, B and C be the points defined by the position vectors 4i, 5 j and −2i + 7k
respectively. Let M and N be the midpoints of AB and AC respectively. Find:

i
−−→
OM ii

−−→
ONa ∠MONb ∠MOCc

18 A parallelepiped is an oblique prism that has a
parallelogram cross-section. It has three pairs
of parallel and congruent faces, each of which is
a parallelogram.

OABCDEFG is a parallelepiped with
−−→
OA = 3 j,

−−→
OC = −i + j + 2k and

−−→
OD = 2i − j.

Show that the diagonals DB and CE bisect each
other, and find the acute angle between them.

D E

A

F

BC

G

O
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172 Chapter 4: Vectors

4D Vector projections
It is often useful to decompose a vector a into a sum of two vectors, one parallel to a given
vector b and the other perpendicular to b.

From the diagram, it can be seen that

a = u + w

where u = kb and so w = a − u = a − kb.

For w to be perpendicular to b, we must have

w · b = 0

(a − kb) · b = 0

a · b − k(b · b) = 0

a

u
θ

b

w

Hence k =
a · b
b · b

and therefore u =
a · b
b · b

b.

This vector u is called the vector projection (or vector resolute) of a in the direction of b.

Vector resolute

The vector resolute of a in the direction of b can be expressed in any one of the following
equivalent forms:

u =
a · b
b · b

b =
a · b
|b|2

b =

(
a ·

b
|b|

) ( b
|b|

)
= (a · b̂) b̂

Note: The quantity a · b̂ =
a · b
|b|

is the ‘signed length’ of the vector resolute u and is called

the scalar resolute of a in the direction of b.

Note that, from our previous calculation, we have w = a − u = a −
a · b
b · b

b.

Expressing a as the sum of the two components, the first parallel to b and the second
perpendicular to b, gives

a =
a · b
b · b

b +

(
a −

a · b
b · b

b
)

This is sometimes described as resolving the vector a into rectangular components.

Let a = i + 3 j − k and b = i − j + 2k. Find the vector resolute of:

a in the direction of ba b in the direction of a.b

Example 24

Solution
a a · b = 1 − 3 − 2 = −4, b · b = 1 + 1 + 4 = 6

The vector resolute of a in the direction of b is
a · b
b · b

b = −
4
6

(i − j + 2k) = −
2
3

(i − j + 2k)
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4D Vector projections 173

b b · a = a · b = −4, a · a = 1 + 9 + 1 = 11

The vector resolute of b in the direction of a is
b · a
a · a

a = −
4
11

(i + 3 j − k)

Find the scalar resolute of a = 2i + 2 j − k in the direction of b = −i + 3k.

Example 25

Solution

a · b = −2 − 3 = −5

|b| =
√

1 + 9 =
√

10

The scalar resolute of a in the direction of b is

a · b
|b|

=
−5
√

10
= −

√
10
2

Resolve i + 3 j − k into rectangular components, one of which is parallel to 2i − 2 j − k.

Example 26

Solution
Let a = i + 3 j − k and b = 2i − 2 j − k.

The vector resolute of a in the direction of b is given by
a · b
b · b

b.

We have

a · b = 2 − 6 + 1 = −3

b · b = 4 + 4 + 1 = 9

Therefore the vector resolute is
−3
9

(2i − 2 j − k) = −
1
3

(2i − 2 j − k)

The perpendicular component is

a −
(
−

1
3

(2i − 2 j − k)
)

= (i + 3 j − k) +
1
3

(2i − 2 j − k)

=
5
3

i +
7
3

j −
4
3

k

=
1
3

(5i + 7 j − 4k)

Hence we can write

i + 3 j − k = −
1
3

(2i − 2 j − k) +
1
3

(5i + 7 j − 4k)

Check: As a check, we verify that the second component is indeed perpendicular to b.
We have (5i + 7 j − 4k) · (2i − 2 j − k) = 10 − 14 + 4 = 0, as expected.
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174 Chapter 4: Vectors 4D

Exercise 4DSkill-
sheet

1 Points A and B are defined by the position vectors a = i + 3 j − k and b = i + 2 j + 2k.

a Find â.
b Find b̂.
c Find ĉ, where c =

−−→
AB.

2 Let a = 3i + 4 j − k and b = i − j − k.

a Find:

i â ii b̂

b Find the vector with the same magnitude as b and with the same direction as a.

3 Let a and b be non-zero vectors that are not parallel. In this question, we will prove that
the vector â + b̂ bisects the angle between a and b.

a Let O be the origin, and let A′ and B′ be the points with position vectors â and b̂
respectively. Show that OA′B′ is an isosceles triangle.

b Show that the midpoint of line segment A′B′ has position vector 1
2 (â + b̂).

c Show that the vector 1
2 (â + b̂) bisects the angle between â and b̂.

d Hence explain why the vector â + b̂ bisects the angle between a and b.

4 Points A and B are defined by the position vectors a = 2i − 2 j − k and b = 3i + 4k.

a Find:

i â ii b̂

b Find the unit vector which bisects ∠AOB.

5Example 24 For each pair of vectors, find the vector resolute of a in the direction of b:

a = i + 3 j and b = i − 4 j + ka a = i − 3k and b = i − 4 j + kb
a = 4i − j + 3k and b = 4i − kc

6Example 25 For each of the following pairs of vectors, find the scalar resolute of the first vector in
the direction of the second vector:

a = 2i + j and b = ia a = 3i + j − 3k and c = i − 2 jb
b = 2 j + k and a = 2i +

√
3 jc b = i −

√
5 j and c = −i + 4 jd

7 Let a = 2i + 2 j and b = i.

a Find the vector resolute of a in the direction of b.
b Find the scalar resolute of a in the direction of b.
c Draw a diagram illustrating the rectangular decomposition of a into components

parallel and perpendicular to b.
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4D 4D Vector projections 175

8Example 26 For each of the following pairs of vectors, find the resolution of the vector a into
rectangular components, one of which is parallel to b:

a = 2i + j + k, b = 5i − ka a = 3i + j, b = i + kb
a = −i + j + k, b = 2i + 2 j − kc

9 Let A and B be the points defined by the position vectors a = i + 3 j − k and b = j + k
respectively. Find:

a the vector resolute of a in the direction of b
b a unit vector through A perpendicular to OB

10 Let A and B be the points defined by the position vectors a = 4i + j and b = i − j − k
respectively. Find:

a the vector resolute of a in the direction of b
b the vector component of a perpendicular to b
c the shortest distance from A to line OB

11 Points A, B and C have position vectors a = i + 2 j + k, b = 2i + j− k and c = 2i−3 j + k.
Find:

a i
−−→
AB ii

−−→
AC

b the vector resolute of
−−→
AB in the direction of

−−→
AC

c the shortest distance from B to line AC

d the area of triangle ABC

12 a Verify that vectors a = i − 3 j − 2k and b = 5i + j + k are perpendicular to each other.
b If c = 2i − k, find:

i d, the vector resolute of c in the direction of a
ii e, the vector resolute of c in the direction of b.

c Find f such that c = d + e + f .
d Hence show that f is perpendicular to both vectors a and b.

13 Let a and b be perpendicular vectors. In this question, we will show how to decompose
a general vector c into three components: one parallel to a, one parallel to b and the
other perpendicular to both a and b. (In specific cases, some components may be zero.)

a Let d be the vector resolute of c in the direction of a. Write d in terms of a and c.
b Let e be the vector resolute of c in the direction of b. Write e in terms of b and c.
c Find f such that c = d + e + f .
d Show that, if f is non-zero, then f is perpendicular to both vectors a and b.
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4E Collinearity
Three or more points are said to be collinear if they all lie on a
single line.

Three distinct points A, B and C are collinear if and only if there exists a non-zero real
number m such that

−−→
AC = m

−−→
AB (that is, if and only if

−−→
AB and

−−→
AC are parallel).

A property of collinearity
Let points A, B and C have position vectors a =

−−→
OA, b =

−−→
OB and c =

−−→
OC. Then

−−→
AC = m

−−→
AB if and only if c = (1 − m)a + mb

Proof If
−−→
AC = m

−−→
AB, then we have

c =
−−→
OA +

−−→
AC

=
−−→
OA + m

−−→
AB

= a + m(b − a)

= a + mb − ma

= (1 − m)a + mb

O

a
c

b

A C B

Similarly, we can show that if c = (1 − m)a + mb, then
−−→
AC = m

−−→
AB.

Note: It follows from this result that if distinct points A, B and C are collinear, then we can
write

−−→
OC = λ

−−→
OA + µ

−−→
OB, where λ + µ = 1. If C is between A and B, then 0 < µ < 1.

For distinct points A and B, let a =
−−→
OA and b =

−−→
OB. Express

−−→
OC in terms of a and b,

where C is:

a the midpoint of AB

b the point of trisection of AB nearer to A

c the point C such that
−−→
AC = −2

−−→
AB.

Example 27

Solution
−−→
AC =

1
2
−−→
AB

−−→
OC =

−−→
OA +

−−→
AC

= a +
1
2
−−→
AB

= a +
1
2

(b − a)

=
1
2

(a + b)

a
−−→
AC =

1
3
−−→
AB

−−→
OC =

−−→
OA +

−−→
AC

= a +
1
3
−−→
AB

= a +
1
3

(b − a)

=
2
3

a +
1
3

b

b
−−→
AC = −2

−−→
AB

−−→
OC =

−−→
OA +

−−→
AC

= a − 2
−−→
AB

= a − 2(b − a)

= 3a − 2b

c

Note: Alternatively, we could have used the previous result in this example.
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4E Collinearity 177

Let
−−→
OA = a and

−−→
OB = b, where vectors a and b are linearly independent.

Let M be the midpoint of OA, let C be the point such that
−−→
OC =

4
3
−−→
OB and let R be the

point of intersection of lines AB and MC.

a Find
−−→
OR in terms of a and b. b Hence find AR : RB.

Example 28

Solution

a We have
−−→
OM =

1
2

a and
−−→
OC =

4
3

b.

Since M, R and C are collinear, there
exists m ∈ R with

−−→
MR = m

−−→
MC

= m
(−−→
MO +

−−→
OC

)
= m

(
−

1
2

a +
4
3

b
)

−−→
OR =

−−→
OM +

−−→
MRThus

=
1
2

a + m
(
−

1
2

a +
4
3

b
)

=
1 − m

2
a +

4m
3

b

B

O

M

A

R C

Since A, R and B are collinear, there exists n ∈ R with
−−→
AR = n

−−→
AB

= n
(−−→
AO +

−−→
OB

)
= n(−a + b)

−−→
OR =

−−→
OA +

−−→
ARThus

= a + n(−a + b)

= (1 − n)a + nb

Hence, since a and b are linearly independent, we have
1 − m

2
= 1 − n and

4m
3

= n

This gives m =
3
5

and n =
4
5

. Therefore
−−→
OR =

1
5

a +
4
5

b.

b From part a, we have
−−→
AR =

−−→
AO +

−−→
OR

= −a +
1
5

a +
4
5

b

=
4
5

(b − a) =
4
5
−−→
AB

Hence AR : RB = 4 : 1.
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Exercise 4E

1Example 27 Points A, B and R are collinear, with
−−→
OA = a and

−−→
OB = b. Express

−−→
OR in terms of a

and b, where R is:

a the point of trisection of AB nearer to B

b the point between A and B such that AR : RB = 3 : 2.

2 Let
−−→
OA = 3i + 4k and

−−→
OB = 2i − 2 j + k. Find

−−→
OR, where R is:

a the midpoint of line segment AB

b the point such that
−−→
AR =

4
3
−−→
AB

c the point such that
−−→
AR = −

1
3
−−→
AB.

3 The position vectors of points P, Q and R are a, 3a − 4b and 4a − 6b respectively.

a Show that P, Q and R are collinear.
b Find PQ : QR.

4 In triangle OAB,
−−→
OA = ai and

−−→
OB = xi + y j. Let C be the midpoint of AB.

a Find
−−→
OC.

b If the vector
−−→
OC is perpendicular to

−−→
AB, find the relationship between x, y and a.

5 In parallelogram OAUB,
−−→
OA = a and

−−→
OB = b. Let

−−→
OM =

1
5

a and MP : PB = 1 : 5,
where P is on the line segment MB.

a Prove that P is on the diagonal OU.
b Hence find OP : PU.

6 OABC is a square with
−−→
OA = −4i + 3 j and

−−→
OC = 3i + 4 j.

a Find
−−→
OB.

b Given that D is the point on AB such that
−−→
BD =

1
3
−−→
BA, find

−−→
OD.

c Given that OD intersects AC at E and that
−−→
OE = (1 − λ)

−−→
OA + λ

−−→
OC, find λ.

7 In triangle OAB,
−−→
OA = 3i + 4k and

−−→
OB = i + 2 j − 2k.

a Use the scalar product to show that ∠AOB is an obtuse angle.
b Find

−−→
OP, where P is:

i the midpoint of AB

ii the point on AB such that OP is perpendicular to AB

iii the point where the bisector of ∠AOB intersects AB.
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4F Geometric proofs 179

4F Geometric proofs
In this section we use vectors to prove geometric results in two and three dimensions. The
following properties of vectors will be useful:

Parallel vectors
� For k ∈ R+, the vector ka is in the same direction as a and has magnitude k|a|, and

the vector −ka is in the opposite direction to a and has magnitude k|a|.
� Two non-zero vectors a and b are parallel if and only if b = ka for some k ∈ R \ {0}.

� Three distinct points A, B and C are collinear if and only if
−−→
AC = k

−−→
AB for some k ∈ R\ {0}.

Scalar product
� Two non-zero vectors a and b are perpendicular if and only if a · b = 0.
� a · a = |a|2

Linear combinations of independent vectors
� Let a and b be two linearly independent (i.e. not parallel) vectors. Then ma+nb = pa+qb

implies m = p and n = q.

Vector proofs in two-dimensional geometry

Prove that the diagonals of a rhombus are perpendicular.

Example 29

Solution
OABC is a rhombus.

Let a =
−−→
OA and c =

−−→
OC.

The diagonals of the rhombus are OB and AC.
−−→
OB =

−−→
OC +

−−→
CBNow

=
−−→
OC +

−−→
OA

= c + a
−−→
AC =

−−→
AO +

−−→
OCand

= −a + c

O C

A B

Consider the scalar product of
−−→
OB and

−−→
AC:

−−→
OB ·

−−→
AC = (c + a) · (c − a)

= c · c − a · a

= |c|2 − |a|2

A rhombus has all sides of equal length, and therefore |c| = |a|. Hence
−−→
OB ·

−−→
AC = |c|2 − |a|2 = 0

This implies that AC is perpendicular to OB.
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180 Chapter 4: Vectors

Note: For many geometric proofs, there are different possible approaches that you can take.
In particular, there are different ways to choose the initial vectors. Finding efficient
approaches to these proofs comes with experience and practice.

For the next example, we require the following definition:

� Suppose that we have a line segment AB and a point C not on AB. Then ∠ACB is the angle
subtended by AB at the point C.

Prove that the angle subtended by a diameter at a point on a circle is a right angle.

Example 30

Solution
Let O be the centre of the circle and let AB be a diameter.

Let C be a point on the circle (other than A or B).

We aim to show that ∠ACB is a right angle.

We have |
−−→
OA| = |

−−→
OB| = |

−−→
OC| = r, where r is the radius.

Let a =
−−→
OA and c =

−−→
OC. Then

−−→
OB = −a.

−−→
AC =

−−→
AO +

−−→
OCNow

= −a + c
−−→
BC =

−−→
BO +

−−→
OCand

= a + c

A O

C

B

−−→
AC ·

−−→
BC = (−a + c) · (a + c)Thus

= −a · a + c · c

= −|a|2 + |c|2

= −r2 + r2 (since |a| = |c| = r)

= 0

Hence AC ⊥ BC. We have shown that ∠ACB is a right angle.

For the next example, we require the following two definitions:

� A median of a triangle is a line segment from a vertex to the midpoint
of the opposite side.

� Three or more lines are said to be concurrent if they all pass through
a single point.
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4F Geometric proofs 181

Prove that the medians of a triangle are concurrent.

Example 31

Solution
Consider triangle OAB. Let A′, B′ and X be the
midpoints of OB, OA and AB respectively.

Let Y be the point of intersection of the medians
AA′ and BB′.

Let a =
−−→
OA and b =

−−→
OB.

B

X
Y

A

O
A′

B ′

We start by showing that AY : YA′ = BY : YB′ = 2 : 1.

We have
−−→
AY = λ

−−→
AA′ and

−−→
BY = µ

−−→
BB′, for some λ, µ ∈ R.

−−→
AA′ =

−−→
AO +

1
2
−−→
OB

= −a +
1
2

b

∴
−−→
AY = λ

(
−a +

1
2

b
)

and
−−→
BB′ =

−−→
BO +

1
2
−−→
OA

= −b +
1
2

a

∴
−−→
BY = µ

(
−b +

1
2

a
)

Now

But
−−→
BY can also be obtained as follows:

−−→
BY =

−−→
BA +

−−→
AY

=
−−→
BO +

−−→
OA +

−−→
AY

= −b + a + λ

(
−a +

1
2

b
)

−µb +
µ

2
a = (1 − λ)a +

(
λ

2
− 1

)
b∴

Since a and b are independent vectors, we now have

µ

2
= 1 − λ (1) and −µ =

λ

2
− 1 (2)

Multiply (1) by 2 and add to (2):

0 = 2 − 2λ +
λ

2
− 1

1 =
3λ
2

λ =
2
3

∴

Substitute in (1) to find µ =
2
3

. We have shown that AY : YA′ = BY : YB′ = 2 : 1.

Now, by symmetry, the point of intersection of the medians AA′ and OX must also
divide AA′ in the ratio 2 : 1, and therefore must be Y . Hence the three medians meet at Y .

Note: The point where the three medians meet is called the centroid of the triangle.
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182 Chapter 4: Vectors

Vector proofs in three-dimensional geometry

Consider a parallelepiped OABCDEFG as shown.

a Prove that the diagonals OF and CE bisect
each other.

b Let M be the midpoint of CB, and let N be the
midpoint of DE.

Prove that the midpoint of MN is the point where
the diagonals OF and CE intersect.

D

A

F

BC

G

O

E

M

N

Example 32

Solution

Let a =
−−→
OA, c =

−−→
OC and d =

−−→
OD.

a We will show that the midpoint of OF and the midpoint of CE coincide.

Let X be the midpoint of OF. Then
−−→
OX = 1

2
−−→
OF

= 1
2
(−−→
OA +

−−→
AB +

−−→
BF

)
= 1

2 (a + c + d)

Let Y be the midpoint of CE. Then
−−→
OY = 1

2
(−−→
OC +

−−→
OE

)
= 1

2
(−−→
OC +

−−→
OA +

−−→
AE

)
= 1

2 (c + a + d)

=
−−→
OX

Therefore X = Y , and so the diagonals OF and CE bisect each other.

b We have
−−→
OM =

−−→
OC + 1

2
−−→
CB = c + 1

2 a
−−→
ON =

−−→
OD + 1

2
−−→
DE = d + 1

2 a

Let Z be the midpoint of MN. Then
−−→
OZ = 1

2
(−−→
OM +

−−→
ON

)
= 1

2
(
c + 1

2 a + d + 1
2 a

)
= 1

2 (a + c + d)

Therefore Z = X, where X is the point of intersection of OF and CE found in part a.
Hence X is the midpoint of MN.
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Exercise 4F

Vector proofs in two-dimensional geometry

1 Prove that the diagonals of a parallelogram bisect each other.

2 Prove that if the midpoints of the sides of a rectangle are joined, then a rhombus
is formed.

3 Prove that if the midpoints of the sides of a square are joined, then another square
is formed.

4 Prove that the median to the base of an isosceles triangle is perpendicular to the base.

5 Prove that if the diagonals of a parallelogram are of equal length, then the parallelogram
is a rectangle.

6 Prove that the midpoint of the hypotenuse of a right-angled triangle is equidistant from
the three vertices of the triangle.

7 Prove that the sum of the squares of the lengths of the diagonals of any parallelogram is
equal to the sum of the squares of the lengths of the sides.

8 Prove that if the midpoints of the sides of a quadrilateral are joined, then a
parallelogram is formed.

9 Let ABCD be a parallelogram, let M be the midpoint of AB and let P be the point of
trisection of MD nearer to M. Prove that A, P and C are collinear and that P is a point
of trisection of AC.

10 Let ABCD be a parallelogram with
−−→
AB = a and

−−→
AD = b. The point P lies on AD and is

such that AP : PD = 1 : 2 and the point Q lies on BD and is such that BQ : QD = 2 : 1.
Show that PQ is parallel to AC.

11 AB and CD are diameters of a circle with centre O. Prove that
ACBD is a rectangle. C

B

A

D

O

12 Apollonius’ theorem
In triangle AOB, a =

−−→
OA, b =

−−→
OB and M is the midpoint of AB.

a Find:

i
−−→
AM in terms of a and b

ii
−−→
OM in terms of a and b

b Find
−−→
AM ·

−−→
AM +

−−→
OM ·

−−→
OM.

c Hence prove that OA2 + OB2 = 2OM2 + 2AM2. A BM

O

a b
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184 Chapter 4: Vectors 4F

13 In the figure, O is the midpoint of AD and B is the
midpoint of OC. Let a =

−−→
OA and b =

−−→
OB.

Let P be the point such that
−−→
OP =

1
3

(a + 4b).

a Prove that A, P and C are collinear.
b Prove that D, B and P are collinear.
c Find DB : BP.

A

C
B

D

O

14 In triangle AOB, a =
−−→
OA and b =

−−→
OB. The point P is on AB such that the length of AP

is twice the length of BP. The point Q is such that
−−→
OQ = 3

−−→
OP.

a Find each of the following in terms of a and b:

i
−−→
OP ii

−−→
OQ iii

−−→
AQ

b Hence show that
−−→
AQ is parallel to

−−→
OB.

15 ORST is a parallelogram, U is the midpoint of RS and V is the midpoint of ST . Relative
to the origin O, the position vectors of points R, S , T , U and V are r, s, t, u and v
respectively.

a Express s in terms of r and t.
b Express u in terms of r and s, and express v in terms of s and t.
c Hence, or otherwise, show that 4(u + v) = 3(r + s + t).

16 The points A, B, C, D and E shown in the diagram have
position vectors

a = i + 11 j b = 2i + 8 j c = −i + 7 j

d = −2i + 8 j e = −4i + 6 j

respectively. The lines AB and DC intersect at F as shown.

a Show that E lies on the lines DA and BC.
b Find

−−→
AB and

−−→
DC.

c Find the position vector of the point F.
d Show that FD is perpendicular to EA and that EB is perpendicular to AF.
e Find the position vector of the centre of the circle through E, D, B and F.

C
B

F

A
D

E

17 Coplanar points A, B, C, D and E have position vectors a, b, c, d and e respectively,
relative to an origin O. The point A is the midpoint of OB and the point E divides AC in
the ratio 1 : 2. If e = 1

3 d, show that OCDB is a parallelogram.

18 The points A and B have position vectors a and b respectively, relative to an origin O.
The point P divides the line segment OA in the ratio 1 : 3 and the point R divides the
line segment AB in the ratio 1 : 2. Given that PRBQ is a parallelogram, determine the
position of Q.
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19 Let ABC be a triangle, where the points A, B and C have position vectors a, b and c
respectively. Show that the centroid of triangle ABC has position vector 1

3 (a + b + c).

20 ABCD is a parallelogram, AB is extended to E and BA is
extended to F such that BE = AF = BC. Line segments
EC and FD are extended to meet at X.

a Prove that the lines EX and FX meet at right angles.

b If
−−→
EX = λ

−−→
EC,
−−→
FX = µ

−−→
FD and |

−−→
AB| = k|

−−→
BC|, find the

values of λ and µ in terms of k.
c Find the values of λ and µ if ABCD is a rhombus.

d If |
−−→
EX| = |

−−→
FX|, prove that ABCD is a rectangle.

F

A D

CB

E

21 In the figure, the circle has centre O and radius r.
The circle is inscribed in a square ABCD, and P is any
point on the circle.

a Show that
−−→
AP ·

−−→
AP = 3r2 − 2

−−→
OP ·

−−→
OA.

b Hence find AP2 + BP2 + CP2 + DP2 in terms of r.

A D

B
P

O

C

Vector proofs in three-dimensional geometry

22 A ‘space diagonal’ of a polyhedron is a line segment connecting two vertices that are
not on the same face. Prove that the space diagonals of a rectangular prism are of equal
length and bisect each other.

23 Consider a rectangular prism OABCDEFG
as shown. Let a =

−−→
OA, c =

−−→
OC and d =

−−→
OD.

Let a = |a|, c = |c| and d = |d|.

a Let X be the point on diagonal OF such that
CX is perpendicular to OF. Find the position
vector of X in terms of a, c and d.

b Let Y be the point on diagonal OF such that
BY is perpendicular to OF. Find the position
vector of Y in terms of a, c and d.

c If a = c = d = 1, find:

i the position vectors of X and Y

ii the magnitude of ∠CXA

iii the magnitude of ∠BYG

O A

BC

D E

FG

X

Y
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24 Let P, Q, R and S be four points in space that do not lie in the
same plane. Let W, X, Y and Z be the midpoints of PQ, QR, RS
and SP respectively. Relative to an origin O, denote the position
vectors of points P, Q, R, S , W, X, Y , Z by p, q, r, s, w, x, y, z
respectively. Prove that WXYZ is a parallelogram. P

R

Q

S

W

X

Y
Z

25 A tetrahedron is a polyhedron with four triangular faces.
In a regular tetrahedron, each face is an equilateral triangle.

Prove that, for a regular tetrahedron, the line segments joining the
midpoints of opposite edges have a common midpoint.

Note: For a tetrahedron PQRS , the edges PQ and RS are
opposite, the edges PR and QS are opposite, and the
edges PS and QR are opposite.

P

R

Q

S

26 Point C is a vertex of the regular tetrahedron OABC. Point G is the centroid of
triangle OAB. Let a =

−−→
OA, b =

−−→
OB and c =

−−→
OC.

a Find
−−→
OG in terms of a and b.

b Prove that
−−→
CG is perpendicular to

−−→
OG.

27 Prove that opposite edges of a regular tetrahedron are perpendicular.

28 Let OABC be a tetrahedron. Assume that edge OA is perpendicular to edge BC, and that
edge OB is perpendicular to edge AC. Prove that edge OC is perpendicular to edge AB.

29 Let OABC be a tetrahedron such that opposite edges are perpendicular. Show that

OA2 + BC2 = OB2 + AC2 = OC2 + AB2

30 A regular tetrahedron VABC has edges of length 4 cm.

a Let T be the point on VC such that AT is perpendicular to VC. Find the value of λ
such that

−−→
VT = λ

−−→
VC.

b Prove that BT is perpendicular to VC.
c Find the magnitude of ∠AT B.

31 OBCDEFGH is a parallelepiped. Let b =
−−→
OB,

d =
−−→
OD and e =

−−→
OE.

a Express each of the vectors
−−→
OG,

−−→
DF,
−−→
BH and

−−→
CE in terms of b, d and e.

b Find |
−−→
OG|2, |

−−→
DF|2, |

−−→
BH|2 and |

−−→
CE|2 in terms

of b, d and e.

B

O D

C

H

GF

E

c Show that |
−−→
OG|2 + |

−−→
DF|2 + |

−−→
BH|2 + |

−−→
CE|2 = 4

(
|b|2 + |d|2 + |e|2

)
.
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Chapter summary

� A vector is a set of equivalent directed line segments.

� A directed line segment from a point A to a point B is denoted by
−−→
AB.

� The position vector of a point A is the vector
−−→
OA, where O is the origin.

� A vector can be written as a column of numbers. The vector
23

 is ‘2 across and 3 up’.

Basic operations on vectors
� Addition
• The sum u + v is obtained geometrically as shown.

• If u =

ab
 and v =

c
d

, then u + v =

a + c
b + d

.
� Scalar multiplication
• For k ∈ R+, the vector ku has the same direction as u, but

its length is multiplied by a factor of k.
A

B

v

u

u + v

C

• The vector −v has the same length as v, but the opposite direction.
• Two non-zero vectors u and v are parallel if there exists k ∈ R \ {0} such that u = kv.

� Subtraction u − v = u + (−v)

Component form
� In two dimensions, each vector u can be written in the form

u = xi + y j, where:

• i is the unit vector in the positive direction of the x-axis
• j is the unit vector in the positive direction of the y-axis.

� The magnitude of vector u = xi + y j is given by |u| =
√

x2 + y2. O
x

y

u yj

xi

� In three dimensions, each
vector u can be written in
the form u = xi + y j + zk,
where i, j and k are unit
vectors as shown.

� If u = xi + y j + zk,
then |u| =

√
x2 + y2 + z2.

y

z

x

(x, y, z)

y

k

i
j

x

z

� If the vector a = a1i + a2 j + a3 k makes angles α, β and γ with the positive directions of
the x-, y- and z-axes respectively, then

cosα =
a1

|a|
, cos β =

a2

|a|
and cos γ =

a3

|a|
� The unit vector in the direction of vector a is given by

â =
1
|a|

a
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Scalar product and vector projections
� The scalar product of vectors a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k is given by

a · b = a1b1 + a2b2 + a3b3

� The scalar product is described geometrically by a · b = |a| |b| cos θ,
where θ is the angle between a and b.

� Therefore a · a = |a|2.
θ

b

a

� Two non-zero vectors a and b are perpendicular if and only if a · b = 0.
� Resolving a vector a into rectangular components is expressing the vector a as a sum of

two vectors, one parallel to a given vector b and the other perpendicular to b.

� The vector resolute of a in the direction of b is
a · b
b · b

b.

� The scalar resolute of a in the direction of b is
a · b
|b|

.

Linear dependence and independence
� A set of vectors is said to be linearly dependent if at least one of its members can be

expressed as a linear combination of other vectors in the set.
� A set of vectors is said to be linearly independent if it is not linearly dependent.
� Linear combinations of independent vectors: Let a and b be two linearly independent

(i.e. not parallel) vectors. Then ma + nb = pa + qb implies m = p and n = q.

Technology-free questions

1 ABCD is a parallelogram, where A, B and C have position vectors i + 2 j − k, 2i + j − 2k
and 4i − k respectively. Find:

a
−−→
AD b the cosine of ∠BAD

2 Points A, B and C are defined by position vectors 2i− j− 4k, −i + j + 2k and i− 3 j− 2k
respectively. Point M is on the line segment AB such that |

−−→
AM| = |

−−→
AC|.

a Find:

i
−−→
AM ii the position vector of N, the midpoint of CM

b Hence show that
−−→
AN ⊥

−−→
CM.

3 Let a = 4i + 3 j − k, b = 2i − j + xk and c = yi + z j − 2k. Find:

a x such that a and b are perpendicular to each other
b y and z such that a, b and c are mutually perpendicular

4 Let a = i − 2 j + 2k and let b be a vector such that the vector resolute of a in the
direction of b is b̂.

a Find the cosine of the angle between the directions of a and b.
b Find |b| if the vector resolute of b in the direction of a is 2â.
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5 Let a = 3i − 6 j + 4k and b = 2i + j − 2k.

a Find c, the vector component of a perpendicular to b.
b Find d, the vector resolute of c in the direction of a.
c Hence show that |a| |d| = |c|2.

6 Points A and B have position vectors a = 2i + 3 j − 4k and b = 2i − j + 2k. Point C has
position vector c = 2i + (1 + 3t) j + (−1 + 2t)k.

a Find in terms of t:

i
−−→
CA ii

−−→
CB

b Find the values of t for which ∠BCA = 90◦.

7 OABC is a parallelogram, where A and C have position vectors a = 2i + 2 j − k and
c = 2i − 6 j − 3k respectively.

a Find:

i |a − c| ii |a + c| iii (a − c) · (a + c)

b Hence find the acute angle between the diagonals of the parallelogram.

8 OABC is a trapezium with
−−→
OC = 2

−−→
AB. If

−−→
OA = 2i − j − 3k and

−−→
OC = 6i − 3 j + 2k, find:

a
−−→
AB b

−−→
BC c the cosine of ∠BAC.

9 The position vectors of A and B, relative to an origin O, are 6i + 4 j and 3i + p j.

a Express
−−→
AO ·

−−→
AB in terms of p.

b Find the value of p for which
−−→
AO is perpendicular to

−−→
AB.

c Find the cosine of ∠OAB when p = 6.

10 Points A, B and C have position vectors p + q, 3p− 2q and 6p + mq respectively, where
p and q are non-zero, non-parallel vectors. Find the value of m such that the points A, B
and C are collinear.

11 If r = 3i + 3 j − 6k, s = i − 7 j + 6k and t = −2i − 5 j + 2k, find the values of λ and µ
such that the vector r + λs + µt is parallel to the x-axis.

12 Show that the points A(4, 3, 0), B(5, 2, 3), C(4,−1, 3) and D(2, 1,−3) form a trapezium
and state the ratio of the parallel sides.

13 If a = 2i − j + 6k and b = i − j − k, show that a + b is perpendicular to b and find the
cosine of the angle between the vectors a + b and a − b.

14 O, A and B are the points with coordinates (0, 0), (3, 4) and (4,−6) respectively.

a Let C be the point such that
−−→
OA =

−−→
OC +

−−→
OB. Find the coordinates of C.

b Let D be the point (1, 24). If
−−→
OD = h

−−→
OA + k

−−→
OB, find the values of h and k.
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15 Relative to O, the position vectors of A, B and C
are a, b and c. Points B and C are the midpoints
of AD and OD respectively.

a Find
−−→
OD and

−−→
AD in terms of a and c.

b Find b in terms of a and c.
c Point E on the extension of OA is such that
−−→
OE = 4

−−→
AE. If

−−→
CB = k

−−→
AE, find the value of k.

A D

C

O

B

16
−−→
OP = p

−−→
OQ = q

−−→
OR =

1
3

p + kq
−−→
OS = hp +

1
2

q

Given that R is the midpoint of QS , find h and k.
q

R
Q

p PO

S

17 ABC is a right-angled triangle with the right angle at B. If
−−→
AC = 2i + 4 j and

−−→
AB is

parallel to i + j, find
−−→
AB.

18 In this diagram, OABC is a parallelogram with
−−→
OA = 2

−−→
AD. Let a =

−−→
AD and c =

−−→
OC.

a Express
−−→
DB in terms of a and c.

b Use a vector method to prove that
−−→
OE = 3

−−→
OC.

C

E

O D

B

A

19 For a quadrilateral OABC, let D be the point of trisection of OC nearer O and let E be
the point of trisection of AB nearer A. Let a =

−−→
OA, b =

−−→
OB and c =

−−→
OC.

a Find:

i
−−→
OD ii

−−→
OE iii

−−→
DE

b Hence prove that 3
−−→
DE = 2

−−→
OA +

−−→
CB.

20 In triangle OAB, a =
−−→
OA, b =

−−→
OB and T is a point on AB

such that AT = 3T B.

a Find
−−→
OT in terms of a and b.

b If M is a point such that
−−→
OM = λ

−−→
OT , where λ > 1, find:

i
−−→
BM in terms of a, b and λ ii λ, if

−−→
BM is parallel to

−−→
OA.

A
O

T

B

21 Given that a = i + j + 3k, b = i − 2 j + mk and c = −2i + n j + 2k are linearly dependent,
express m in terms of n.

22 Let a = 2i + j + 2k and b = i + 3k.

a Find v, the vector resolute of a perpendicular to b.
b Prove that v, a and b are linearly dependent.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
eview

Chapter 4 review 191

Multiple-choice questions

1 If
−−→
OX = a + 2b and

−−→
XY = a − b, then

−−→
OY in terms of a and b is equal to

bA 3bB 2a + bC 2a + 3bD 3a + bE

2 The grid shown is made up of identical parallelograms.
Let a =

−−→
AB and c =

−−→
CD. Then the vector

−−→
EF is equal to

A a + 3c B −3a + c C −3a − c
D 3a − c E 3a + c

C A

F

E

D

B

3 ABCD is a parallelogram with
−−→
AB = u and

−−→
BC = v. If M is the midpoint of AB, then the

vector
−−−→
DM expressed in terms of u and v is equal to

1
2

u + vA
1
2

u − vB u +
1
2

vC u −
1
2

vD
3
2

u − vE

4 If A = (3, 6) and B = (11, 1), then the vector
−−→
AB in terms of i and j is equal to

3i + 6 jA 8i − 5 jB 8i + 5 jC 14i + 7 jD 14i − 7 jE

5 The angle between the vectors 2i + j −
√

2k and 5i + 8 j is approximately

0.72◦A 0.77◦B 43.85◦C 46.15◦D 88.34◦E

6 Let OAB be a triangle such that
−−→
AO ·

−−→
AB =

−−→
BO ·

−−→
BA and |

−−→
AB| , |

−−→
OB|. Then triangle OAB

must be

scaleneA equilateralB isoscelesC right-angledD obtuseE

7 If a and b are non-zero, non-parallel vectors such that x(a + b) = 2ya + (y + 3)b, then
the values of x and y are

x = 3, y = 6A x = −6, y = −3B x = −2, y = −1C
x = 2, y = 1D x = 6, y = 3E

8 If A and B are points defined by the position vectors a = i + j and b = 5i − 2 j + 2k
respectively, then |

−−→
AB| is equal to

29A
√

11B 11C
√

21D
√

29E

9 Let x = 3i − 2 j + 4k and y = −5i + j + k. The scalar resolute of x in the direction of y is
21
√

27
A −

13
√

23
23

B −
13
√

29
29

C −
13
√

27
27

D −
13
√

21
21

E

10 Let ABCD be a rectangle such that |
−−→
BC| = 3|

−−→
AB|. If

−−→
AB = a, then |

−−→
AC| is equal to

2|a|A
√

10 |a|B 4|a|C 10|a|D 3|a|E

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
ev

ie
w

192 Chapter 4: Vectors

11 Vectors a = 2i − 8 j + 10k, b = i − j + k and c = i + 2 j + ak are linearly dependent. The
value of a is

−2A −4B −3C 2D 9E

12 If p, q and r are non-zero vectors such that r =
1
4

p +
3
4

q, then which one of the
following statements must be true?

p and q are linearly dependentA p, q and r are linearly dependentB
p and q are linearly independentC p, q and r are parallelD
r is perpendicular to both p and qE

13 Consider the four vectors a = i + k, b = i + 3k, c = i + 2k and d = 4i − 2 j. Which one
of the following is a linearly dependent set of vectors?

{a, b, d}A {a, c, d}B {b, c, d}C {a, b, c}D {a, b}E

Extended-response questions

1 A spider builds a web in a garden. Relative to an origin O, the position vectors of the
ends A and B of a strand of the web are

−−→
OA = 2i + 3 j + k and

−−→
OB = 3i + 4 j + 2k.

a i Find
−−→
AB. ii Find the length of the strand.

b A small insect is at point C, where
−−→
OC = 2.5i + 4 j + 1.5k. Unluckily, it flies in a

straight line and hits the strand of web between A and B. Let Q be the point at which
the insect hits the strand, where

−−→
AQ = λ

−−→
AB.

i Find
−−→
CQ in terms of λ.

ii If the insect hits the strand at right angles, find the value of λ and the vector
−−→
OQ.

c Another strand MN of the web has endpoints M and N with position vectors
−−→
OM = 4i + 2 j − k and

−−→
ON = 6i + 10 j + 9k. The spider decides to continue AB to

join MN. Find the position vector of the point of contact.

2 The position vectors of points A and B are 2i + 3 j + k and 3i − 2 j + k.

a i Find |
−−→
OA| and |

−−→
OB|. ii Find

−−→
AB.

b Let X be the midpoint of line segment AB.

i Find
−−→
OX. ii Show that

−−→
OX is perpendicular to

−−→
AB.

c Find the position vector of a point C such that OACB is a parallelogram.
d Show that the diagonal OC is perpendicular to the diagonal AB by considering the

scalar product
−−→
OC ·

−−→
AB.

e i Find a vector of magnitude
√

195 that is perpendicular to both
−−→
OA and

−−→
OB.

ii Show that this vector is also perpendicular to
−−→
AB and

−−→
OC.

iii Comment on the relationship between the vector found in part e i and the
parallelogram OACB.
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3 Points A, B and C have position vectors
−−→
OA = 5i,

−−→
OB = i + 3k, and

−−→
OC = i + 4 j

The parallelepiped has OA, OB and OC as three edges
and remaining vertices X, Y , Z and D as shown in the
diagram. A D

B

YC

Z

O

X

a Write down the position vectors of X, Y , Z and D in terms of i, j and k and calculate
the lengths of OD and OY .

b Calculate the size of angle OZY .
c The point P divides CZ in the ratio λ : 1. That is, CP : PZ = λ : 1.

i Give the position vector of P.

ii Find λ if
−−→
OP is perpendicular to

−−→
CZ.

4 ABC is a triangle as shown in the diagram.
The points P, Q and R are the midpoints of the
sides BC, CA and AB respectively. Point O is
the point of intersection of the perpendicular
bisectors of CA and AB.
Let a =

−−→
OA, b =

−−→
OB and c =

−−→
OC.

b

a

O
c

B

R

C

Q

A

P

a Express each of the following in terms of a, b and c:
−−→
ABi

−−→
BCii

−−→
CAiii

−−→
OPiv

−−→
OQv

−−→
ORvi

b i Using the fact that OR is perpendicular to AB, show that |a| = |b|.
ii Using the fact that OQ is perpendicular to AC, show that |a| = |c|.

c Prove that OP is perpendicular to BC.
d Hence prove that the perpendicular bisectors of the sides of a triangle are concurrent.

Note: The point where the perpendicular bisectors meet is called the circumcentre of
the triangle. This point is equidistant from all three vertices.

5 The position vectors of two points B and C, relative to an origin O, are denoted by b
and c respectively.

a In terms of b and c, find the position vector of L, the point on BC between B and C
such that BL : LC = 2 : 1.

b Let a be the position vector of a point A such that O is the midpoint of AL. Prove that
3a + b + 2c = 0.

c Let M be the point on CA between C and A such that CM : MA = 3 : 2.

i Prove that B, O and M are collinear.
ii Find the ratio BO : OM.

d Let N be the point on AB such that C, O and N are collinear. Find the ratio AN : NB.
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6 OAB is an isosceles triangle with OA = OB.
Let a =

−−→
OA and b =

−−→
OB.

a Let D be the midpoint of AB and let E be a point on OB.
Find in terms of a and b:

i
−−→
OD

ii
−−→
DE if

−−→
OE = λ

−−→
OB

b If DE is perpendicular to OB, show that

λ =
1
2

(a · b + b · b)
b · b

A

F E

O

D B

c Now assume that DE is perpendicular to OB and that λ =
5
6

.

i Show that cos θ =
2
3

, where θ is the magnitude of ∠AOB.

ii Let F be the midpoint of DE. Show that OF is perpendicular to AE.

7 A cuboid is positioned on level ground so that it rests on
one of its vertices, O. Vectors i and j are on the ground.

−−→
OA = 3i − 12 j + 3k
−−→
OB = 2i + a j + 2k
−−→
OC = xi + y j + 2k

a i Find
−−→
OA ·

−−→
OB in terms of a.

ii Find a.
b i Use the fact that

−−→
OA is perpendicular to

−−→
OC to

write an equation relating x and y.
ii Find the values of x and y.

c Find the position vectors:

i
−−→
OD ii

−−→
OX iii

−−→
OY

d State the height of points X and Y above the ground.

A

O

B

D

Y

X Z

Ck

i j

8 In the diagram, D is a point on BC with
BD
DC

= 3 and E is a point on AC with
AE
EC

=
3
2

.

Let P be the point of intersection of AD and BE. Let a =
−−→
BA and c =

−−→
BC.

a Find:

i
−−→
BD in terms of c

ii
−−→
BE in terms of a and c

iii
−−→
AD in terms of a and c

b Let
−−→
BP = µ

−−→
BE and

−−→
AP = λ

−−→
AD.

Find λ and µ.

CA

D
P

B

E
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9 a Let a = pi + q j. The vector b is obtained by
rotating a clockwise through 90◦ about the
origin. The vector c is obtained by rotating a
anticlockwise through 90◦ about the origin.
Find b and c in terms of p, q, i and j. O

x

y

b

a
c

b In the diagram, ABGF and AEDC are squares
with OB = OC = 1. Let

−−→
OA = xi + y j.

i Find
−−→
AB and

−−→
AC in terms of x, y, i and j.

ii Use the results of a to find
−−→
AE and

−−→
AF in

terms of x, y, i and j.

c i Prove that
−−→
OA is perpendicular to

−−→
EF.

ii Prove that |
−−→
EF| = 2|

−−→
OA|.

x
B D

EA

F

G

y

O C

10 Triangle ABC is equilateral and AD = BE = CF.

a Let u, v and w be unit vectors in the directions
of
−−→
AB,
−−→
BC and

−−→
CA respectively.

Let
−−→
AB = mu and

−−→
AD = nu.

i Find
−−→
BC,
−−→
BE,
−−→
CA and

−−→
CF.

ii Find |
−−→
AE| and |

−−→
FB| in terms of m and n.

b Show that
−−→
AE ·

−−→
FB =

1
2

(m2 − mn + n2).

c Show that triangle GHK is equilateral, where:

� G is the point of intersection of BF and AE

� H is the point of intersection of AE and CD

� K is the point of intersection of CD and BF.

A

D H
K

G

E

B

F
C

11 AOC is a triangle. The medians CF
and OE intersect at X.

Let a =
−−→
OA and c =

−−→
OC.

a Find
−−→
CF and

−−→
OE in terms of a and c.

b i If
−−→
OE is perpendicular to

−−→
AC,

prove that 4OAC is isosceles.

F

CA E

O

X
K

H

ii If furthermore
−−→
CF is perpendicular to

−−→
OA, find the magnitude of angle AOC, and

hence prove that 4AOC is equilateral.
c Let H and K be the midpoints of OE and CF respectively.

i Show that
−−→
HK = λc and

−−→
FE = µc, for some λ, µ ∈ R \ {0}.

ii Give reasons why 4HXK is similar to 4EXF. (Vector method not required.)
iii Hence prove that OX : XE = 2 : 1.
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12 VABCD is a square-based pyramid:

� The origin O is the centre of the base.
� The unit vectors i, j and k are in the directions

of
−−→
AB,
−−→
BC and

−−→
OV respectively.

� AB = BC = CD = DA = 4 cm
� OV = 2h cm, where h is a positive real number.
� P, Q, M and N are the midpoints of AB, BC, VC

and VA respectively.

D

M

V

C

B

Q
O

P

k j

i

A

N

a Find the position vectors of A, B, C and D relative to O.

b Find vectors
−−→
PM and

−−→
QN in terms of h.

c Find the position vector
−−→
OX, where X is the point of intersection of QN and PM.

d If OX is perpendicular to VB:

i find the value of h

ii find the acute angle between PM and QN, correct to the nearest degree.

e i Prove that NMQP is a rectangle.
ii Find h if NMQP is a square.

13 OACB is a square with
−−→
OA = a j and

−−→
OB = ai.

Point M is the midpoint of OA.

a Find in terms of a:

i
−−→
OM ii

−−→
MC

b P is a point on MC such that
−−→
MP = λ

−−→
MC.

Find
−−→
MP,

−−→
BP and

−−→
OP in terms of λ and a.

c If BP is perpendicular to MC:

i find the values of λ, |
−−→
BP|, |

−−→
OP| and |

−−→
OB|

ii evaluate cos θ, where θ = ∠PBO.

d If |
−−→
OP| = |

−−→
OB|, find the possible values of λ and

illustrate these two cases carefully.

M

A

BO

C

e In the diagram:

�
−−→
OA = a j and

−−→
OB = ai

� M is the midpoint of OA

� BP is perpendicular to MC

�
−−→
PX = ak

� Y is a point on XC such that PY is
perpendicular to XC.

Find
−−→
OY .

M
A

O
B

P
C

Y

X
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5
Vector equations of
lines and planes

Objectives
I To find a vector equation of a line determined by:

B a point on the line and a direction vector B two points.

I To find a vector equation of the line segment between two given points.

I To compute the vector product of two vectors, and to use the vector product to find a
normal vector for a plane.

I To find a vector equation and Cartesian equation of a plane determined by:

B a point on the plane and a normal vector B three points.

I To determine whether two lines are skew, are parallel or intersect.

I To determine whether a line and a plane are parallel or intersect.

I To determine whether two planes are parallel or intersect.

I To find the distance between:

B a point and a line B a point and a plane B two parallel planes B two skew lines.

I To compute the angle between two lines or planes.

In this chapter, we continue our study of vectors. We use them to investigate the geometric
properties of lines and planes in three dimensions.

We know that a line in two-dimensional space can be described very simply by a Cartesian
equation of the form ax + by = c. We will see that, in three-dimensional space, it is not
possible to describe a line via a single linear Cartesian equation. It is simpler to describe lines
in three dimensions using vector equations.

We have studied parametric equations in Section 1G. We will study vector equations more
generally in Chapter 13.
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198 Chapter 5: Vector equations of lines and planes

5A Vector equations of lines
Vector equation of a line given by a point and a direction
A line ` in two- or three-dimensional space may be
described using two vectors:

� the position vector a of a point A on the line
� a vector d parallel to the line.

We can describe the line as

` =
{

P :
−−→
OP = a + td for some t ∈ R

}
Usually we omit the set notation. We write r(t) for the
position vector of a point P on the line, and therefore

r(t) = a + td, t ∈ R

This is a vector equation of the line `.

P

A

O

a r(t)

d

As the value of t varies over the real numbers, the position vector r(t) varies over all the
points on the line `. We sometimes express this idea by saying that t is a parameter and
that r(t) is a parameterisation of the line `.

If it is understood that t is the parameter, then we may write r instead of r(t).

Note: There is no unique vector equation of a given line. We can choose any point A as the
‘starting point’ on the line and any vector d parallel to the line.

Vector equation of a line given by two points
If the position vectors a =

−−→
OA and b =

−−→
OB of two

points on a line ` are known, then the line may be
described by

r(t) =
−−→
OA + t

−−→
AB

= a + t(b − a), t ∈ R

This is also a vector equation of the line `.

This vector equation can be rewritten as

r(t) = (1 − t)a + tb, t ∈ R

In Section 4E, we derived this expression for the
position vector of a point collinear with A and B. O

A

a

b
r(t)

P

B

Note: As already noted above, there is no unique vector equation of a given line. Here we
can choose any two distinct points A and B on the line.
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5A Vector equations of lines 199

Verify that the point P(−7, 4,−14) lies on the line represented by the vector equation

r(t) = 5i − 2 j + 4k + t(2i − j + 3k), t ∈ R

Example 1

Solution
The point P(−7, 4,−14) has position vector −7i + 4 j − 14k.

By equating coefficients of i, j and k, we can see that the point P lies on the line if there
exists t ∈ R such that

5 + 2t = −7

−2 − t = 4

4 + 3t = −14

A solution for each of these equations is t = −6. Hence P lies on the line.

Find a vector equation of the line AB, where the points A and B have position vectors
−−→
OA = i + j − 2k and

−−→
OB = 2i − j − k

Example 2

Solution
Let a and b be the position vectors of points A and B respectively. Then a vector equation
of the line is

r(t) = a + t(b − a)

= i + j − 2k + t
(
(2i − j − k) − (i + j − 2k)

)
= i + j − 2k + t(i − 2 j + k), t ∈ R

Note: This can also be written as r = (1 + t)i + (1 − 2t) j + (−2 + t)k, t ∈ R.

Find a vector equation for each of the following lines:

a the line through A(1, 2) that is parallel to 2i + 3 j
b the line passing through the points A(3,−5, 4) and B(−4, 3, 10)

Example 3

Solution
a Point A has position vector i + 2 j. So a vector equation of the line is

r(t) = i + 2 j + t(2i + 3 j), t ∈ R

b The points A and B have position vectors a = 3i − 5 j + 4k and b = −4i + 3 j + 10k
respectively. So a vector equation of the line is

r(t) = a + t(b − a)

= 3i − 5 j + 4k + t
(
(−4i + 3 j + 10k) − (3i − 5 j + 4k)

)
= 3i − 5 j + 4k + t(−7i + 8 j + 6k), t ∈ R
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200 Chapter 5: Vector equations of lines and planes

Cartesian equation of a line in two dimensions
From a vector equation to the Cartesian equation
� For example, start with the vector equation

r = i + 5 j + t(i + 2 j), t ∈ R

� Rearrange this equation as

r = (1 + t)i + (5 + 2t) j

Let P(x, y) be the point on the line with position vector r, so that r = xi + y j. Then, by
equating coefficients of i and j, we have

x = 1 + t and y = 5 + 2t

These are parametric equations for the line.
� Now eliminate t to find y in terms of x. We have t = x − 1, so y = 5 + 2(x − 1) = 2x + 3.

The Cartesian equation of the line is y = 2x + 3.

From the Cartesian equation to a vector equation
For example, start with the Cartesian equation y = 2x + 3.
A point on the line is (0, 3), with position vector 3 j. The line
has gradient 2, so a vector parallel to the line is i + 2 j.
Therefore a vector equation of the line is

r = 3 j + t(i + 2 j), t ∈ R

Note: For a line with equation y = mx + c, you can choose the
point (0, c) on the line and the vector i + m j parallel to the line.

y

x
O

−1.5

3

y = 2x + 3

i + 2j

Cartesian form for a line in three dimensions
From a vector equation to Cartesian form
� For example, the line through the point (5,−2, 4) that is parallel to the vector 2i − j + 3k

can be described by the vector equation

r = 5i − 2 j + 4k + t(2i − j + 3k), t ∈ R

� Let P(x, y, z) be the point on the line with position vector r. Then we can write the vector
equation as

xi + y j + zk = (5 + 2t)i + (−2 − t) j + (4 + 3t)k

The corresponding parametric equations are

x = 5 + 2t, y = −2 − t and z = 4 + 3t

� Solving each of these equations for t, we have

x − 5
2

=
y + 2
−1

=
z − 4

3
= t

This is in Cartesian form. You cannot describe a line in three dimensions using a single
linear Cartesian equation.

From Cartesian form to a vector equation To convert from Cartesian form to a vector
equation, we can perform these steps in the reverse order.
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5A Vector equations of lines 201

We have seen that a straight line can be described by a vector equation, by parametric
equations or in Cartesian form.

Lines in three dimensions

A line in three-dimensional space can be described in the following three ways, where
a = a1i + a2 j + a3 k is the position vector of a point A on the line, and d = d1i + d2 j + d3 k
is a vector parallel to the line.

Vector equation Parametric equations Cartesian form

r = a + td, t ∈ R

x = a1 + d1t

y = a2 + d2t

z = a3 + d3t

x − a1

d1
=

y − a2

d2
=

z − a3

d3

Parallel and perpendicular lines
For two lines `1 : r1 = a1 + td1, t ∈ R, and `2 : r2 = a2 + sd2, s ∈ R:

� The lines `1 and `2 are parallel if and only if d1 is parallel to d2.
� The lines `1 and `2 are perpendicular if and only if d1 is perpendicular to d2.

Let ` be the line with vector equation

r = i + 2 j + 3k + t(−i − 3 j), t ∈ R

a Find a vector equation of the line through A(1, 3, 2) that is parallel to the line `.
b Find a vector equation of the line through A(1, 3, 2) that is perpendicular to the line `

and parallel to the x–y plane.

Example 4

Solution
a The position vector of A is i + 3 j + 2k, and a vector parallel to ` is −i − 3 j.

Therefore a vector equation of the line through A parallel to ` is

r = i + 3 j + 2k + s(−i − 3 j), s ∈ R

b If a vector is parallel to the x–y plane, then its k-component is zero. So we want to find
a vector d = d1i + d2 j that is perpendicular to −i − 3 j.

Therefore we require

(d1i + d2 j) · (−i − 3 j) = 0

−d1 − 3d2 = 0i.e.

We see that we can choose d1 = 3 and d2 = −1. So d = 3i − j.

Hence a vector equation of the required line is

r = i + 3 j + 2k + s(3i − j), s ∈ R
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202 Chapter 5: Vector equations of lines and planes

Distance from a point to a line
We can use the scalar product to find the distance from a point to a line.

Find the distance to the line r(t) = (1 − t)i + (2 − 3t) j + 2k, t ∈ R, from:

a the origin b the point A(1, 3, 2).

Example 5

Solution
The equation of the line can be written as

r(t) = i + 2 j + 2k + t(−i − 3 j), t ∈ R

So the vector d = −i − 3 j is parallel to the line.

a The required distance is |
−−→
OP′|, where P′ is the point

on the line such that OP′ is perpendicular to the line.

For any point P on the line with
−−→
OP = r(t), we have

−−→
OP · d =

(
(1 − t)i + (2 − 3t) j + 2k

)
·
(
−i − 3 j

)
= −(1 − t) − 3(2 − 3t)

= 10t − 7

If OP′ is perpendicular to the line, then
−−→
OP′ · d = 0 ⇒ 10t − 7 = 0 ⇒ t =

7
10

d = −i − 3j

r(t)

O

P′

P

Therefore
−−→
OP′ =

3
10

i −
1

10
j + 2k.

The distance from the origin to the line is |
−−→
OP′| =

√
410
10

.

b The required distance is |
−−→
AP′|, where P′ is the point

on the line such that AP′ is perpendicular to the line.

For any point P on the line with
−−→
OP = r(t), we have

−−→
AP =

−−→
AO +

−−→
OP

= −
(
i + 3 j + 2k

)
+ (1 − t)i + (2 − 3t) j + 2k

= −ti + (−1 − 3t) j

−−→
AP · d =

(
−ti + (−1 − 3t) j

)
·
(
−i − 3 j

)
∴

= t − 3(−1 − 3t)

= 10t + 3
O

a

A

P′

P

r(t)

If
−−→
AP′ · d = 0, then t = −

3
10

and so
−−→
AP′ =

3
10

i −
1
10

j.

The distance from the point A to the line is |
−−→
AP′| =

√
10

10
.
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5A Vector equations of lines 203

Describing line segments
We can use a vector equation to describe a line segment by restricting the values of the
parameter. Consider a vector equation r(t) = a + td with parameter t.

� As the value of t varies over R, the position vector r(t) varies over all the points on a line.
� If the value of t only varies over an interval [p, q], then the position vector r(t) only varies

over the points on the line segment between r(p) and r(q).

Points A and B have position vectors a = i − 4 j and b = 2i − 3k respectively.

a Show that the vector equation r(t) = i − 4 j + t(i + 4 j − 3k), t ∈ R, represents the line
through A and B.

b Find the set of values of t which, together with this vector equation, describes the line
segment AB.

c Find the set of values of t which, together with this vector equation, describes the line
segment AC, where C(4, 8,−9) is a point on the line AB.

Example 6

Solution
a An equation of the line AB is

r(t) = a + t(b − a)

= i − 4 j + t(i + 4 j − 3k), t ∈ R

b Taking t = 0 gives r(0) = i − 4 j = a.

To find the value of t which gives b, consider

r(t) = b

i − 4 j + t(i + 4 j − 3k) = 2i − 3k

(1 + t)i + 4(t − 1) j − 3tk = 2i − 3k

Therefore t = 1.

So the line segment AB is described by

r(t) = i − 4 j + t(i + 4 j − 3k), t ∈ [0, 1]

c To find the value of t which gives
−−→
OC, consider

r(t) =
−−→
OC

i − 4 j + t(i + 4 j − 3k) = 4i + 8 j − 9k

(1 + t)i + 4(t − 1) j − 3tk = 4i + 8 j − 9k

Therefore t = 3.

So the line segment AC is described by

r(t) = i − 4 j + t(i + 4 j − 3k), t ∈ [0, 3]
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204 Chapter 5: Vector equations of lines and planes 5A

Exercise 5A

1Example 1 For each of the following, determine whether the point lies on the line:

a (4, 2, 1), r(t) = i + 3 j − k + t(−3i + j − 2k), t ∈ R

b (3,−3,−4), r(t) = 6i + 3 j − k + t(i + 2 j + k), t ∈ R

c (3,−1,−1), r(t) = −i + 2 j − 3k + t(−i + j − 2k), t ∈ R

2Example 2 For each of the following, find a vector equation of the line through the points A and B:
−−→
OA = i + j,

−−→
OB = i + 3 ja

−−→
OA = i − 3k,

−−→
OB = 2i + j − kb

−−→
OA = 2i − j + 2k,

−−→
OB = i + j + kc

−−→
OA = 2i − 2 j + k,

−−→
OB = −2i + j + kd

3Example 3 For each of the following, find a vector equation of the line that passes through the
points A and B:

A(3, 1), B(−2, 2)a A(−1, 5), B(2,−1)b
A(1, 2, 3), B(2, 0,−1)c A(1,−4, 0), B(2, 3, 1)d

4 Convert each vector equation found in Question 3 into:

i parametric equations
ii Cartesian form.

5 Consider the line with equation 2x + 3y = 12.

a Show that the point (3, 2) lies on the line and that the vector 3i − 2 j is parallel to
the line. Hence give a vector equation for the line.

b Show that the point (0, 4) lies on the line and that the vector −9i + 6 j is parallel to
the line. Hence give another vector equation for the line.

c Show that the points (6, 0) and (0, 4) lie on the line. Hence give yet another vector
equation for the line.

6Example 4 Find a vector equation of the line through the point A(2, 1, 0) that is:

a parallel to the line r = i + 3 j − k + t(−3i + j), t ∈ R

b perpendicular to the line r = i + 3 j − k + t(−3i + j), t ∈ R, and parallel to
the x–y plane.

7 Find a vector equation of the line through the origin that is:

a parallel to the vector 2 j − k
b perpendicular to the line r = 2i + j + t(2 j − k), t ∈ R, and in the y–z plane.

8 a Find a vector equation of the line AB, where points A and B are defined by the
position vectors a = 2i + j and b = −i + 3 j respectively.

b Determine which of the following points are on this line:

i (5, 0) ii (0, 7) iii (8,−3)
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5A 5A Vector equations of lines 205

9 The line ` is given by the vector equation r = i − 2 j − k + t(3i + j − k), t ∈ R.

a Find a vector equation of the line which passes through the point (0, 1, 1) and is
parallel to the line `.

b Verify that the two equations do not represent the same line `.
c The point (2, m, n) lies on the line `. Find the values of m and n.

10 a Let v = 3i − 4 j. Find a vector that is perpendicular to the vector v and has the same
magnitude as v.

b Points A and B are given by the position vectors a = 2i − 3 j and b = −i + j
respectively. Find a vector equation of the line which passes through B and is
perpendicular to

−−→
BA.

c Find the x- and y-axis intercepts of this line.

11 Find parametric equations and Cartesian equations for each line:

a r = 2i + 5 j + 4k + t(−3i + j − 2k), t ∈ R

b r = 2 j − k + t(2i + j + 4k), t ∈ R

12Example 5 For each of the following, find the distance from the point to the line:

a (0, 0, 0), r = 4i + j − 3k + t(−3i + 2 j + 5k), t ∈ R

b (1, 10,−2), r = 4i + j − 3k + t(−3i + 2 j + 5k), t ∈ R

c (1, 2, 3), r = 3i + 4 j − 2k + t(i − 2 j + 2k), t ∈ R

d (1, 1, 4), r = i − 2 j + k + t(−2i + j + 2k), t ∈ R

13Example 6 Points A, B and C are defined by the position vectors a = i − 4 j + k, b = 3i − k and
c = −2i − 10 j + 4k respectively.

a Show that the vector equation r = i − 4 j + k + t(i + 2 j − k), t ∈ R, represents the line
through the points A and B.

b Show that the point C is also on this line.
c Find the set of values of t which, together with the vector equation, describes the line

segment BC.

14 Find the coordinates of the point where the line through A(3, 4, 1) and B(5, 1, 6) crosses
the x–y plane.

15 The line ` passes through the points A(−1,−3,−3) and B(5, 0, 6). Find a vector equation
of the line `, and find the distance from the origin to the line.

16 Find the coordinates of the nearest point to (2, 1, 3) on the line given by the equation
r = i + 2 j + t(i − j + 2k), t ∈ R.

17 Find a vector equation to represent the line through the point (−2, 2, 1) that is parallel to
the x-axis.

18 Find the distance from the origin to the line that passes through the point (3, 1, 5) and is
parallel to the vector 2i − j + k.
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206 Chapter 5: Vector equations of lines and planes 5A

19 For each of the following, give the coordinates of the endpoints of the line segment
described by the vector equation:

a r = i − 2 j + k + t(−2i + j + 2k), t ∈ [1, 3]
b r = 3i + 4 j − 2k + t(i − 2 j + 2k), t ∈ [−1, 2]

20 Let ` be the line with vector equation r(t) = (3 − t)i + (3 − t) j + tk.

a Find the point on ` closest to the origin. (Hint: Find the point P′ on ` such that
OP′ is perpendicular to `.)

b Let P be a point on ` with position vector r(t). Show that |
−−→
OP|2 = 3t2 − 12t + 18.

c For which value of t is the quadratic function f (t) = 3t2 − 12t + 18 minimised?
d Use parts b and c to find the point on ` closest to the origin by another method.

21 A line is given by the vector equation r = i − 4 j + k + t(i + 2 j − k), t ∈ R.

a Find the vector
−−→
OB in terms of t, where B is a point on the line.

b Find |
−−→
OB| in terms of t.

c Hence find the minimum value of |
−−→
OB|. That is, find the shortest distance from the

origin to a point on the line.
d Let A be the point (1, 3, 2). Find the shortest distance from A to a point on the line.

5B Intersection of lines and skew lines
Lines in two-dimensional space
From Mathematical Methods Units 1 & 2, you know that there are three possibilities for a pair
of lines in two-dimensional space:

� the lines coincide � the lines are parallel and distinct � the lines intersect at a point.

For example, the two lines

`1 : r1(λ) = 2i + 2 j + λ(i − j), λ ∈ R and `2 : r2(µ) = 2i + 3 j + µ(2i − 2 j), µ ∈ R

are parallel, since the direction vectors i − j and 2i − 2 j are parallel.

To check whether two parallel lines coincide, we choose a point on one line and check
whether it also lies on the other line. For example, the point with position vector 2i + 3 j lies
on line `2. This point lies on `1 if there is a value of λ such that

2 + λ = 2 and 2 − λ = 3

No such λ exists, so the lines `1 and `2 are parallel and distinct.

Note: When we are considering a pair of lines, we should use different parameters for the
two vector equations. (Here we used λ and µ.)
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5B Intersection of lines and skew lines 207

Find the position vector of the point of intersection of the lines

r1(λ) = 2i + 2 j + λ(i − j), λ ∈ R and r2(µ) = − j + µ(3i + 2 j), µ ∈ R

Example 7

Solution
At the point of intersection, we have r1(λ) = r2(µ) and so

2i + 2 j + λ(i − j) = − j + µ(3i + 2 j)

(2 + λ)i + (2 − λ) j = 3µi + (−1 + 2µ) j∴

Equate coefficients of i and j:

2 + λ = 3µ (1)

2 − λ = −1 + 2µ (2)

Solve simultaneously by adding (1) and (2):

4 = −1 + 5µ

Hence µ = 1 and so λ = 1.

Substituting λ = 1 into the equation r1(λ) = 2i + 2 j + λ(i − j) gives r1(1) = 3i + j.

The point of intersection has position vector 3i + j.

Lines in three-dimensional space
There are four possibilities for a pair of lines in three-dimensional space: the lines may
coincide, they may be parallel and distinct, they may intersect at a point and they may also
be skew.

Skew lines

Two lines are skew lines if they do not intersect and are not parallel.

Two lines are skew if and only if they do not lie in the same plane.

For example, consider the cube ABCDEFGH as shown.

Lines AB and FG are skew. We can see that AB and FG do not lie
in the same plane.

A

D C

B

G

F

H

E

As another example, consider the tetrahedron SPQR as shown.

We can see three pairs of skew lines:

� lines SP and RQ are skew
� lines SR and PQ are skew
� lines SQ and PR are skew.

P

R

Q

S
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208 Chapter 5: Vector equations of lines and planes

Coincident and parallel lines
We can determine whether two lines in three dimensions are coincident or parallel by similar
methods as in two dimensions.

Consider two lines `1 : r1(λ) = a1 + λd1 and `2 : r2(µ) = a2 + µd2.

� Lines `1 and `2 are parallel if and only if the direction vectors d1 and d2 are parallel
(i.e. d1 = md2 for some real number m).

� If lines `1 and `2 are parallel, then we can check whether they coincide by checking
whether a point on `1 (such as the point with position vector a1) also lies on `2.

Intersecting lines
Two lines `1 : r1(λ) = a1 + λd1 and `2 : r2(µ) = a2 + µd2 have a point in common if there exist
values of λ and µ such that r1(λ) = r2(µ).

Find the point of intersection of the lines

r1(λ) = 5i + 2 j + λ(2i + j + k) and r2(µ) = −3i + 4 j + 6k + µ(i − j − 2k)

Example 8

Solution
At the point of intersection, we have r1(λ) = r2(µ) and so

5i + 2 j + λ(2i + j + k) = −3i + 4 j + 6k + µ(i − j − 2k)

Equate coefficients of i, j and k:

5 + 2λ = −3 + µ (1)

2 + λ = 4 − µ (2)

λ = 6 − 2µ (3)

From (1) and (2), we have

7 + 3λ = 1

λ = −2∴

Substitute in (1) to find µ = 4.

Now we must check that these values also satisfy equation (3):

RHS = 6 − 2 × 4 = −2 = LHS

Hence the lines intersect where λ = −2 and µ = 4.

The point of intersection has the position vector

r1(−2) = 5i + 2 j − 2(2i + j + k)

= i − 2k

Hence the lines intersect at the point (1, 0,−2).
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5B Intersection of lines and skew lines 209

Show that the following two lines are skew lines:

r1(λ) = i + k + λ(i + 3 j + 4k), λ ∈ R

r2(µ) = 2i + 3 j + µ(4i − j + k), µ ∈ R

Example 9

Solution
We first note that the lines are not parallel, since i + 3 j + 4k , m(4i − j + k), for all m ∈ R.

We now show that the lines do not meet. If they did meet, then equating coefficients of i, j
and k would give

1 + λ = 2 + 4µ (1)

3λ = 3 − µ (2)

1 + 4λ = µ (3)

From (1) and (2), we have λ = 1 and µ = 0. But this is not consistent with equation (3).
So there are no values of λ and µ such that r1(λ) = r2(µ).

The two lines are skew, as they are not parallel and do not intersect.

Concurrence of three lines
A point of concurrence is where three or more lines meet.

Find the point of concurrence of the following three lines:

`1 : r1(t) = −2i + j + t(i + j), t ∈ R

`2 : r2(s) = j + s(i + 2 j), s ∈ R

`3 : r3(u) = 8i + 3 j + u(−3i + j), u ∈ R

Example 10

Solution
The point of intersection of lines `1 and `2 can be found from the values of t and s such
that r1(t) = r2(s). Equating coefficients of i and j, we obtain

−2 + t = s (1)

1 + t = 1 + 2s (2)

Solving simultaneously gives s = 2 and t = 4. Taking t = 4 gives r1(4) = 2i + 5 j.

Thus lines `1 and `2 intersect at the point (2, 5).

For this to be a point of concurrence, the point must also lie on `3. We must find a value
of u such that

2i + 5 j = 8i + 3 j + u(−3i + j)

We see that u = 2 gives the result. The three lines are concurrent at the point (2, 5).
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210 Chapter 5: Vector equations of lines and planes 5B

Angle between two lines
In Section 4C, we used the scalar product to find the angle between two vectors.

If two lines have vector equations r1(λ) = a1 + λd1 and r2(µ) = a2 + µd2, then they are in the
directions of vectors d1 and d2 respectively. The angle θ between the two vectors d1 and d2

can be found using the scalar product:

cos θ =
d1 · d2

|d1| |d2|

The angle between the two lines is θ or 180◦ − θ, whichever is in the interval [0◦, 90◦].

This applies to any pair of lines, whether parallel, intersecting or skew.

The two lines are perpendicular if and only if d1 · d2 = 0.

Find the acute angle between the following two straight lines:

r1(λ) = i + 2 j + λ(5i + 3 j − 2k)

r2(µ) = 2i − j + 3k + µ(−2i + 3 j + 5k)

Example 11

Solution
The vectors d1 = 5i + 3 j − 2k and d2 = −2i + 3 j + 5k give the directions of the two lines.

We have |d1| =
√

38, |d2| =
√

38 and d1 · d2 = −11.

Let θ be the angle between d1 and d2. Then

cos θ =
d1 · d2

|d1| |d2|
= −

11
38

The acute angle between the lines is 73.17◦, correct to two decimal places.

Exercise 5B

1Example 7 Find the position vector of the point of intersection of the lines with equations

r1(λ) = 3i + 5 j + λ(2i − j)

r2(µ) = −2 j + µ(4i + 2 j)

2Example 8 Find the coordinates of the point of intersection of the lines with equations

r1(λ) = i + 3 j + k + λ(−2i − j + 2k)

r2(µ) = −3i + 4 j + 7k + µ(i − j − 2k)

3Example 9 Show that the following two lines are skew lines:

r1(λ) = 3i + 2 j + k + λ(2i − 3 j + k)

r2(µ) = i − 3 j + 2k + µ(i − 2 j + 3k)
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5B 5B Intersection of lines and skew lines 211

4 For each pair of lines, answer the following questions:

i Are the lines parallel?
ii Are the lines perpendicular?
iii Do the lines coincide?
iv If they intersect at a point, what is the point of intersection?

r1(t) = i + 2 j + t(i + j)

r2(s) = −i + 6 j + s(i + 2 j)

a r1(t) = −i + j + t(i + 2 j)

r2(s) = 3i − j + s(−2i + j)

b

r1(t) = 5i + 9 j + t(−2i − 3 j)

r2(s) = i + 3 j + s(4i + 6 j)

c r1(t) = i − 4 j + t(2i − j)

r2(s) = 7i + 8 j + s(−2i + j)

d

r1(t) = 5i + 5 j − 4k + t(i + 2 j − k)

r2(s) = 4 j + k + s(i − j − k)

e r1(t) = 7i + 4 j + 5k + t(3i + j − k)

r2(s) = j − 3k + s(i + 4 j + 2k)

f

r1(t) = 6i − 6 j + 5k + t(i − 2 j + 2k)

r2(s) = i + 2 j − 5k + s(i − j + 2k)

g r1(t) = 4i − 5 j + k + t(2i − 4 j − 2k)

r2(s) = −i + 5 j + 6k + s(−i + 2 j + k)

h

r1(t) = −3i − j + t(3i + 2 j − 2k)

r2(s) = 4i + j − 6k + s(i − k)

i r1(t) = 7i − 6 j + t(2i − 2 j + k)

r2(s) = −3i + 4 j − 5k + s(2i − 2 j + k)

j

5Example 10 For each of the following, find the point of concurrence (if it exists) of the lines:

r1(t) = 3i + 2 j − 3k + t(i − k)

r2(s) = 2i + 3 j + s(i + j + k)

r3(u) = −i + 4 j + 3k + u(−i + j + 2k)

a r1(t) = 2i + j − 3k + t(i − j + k)

r2(s) = 25i + 6 j − 2k + s(i + 3 j)

r3(u) = 5i + j − k + u(2i + j + k)

b

r1(t) = 5i − j + t(i + k)

r2(s) = 10i + 5 j − k + s(i + 2 j − k)

r3(u) = 5i − 2 j − k + u(2i + j + 2k)

c r1(t) = −5i − 2 j + 8k + t(2i − k)

r2(s) = 2i − 3 j + 4k + s(i − j − k)

r3(u) = 5i + 8 j + u(2i + j + 2k)

d

6Example 11 Find the acute angle between each of the following pairs of lines:

r1 = 3i + 2 j − 4k + t(i + 2 j + 2k)

r2 = 5 j − 2k + s(3i + 2 j + 6k)

a r1 = 4i − j + t(i + 2 j − 2k)

r2 = i − j + 2k − s(2i + 4 j − 4k)

b

7 The lines `1 and `2 are given by the equations

`1 : r1 = i + 6 j + 3k + t(2i − j + k)

`2 : r2 = 3i + 3 j + 8k + s(i + k)

Find the acute angle between the lines.a Show that the lines are skew lines.b

8 The lines `1 and `2 are given by the equations

`1 : r1 = 3i + j + t(2 j + k)

`2 : r2 = 4k + s(i + j − k)

a Find the coordinates of the point of intersection of the lines.
b Find the cosine of the angle between the lines.
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212 Chapter 5: Vector equations of lines and planes 5B

9 Three lines are represented by vector equations as follows:

`1 : r1 = i − 2k + t1(i + 3 j + k), t1 ∈ R

`2 : r2 = 2i − j + k + t2(−i + 2 j + k), t2 ∈ R

`3 : r3 = 3i − j − k + t3(i − 4 j), t3 ∈ R

For each pair of lines, determine whether they intersect or not. If they intersect, then
find their point of intersection.

5C Vector product
The vector product is an operation that takes two vectors and produces another vector.

Geometric definition of the vector product

Definition of the vector product

The vector product of a and b is denoted by a × b.

� The magnitude of a × b is equal to |a| |b| sin θ, where θ is
the angle between a and b.

� The direction of a × b is perpendicular to the plane
containing a and b, in the sense of the right-hand rule
explained below.

a × b

a × bb

a
θ

Note: The vector product is often called the cross product.

The magnitude of a × b
By definition, we have

|a × b| = |a| |b| sin θ

where θ is the angle between a and b.

From the diagram on the right, we see that |a × b|
is the area of the parallelogram ‘spanned’ by the
vectors a and b.

a

a

b b|b| sin θ

θ

The direction of a × b using the right-hand rule
To find the direction of the vector a × b using your
right hand:

� Point your index finger along the vector a.
� Point your middle finger along the vector b.
� Keep your thumb at right angles to both a

and b, as in the picture. The direction of your
thumb gives the direction of the vector a × b.

a

a

× b

b
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5C Vector product 213

The following two diagrams show a × b and b × a.

a × b

a

b
θ

b × a

a

b
θ

The vector b × a has the same magnitude as a × b, but the opposite direction. We can see that

b × a = −(a × b)

Thus the vector product is not commutative.

Note: The vector product is also not associative: in general, we have (a× b)× c , a× (b× c).

Vector product of parallel vectors
If a and b are parallel vectors, then a × b = 0, since |a × b| = |a| |b| sin 0◦ = 0.

Conversely, if a and b are non-zero vectors such that a × b = 0, then a and b are parallel.

Vector product of perpendicular vectors
If a and b are perpendicular vectors, then

|a × b| = |a| |b| sin 90◦

= |a| |b|

The three vectors a, b and a × b form a right-handed system of
mutually perpendicular vectors, as shown in the diagram.

b

a

a × b

Vector product in component form
Using the previous observations about the vector product of parallel
and perpendicular vectors:

� i × i = 0 � j × j = 0 � k × k = 0
� i × j = k � j × k = i � k × i = j
� j × i = −k � k × j = −i � i × k = − j

i

j k

The diagram on the right may help you to follow the pattern among these vector products.

The vector product distributes over addition. That is:

a × (b + c) = a × b + a × c

These facts can be used to establish the following result.
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214 Chapter 5: Vector equations of lines and planes

Vector product in component form

If a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k, then

a × b = (a2b3 − a3b2)i − (a1b3 − a3b1) j + (a1b2 − a2b1)k

Note: In Specialist Mathematics Units 1 & 2, you may have seen how to find the determinant
of a 3 × 3 matrix. This gives a way of ‘evaluating’ the vector product as follows:

a × b =

∣∣∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣∣∣ i −

∣∣∣∣∣∣∣a1 a3

b1 b3

∣∣∣∣∣∣∣ j +

∣∣∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣∣∣ k

= (a2b3 − a3b2)i − (a1b3 − a3b1) j + (a1b2 − a2b1)k

To obtain the i-component, we ‘delete’ the i-row and the i-column of the 3 × 3 matrix.
Likewise for the j- and k-components.

(Here we are using |A| to denote the determinant of a square matrix A.)

Find the vector product of a = 3i + 3 j + 8k and b = i−3 j + 2k, and hence find a unit vector
that is perpendicular to both a and b.

Example 12

Solution
The vector product can be ‘evaluated’ as follows:

a × b =

∣∣∣∣∣∣∣∣∣∣∣
i j k
3 3 8

1 −3 2

∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ 3 8

−3 2

∣∣∣∣∣∣∣ i −

∣∣∣∣∣∣∣3 8

1 2

∣∣∣∣∣∣∣ j +

∣∣∣∣∣∣∣3 3

1 −3

∣∣∣∣∣∣∣ k

=
(
3 × 2 − 8 × (−3)

)
i −

(
3 × 2 − 8 × 1

)
j +

(
3 × (−3) − 3 × 1

)
k

= 30i + 2 j − 12k

The magnitude of a × b is
√

302 + 22 + 122 = 2
√

262.

Hence a unit vector perpendicular to both a and b is
1

2
√

262
(30i + 2 j − 12k).

Using the TI-Nspire
� Define (assign) the vectors a = 3i + 3 j + 8k

and b = i − 3 j + 2k as shown.
� Find the vector product using menu >

Matrix & Vector > Vector > Cross Product.
The vector product is 30i + 2 j − 12k.

� The scalar product is found using menu >

Matrix & Vector > Vector > Dot Product.

Note: You can enter the matrices directly into the vector commands if preferred.
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5C Vector product 215

Using the Casio ClassPad
To find the vector product of two vectors:

� InM, go to Interactive > Vector > crossP.
� Tap the cursor in the first entry box.
� Select the vector icon [ ] from the Math3 keyboard.
� Enter the components of the first vector, separated

by commas.
� Tap the cursor in the second entry box, enter the

second vector and tap OK .

The scalar product of two vectors can be found
similarly using Interactive > Vector > dotP.

Note: When accessing these commands via Action (rather than via Interactive), you can
enter the three-dimensional vectors by tapping twice on the 1 × 2 matrix icon6
from the Math2 keyboard.

a Simplify:

i a × (a − b) ii (a × b) · a

b Given that a × b = c × a, with a , 0, show that b = −c or a = k(b + c) for some k ∈ R.

Example 13

Solution
a i Since the vector product distributes over addition, we have

a × (a − b) = a ×
(
a + (−b)

)
= a × a + a × (−b)

= 0 + a × (−b)

= −(a × b)

= b × a

ii Since a × b is perpendicular to a, we have (a × b) · a = 0.

b By assumption, we have

a × b = c × a

a × b − c × a = 0

a × b + a × c = 0

a × (b + c) = 0∴

Since a , 0, it follows that either b + c = 0 or the vectors a and b + c are parallel.
Hence we must have b = −c or a = k(b + c) for some k ∈ R.
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216 Chapter 5: Vector equations of lines and planes 5C

Exercise 5CSkill-
sheet

1Example 12 Use the vector product to find a vector perpendicular to the two given vectors:

i − 4 j + k and 4i + 3 ja 3i + j − k and i − j + 2kb
i + j − k and kc 2i + 2 j − k and 2 jd
2i − 3 j + 5k and −4i + 3ke 3i + j − 2k and −i − j + 2kf
−2i + j − 2k and ig −2i − k and 2 jh

2Example 13 Simplify:

(a + b) × ba (a + b) × (a + b)b
(a − b) × (a + b)c

(
a × (b + c)

)
· bd

a ·
(
(b + c) × a

)
e

(
(a × b) · a

)
+

(
b · (a × b)

)
f

3 Find a vector of magnitude 5 that is perpendicular to a = 2i + 3 j− k and b = i− 2 j + 2k.

4 Find a vector perpendicular to a = i − j + k and b = 2i − 2 j + 2k.

5 A parallelogram OABC has one vertex at the origin O and two other vertices at the
points A(0, 1, 3) and B(0, 2, 5). Find the area of OABC.

6 Find the area of the triangle PQR with vertices P(1, 5,−2), Q(0, 0, 0) and R(3, 5, 1).

7 The three vertices of a triangle have position vectors a, b and c. Show that the area of
the triangle is 1

2 |a × b + b × c + c × a|.

8 Let v be a vector parallel to a line `, and let u be a vector from any point on the line to a

point P not on the line. Show that the distance from the point P to the line ` is
|u × v|
|v|

.

9 In this question, we verify that the component form of the vector product has some of its
desired properties. Consider vectors a, b and c as follows:

a = a1i + a2 j + a3 k

b = b1i + b2 j + b3 k

c = (a2b3 − a3b2)i − (a1b3 − a3b1) j + (a1b2 − a2b1)k

a Verify that c is perpendicular to both a and b.
b Verify that if we swap a and b, then c becomes −c.
c From Section 4C we know that

a1b1 + a2b2 + a3b3 = |a| |b| cos θ

where θ is the angle between a and b. Using this result and the Pythagorean identity,
verify that |c| = |a| |b| sin θ.
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5D Vector equations of planes 217

5D Vector equations of planes
Normal vectors to planes
At any point on a smooth surface, there is a line through the
point that is perpendicular to the surface. For a plane, these
perpendiculars are all in the same direction.

A vector that is perpendicular to a plane is called a normal
to the plane.

Note: There is not a unique normal vector for a given plane.
If the vector n is normal to the plane, then so are the
vectors kn and −kn, for all k ∈ R+.

n

Equations of planes
A plane Π in three-dimensional space may be
described using two vectors:

� the position vector a of a point A on the plane
� a vector n that is normal to the plane.

Let r be the position vector of any other point P on the
plane. Then the vector

−−→
AP = r − a lies in the plane,

and is therefore perpendicular to n. Hence

(r − a) · n = 0

This can be written as

r · n = a · n

This is a vector equation of the plane.

P

A

O

r

a

n

r − a

If we write the position vector of the point P as r = xi + y j + zk and write the normal vector
as n = n1i + n2 j + n3 k, then we obtain a Cartesian equation of the plane:

n1x + n2 y + n3z = a · n

This is often written as

n1x + n2 y + n3z = k

where k = a · n.

Note: We can also give parametric equations for a plane by using two parameters λ and µ.
For example, if a plane has equation n1x + n2 y + n3z = k with n3 , 0, then it can be
described by the parametric equations

x = λ, y = µ and z =
k − n1λ − n2 µ

n3
for λ, µ ∈ R

In this chapter, we usually describe planes by their vector or Cartesian equations,
rather than by parameterisations.
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218 Chapter 5: Vector equations of lines and planes

Planes in three dimensions

A plane in three-dimensional space can be described as follows, where a is the position
vector of a point A on the plane, the vector n = n1i + n2 j + n3 k is normal to the plane,
and k = a · n.

Vector equation Cartesian equation

r · n = a · n n1x + n2 y + n3z = k

Equations of planes can be found from various pieces of information:

� a point on the plane and a normal vector to the plane
� three points on the plane that do not line on a single line
� two lines in the plane that intersect at a point.

We now look at examples showing how to find equations of planes.

Finding the plane determined by a point and a normal vector
The following example illustrates two methods for finding an equation of a plane.

A plane Π is such that the vector −i + 5 j − 3k is normal to the plane and the point A with
position vector −3i + 4 j + 6k is on the plane. Find a vector equation and a Cartesian
equation of the plane.

Example 14

Solution
Method 1: Finding a vector equation first
Using the form r · n = a · n, a vector equation is

r · (−i + 5 j − 3k) = (−3i + 4 j + 6k) · (−i + 5 j − 3k)

r · (−i + 5 j − 3k) = 5i.e.

For a Cartesian equation, write r = xi + y j + zk. Then

(xi + y j + zk) · (−i + 5 j − 3k) = 5

−x + 5y − 3z = 5i.e.

Method 2: Finding a Cartesian equation first
The vector n = −i + 5 j − 3k is normal to the plane, so a Cartesian equation is

−x + 5y − 3z = k

for some k ∈ R. Since the point A(−3, 4, 6) is on the plane, we have

−(−3) + 5(4) − 3(6) = k

Therefore k = 5, and a Cartesian equation is −x + 5y − 3z = 5.

Hence a vector equation is r · (−i + 5 j − 3k) = 5.
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5D Vector equations of planes 219

Finding the plane determined by three points
Three points determine a plane provided they are not collinear.

Consider the plane containing the points A(0, 1, 1), B(2, 1, 0) and C(−2, 0, 3).

a Find a Cartesian equation of the plane.
b Find the axis intercepts of the plane, and hence sketch a graph of the plane.

Example 15

Solution

a
−−→
AB = 2i − k and

−−→
AC = −2i − j + 2k

The vector product
−−→
AB ×

−−→
AC is −i − 2 j − 2k.

Therefore the vector n = −i − 2 j − 2k is normal to the plane.

Using the point A and the normal n, we can use either of the two methods to find the
Cartesian equation −x − 2y − 2z = −4.

b We can write the Cartesian equation of the plane more
neatly as x + 2y + 2z = 4.

x-axis intercept: Let y = z = 0. Then x = 4.
y-axis intercept: Let x = z = 0. Then 2y = 4, so y = 2.
z-axis intercept: Let x = y = 0. Then 2z = 4, so z = 2.

The axis intercepts of the plane are (4, 0, 0), (0, 2, 0)
and (0, 0, 2). x

4

2

2

z

y
0

Using the TI-Nspire
To find a Cartesian equation of the plane
containing A(0, 1, 1), B(2, 1, 0) and C(−2, 0, 3):

� Define (assign) the three matrices as shown.
� Find the vector product using menu >

Matrix & Vector > Vector > Cross Product.
� Display the Cartesian equation using the

Dot Product command as shown.

To plot the Cartesian equation as a plane:

� Solve the Cartesian equation for z.
� In a Graphs application, use menu > View

> 3D Graphing. Enter the expression for z

in z1(x, y), i.e. z1(x, y) =
−(x + 2(y − 2))

2
� To rotate the view of the plane, use menu >

Actions > Rotate (or press r ) and then use
the arrow keys.
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220 Chapter 5: Vector equations of lines and planes

Using the Casio ClassPad
To find a Cartesian equation of the plane containing
A(0, 1, 1), B(2, 1, 0) and C(−2, 0, 3):

� Store the position vectors by assigning them to the
variables a, b and c as shown.

� Go to Interactive > Vector > crossP. Enter b − a
as the first vector, and c − a as the second vector.
Tap OK .

� Assign the vector product to the variable n
as shown.

� Go to Interactive > Vector > dotP. Enter n as the
first vector, and [x, y, z] − a as the second vector.
Tap OK .

� At the end of the dotP expression, type = 0.
Highlight and simplify to obtain the equation.

To plot the Cartesian equation as a plane:

� Solve the Cartesian equation for z.

� Copy the equation. Then open the menumand
select 3D Graph .

� Paste the equation in z1 and tap the circle.
� Tap to view the graph.
� Tap in the graph window; then tapq to reveal the

axes or box.
� Tap on the diamond in the menu bar to select the

desired rotation option.
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5D 5D Vector equations of planes 221

Finding the plane determined by two intersecting lines
Two lines that intersect at a single point can be used to determine a plane.

Find a vector equation and a Cartesian equation of the plane containing the lines

r1(λ) = 5i + 2 j + λ(2i + j + k)

r2(µ) = −3i + 4 j + 6k + µ(i − j − 2k)

Note: From Example 8, we know that these lines intersect at the point (1, 0,−2).

Example 16

Solution
We know that a = 5i + 2 j is the position vector of a point on the plane.

We want to find a normal vector. It must be perpendicular to both d1 = 2i + j + k and
d2 = i − j − 2k, so we can choose

n = d1 × d2

= −i + 5 j − 3k

Hence a vector equation of the plane is

r · n = a · n

r · (−i + 5 j − 3k) = 5i.e.

The corresponding Cartesian equation is −x + 5y − 3z = 5.

Note: We obtain the same vector equation by choosing a to be the position vector of any
point on the plane. For instance, we could have chosen the position vector i − 2k of
the point of intersection.

Exercise 5DSkill-
sheet

1Example 14 In each of the following, a vector n normal to the plane and a point A on the plane are
given. Find a vector equation and a Cartesian equation of each plane.

a n = i + j + k, A(1,−2, 4) b n = i − 2k, A(3, 1, 0)
c n = 2i + 3 j − k, A(2,−3,−5) d n = i + 3 j − k, A(1,−2, 3)

2Example 15 Points A = (2, 1,−1), B = (1, 3, 1) and C = (3,−2, 2) lie in a plane. Find a unit vector
normal to this plane and find a vector equation of this plane.

3Example 16 Find a vector equation and a Cartesian equation of the plane containing the lines

r1(λ) = i − 10 j + 4k + λ(2i − j + k)

r2(µ) = −3i − 2 j + µ(i − 2 j + k)
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222 Chapter 5: Vector equations of lines and planes 5D

4 The point A = (−3, 1, 1) and the line ` lie in the same plane. The line ` is defined by the
equation r = i − 4 j + k + t(i + 2 j − k), t ∈ R.

a Find a vector normal to this plane.
b Find a vector equation of the line through A that is normal to this plane.

5 Points A = (1, 1, 3), B = (1, 5,−2) and C = (0, 3,−1) lie in a plane. Find a unit vector
normal to this plane and find a vector equation of this plane.

6 A plane is defined by the vector equation r · (2i − j − 3k) = 7. Show that each of the
following is the position vector of a point on this plane:

i − 2 j − ka 3i − 4 j + kb −i + 3 j − 4kc 2 j − 3kd

7 A plane is defined by the vector equation r · (3i + j − k) = 10. Show that each of the
following is a point on this plane:

(2, 2,−2)a (1, 5,−2)b (3, 4, 3)c (2, 0,−4)d

8 Find x in each of the following:

a The point (1, x, 2) lies on the plane given by the equation r · (−i + j + 3k) = 5.
b The point (2,−1, 0) lies on the plane given by the equation r · (3i + 2k) = x.
c The point (1,−3, 2) lies on the plane given by the equation r · (2i + xk) = 8.
d The point (x, 1,−2) lies on the plane given by the equation r · (i + 3 j + k) = 5.

9 Find a Cartesian equation of the plane containing the three points A(0, 3, 4), B(1, 2, 0)
and C(−1, 6, 4).

10 Find a Cartesian equation of the plane that is at right angles to the line given by
x = 4 + t, y = 1 − 2t, z = 8t and goes through the point P(3, 2, 1).

11 Find a Cartesian equation of the plane that is parallel to the plane with equation
5x − 3y + 2z = 6 and goes through the point P(4,−1, 2).

12 Find a Cartesian equation of the plane that contains the intersecting lines given by
x = 4 + t1, y = 2t1, z = 1 − 3t1 and x = 4 − 3t2, y = 3t2, z = 1 + 2t2.

13 Find a Cartesian equation of the plane that is at right angles to the plane with equation
3x + 2y − z = 4 and goes through the points P(1, 2, 4) and Q(−1, 3, 2).

14 Find a Cartesian equation of the plane that contains the two parallel lines given by
r1(t) = (3 + 4t)i + (1 − 2t) j + tk and r2(s) = (5 + 4s)i − 2s j + (1 + s)k.
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5E Distances, angles and intersections
Distance from a point to a plane

The distance from a point P to a plane Π is given by

d = |
−−→
PQ · n̂|

where n̂ is a unit vector normal to the plane and Q is any point on the plane.

Proof For the situation shown in the diagram, we can see that
the distance from P to the plane is

d = |
−−→
PQ| cos θ

where θ is the angle between
−−→
PQ and n̂. Therefore

d = |
−−→
PQ| |n̂| cos θ =

−−→
PQ · n̂

The other situation is where the unit normal n̂ points
in the opposite direction. In this case, we will obtain
d = −

−−→
PQ · n̂. Hence, in general, the distance is the

absolute value of
−−→
PQ · n̂. P

dθ

→
PQ

Q
n̂

Find the distance from the point P(1,−4,−3) to the plane Π : 2x − 3y + 6z = −1.

Example 17

Solution
A normal vector to the plane is n = 2i − 3 j + 6k. So a unit vector normal to the plane is

n̂ =
1
7

(2i − 3 j + 6k)

Let Q(x, y, z) be any point on the plane. Note that this implies 2x − 3y + 6z = −1.

We want to find the projection of
−−→
PQ onto n̂. We have

−−→
PQ =

−−→
OQ −

−−→
OP = (x − 1)i + (y + 4) j + (z + 3)k

Therefore
−−→
PQ · n̂ =

1
7
(
2(x − 1) − 3(y + 4) + 6(z + 3)

)
=

1
7
(
2x − 3y + 6z − 2 − 12 + 18

)
=

1
7

(−1 + 4) (since 2x − 3y + 6z = −1)

=
3
7

The distance from the point P to the plane Π is
3
7

.

Note: Alternatively, we could have chosen Q to be a specific point on the plane,

such as (1, 1, 0). This would give
−−→
PQ = 5 j + 3k and therefore

−−→
PQ · n̂ =

3
7

.
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224 Chapter 5: Vector equations of lines and planes

Distance of a plane from the origin
A plane that does not pass through the origin is described by a
vector equation of the form r · n = k, where k , 0.

The point M on the plane that is closest to the origin has
a position vector of the form

−−→
OM = mn̂, where |m| is the

distance of the plane from the origin.

If n points towards the plane from the origin, then m > 0, and
if n points away from the plane, then m < 0. So we can say
that m is the ‘signed distance’ of the plane from the origin
(relative to the normal vector n).

O

r

M
n̂

Since the point M lies on the plane, we know that (mn̂) · n = k. But (mn̂) · n = m(n̂ · n) = m|n|.

So we have m|n| = k and therefore m =
k
|n|

.

For a plane with vector equation r · n = k, where k , 0, the signed distance of the plane

from the origin (relative to the normal vector n) is given by
k
|n|

.

Distance between two parallel planes
To find the distance between parallel planes Π1 and Π2, we can choose any point P on Π1 and
then find the distance from the point P to the plane Π2.

In the following example, we use an alternative method.

Consider the parallel planes given by the equations

Π1 : 2x − y + 2z = 5 and Π2 : 2x − y + 2z = −2

a Find the distance of each plane from the origin.
b Find the distance between the two planes.

Example 18

Solution
The vector n = 2i − j + 2k is normal to both planes, with |n| = 3.

a Relative to n, the signed distance of plane Π1 from the origin is
5
|n|

=
5
3

.

So the distance of plane Π1 from the origin is
5
3

.

Relative to n, the signed distance of plane Π2 from the origin is
−2
|n|

= −
2
3

.

So the distance of plane Π2 from the origin is
2
3

.

b Relative to the normal vector n, the two planes are on different sides of the origin. So

the distance between them is
5
3

+
2
3

=
7
3

.
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Intersections and angles
Intersection of two planes
Two planes that are not parallel will intersect in a line.

Consider any point P on the common line of two
planes Π1 and Π2. If lines PA and PB are drawn at
right angles to the common line so that PA is in Π1

and PB is in Π2, then ∠APB is the angle between
planes Π1 and Π2.

P

B

A

Π1

Π2

To find the angle between the two planes, we first find the
angle θ between two vectors n1 and n2 that are normal to the
two planes. The angle between the planes is θ or 180◦ − θ,
whichever is in the interval [0◦, 90◦].

A

B
P

n1
n2

θ

θ

� Two planes are parallel if and only if the two normal vectors are parallel.
� Two planes are perpendicular if and only if the two normal vectors are perpendicular.

Let Π1 and Π2 be the planes represented by the vector equations

Π1 : r · (i + j − 3k) = 6 and Π2 : r · (2i − j + k) = 4

a Find the angle between the planes.
b Find a vector equation of the line of intersection of the planes.

Example 19

Solution
a We first find the angle between normals to the planes.

A normal to plane Π1 is n1 = i + j − 3k, and a normal to plane Π2 is n2 = 2i − j + k.

Let θ be the angle between n1 and n2. Then

n1 · n2 = |n1| |n2| cos θ

(i + j − 3k) · (2i − j + k) =
√

11
√

6 cos θ

−2 =
√

66 cos θ∴

Hence θ ≈ 104.25◦. The acute angle between the planes is 180◦ − 104.25◦ = 75.75◦,
correct to two decimal places.

b Consider Cartesian equations for the two planes:

x + y − 3z = 6 (1)

2x − y + z = 4 (2)

Add (1) and (2):

3x − 2z = 10 (3)

Let x = λ. Then z =
3λ − 10

2
, from (3), and y =

7λ − 18
2

, from (2).
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226 Chapter 5: Vector equations of lines and planes

This gives us parametric equations for the line of intersection:

x = λ, y =
7λ − 18

2
, z =

3λ − 10
2

These convert to the vector equation

r = −9 j − 5k + λ

(
i +

7
2

j +
3
2

k
)
, λ ∈ R

Note: Alternatively, we can use the parametric equations to find a point A(0,−9,−5)
on the line. A vector d parallel to the line must be perpendicular to the two
normals n1 and n2. Hence we can choose d = n1 × n2.

Intersection of a line and a plane
A line and a plane that are not parallel intersect at a point. The angle between a line and a
plane is equal to 90◦ − θ, where θ is the angle between the line and a normal to the plane.

Consider the line represented by the equation r = 3i − j − k + t(i + 2 j − k) and the plane
represented by the equation r · (i + j + 2k) = 2.

a Find the point of intersection of the line and the plane.
b Find the angle between the line and the plane.

Example 20

Solution
a To find the point of intersection, we want to find the value of t for which

r = 3i − j − k + t(i + 2 j − k)

represents a point on the plane. That is,(
3i − j − k + t(i + 2 j − k)

)
·
(
i + j + 2k

)
= 2

(3 + t) + (−1 + 2t) + 2(−1 − t) = 2

t = 2∴

The point of intersection has position vector

r = 3i − j − k + 2(i + 2 j − k) = 5i + 3 j − 3k

The point of intersection is (5, 3,−3).

b We first find the angle between the line and the normal to the plane.

The vector d = i + 2 j − k is parallel to the line, and the vector n = i + j + 2k is normal
to the plane. Let θ be the angle between d and n. Then

d · n = |d| |n| cos θ

(i + 2 j − k) · (i + j + 2k) =
√

6
√

6 cos θ

1 = 6 cos θ∴

So θ = 80.4◦, correct to one decimal place. Hence the angle between the line and the
plane is 90◦ − 80.4◦ = 9.6◦, correct to one decimal place.
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5E Distances, angles and intersections 227

Distance between two skew lines
Given two skew lines, it can be shown that there is a
unique line segment PQ joining the two lines that is
perpendicular to both lines. The distance between the
two lines is the length PQ.

We can find the distance between a pair of skew lines
`1 : r1 = a1 + λd1 and `2 : r2 = a2 + µd2 as follows.

Q

P

A1

A2

ℓ1

ℓ2
n̂

Steps Explanation

1 Let P and Q be the points on `1 and `2 such
that PQ is the distance between `1 and `2.

2 A unit vector parallel to
−−→
PQ is

n̂ =
d1 × d2

|d1 × d2|

Vector
−−→
PQ is perpendicular to both lines

and thus parallel to d1 × d2.

3 The distance between the skew lines is

d = |(a2 − a1) · n̂|

The magnitude of the projection of
−−−→
PA2

onto n̂ will give the distance, and
−−−→
PA2 · n̂ =

(−−−→
PA1 +

−−−−→
A1A2

)
· n̂ =

−−−−→
A1A2 · n̂.

Find the distance between the two skew lines

`1 : r1 = i + j + λ(2i − j + k) and `2 : r2 = 2i + j − k + µ(3i − 5 j + 2k)

Example 21

Solution
Here we have

a1 = i + j d1 = 2i − j + k

a2 = 2i + j − k d2 = 3i − 5 j + 2k

Step 1 Let P and Q be the points on `1 and `2 such
that PQ is the distance between `1 and `2.

Q

P

A1

A2

ℓ1

ℓ2
n̂

Step 2 A unit vector parallel to
−−→
PQ is n̂ =

d1 × d2

|d1 × d2|
.

Here d1 × d2 = 3i − j − 7k and |d1 × d2| =
√

59, so

n̂ =
1
√

59
(3i − j − 7k)

Step 3 The distance between the skew lines is d = |(a2 − a1) · n̂|.
Since a2 − a1 = i − k, we have

d =
∣∣∣(i − k) ·

1
√

59
(3i − j − 7k)

∣∣∣ =
10
√

59
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228 Chapter 5: Vector equations of lines and planes 5E

Exercise 5E

1Example 17 Find the distance from the point (1, 3, 2) to each of the following planes:

r · (7i + 4 j + 4k) = 9a 6x + 6y + 3z = 8b

2Example 18 Find the distance between the following pair of parallel planes:

Π1 : x + 2y − 2z = 4

Π2 : x + 2y − 2z = 12

3Example 19 Let Π1 and Π2 be the planes represented by the vector equations

Π1 : r · (2i + j − k) = 8

Π2 : r · (i − j + 2k) = 6

a Find the angle between the planes.
b Find a vector equation of the line of intersection of the planes.

4Example 20 Consider the line represented by the equation r = 3i − j − k + t(i + 2 j − 2k) and the
plane represented by the equation r · (i + j + 2k) = 4.

a Find the point of intersection of the line and the plane.
b Find the angle between the line and the plane.

5 Let A = (2, 0,−1), B = (1,−3, 1), C = (0,−1, 2) and D = (3,−2, 2).

a Find a vector normal to the plane containing points A, B and C.
b Find a vector normal to the plane containing points B, C and D.
c Use the two normal vectors to find the angle between these two planes.

6 In each of the following, a pair of vector equations is given that represent a line and a
plane respectively. Find the point of intersection of the line and the plane and find the
angle between the line and the plane, correct to two decimal places.

r = i − 3 j + 2k + t(i + j − 3k)

r · (2i − j − k) = 7

a r = 3i − j − 2k + t(−i + j + k)

r · (i − 4 j + k) = 7

b

r = −i + 2 j − 4k + t(3i − j + k)

r · (−2i + j − k) = 4

c r = −i − 5 j + 3k + t(2i − 3 j + 2k)

r · (3i + 2 j − k) = −10

d

7 The vector i − 2 j + 6k is normal to a plane Π which contains the point A(5, 4,−1).

a Find a vector equation of the plane.
b Find the distance of the plane from the origin.

8 a Find the distance from the origin to the plane r · (2i − j − 2k) = 7.
b Find the vector projection of i + j − k in the direction of 2i − j − 2k.
c Find the magnitude of this vector projection.
d Hence find the distance from the point (1, 1,−1) to the given plane.
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5E 5E Distances, angles and intersections 229

9 Using the method of Question 8, find the distance from the point (2,−1, 3) to the plane
given by the equation r · (−i + 2 j + 2k) = −3.

10 a Find the point of intersection of the line r = i − j + k + t(2i − k) and the plane
r · (3i + 2 j + 2k) = 11.

b Find the acute angle between the line and the plane, correct to one decimal place.

11 Points A, B and C have position vectors a = 3i − j + 2k, b = 3i − 3 j + 4k and
c = i − j + 4k respectively.

a Find a Cartesian equation of the plane containing A, B and C.
b Find the area of triangle ABC.
c Find the position vector of the foot of the perpendicular from the origin O to the

plane ABC.

12 Let Π1 and Π2 be the planes represented by the vector equations

Π1 : r · (3i + 6 j − 2k) = 3

Π2 : r · (8i − 4 j + k) = 1

a Find the angle between the planes.
b Find a vector equation of the line of intersection of the planes.

13 Let A = (0, 2,−1), B = (1, 1, 1), C = (−1, 0, 2) and D = (2,−2, 2).

a Find a vector normal to the plane containing points A, B and C.
b Find a vector normal to the plane containing points B, C and D.
c Use the two normal vectors to find the angle between these two planes.

14 a Find a vector which is perpendicular to the two lines given by

r1 = 2i + j − 2k + t1(i − j + 2k), t1 ∈ R

r2 = 2i + j − 2k + t2(−i + 2 j + 2k), t2 ∈ R

b Find a vector equation of the line which is normal to the plane containing these two
lines and which passes through their point of intersection.

15Example 21 For each of the following, find the distance between the two skew lines:

a r1 = (1 + t)i + (1 + 6t) j + 2tk

r2 = (1 + 2s)i + (5 + 15s) j + (−2 + 6s)k

b r1 = (1 + t)i + (2 − t) j + (1 + t)k

r2 = (2 + 2s)i + (−1 + s) j + (−1 + 2s)k

c r1 = (1 − t)i + (t − 2) j + (3 − 2t)k

r2 = (1 + s)i + (−1 + 2s) j + (−1 + 2s)k
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Assign-
ment

Nrich

Chapter summary

Lines
A line in three dimensions can be described as follows, where a = a1i + a2 j + a3 k is the
position vector of a point A on the line, and d = d1i + d2 j + d3 k is parallel to the line.

Vector equation Parametric equations Cartesian form

r = a + td, t ∈ R

x = a1 + d1t

y = a2 + d2t

z = a3 + d3t

x − a1

d1
=

y − a2

d2
=

z − a3

d3

Planes
A plane in three dimensions can be described as follows, where a is the position vector of a
point A on the plane, the vector n = n1i + n2 j + n3 k is normal to the plane, and k = a · n.

Vector equation Cartesian equation

r · n = a · n n1x + n2 y + n3z = k

Vector product
� If a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k, then

a × b = (a2b3 − a3b2)i − (a1b3 − a3b1) j + (a1b2 − a2b1)k

� The magnitude of a × b is equal to |a| |b| sin θ, where θ is
the angle between a and b.

� The direction of a × b is perpendicular to both a and b
(provided a and b are non-zero vectors and not parallel).

a × b

a × bb

a
θ

Distances and angles
� Distance from a point to a line The distance from a point P to a line ` is given by |

−−→
PQ|,

where Q is the point on ` such that PQ is perpendicular to `.
� Distance from a point to a plane The distance from a point P to a plane Π is given

by |
−−→
PQ · n̂|, where n̂ is a unit vector normal to Π and Q is any point on Π.

� Angle between two lines First find the angle θ between two vectors d1 and d2 that are
parallel to the two lines. The angle between the lines is θ or 180◦ − θ, whichever is in the
interval [0◦, 90◦].

� Angle between two planes First find the angle θ between two vectors n1 and n2 that are
normal to the two planes. The angle between the planes is θ or 180◦ − θ, whichever is in
the interval [0◦, 90◦].

� Angle between a line and a plane The angle between a line ` and a plane Π is 90◦ − θ,
where θ is the angle between the line and a normal to the plane.
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Technology-free questions

1 Consider two lines given by r1(λ) = i + j − k + λ(3i − j) and r2(µ) = 4i − k + µ(2i + 3k).
Find the position vector of the point of intersection of the lines.

2 Show that the lines r1 = i − j + λ(2i + k) and r2 = 2i − j + µ(i + j − k) do not intersect.

3 Find a Cartesian equation of the plane through the point (1, 2, 3) with normal vector
4i + 5 j + 6k.

4 Find a vector equation of the line parallel to the x-axis that contains the point (−2, 2, 1).

5 Find the coordinates of the nearest point to (2, 1, 3) on the line r = i + 2 j + t(i − j + 2k).

6 Find the distance from the origin to the line passing through the point (3, 1, 5) parallel to
the vector 2i − j + k.

7 Find the coordinates of the point of intersection of the line r = i + k + t(2i + j − 3k),
t ∈ R, and the plane r · (i − 2 j + 3k) = 13.

8 Find a vector that is perpendicular to the vectors 8i − 3 j + k and 7i − 2 j.

9 The line ` passes through the points A(−1,−3,−3) and B(5, 0, 6). Find a vector equation
of the line `. Find the point P on the line ` such that OP is perpendicular to the line,
where O is the origin.

10 Show that the lines r1 = 3i + 4 j + k + λ(2i − j + k) and r2 = i + 5 j + 7k + µ(i + k) are
skew lines. Find the cosine of the angle between the lines.

11 Determine a Cartesian equation of the plane that contains the points P(1,−2, 0),
Q(3, 1, 4) and R(0,−1, 2).

12 Determine a Cartesian equation of the plane that contains the points P(1,−2, 1),
Q(−2, 5, 0) and R(−4, 3, 2).

13 Find an equation of the plane through A(−1, 2, 0), B(3, 1, 1) and C(1, 0, 3) in:

vector forma Cartesian form.b

14 a Find a Cartesian equation of the plane passing through the origin O and the points
A(1, 1, 1) and B(0, 1, 2).

b Find the area of triangle OAB.
c Show that the point C(−2, 2, 6) lies on the plane and find the point of intersection of

the lines OB and AC.

15 The origin O and the point A(2,−1,−1) are two vertices of an equilateral triangle OAB
in the plane x + y + z = 0. There are two possible locations for the vertex B; find the
coordinates of B for both possibilities.
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232 Chapter 5: Vector equations of lines and planes

16 Show that the four points (1, 0, 0), (2, 1, 0), (3, 2, 1) and (4, 3, 2) are coplanar.

17 Let A, B, C and D be four points in three-dimensional space such that A, B and C are
collinear. Show that A, B, C and D are coplanar.

18 For vectors a, b and c such that a + b + c = 0, show that a × b = b × c = c × a.

Multiple-choice questions

1 The three vertices of a triangle have position vectors a, b and c. The area of the triangle
is equal to

a × bA 1
2 |b × c|B 1

2 |(a − b) × (b − c)|C
(b − c) × (a − b)D |(c − a) × (a − b)|E

2 A plane has equation r · (i + j − 2k) = 5. The distance from the origin to this plane is

5A
5
4

B
5
6

C
5
√

6
D

√
5E

3 Which of the following is a Cartesian equation of the plane that has axis intercepts at
x = 1, y = 2 and z = 3?

x + 2y + 3z = 0A x + 2y + 3z = 1B x + 2y + 3z = 6C
6x + 3y + 2z = 6D 6x + 3y + 2z = 0E

4 The line given by r = 5i − 3 j + k + λ(2i − 2 j − k), λ ∈ R, intersects the plane given by
r · (2i + j − 3k) = −6 at the point with position vector

2i + j − 3kA 5i − 7 j − 3kB 3i − 5 jC
i + j + 3kD 5i − 4 j − 3kE

5 The distance from the point P(1, 5) to the line that passes through (0, 0) and (1, 1) is

1A
√

2B 2C 2
√

2D 3E

6 Which of the following vector equations does not describe the line passing through the
points (2, 0, 1) and (3, 3, 3)?

r = (2 + t)i + 3t j + (1 + 2t)kA r = (3 − t)i + (3 − 3t) j + (3 − 2t)kB
r = (2 + 3t)i + 3t j + (1 + 3t)kC r = (1 + t)i + (−3 + 3t) j + (−1 + 2t)kD
r = (2 + 2t)i + 6t j + (1 + 4t)kE

7 Which of the following equations describes the plane that contains the points (0, 0, 1),
(1, 1, 1) and (2, 0, 0)?

x − y + 2z = 2A x − y + z = 1B x + 3y − z = 4C
x − y = 0D x + y + z = 3E
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8 Which of the following vectors is parallel to the line of intersection of the planes
2x + y + z = 6 and x + z = 0?

2i + j + kA i + kB 3i + j + 2kC
−3i + 3 j + 3kD 6i + 2 j + kE

9 The distance from the origin to the plane x + 2y + 2z = 5 is

0A
1
5

B
1
3

C 1D
5
3

E

10 The triangle with vertices (0, 0, 1), (1, 1, 1) and (2, 3, 2) has area

1
5

A
√

2
2

B
√

3
2

C 1D
√

2E

Extended-response questions

1 Two lines are represented by vector equations r1(t1) = i + j − 2k + t1(i − j + 2k), t1 ∈ R,
and r2(t2) = 2i + j + 4k + t2(−i + 2 j + 2k), t2 ∈ R.

a Show that these lines intersect and find their point of intersection, P.
b The vector equation r3(t3) = t3(i − j + 2k), t3 ∈ R, represents a line through the

origin. Find the distance from the point of intersection P to this line.

2 The points A, B and C have position vectors
−−→
OA = 5i + 3 j + k,

−−→
OB = −i + j + 3k and

−−→
OC = 3i + 4 j + 7k. The plane Π1 has vector equation r · (3i + j − k) = 6.

a Show that the point C is on the plane Π1.
b Show that the point B is the reflection in the plane Π1 of the point A. (Hint: Show

that the vector
−−→
AB is normal to Π1 and that the line segment AB is bisected by Π1.)

c Find the length of the projection of
−−→
AC onto the plane Π1. (Hint: Let D be the

projection of A onto Π1, that is, the point D on Π1 such that
−−→
AD is normal to Π1.

Find the length of DC.)

The plane Π2 has Cartesian equation 12x − 4y + 3z = k, where k is a positive constant.

d Find the acute angle between planes Π1 and Π2.
e Given that the distance from the point C to the plane Π2 is 3, find the value of k.

3 Consider the two lines given by

`1 : r1 = 3i + 2 j + k + t(5i + 4 j + 3k), t ∈ R

`2 : r2 = 16i − 10 j + 2k + s(3i + 2 j − k), s ∈ R

a Show that `1 and `2 are skew lines.
b Verify that both `1 and `2 are perpendicular to the vector n = 5i − 7 j + k.
c The point A(3, 2, 1) lies on line `1. Write down a vector equation of the line `3

through A in the direction of n.
d Find the point of intersection, B, of the lines `2 and `3, and find the length of the line

segment AB.
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234 Chapter 5: Vector equations of lines and planes

4 The point O is the origin and the points A, B, C and D have position vectors
−−→
OA = 4i + 3 j + 4k,

−−→
OB = 6i + j + 2k,

−−→
OC = 9 j − 6k,

−−→
OD = −i + j + k

Prove that:

a the triangle OAB is isosceles
b the point D lies in the plane OAB

c the line CD is perpendicular to the plane OAB

d the line AC is inclined at an angle of 60◦ to the plane OAB.

5 A Cartesian equation of the plane Π1 is y + z = 0 and a vector equation of the line ` is
r = 5i + 2 j + 2k + t(2i − j + 3k), where t ∈ R. Find:

a the position vector of the point of intersection of the line ` and the plane Π1

b the length of the perpendicular from the origin to the line `
c a Cartesian equation of the plane Π2 which contains the line ` and the origin
d the acute angle between the planes Π1 and Π2, correct to one decimal place.

6 The Cartesian form of a line in three dimensions uses two linear equations in x, y and z.
In this question, we show that a line in three dimensions can also be described by a
single quadratic equation in x, y and z.

a Let a, b ∈ R. Show that a = b = 0 if and only if a2 + b2 = 0.
b Show that the z-axis is described by the Cartesian equation x2 + y2 = 0.
c Show that the line given by the Cartesian equations

x − 3 = 2(y − 4) = z + 1

is also given by the single quadratic equation

(x − 2y + 5)2 + (x − z − 4)2 = 0

d Write a single quadratic equation for the line with Cartesian form
x
2

= y − 3 = 4z + 5

e Write a single quadratic equation for the line with vector equation

r(t) = (2 + t)i + (3 − t) j + 5tk, t ∈ R

7 Consider a line ` with vector equation r(t) = a + td, and assume that ` does not pass
through the origin. Let P be a point on ` with position vector r(t).

a Show that |
−−→
OP|2 = |d|2t2 + 2(a · d)t + |a|2.

b Define the quadratic function f (t) = |d|2t2 + 2(a · d)t + |a|2.

Show that the minimum value of f (t) occurs when t = −
a · d
|d|2

.

c Hence show that the point closest to the origin on ` has position vector r
(
−

a · d
|d|2

)
.

d Show that
−−→
OP · d = 0 if and only if t = −

a · d
|d|2

.

Note: This question shows that the point closest to the origin on ` is the unique point P
on ` such that OP is perpendicular to `.
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8 Let A, B and C be non-collinear points, with position vectors a, b and c respectively.

a Let X be a point on the line AB. Show that X has position vector λa + µb, for some
real numbers λ and µ such that λ + µ = 1.

b Let Y be a point on the line CX. Show that Y has position vector αa + βb + γc, for
some real numbers α, β and γ such that α + β + γ = 1.

c Let P be a point in the plane through A, B and C. Show that P has position vector
αa + βb + γc, for some real numbers α, β and γ such that α + β + γ = 1.

9 Let a and b be non-zero vectors that are not parallel. In this question, we show that
every vector v has a unique representation as a linear combination of a, b and a × b.

a Show that if a vector v satisfies v · a = v · b = v · (a × b) = 0, then v = 0.
b Show that |a × b|2 = (a · a)(b · b) − (a · b)2.
c Show that the vectors a, b and a × b are linearly independent. (Hint: Assume that

ra + sb + t(a × b) = 0 for some r, s, t ∈ R. By taking scalar products of this equation
with a, b and a × b respectively, show that r = s = t = 0. You may need part b.)

d Show that for any three-dimensional vector v, there are real numbers r, s and t such
that v = ra + sb + t(a × b), as follows:

i Suppose that v = ra + sb + t(a × b). By taking scalar products of this equation
with a, b and a × b respectively and solving simultaneous equations, show that

r =
(v · a)(b · b) − (v · b)(a · b)

|a × b|2
, s =

(v · b)(a · a) − (v · a)(a · b)
|a × b|2

, t =
v · (a × b)
|a × b|2

ii For these values of r, s and t, show that the vector ra + sb + t(a × b) − v has a
scalar product of zero with a, b and a × b.

iii Conclude that these values of r, s and t satisfy v = ra + sb + t(a × b).

e Using parts c and d, show that for any three-dimensional vector v, there are unique
real numbers r, s and t such that v = ra + sb + t(a × b).

10 Consider two skew lines with vector equations

`1 : r1(λ) = a1 + λd1 and `2 : r2(µ) = a2 + µd2

In this question, we prove the fact asserted in Section 5E that there is a unique line
segment joining `1 and `2 that is perpendicular to both lines.

a Explain why vectors d1 and d2 are non-zero and not parallel.
b Show that the line segment between the points with position vectors r1(λ) and r2(µ)

is perpendicular to both lines if and only if there exists k ∈ R such that

r2(µ) − r1(λ) = k(d1 × d2)

c Show that the equation from part b is equivalent to

λd1 − µd2 + k(d1 × d2) = a2 − a1

d Using Question 9, show that there are unique real numbers λ, µ and k which satisfy
the equation in part c.

e Conclude that there are unique points P on `1 and Q on `2 such that the line
segment PQ is perpendicular to both `1 and `2.
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236 Chapter 5: Vector equations of lines and planes

11 Let `1 and `2 be two skew lines. Let P be the point on `1 and Q be the point on `2 such
that PQ is perpendicular to both `1 and `2. In this question, we show that PQ is the
shortest distance between any two points on `1 and `2.

a Let p and q be the position vectors of points P and Q respectively. Show that lines `1
and `2 have vector equations given by

`1 : r1(λ) = p + λd1 and `2 : r2(µ) = q + µd2

where the vectors d1 and d2 satisfy

(q − p) · d1 = 0 and (q − p) · d2 = 0

b Let A be a point on `1, with position vector r1(λ), and let B be a point on `2, with
position vector r2(µ). Show that

|
−−→
AB|2 = |q − p|2 + |µd2 − λd1|

2

c Show that |
−−→
AB|2 ≥ |

−−→
PQ|2, with equality if and only if A = P and B = Q.

12 A regular tetrahedron has vertices

A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), D = (1, 1, 1)

a Show that every edge of the tetrahedron has the same length. What is it?
b Show that every face of the tetrahedron is an equilateral triangle with the same area.

What is it?
c Find the equations of the planes ABC and BCD. What is the angle between them?

d Show that the angle between any two faces of the tetrahedron is cos−1
(1
3

)
.

13 A regular octahedron has vertices

A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1),

A′ = (−1, 0, 0), B′ = (0,−1, 0), C′ = (0, 0,−1)

a Show that every edge of the octahedron has the same length. What is it?
b Show that every face of the octahedron is an equilateral triangle with the same area.

What is it?
c Show that opposite faces of the octahedron lie in parallel planes.
d Find the equations of the planes ABC and A′BC. What is the angle between them?

e Show that the angle between any two adjacent faces of the octahedron is cos−1
(
−

1
3

)
.

Note: It follows from Questions 12 and 13 that the angle between faces in a regular
tetrahedron and the angle between faces in a regular octahedron sum to 180◦.
In fact, the regular tetrahedron and octahedron in these questions fit together and
extend in a pattern to form a tessellation of three-dimensional space!
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6
Complex numbers

Objectives
I To understand the imaginary number i and the set of complex numbers C.

I To find the real part and the imaginary part of a complex number.

I To perform addition, subtraction, multiplication and division of complex numbers.

I To find the conjugate of a complex number.

I To represent complex numbers graphically on an Argand diagram.

I To work with complex numbers in polar form, and to understand the geometric
interpretation of multiplication and division of complex numbers in this form.

I To understand and apply De Moivre’s theorem.

I To factorise polynomial expressions over C and to solve polynomial equations over C.

I To sketch subsets of the complex plane, including lines, rays and circles.

In the sixteenth century, mathematicians including Girolamo Cardano began to consider
square roots of negative numbers. Although these numbers were regarded as ‘impossible’,
they arose in calculations to find real solutions of cubic equations.

For example, the cubic equation x3 − 15x − 4 = 0 has three real solutions. Cardano’s formula
gives the solution

x =
3
√

2 +
√
−121 +

3
√

2 −
√
−121

which equals 4.

Today complex numbers are widely used in physics and engineering, such as in the study of
aerodynamics.
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238 Chapter 6: Complex numbers

6A Starting to build the complex numbers
Mathematicians in the eighteenth century introduced the imaginary number i with the
property that

i 2 = −1

The equation x2 = −1 has two solutions, namely i and −i.

By declaring that i =
√
−1, we can find square roots of all negative numbers.

For example:
√
−4 =

√
4 × (−1)

=
√

4 ×
√
−1

= 2i

Note: The identity
√

a ×
√

b =
√

ab holds for positive real numbers a and b, but does not hold
when both a and b are negative. In particular,

√
−1 ×

√
−1 ,

√
(−1) × (−1).

The set of complex numbers
A complex number is an expression of the form a + bi, where a and b are real numbers.

The set of all complex numbers is denoted by C. That is,

C =
{
a + bi : a, b ∈ R

}
The letter z is often used to denote a complex number.

Therefore if z ∈ C, then z = a + bi for some a, b ∈ R.

� If a = 0, then z = bi is said to be an imaginary number.
� If b = 0, then z = a is a real number.

The real numbers and the imaginary numbers are subsets of C.

Real and imaginary parts
For a complex number z = a + bi, we define

Re(z) = a and Im(z) = b

where Re(z) is called the real part of z and Im(z) is called the imaginary part of z.

Note: Both Re(z) and Im(z) are real numbers. That is, Re: C→ R and Im: C→ R.

Let z = 4 − 5i. Find:

Re(z)a Im(z)b Re(z) − Im(z)c

Example 1

Solution
Re(z) = 4a Im(z) = −5b Re(z) − Im(z) = 4 − (−5) = 9c
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6A Starting to build the complex numbers 239

Using the TI-Nspire
� Assign the complex number z, as shown in

the first line. Use ¹ to access i.
� To find the real part, use menu > Number >

Complex Number Tools > Real Part, or just
type real(.

� For the imaginary part, use menu > Number
> Complex Number Tools > Imaginary Part.

Note: You do not need to be in complex mode. If you use i in the input, then it will
display in the same format.

Using the Casio ClassPad
� InM, tap Real in the status bar at the bottom of the

screen to change to Cplx mode.
� Enter 4 − 5i⇒ z and tap EXE .

Note: The symbol i is found in the Math2 keyboard.

� Enter z and highlight.
� Go to Interactive > Complex > re.
� Enter z and highlight.
� Go to Interactive > Complex > im.
� Highlight and drag the previous two entries to the

next entry line and subtract as shown.

Represent
√
−5 as an imaginary number.a Simplify 2

√
−9 + 4i.b

Example 2

Solution
√
−5 =

√
5 × (−1)

=
√

5 ×
√
−1

= i
√

5

a 2
√
−9 + 4i = 2

√
9 × (−1) + 4i

= 2 × 3 × i + 4i

= 6i + 4i

= 10i

b

Using the TI-Nspire
Enter the expression and press enter .
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240 Chapter 6: Complex numbers

Using the Casio ClassPad
� Ensure your calculator is in complex mode

(with Cplx in the status bar at the bottom of
the main screen).

� Enter the expression and tap EXE .

Equality of complex numbers
Two complex numbers are defined to be equal if both their real parts and their imaginary
parts are equal:

a + bi = c + di if and only if a = c and b = d

Solve the equation (2a − 3) + 2bi = 5 + 6i for a ∈ R and b ∈ R.

Example 3

Solution
If (2a − 3) + 2bi = 5 + 6i, then

2a − 3 = 5 and 2b = 6

a = 4 and b = 3∴

Operations on complex numbers
Addition and subtraction

Addition of complex numbers

If z1 = a + bi and z2 = c + di, then

z1 + z2 = (a + c) + (b + d)i

The zero of the complex numbers can be written as 0 = 0 + 0i.

If z = a + bi, then we define −z = −a − bi.

Subtraction of complex numbers

If z1 = a + bi and z2 = c + di, then

z1 − z2 = z1 + (−z2) = (a − c) + (b − d)i

It is easy to check that the following familiar properties of the real numbers extend to the
complex numbers:

� z1 + z2 = z2 + z1 � (z1 + z2) + z3 = z1 + (z2 + z3) � z + 0 = z � z + (−z) = 0
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6A Starting to build the complex numbers 241

Multiplication by a scalar
If z = a + bi and k ∈ R, then

kz = k(a + bi) = ka + kbi

For example, if z = 3 − 6i, then 3z = 9 − 18i.

It is easy to check that k(z1 + z2) = kz1 + kz2, for all k ∈ R.

Let z1 = 2 − 3i and z2 = 1 + 4i. Simplify:

z1 + z2a z1 − z2b 3z1 − 2z2c

Example 4

Solution
z1 + z2

= (2 − 3i) + (1 + 4i)

= 3 + i

a z1 − z2

= (2 − 3i) − (1 + 4i)

= 1 − 7i

b 3z1 − 2z2

= 3(2 − 3i) − 2(1 + 4i)

= (6 − 9i) − (2 + 8i)

= 4 − 17i

c

Using the TI-Nspire
Enter the expressions as shown.

Using the Casio ClassPad
� Ensure your calculator is in complex mode

(with Cplx in the status bar at the bottom of
the main screen).

� Enter the expressions as shown.
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242 Chapter 6: Complex numbers

Argand diagrams
An Argand diagram is a geometric representation of the set of complex numbers. In a vector
sense, a complex number has two dimensions: the real part and the imaginary part. Therefore
a plane is required to represent C.

An Argand diagram is drawn with two
perpendicular axes. The horizontal axis
represents Re(z), for z ∈ C, and the vertical axis
represents Im(z), for z ∈ C.

Each point on an Argand diagram represents a
complex number. The complex number a + bi
is situated at the point (a, b) on the equivalent
Cartesian axes, as shown by the examples in
this figure.

A complex number written as a + bi is said to
be in Cartesian form.

Re(z)

Im(z)

(2 − 3i)

(3 + i)(−2 + i)

−1
−3 −2 −1 10 2 3

1

2

3

−2

−3

Represent the following complex numbers as points on an Argand diagram:

2a −3ib 2 − ic
−(2 + 3i)d −1 + 2ie

Example 5

Solution

Re(z)

Im(z)

2 − i

−1 + 2i

−(2 + 3i) −3i

−1
−3 −2 −1 10 2

2

3

1

2

3

−2

−3
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6A Starting to build the complex numbers 243

Geometric representation of the basic operations on
complex numbers
Addition of complex numbers is analogous to addition of vectors. The sum of two complex
numbers corresponds to the sum of their position vectors.

Multiplication of a complex number by a scalar corresponds to the multiplication of its
position vector by the scalar.

Re(z)

z2

z1

z1 + z2

Im(z)

0 Re(z)

az

bz

a > 1
0 < b < 1
c < 0

cz

z

Im(z)

0

The difference z1 − z2 is represented by the sum z1 + (−z2).

Let z1 = 2 + i and z2 = −1 + 3i.

Represent the complex numbers z1, z2, z1 + z2 and z1 − z2 on an Argand diagram and show
the geometric interpretation of the sum and difference.

Example 6

Solution

z1 + z2 = (2 + i) + (−1 + 3i)

= 1 + 4i

z1 − z2 = (2 + i) − (−1 + 3i)

= 3 − 2i

Re(z)

Im(z)

−1
−4 −3 −2 −1 10 2 3 4

1

2

3

4

−2

−3

−4

z1

z2

−z2

z1 + z2

z1 − z2
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244 Chapter 6: Complex numbers

Multiplication of complex numbers
Let z1 = a + bi and z2 = c + di (where a, b, c, d ∈ R). Then

z1 × z2 = (a + bi)(c + di)

= ac + adi + bci + bdi 2

= (ac − bd) + (ad + bc)i (since i 2 = −1)

We carried out this calculation with an assumption that we are in a system where all the usual
rules of algebra apply. However, it should be understood that this calculation is only being
used as motivation for the following definition of multiplication for C.

Multiplication of complex numbers

Let z1 = a + bi and z2 = c + di. Then

z1 × z2 = (ac − bd) + (ad + bc)i

The multiplicative identity for C is 1 = 1 + 0i. The following familiar properties of the real
numbers extend to the complex numbers:

� z1z2 = z2z1 � (z1z2)z3 = z1(z2z3) � z × 1 = z � z1(z2 + z3) = z1z2 + z1z3

Simplify:

a (2 + 3i)(1 − 5i) b 3i(5 − 2i) c i 3

Example 7

Solution
a (2 + 3i)(1 − 5i) = 2 − 10i + 3i − 15i 2

= 2 − 10i + 3i + 15

= 17 − 7i

b 3i(5 − 2i) = 15i − 6i 2

= 15i + 6

= 6 + 15i

c i 3 = i × i 2

= −i

Geometric significance of multiplication by i
When the complex number 2 + 3i is multiplied by −1,
the result is −2 − 3i. This is achieved through a rotation
of 180◦ about the origin.

When the complex number 2 + 3i is multiplied by i,
we obtain

i(2 + 3i) = 2i + 3i 2 = −3 + 2i

The result is achieved through a rotation of 90◦

anticlockwise about the origin.

Re(z)

Im(z)

0

2 + 3i

−3 + 2i

−2 − 3i

If −3 + 2i is multiplied by i, the result is −2 − 3i. This is again achieved through a rotation
of 90◦ anticlockwise about the origin.

In general, multiplication by i gives a rotation of 90◦ anticlockwise about the origin.
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6A 6A Starting to build the complex numbers 245

Powers of i
Successive multiplication by i gives the following:

i 0 = 1� i 1 = i� i 2 = −1� i 3 = −i�

i 4 = (−1)2 = 1� i 5 = i� i 6 = −1� i 7 = −i�

In general, for n = 0, 1, 2, 3, . . .

i 4n = 1� i 4n+1 = i� i 4n+2 = −1� i 4n+3 = −i�

Exercise 6A

1Example 1 Let z = 6 − 7i. Find:

Re(z)a Im(z)b Re(z) − Im(z)c

2Example 2 Simplify each of the following:
√
−25a

√
−27b 2i − 7ic

5
√
−16 − 7id

√
−8 +

√
−18e i

√
−12f

i(2 + i)g Im
(
2
√
−4

)
h Re

(
5
√
−49

)
i

3Example 3 Solve the following equations for real values x and y:

x + yi = 5a x + yi = 2ib
x = yic x + yi = (2 + 3i) + 7(1 − i)d
2x + 3 + 8i = −1 + (2 − 3y)ie x + yi = (2y + 1) + (x − 7)if

4Example 4 Let z1 = 2 − i, z2 = 3 + 2i and z3 = −1 + 3i. Find:

z1 + z2a z1 + z2 + z3b 2z1 − z3c
3 − z3d 4i − z2 + z1e Re(z1)f
Im(z2)g Im(z3 − z2)h Re(z2) − i Im(z2)i

5Example 5 Represent each of the following complex numbers on an Argand diagram:

−4ia −3b 2(1 + i)c
3 − id −(3 + 2i)e −2 + 3if

6Example 6 Let z1 = 1 + 2i and z2 = 2 − i.

a Represent the following complex numbers on an Argand diagram:

i z1 ii z2 iii 2z1 + z2 iv z1 − z2

b Verify that parts iii and iv correspond to vector addition and subtraction.

7Example 7 Simplify each of the following:

(5 − i)(2 + i)a (4 + 7i)(3 + 5i)b (2 + 3i)(2 − 3i)c
(1 + 3i)2d (2 − i)2e (1 + i)3f
i 4g i 11(6 + 5i)h i 70i
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246 Chapter 6: Complex numbers 6A

8 Solve each of the following equations for real values x and y:

2x + (y + 4)i = (3 + 2i)(2 − i)a (x + yi)(3 + 2i) = −16 + 11ib
(x + 2i)2 = 5 − 12ic (x + yi)2 = −18id
i(2x − 3yi) = 6(1 + i)e

9 a Represent each of the following complex numbers on an Argand diagram:

i 1 + i ii (1 + i)2 iii (1 + i)3 iv (1 + i)4

b Describe any geometric pattern observed in the position of these complex numbers.

10 Let z1 = 2 + 3i and z2 = −1 + 2i. Let P, Q and R be the points defined on an Argand
diagram by z1, z2 and z2 − z1 respectively.

Show that
−−→
PQ =

−−→
OR.a Hence find the distance PQ.b

11 Evaluate 1 + i + i 2 + · · · + i 100.

6B Modulus, conjugate and division
The modulus of a complex number

Definition of the modulus

For z = a + bi, the modulus of z is denoted by |z| and is defined by

|z| =
√

a2 + b2

This is the distance of the complex number from the origin.

For example, if z1 = 3 + 4i and z2 = −3 + 4i, then

|z1| =
√

32 + 42 = 5 and |z2| =
√

(−3)2 + 42 = 5

Both z1 and z2 are a distance of 5 units from the origin.

Properties of the modulus

� |z1z2| = |z1| |z2| (the modulus of a product is the product of the moduli)

�

∣∣∣∣∣z1

z2

∣∣∣∣∣ =
|z1|

|z2|
(the modulus of a quotient is the quotient of the moduli)

� |z1 + z2| ≤ |z1| + |z2| (triangle inequality)

These results will be proved in Exercise 6B.

The conjugate of a complex number

Definition of the complex conjugate

For z = a + bi, the conjugate of z is denoted by z and is defined by

z = a − bi
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6B Modulus, conjugate and division 247

Properties of the complex conjugate

z1 + z2 = z1 + z2� z1z2 = z1 z2� kz = kz, for k ∈ R�

zz = |z|2� z + z = 2 Re(z)�

Proof The first three results will be proved in Exercise 6B. To prove the remaining two
results, consider a complex number z = a + bi. Then z = a − bi and therefore

zz = (a + bi)(a − bi)

= a2 − abi + abi − b2i 2

= a2 + b2

= |z|2

z + z = (a + bi) + (a − bi)

= 2a

= 2 Re(z)

It follows from these two results that if z ∈ C, then zz and z + z are real numbers. We can
prove a partial converse to this property of the complex conjugate:

Let z, w ∈ C \ R such that zw and z + w are real numbers. Then w = z.

Proof Write z = a + bi and w = c + di, where b, d , 0. Then

z + w = (a + bi) + (c + di)

= (a + c) + (b + d)i

Since z + w is real, we have b + d = 0. Therefore d = −b and so

zw = (a + bi)(c − bi)

= (ac + b2) + (bc − ab)i

Since zw is real, we have bc − ab = b(c − a) = 0. As b , 0, this implies that c = a.
We have shown that w = a − bi = z.

Find the complex conjugate of each of the following:

a 2 b 3i c −1 − 5i

Example 8

Solution
a The complex conjugate of 2 is 2.
b The complex conjugate of 3i is −3i.
c The complex conjugate of −1 − 5i is −1 + 5i.

Using the TI-Nspire
To find the complex conjugate, use menu

> Number > Complex Number Tools >

Complex Conjugate, or just type conj(.

Note: Use ¹ to access i.
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248 Chapter 6: Complex numbers

Using the Casio ClassPad
� Ensure your calculator is in complex mode.
� Enter and highlight 2.
� Go to Interactive > Complex > conjg.
� Repeat for 3i and −1 − 5i as shown.

Division of complex numbers
We begin with some familiar algebra that will motivate the definition:

1
a + bi

=
1

a + bi
×

a − bi
a − bi

=
a − bi

(a + bi)(a − bi)
=

a − bi
a2 + b2

We can see that

(a + bi) ×
a − bi

a2 + b2 = 1

Although we have carried out this arithmetic, we have not yet defined what
1

a + bi
means.

Multiplicative inverse of a complex number

If z = a + bi with z , 0, then

z−1 =
a − bi

a2 + b2 =
z
|z|2

The formal definition of division in the complex numbers is via the multiplicative inverse:

Division of complex numbers

z1

z2
= z1z−1

2 =
z1z2

|z2|
2 (for z2 , 0)

Here is the procedure that is used in practice:

Assume that z1 = a + bi and z2 = c + di (where a, b, c, d ∈ R). Then

z1

z2
=

a + bi
c + di

Multiply the numerator and denominator by the conjugate of z2:

z1

z2
=

a + bi
c + di

×
c − di
c − di

=
(a + bi)(c − di)

c2 + d2

Complete the division by simplifying. This process is demonstrated in the next example.
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6B Modulus, conjugate and division 249

a Write each of the following in the form a + bi, where a, b ∈ R:

i
1

3 − 2i
ii

4 + i
3 − 2i

b Simplify
(1 + 2i)2

i(1 + 3i)
.

Example 9

Solution

a i
1

3 − 2i
=

1
3 − 2i

×
3 + 2i
3 + 2i

=
3 + 2i

32 − (2i)2

=
3 + 2i

13

=
3
13

+
2
13

i

ii
4 + i
3 − 2i

=
4 + i

3 − 2i
×

3 + 2i
3 + 2i

=
(4 + i)(3 + 2i)

32 + 22

=
12 + 8i + 3i − 2

13

=
10
13

+
11
13

i

b
(1 + 2i)2

i(1 + 3i)
=

1 + 4i − 4
−3 + i

=
−3 + 4i
−3 + i

×
−3 − i
−3 − i

=
9 + 3i − 12i + 4

(−3)2 − i 2

=
13 − 9i

10

=
13
10
−

9
10

i

Note: There is an obvious similarity between the process for expressing a complex number
with a real denominator and the process for rationalising the denominator of a surd
expression.

Using the TI-Nspire
Complete as shown.
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250 Chapter 6: Complex numbers 6B

Using the Casio ClassPad
Ensure your calculator is in complex mode and
complete as shown.

Exercise 6B

1Example 8 Find the complex conjugate of each of the following complex numbers:
√

3a 8ib 4 − 3ic −(1 + 2i)d 4 + 2ie −3 − 2if

2Example 9 Simplify each of the following, giving your answer in the form a + bi:

2 + 3i
3 − 2i

a
i

−1 + 3i
b

−4 − 3i
i

c
3 + 7i
1 + 2i

d
√

3 + i
−1 − i

e
17

4 − i
f

3 Let z = a + bi and w = c + di. Show that:

z + w = z + wa zw = z wb
( z
w

)
=

z
w

c

|zw| = |z| |w|d
∣∣∣∣∣ z
w

∣∣∣∣∣ =
|z|
|w|

e

4 Let z = 2 − i. Simplify the following:

z(z + 1)a z + 4b z − 2ic
z − 1
z + 1

d (z − i)2e (z + 1 + 2i)2f

5 For z = a + bi, write each of the following in terms of a and b:

zza
z
|z|2

b z + zc z − zd
z
z

e
z
z

f

6 Prove that |z1 + z2| ≤ |z1| + |z2| for all z1, z2 ∈ C.

7 Let z ∈ C. Prove by mathematical induction that (z)n = zn for all n ∈ N.

8 In Question 3, you proved that |zw| = |z| |w|, where z = a + bi and w = c + di.

a Hence, deduce that (a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2.
b The result from part a is called the Brahmagupta–Fibonacci identity; it says that the

product of two sums of two squares can be written as a sum of two squares. Use this
result to write 65 as the sum of two squares.

c Let n be an integer. Prove that n4 + 5n2 + 4 is the sum of two squares.
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6C Polar form of a complex number 251

6C Polar form of a complex number
In the preceding sections, we have expressed complex numbers in Cartesian form. Another
way of expressing complex numbers is using polar form.

Each complex number may be described by an angle and a distance from the origin. In this
section, we will see that this is a very useful way to describe complex numbers.

Definition of polar form
The diagram shows the point P corresponding to the
complex number z = a + bi. We see that a = r cos θ and
b = r sin θ, and so we can write

z = a + bi

= r cos θ + (r sin θ) i

= r
(
cos θ + i sin θ

)

Im(z)

0 a

b
r

P z = a + bi

θ
Re(z)

This is called the polar form of the complex number. The polar form is abbreviated to

z = r cis θ

� The distance r =
√

a2 + b2 is called the modulus of z and is denoted by |z|.
� The angle θ, measured anticlockwise from the horizontal axis, is called an argument of z

and is denoted by arg z.

Polar form for complex numbers is also called modulus–argument form.

This Argand diagram uses a polar grid
with rays at intervals of

π

12
= 15◦.

cis 3
π

Re(z)

Im(z)

2i

−2i

−2 2

3cis −πcis
3

−2π

2cis 6
π

2cis 3
π2cis

3
2π

2cis
6

5π

Non-uniqueness of polar form
Each complex number has more than one representation in polar form.

Since cos θ = cos(θ + 2nπ) and sin θ = sin(θ + 2nπ), for all n ∈ Z, we can write

z = r cis θ = r cis(θ + 2nπ) for all n ∈ Z

The convention is to use the angle θ such that −π < θ ≤ π.
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252 Chapter 6: Complex numbers

Principal value of the argument

For a non-zero complex number z, the argument of z that belongs to the interval (−π,π] is
called the principal value of the argument of z and is denoted by Arg z. That is,

−π < Arg z ≤ π

Complex conjugate in polar form
It is easy to show that the complex conjugate, z, is a
reflection of the point z in the horizontal axis.

Therefore, if z = r cis θ, then z = r cis(−θ). Re(z)

Im(z)

0

z

z
_

θ

Find the modulus and principal argument of each of the following complex numbers:

4a −2ib 1 + ic 4 − 3id

Example 10

Solution

Im(z)

0 4
Re(z)

a

Re(z)

Im(z)

0

−2

π
2

b

|4| = 4, Arg(4) = 0 |−2i| = 2, Arg(−2i) = −
π

2

Re(z)

(1, 1)

Im(z)

0

√2 π
4

c

Re(z)

Im(z)

0
5

θ

(4, −3)

d

|1 + i| =
√

12 + 12 =
√

2

Arg(1 + i) =
π

4

|4 − 3i| =
√

42 + (−3)2 = 5

Arg(4 − 3i) = − tan−1
(3
4

)
≈ −0.64 radians
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6C Polar form of a complex number 253

Using the TI-Nspire
� To find the modulus of a complex number,

use menu > Number > Complex Number
Tools > Magnitude.
Alternatively, use |�| from the 2D-template
palette t or type abs(.

� To find the principal value of the argument,
use menu > Number > Complex Number
Tools > Polar Angle.

Note: Use ¹ to access i.

Using the Casio ClassPad
Ensure your calculator is in complex mode (with Cplx in the status bar at the bottom of
the main screen).

� To find the modulus of a complex number, tap on
the modulus template in the Math2 keyboard, then
enter the expression.

� To find the principal argument of a complex
number, enter and highlight the expression, then
select Interactive > Complex > arg.

a Find the argument of −1 − i in the interval [0, 2π].
b Find the principal argument of −1 − i.

Example 11

Solution
a Choosing the angle in the interval [0, 2π] gives

arg(−1 − i) =
5π
4

b Choosing the angle in the interval (−π,π] gives

Arg(−1 − i) = −
3π
4

Re(z)

Im(z)

0π
4

(−1, −1)
√2
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254 Chapter 6: Complex numbers 6C

Express −
√

3 + i in the form r cis θ, where θ = Arg
(
−
√

3 + i
)
.

Example 12

Solution

r =
∣∣∣−√3 + i

∣∣∣
=

√(√
3
)2

+ 12 = 2

θ = Arg
(
−
√

3 + i
)

=
5π
6

Therefore −
√

3 + i = 2 cis
(5π

6

)
Re(z)

Im(z)

0

2

(−√3, 1)

Express 2 cis
(
−

3π
4

)
in the form a + bi.

Example 13

Solution

a = r cos θ b = r sin θ

= 2 cos
(
−

3π
4

)
= 2 sin

(
−

3π
4

)
= −2 cos

(
π

4

)
= −2 sin

(
π

4

)
= −2 ×

1
√

2
= −2 ×

1
√

2
= −
√

2 = −
√

2

Therefore 2 cis
(
−

3π
4

)
= −
√

2 −
√

2i

Exercise 6C

1Example 10 Find the modulus and principal argument of each of the following complex numbers:

−3a 5ib i − 1c
√

3 + id 2 − 2
√

3ie
(
2 − 2

√
3i

)2f

2 Find the principal argument of each of the following, correct to two decimal places:

5 + 12ia −8 + 15ib −4 − 3ic 1 −
√

2id
√

2 +
√

3ie −(3 + 7i)f

3Example 11 Find the argument of each of the following in the interval stated:

1 −
√

3i in [0, 2π]a −7i in [0, 2π]b −3 +
√

3i in [0, 2π]c
√

2 +
√

2i in [0, 2π]d
√

3 + i in [−2π, 0]e 2i in [−2π, 0]f

4 Convert each of the following arguments into principal arguments:
5π
4

a
17π

6
b −

15π
8

c −
5π
2

d
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6C 6D Basic operations on complex numbers in polar form 255

5Example 12 Convert each of the following complex numbers from Cartesian form a + bi into the
form r cis θ, where θ = Arg(a + bi):

−1 − ia
1
2
−

√
3

2
ib

√
3 −
√

3ic

1
√

3
+

1
3

id
√

6 −
√

2ie −2
√

3 + 2if

6Example 13 Convert each of the following complex numbers into the form a + bi:

2 cis
(3π

4

)
a 5 cis

(
−
π

3

)
b 2

√
2 cis

(
π

4

)
c

3 cis
(
−

5π
6

)
d 6 cis

(
π

2

)
e 4 cisπf

7 Let z = cis θ. Show that:

|z| = 1a
1
z

= cis(−θ)b

8 Find the complex conjugate of each of the following:

2 cis
(3π

4

)
a 7 cis

(
−

2π
3

)
b −3 cis

(2π
3

)
c 5 cis

(
−
π

4

)
d

6D Basic operations on complex numbers in polar form
Addition and subtraction
There is no simple way to add or subtract complex numbers in the form r cis θ. Complex
numbers need to be expressed in the form a + bi before these operations can be carried out.

Simplify 2 cis
(
π

3

)
+ 3 cis

(2π
3

)
.

Example 14

Solution
First convert to Cartesian form:

2 cis
(
π

3

)
= 2

(
cos

(π
3

)
+ i sin

(π
3

))
= 2

(1
2

+

√
3

2
i
)

= 1 +
√

3i

3 cis
(2π

3

)
= 3

(
cos

(2π
3

)
+ i sin

(2π
3

))
= 3

(
−

1
2

+

√
3

2
i
)

= −
3
2

+
3
√

3
2

i

Now we have

2 cis
(
π

3

)
+ 3 cis

(2π
3

)
=

(
1 +
√

3i
)

+

(
−

3
2

+
3
√

3
2

i
)

= −
1
2

+
5
√

3
2

i

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



256 Chapter 6: Complex numbers

Multiplication by a scalar
Positive scalar
If k ∈ R+, then Arg(kz) = Arg(z)

Re(z)
0

z

kz

Arg(kz) = Arg(z)

Im(z)

Negative scalar
If k ∈ R−, then

Arg(kz) =

Arg(z) − π, 0 < Arg(z) ≤ π

Arg(z) + π, −π < Arg(z) ≤ 0

Re(z)

Im(z)

Arg(z)

Arg(kz)

z

kz

0 Re(z)

Arg(z)

Arg(kz)

Im(z)

kz

0

z

Multiplication of complex numbers

Multiplication in polar form

If z1 = r1 cis θ1 and z2 = r2 cis θ2, then

z1z2 = r1r2 cis(θ1 + θ2) (multiply the moduli and add the angles)

Proof We have

z1z2 = r1 cis θ1 × r2 cis θ2

= r1r2
(
cos θ1 + i sin θ1

)(
cos θ2 + i sin θ2

)
= r1r2

(
cos θ1 cos θ2 + i cos θ1 sin θ2 + i sin θ1 cos θ2 − sin θ1 sin θ2

)
= r1r2

((
cos θ1 cos θ2 − sin θ1 sin θ2

)
+ i

(
cos θ1 sin θ2 + sin θ1 cos θ2

))
Now use the compound angle formulas from Chapter 3:

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

z1z2 = r1r2
(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
Hence

= r1r2 cis(θ1 + θ2)

Here are two useful properties of the modulus and the principal argument with regard to
multiplication of complex numbers:

� |z1z2| = |z1| |z2| � Arg(z1z2) = Arg(z1) + Arg(z2) + 2kπ, where k = 0, 1 or −1
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6D Basic operations on complex numbers in polar form 257

Geometric interpretation of multiplication
We have seen that:

� The modulus of the product of two complex
numbers is the product of their moduli.

� The argument of the product of two complex
numbers is the sum of their arguments.

Geometrically, the effect of multiplying a complex
number z1 by the complex number z2 = r2 cis θ2 is to
produce an enlargement of Oz1, where O is the origin,
by a factor of r2 and an anticlockwise turn through an
angle θ2 about the origin.

Re(z)

Im(z)

z1

z1z2

r1
r1r2

0
θ1

θ2

If r2 = 1, then only the turning effect will take place.

Let z = cis θ. Multiplication by z2 is, in effect, the same as a multiplication by z followed by
another multiplication by z. The effect is a turn of θ followed by another turn of θ. The end
result is an anticlockwise turn of 2θ. This is also shown by finding z2:

z2 = z × z = cis θ × cis θ

= cis(θ + θ) using the multiplication rule

= cis(2θ)

Division of complex numbers

Division in polar form

If z1 = r1 cis θ1 and z2 = r2 cis θ2 with r2 , 0, then

z1

z2
=

r1

r2
cis(θ1 − θ2) (divide the moduli and subtract the angles)

Proof We have already seen in Exercise 6C that
1

cis θ2
= cis(−θ2).

We can now use the rule for multiplication in polar form to obtain
z1

z2
=

r1 cis θ1

r2 cis θ2
=

r1

r2
cis θ1 cis(−θ2) =

r1

r2
cis(θ1 − θ2)

Here are three useful properties of the modulus and the principal argument with regard to
division of complex numbers:

�

∣∣∣∣∣z1

z2

∣∣∣∣∣ =
|z1|

|z2|

� Arg
(z1

z2

)
= Arg(z1) − Arg(z2) + 2kπ, where k = 0, 1 or −1

� Arg
(1

z

)
= −Arg(z), provided z is not a negative real number
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258 Chapter 6: Complex numbers

Simplify:

a 2 cis
(
π

3

)
×
√

3 cis
(3π

4

)
b

2 cis
(2π

3

)
4 cis

(
π

5

)
Example 15

Solution

a 2 cis
(
π

3

)
×
√

3 cis
(3π

4

)
= 2
√

3 cis
(
π

3
+

3π
4

)
= 2
√

3 cis
(13π

12

)
= 2
√

3 cis
(
−

11π
12

)

b
2 cis

(2π
3

)
4 cis

(
π

5

) =
1
2

cis
(2π

3
−
π

5

)
=

1
2

cis
(7π

15

)
Note: A solution giving the principal value of the argument, that is, the argument in the

interval (−π,π], is preferred unless otherwise stated.

De Moivre’s theorem
De Moivre’s theorem allows us to readily simplify expressions of the form zn when z is
expressed in polar form.

De Moivre’s theorem

(r cis θ)n = rn cis(nθ), where n ∈ Z

Proof This result is usually proved by mathematical induction, but can be explained by a
simple inductive argument.

z = cis θLet

z2 = cis θ × cis θ = cis(2θ) by the multiplication ruleThen

z3 = z2 × cis θ = cis(3θ)

z4 = z3 × cis θ = cis(4θ)

Continuing in this way, we see that (cis θ)n = cis(nθ), for each positive integer n.

To obtain the result for negative integers, again let z = cis θ. Then

z−1 =
1
z

= z = cis(−θ)

For k ∈ N, we have

z−k = (z−1)k =
(
cis(−θ)

)k
= cis(−kθ)

using the result for positive integers.
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6D Basic operations on complex numbers in polar form 259

Simplify:(
cis

(π
3

))9
a

cis
(7π

4

)
(
cis

(π
3

))7b

Example 16

Solution(
cis

(π
3

))9
= cis

(
9 ×

π

3

)
= cis(3π)

= cisπ

= cosπ + i sinπ

= −1

a
cis

(7π
4

)
(
cis

(π
3

))7 = cis
(7π

4

) (
cis

(π
3

))−7

= cis
(7π

4

)
cis

(
−

7π
3

)
= cis

(7π
4
−

7π
3

)
= cis

(
−

7π
12

)

b

Using polar form, simplify
(1 + i)3

(1 −
√

3i)5
.

Example 17

Solution
First convert to polar form:

1 + i =
√

2 cis
(
π

4

)
1 −
√

3i = 2 cis
(
−
π

3

)
Therefore

(1 + i)3

(1 −
√

3i)5
=

(√
2 cis

(π
4

))3

(
2 cis

(
−
π

3

))5

=

2
√

2 cis
(3π

4

)
32 cis

(
−

5π
3

) by De Moivre’s theorem

=

√
2

16
cis

(3π
4
−

(
−

5π
3

))
=

√
2

16
cis

(29π
12

)
=

√
2

16
cis

(5π
12

)
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260 Chapter 6: Complex numbers 6D

Exercise 6DSkill-
sheet

1Example 14 Simplify 4 cis
(
π

6

)
+ 6 cis

(2π
3

)
.

2Example 15 Simplify each of the following:

4 cis
(2π

3

)
× 3 cis

(3π
4

)
a

√
2 cis

(
π

2

)
√

8 cis
(5π

6

)b

1
2

cis
(
−

2π
5

)
×

7
3

cis
(
π

3

)
c

4 cis
(
−
π

4

)
1
2

cis
(7π

10

)d
4 cis

(2π
3

)
32 cis

(
−
π

3

)e

3Example 16 Simplify each of the following:

2 cis
(5π

6

)
×

(√
2 cis

(7π
8

))4
a

1(3
2

cis
(5π

8

))3b

(
cis

(π
6

))8
×

(√
3 cis

(π
4

))6
c

(1
2

cis
(π

2

))−5
d

e
(
2 cis

(3π
2

)
× 3 cis

(π
6

))3
f

(1
2

cis
(π

8

))−6
×

(
4 cis

(π
3

))2
g

(
6 cis

(2π
5

))3

(1
2

cis
(
−
π

4

))−5

4 For each of the following, find Arg(z1z2) and Arg(z1) + Arg(z2) and comment on their
relationship:

z1 = cis
(
π

4

)
and z2 = cis

(
π

3

)
a z1 = cis

(
−

2π
3

)
and z2 = cis

(
−

3π
4

)
b

z1 = cis
(2π

3

)
and z2 = cis

(
π

2

)
c

5 Show that if −
π

2
< Arg(z1) <

π

2
and −

π

2
< Arg(z2) <

π

2
, then

Arg(z1z2) = Arg(z1) + Arg(z2) and Arg
(z1

z2

)
= Arg(z1) − Arg(z2)

6 For z = 1 + i, find:

Arg za Arg(−z)b Arg
(1

z

)
c

7 The point (2, 3) is rotated about the origin by angle
π

6
clockwise. By multiplying two

complex numbers, find the image of the point.
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6D 6D Basic operations on complex numbers in polar form 261

8 a Show that

sin θ + i cos θ = cis
(
π

2
− θ

)
b Simplify each of the following:

(sin θ + i cos θ)7i (sin θ + i cos θ)(cos θ + i sin θ)ii
(sin θ + i cos θ)−4iii (sin θ + i cos θ)(sinϕ + i cosϕ)iv

9 a Show that

cos θ − i sin θ = cis(−θ)

b Simplify each of the following:

(cos θ − i sin θ)5i (cos θ − i sin θ)−3ii
(cos θ − i sin θ)(cos θ + i sin θ)iii (cos θ − i sin θ)(sin θ + i cos θ)iv

10 a Show that

sin θ − i cos θ = cis
(
θ −

π

2

)
b Simplify each of the following:

(sin θ − i cos θ)6i (sin θ − i cos θ)−2ii

(sin θ − i cos θ)2(cos θ − i sin θ)iii
sin θ − i cos θ
cos θ + i sin θ

iv

11 a Express each of the following in modulus–argument form, where 0 < θ <
π

2
:

1 + i tan θi 1 + i cot θii
1

sin θ
+

1
cos θ

iiii

b Hence, simplify each of the following:

(1 + i tan θ)2i (1 + i cot θ)−3ii
1

sin θ
−

1
cos θ

iiii

12Example 17 Simplify each of the following, giving your answer in polar form r cis θ, with r > 0
and θ ∈ (−π,π]:(

1 +
√

3i
)6a (1 − i)−5b i

(√
3 − i

)7c

(
−3 +

√
3i

)−3d
(
1 +
√

3i
)3

i(1 − i)5e
(
−1 +

√
3i

)4(
−
√

2 −
√

2i
)3

√
3 − 3i

f

(−1 + i)5
(1
2

cis
(π

4

))3
g

(
cis

(2π
5

))3

(1 −
√

3i)2
h

(
(1 − i) cis

(2π
3

))7
i

13 Simplify
(1 + i)20

(1 − i)21 , giving your answer in Cartesian form.
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262 Chapter 6: Complex numbers 6D

14 a Use De Moivre’s theorem to simplify (1 + i)11.
b Let z be a complex number with z , 1. Using mathematical induction (or otherwise),

prove that

1 + z + z2 + · · · + zn =
1 − zn+1

1 − z

for all n ∈ N.
c Hence, simplify 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)10.

6E Solving quadratic equations over the
complex numbers
Quadratic equations with a negative discriminant have no real solutions. The introduction of
complex numbers enables us to solve such quadratic equations.

Factorisation of quadratics
Over the complex numbers, every quadratic polynomial can be written as the product of two
linear factors.

We first consider the special case where the quadratic polynomial has the form z2 + a2.

Sum of two squares

Since i 2 = −1, we can rewrite a sum of two squares as a difference of two squares:

z2 + a2 = z2 − (ai)2

= (z + ai)(z − ai)

Factorise:

z2 + 16a 2z2 + 6b

Example 18

Solution
z2 + 16 = z2 − 16i 2

= (z + 4i)(z − 4i)

a 2z2 + 6 = 2(z2 + 3)

= 2(z2 − 3i 2)

= 2
(
z +
√

3i
)(

z −
√

3i
)

b

Note: The discriminant of z2 + 16 is ∆ = 0 − 4 × 16 = −64.
The discriminant of 2z2 + 6 is ∆ = 0 − 4 × 2 × 6 = −48.
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6E Solving quadratic equations over the complex numbers 263

Factorise:

a z2 + z + 3 b 2z2 − z + 1 c 2z2 − 2(3 − i)z + 4 − 3i

Example 19

Solution
a Let P(z) = z2 + z + 3. Then, by completing the square, we have

P(z) =

(
z2 + z +

1
4

)
+ 3 −

1
4

=

(
z +

1
2

)2
+

11
4

=

(
z +

1
2

)2
−

11
4

i 2

=

(
z +

1
2

+

√
11
2

i
) (

z +
1
2
−

√
11
2

i
)

b Let P(z) = 2z2 − z + 1. Then

P(z) = 2
(
z2 −

1
2

z +
1
2

)
= 2

((
z2 −

1
2

z +
1
16

)
+

1
2
−

1
16

)
= 2

((
z −

1
4

)2
+

7
16

)
= 2

((
z −

1
4

)2
−

7
16

i 2
)

= 2
(
z −

1
4

+

√
7

4
i
) (

z −
1
4
−

√
7

4
i
)

c Let P(z) = 2z2 − 2(3 − i)z + 4 − 3i. Then

P(z) = 2
(
z2 − (3 − i)z +

4 − 3i
2

)
= 2

(
z2 − (3 − i)z +

(3 − i
2

)2
+

4 − 3i
2
−

(3 − i
2

)2)
= 2

(
z −

3 − i
2

)2
+ 4 − 3i −

(3 − i)2

2

= 2
(
z −

3 − i
2

)2
+

8 − 6i − 9 + 6i + 1
2

= 2
(
z −

3 − i
2

)2
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264 Chapter 6: Complex numbers

Solution of quadratic equations
In the previous example, we used the method of completing the square to factorise quadratic
expressions. This method can also be used to solve quadratic equations.

Alternatively, a quadratic equation of the form az2 + bz + c = 0 can be solved by using the
quadratic formula:

z =
−b ±

√
b2 − 4ac

2a

This formula is obtained by completing the square on the expression az2 + bz + c.

Solve each of the following equations for z:

z2 + z + 3 = 0a 2z2 − z + 1 = 0b
z2 = 2z − 5c 2z2 − 2(3 − i)z + 4 − 3i = 0d

Example 20

Solution
a From Example 19a:

z2 + z + 3 =

(
z −

(
−

1
2
−

√
11
2

i
)) (

z −
(
−

1
2

+

√
11
2

i
))

Hence z2 + z + 3 = 0 has solutions

z = −
1
2
−

√
11
2

i and z = −
1
2

+

√
11
2

i

b From Example 19b:

2z2 − z + 1 = 2
(
z −

(1
4
−

√
7

4
i
)) (

z −
(1
4

+

√
7

4
i
))

Hence 2z2 − z + 1 = 0 has solutions

z =
1
4
−

√
7

4
i and z =

1
4

+

√
7

4
i

c Rearrange the equation into the form

z2 − 2z + 5 = 0

Now apply the quadratic formula:

z =
2 ±
√
−16

2

=
2 ± 4i

2

= 1 ± 2i

The solutions are 1 + 2i and 1 − 2i.
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6E 6E Solving quadratic equations over the complex numbers 265

d From Example 19 c, we have

2z2 − 2(3 − i)z + 4 − 3i = 2
(
z −

3 − i
2

)2

Hence 2z2 − 2(3 − i)z + 4 − 3i = 0 has solution z =
3 − i

2
.

Note: In parts a, b and c of this example, the two solutions are conjugates of each other.
We explore this further in the next section.

Using the TI-Nspire
To find complex solutions, use menu > Algebra
> Complex > Solve as shown.

Using the Casio ClassPad
� Ensure your calculator is in complex mode.
� Enter and highlight the equation.
� Select Interactive > Equation/Inequality > solve.
� Ensure that the variable is z.

Every quadratic equation has two solutions over the complex numbers, if we count repeated
solutions twice. For example, the equation (z − 3)2 = 0 has a repeated solution z = 3. We say
that this solution has a multiplicity of 2.

Exercise 6ESkill-
sheet

1Example 18

Example 19

Factorise each of the following into linear factors over C:

z2 + 16a z2 + 5b z2 + 2z + 5c
z2 − 3z + 4d 2z2 − 8z + 9e 3z2 + 6z + 4f
3z2 + 2z + 2g 2z2 − z + 3h

2Example 20 Solve each of the following equations over C:

x2 + 25 = 0a x2 + 8 = 0b
x2 − 4x + 5 = 0c 3x2 + 7x + 5 = 0d
x2 = 2x − 3e 5x2 + 1 = 3xf
z2 + (1 + 2i)z + (−1 + i) = 0g z2 + z + (1 − i) = 0h

Hint: Show that −3 + 4i = (1 + 2i)2.

3 Suppose that the solutions of the equation z2 + bz + c = 0 are z = α and z = α. Prove
that both b and c are real numbers.
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266 Chapter 6: Complex numbers

6F Solving polynomial equations over the
complex numbers
You have studied polynomials over the real numbers in Mathematical Methods Units 3 & 4.
We now extend this study to polynomials over the complex numbers. For n ∈ N ∪ {0},
a polynomial of degree n is an expression of the form

P(z) = anzn + an−1zn−1 + · · · + a1z + a0

where the coefficients ai are complex numbers and an , 0.

When we divide the polynomial P(z) by the polynomial D(z) we obtain two polynomials,
Q(z) the quotient and R(z) the remainder, such that

P(z) = D(z)Q(z) + R(z)

and either R(z) = 0 or R(z) has degree less than D(z).

If R(z) = 0, then D(z) is a factor of P(z).

The remainder theorem and the factor theorem are true for polynomials over C.

� Remainder theorem
Let α ∈ C. When a polynomial P(z) is divided by z − α, the remainder is P(α).

� Factor theorem
Let α ∈ C. Then z − α is a factor of a polynomial P(z) if and only if P(α) = 0.

Factorise P(z) = z3 + z2 + 4.

Example 21

Solution
Use the factor theorem to find the first factor:

P(−1) = −1 + 1 + 4 , 0

P(−2) = −8 + 4 + 4 = 0

Therefore z + 2 is a factor. We obtain P(z) = (z + 2)(z2 − z + 2) by division.

We can factorise z2 − z + 2 by completing the square:

z2 − z + 2 =

(
z2 − z +

1
4

)
+ 2 −

1
4

=

(
z −

1
2

)2
−

7
4

i 2

=

(
z −

1
2

+

√
7

2
i
) (

z −
1
2
−

√
7

2
i
)

P(z) = (z + 2)
(
z −

1
2

+

√
7

2
i
) (

z −
1
2
−

√
7

2
i
)

Hence
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6F Solving polynomial equations over the complex numbers 267

Factorise z3 − iz2 − 4z + 4i.

Example 22

Solution
Factorise by grouping:

z3 − iz2 − 4z + 4i = z2(z − i) − 4(z − i)

= (z − i)(z2 − 4)

= (z − i)(z − 2)(z + 2)

The conjugate root theorem
Notice in Example 21 that the two complex solutions are conjugates of each other. The
following theorem gives a simple condition that ensures this happens.

Conjugate root theorem

Let P(z) be a polynomial with real coefficients. If a + bi is a solution of the equation
P(z) = 0, with a and b real numbers, then the complex conjugate a − bi is also a solution.

Proof We will prove the theorem for quadratics, as it gives the idea of the general proof.

Let P(z) = az2 + bz + c, where a, b, c ∈ R and a , 0. Assume that α is a solution of the
equation P(z) = 0. Then P(α) = 0. That is,

aα2 + bα + c = 0

Take the conjugate of both sides of this equation and use properties of conjugates:

aα2 + bα + c = 0

aα2 + bα + c = 0

a(α2) + bα + c = 0 since a, b and c are real numbers

a(α)2 + bα + c = 0

Hence P(α) = 0. That is, α is a solution of the equation P(z) = 0.

If a polynomial P(z) has real coefficients, then using this theorem we can say that the
complex solutions of the equation P(z) = 0 occur in conjugate pairs. (Note that this theorem
does not hold without the assumption that P(z) has real coefficients; see Example 22.)

Factorisation of cubic polynomials
Over the complex numbers, every cubic polynomial can be written as the product of three
linear factors.

If the coefficients of the cubic are real, then at least one factor must be real (as complex
factors occur in conjugate pairs). A useful method of factorisation, already demonstrated in
Example 21, is to find the real linear factor using the factor theorem and then complete the
square on the resulting quadratic factor. The cubic polynomial can also be factorised if one
complex root is given, as shown in the next example.
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268 Chapter 6: Complex numbers

Let P(z) = z3 − 3z2 + 5z − 3.

a Use the factor theorem to show that z − 1 +
√

2i is a factor of P(z).
b Find the other linear factors of P(z).

Example 23

Solution

a To show that z −
(
1 −
√

2i
)

is a factor, we must check that P
(
1 −
√

2i
)

= 0.

We have

P
(
1 −
√

2i
)

=
(
1 −
√

2i
)3
− 3

(
1 −
√

2i
)2

+ 5
(
1 −
√

2i
)
− 3 = 0

Therefore z −
(
1 −
√

2i
)

is a factor of P(z).

b Since the coefficients of P(z) are real, the complex linear factors occur in conjugate
pairs, so z −

(
1 +
√

2i
)

is also a factor.

To find the third linear factor, first multiply the two complex factors together:(
z −

(
1 −
√

2i
))(

z −
(
1 +
√

2i
))

= z2 −
(
1 −
√

2i
)
z −

(
1 +
√

2i
)
z +

(
1 −
√

2i
)(

1 +
√

2i
)

= z2 −
(
1 −
√

2i + 1 +
√

2i
)
z + 1 + 2

= z2 − 2z + 3

Therefore, by inspection, the linear factors of P(z) = z3 − 3z2 + 5z − 3 are

z − 1 +
√

2i, z − 1 −
√

2i and z − 1

Factorisation of higher degree polynomials
Polynomials of the form z4 − a4 and z6 − a6 are considered in the following example.

Factorise:

a P(z) = z4 − 16
b P(z) = z6 − 1

Example 24

Solution

a P(z) = z4 − 16

= (z2 + 4)(z2 − 4) (difference of two squares)

= (z + 2i)(z − 2i)(z + 2)(z − 2) (sum and difference of two squares)

b P(z) = z6 − 1

= (z3 + 1)(z3 − 1)

We next factorise z3 + 1 and z3 − 1.
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6F Solving polynomial equations over the complex numbers 269

We have

z3 + 1 = (z + 1)(z2 − z + 1)

= (z + 1)
((

z2 − z +
1
4

)
+ 1 −

1
4

)
= (z + 1)

((
z −

1
2

)2
−

3
4

i 2
)

= (z + 1)
(
z −

1
2

+

√
3

2
i
) (

z −
1
2
−

√
3

2
i
)

By a similar method, we have

z3 − 1 = (z − 1)(z2 + z + 1)

= (z − 1)
(
z +

1
2

+

√
3

2
i
) (

z +
1
2
−

√
3

2
i
)

Therefore

z6 − 1 = (z + 1)(z − 1)
(
z −

1
2

+

√
3

2
i
) (

z −
1
2
−

√
3

2
i
) (

z +
1
2

+

√
3

2
i
) (

z +
1
2
−

√
3

2
i
)

Using the TI-Nspire
To find complex factors, use menu > Algebra >

Complex > Factor.

The first operation shown factorises to give
integer coefficients, and the second fully
factorises over the complex numbers.

Using the Casio ClassPad
� Ensure your calculator is in complex mode.
� To factorise over the real numbers:

Enter and highlight z6 − 1. Select Interactive > Transformation > factor.
� To factorise over the complex numbers:

Enter and highlight z6 − 1. Select Interactive > Transformation > factor > rFactor.

Note: Go to Edit > Clear all variables if z has been used to store a complex expression.
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270 Chapter 6: Complex numbers

The fundamental theorem of algebra
The following important theorem has been attributed to Gauss (1799).

Fundamental theorem of algebra

Every polynomial P(z) = anzn + an−1zn−1 + · · · + a1z + a0 of degree n, where n ≥ 1 and
the coefficients ai are complex numbers, has at least one linear factor in the complex
number system.

Given any polynomial P(z) of degree n ≥ 1, the theorem tells us that we can factorise P(z) as

P(z) = (z − α1)Q(z)

for some α1 ∈ C and some polynomial Q(z) of degree n − 1.

By applying the fundamental theorem of algebra repeatedly, it can be shown that:

A polynomial of degree n can be factorised into n linear factors in C:

i.e. P(z) = an(z − α1)(z − α2)(z − α3) . . . (z − αn), where α1,α2,α3, . . . ,αn ∈ C

A polynomial equation can be solved by first rearranging it into the form P(z) = 0, where
P(z) is a polynomial, and then factorising P(z) and extracting a solution from each factor.

If P(z) = (z − α1)(z − α2) . . . (z − αn), then the solutions of P(z) = 0 are α1,α2, . . . ,αn.

The solutions of the equation P(z) = 0 are also referred to as the zeroes or the roots of the
polynomial P(z).

Note: A polynomial equation may have repeated solutions. For example, the equation
(z − 2)3 = 0 has a repeated solution z = 2. This solution has a multiplicity of 3.

Solve each of the following equations over C:

z2 + 64 = 0a z3 + 3z2 + 7z + 5 = 0b z3 − iz2 − 4z + 4i = 0c

Example 25

Solution

a z2 + 64 = 0

(z + 8i)(z − 8i) = 0

z = −8i or z = 8i

b Let P(z) = z3 + 3z2 + 7z + 5.

Then P(−1) = 0, so z + 1 is a factor, by the factor theorem.

P(z) = (z + 1)(z2 + 2z + 5)

= (z + 1)(z2 + 2z + 1 + 4)

= (z + 1)
(
(z + 1)2 − (2i)2)

= (z + 1)(z + 1 − 2i)(z + 1 + 2i)

If P(z) = 0, then z = −1, z = −1 + 2i or z = −1 − 2i.
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6F 6F Solving polynomial equations over the complex numbers 271

c From Example 22:

z3 − iz2 − 4z + 4i = 0

(z − i)(z − 2)(z + 2) = 0

∴ z = i, z = 2 or z = −2

Exercise 6FSkill-
sheet

1Example 21

Example 22

Factorise each of the following polynomials into linear factors over C:

z3 − 4z2 − 4z − 5a z3 − z2 − z + 10b 3z3 − 13z2 + 5z − 4c
2z3 + 3z2 − 4z + 15d z3 − (2 − i)z2 + z − 2 + ie

2Example 23 Let P(z) = z3 + 4z2 − 10z + 12.

a Use the factor theorem to show that z − 1 − i is a linear factor of P(z).
b Write down another complex linear factor of P(z).
c Hence find all the linear factors of P(z) over C.

3 Let P(z) = 2z3 + 9z2 + 14z + 5.

a Use the factor theorem to show that z + 2 − i is a linear factor of P(z).
b Write down another complex linear factor of P(z).
c Hence find all the linear factors of P(z) over C.

4 Let P(z) = z4 + 8z2 + 16z + 20.

a Use the factor theorem to show that z − 1 + 3i is a linear factor of P(z).
b Write down another complex linear factor of P(z).
c Hence find all the linear factors of P(z) over C.

5Example 24 Factorise each of the following into linear factors over C:

z4 − 81a z6 − 64b

6 For each of the following, factorise the first expression into linear factors over C, given
that the second expression is one of the linear factors:

a z3 + (1 − i)z2 + (1 − i)z − i, z − i

b z3 − (2 − i)z2 − (1 + 2i)z − i, z + i

c z3 − (2 + 2i)z2 − (3 − 4i)z + 6i, z − 2i

d 2z3 + (1 − 2i)z2 − (5 + i)z + 5i, z − i

7 For each of the following, find the value of p given that:

a z + 2 is a factor of z3 + 3z2 + pz + 12
b z − i is a factor of z3 + pz2 + z − 4
c z + 1 − i is a factor of 2z3 + z2 − 2z + p
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272 Chapter 6: Complex numbers 6F

8Example 25 Solve each of the following equations over C:

x3 + x2 − 6x − 18 = 0a x3 − 6x2 + 11x − 30 = 0b
2x3 + 3x2 = 11x2 − 6x − 16c x4 + x2 = 2x3 + 36d

9 Let z2 + az + b = 0, where a and b are real numbers. Find a and b if one of the
solutions is:

2ia 3 + 2ib −1 + 3ic

10 a 1 + 3i is a solution of the equation 3z3 − 7z2 + 32z − 10 = 0. Find the other solutions.
b −2 − i is a solution of the equation z4 − 5z2 + 4z + 30 = 0. Find the other solutions.

11 For a cubic polynomial P(x) with real coefficients, P(2 + i) = 0, P(1) = 0 and P(0) = 10.
Express P(x) in the form P(x) = ax3 + bx2 + cx + d and solve the equation P(x) = 0.

12 If z = 1 + i is a zero of the polynomial z3 + az2 + bz + 10 − 6i, find the constants a and b,
given that they are real.

13 The polynomial P(z) = 2z3 + az2 + bz + 5, where a and b are real numbers, has 2 − i as
one of its zeroes.

a Find a quadratic factor of P(z), and hence calculate the real constants a and b.
b Determine the solutions to the equation P(z) = 0.

14 For the polynomial P(z) = az4 + az2 − 2z + d, where a and d are real numbers:

a Evaluate P(1 + i).
b Given that P(1 + i) = 0, find the values of a and d.
c Show that P(z) can be written as the product of two quadratic factors with real

coefficients, and hence solve the equation P(z) = 0.

15 The solutions of the quadratic equation z2 + pz + q = 0 are 1 + i and 4 + 3i. Find the
complex numbers p and q.

16 Given that 1 − i is a solution of the equation z3 − 4z2 + 6z − 4 = 0, find the other
two solutions.

17 Solve each of the following for z:

z2 − (6 + 2i)z + (8 + 6i) = 0a z3 − 2iz2 − 6z + 12i = 0b
z3 − z2 + 6z − 6 = 0c z3 − z2 + 2z − 8 = 0d
6z2 − 3

√
2 z + 6 = 0e z3 + 2z2 + 9z = 0f

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



6G Using De Moivre’s theorem to solve equations 273

6G Using De Moivre’s theorem to solve equations
Equations of the form zn = a, where a ∈ C, are often solved by using De Moivre’s theorem.

Write both z and a in polar form, as z = r cis θ and a = q cisϕ.

Then zn = a becomes

(r cis θ)n = q cisϕ

rn cis(nθ) = q cisϕ (using De Moivre’s theorem)∴

Compare modulus and argument:

rn = q cis(nθ) = cisϕ

r = n
√

q nθ = ϕ + 2kπ where k ∈ Z

θ =
1
n

(ϕ + 2kπ) where k ∈ Z

This will provide all the solutions of the equation.

Solve z3 = 1.

Example 26

Solution
Let z = r cis θ. Then

(r cis θ)3 = 1 cis 0

r3 cis(3θ) = 1 cis 0∴

r3 = 1 and 3θ = 0 + 2kπ where k ∈ Z∴

r = 1 and θ =
2kπ

3
where k ∈ Z∴

Hence the solutions are of the form z = cis
(2kπ

3

)
, where k ∈ Z.

We start finding solutions.

z = cis 0 = 1For k = 0:

z = cis
(2π

3

)
For k = 1:

z = cis
(4π

3

)
= cis

(
−

2π
3

)
For k = 2:

z = cis(2π) = 1For k = 3:

The solutions begin to repeat.

Re(z)

Im(z)

0 1

z = cis 
2π
3

z = cis 
−2π

3

The three solutions are 1, cis
(2π

3

)
and cis

(
−

2π
3

)
.

The solutions are shown to lie on the unit circle at intervals of
2π
3

around the circle.

Note: An equation of the form z3 = a, where a ∈ R, has three solutions. Since a ∈ R, two of
the solutions will be conjugate to each other and the third must be a real number.
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274 Chapter 6: Complex numbers

Solve z2 = 1 + i.

Example 27

Solution
Let z = r cis θ. Note that 1 + i =

√
2 cis

(
π

4

)
.

(r cis θ)2 =
√

2 cis
(
π

4

)
r2 cis(2θ) = 2

1
2 cis

(
π

4

)
∴

r = 2
1
4 and 2θ =

π

4
+ 2kπ where k ∈ Z∴

r = 2
1
4 and θ =

π

8
+ kπ where k ∈ Z∴

Hence z = 2
1
4 cis

(
π

8
+ kπ

)
, where k ∈ Z.

z = 2
1
4 cis

(
π

8

)
For k = 0:

z = 2
1
4 cis

(9π
8

)
For k = 1:

= 2
1
4 cis

(
−

7π
8

)
Re(z)

Im(z)

0

2  cis −7π
8

1
4

2  cis π
8

1
4

Note: If z1 is a solution of z2 = a, where a ∈ C, then the other solution is z2 = −z1.

In Example 27, we found the two square roots of the complex number 1 + i. More generally:

Solutions of zn = a

For n ∈ N and a ∈ C, the solutions of the equation zn = a are called the nth roots of a.

� The solutions of zn = a lie on a circle with centre the origin and radius |a|
1
n .

� There are n solutions and they are equally spaced around the circle at intervals of
2π
n

.
This observation can be used to find all solutions if one is known.

The following example shows an alternative method for finding square roots.

Solve z2 = 5 + 12i using z = a + bi, where a, b ∈ R. Hence factorise z2 − 5 − 12i.

Example 28

Solution

Let z = a + bi. Then z2 = (a + bi)2

= a2 + 2abi + b2i 2

= (a2 − b2) + 2abi
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So z2 = 5 + 12i becomes

(a2 − b2) + 2abi = 5 + 12i

Equating coefficients:

a2 − b2 = 5 and 2ab = 12

a2 −

(6
a

)2
= 5 b =

6
a

a2 −
36
a2 = 5

a4 − 36 = 5a2

a4 − 5a2 − 36 = 0

(a2 − 9)(a2 + 4) = 0

a2 − 9 = 0

(a + 3)(a − 3) = 0

a = −3 or a = 3∴

When a = −3, b = −2 and when a = 3, b = 2.

So the solutions to the equation z2 = 5 + 12i are z = −3 − 2i and z = 3 + 2i.

Hence z2 − 5 − 12i = (z + 3 + 2i)(z − 3 − 2i).

Roots of unity
In this section, we have used De Moivre’s theorem to solve equations of the form zn = a.
Here we consider an important special case.

Solutions of zn = 1

For n ∈ N, the solutions of the equation zn = 1 are called the nth roots of unity.

� The solutions of zn = 1 lie on the unit circle.

� There are n solutions and they are equally spaced around the circle at intervals of
2π
n

.
This observation can be used to find all solutions, since z = 1 is one solution.

From Example 26, we see that the cube roots of unity are 1, cis
(2π

3

)
and cis

(4π
3

)
.

More generally, consider any natural number n ≥ 2. Using De Moivre’s theorem, we can
show that the nth roots of unity are

1, cis
(2π

n

)
, cis

(4π
n

)
, . . . , cis

(2(n − 1)π
n

)
So the nth roots of unity form a geometric sequence with common ratio ω = cis

(2π
n

)
.

We can list the terms of this sequence as 1,ω,ω2, . . . ,ωn−1. The sum of the terms is

1 + ω + ω2 + · · · + ωn−1 =
ωn − 1
ω − 1

= 0

since ωn = 1.
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This Argand diagram shows the fifth roots of unity.
Note that they are equally spaced around the unit
circle.

0 1

ω = cis
2π
5

ω2

ω3

ω4

Re(z)

Im(z)

Exercise 6GSkill-
sheet

1Example 26

Example 27

For each of the following, solve the equation over C and show the solutions on an
Argand diagram:

z2 + 1 = 0a z3 = 27ib z2 = 1 +
√

3ic
z2 = 1 −

√
3id z3 = ie z3 + i = 0f

2 Find all the cube roots of the following complex numbers:

4
√

2 − 4
√

2ia −4
√

2 + 4
√

2ib −4
√

3 − 4ic
4
√

3 − 4id −125ie −1 + if

3Example 28 Let z = a + bi such that z2 = 3 + 4i, where a, b ∈ R.

a Find equations in terms of a and b by equating real and imaginary parts.
b Find the values of a and b and hence find the square roots of 3 + 4i.

4 Using the method of Question 3, find the square roots of each of the following:

−15 − 8ia 24 + 7ib −3 + 4ic −7 + 24id

5 Find the solutions of the equation z4 − 2z2 + 4 = 0 in polar form.

6 a Find a, b ∈ R given that z5 − 1 = (z − 1)(z2 + az + 1)(z2 + bz + 1).

Hint: Use cos
(2π

5

)
=

1
4

(
√

5 − 1) and the polar form of the fifth roots of unity.

b Find a, b ∈ R given that z6 − 1 = (z − 1)(z + 1)(z2 + az + 1)(z2 + bz + 1).

Hint: Use the value of cos
(2π

6

)
and the polar form of the sixth roots of unity.

7 Let n ∈ N and consider the nth roots of unity 1,ω,ω2, . . . ,ωn−1.

a Prove that if n is odd, then the product 1 × ω × ω2 × · · · × ωn−1 is equal to 1.
b Prove that if n is even, then the product 1 × ω × ω2 × · · · × ωn−1 is equal to −1.

8 Find the solutions of the equation z2 − i = 0 in Cartesian form. Hence factorise z2 − i.
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9 Find the solutions of the equation z8 + 1 = 0 in polar form. Hence factorise z8 + 1.

10 a By expanding the left-hand side, find a, b ∈ R such that (a + bi)2 = 1 + i.
b Solve the equation z2 = 1 + i by using De Moivre’s theorem.
c By comparing your answers to a and b, find the exact values of cos

(
π

8

)
and sin

(
π

8

)
.

d Hence, solve the equation z4 = i.

6H Sketching subsets of the complex plane
This section is revision of a topic from Specialist Mathematics Units 1 & 2.

Particular sets of points of the complex plane can be described by placing restrictions on z.
For example:

�
{
z : Re(z) = 6

}
is the straight line parallel to the imaginary axis with each point on the line

having real part 6.
�

{
z : Im(z) = 2 Re(z)

}
is the straight line through the origin with gradient 2.

The set of all points which satisfy a given condition is called the locus of the condition
(plural loci). When sketching a locus, a solid line is used for a boundary which is included in
the locus, and a dashed line is used for a boundary which is not included.

On an Argand diagram, sketch the subset S of the complex plane, where

S =
{
z : |z − 1| = 2

}
Example 29

Solution
Method 1: Using algebra
Let z = x + yi. Then

|z − 1| = 2

|x + yi − 1| = 2

|(x − 1) + yi| = 2√
(x − 1)2 + y2 = 2

(x − 1)2 + y2 = 4∴

Re(z)

Im(z)

0 1 + 0i

−1 + 0i

3 + 0i

This demonstrates that S is represented by the circle with centre 1 + 0i and radius 2.

Method 2: Using geometry
If z1 and z2 are complex numbers, then |z2 − z1| is the distance between the points on the
complex plane corresponding to z1 and z2.

Hence
{
z : |z − 1| = 2

}
is the set of all points that are distance 2 from 1 + 0i. That is, the set

S is represented by the circle with centre 1 + 0i and radius 2.
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278 Chapter 6: Complex numbers

On an Argand diagram, sketch the subset S of the complex plane, where

S =
{
z : |z − 2| = |z − (1 + i)|

}
Example 30

Solution
Method 1: Using algebra
Let z = x + yi. Then

|z − 2| = |z − (1 + i)|

|x + yi − 2| = |x + yi − (1 + i)|

|x − 2 + yi| = |x − 1 + (y − 1)i|√
(x − 2)2 + y2 =

√
(x − 1)2 + (y − 1)2∴

Squaring both sides of the equation and
expanding:

x2 − 4x + 4 + y2 = x2 − 2x + 1 + y2 − 2y + 1

−4x + 4 = −2x − 2y + 2

y = x − 1∴

1 + i

0 1 2−1−2

−1

1

2

Re(z)

Im(z)

Method 2: Using geometry
The set S consists of all points in the complex plane that are equidistant from 2 and 1 + i.

In the Cartesian plane, this set corresponds to the perpendicular bisector of the line
segment joining (2, 0) and (1, 1). The midpoint of the line segment is ( 3

2 , 1
2 ), and the

gradient of the line segment is −1.

Therefore the equation of the perpendicular bisector is

y − 1
2 = 1(x − 3

2 )

which simplifies to y = x − 1.

Sketch the subset of the complex plane defined by each of the following conditions:

Arg(z) =
π

3
a Arg(z + 3) = −

π

3
b Arg(z) ≤

π

3
c

Example 31

Solution

a Arg(z) =
π

3
defines a ray or a half line.

Note: The origin is not included.

Re(z)

Im(z)

π
3

0
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6H Sketching subsets of the complex plane 279

b First draw the graph of Arg(z) = −
π

3
. The graph of Arg(z + 3) = −

π

3
is obtained

by a translation of 3 units to the left.

Re(z)

Im(z)

0
−π

3

Re(z)

Im(z)

0−3

c Since −π < Arg(z) ≤ π in general, the condition Arg(z) ≤
π

3
implies −π < Arg(z) ≤

π

3
.

Re(z)

Im(z)

region required

boundary not included

Describe the locus defined by |z + 3| = 2|z − i|.

Example 32

Solution
Let z = x + yi. Then

|z + 3| = 2|z − i|

|(x + 3) + yi| = 2|x + (y − 1)i|√
(x + 3)2 + y2 = 2

√
x2 + (y − 1)2∴

Squaring both sides gives

x2 + 6x + 9 + y2 = 4(x2 + y2 − 2y + 1)

0 = 3x2 + 3y2 − 6x − 8y − 5

5 = 3(x2 − 2x) + 3
(
y2 −

8
3

y
)

5
3

= (x2 − 2x + 1) +

(
y2 −

8
3

y +
16
9

)
−

25
9

40
9

= (x − 1)2 +

(
y −

4
3

)2
∴

The locus is the circle with centre 1 +
4
3

i and radius
2
√

10
3

.

Note: For a, b ∈ C and k ∈ R+ \ {1}, the equation |z − a| = k|z − b| defines a circle.
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Exercise 6HSkill-
sheet

1Example 29

Example 30

Illustrate each of the following on an Argand diagram:

2 Im(z) = Re(z)a Im(z) + Re(z) = 1b |z − 2| = 3c
|z − i| = 4d |z − (1 +

√
3i)| = 2e |z − (1 − i)| = 6f

2 Sketch
{
z : z = i z

}
in the complex plane.

3 Describe the subset of the complex plane defined by
{
z : |z − 1| = |z + 1|

}
.

4Example 31 Sketch the subset of the complex plane defined by each of the following conditions:

Arg(z) =
π

4
a Arg(z − 2) = −

π

4
b Arg(z) ≤

π

4
c

5 Prove that 3|z − 1|2 = |z + 1|2 if and only if |z − 2|2 = 3, for any complex number z.
Hence sketch the set S =

{
z :
√

3 |z − 1| = |z + 1|
}

on an Argand diagram.

6Example 32 Sketch each of the following:{
z : |z + 2i| = 2|z − i|

}
a

{
z : Im(z) = −2

}
b{

z : z + z = 5
}

c
{
z : zz = 5

}
d{

z : Re(z2) = Im(z)
}

e
{

z : Arg(z − i) =
π

3

}
f

7 On the Argand plane, sketch the curve defined by each of the following equations:∣∣∣∣∣z − 2
z

∣∣∣∣∣ = 1a
∣∣∣∣∣z − 1 − i

z

∣∣∣∣∣ = 1b

8 If the real part of
z + 1
z − 1

is zero, find the locus of points representing z in the complex

plane.

9 Given that z satisfies the equation 2|z − 2| = |z − 6i|, show that z is represented by a point
on a circle and find the centre and radius of the circle.

10 On an Argand diagram with origin O, the point P represents z and Q represents
1
z

.

Prove that O, P and Q are collinear and find the ratio OP : OQ in terms of |z|.

11 Find the locus of points described by each of the following conditions:

|z − (1 + i)| = 1a |z − 2| = |z + 2i|b

Arg(z − 1) =
π

2
c Arg(z + i) =

π

4
d

12 Let w = 2z. Describe the locus of w if z describes a circle with centre 1 + 2i and
radius 3.

13 a Find the solutions of the equation z2 + 2z + 4 = 0.
b Show that the solutions satisfy:

i |z| = 2 ii |z − 1| =
√

7 iii z + z = −2
c On a single diagram, sketch the loci defined by the equations in b.
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Nrich

Chapter summary

� The imaginary number i has the property i 2 = −1.

� The set of complex numbers is C = { a + bi : a, b ∈ R }.

� For a complex number z = a + bi:

• the real part of z is Re(z) = a • the imaginary part of z is Im(z) = b.

� Complex numbers z1 and z2 are equal if and only if Re(z1) = Re(z2) and Im(z1) = Im(z2).

� An Argand diagram is a geometric representation of C.

� The modulus of z, denoted by |z|, is the distance from the origin to the point representing z
in an Argand diagram. Thus |a + bi| =

√
a2 + b2.

� The complex number z = a + bi can be expressed in
polar form as

z = r(cos θ + i sin θ)

= r cis θ

where r = |z| =
√

a2 + b2, a = r cos θ, b = r sin θ.
This is also called modulus–argument form.

Im(z)

0 a

b
r

P z = a + bi

θ
Re(z)

� The angle θ, measured anticlockwise from the horizontal axis, is called an argument of z.

� For a non-zero complex number z, the argument θ of z such that −π < θ ≤ π is called the
principal value of the argument of z and is denoted by Arg z.

� The complex conjugate of z, denoted by z, is the reflection of z in the real axis.
If z = a + bi, then z = a − bi. If z = r cis θ, then z = r cis(−θ). Note that zz = |z|2.

� Division of complex numbers:

z1

z2
=

z1

z2
×

z2

z2
=

z1z2

|z2|
2

� Multiplication and division in polar form:
Let z1 = r1 cis θ1 and z2 = r2 cis θ2. Then

z1z2 = r1r2 cis(θ1 + θ2) and
z1

z2
=

r1

r2
cis(θ1 − θ2)

� De Moivre’s theorem (r cis θ)n = rn cis(nθ), where n ∈ Z

� Conjugate root theorem If a polynomial has real coefficients, then the complex roots
occur in conjugate pairs.

� Fundamental theorem of algebra Every non-constant polynomial with complex
coefficients has at least one linear factor in the complex number system.

� A polynomial of degree n can be factorised over C into a product of n linear factors.

� If z1 is a solution of z2 = a, where a ∈ C, then the other solution is z2 = −z1.

� The solutions of zn = a, where a ∈ C, lie on the circle centred at the origin with

radius |a|
1
n . The solutions are equally spaced around the circle at intervals of

2π
n

.

� The distance between z1 and z2 in the complex plane is |z2 − z1|.
For example, the set

{
z : |z − (1 + i)| = 2

}
is a circle with centre 1 + i and radius 2.
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Technology-free questions

1 Express each of the following in the form a + bi, where a, b ∈ R:

3 + 2i + 5 − 7ia i 3b (3 − 2i)(5 + 7i)c

(3 − 2i)(3 + 2i)d
2

3 − 2i
e

5 − i
2 + i

f

3i
2 + i

g (1 − 3i)2h
(5 + 2i)2

3 − i
i

2 Solve each of the following equations for z:

(z − 2)2 + 9 = 0a
z − 2i

z + (3 − 2i)
= 2b z2 + 6z + 12 = 0c

z4 + 81 = 0d z3 − 27 = 0e 8z3 + 27 = 0f

3 a Show that 2 − i is a solution of the equation z3 − 2z2 − 3z + 10 = 0. Hence solve
the equation for z.

b Show that 3 − 2i is a solution of the equation x3 − 5x2 + 7x + 13 = 0. Hence solve the
equation for x ∈ C.

c Show that 1 + i is a solution of the equation z3 − 4z2 + 6z − 4 = 0. Hence find the
other solutions of this equation.

4 Express each of the following polynomials as a product of linear factors:

2x2 + 3x + 2a x3 − x2 + x − 1b x3 + 2x2 − 4x − 8c

5 If (a + bi)2 = 3 − 4i, find the possible values of a and b, where a, b ∈ R.

6 Pair each of the transformations given on the left with the appropriate operation on the
complex numbers given on the right:

a reflection in the real axis i multiply by −1
b rotation anticlockwise by 90◦ about O ii multiply by i

c rotation through 180◦ about O iii multiply by −i

d rotation anticlockwise about O through 270◦ iv take the conjugate

7 If (a + bi)2 = −24 − 10i, find the possible values of a and b, where a, b ∈ R.

8 Find the values of a and b if f (z) = z2 + az + b and f (−1 − 2i) = 0, where a, b ∈ R.

9 Express
1

1 +
√

3i
in the form r cis θ, where r > 0 and −π < θ ≤ π.

10 On an Argand diagram with origin O, the point P represents 3 + i. The point Q
represents a + bi, where both a and b are positive. If the triangle OPQ is equilateral,
find a and b.

11 Let z = 1 − i. Find:

2za
1
z

b |z7|c Arg(z7)d

12 Find the value of a if
1

a + 3i
+

1
a − 3i

=
4
13

, where a ∈ R.
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13 Let w = 1 + i and z = 1 −
√

3i.

a Write down:

i |w| ii |z| iii Arg w iv Arg z

b Hence write down
∣∣∣∣∣wz

∣∣∣∣∣ and Arg(wz).

14 Express
√

3 + i in polar form. Hence find
(√

3 + i
)7 and express in Cartesian form.

15 Consider the equation z4 − 2z3 + 11z2 − 18z + 18 = 0. Find all real values of r for which
z = ri is a solution of the equation. Hence find all the solutions of the equation.

16 Express (1 − i)9 in Cartesian form.

17 Consider the polynomial P(z) = z3 + (2 + i)z2 + (2 + 2i)z + 4. Find the real numbers k
such that ki is a zero of P(z). Hence, or otherwise, find the three zeroes of P(z).

18 a Find the three linear factors of z3 − 2z + 4.
b What is the remainder when z3 − 2z + 4 is divided by z − 3?

19 If a and b are complex numbers such that Im(a) = 2, Re(b) = −1 and a + b = −ab,
find a and b.

20 a Express S =
{
z : |z − (1 + i)| ≤ 1

}
in Cartesian form.

b Sketch S on an Argand diagram.

21 Describe
{
z : |z + i| = |z − i|

}
.

22 Let S =

{
z : z = 2 cis θ, 0 ≤ θ ≤

π

2

}
. Sketch:

a S b T =
{
w : w = z2, z ∈ S

}
c U =

{
v : v =

2
z

, z ∈ S
}

23 Find the centre of the circle which passes through the points −2i, 1 and 2 − i.

24 On an Argand diagram, points A and B represent a = 5 + 2i and b = 8 + 6i.

a Find i(a − b) and show that it can be represented by a vector perpendicular to
−−→
AB and

of the same length as
−−→
AB.

b Hence find complex numbers c and d, represented by C and D, such that ABCD is
a square.

25 Solve each of the following for z ∈ C:

z3 = −8a z2 = 2 + 2
√

3ib

26 a Factorise x6 − 1 over R.
b Factorise x6 − 1 over C.
c Determine all the sixth roots of unity. (That is, solve x6 = 1 for x ∈ C.)

27 Let z be a complex number with a non-zero imaginary part. Simplify:∣∣∣∣∣ z
z

∣∣∣∣∣a
i
(
Re(z) − z

)
Im(z)

b Arg z + Arg
(1

z

)
c
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28 Let z, w ∈ C. Given that |z| = |w| = 2 and |z + w| = 3, find the value of
∣∣∣∣∣1z +

1
w

∣∣∣∣∣.
29 If Arg z =

π

4
and Arg(z − 3) =

π

2
, find Arg(z − 6i).

30 a If Arg(z + 2) =
π

2
and Arg(z) =

2π
3

, find z.

b If Arg(z − 3) = −
3π
4

and Arg(z + 3) = −
π

2
, find z.

31 A complex number z satisfies the inequality
∣∣∣z + 2 − 2

√
3i

∣∣∣ ≤ 2.

a Sketch the corresponding region representing all possible values of z.
b i Find the least possible value of |z|.

ii Find the greatest possible value of Arg z.

Multiple-choice questions

1 If z1 = 5 cis
(
π

3

)
and z2 = 2 cis

(3π
4

)
, then z1z2 is equal to

7 cis
(
π2

4

)
A 7 cis

(13π
12

)
B 10 cis

(
π

4

)
C 10 cis

(
π2

4

)
D 10 cis

(
−

11π
12

)
E

2 The complex number z shown in the diagram is
best represented by

A 5 cis(0.93)
B 5 cis(126.87)
C 5 cis(2.21)
D 25 cis(126.87)
E 25 cis(2.21)

Re(z)

Im(z)

0−3

4
z

3 If (x + yi)2 = −32i for real values of x and y, then

x = 4, y = 4A x = −4, y = 4B
x = 4, y = −4C x = 4, y = −4 or x = −4, y = 4D
x = 4, y = 4 or x = −4, y = −4E

4 If u = 1 − i, then
1

3 − u
is equal to

2
3

+
1
3

iA
2
5

+
1
5

iB
2
3
−

1
3

iC −
2
5

+
1
5

iD
2
5
−

1
5

iE

5 The linear factors of z2 + 6z + 10 over C are

(z + 3 + i)2A (z + 3 − i)2B (z + 3 + i)(z − 3 + i)C
(z + 3 − i)(z + 3 + i)D (z + 3 + i)(z − 3 − i)E

6 The solutions of the equation z3 + 8i = 0 are
√

3 − i, −2i, 2iA
√

3 − i, −
√

3 − i, 2iB −
√

3 − i, −2, −2iC
−
√

3 − i,
√

3 − i, −2iD
√

3 − i, −8i, 2iE
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7
√

6
2

(
1 + i

)
is expressed in polar form as

√
3 cis

(
−
π

4

)
A

√
3 cis

(
−

7π
4

)
B −

√
3 cis

(
−
π

4

)
C

−
√

3 cis
(
−

7π
4

)
D

√
3 cis

(7π
4

)
E

8 If z = 1 + i is one solution of an equation of the form z4 = a, where a ∈ C, then the other
solutions are

−1, 1, 0A −1, 1, 1 − iB −1 + i, −1 − i, 1 − iC
−1 + i, −1 − i, 1D −1 + i, −1 − i, −1E

9 The square roots of −2 − 2
√

3i in polar form are

2 cis
(
−

2π
3

)
, 2 cis

(
π

3

)
A 2 cis

(
−
π

3

)
, 2 cis

(2π
3

)
B 4 cis

(
−

2π
3

)
, 4 cis

(
π

3

)
C

4 cis
(
−
π

3

)
, 4 cis

(2π
3

)
D 4 cis

(
−
π

3

)
, 4 cis

(
π

3

)
E

10 The zeroes of the polynomial 2x2 + 6x + 7 are α and β. The value of |α − β| is
√

5A 2
√

5B 4
√

5C
√

10
2

D
√

5
10

E

Extended-response questions

1 Let z = 4 cis
(5π

6

)
and w =

√
2 cis

(
π

4

)
.

a Find |z7| and Arg(z7).

b Show z7 on an Argand diagram.

c Express
z
w

in the form r cis θ.

d Express z and w in Cartesian form, and hence express
z
w

in Cartesian form.

e Use the results of d to find an exact value for tan
(7π

12

)
in the form a +

√
b, where a

and b are rational.

f Use the result of e to find the exact value of tan
(7π

6

)
.

2 Let v = 2 + i and P(z) = z3 − 7z2 + 17z − 15.

a Show by substitution that P(2 + i) = 0.
b Find the other two solutions of the equation P(z) = 0.
c Let i be the unit vector in the positive Re(z)-direction and let j be the unit vector in

the positive Im(z)-direction.
Let A be the point on the Argand diagram corresponding to v = 2 + i.
Let B be the point on the Argand diagram corresponding to 1 − 2i.
Show that

−−→
OA is perpendicular to

−−→
OB.

d Find a polynomial with real coefficients and with roots 3, 1 − 2i and 2 + i.
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3 a Find the exact solutions in C for the equation z2 − 2
√

3z + 4 = 0, writing your
solutions in Cartesian form.

b i Plot the two solutions from a on an Argand diagram.
ii Find the equation of the circle, with centre the origin, which passes through these

two points.
iii Find the value of a ∈ Z such that the circle passes through (0,±a).
iv Let Q(z) = (z2 + 4)(z2 − 2

√
3z + 4). Find the polynomial P(z) such that

Q(z)P(z) = z6 + 64 and explain the significance of the result.

4 a Express −4
√

3 − 4i in exact polar form.
b Find the cube roots of −4

√
3 − 4i.

c Carefully plot the three cube roots of −4
√

3 − 4i on an Argand diagram.
d i Show that the cubic equation z3 − 3

√
3iz2 − 9z + 3

√
3i = −4

√
3 − 4i can be written

in the form (z − w)3 = −4
√

3 − 4i, where w is a complex number.
ii Hence find the solutions of the equation z3 − 3

√
3iz2 − 9z +

(
3
√

3 + 4
)
i + 4
√

3 = 0,
in exact Cartesian form.

5 The points X, Y and Z correspond to the numbers 4
√

3 + 2i, 5
√

3 + i and 6
√

3 + 4i.

a Find the vector
−−→
XY and the vector

−−→
XZ.

b Let z1 and z2 be the complex numbers corresponding to the vectors
−−→
XY and

−−→
XZ.

Find z3 such that z2 = z3z1.
c By writing z3 in modulus–argument form, show that XYZ is half an equilateral

triangle XWZ and give the complex number to which W corresponds.
d The triangle XYZ is rotated through an angle of

π

3
anticlockwise about Y . Find the

new position of X.

6 a Sketch the region T in the complex plane which is obtained by reflecting

S =
{
z : Re(z) ≤ 2

}
∩

{
z : Im(z) < 2

}
∩

{
z :

π

6
< Arg(z) <

π

3

}
in the line defined by |z + i| = |z − 1|.

b Describe the region T by using set notation in a similar way to that used in a to
describe S .

7 Consider the equation x2 + 4x − 1 + k(x2 + 2x + 1) = 0. Find the set of real values k,
where k , −1, for which the two solutions of the equation are:

real and distincta real and equalb
complex with positive real part and non-zero imaginary part.c

8 a If z = cos θ + i sin θ, prove that
1 + z
1 − z

= i cot
(
θ

2

)
.

b On an Argand diagram, the points O, A, Z, P and Q represent the complex numbers
0, 1, z, 1 + z and 1 − z respectively. Show these points on a diagram.

c Prove that the magnitude of ∠POQ is
π

2
. Find, in terms of θ, the ratio

|OP|
|OQ|

.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
eview

Chapter 6 review 287

9 A regular hexagon LMNPQR has its centre at the origin O and its vertex L at the point
z = 4.

a Indicate in a diagram the region in the hexagon in which the inequalities |z| ≥ 2 and

−
π

3
≤ Arg z ≤

π

3
are satisfied.

b Find, in the form |z − c| = a, the equation of the circle through O, M and R.
c Find the complex numbers corresponding to the points N and Q.
d The hexagon is rotated clockwise about the origin by 45◦. Express in the form r cis θ

the complex numbers corresponding to the new positions of N and Q.

10 a A complex number z = a + bi is such that |z| = 1. Show that
1
z

= z.

b Let z1 =
1
2
−

√
3

2
i and z2 =

√
3

2
+

1
2

i. If z3 =
1
z1

+
1
z2

, find z3 in polar form.

c On a diagram, show the points z1, z2, z3 and z4 =
1
z3

.

11 a Let P(z) = z3 + 3pz + q. It is known that P(z) = (z − k)2(z − a).

i Show that p = −k2. ii Find q in terms of k. iii Show that 4p3 + q2 = 0.
b Let h(z) = z3 − 6iz + 4 − 4i. It is known that h(z) = (z − b)2(z − c). Find the values

of b and c.

12 a Let z be a complex number with |z| = 6. Let A be the point representing z. Let B be
the point representing (1 + i)z.

i Find |(1 + i)z|.
ii Find |(1 + i)z − z|.
iii Prove that OAB is an isosceles right-angled triangle.

b Let z1 and z2 be non-zero complex numbers satisfying z2
1 − 2z1z2 + 2z2

2 = 0.
If z1 = α z2:

i Show that α = 1 + i or α = 1 − i.
ii For each of these values of α, describe the geometric nature of the triangle whose

vertices are the origin and the points representing z1 and z2.

13 a Let z = −12 + 5i. Find:

i |z| ii Arg(z) correct to two decimal places in degrees
b Let w2 = −12 + 5i and α = Arg(w2).

i Write cosα and sinα in exact form.
ii Using the result r2(cos(2θ) + i sin(2θ)

)
= |w2| (cosα + i sinα), write r, cos(2θ)

and sin(2θ) in exact form.
iii Use the result of ii to find sin θ and cos θ.
iv Find the two values of w.

c Use a Cartesian method to find w.
d Find the square roots of 12 + 5i and comment on their relationship with the square

roots of −12 + 5i.
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14 a Find the locus defined by 2zz + 3z + 3z − 10 = 0.
b Find the locus defined by 2zz + (3 + i)z + (3 − i)z − 10 = 0.
c Find the locus defined by αzz + βz + βz + γ = 0, where α, β and γ are real.
d Find the locus defined by αzz + βz + βz + γ = 0, where α, γ ∈ R and β ∈ C.

15 a Expand (cos θ + i sin θ)5.
b By De Moivre’s theorem, we know that (cis θ)5 = cis(5θ). Use this result and the

result of a to show that:

i cos(5θ) = 16 cos5 θ − 20 cos3 θ + 5 cos θ

ii
sin(5θ)
sin θ

= 16 cos4 θ − 12 cos2 θ + 1 if sin θ , 0

16 a If z denotes the complex conjugate of the number z = x + yi, find the Cartesian
equation of the line given by (1 + i)z + (1 − i)z = −2.

Sketch on an Argand diagram the set
{

z : (1 + i)z + (1 − i)z = −2, Arg z ≤
π

2

}
.

b Let S =
{

z :
∣∣∣z − (

2
√

2 + 2
√

2i
)∣∣∣ ≤ 2

}
.

i Sketch S on an Argand diagram.
ii If z belongs to S , find the maximum and minimum values of |z|.
iii If z belongs to S , find the maximum and minimum values of Arg(z).

17 The roots of the polynomial z2 + 2z + 4 are denoted by α and β.

a Find α and β in modulus–argument form.
b Show that α3 = β3.
c Find a quadratic polynomial for which the roots are α + β and α − β.
d Find the exact value of αβ + βα.

18 a Let w = 2 cis θ and z = w +
1
w

.

i Find z in terms of θ.

ii Show that z lies on the ellipse with equation
x2

25
+

y2

9
=

1
4

.

iii Show that |z − 2|2 =

(5
2
− 2 cos θ

)2
.

iv Show that |z − 2| + |z + 2| = 5.

b Let w = 2i cis θ and z = w −
1
w

.

i Find z in terms of θ.

ii Show that z lies on the ellipse with equation
y2

25
+

x2

9
=

1
4

.

iii Show that |z − 2i| + |z + 2i| = 5.
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7A Technology-free questions
Logic and proof
1 Let n ∈ Z. Consider the statement: If n2 − 6n + 5 is even, then n is odd.

a Write down the contrapositive of the statement.
b Prove this statement by proving the contrapositive.
c Write down the converse of the statement.
d Prove the converse.

2 a Use a proof by contradiction to show that there are no positive integers m and n such
that m2 − n2 = 1.

b Find a counterexample to the claim that there are no positive integers m and n such
that 2m2 − mn = 1.

3 a Prove by mathematical induction that (1 + i)4n = (−4)n, where n is a natural number.
b Now give a proof of the same result by using De Moivre’s theorem.

4 Prove that
√

2 +
√

6 >
√

14.

5 Prove that
3 1
0 2

n

=

3n 3n − 2n

0 2n

 for all n ∈ N.

6 a Using proof by contradiction, show that both log6 3 and log6 2 are irrational.
b Hence, show that the sum of two irrational numbers may be rational.
c Let a and b be irrational. Prove by contradiction that a + b or a − b is irrational.

7 Prove by mathematical induction that, for every positive integer n:

7n + 2 is divisible by 3a 52n + 3n − 1 is divisible by 9.b
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8 Provide a counterexample to each of the following statements:

a If p and q are prime numbers, then pq + 1 is also a prime number.
b For all a ∈ Z, if a2 is divisible by 9, then a is divisible by 9.

9 Use induction to prove that

1 × 4 + 2 × 5 + · · · + n(n + 3) =
1
3

n(n + 1)(n + 5)

for each natural number n.

10 Prove by mathematical induction that, for every positive integer n:
1
2!

+
2
3!

+ · · · +
n

(n + 1)!
= 1 −

1
(n + 1)!

11 Prove by mathematical induction that
n∑

r=1

r(2r + 1) =
1
6

n(n + 1)(4n + 5)

for all positive integers n.

12 Use induction to prove that 52n−1 + 22n−1 − 7 is divisible by 6, for all n ∈ N.

13 a Let n ∈ N. Prove that when n2 is divided by 4, the remainder is either 0 or 1.
b Hence, prove that

√
4a + 3 is irrational, where a is a natural number.

Circular functions
14 a Given that sin

(
π

12

)
=
−1 +

√
3

2
√

2
, find cos2

(
π

12

)
.

b Given that cos
(
π

5

)
=

1
4
(
1 +
√

5
)
, find:

i sec
(
π

5

)
ii tan2

(
π

5

)
15 Let f (x) = 3 arcsin(2x + 1) + 4. State the implied domain and range of f .

16 Find the points of intersection of the graph of y = sec2
(
πx
3

)
with the line y = 2

for 0 < x < 6.

17 Find all real solutions of 4 cos x = 2 cot x.

18 a Solve the equation sin(4x) = cos(2x) for 0 ≤ x ≤ π.
b Consider the graphs of f (x) = cosec(4x), 0 ≤ x ≤ π, and g(x) = sec(2x), 0 ≤ x ≤ π.

i Find the coordinates of the points of intersection of these two graphs.
ii Sketch these graphs on the same set of axes.

c On another set of axes, sketch the graph of h(x) = 2 arccos
( x − 2

2

)
, clearly labelling

the endpoints.
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19 a Find the maximal domain and range of the function y = a + b arcsin(cx + d), where
a, b, c, d ∈ R+.

b Sketch the graph of y = 2π + 4 arcsin(3x + 1).

Vectors
20 Consider the vectors a = −2i + 3 j − k, b = i − 3 j + 2k and c = mi + n j, where n , 0.

Given that a, b and c form a linearly dependent set of vectors, find the ratio
m
n

.

21 Points A(2, 1, 2), B(−3, 2, 5) and C(4, 5,−2) are three vertices of a parallelogram. The
fourth vertex of the parallelogram is at point D. Show that there are three possible
locations for the point D, and find their coordinates.

22 Resolve the vector 3i + 2 j− k into two components: one parallel to the vector 2i + j + 2k
and the other perpendicular to it.

23 Let O be the origin and consider points A(2, 2, 1) and B(1, 2, 1).

a Find
−−→
AB. b Find cos(∠AOB). c Find the area of triangle AOB.

24 Consider the vectors a = −2i − 3 j + mk, b = i −
3
2

j + 2k and c = 2i + j − k.

a Find the values of m for which |a| =
√

38.
b Find the value of m such that a is perpendicular to b.
c Find −2b + 3c.
d Hence find m such that a, b and c are linearly dependent.

25 Points A and B have position vectors
−−→
OA = i +

√
3 j and

−−→
OB = 3i − 4k. Point P lies

on AB with
−−→
AP = λ

−−→
AB.

a Show that
−−→
OP = (1 + 2λ)i +

√
3(1 − λ) j − 4λk.

b Hence find λ if OP is the bisector of ∠AOB.

26 a Find a unit vector perpendicular to the line 2y + 3x = 6.
b Let A be the point (2,−5) and let P be the point on the line 2y + 3x = 6 such that AP

is perpendicular to the line. Find:

i
−−→
AP ii |

−−→
AP|

27 Points A, B and C are defined by position vectors a, b and c respectively.

a Let a = 2i − 2 j + 5k, b = −i + 2 j − 6k and c = −4i + 2 j − 3k. Show that the vectors
a, b and c are linearly dependent by finding values of m and n such that c = ma + nb.

b If P is a point on AB such that
−−→
OP = λc, find the value of λ.

28 Consider the vectors a = 2mi + 3m j + 6mk and b = 2i + j + 2k, where m ∈ R+.

a Given that a is a unit vector, find the exact value of m.
b Using the value of m from part a, determine:

i a · b ii a × b
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29 A parallelogram OABC has one vertex at the origin O and two other vertices at the
points A(0, 2, 7) and B(0, 3, 9). Find the area of OABC.

30 Find the area of the triangle PQR with vertices:

P(2, 2, 0), Q(0, 0, 0) and R(4, 3, 1)a P(3, 2, 0), Q(1, 2, 0) and R(2, 3, 1)b

31 Find a if the triangle with vertices A(a, 1, 2), B(1, 0, 1) and C(0, 1, 1) has area 1.

Vector equations of lines and planes
32 For each of the following, find a vector equation of the line through the two points:

(0, 0, 0), (3, 0, 4)a (0, 2, 1), (−1, 3, 4)b (3, 2, 4), (0, 4,−2)c

33 For each of the following, find a vector equation of the plane that contains the
three points:

a (0, 0, 0), (1, 2, 3), (1, 3, 5)
b (2,−3, 5), (3,−2, 6), (1,−2, 4)
c (3, 2, 4), (0, 4,−2), (3, 6, 0)

34 a Find the perpendicular distance between the parallel planes with equations
2x + 2y + z = 6 and 2x + 2y + z = 10.

b Find the perpendicular distance from the point P(1, 0, 1) to the plane with equation
x + 2y + 3z = 6.

c Find the shortest distance between two points on the lines `1 and `2 given by

`1 : r = ti + (t + 1) j + (t + 2)k, t ∈ R

`2 : r = 2i + s j + (s + 1)k, s ∈ R

d Find the distance from the point P(1, 2, 3) to the line given by
x + 1

2
= y = z − 1.

35 Find the point of intersection of the lines `1 and `2 given by

`1 : r = 2ti + (2 − 2t) j + (3 − 4t)k, t ∈ R

`2 : r = (3 + s)i + (s − 1) j + (4s − 3)k, s ∈ R

36 Find the coordinates of the point where the line through (0, 1, 0) and (1, 0, 1) meets the
plane with equation:

x + y + z = 1a x + y + z = 3b x − y + z = 1c

37 Find the length of the perpendicular from the point with coordinates (4, 0, 1) to the plane
with equation 3x + 6y + 2z = −7.

38 a Find the value of a for which the three planes 2x − y + 5z = 7, 5x + 3y − z = 4 and
3x + 4y − 6z = a intersect in a line.

b Find a vector equation of this line.
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39 Plane Π1 has equation r · (2i + j + 3k) = 1. Plane Π2 has equation r · (−i + 2 j + k) = 2.
These two planes intersect in a line, `.

a Find the cosine of the acute angle between the planes Π1 and Π2.
b Find a vector equation of the line `.

40 Consider the points A(4, 1,−1), B(0, 3, 3), C(−4,−1, 1) and D(0,−3,−3).

a Show that these points all lie on the plane with equation x − 2y + 2z = 0.
b Show that ABCD is a square.
c Write a vector equation of the line through the point P(0, 8, 5) that is perpendicular to

the plane.

41 Find the cosine of the acute angle between each of the following pairs of planes:

2x + 3y − 2z = 0, x − y − z = 4a 4x + 3y + 2z = 5, 2x − 4y + 3z = 6b

42 Describe the line that passes through the points A(3, 5, 9) and B(1, 9, 10) using:

a vector equationa Cartesian equationsb parametric equations.c

Complex numbers
43 Find all solutions of z4 − z2 − 12 = 0 for z ∈ C.

44 Consider z =

√
3 − i

1 − i
. Find Arg z.

45 Let P(z) = z5 − 6z3 − 2z2 + 17z − 10. Given that P(1) = P(2) = 0, solve the equation
P(z) = 0 for z ∈ C.

46 a Solve the equation z3 − 2z2 + 2z − 1 = 0 for z ∈ C.
b Write the solutions in polar form.
c Show the solutions on an Argand diagram.

47 The point (−1, 3) is rotated about the origin by angle
π

4
anticlockwise. By multiplying

two complex numbers, find the image of the point.

48 Simplify
cos(2θ) + i sin(2θ)
cos(3θ) + i sin(3θ)

, writing your answer in Cartesian form.

49 Let z =
√

3 + i. Plot z, z2 and z3 on an Argand diagram.

50 a Show that z − 1 − i is a factor of f (z) = z3 − (5 + i)z2 + (17 + 4i)z − 13 − 13i.
b Hence factorise f (z).

51 Let f (z) = z2 + aiz + b, where a and b are real numbers.

a Use the quadratic formula to show that the equation f (z) = 0 has imaginary solutions

if and only if b ≥ −
a2

4
. (Imaginary solutions have no real part.)

b Hence solve each of the following:

i z2 + 2iz + 1 = 0 ii z2 − 2iz − 1 = 0 iii z2 + 2iz − 2 = 0
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52 a If the equation z3 + az2 + bz + c = 0 has solutions −1 + i, −1 and −1 − i, find the
values of a, b and c.

b If
√

3 + i and −2i are two of the solutions to the equation z3 = w, where w is a
complex number, find the third solution.

53 Solve the equation z5 = 1 + i for z, giving your solutions in polar form. Illustrate the
solutions on an Argand diagram.

54 Consider the complex numbers z1 =
√

3 − i and z2 = −1 − i.

a Express z1 and z2 in polar form.

b Find
z1

z2
in polar form.

c Find the complex conjugate of
z1

z2
in polar form.

d On a single Argand diagram, sketch the graphs of:

i |z − z1| = 2 ii Arg(z − z2) =
π

4

55 Let z1 = 1 +
√

3i.

a i Write z1 in polar form.
ii Write zn

1 in polar form, where n is an integer.
iii Find the integer values of n for which zn

1 is real.
iv Find the integer values of n for which zn

1 is imaginary.
b Express z2

1 and z3
1 in Cartesian form.

c Given that z1 = 1 +
√

3i is a solution of the equation 2z3 + az2 + bz + 20 = 0, find the
values of the real numbers a and b.

d For these values of a and b, solve the equation 2z3 + az2 + bz + 20 = 0.

56 The vertices A, B, C and D of a square, taken anticlockwise, are drawn on an Argand
diagram. The points A and B are −1 + 4i and −3 respectively.

a Find the complex numbers corresponding to C and D.
b Find the complex number corresponding to the centre of the square.

57 Let z, w ∈ C. Prove that |z + w|2 − |z − w|2 = 4 Re(z) Re(w).

58 Let ω be a cube root of unity with ω , 1, and let n be a natural number.

a Prove that if n is a multiple of 3, then 1 + ωn + ω2n = 3.
b Prove that if n is not a multiple of 3, then 1 + ωn + ω2n = 0.

59 A circle on an Argand diagram has equation |z − c| = r. The circle passes through the
points 2 + i, 2 − i and i. Find the values of c and r.

60 The equation z3 − 5z2 + 16z + k = 0 has a solution z = 1 + ai, where a ∈ R+ and k ∈ R.
Find the values of a and k.
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7B Multiple-choice questions
1 Consider the curve defined by the parametric equations x = t2 + 2 and y = 6 − t3 for

t ∈ R. The point on the curve where t = 2 is

(10, 0)A (6, 14)B (6,−2)C (10,−6)D (10,−2)E

2 A curve is defined parametrically by the equations x = 2 cos(t) and y = 2 cos(2t).
The Cartesian equation of the curve is

y = 2 + x2A y = x2 − 2B y = 2xC y = xD y = 2x2 − 1E

3 A curve is defined parametrically by the equations x = 2 sec t and y = 3 tan t. The point
on the curve where t = −

π

3
is

(4, 3
√

3)A (4,−3
√

3)B (3
√

3,−4)C (−4,−3
√

3)D
(
4,−

√
3

3

)
E

4 A curve is defined parametrically by the equations x = 2 × 3t + 1 and y = 2 × 3−2t.
The Cartesian equation of the curve is

y =
x − 1

4
A y = 1 − xB y =

4
x − 1

C y =
8

(x − 1)2D y =
8

x − 1
E

5 A curve is defined parametrically by the equations x = t − 3 and y = t2 + 5 for t ∈ R.
The Cartesian equation of the curve is

y = x2 − 14A y = x2 + 14B y = x2 + 6x + 14C
y = x2 − 6x + 14D y = x2 − 6x − 14E

6 The graph of a function is described by the parametric equations x =
√

t and y = 4t + 2
for t ∈ [0, 4]. The domain and range of this function are

Domain = [0, 2]; Range = [2, 18]A Domain = [0, 4]; Range = [2, 18]B
Domain = [0, 2]; Range = [2, 10]C Domain = [0, 4]; Range = [2, 10]D
Domain = [0, 4]; Range = [0, 18]E

7 Let n ∈ Z. Consider the statement: If n is even, then 3n + 1 is odd.
The contrapositive of this statement is

If 3n + 1 is even, then n is odd.A If 3n + 1 is even, then n is even.B
If 3n + 1 is odd, then n is odd.C If 3n + 1 is odd, then n is even.D
If n is odd, then 3n + 1 is even.E

8 Let n ∈ Z. Consider the statement: If n is even, then 3n + 1 is odd.
The negation of this statement is

n is even and 3n + 1 is odd.A n is even or 3n + 1 is odd.B
n is odd and 3n + 1 is even.C n is odd or 3n + 1 is even.D
n is even and 3n + 1 is even.E
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9 Let x ∈ R. Consider the statement: If x < −2 or x > 2, then x2 > 4.
The contrapositive of this statement is

If −2 ≤ x ≤ 2, then x2 ≤ 4.A If x2 ≤ 4, then −2 ≤ x ≤ 2.B
If x2 ≤ 4, then x ≥ −2 or x ≤ 2.C If x2 < 4, then −2 < x < 2.D
If x2 > 4, then x < −2 or x > 2.E

10 Let x ∈ R. Consider the statement: If x < −2 or x > 2, then x2 > 4.
The converse of this statement is

If −2 ≤ x ≤ 2, then x2 ≤ 4.A If x2 ≤ 4, then −2 ≤ x ≤ 2.B
If x2 ≤ 4, then x ≥ −2 or x ≤ 2.C If x2 < 4, then −2 < x < 2.D
If x2 > 4, then x < −2 or x > 2.E

11 Consider the claim: For all x, y ∈ R, if x2 ≤ y2, then x ≤ y.
Which one of the following is a counterexample that disproves this claim?

x = 1, y = 2A x = −1, y = 2B x = 2, y = 1C
x = 1, y = −2D x = 2, y = −1E

12 For each n ∈ N, let P(n) be the statement that 12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

The statement P(1) is

12 + 22 + · · · + n2 =
n(n + 1)(2n + 1)

6
A n = 1B

02 =
0(0 + 1)(2 × 0 + 1)

6
C 12 + 22 + · · · + n2 =

1
6

D

12 =
1(1 + 1)(2 × 1 + 1)

6
E

13 For each n ∈ N, let P(n) be the statement that n2 − n + 41 is a prime number.
Which one of the following is correct?

P(1) is not trueA P(2) is not trueB P(3) is not trueC
P(5) is not trueD P(41) is not trueE

14 The hyperbola
(x + 1)2

9
−

(y − 2)2

16
= 1 has asymptotes with the equations

y =
3
4

x +
8
3

and y =
3
4

x +
2
3

A y =
3
4

x +
10
3

and y =
3
4

x +
2
3

B

y =
4
3

x +
10
3

and y = −
4
3

x +
2
3

C y =
4
3

x +
10
3

and y = −
4
3

x +
10
3

D

y =
3
4

x −
10
3

and y = −
3
4

x +
2
3

E

15 A circle has a diameter with endpoints at (4,−2) and (−2,−2). The equation of the
circle is

(x − 1)2 + (y − 2)2 = 3A (x − 1)2 + (y + 2)2 = 3B (x + 1)2 + (y − 2)2 = 6C
(x − 1)2 + (y + 2)2 = 9D (x − 1)2 + (y + 2)2 = 6E
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16 The ellipse shown has its centre on
the x-axis. Its equation is

A
(x + 2)2

9
+

y2

16
= 1

B
(x − 2)2

9
+

y2

16
= 1

C
(x + 2)2

3
+

y2

4
= 1

D
(x − 2)2

3
+

y2

4
= 1

E
(x − 2)2

9
−

y2

16
= 1

y

x
O−1 5

4√5
3

17 The ellipse with equation
x2

9
+

y2

25
= 1 has x-axis intercepts with coordinates

(−3,−5) and (3, 5)A (−5,−3) and (5, 3)B (0,−3) and (0, 3)C
(−3, 0) and (3, 0)D (3, 0) and (5, 0)E

18 The circle defined by the equation x2 + y2 − 6x + 8y = 0 has centre

(2, 4)A (−5, 9)B (4,−3)C (3,−4)D (6,−8)E

19 If the line x = k is a tangent to the circle with equation (x − 1)2 + (y + 2)2 = 1, then k is
equal to

1 or −2A 1 or 3B −1 or −3C 0 or −2D 0 or 2E

20 The curve with equation x2 − 2x = y2 is

an ellipse with centre (1, 0)A a hyperbola with centre (1, 0)B
a circle with centre (1, 0)C an ellipse with centre (−1, 0)D
a hyperbola with centre (−1, 0)E

21 If a = 2i + 3 j − 4k, b = −i + 2 j − 2k and c = −3 j + 4k, then a − 2b − c equals

3i + 10 j − 12kA −3i + 7 j − 12kB 4i + 2 j − 4kC
−4 j + 4kD 2 j − 4kE

22 A vector of magnitude 6 and with direction opposite to i − 2 j + 2k is

6i − 12 j + 12kA −6i + 12 j − 2kB −3i + 6 j − 6kC

−2i + 4 j − 4kD
2
3

i −
4
3

j +
4
3

kE

23 If a = 2i − 3 j − k and b = −2i + 3 j − 6k, then the vector resolute of a in the direction
of b is

7(−2i + 3 j − 6k)A
1
7

(2i − 3 j + 6k)B −
1
7

(2i − 3 j − k)C

−
7

11
(2i − 3 j − k)D −

19
49

(−2i + 3 j − 6k)E
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24 If a = 3i − 5 j + k, then a vector which is not perpendicular to a is
1
35

(3i − 5 j + k)A 2i + j − kB i − j − 8kC

−3i + 5 j + 34kD
1
9

(−3i − 2 j − k)E

25 The magnitude of vector a = i − 3 j + 5k is

3A
√

17B 35C 17D
√

35E

26 If u = 2i −
√

2 j + k and v = i +
√

2 j − k, then the angle between the direction of u and v,
correct to two decimal places, is

92.05◦A 87.95◦B 79.11◦C 100.89◦D 180◦E

27 Let u = 2i − a j − k and v = 3i + 2 j − bk. Then u and v are perpendicular to each other
when

a = 2 and b = −1A a = −2 and b = 10B a =
1
2

and b = −5C

a = 0 and b = 0D a = −1 and b = 5E

28 Let u = i + a j − 4k and v = bi − 2 j + 3k. Then u and v are parallel to each other when

a = −2 and b = 1A a = −
8
3

and b = −
3
4

B a = −
3
2

and b = −
3
4

C

a = −
8
3

and b = −
4
3

D none of theseE

29 Let a = i − 5 j + k and b = 2i − j + 2k. Then the vector component of a perpendicular
to b is

−i − 4 j − kA i + 4 j + kB −5i + j − 5kC

5i − j + 5kD
5
3

i +
2
3

j +
5
3

kE

30 If points A, B and C are such that
−−→
AB ·

−−→
BC = 0, which one of the following statements

must be true?

A Either
−−→
AB or

−−→
BC is a zero vector.

B Vectors
−−→
AB and

−−→
BC have the same magnitude.

C The vector resolute of
−−→
AC in the direction of

−−→
AB is

−−→
AB.

D The vector resolute of
−−→
AB in the direction of

−−→
AC is

−−→
AC.

E Points A, B and C are collinear.

31 If u = i − j − k and v = 4i + 12 j − 3k, then u · v equals

4i − 12 j + 3kA 5i + 11 j − 4kB −5C

19D
5
13

E
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32 If a = 3i + 2 j − k and b = 6i − 3 j + 2k, then the scalar resolute of a in the direction
of b is

10
49

(6i − 3 j − 2k)A
10
7

B 2i −
3
2

j − 2kC

10
49

D
√

10
7

E

33 Let a = 3i − 5 j − 2k and b = 2i − 3 j − 4k. The unit vector in the direction of a − b is

i − 2 j + 2kA
1
√

65
(5i − 2 j − 6k)B

1
3

(i − 2 j + 2k)C

1
9

(i − 2 j + 2k)D
1
3

(−i + 2 j − 2k)E

34 If the points P, Q and R are collinear with
−−→
OP = 3i + j − k,

−−→
OQ = i − 2 j + k and

−−→
OR = 2i + p j + qk, then

p = −3 and q = 2A p = −
7
2

and q = 2B p = −
1
2

and q = 0C

p = 3 and q = −2D p = −
1
2

and q = 2E

35 If tanα =
3
4

and tan β =
4
3

, where both α and β are acute, then sin(α + β) equals

7
5

A
24
25

B
7

25
C 0D 1E

36 If a = 3i + 4 j, b = 2i− j, x = i + 5 j and x = sa + tb, then the scalars s and t are given by

s = −1 and t = −1A s = −1 and t = 1B s = 1 and t = −1C
s = 1 and t = 1D s =

√
5 and t = 5E

37 Given that p =
−−→
OP, q =

−−→
OQ and the points O, P and Q are not collinear, which one of

the following points, whose position vectors are given, is not collinear with P and Q?
1
2

p +
1
2

qA 3p− 2qB p− qC
1
3

p +
2
3

qD 2p− qE

38 Assume that r = a + tb, t ∈ R, is a vector equation of a line that does not pass through
the origin. Which one of the following is not the position vector of a point on the line?

aA bB a + bC a − bD a − 7bE

39 The two lines given by the vector equations r = 9i − 2 j + λ(3i − j), for λ ∈ R, and
s = 3i − 2 j + µ(3i + j), for µ ∈ R, intersect at the point with coordinates

(12,−3)A (6,−1)B (0,−3)C (3, 0)D (0, 1)E

40 The plane with vector equation r · (i − j + k) = 2 contains the point

(1,−1, 1)A (−1, 1, 0)B (0, 1, 1)C (2, 0, 0)D (0, 0, 0)E
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41 For the straight line ` given by the vector equation

r = −i − 3 j − 3k + t(2i + j + 3k), t ∈ R

which one of the following is true?

A The line ` is parallel to the vector −2i + 3 j + 6k.
B The line ` is perpendicular to the vector i − j − 2k.
C The line ` passes through the point (−2,−3, 6).
D The line ` passes through the origin.
E The line ` lies in the plane with equation x + y − z = −1.

42 Let u and v be non-zero vectors in three dimensions. If u · v = |u × v|, then the angle
between u and v is

0A
π

6
B

π

4
C

π

3
D

π

2
E

43 cos2 θ + 3 sin2
θ equals

2 + cos θA 3 − 2 cos(2θ)B 2 − cos θC
2 cos(2θ) − 1D none of theseE

44 Assume that the two vector equations r1 = a1 + td1, t ∈ R, and r2 = a2 + sd2, s ∈ R,
represent the same line `, where ` does not pass through the origin. Which one of the
following is not true?

d1 = kd2 for some k ∈ RA a2 = a1 + td1 for some t ∈ RB
d2 = a1 + td1 for some t ∈ RC a2 − a1 = kd2 for some k ∈ RD
a2 + d1 is the position vector of a point on the line `E

45 cos−1
(
−

√
3

2

)
− sin−1

(
−

√
3

2

)
equals

−
5π
6

A −
π

2
B −

π

6
C

π

2
D

7π
6

E

46 PQR is a straight line and PQ = 2QR.

If
−−→
OQ = 3i − 2 j and

−−→
OR = i + 3 j, then

−−→
OP is

equal to

A −i + 8 j B 7i − 12 j C 4i − 10 j
D −4i + 10 j E −7i + 12 j P

R

Q

47 If
−−→
OP = 2i − 2 j + k and

−−→
PQ = 2i + 2 j − k, then |

−−→
OQ| equals

2
√

5A 3
√

2B 6C 9D 4E

48 If z1 = 2 − i and z2 = 3 + 4i, then
∣∣∣∣∣z2

z1

∣∣∣∣∣2 equals

√
5A 5B

125
9

C
(2 + 11i

5

)2
D

(10 + 5i
5

)2
E
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49 If z = −1 −
√

3i, then Arg z equals

−
2π
3

A −
5π
6

B
2π
3

C
5π
6

D −
π

3
E

50 The vectors pi + 2 j − 3pk and pi + k are perpendicular when p is equal to

0 onlyA 3 onlyB 0 or 3C 1 or 2D 1 onlyE

51 One solution of the equation z3 − 5z2 + 17z − 13 = 0 is 2 + 3i. The other solutions are

−2 − 3i and 1A 2 − 3i and 1B −2 + 3i and −1C
2 − 3i and −1D −2 + 3i and 1E

52 The value of
(cos 60◦ + i sin 60◦)4

(cos 30◦ + i sin 30◦)2 is

−1A iB −iC
1
2
−

√
3

2
iD

√
3

2
−

1
2

iE

53 If 3
−−→
OX + 4

−−→
OY = 7

−−→
OZ, then

XZ
ZY

equals

A
3
5

B
3
4

C 1

D
4
3

E
5
3

Y

O X

Z

54 cos
(
tan−1(1) + sin−1

( 1
√

2

))
equals

π

2
A 1B 0C −

1
√

2
D −

√
3

2
E

55 If x + yi =
1

3 + 4i
, where x and y are real, then

x =
3
25

and y = −
4
25

A x =
3

25
and y =

4
25

B x = −
3
7

and y =
4
7

C

x =
1
3

and y =
1
4

D x = 3 and y = −4E

56 Let a = 2i + 3 j + 4k and b = i + p j + k. If a and b are perpendicular, then p equals

−
7
3

A −2B −
5
3

C 2D
7
3

E

57 Let z =
1

1 − i
. If r = |z| and θ = Arg z, then

r = 2 and θ =
π

4
A r =

1
2

and θ =
π

4
B r =

√
2 and θ = −

π

4
C

r =
1
√

2
and θ = −

π

4
D r =

1
√

2
and θ =

π

4
E
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58 The maximal domain of f (x) = sin−1(2x − 1) is

[−1, 1]A (−1, 1)B (0, 1)C [0, 1]D [−1, 0]E

59 If u = 3 cis
(
π

4

)
and v = 2 cis

(
π

2

)
, then uv is equal to

cis
(7π

4

)
A 6 cis

(
π2

8

)
B 6 cis2

(
π2

8

)
C 5 cis

(3π
4

)
D 6 cis

(3π
4

)
E

60 The exact value of sin
(
cos−1(− 1

2
))

is
√

3
2

A −
1
2

B 1C −

√
3

2
D

1
√

5
E

61 If −1 < x < 1, then tan(arcsin(x)) is equal to

x
√

1 − x2
A −

x
√

1 − x2
B

√
1 − x2

x
C −

√
1 − x2

x
D

√
1 − x2E

62 The modulus of 12 − 5i is

119A 7B 13C
√

119D
√

7E

63 When
√

3 − i is divided by −1 − i, the modulus and the principal argument of the
quotient are

2
√

2 and
7π
12

A
√

2 and −
11π
12

B
√

2 and
7π
12

C

2
√

2 and −
11π
12

D
√

2 and
11π
12

E

64 Let z be a complex number such that |z + 4i| = 3. Then the smallest and largest possible
values of |z + 3| are

2 and 8A 3 and 4B 4 and 8C 5 and 8D 4 and 10E

65 Let P(z) be a quadratic polynomial with real coefficients. Which one of the following is
not possible?

P(z) has two real rootsA P(z) has two imaginary rootsB
P(z) has one real and one non-real rootC P(z) has two non-real rootsD
P(z) has a repeated real rootE

66 The product of the complex numbers
1 − i
√

2
and

√
3 + i
2

has argument

−
5π
12

A −
π

12
B

π

12
C

5π
12

D none of theseE

67 If tan θ =
1
3

, then tan(2θ) equals

3
5

A
2
3

B
3
4

C
4
5

D
4
3

E
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68 Which one of the following five expressions is not identical to any of the others?

A cos4 θ − sin4
θ B 1 + cos θ C cos(2θ) D 2 cos2

(
θ

2

)
E 1 − cos θ

69 The modulus of 1 + cos(2θ) + i sin(2θ), where 0 < θ <
π

2
, is

4 cos2 θA 4 sin2
θB 2 cos θC 2 sin θD none of theseE

70 An expression for an argument of 1 + cos θ + i sin θ is

2 cos
(
θ

2

)
A 2 sin

(
θ

2

)
B θC

θ

2
D

π

2
−
θ

2
E

71 A quadratic equation with solutions 2 + 3i and 2 − 3i is

x2 + 4x + 13 = 0A x2 − 4x + 13 = 0B x2 + 4x − 13 = 0C
x2 + 4x − 5 = 0D x2 − 4x − 5 = 0E

72 If tan−1
(1
2

)
+ tan−1

(1
3

)
= tan−1 x, then x is

1A
5
6

B
5
7

C
1
5

D
1
7

E

73 Which one of the following five expressions is not identical to any of the others?

tan θ + cot θA cosec2 θ − cot2 θB 1C
cosec θ cot θD 2 cosec(2θ)E

74 The subset of the complex plane defined by the equation |z − 2| − |z + 2| = 0 is

a circleA an ellipseB a straight lineC
the empty setD a hyperbolaE

75 The subset of the complex plane defined by the equation |z − (2 − i)| = 6 is

A a circle with centre at −2 + i and radius 6
B a circle with centre at 2 − i and radius 6
C a circle with centre at 2 − i and radius 36
D a circle with centre at −2 + i and radius 36
E a circle with centre at −2 − i and radius 36

76 The line shown can be represented by the set

A
{

z : Arg z =
π

4

}
B

{
z : Arg z = −

π

4

}
C

{
z : Arg z =

7π
4

}
D

{
z : Im z + Re z = 0

}
E

{
z : Im z − Re z = 0

}
0

Re z

Im z

π
4
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77 The subset of the complex plane defined by the equation |z − 2| − |z − 2i| = 0 is

a circleA an ellipseB a straight lineC
the empty setD a hyperbolaE

78 Which one of the following subsets of the complex plane is not a circle?{
z : |z| = 2

}
A

{
z : |z − i| = 2

}
B

{
z : zz + 2 Re(iz) = 0

}
C{

z : |z − 1| = 2
}

D
{
z : |z| = 2i

}
E

79 Which one of the following subsets of the complex plane is not a line?{
z : Im(z) = 0

}
A

{
z : Im(z) + Re(z) = 1

}
B

{
z : z + z = 4

}
C{

z : Arg(z) =
π

4

}
D

{
z : Re(z) = Im(z)

}
E

80 Points P, Q, R and M are such that
−−→
PQ = 5i,

−−→
PR = i + j + 2k and

−−→
RM is parallel to

−−→
PQ

so that
−−→
RM = λi, where λ is a constant. The value of λ for which angle RQM is a

right angle is

0A
19
4

B
21
4

C 10D 6E

81 In this diagram,
−−→
OA = 6i − j + 8k,

−−→
OB = −3i + 4 j − 2k and AP : PB = 1 : 2.

The vector
−−→
OP is equal to

A
7
3

j +
4
3

k B 3i +
7
3

j +
4
3

k

C 3 j + 4k D 3i +
2
3

j +
14
3

k

E none of these

A

B

O

P

82 In an Argand diagram, O is the origin, P is the point (2, 1) and Q is the point (1, 2).
If P represents the complex number z and Q the complex number α, then α equals

zA i zB −zC −i zD zzE

83 In an Argand diagram, the points that represent the complex numbers z, −z, z−1

and −(z−1) necessarily lie at the vertices of a

squareA rectangleB parallelogramC
rhombusD trapeziumE
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7C Extended-response questions
1 a Points A, B and C are collinear with B between A and C. The points A, B and C have

position vectors a, b and c respectively, relative to an origin O. If
−−→
AC =

3
2
−−→
AB:

i express
−−→
AC in terms of a and b ii express c in terms of a and b.

b The points A, B and C have position vectors i, 2i + 2 j and 4i + j respectively.

i Find
−−→
AB and

−−→
BC.

ii Show that
−−→
AB and

−−→
BC have equal magnitudes.

iii Show that AB and BC are perpendicular.
iv Find the position vector of D such that ABCD is a square.

c The triangle OAB is such that O is the origin,
−−→
OA = 8i and

−−→
OB = 10 j. The point P

with position vector
−−→
OP = xi + y j + zk is equidistant from O, A and B and is at a

distance of 2 above the triangle. Find x, y and z.

2 a Solve the equation 2z2 − 4z + 6 = 0 for z ∈ C.
b On an Argand diagram, let C be the circle with centre 1 + 0i that passes through the

two points corresponding to the solutions from part a. Find the Cartesian equation of
the circle C.

c Find the values of d ∈ R such the solutions of the equation 2z2 − 4z + d = 0 lie inside
or on the circle C.

d Now let a, b, c ∈ R with a , 0, and assume that b2 ≤ 4ac.

i Solve the equation az2 − bz + c = 0 for z ∈ C.
ii State the condition under which there are two distinct solutions.
iii Under this condition, find the Cartesian equation of the circle with centre

b
2a

+ 0i
that passes through the two points corresponding to the solutions.

3 a Let S1 =
{
z : |z| ≤ 2

}
and T1 =

{
z : Im(z) + Re(z) ≥ 4

}
.

i On the same diagram, sketch S1 and T1, clearly indicating which boundary points
are included.

ii Let d = |z1 − z2|, where z1 ∈ S1 and z2 ∈ T1. Find the minimum value of d.

b Let S2 =
{
z : |z − 1 − i| ≤ 1

}
and T2 =

{
z : |z − 2 − i| ≤ |z − i|

}
.

i On the same diagram, sketch S2 and T2, clearly indicating which boundaries
are included.

ii If z belongs to S2 ∩ T2, find the maximum and minimum values of |z|.

4 a Show the points z =
√

2(1 + i), w =
√

3 − i and z + w on an Argand diagram.

b Hence, use geometry to prove that tan
(
π

24

)
=
√

6 −
√

3 +
√

2 − 2.
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5 Suppose that OACB is a trapezium with OB parallel to AC and AC = 2OB. Let D be the
point of trisection of OC nearer to O.

a If a =
−−→
OA and b =

−−→
OB, find in terms of a and b:

i
−−→
BC ii

−−→
BD iii

−−→
DA

b Hence prove that A, D and B are collinear.

6 a If a = i − 2 j + 2k and b = 12 j − 5k, find:

i the magnitude of the angle between a and b to the nearest degree
ii the vector resolute of b perpendicular to a
iii real numbers x, y and z such that xa + yb = 3i − 30 j + zk.

b In triangle OAB, a =
−−→
OA and b =

−−→
OB. Points P and Q are such that P is the point of

trisection of AB nearer to B and
−−→
OQ = 1.5

−−→
OP.

i Find an expression for
−−→
AQ in terms of a and b.

ii Show that
−−→
OA is parallel to

−−→
BQ.

7 a Show that if 2a + b − c = 0 and a − 4b − 2c = 0, then a : b : c = 2 : −1 : 3.
b Assume that the vector xi + y j + zk is perpendicular to both 2i + j − 3k and i − j − k.

Establish two equations in x, y and z, and find the ratio x : y : z.
c Hence, or otherwise, find any vector v which is perpendicular to both 2i + j − 3k

and i − j − k.
d Show that the vector 4i + 5 j − 7k is also perpendicular to vector v.
e Find the values of s and t such that 4i + 5 j − 7k can be expressed in the form

s(2i + j − 3k) + t(i − j − k).
f Show that any vector r = s(2i + j − 3k) + t(i − j − k) is perpendicular to vector v

(where s ∈ R and t ∈ R).

8 Consider a triangle with vertices O, A and B, where
−−→
OA = a and

−−→
OB = b. Let θ be the

angle between vectors a and b.

a Express cos θ in terms of vectors a and b.
b Hence express sin θ in terms of vectors a and b.
c Use the formula for the area of a triangle (area = 1

2 ab sin C) to show that the area of
triangle OAB is given by

1
2

√
(a · a)(b · b) − (a · b)2

9 In the quadrilateral ABCD, the points X and Y are the midpoints of the diagonals AC
and BD respectively.

a Show that
−−→
BA +

−−→
BC = 2

−−→
BX.

b Show that
−−→
BA +

−−→
BC +

−−→
DA +

−−→
DC = 4

−−→
YX.
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10 Let a, b and c be non-zero vectors in three dimensions such that

a × b = 3a × c

a Show that there exists k ∈ R such that b − 3c = ka.
b Given that |a| = |c| = 1, |b| = 3 and the angle between b and c is arccos

(1
3

)
, find:

i b · c ii |b − 3c| iii the possible values of k.

c Hence find the two possible values for the cosine of the angle between a and c.

11 A vector equation of a plane Π is r · n = k.

a Let ` be a line with vector equation r = a + tb, t ∈ R. Given that b · n , 0, show that
the plane Π meets the line ` at the point with position vector

(b · n)a − (a · n)b + kb
b · n

b Let P be a point, with position vector p, such that P does not lie on the plane Π.

i Using part a, express the position vector of the point where the plane Π meets the
line through P perpendicular to Π in terms of p, n and k.

ii Express the distance from the point P to the plane Π in terms of p, n and k.

12 The position vectors of the vertices of a triangle ABC, relative to a given origin O, are
a, b and c. Let P and Q be points on the line segments AB and AC respectively such
that AP : PB = 1 : 2 and AQ : QC = 2 : 1. Let R be the point on the line segment PQ
such that PR : RQ = 2 : 1.

a Prove that
−−→
OR =

4
9

a +
1
9

b +
4
9

c.

b Let M be the midpoint of AC. Prove that R lies on the median BM.
c Find BR : RM.

13 The points A and B have position vectors a and b respectively, relative to an origin O.
The point C lies on AB between A and B, and is such that AC : CB = 2 : 1, and D is the
midpoint of OC. The line AD meets OB at E.

a Find in terms of a and b:

i
−−→
OC ii

−−→
AD

b Find the ratios:

i OE : EB ii AE : ED

14 The position vectors of the vertices A, B and C of a triangle, relative to an origin O,
are a, b and c respectively. The side BC is extended to D so that BC = CD. The point
X divides side AB in the ratio 2 : 1, and the point Y divides side AC in the ratio 4 : 1.
That is, AX : XB = 2 : 1 and AY : YC = 4 : 1.

a Express in terms of a, b and c:

i
−−→
OD ii

−−→
OX iii

−−→
OY

b Show that D, X and Y are collinear.
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15 Points A, B, C and D have position vectors j + 2k, −i − j, 4i + k and 3i + j + 2k
respectively.

a Prove that the triangle ABC is right-angled.
b Prove that the triangle ABD is isosceles.
c Show that BD passes through the midpoint, E, of AC and find the ratio BE : ED.

16 a For α = 1 −
√

3i, write the product of z − α and z − α as a quadratic expression in z
with real coefficients, where α denotes the complex conjugate of α.

b i Express α in polar form.
ii Find α2 and α3.
iii Show that α is a solution of z3 − z2 + 2z + 4 = 0, and find all three solutions of

this equation.
c On an Argand diagram, plot the three points corresponding to the three solutions.

Let A be the point in the first quadrant, let B be the point on the real axis and let C be
the third point.

i Find the lengths AB and CB. ii Describe the triangle ABC.

17 Points A, B and C have position vectors
−−→
OA = − j+2k,

−−→
OB = i+2k and

−−→
OC = 2i− j+ k.

a Find the vectors
−−→
AB and

−−→
AC.

b Find
−−→
AB ×

−−→
AC.

c Using part b, find a Cartesian equation of the plane Π through points A, B and C.

Let D be the point with position vector
−−→
OD = i + 2 j + k.

d Find a vector equation of the line through D perpendicular to the plane Π.
e Find the position vector of the point of intersection of this line with the plane Π.
f Find the shortest distance from the point D to the plane Π.

18 a If z = 1 +
√

2i, express p = z +
1
z

and q = z −
1
z

in the form a + bi.

b On an Argand diagram, let P and Q be the points representing p and q respectively.
Let O be the origin, let M be the midpoint of PQ and let G be the point on the line

segment OM with OG =
2
3

OM. Denote vectors
−−→
OP and

−−→
OQ by a and b respectively.

Find each of the following vectors in terms of a and b:

i
−−→
PQ ii

−−→
OM iii

−−→
OG iv

−−→
GP v

−−→
GQ

c Prove that angle PGQ is a right angle.

19 a Factorise z2 + 4 into linear factors.
b Express z4 + 4 as the product of two quadratic factors in C.
c Show that:

i (1 + i)2 = 2i ii (1 − i)2 = −2i

d Use the results of c to factorise z4 + 4 into linear factors.
e Hence factorise z4 + 4 into two quadratic factors with real coefficients.
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20 a Let z1 = 1 + 3i and z2 = 2 − i. By evaluating |z1 − z2|, find the distance between the
points z1 and z2 on an Argand diagram.

b Describe the locus of z on an Argand diagram such that |z − (2 − i)| =
√

5.
c Describe the locus of z such that |z − (1 + 3i)| = |z − (2 − i)|.

21 Let z = 2 + i.

a Express z3 in the form x + yi, where x and y are integers.
b Let the polar form of z = 2 + i be r(cosα + i sinα). Using the polar form of z3, but

without evaluating α, find the value of:

i cos(3α) ii sin(3α)

22 The cube roots of unity are often denoted by 1, ω and ω2, where ω = −
1
2

+

√
3

2
i

and ω2 = −
1
2
−

√
3

2
i.

a i Illustrate these three numbers on an Argand diagram.
ii Show that (ω2)2 = ω.

b By factorising the polynomial z3 − 1, show that ω2 + ω + 1 = 0.
c Evaluate:

i (1 + ω)(1 + ω2)
ii (1 + ω2)3

d Form the quadratic equation whose solutions are:

i 2 + ω and 2 + ω2

ii 3ω − ω2 and 3ω2 − ω

e Find the possible values of the expression 1 + ωn + ω2n for n ∈ N.

23 a Find the fifth roots of unity in polar form.
b i Show that z5 − 1 = (z − 1)(z4 + z3 + z2 + z + 1).

ii Hence, explain why the solutions of z4 + z3 + z2 + z + 1 = 0 are fifth roots of unity.

c Show that the solutions of z2 + z + 1 +
1
z

+
1
z2 = 0 are fifth roots of unity.

d Let w = z +
1
z

. Show that w2 + w − 1 = 0 if and only if z2 + z + 1 +
1
z

+
1
z2 = 0.

e Solve the equation w2 + w − 1 = 0 for w.
f Hence, write the solutions of the equation z4 + z3 + z2 + z + 1 = 0 in Cartesian form

using surd expressions.

g Hence, show that cos
(2π

5

)
=

√
5 − 1
4

.

24 a Two complex variables w and z are related by w =
az + b
z + c

, where a, b, c ∈ R.

Given that w = 3i when z = −3i and that w = 1 − 4i when z = 1 + 4i, find the values
of a, b and c.

b Let z = x + yi. Show that if w = z, then z lies on a circle of centre (4, 0), and state the
radius of this circle.
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25 a Use De Moivre’s theorem to show that (1 + i tan θ)5 =
cis(5θ)
cos5(θ)

.

b Hence find expressions for cos(5θ) and sin(5θ) in terms of tan θ and cos θ.

c Show that tan(5θ) =
5t − 10t3 + t5

1 − 10t2 + 5t4 where t = tan θ.

d Use the result of c and an appropriate substitution to show that tan
(
π

5

)
=

√
5 − 2

√
5.

26 a Express, in terms of θ, the solutions α and β of the equation z + z−1 = 2 cos θ.
b If P and Q are points on the Argand diagram representing αn + βn and αn − βn

respectively, show that PQ is of constant length for n ∈ N.

27 a On the same set of axes, sketch the graphs of the following functions:

i f (x) = cos x, −π < x < π ii g(x) = tan−1 x, −π < x < π

b Find correct to two decimal places:

i tan−1
(
π

4

)
ii cos 1

c Hence show that the graphs of y = f (x) and y = g(x) intersect in the interval
[
π

4
, 1

]
.

d Using a CAS calculator, find the solution of f (x) = g(x) correct to two decimal
places.

e Show that f (x) = g(x) has no other real solutions.

28 a On the same set of axes, sketch the graphs of the following functions:

i f (x) = sin x, −
π

2
< x <

π

2
ii g(x) = cos−1 x, −1 < x < 1

b Find correct to two decimal places:

i sin
(1
2

)
ii cos−1

(
π

4

)
c Hence show that the graphs of y = f (x) and y = g(x) intersect in the interval

[1
2

,
π

4

]
.

d Using a CAS calculator, find the coordinates of the point(s) of intersection of the
graphs, correct to three decimal places.

29 The cross-section of a water channel is defined
by the function

f (x) = a sec
(
π

15
x
)

+ d

The top of the channel is level with the ground
and is 10 m wide. At its deepest point, the
channel is 5 m deep.

a Find a and d.
b Find, correct to two decimal places:

10 m

5 m

O

y

x

i the depth of the water when the width of the water surface is 7 m
ii the width of the water surface when the water is 2.5 m deep
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30 Let S and T be the subsets of the complex plane given by

S =

{
z :
√

2 ≤ |z| ≤ 3 and
π

2
< Arg z ≤

3π
4

}
T =

{
z : zz + 2 Re(iz) ≤ 0

}
a Sketch S on an Argand diagram.
b Find

{
z : z ∈ S and z = x + yi where x and y are integers

}
.

c On a separate diagram, sketch S ∩ T .

31 a Let A =

{
z : Arg z =

π

4

}
and B =

{
z : Arg(z − 4) =

3π
4

}
.

Sketch A and B on the same Argand diagram, clearly labelling A ∩ B.

b Let C =

{
z :

∣∣∣∣∣z − z
z + z

∣∣∣∣∣ ≤ 1
}

and D =
{
z : z2 + (z)2 ≤ 2

}
.

Sketch C ∩ D on an Argand diagram.

32 In the tetrahedron shown,
−−→
OB = i,

−−→
OC = −i + 3 j and

−−→
BA =

√
λk.

a Express
−−→
OA and

−−→
CA in terms of i, j, k and

√
λ.

b Find the magnitude of ∠CBO to the nearest degree.
c Find the value of λ, if the magnitude of ∠OAC

is 30◦.

C B

A

O

33 Let ABCD be a tetrahedron, where the vertices A, B, C and D have the position vectors
a, b, c and d respectively.

a First assume that AB is perpendicular to CD and that AD is perpendicular to BC.
Prove that AC is perpendicular to BD.

b Now assume that ABCD is a regular tetrahedron.

The intersection point of the perpendicular bisectors of the edges of a triangle is
called the circumcentre of the triangle. Let X, Y , Z and W be the circumcentres of
faces ABC, ACD, ABD and BCD respectively.

i Find the position vectors of X, Y , Z and W.
ii Find the vectors

−−→
DX,
−−→
BY ,
−−→
CZ and

−−→
AW.

iii Let P be a point on DX such that
−−→
DP =

3
4
−−→
DX. Find the position vector of P.

iv Hence find the position vectors of the points Q, R and S on BY , CZ and AW

respectively such that
−−→
BQ =

3
4
−−→
BY ,
−−→
CR =

3
4
−−→
CZ and

−−→
AS =

3
4
−−→
AW.

v Explain the geometric significance of results iii and iv.
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34 a Use mathematical induction to prove that, if cis(θ) , 1, then

1 + cis(θ) + cis(2θ) + · · · + cis(nθ) =
1 − cis

(
(n + 1)θ

)
1 − cis(θ)

for each natural number n.

b Prove that
cis(θ) + 1
cis(θ) − 1

= −i cot
(
θ

2

)
.

35 a Let x, y ≥ 0. Prove that if x2 ≤ y2, then x ≤ y. (Hint: Prove the contrapositive.)
b Prove that

a · b ≤ |a| |b|

for all vectors a and b. (Hint: Use the geometric description of the scalar product.)
c Triangle inequality Prove that

|a + b| ≤ |a| + |b|

for all vectors a and b. (Hint: Start by writing |a + b|2 = (a + b) · (a + b). You will
need to use parts a and b.)

d Let ABC be a triangle and let X be a point on side AC. Use the triangle inequality to
prove that BX ≤

p
2

, where p is the perimeter of the triangle.

36 Menelaus’ theorem Consider a triangle ABC. Let P, Q and R be points on the
lines AB, BC and CA respectively, where

−−→
AP = p

−−→
AB,
−−→
BQ = q

−−→
BC and

−−→
CR = r

−−→
CA

with p, q, r ∈ R \ {0, 1}. Then the points P, Q and R are collinear if and only if

p
1 − p

×
q

1 − q
×

r
1 − r

= −1

In this question, you will prove Menelaus’ theorem. Let point C be the origin, and
let a and b be the position vectors of A and B respectively.

a Show that R has position vector ra and that Q has position vector (1 − q)b.
b Show that the line QR consists of all points with position vectors of the form
λra + (1 − λ)(1 − q)b for λ ∈ R.

c Show that
−−→
AP = p(b − a) and hence that P has position vector (1 − p)a + pb.

d Show that P, Q and R are collinear if and only if there is some λ ∈ R such that
λr = 1 − p and (1 − λ)(1 − q) = p.

e Hence, show that P, Q and R are collinear if and only if

(1 − p)(1 − q) = r(1 − p − q)

f Hence, show that P, Q and R are collinear if and only if

p
1 − p

×
q

1 − q
×

r
1 − r

= −1
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37 The first Argand diagram below shows the points representing the cube roots of unity;
the second diagram shows the fourth roots of unity.

0 1

P0

P1

P2

Re(z)

Im(z)

0 1

P0

P1

P2

P3

Re(z)

Im(z)

Cube roots of unity Fourth roots of unity

In this question, we are using P0Pi to denote the distance between points P0 and Pi.

a For the cube roots of unity shown above, prove that P0P1 × P0P2 = 3.
b For the fourth roots of unity shown above, prove that P0P1 × P0P2 × P0P3 = 4.
c Denote the nth roots of unity by 1,ω1,ω2, . . . ,ωn−1. Then we can factorise the

polynomial zn − 1 as follows:

zn − 1 = (z − 1)(1 + z + z2 + · · · + zn−1) = (z − 1)(z − ω1)(z − ω2) · · · (z − ωn−1)

Now let P0, P1, . . . , Pn−1 be the points representing the nth roots of unity on an
Argand diagram, starting from 1 and moving anticlockwise around the unit circle.
Prove that

P0P1 × P0P2 × · · · × P0Pn−1 = n

d State this result in terms of a regular polygon with n sides.

38 The vertices of a cube have the following position vectors:

a = i + j + k, b = i + j − k, c = i − j + k, d = i − j − k,

e = −i + j + k, f = −i + j − k, g = −i − j + k, h = −i − j − k

a Show that all the vertices are the same distance from the origin.
b Verify that for any vector v listed above, the vector −v is also listed. What is v · (−v)?
c Show that for any vectors v and w listed above, we have v · w ∈ {−3,−1, 1, 3}. Which

pairs of vectors give the various values?
d Consider any vectors v and w listed above such that v , ±w. Show that the angle

between v and w takes one of only two values α and β, where α + β = 180◦.
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7D Algorithms and pseudocode
You may like to use a device to implement the algorithms in this section; see the coding
appendices in the Interactive Textbook for instructions.

1 Pythagorean triples Recall that, for natural numbers a, b and c, the ordered triple
(a, b, c) is called a Pythagorean triple if a2 + b2 = c2.

a Here is a simple algorithm that finds all Pythagorean triples (up to the symmetry of
swapping a and b) with natural numbers less than or equal to 100.

for a from 1 to 100

for b from 1 to 100

for c from 1 to 100

if a2 + b2 = c2 and a < b then

print (a, b, c)

end if

end for

end for

end for

i This algorithm uses a total of 1003 steps in the nested loops. Try to improve the
algorithm so that there are fewer steps in the nested loops.

ii This algorithm produces triples such as (3, 4, 5) and (6, 8, 10), where one is
a multiple of the other. Write a pseudocode function hcf to find the highest
common factor of two natural numbers, and use it to improve the algorithm to
produce triples without common factors.

b Here is an algorithm that counts Pythagorean triples without common factors.

L← [ ]

for c from 1 to 100

for b from 1 to c

for a from 1 to b

if a2 + b2 = c2 and hcf (a, b) = 1 then

append (a, b, c) to L

end if

end for

end for

end for

print L, length(L)

i Rewrite the code to verify that abc is divisible by a + b + c for c ≤ 100.
ii Rewrite the code to verify that abc is divisible by 60 for c ≤ 100.
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c Up to symmetry, every Pythagorean triple (a, b, c) without common factors can be
described by

a = m2 − n2, b = 2mn and c = m2 + n2

for m, n ∈ N with m > n such that m + n is odd and HCF(m, n) = 1. Use this fact to
prove that the two properties from part b hold for all Pythagorean triples.

d i Using pseudocode, write an algorithm with two nested loops to find the number
of Pythagorean triples (a, b, c) such that b = c − 1, where a < b < c ≤ 1000.

ii Prove that there are infinitely many Pythagorean triples (a, b, c) with b = c − 1.
iii Prove that, if a Pythagorean triple (a, b, c) satisfies b = c − 1, then a2 = b + c.
iv Further investigate conditions of this type, such as b = c − 9.

2 Equations over the natural numbers

a i Using pseudocode, write an algorithm to solve the equation a3 + b3 + c3 = d3

over the natural numbers for d ≤ 100.
ii Implement an algorithm to discover whether every solution (a, b, c, d) satisfies the

property that abcd is divisible by a + b + c + d.
b Using pseudocode, write an algorithm that will prove that the equation xn + yn = zn

has no solutions over the natural numbers for 3 ≤ n ≤ 8 and x, y, z ≤ 100.
c i Implement an algorithm to find all solutions of the equation a2 + b2 = q(ab + 1)

over the natural numbers, for a < b with a ≤ 150 and b ≤ 1000. Describe each
solution as a triple (a, b, q).

ii Make a conjecture about the form of the solutions (a, b, q) in terms of powers of
an integer. Verify that all triples of this form are solutions of the equation.

3 Vectors The pseudocode function shown
here inputs the coefficients of two vectors
v1 = x1i + y1 j + z1 k and v2 = x2i + y2 j + z2 k
and returns their scalar product.

define f (x1, y1, z1, x2, y2, z2):

return x1x2 + y1y2 + z1z2

Write a pseudocode function that for given vectors v1 and v2 will produce:

the cross product of v1 and v2a the length of the projection of v1 onto v2.b

4 Circles in the complex plane

a Use pseudocode to describe an algorithm that, given a ∈ R and r1, r2 ∈ R
+,

determines whether the two circles in the complex plane defined by

|z| = r1 and |z − a| = r2

coincide, intersect in two points, touch at one point or are disjoint. Adapt your
algorithm so that, if the circles intersect, then it finds the points of intersection.

b Use pseudocode to describe an algorithm that, given c1, c2 ∈ C and r1, r2 ∈ R
+,

determines whether the two circles in the complex plane defined by

|z − c1| = r1 and |z − c2| = r2

coincide, intersect in two points, touch at one point or are disjoint.
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8
Di�erentiation and
rational functions

Objectives
I To review di�erentiation.

I To use the rule
dy
dx

=
1
dx
dy

to obtain the derivative of a function of the form x = f(y).

I To find the derivatives of the inverse circular functions.

I To find the derivative of the function y = loge |x|.

I To define the second derivative of a function.

I To define and investigate points of inflection.

I To apply the chain rule to problems involving related rates.

I To apply the chain rule to parametrically defined relations.

I To sketch the graphs of rational functions.

I To use implicit di�erentiation.

In this chapter we review the techniques of differentiation that you have met in Mathematical
Methods Units 3 & 4. We also introduce important new techniques that will be used
throughout the remainder of the book. Differentiation and integration are used in each of the
following chapters, up to the chapters on statistical inference.

One of the new techniques is the use of the second derivative in sketching graphs. This will
give you a greater ability both to sketch graphs and to understand a given sketch of a graph.

Another new technique is implicit differentiation, which is a valuable tool for determining the
gradient at a point on a curve that is not the graph of a function.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



8A Di�erentiation 317

8A Di�erentiation
The derivative of a function f is denoted by f ′ and is defined by

f ′(x) = lim
h→0

f (x + h) − f (x)
h

The derivative f ′ is also known as the gradient function.

If
(
a, f (a)

)
is a point on the graph of y = f (x), then the

gradient of the graph at that point is f ′(a).

If the line ` is the tangent to the graph of y = f (x) at the
point

(
a, f (a)

)
and ` makes an angle of θ with the positive

direction of the x-axis, as shown, then

f ′(a) = gradient of ` = tan θ

y = f(x)

(a, f (a))

x

y

O
θ

ℓ

Review of di�erentiation
Here we summarise basic derivatives
and rules for differentiation covered in
Mathematical Methods Units 3 & 4.

f (x) f ′(x)

a 0 where a ∈ R

xn nxn−1 where n ∈ R \ {0}

sin x cos x

cos x − sin x

ex ex

loge x
1
x

for x > 0

Product rule

If f (x) = g(x) h(x), then� If y = uv, then�

f ′(x) = g′(x) h(x) + g(x) h′(x)
dy
dx

= u
dv
dx

+ v
du
dx

Quotient rule

If f (x) =
g(x)
h(x)

, then� If y =
u
v

, then�

f ′(x) =
g′(x) h(x) − g(x) h′(x)(

h(x)
)2

dy
dx

=

v
du
dx
− u

dv
dx

v2

Chain rule

If f (x) = h(g(x)), then� If y = h(u) and u = g(x), then�

f ′(x) = h′
(
g(x)

)
g′(x)

dy
dx

=
dy
du

du
dx
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318 Chapter 8: Di�erentiation and rational functions

Differentiate each of the following with respect to x:
√

x sin xa
x2

sin x
b cos(x2 + 1)c

Example 1

Solution

a Let f (x) =
√

x sin x.

Applying the product rule:

f ′(x) =
1
2

x−
1
2 sin x + x

1
2 cos x

=

√
x sin x
2x

+
√

x cos x, x > 0

b Let f (x) =
x2

sin x
.

Applying the quotient rule:

f ′(x) =
2x sin x − x2 cos x

sin2 x

c Let y = cos(x2 + 1).

Let u = x2 + 1. Then y = cos u.

By the chain rule:

dy
dx

=
dy
du

du
dx

= − sin u · 2x

= −2x sin(x2 + 1)

The derivative of tan(kx)

Let f (x) = tan(kx). Then f ′(x) = k sec2(kx).

Proof Let f (x) = tan(kx) =
sin(kx)
cos(kx)

.

The quotient rule yields

f ′(x) =
k cos(kx) cos(kx) + k sin(kx) sin(kx)

cos2(kx)

=
k
(
cos2(kx) + sin2(kx)

)
cos2(kx)

= k sec2(kx)
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8A Di�erentiation 319

Differentiate each of the following with respect to x:

tan(5x2 + 3)a tan3 xb sec2(3x)c

Example 2

Solution
Let f (x) = tan(5x2 + 3).
By the chain rule with g(x) = 5x2 + 3,
we have

f ′(x) = sec2(5x2 + 3) · 10x

= 10x sec2(5x2 + 3)

a Let f (x) = tan3 x = (tan x)3.
By the chain rule with g(x) = tan x,
we have

f ′(x) = 3(tan x)2 · sec2 x

= 3 tan2 x sec2 x

b

c Let y = sec2(3x)

= tan2(3x) + 1 (using the Pythagorean identity)

=
(
tan(3x)

)2
+ 1

Let u = tan(3x). Then y = u2 + 1 and the chain rule gives
dy
dx

=
dy
du

du
dx

= 2u · 3 sec2(3x)

= 6 tan(3x) sec2(3x)

Operator notation
Sometimes it is appropriate to use notation which emphasises that differentiation is an

operation on an expression. The derivative of f (x) can be denoted by
d
dx

(
f (x)

)
.

Find:
d
dx

(
x2 + 2x + 3

)
a

d
dx

(
ex2)b

d
dz

(
sin2(z)

)
c

Example 3

Solution
d
dx

(
x2 + 2x + 3

)
= 2x + 2a

Let y = ex2
and u = x2. Then y = eu.

The chain rule gives
dy
dx

=
dy
du

du
dx

= eu · 2x

= 2xex2

i.e.
d
dx

(
ex2)

= 2xex2

b Let y = sin2(z) and u = sin z. Then y = u2.
The chain rule gives

dy
dz

=
dy
du

du
dz

= 2u cos z

= 2 sin z cos z

= sin(2z)

c
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320 Chapter 8: Di�erentiation and rational functions

The derivative of loge |x|
The function

f : R \ {0} → R, f (x) = loge |x|

is very important in this course.

The graph of the function is shown opposite.
The derivative of this function is determined in
the following example.

O 1−1
x

y

a Find
d
dx

(
loge |x|

)
for x , 0.

b Find
d
dx

(
loge |sec x|

)
for x <

{ (2k + 1)π
2

: k ∈ Z
}
.

Example 4

Solution
Let y = loge |x|.

If x > 0, then y = loge x, so

dy
dx

=
1
x

If x < 0, then y = loge(−x), so the
chain rule gives

dy
dx

=
1
−x
× (−1) =

1
x

Hence
d
dx

(
loge |x|

)
=

1
x

for x , 0

a Let y = loge |sec x|

= loge

∣∣∣∣∣ 1
cos x

∣∣∣∣∣
= loge

( 1
|cos x|

)
= − loge |cos x|

Let u = cos x. Then y = − loge |u|.
By the chain rule:

dy
dx

=
dy
du

du
dx

= −
1
u
×

(
− sin x

)
=

sin x
cos x

= tan x

b

Derivative of loge |x|

Let f : R \ {0} → R, f (x) = loge |x|. Then f ′(x) =
1
x

.
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8A 8A Di�erentiation 321

Exercise 8ASkill-
sheet

1Example 1 Find the derivative of each of the following with respect to x:

x5 sin xa
√

x cos xb ex cos xc x3exd sin x cos xe

2Example 2 Find the derivative of each of the following with respect to x:

ex tan xa x4 tan xb tan x loge xc sin x tan xd
√

x tan xe

3 Find the derivative of each of the following using the quotient rule:
x

loge x
a

√
x

tan x
b

ex

tan x
c

tan x
loge x

d

sin x
x2e

tan x
cos x

f
cos x

exg
cos x
sin x

(= cot x)h

4 Find the derivative of each of the following using the chain rule:

tan(x2 + 1)a sin2 xb etan xc tan5 xd

sin(
√

x)e
√

tan xf cos
(1

x

)
g sec2 xh

tan
( x
4

)
i cot x Hint: Use cot x = tan

(
π

2
− x

)
.j

5 Use appropriate techniques to find the derivative of each of the following:

tan(kx), k ∈ Ra etan(2x)b tan2(3x)c loge(x) esin xd

sin3(x2)e
e3x+1

cos x
f e3x tan(2x)g

√
x tan

(√
x
)

h

tan2 x
(x + 1)3i sec2(5x2)j

6 Find
dy
dx

for each of the following:

y = (x − 1)5a y = loge(4x)b y = ex tan(3x)c y = ecos xd

y = cos3(4x)e y = (sin x + 1)4f y = sin(2x) cos xg y =
x2 + 1

x
h

y =
x3

sin x
i y =

1
x loge x

j

7Example 3 For each of the following, determine the derivative:
d
dx

(
x3)a

d
dy

(
2y2 + 10y

)
b

d
dz

(
cos2 z

)
c

d
dx

(
esin2 x)d

d
dz

(
1 − tan2 z

)
e

d
dy

(
cosec2 y

)
f

8Example 4 For each of the following, find the derivative with respect to x:

loge |2x + 1|a loge |−2x + 1|b loge |sin x|c
loge |sec x + tan x|d loge |cosec x + tan x|e loge |tan( 1

2 x)|f

loge |cosec x − cot x|g loge |x +
√

x2 − 4|h loge |x +
√

x2 + 4|i
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322 Chapter 8: Di�erentiation and rational functions 8A

9 Let f (x) = tan
( x
2

)
. Find the gradient of the graph of y = f (x) at the point where:

x = 0a x =
π

3
b x =

π

2
c

10 Let f :
(
−
π

2
,
π

2

)
→ R, f (x) = tan x.

a Find the coordinates of the points on the graph where the gradient is 4.
b Find the equation of the tangent at each of these points.

11 Let f :
(
−
π

2
,
π

2

)
→ R, f (x) = tan x − 8 sin x.

a i Find the stationary points on the graph of y = f (x).
ii State the nature of each of the stationary points.

b Sketch the graph of y = f (x).

12 Let f :
(
−
π

2
,
π

2

)
→ R, f (x) = ex sin x.

a Find the gradient of y = f (x) when x =
π

4
.

b Find the coordinates of the point where the gradient is zero.

13 Let f :
(
−
π

4
,
π

4

)
→ R, f (x) = tan(2x). The tangent to the graph of y = f (x) at x = a

makes an angle of 70◦ with the positive direction of the x-axis. Find the value(s) of a.

14 Let f (x) = sec
( x
4

)
.

Find f ′(x).a Find f ′(π).b
Find the equation of the tangent to y = f (x) at the point where x = π.c

8B Derivatives of x = f(y)
From the chain rule:

dy
dx

=
dy
du
×

du
dx

For the special case where y = x, this gives

dx
dx

=
dx
du
×

du
dx

1 =
dx
du
×

du
dx

∴

provided both derivatives exist.

This is restated in the standard form by replacing u with y in the formula:

dx
dy
×

dy
dx

= 1

We obtain the following useful result.
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8B Derivatives of x = f(y) 323

dy
dx

=
1

dx
dy

provided
dx
dy
, 0

Note: We are assuming that x = f (y) is a one-to-one function.

Given x = y3, find
dy
dx

.

Example 5

Solution Explanation
We have

dx
dy

= 3y2

Hence
dy
dx

=
1

3y2 , y , 0

The power of this method can be appreciated by
comparing it with an alternative approach as follows.

Let x = y3. Then y = 3
√

x = x
1
3 .

Hence
dy
dx

=
1
3

x−
2
3

dy
dx

=
1

3
3√

x2
, x , 0i.e.

Note that
1

3y2 =
1

3
3√

x2
.

While the derivative expressed in terms of x is the
familiar form, it is no less powerful when it is found
in terms of y.

Note: Here x is a one-to-one function of y.

Find the gradient of the curve x = y2 − 4y at the point where y = 3.

Example 6

Solution

x = y2 − 4y

dx
dy

= 2y − 4

dy
dx

=
1

2y − 4
, y , 2∴

Hence the gradient at y = 3 is
1
2

.

Note: Here x is not a one-to-one function of y, but it is for y ≥ 2, which is where we are
interested in the curve for this example. In the next example, we can consider two
one-to-one functions of y. One with domain y ≥ 2 and the other with domain y ≤ 2.
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324 Chapter 8: Di�erentiation and rational functions

Find the gradient of the curve x = y2 − 4y at x = 5.

Example 7

Solution

x = y2 − 4y

dx
dy

= 2y − 4

dy
dx

=
1

2y − 4
, y , 2∴

Substituting x = 5 into x = y2 − 4y yields

y2 − 4y = 5

y2 − 4y − 5 = 0

(y − 5)(y + 1) = 0

y = 5 or y = −1∴

Substituting these two y-values into the derivative gives

dy
dx

=
1
6

or
dy
dx

= −
1
6

Note: To explain the two answers here, we consider the graph of x = y2 − 4y, which is the
reflection of the graph of y = x2 − 4x in the line with equation y = x.

Graph of y = x2 − 4x Graph of x = y2 − 4y

y

xO (4, 0)

(2, −4)

y

A

B

C

xO

3

5

5

(0, 4)

(−4, 2)

−1

When x = 5, there are two points, B and C, on the graph of x = y2 − 4y.

At B, y = 5 and
dy
dx

=
1
6

.

At C, y = −1 and
dy
dx

= −
1
6

.
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8B 8B Derivatives of x = f(y) 325

Using the TI-Nspire
� First solve x = y2 − 4y for y.
� Differentiate each expression for y with

respect to x and then substitute x = 5,
as shown.

Note: Press t to obtain the derivative
template d

d��.

Using the Casio ClassPad
� InM, enter the equation x = y2 − 4y and

solve for y.
� Enter and highlight each expression for y

as shown.
� Go to Interactive > Calculation > di�.
� Substitute x = 5.

Exercise 8BSkill-
sheet

1Example 5 Using
dy
dx

=
1

dx
dy

, find
dy
dx

for each of the following:

x = 2y + 6a x = y2b x = (2y − 1)2c x = eyd
x = sin(5y)e x = loge yf x = tan yg x = y3 + y − 2h

x =
y − 1

y
i x = yeyj
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326 Chapter 8: Di�erentiation and rational functions 8B

2Example 6

Example 7

For each of the following, find the gradient of the curve at the given value:

x = y3 at y =
1
8

a x = y3 at x =
1
8

b

x = e4y at y = 0c x = e4y at x =
1
4

d

x = (1 − 2y)2 at y = 1e x = (1 − 2y)2 at x = 4f

x = cos(2y) at y =
π

6
g x = cos(2y) at x = 0h

3 For each of the following, express
dy
dx

in terms of y:

x = (2y − 1)3a x = e2y+1b x = loge(2y − 1)c x = loge(2y) − 1d

4 For each relation in Question 3, by first making y the subject, express
dy
dx

in terms of x.

5 Find the equations of the tangents to the curve with equation x = 2 − 3y2 at the points
where x = −1.

6 a Find the coordinates of the points of intersection of the graphs of the relations
x = y2 − 4y and y = x − 6.

b Find the coordinates of the point at which the tangent to the graph of x = y2 − 4y is
parallel to the line y = x − 6.

c Find the coordinates of the point at which the tangent to the graph of x = y2 − 4y is
perpendicular to the line y = x − 6.

7 a Show that the graphs of x = y2 − y and y = 1
2 x + 1 intersect where x = 2 and find the

coordinates of this point.
b Find, correct to two decimal places, the angle between the line y = 1

2 x + 1 and the
tangent to the graph of x = y2 − y at the point of intersection found in part a (that is,
at the point where x = 2).

8C Derivatives of inverse circular functions
The result established in the previous section

dy
dx

=
1

dx
dy

can be used to find the derivative of the inverse of a function, provided we know the
derivative of the original function.

For example, for the function with rule y = loge x, the equivalent function is x = ey. Given

that we know
dx
dy

= ey, we obtain
dy
dx

=
1
ey . But x = ey, and therefore

dy
dx

=
1
x

.
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8C Derivatives of inverse circular functions 327

The derivative of sin−1(x)

If f (x) = sin−1(x), then f ′(x) =
1

√
1 − x2

for x ∈ (−1, 1).

Proof Let y = sin−1(x), where x ∈ [−1, 1] and y ∈
[
−
π

2
,
π

2

]
.

The equivalent form is x = sin y and so
dx
dy

= cos y.

Thus
dy
dx

=
1

cos y
and cos y , 0 for y ∈

(
−
π

2
,
π

2

)
.

The Pythagorean identity is used to express
dy
dx

in terms of x:

sin2 y + cos2 y = 1

cos2 y = 1 − sin2 y

cos y = ±
√

1 − sin2 y

cos y =
√

1 − sin2 y since y ∈
(
−
π

2
,
π

2

)
and so cos y > 0Therefore

=
√

1 − x2 since x = sin y

dy
dx

=
1

cos y
=

1
√

1 − x2
for x ∈ (−1, 1)Hence

The derivative of cos−1(x)

If f (x) = cos−1(x), then f ′(x) =
−1

√
1 − x2

for x ∈ (−1, 1).

Proof Let y = cos−1(x), where x ∈ [−1, 1] and y ∈ [0,π].

The equivalent form is x = cos y and so
dx
dy

= − sin y.

Thus
dy
dx

=
−1

sin y
and sin y , 0 for y ∈ (0,π).

Using the Pythagorean identity yields

sin y = ±
√

1 − cos2 y

sin y =
√

1 − cos2 y since y ∈ (0,π) and so sin y > 0Therefore

=
√

1 − x2 since x = cos y

dy
dx

=
−1

sin y
=

−1
√

1 − x2
Hence
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328 Chapter 8: Di�erentiation and rational functions

The derivative of tan−1(x)

If f (x) = tan−1(x), then f ′(x) =
1

1 + x2 for x ∈ R.

Proof Let y = tan−1(x), where x ∈ R and y ∈
(
−
π

2
,
π

2

)
.

Then x = tan y. Therefore
dx
dy

= sec2 y, giving
dy
dx

=
1

sec2 y
.

Using the Pythagorean identity sec2 y = 1 + tan2 y, we have
dy
dx

=
1

sec2 y
=

1
1 + tan2 y

=
1

1 + x2 since x = tan y

For a > 0, the following results can be obtained using the chain rule.

Inverse circular functions

f : (−a, a)→ R, f (x) = sin−1
( x
a

)
, f ′(x) =

1
√

a2 − x2

f : (−a, a)→ R, f (x) = cos−1
( x
a

)
, f ′(x) =

−1
√

a2 − x2

f : R→ R, f (x) = tan−1
( x
a

)
, f ′(x) =

a
a2 + x2

Proof We show how to obtain the first result; the remaining two are left as an exercise.

Let y = sin−1
( x
a

)
. Then by the chain rule:

dy
dx

=
1√

1 −
( x
a

)2
×

1
a

=
1√

a2
(
1 −

x2

a2

) =
1

√
a2 − x2

Differentiate each of the following with respect to x:

sin−1
( x
3

)
a cos−1(4x)b tan−1

(2x
3

)
c sin−1(x2 − 1)d

Example 8

Solution
Let y = sin−1

( x
3

)
. Then

dy
dx

=
1

√
9 − x2

a Let y = cos−1(4x) and u = 4x.
By the chain rule:

dy
dx

=
−1

√
1 − u2

× 4

=
−4

√
1 − 16x2

b
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8C 8C Derivatives of inverse circular functions 329

Let y = tan−1
(2x

3

)
and u =

2x
3

.

By the chain rule:
dy
dx

=
1

1 + u2 ×
2
3

=
1

1 +

(2x
3

)2 ×
2
3

=
9

4x2 + 9
×

2
3

=
6

4x2 + 9

c Let y = sin−1(x2 − 1) and u = x2 − 1.

By the chain rule:
dy
dx

=
1

√
1 − u2

× 2x

=
2x√

1 − (x2 − 1)2

=
2x√

1 − (x4 − 2x2 + 1)

=
2x

√
2x2 − x4

=
2x

√
x2
√

2 − x2

=
2x

|x|
√

2 − x2

dy
dx

=
2

√
2 − x2

for 0 < x <
√

2Hence

dy
dx

=
−2

√
2 − x2

for −
√

2 < x < 0and

d

Exercise 8CSkill-
sheet

1Example 8 Find the derivative of each of the following with respect to x:

sin−1
( x
2

)
a cos−1

( x
4

)
b tan−1

( x
3

)
c sin−1(3x)d

cos−1(2x)e tan−1(5x)f sin−1
(3x

4

)
g cos−1

(3x
2

)
h

tan−1
(2x

5

)
i sin−1(0.2x)j

2 Find the derivative of each of the following with respect to x:

sin−1(x + 1)a cos−1(2x + 1)b tan−1(x + 2)c sin−1(4 − x)d

cos−1(1 − 3x)e 3 tan−1(1 − 2x)f 2 sin−1
(3x + 1

2

)
g −4 cos−1

(5x − 3
2

)
h

5 tan−1
(1 − x

2

)
i − sin−1(x2)j 3 cos−1(x2 − 1)k

3 Find the derivative of each of the following with respect to x:

y = cos−1
(3

x

)
where x > 3a y = sin−1

(5
x

)
where x > 5b

y = cos−1
( 3
2x

)
where x >

3
2

c
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330 Chapter 8: Di�erentiation and rational functions 8C

4 For a positive constant a, find the derivative of each of the following:

sin−1(ax)a cos−1(ax)b tan−1(ax)c

5 Let f (x) = 3 sin−1
( x
2

)
.

a i Find the maximal domain of f . ii Find the range of f .
b Find the derivative of f (x), and state the domain for which the derivative exists.
c Sketch the graph of y = f ′(x), labelling the turning points and the asymptotes.

6 Let f (x) = 4 cos−1(3x).

a i Find the maximal domain of f . ii Find the range of f .
b Find the derivative of f (x), and state the domain for which the derivative exists.
c Sketch the graph of y = f ′(x), labelling the turning points and the asymptotes.

7 Let f (x) = 2 tan−1
( x + 1

2

)
.

a i Find the maximal domain of f . ii Find the range of f .
b Find the derivative of f (x).
c Sketch the graph of y = f ′(x), labelling the turning points and the asymptotes.

8 Differentiate each of the following with respect to x:

(sin−1 x)2a sin−1 x + cos−1 xb sin(cos−1 x)c
cos(sin−1 x)d esin−1 xe tan−1(ex)f

9 Find, correct to two decimal places where necessary, the gradient of the graph of each of
the following functions at the value of x indicated:

f (x) = sin−1
( x
3

)
, x = 1a f (x) = 2 cos−1(3x), x = 0.1b

f (x) = 3 tan−1(2x + 1), x = 1c

10 For each of the following, find the value(s) of a from the given information:

f (x) = 2 sin−1 x, f ′(a) = 4a f (x) = 3 cos−1
( x
2

)
, f ′(a) = −10b

f (x) = tan−1(3x), f ′(a) = 0.5c f (x) = sin−1
( x + 1

2

)
, f ′(a) = 20d

f (x) = 2 cos−1
(2x

3

)
, f ′(a) = −8e f (x) = 4 tan−1(2x − 1), f ′(a) = 1f

11 Find, in the form y = mx + c, the equation of the tangent to the graph of:

y = sin−1(2x) at x =
1
4

a y = tan−1(2x) at x =
1
2

b

y = cos−1(3x) at x =
1
6

c y = cos−1(3x) at x =
1

2
√

3
d
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8C 8D Second derivatives 331

12 Let f (x) = cos−1
(6

x

)
.

a Find the maximal domain of f .
b Find f ′(x) and show that f ′(x) > 0 for x > 6.
c Sketch the graph of y = f (x) and label endpoints and asymptotes.

8D Second derivatives
For the function f with rule f (x), the derivative is denoted by f ′ and has rule f ′(x). This
notation is extended to taking the derivative of the derivative: the new function is denoted
by f ′′ and has rule f ′′(x). This new function is known as the second derivative.

Consider the function g with rule g(x) = 2x3 − 4x2. The derivative has rule g′(x) = 6x2 − 8x,
and the second derivative has rule g′′(x) = 12x − 8.

Note: The second derivative might not exist at a point even if the first derivative does.

For example, let f (x) = x
4
3 . Then f ′(x) =

4
3

x
1
3 and f ′′(x) =

4
9

x−
2
3 .

We see that f ′(0) = 0, but the second derivative f ′′(x) is not defined at x = 0.

In Leibniz notation, the second derivative of y with respect to x is denoted by
d2y
dx2 .

Find the second derivative of each of the following with respect to x:

a f (x) = 6x4 − 4x3 + 4x b y = ex sin x

Example 9

Solution
a f (x) = 6x4 − 4x3 + 4x

f ′(x) = 24x3 − 12x2 + 4

f ′′(x) = 72x2 − 24x

b y = ex sin x

dy
dx

= ex sin x + ex cos x (by the product rule)

d2y
dx2 = ex sin x + ex cos x + ex cos x − ex sin x

= 2ex cos x

A CAS calculator has the capacity to find the second derivative directly.

Using the TI-Nspire
� Press t to obtain the 2nd derivative

template d2

d��.
� Complete as shown.
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332 Chapter 8: Di�erentiation and rational functions

Using the Casio ClassPad
� Enter and highlight the expression ex · sin(x).
� Go to Interactive > Calculation > di� and change to order 2. Tap OK .

If f (x) = e2x, find f ′′(0).

Example 10

Solution

f (x) = e2x

f ′(x) = 2e2x

f ′′(x) = 4e2x

Therefore f ′′(0) = 4e0 = 4.

If y = cos(2x), find a simple expression for(dy
dx

)2
+

1
4

(d2y
dx2

)2

Example 11

Solution

y = cos(2x)

dy
dx

= −2 sin(2x)

d2y
dx2 = −4 cos(2x)

Hence(dy
dx

)2
+

1
4

(d2y
dx2

)2
=

(
−2 sin(2x)

)2
+

1
4
(
−4 cos(2x)

)2

= 4 sin2(2x) +
1
4
(
16 cos2(2x)

)
= 4 sin2(2x) + 4 cos2(2x)

= 4
(
sin2(2x) + cos2(2x)

)
= 4
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8D 8E Points of inflection 333

Exercise 8D

1Example 9 Find the second derivative of each of the following:

2x + 5a x8b
√

xc (2x + 1)4d sin xe

cos xf exg loge xh
1

x + 1
i tan xj

2 Find the second derivative of each of the following:
√

x5a (x2 + 3)4b sin
( x
2

)
c 3 cos(4x + 1)d

1
2

e2x+1e

loge(2x + 1)f 3 tan(x − 4)g 4 sin−1(x)h tan−1(x)i 2(1 − 3x)5j

3 Find f ′′(x) if f (x) is equal to:

6e3−2xa −8e−0.5x2b eloge xc loge(sin x)d

3 sin−1
( x
4

)
e cos−1(3x)f 2 tan−1

(2x
3

)
g

1
√

1 − x
h

5 sin(3 − x)i tan(1 − 3x)j sec
( x
3

)
k cosec

( x
4

)
l

4Example 10 Find f ′′(0) if f (x) is equal to:

esin xa e−
1
2 x2

b
√

1 − x2c tan−1
( 1

x − 1

)
d

5Example 11 If y = esin−1 x, show that (1 − x2)
d2y
dx2 − x

dy
dx
− y = 0.

8E Points of inflection
In Mathematical Methods Units 3 & 4, you have sketched the graphs of polynomial functions
and informally considered points of inflection. These are points on the graph where the
gradient changes from decreasing to increasing, or vice versa.

In this section, we use the second derivative to study points of inflection more formally.

The graph of y = 4x3 − x4
As an example, we start by considering the graph of y = 4x3 − x4, which is shown below.

x

y

(0, 0)

(3, 27)

y = 4x3 − x4

(4, 0)
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334 Chapter 8: Di�erentiation and rational functions

There is a local maximum at (3, 27) and a stationary point of inflection at (0, 0). These have

been determined by considering the derivative function
dy
dx

= 12x2 − 4x3.

The graph of the derivative function

x

y

(3, 0)

(2, 16)

(0, 0)

dy
= 12x2 − 4x3

dx

Note that the local maximum and the stationary point of inflection of the original graph
correspond to the x-axis intercepts of the graph of the derivative. Also it can be seen that the
gradient of the original graph is positive for x < 0 and 0 < x < 3 and negative for x > 3.

The graph of the second derivative function
Further information can be obtained by considering the graph of the second derivative.

x

y

2O

d2y
= 24x − 12x2

dx2

The graph of the second derivative reveals that, at the points on the original graph where
x = 0 and x = 2, there are important changes in the gradient.

� At the point where x = 0, the gradient of y = 4x3 − x4 changes from decreasing (positive)
to increasing (positive). This point is also a stationary point, but it is neither a local
maximum nor a local minimum. It is known as a stationary point of inflection.

� At the point where x = 2, the gradient of y = 4x3 − x4 changes from increasing (positive)
to decreasing (positive). This point is known as a non-stationary point of inflection. In this
case, the point corresponds to a local maximum of the derivative graph.

The gradient of y = 4x3 − x4 increases on the interval (0, 2) and then decreases on the
interval (2, 3). The point (2, 16) is the point of maximum gradient of y = 4x3 − x4 for the
interval (0, 3).
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8E Points of inflection 335

x

y

(0, 0)

(3, 27)

(2, 16) y = 4x3 − x4 
Stationary point
of inflection

Point of inflection Local maximum

(4, 0)

Behaviour of tangents
A closer look at the graph of y = 4x3 − x4 for the interval (0, 3) and, in particular, the
behaviour of the tangents to the graph in this interval will reveal more.

The tangents at x = 1, 2 and 2.5 have equations y = 8x − 5, y = 16x − 16 and y =
25
2

x −
125
16

respectively. The following graphs illustrate the behaviour.

� The first diagram shows a section of the graph of
y = 4x3 − x4 and its tangent at x = 1.

The tangent lies below the graph in the immediate
neighbourhood of x = 1.

For the interval (0, 2), the gradient of the graph is
increasing; the graph is said to be concave up.

x

y

O 1

� The second diagram shows a section of the graph of
y = 4x3 − x4 and its tangent at x = 2.5.

The tangent lies above the graph in the immediate
neighbourhood of x = 2.5.

For the interval (2, 3), the gradient of the graph is
decreasing; the graph is said to be concave down.

x

y

2.5O

� The third diagram shows a section of the graph of
y = 4x3 − x4 and its tangent at x = 2.

The tangent crosses the graph at the point (2, 16).

At x = 2, the gradient of the graph changes from
increasing to decreasing; the point (2, 16) is said to
be a point of inflection.

x

y

O 2
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336 Chapter 8: Di�erentiation and rational functions

Concavity and points of inflection
We have met the ideas of concave up and concave down in the example at the beginning of
this section. We now give the definitions of these ideas.

Concave up and concave down

For a curve y = f (x):

� If f ′′(x) > 0 for all x ∈ (a, b), then the gradient of the curve is strictly increasing over
the interval (a, b). The curve is said to be concave up.

� If f ′′(x) < 0 for all x ∈ (a, b), then the gradient of the curve is strictly decreasing over
the interval (a, b). The curve is said to be concave down.

Concave up for an interval Concave down for an interval

The tangent is below the curve at each
point and the gradient is increasing

The tangent is above the curve at each
point and the gradient is decreasing

i.e. f ′′(x) > 0 i.e. f ′′(x) < 0

Point of inflection

A point where a curve changes from concave up to concave down or from concave down
to concave up is called a point of inflection. That is, a point of inflection occurs where the
sign of the second derivative changes.

Note: At a point of inflection, the tangent will pass through the curve.

If there is a point of inflection on the graph of y = f (x) at x = a, where both f ′ and f ′′ exist,
then we must have f ′′(a) = 0. But the converse does not hold.

For example, consider f (x) = x4. Then f ′′(x) = 12x2 and so f ′′(0) = 0. But the graph of
y = x4 has a local minimum at x = 0.

From now on, we can use these new ideas in our graphing.

The graph of y = sin x
Let f :

[
−
π

2
,
π

2

]
→ R, f (x) = sin x. Then f ′(x) = cos x and f ′′(x) = − sin x.

Hence f ′(x) = 0 where x =
π

2
and x = −

π

2
, and f ′′(x) = 0 where x = 0.
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8E Points of inflection 337

� Concave up
In the interval

(
−
π

2
, 0

)
, f ′(x) > 0 and f ′′(x) > 0.

Note that the tangents to the curve lie below the
curve and it is said to be concave up.

x

y

O

  , −1π
2−

� Concave down
In the interval

(
0,
π

2

)
, f ′(x) > 0 and f ′′(x) < 0.

Note that the tangents to the curve lie above the
curve and it is said to be concave down.

x

y

O

  , 1π
2

� Point of inflection
Where x = 0, the tangent y = x passes through the
graph. There is a point of inflection at the origin.
This is also the point of maximum gradient in the

interval
[
−
π

2
,
π

2

]
.

  , 1π
2

−    , −1π
2

x

y

O

For each of the following functions, find the coordinates of the points of inflection of the
curve and state the intervals where the curve is concave up.

a f (x) = x3 b f (x) = −x3 c f (x) = x3 − 3x2 + 1 d f (x) =
1

x2 − 4

Example 12

Solution
a � There is a stationary point of inflection at (0, 0).

At x = 0, the gradient is zero and the curve changes from
concave down to concave up.

� The curve is concave up on the interval (0,∞).
The second derivative is positive on this interval.

Note: The tangent at x = 0 is the line y = 0.

x

y

O

b � There is a stationary point of inflection at (0, 0).
� The curve is concave up on the interval (−∞, 0).

The second derivative is positive on this interval.

Note: The tangent at x = 0 is the line y = 0.
x

y

O
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338 Chapter 8: Di�erentiation and rational functions

c f (x) = x3 − 3x2 + 1

f ′(x) = 3x2 − 6x

f ′′(x) = 6x − 6

There is a local maximum at the point with
coordinates (0, 1) and a local minimum at the
point with coordinates (2,−3).

The second derivative is zero at x = 1, it is
positive for x > 1, and it is negative for x < 1.

x

y

(0, 1)

(2, −3)

O

� There is a non-stationary point of inflection at (1,−1).
� The curve is concave up on the interval (1,∞).

d f (x) =
1

x2 − 4

f ′(x) =
−2x

(x2 − 4)2

f ′′(x) =
2(3x2 + 4)
(x2 − 4)3

There is a local maximum at the
point (0,− 1

4 ).

� There is no point of inflection, as
f ′′(x) , 0 for all x in the domain.

x

y

x = −2
x = 2

O

� f ′′(x) > 0 for x2 − 4 > 0, i.e. for x > 2 or x < −2.
The curve is concave up on (2,∞) and (−∞,−2).

Sketch the graph of the function f : R+ → R, f (x) =
6
x
− 6 + 3 loge x, showing all

key features.

Example 13

Solution
The derivative function has rule f ′(x) =

3
x
−

6
x2 =

3x − 6
x2 .

The second derivative function has rule f ′′(x) =
12
x3 −

3
x2 =

12 − 3x
x3 .

Stationary points
f ′(x) = 0 implies x = 2. Also note that f ′(1) = −3 < 0 and f ′(3) =

1
3
> 0.

Hence there is a local minimum at the point with coordinates (2, 3 loge 2 − 3).

Points of inflection
f ′′(x) = 0 implies x = 4. Also note that f ′′(3) =

1
9
> 0 and f ′′(5) = −

3
125
< 0.

Hence there is a point of inflection at
(
4, 6 loge 2 −

9
2

)
.
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8E Points of inflection 339

In the interval (2, 4), f ′′(x) > 0, i.e. gradient is
increasing. In the interval (4,∞), f ′′(x) < 0,
i.e. gradient is decreasing.

Notes:
� The point of inflection is the point of

maximum gradient in the interval (2,∞).
� The x-axis intercepts of the graph occur

at x = 1 and x ≈ 4.92.

x

y

O
1

(2, 3loge(2) − 3)

4, 6loge (2) − 9
2

Use of the second derivative in graph sketching
The following table illustrates different situations for graphs of different functions y = f (x).

d2y
dx2 > 0

d2y
dx2 < 0

d2y
dx2 = 0 and

point of inflection

dy
dx
> 0

Curve rising and
concave up

Curve rising and
concave down

Point of inflection on
rising curve

dy
dx
< 0

Curve falling and
concave up

Curve falling and
concave down

Point of inflection on
falling curve

dy
dx

= 0

Local minimum Local maximum Stationary point
of inflection
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340 Chapter 8: Di�erentiation and rational functions

The following test provides a useful method for identifying local maximums and minimums.

Second derivative test

For the graph of y = f (x):

� If f ′(a) = 0 and f ′′(a) > 0, then the point (a, f (a)) is a local minimum, as the curve is
concave up.

� If f ′(a) = 0 and f ′′(a) < 0, then the point (a, f (a)) is a local maximum, as the curve is
concave down.

� If f ′′(a) = 0, then further investigation is necessary.

Consider the function with rule f (x) = ex2
.

a i Find f ′(x). ii Find f ′′(x).
b On the one set of axes, sketch the graphs of y = f (x), y = f ′(x) and y = f ′′(x)

for x ∈ [−1, 1]. (Use a calculator to help.)
c Solve the equation f ′(x) = 0.
d Show that f ′′(x) > 0 for all x.
e Show that the graph of y = f (x) has a local minimum at the point (0, 1).
f State the intervals for which:

i f ′(x) > 0 ii f ′(x) < 0

Example 14

Solution

a i For f (x) = ex2
, the chain rule gives f ′(x) = 2xex2

.
ii The product rule gives f ′′(x) = 2ex2

+ 4x2ex2
.

b

y = f(x)

y = f ′(x)

y = f ″(x)

x

y
(−1, 6e) (1, 6e)

(−1, −2e)

1−1

−6e

(−1, e)

(1, 2e)

(1, e)e
2e
3e
4e
5e
6e

1

−5e
−4e
−3e
−2e
−e

c f ′(x) = 0 implies 2xex2
= 0. Thus x = 0.

d f ′′(x) = ex2
(2 + 4x2) > 0 for all x, as ex2

> 0 and 2 + 4x2 > 0 for all x.

e Since f ′(0) = 0 and f ′′(0) = 2 > 0, there is a local minimum at (0, 1).

f i f ′(x) > 0 for x ∈ (0,∞) ii f ′(x) < 0 for x ∈ (−∞, 0)
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8E Points of inflection 341

Consider the function with rule g(x) = x2 + 1.

a On the one set of axes, sketch the graphs of y = g(x), y = g′(x) and y = g′′(x)
for x ∈ [−1, 1].

b Compare the graph of y = g(x) with the graph of y = f (x) in Example 14.

Example 15

Solution

a g(x) = x2 + 1

g′(x) = 2x

g′′(x) = 2

The graphs of y = g(x), y = g′(x) and
y = g′′(x) have been sketched using a
similar scale to Example 14.

Since g′(0) = 0 and g′′(0) = 2 > 0,
there is a local minimum at (0, 1).

x

y

(−1, 2)

(−1, −2)

(1, 2)
y = 2

y = 2x

y = x2 + 1

O

1

b Similarities
� g′(x) > 0 for x > 0
� g′(x) < 0 for x < 0
� The graphs of y = x2 + 1 and y = ex2

are symmetric about the y-axis.

Di�erences
The second derivatives reveal that the gradient of y = ex2

is increasing rapidly for x > 0,
while the gradient of y = x2 is increasing at a constant rate.

Consider the graph of y = f (x), where f (x) = x2(10 − x).

a Find the coordinates of the stationary points and determine their nature using the
second derivative test.

b Find the coordinates of the point of inflection and find the gradient at this point.
c On the one set of axes, sketch the graphs of y = f (x), y = f ′(x) and y = f ′′(x)

for x ∈ [0, 10].

Example 16

Solution
We have f (x) = x2(10 − x) = 10x2 − x3, f ′(x) = 20x − 3x2 and f ′′(x) = 20 − 6x.

f ′(x) = 0 implies x(20 − 3x) = 0, and therefore x = 0 or x =
20
3

.

Since f ′′(0) = 20 > 0, there is a local minimum at (0, 0).

Since f ′′
(20

3

)
= −20 < 0, there is a local maximum at

(20
3

,
4000
27

)
.

a
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342 Chapter 8: Di�erentiation and rational functions

f ′′(x) = 0 implies x =
10
3

.

We have f ′′(x) < 0 for x >
10
3

and f ′′(x) > 0 for x <
10
3

.

Hence there is a point of inflection

at
(10

3
,

2000
27

)
.

The gradient at this point is
100
3

.

Note: The maximum gradient of y = f (x)
is at the point of inflection.

b

y = f (x)

y = f ′(x)

y = f ″(x)

x

y

01O

20

20
3

20,
3

4000
27

10
3

10,
3

2000
27

c

Use a CAS calculator to find the stationary points and the points of inflection of the graph
of f (x) = ex sin x for x ∈ [0, 2π].

Example 17

Using the TI-Nspire
� Define f (x) = ex sin(x).
� To find the derivative, press t to obtain the

template d
d�� and then complete as shown.

� To find the second derivative, press t to
obtain the template d2

d�� and then complete
as shown.

Stationary points
� Solve the equation

d
dx

(
f (x)

)
= 0 for x such

that 0 ≤ x ≤ 2π.
� Substitute to find the y-coordinates.
� The stationary points are(3π

4
,

1
√

2
e

3π
4

)
and

(7π
4

,
−1
√

2
e

7π
4

)
.

Points of inflection
� Solve the equation

d2

dx2 ( f (x)) = 0 for x such that 0 ≤ x ≤ 2π.

� Note that the second derivative changes sign at each of these x-values.
� Substitute to find the y-coordinates.

� The points of inflection are
(
π

2
, e

π

2

)
and

(3π
2

,−e
3π
2

)
.
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8E 8E Points of inflection 343

Using the Casio ClassPad
� Define f (x) = ex sin(x).

� Find
d
dx

( f (x)) and
d2

dx2 ( f (x)).

Stationary points
� Solve the equation

d
dx

(
f (x)

)
= 0 for x such

that 0 ≤ x ≤ 2π.
� Substitute to find the y-coordinates.
� The stationary points are(3π

4
,

1
√

2
e

3π
4

)
and

(7π
4

,
−1
√

2
e

7π
4

)
.

Points of inflection
� Solve the equation

d2

dx2 ( f (x)) = 0 for x such
that 0 ≤ x ≤ 2π.

� Note that the second derivative changes sign at
each of these x-values.

� Substitute to find the y-coordinates.

� The points of inflection are
(
π

2
, e

π

2

)
and

(3π
2

,−e
3π
2

)
.

Exercise 8ESkill-
sheet

1 Sketch a small portion of a continuous curve around a point x = a having the property:

a
dy
dx
> 0 when x = a and

d2y
dx2 > 0 when x = a

b
dy
dx
< 0 when x = a and

d2y
dx2 < 0 when x = a

c
dy
dx
> 0 when x = a and

d2y
dx2 < 0 when x = a

d
dy
dx
< 0 when x = a and

d2y
dx2 > 0 when x = a

2Example 12 For each of the following functions, find the coordinates of the points of inflection of the
curve and state the intervals where the curve is concave up:

f (x) = x3 − xa f (x) = x3 − x2b f (x) = x2 − x3c f (x) = x4 − x3d

3Example 13 Consider the graph of y =
1

1 + x + x2 .

a Find the coordinates of the points of inflection.
b Find the coordinates of the point of intersection of the tangents at the points

of inflection.
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344 Chapter 8: Di�erentiation and rational functions 8E

4Example 14 Let f (x) = xex2
.

a i Find f ′(x). ii Find f ′′(x).
b On the one set of axes, sketch the graphs of y = f (x), y = f ′(x) and y = f ′′(x)

for x ∈ [−1, 1]. (Use a calculator to help.)
c Show that f ′(x) > 0 for all x ∈ R.
d Show that f ′′(0) = 0 and that there is a point of inflection at (0, 0).
e State the intervals for which:

i f ′′(x) > 0 ii f ′′(x) < 0

5Example 16 Let f : [0, 20]→ R, f (x) =
x2

10
(20 − x).

a Find the coordinates of the stationary points and determine their nature using the
second derivative test.

b Find the coordinates of the point of inflection and find the gradient at this point.
c On the one set of axes, sketch the graphs of y = f (x), y = f ′(x) and y = f ′′(x)

for x ∈ [0, 20].

6 Let f : R→ R, f (x) = 2x3 + 6x2 − 12.

a i Find f ′(x). ii Find f ′′(x).
b Find the coordinates of the stationary points and use the second derivative test to

establish their nature.
c Use f ′′(x) to find the coordinates of the point on the graph of y = f (x) where the

gradient is a minimum (the point of inflection).

7 Repeat Question 6 for each of the following functions:

a f : [0, 2π]→ R, f (x) = sin x

b f : R→ R, f (x) = xex

8 The graph of y = f (x) has a local minimum at x = a and no other stationary point
‘close’ to a.

a For a small value h, where h > 0, what can be said about the value of:

i f ′(a − h) ii f ′(a) iii f ′(a + h)?
b What can be said about the gradient of y = f ′(x) for x ∈ [a − h, a + h]?
c What can be said about the value of f ′′(a)?
d Verify your observation by calculating the value of f ′′(0) for each of the following

functions:

i f (x) = x2 ii f (x) = − cos x iii f (x) = x4

e Can f ′′(a) ever be less than zero if y = f (x) has a local minimum at x = a?

9 Let f (x) = arctan(2x − 6) + 1.

a Find the coordinates of the point of inflection of the graph of y = f (x).
b Find the equations of the asymptotes of the graph of y = f (x).
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8E 8E Points of inflection 345

10 Let f : [0, 10]→ R, f (x) = x(10 − x)ex.

a Find f ′(x) and f ′′(x).
b Sketch the graphs of y = f (x) and y = f ′′(x) on the one set of axes for x ∈ [0, 10].
c Find the value of x for which the gradient of the graph of y = f (x) is a maximum and

indicate this point on the graph of y = f (x).

11 Find the coordinates of the points of inflection of y = x − sin x for x ∈ [0, 4π].

12 For each of the following functions, find the values of x for which the graph of the
function has a point of inflection:

y = sin xa y = tan xb y = sin−1 xc
y = sin(2x)d y = (x + 1) tan−1 xe y = x3 loge xf

13 Show that the parabola with equation y = ax2 + bx + c has no points of inflection.

14 For the curve with equation y = 2x3 − 9x2 + 12x + 8, find the values of x for which:
dy
dx
< 0 and

d2y
dx2 > 0a

dy
dx
< 0 and

d2y
dx2 < 0b

15 For each of the following functions, determine the coordinates of any points of
inflection and the gradient of the graph at these points:

y = x3 − 6xa y = x4 − 6x2 + 4b y = 3 − 10x3 + 10x4 − 3x5c

y = (x2 − 1)(x2 + 1)d y =
x + 1
x − 1

e y = x
√

x + 1f

y =
2x

x2 + 1
g y = sin−1 xh y =

x − 2
(x + 2)2i

16 Determine the values of x for which the graph of y = e−x sin x has:

stationary pointsa points of inflection.b

17 Given that f (x) = x3 + bx2 + cx and b2 > 3c, prove that:

a the graph of f has two stationary points
b the graph of f has one point of inflection
c the point of inflection is the midpoint of the line segment joining the stationary

points.

18 Consider the function with rule f (x) = 2x2 loge(x).

Find f ′(x).a Find f ′′(x).b
Find the stationary points and the points of inflection of the graph of y = f (x).c

19 Let f (x) = xe
x
3 . Find the stationary points and the points of inflection of the graph of f .

20 Let f (x) = 2x cos(5x) + (5x2 − 6) sin(5x). Show that if the graph of y = f (x) has a point

of inflection at
(
a, f (a)

)
, then tan(5a) =

10a
25a2 − 28

.
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346 Chapter 8: Di�erentiation and rational functions

8F Related rates
Consider the situation of a right circular cone being
filled from a tap.

At time t seconds:

� the volume of water in the cone is V cm3

� the height of the water in the cone is h cm
� the radius of the circular water surface is r cm.

As the water flows in, the values of V , h and r change:

�
dV
dt

is the rate of change of volume with respect to time

�
dh
dt

is the rate of change of height with respect to time

�
dr
dt

is the rate of change of radius with respect to time.

It is clear that these rates are related to each other. The
chain rule is used to establish these relationships.

30 cm

10 cm

h cm

r cm

For example, if the height of the cone is 30 cm and the
radius of the cone is 10 cm, then similar triangles yield

r
h

=
10
30

h = 3r∴

Then the chain rule is used:
dh
dt

=
dh
dr
·

dr
dt

= 3 ·
dr
dt

The volume of a cone is given in general by V = 1
3πr2h.

Since h = 3r, we have

V = πr3

Therefore by using the chain rule again:

dV
dt

=
dV
dr
·

dr
dt

= 3πr2 ·
dr
dt

The relationships between the rates have been established.

30 cm

10 cm

h cm

r cm

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



8F Related rates 347

A rectangular prism is being filled with water at a rate
of 0.00042 m3/s. Find the rate at which the height of the
water is increasing.

2 m

3 m

h m

Example 18

Solution
Let t be the time in seconds after the prism begins to fill. Let V m3 be the volume of water
at time t, and let h m be the height of the water at time t.

We are given that
dV
dt

= 0.00042 and V = 6h.

Using the chain rule, the rate at which the height is increasing is

dh
dt

=
dh
dV

dV
dt

Since V = 6h, we have
dV
dh

= 6 and so
dh
dV

=
1
6

.

dh
dt

=
1
6
× 0.00042Thus

= 0.00007 m/s

i.e. the height is increasing at a rate of 0.00007 m/s.

As Steven’s ice block melts, it forms a circular puddle on the floor. The radius of the
puddle increases at a rate of 3 cm/min. When its radius is 2 cm, find the rate at which the
area of the puddle is increasing.

Example 19

Solution
The area, A, of a circle is given by A = πr2, where r is the radius of the circle.

The rate of increase of the radius is
dr
dt

= 3 cm/min.

Using the chain rule, the rate of increase of the area is
dA
dt

=
dA
dr

dr
dt

= 2πr × 3

= 6πr

When r = 2,
dA
dt

= 12π.

Hence the area of the puddle is increasing at 12π cm2/min.
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348 Chapter 8: Di�erentiation and rational functions

A metal cube is being heated so that the side length is increasing at the rate of 0.02 cm per
hour. Calculate the rate at which the volume is increasing when the side length is 5 cm.

Example 20

Solution
Let x be the length of a side of the cube. Then the volume is V = x3.

We are given that
dx
dt

= 0.02 cm/h.

The rate of increase of volume is found using the chain rule:

dV
dt

=
dV
dx

dx
dt

= 3x2 × 0.02

= 0.06x2

When x = 5, the volume of the cube is increasing at a rate of 1.5 cm3/h.

The diagram shows a rectangular block
of ice that is x cm by x cm by 5x cm.

a Express the total surface area, A cm2,

in terms of x and then find
dA
dx

.

b If the ice is melting such that the total
surface area is decreasing at a constant
rate of 4 cm2/s, calculate the rate of
decrease of x when x = 2.

x cm

x cm 5x cm

Example 21

Solution

a A = 4 × 5x2 + 2 × x2

= 22x2

dA
dx

= 44x

b The surface area is decreasing, so
dA
dt

= −4.

By the chain rule:

dx
dt

=
dx
dA

dA
dt

=
1

44x
× (−4)

= −
1

11x

When x = 2,
dx
dt

= −
1
22

cm/s.

Note: The rates of change of the lengths of the edges are − 1
22 cm/s, − 1

22 cm/s and
− 5

22 cm/s. The negative signs indicate that the lengths are decreasing.
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Parametric equations
Parametric equations were revised in Chapter 1. For example:

� The unit circle can be described by the parametric equations x = cos t and y = sin t.
� The parabola y2 = 4ax can be described by the parametric equations x = at2 and y = 2at.

In general, a parametric curve is specified by a pair of equations

x = f (t) and y = g(t)

For a point
(
f (t), g(t)

)
on the curve, we can consider the gradient of the tangent to the curve at

this point. By the chain rule, we have

dy
dt

=
dy
dx

dx
dt

This gives the following result.

Gradient at a point on a parametric curve

dy
dx

=

dy
dt
dx
dt

provided
dx
dt
, 0

Note: A curve defined by parametric equations is not necessarily the graph of a function.
However, each value of t determines a point on the curve, and we can use this
technique to find the gradient of the curve at this point (given the tangent exists).

A curve has parametric equations

x = 2t − loge(2t) and y = t2 − loge(t2)

Find:
dy
dt

and
dx
dt

a
dy
dx

b

Example 22

Solution

x = 2t − loge(2t)

∴
dx
dt

= 2 −
1
t

=
2t − 1

t

y = t2 − loge(t2)

∴
dy
dt

= 2t −
2
t

=
2t2 − 2

t

a
dy
dx

=

dy
dt
dx
dt

=
2t2 − 2

t
×

t
2t − 1

=
2t2 − 2
2t − 1

b
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350 Chapter 8: Di�erentiation and rational functions

For the curve defined by the given parametric equations, find the gradient of the tangent at
a point P(x, y) on the curve, in terms of the parameter t:

x = 16t2 and y = 32ta x = 2 sin(3t) and y = −2 cos(3t)b

Example 23

Solution

x = 16t2 and so
dx
dt

= 32t

y = 32t and so
dy
dt

= 32

Therefore

dy
dx

=

dy
dt
dx
dt

=
32
32t

=
1
t

The gradient of the tangent at the point

P(16t2, 32t) is
1
t

, for t , 0.

a x = 2 sin(3t) and so
dx
dt

= 6 cos(3t)

y = −2 cos(3t) and so
dy
dt

= 6 sin(3t)

Therefore

dy
dx

=

dy
dt
dx
dt

=
6 sin(3t)
6 cos(3t)

= tan(3t)

The gradient of the tangent at the point
P
(
2 sin(3t),−2 cos(3t)

)
is tan(3t).

b

The second derivative at a point on a parametric curve
If the parametric equations for a curve define a function for which the second derivative

exists, then
d2y
dx2 can be found as follows:

d2y
dx2 =

d(y′)
dx

=

dy′

dt
dx
dt

where y′ =
dy
dx

A curve is defined by the parametric equations x = t − t3 and y = t − t2. Find
d2y
dx2 .

Example 24

Solution

Let y′ =
dy
dx

. Then y′ =
dy
dt
÷

dx
dt

.

We have x = t − t3 and y = t − t2, giving
dx
dt

= 1 − 3t2 and
dy
dt

= 1 − 2t.

Therefore

y′ =
1 − 2t
1 − 3t2

Next differentiate y′ with respect to t, using the quotient rule:

dy′

dt
=
−2(3t2 − 3t + 1)

(3t2 − 1)2
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Hence
d2y
dx2 =

dy′

dt
÷

dx
dt

=
−2(3t2 − 3t + 1)

(3t2 − 1)2 ×
1

1 − 3t2

=
−2(3t2 − 3t + 1)

(1 − 3t2)3

=
−6t2 + 6t − 2

(1 − 3t2)3

Exercise 8F

1Example 18

Example 19

The radius of a spherical balloon is 2.5 m and its volume is increasing at a rate
of 0.1 m3/min.

a At what rate is the radius increasing?
b At what rate is the surface area increasing?

2Example 20 When a wine glass is filled to a depth of x cm, it contains V cm3 of wine, where

V = 4x
3
2 . If the depth is 9 cm and wine is being poured into the glass at 10 cm3/s,

at what rate is the depth changing?

3 Variables x and y are connected by the equation y = 2x2 + 5x + 2. Given that x is
increasing at the rate of 3 units per second, find the rate of increase of y with respect to
time when x = 2.

4Example 21 If a hemispherical bowl of radius 6 cm contains water to a depth of x cm, the volume,
V cm3, of the water is given by

V =
1
3
πx2(18 − x)

Water is poured into the bowl at a rate of 3 cm3/s. Find the rate at which the water level
is rising when the depth is 2 cm.

5 Variables p and v are linked by the equation pv = 1500. Given that p is increasing at the
rate of 2 units per minute, find the rate of decrease of v at the instant when p = 60.

6 A circular metal disc is being heated so that the radius is increasing at the rate of
0.01 cm per hour. Find the rate at which the area is increasing when the radius is 4 cm.

7 The area of a circle is increasing at the rate of 4 cm2 per second. At what rate is the
circumference increasing at the instant when the radius is 8 cm?
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352 Chapter 8: Di�erentiation and rational functions 8F

8Example 22 A curve has parametric equations x =
1

1 + t2 and y =
t

1 + t2 .

Find
dy
dt

and
dx
dt

.a Find
dy
dx

.b

9 A curve has parametric equations x = 2t + sin(2t) and y = cos(2t). Find
dy
dx

.

10Example 23 A curve has parametric equations x = t − cos t and y = sin t. Find the equation of the
tangent to the curve when t =

π

6
.

11 A point moves along the curve y = x2 such that its velocity parallel to the x-axis is a

constant 2 cm/s (i.e.
dx
dt

= 2). Find its velocity parallel to the y-axis (i.e.
dy
dt

) when:

x = 3a y = 16b

12 Variables x and y are related by y =
2x − 6

x
. They are given by x = f (t) and y = g(t),

where f and g are functions of time. Find f ′(t) when y = 1, given that g′(t) = 0.4.

13 A particle moves along the curve

y = 10 cos−1
( x − 5

5

)
in such a way that its velocity parallel to the x-axis is a constant 3 cm/s. Find its
velocity parallel to the y-axis when:

x = 6a y =
10π

3
b

14 The radius, r cm, of a sphere is increasing at a constant rate of 2 cm/s. Find, in
terms of π, the rate at which the volume is increasing at the instant when the volume
is 36π cm3.

15 Liquid is poured into a container at a rate of 12 cm3/s. The volume of liquid in the
container is V cm3, where V = 1

2 (h2 + 4h) and h is the height of the liquid in the
container. Find, when V = 16:

a the value of h

b the rate at which h is increasing

16 The area of an ink blot, which is always circular in shape, is increasing at a rate
of 3.5 cm2/s. Find the rate of increase of the radius when the radius is 3 cm.

17 A tank in the shape of a prism has constant cross-sectional area A cm2. The amount of
water in the tank at time t seconds is V cm3 and the height of the water is h cm. Find the

relationship between
dV
dt

and
dh
dt

.
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18 A cylindrical tank 5 m high with base radius 2 m is
initially full of water. Water flows out through a hole
at the bottom of the tank at the rate of

√
h m3/h, where

h metres is the depth of the water remaining in the tank
after t hours. Find:

a
dh
dt

b i
dV
dt

when V = 10π m3

ii
dh
dt

when V = 10π m3
2 m

h m

5 m

19 For the curve defined by the parametric equations x = 2 cos t and y = sin t, find the
equation of the tangent to the curve at the point:(√

2,

√
2

2

)
a (2 cos t, sin t), where t is any real number.b

20 For the curve defined by the parametric equations x = 2 sec θ and y = tan θ, find the
equation of:

the tangent at the point where θ =
π

4
a the normal at the point where θ =

π

4
b

the tangent at the point (2 sec θ, tan θ).c

21 For the curve with parametric equations x = 2 sec t − 3 and y = 4 tan t + 2, find:
dy
dx

a the equation of the tangent to the curve when t =
π

4
.b

22 A curve is defined by the parametric equations x = sec t and y = tan t.

a Find the equation of the normal to the curve at the point (sec t, tan t).
b Let A and B be the points of intersection of the normal to the curve with the x-axis

and y-axis respectively, and let O be the origin. Find the area of 4OAB.
c Find the value of t for which the area of 4OAB is 4

√
3.

23 A curve is specified by the parametric equations x = e2t + 1 and y = 2et + 1 for t ∈ R.

a Find the gradient of the curve at the point (e2t + 1, 2et + 1).
b State the domain of the relation.
c Sketch the graph of the relation.

d Find the equation of the tangent at the point where t = loge

(1
2

)
.

24Example 24 For the parametric curve given by x = t2 + 1 and y = t(t − 3)2, for t ∈ R, find:
dy
dx

a the coordinates of the stationary pointsb

d2y
dx2c the coordinates of the points of inflection.d
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8G Rational functions
A rational function has a rule of the form

f (x) =
P(x)
Q(x)

where P(x) and Q(x) are polynomials. There is a huge variety of different types of curves in
this particular family of functions. An example of a rational function is

f (x) =
x2 + 2x + 3
x2 + 4x − 1

The following are also rational functions, but are not given in the form used in the definition
of a rational function:

g(x) = 1 +
1
x

h(x) = x −
1

x2 + 2
Their rules can be rewritten as shown:

g(x) =
x
x

+
1
x

=
x + 1

x
h(x) =

x(x2 + 2)
x2 + 2

−
1

x2 + 2
=

x3 + 2x − 1
x2 + 2

Graphing rational functions
For sketching graphs, it is also useful to write rational functions in the alternative form,
that is, with a division performed if possible. For example:

f (x) =
8x2 − 3x + 2

x
=

8x2

x
−

3x
x

+
2
x

= 8x − 3 +
2
x

For this example, we can see that
2
x
→ 0 as x→ ±∞, so the graph of y = f (x) will approach

the line y = 8x − 3 as x→ ±∞.

We say that the line y = 8x − 3 is a non-vertical asymptote of the graph. This is a line which
the graph approaches as x→ ±∞.

Important features of a sketch graph are:

asymptotes� axis intercepts� stationary points� points of inflection.�

Methods for sketching graphs of rational functions include:

� adding the y-coordinates (ordinates) of two simple graphs
� taking the reciprocals of the y-coordinates (ordinates) of a simple graph.

Addition of ordinates
Key points for addition of ordinates

� When the two graphs have the same ordinate, the y-coordinate of the resultant graph
will be double this.

� When the two graphs have opposite ordinates, the y-coordinate of the resultant graph
will be zero (an x-axis intercept).

� When one of the two ordinates is zero, the resulting ordinate is equal to the other
ordinate.
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8G Rational functions 355

Sketch the graph of f : R \ {0} → R, f (x) =
x2 + 1

x
.

Example 25

Solution
Asymptotes The vertical asymptote has equation x = 0, i.e. the y-axis.

Dividing through gives

f (x) =
x2 + 1

x
=

x2

x
+

1
x

= x +
1
x

Note that
1
x
→ 0 as x→ ±∞. Therefore the graph of y = f (x) approaches the graph

of y = x as x→ ±∞. The non-vertical asymptote has equation y = x.

Addition of ordinates The graph of y = f (x) can be obtained by adding the y-coordinates

of the graphs of y = x and y =
1
x

.

x

y

y =

y = x

1
x

O
x

y

y = x + 
1
x

O

Intercepts There is no y-axis intercept, as the domain of f is R \ {0}. There are no x-axis

intercepts, as the equation
x2 + 1

x
= 0 has no solutions.

Stationary points

f (x) = x +
1
x

f ′(x) = 1 −
1
x2∴

Thus f ′(x) = 0 implies x2 = 1,
i.e. x = ±1.

As f (1) = 2 and f (−1) = −2,
the stationary points are (1, 2)
and (−1,−2).

Points of inflection

f ′′(x) =
2
x3

O
x

y

y = x

x = 0
vertical asymptote

(1, 2)

(−1, −2)

Therefore f ′′(x) , 0, for all x in the domain of f , and so there are no points of inflection.
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Sketch the graph of f : R \ {0} → R, f (x) =
x4 + 2

x2 .

Example 26

Solution
Asymptotes The vertical asymptote has equation x = 0.

Dividing through gives

f (x) = x2 +
2
x2

Addition of ordinates

O
x

y

y =

y = x2

2

x2

x

y

O

y = x2+  
2

x2

Intercepts There are no axis intercepts.

Stationary points

f (x) = x2 + 2x−2

f ′(x) = 2x − 4x−3∴

When f ′(x) = 0,

2x −
4
x3 = 0

2x4 − 4 = 0

x = ±2
1
4∴

The stationary points have coordinates

(2
1
4 , 2
√

2) and (−2
1
4 , 2
√

2).

O

vertical asymptote
x = 0

x

y = f(x)

(−2 ,  2   2 )
1
4 (2 , 2   2 )

1
4

y

Points of inflection
Since f ′′(x) = 2 + 12x−4 > 0, there are no points of inflection.
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8G Rational functions 357

Sketch the graph of y =
x3 + 2

x
, x , 0.

Example 27

Solution
Asymptotes The vertical asymptote has equation x = 0.

Divide through to obtain

y = x2 +
2
x

Addition of ordinates

O
x

y

y = x2

y =
2
x

x

y

y = x2 +
2
x

O

Intercepts Consider y = 0, which implies x3 + 2 = 0, i.e. x = −
3√2.

Stationary points

y = x2 + 2x−1

dy
dx

= 2x − 2x−2∴

Thus
dy
dx

= 0 implies x −
1
x2 = 0

x3 = 1

∴ x = 1

The turning point has coordinates (1, 3).

Points of inflection
d2y
dx2 = 2 + 4x−3

O
x

y

(1, 3)

y = f(x)

−2
1
3

Thus
d2y
dx2 = 0 implies x = −

3√2. There is a point of inflection at (− 3√2, 0).
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Reciprocal of ordinates
This is the second method for sketching graphs of rational functions. We will consider

functions of the form f (x) =
1

Q(x)
, where Q(x) is a quadratic function.

Sketch the graph of f : R \ {0, 4} → R, f (x) =
1

x2 − 4x
.

Example 28

Solution

f (x) =
1

x2 − 4x
=

1
x(x − 4)

Asymptotes The vertical asymptotes have equations x = 0 and x = 4. The non-vertical
asymptote has equation y = 0, since f (x)→ 0 as x→ ±∞.

Reciprocal of ordinates To sketch the graph of y = f (x), first sketch the graph of
y = Q(x). In this case, we have Q(x) = x2 − 4x.

O 4
x

y

y = x2 − 4x

(2, −4)

O 4
x

y

(2, −4)

2, −

x = 4

y = 

1
4

1

x2 − 4x

Summary of properties of reciprocal functions

� The x-axis intercepts of the original function determine the equations of the vertical
asymptotes for the reciprocal function.

� The reciprocal of a positive number is positive.
� The reciprocal of a negative number is negative.
� A graph and its reciprocal will intersect at a point if the y-coordinate is 1 or −1.
� Local maximums of the original function produce local minimums of the reciprocal.
� Local minimums of the original function produce local maximums of the reciprocal.

� If g(x) =
1

f (x)
, then g′(x) = −

f ′(x)
( f (x))2 . Therefore, at any given point, the gradient of the

reciprocal function is opposite in sign to that of the original function.
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8G Rational functions 359

Further graphing
So far we have only started to consider the diversity of rational functions. Here we look at
some further rational functions and employ a variety of techniques.

Sketch the graph of y =
4x2 + 2
x2 + 1

.

Example 29

Solution
Axis intercepts
When x = 0, y = 2.

Since
4x2 + 2
x2 + 1

> 0 for all x, there are no x-axis intercepts.

Stationary points
Using the quotient rule:

dy
dx

=
4x

(x2 + 1)2

d2y
dx2 =

4(1 − 3x2)
(x2 + 1)3

Thus
dy
dx

= 0 implies x = 0.

When x = 0,
d2y
dx2 = 4 > 0. Hence there is a local minimum at (0, 2).

Points of inflection
d2y
dx2 = 0 implies x = ±

√
3

3
Asymptotes

y =
4x2 + 2
x2 + 1

= 4 −
2

x2 + 1

The line y = 4 is a horizontal

asymptote, since
2

x2 + 1
→ 0

as x→ ±∞.

O

y = 4

x

2

y
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Sketch the graph of y =
4x2 − 4x + 1

x2 − 1
.

Example 30

Solution
Axis intercepts
When x = 0, y = −1.

When y = 0, 4x2 − 4x + 1 = 0

(2x − 1)2 = 0

∴ x = 1
2

Stationary points
Using the quotient rule:

dy
dx

=
2(2x2 − 5x + 2)

(x2 − 1)2

O
x = 1

y = 4

x = −1
(2, 3)

1
x

y

Thus
dy
dx

= 0 implies x = 1
2 or x = 2.

There is a local maximum at ( 1
2 , 0) and a local minimum at (2, 3).

The nature of the stationary points can most easily be determined through using
dy
dx

=
2(2x − 1)(x − 2)

(x2 − 1)2 . (Observe that the denominator is always positive.)

Points of inflection
d2y
dx2 = −

2(4x3 − 15x2 + 12x − 5)
(x2 − 1)3

Thus
d2y
dx2 = 0 implies 4x3 − 15x2 + 12x − 5 = 0, and so x =

1
4
(
5 + 3

4
3 + 3

2
3
)
≈ 2.85171

Asymptotes
By solving x2 − 1 = 0, we find that the graph has vertical asymptotes x = 1 and x = −1.

Since
4x2 − 4x + 1

x2 − 1
= 4 −

4x − 5
x2 − 1

, there is a horizontal asymptote y = 4.

The graph crosses this asymptote at the point ( 5
4 , 4).

While the next example is not a rational function, it can be graphed using similar techniques.

Let y =
x + 1
√

x − 1
.

a Find the maximal domain.
b Find the coordinates and the nature of any stationary points of the graph.
c Find the equation of the vertical asymptote.
d Sketch the graph.

Example 31
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8G 8G Rational functions 361

Solution

a For
x + 1
√

x − 1
to be defined, we require

√
x − 1 > 0, i.e. x > 1.

The maximal domain is (1,∞).

b Using the quotient and chain rules:
dy
dx

=
x − 3

2(x − 1)
3
2

and
d2y
dx2 =

7 − x

4(x − 1)
5
2

Thus
dy
dx

= 0 implies x = 3. When x = 3,
d2y
dx2 > 0.

There is a local minimum at (3, 2
√

2).

c As x→ 1, y→ ∞. Hence x = 1 is a vertical asymptote.

As x→ ∞, y→
x
√

x
=
√

x.

d

O
x = 1 y = √x

1

(3, 2 √2)

x

y

Exercise 8GSkill-
sheet

1Example 25

Example 26

Example 27

Example 28

Sketch the graph of each of the following, labelling all axis intercepts, turning points
and asymptotes:

y =
1

x2 − 2x
a y =

x4 + 1
x2b y =

1
(x − 1)2 + 1

c

y =
x2 − 1

x
d y =

x3 − 1
x2e y =

x2 + x + 1
x

f

y =
4x3 − 8

x
g y =

1
x2 + 1

h y =
1

x2 − 1
i

y =
x2

x2 + 1
= 1 −

1
x2 + 1

j y =
1

x2 − x − 2
k y =

1
4 + 3x − x2l

2 Sketch the graph of each of the following, labelling all axis intercepts, turning points
and asymptotes:

f (x) =
1

9 − x2a g(x) =
1

(x − 2)(3 − x)
b h(x) =

1
x2 + 2x + 4

c

f (x) =
1

x2 + 2x + 1
d g(x) = x2 +

1
x2 + 2e
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362 Chapter 8: Di�erentiation and rational functions 8G

3 The equation of a curve is y = 4x +
1
x

. Find:

a the coordinates of the turning points
b the equation of the tangent to the curve at the point where x = 2.

4 Find the x-coordinates of the points on the curve y =
x2 − 1

x
at which the gradient of the

curve is 5.

5 Find the gradient of the curve y =
2x − 4

x2 at the point where it crosses the x-axis.

6 For the curve y = x − 5 +
4
x

, find:

a the coordinates of the points of intersection with the axes
b the equations of all asymptotes
c the coordinates of all turning points.

Use this information to sketch the curve.

7 If x is positive, find the least value of x +
4
x2 .

8 For positive values of x, sketch the graph of y = x +
4
x

, and find the least value of y.

9 a Find the coordinates of the stationary points of the curve y =
(x − 3)2

x
and determine

the nature of each stationary point.

b Sketch the graph of y =
(x − 3)2

x
.

10 a Find the coordinates of the turning point(s) of the curve y = 8x +
1

2x2 and determine
the nature of each point.

b Sketch the graph of y = 8x +
1

2x2 .

11 Determine the asymptotes, intercepts and stationary points for the graph of the relation

y =
x3 + 3x2 − 4

x2 . Hence sketch the graph.

12 Consider the relation y =
4x2 + 8
2x + 1

.

a State the maximal domain.

b Find
dy
dx

.

c Hence find the coordinates and nature of all stationary points.
d Find the equations of all asymptotes.
e State the range of this relation.

13Example 29 Consider the function with rule f (x) =
x2 + 4

x2 − 5x + 4
.

a Find the equations of all asymptotes.
b Find the coordinates and nature of all stationary points.
c Sketch the graph of y = f (x). Include the coordinates of the points of intersection of

the graph with the horizontal asymptote.
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8G 8H A summary of di�erentiation 363

14Example 30 Let y =
2x2 + 2x + 3
2x2 − 2x + 5

.

a Find the equations of all asymptotes.
b Find the coordinates and nature of all stationary points.
c Find the coordinates of all points of inflection.
d Sketch the graph of the relation, noting where the graph crosses any asymptotes.

15 Sketch the graph of each of the following, labelling all axis intercepts, turning points
and asymptotes:

y =
x3 − 3x
(x − 1)2a y =

(x + 1)(x − 3)
x2 − 4

b y =
(x − 2)(x + 1)

x(x − 1)
c

y =
x2 − 2x − 8

x2 − 2x
d y =

8x2 + 7
4x2 − 4x − 3

e

16Example 31 Consider the function with rule f (x) =
x

√
x − 2

.

a Find the maximal domain. b Find f ′(x).

c Hence find the coordinates and nature of all stationary points.
d Find the equation of the vertical asymptote.

17 Consider the function with rule f (x) =
x2 + x + 7
√

2x + 1
.

a Find the maximal domain. b Find f (0). c Find f ′(x).

d Hence find the coordinates and nature of all stationary points.
e Find the equation of the vertical asymptote.

8H A summary of di�erentiation
It is appropriate at this stage to review the
techniques of differentiation of Specialist
Mathematics.

The derivatives of the standard functions
also need to be reviewed in preparation for
the chapters on antidifferentiation.

Di�erentiation techniques

Function Derivative

f (x) f ′(x)

a f (x), a ∈ R a f ′(x)

f (x) + g(x) f ′(x) + g′(x)

f (x) g(x) f ′(x) g(x) + f (x) g′(x)

f (x)
g(x)

f ′(x) g(x) − f (x) g′(x)(
g(x)

)2

f (g(x)) f ′(g(x)) g′(x)
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364 Chapter 8: Di�erentiation and rational functions 8H

Derivatives of standard functions

f (x) f ′(x)

xn nxn−1

eax aeax

loge |ax|
1
x

f (x) f ′(x)

sin(ax) a cos(ax)

cos(ax) −a sin(ax)

tan(ax) a sec2(ax)

f (x) f ′(x)

sin−1
( x
a

) 1
√

a2 − x2

cos−1
( x
a

)
−1

√
a2 − x2

tan−1
( x
a

) a
a2 + x2

� First derivative f ′(x) and
dy
dx

are the first derivatives of f (x) and y respectively.

� Second derivative f ′′(x) and
d2y
dx2 are the second derivatives of f (x) and y respectively.

� Chain rule Using Leibniz notation, the chain rule is written as
dy
dx

=
dy
du
×

du
dx

.

An important result from the chain rule is
dy
dx

=
1

dx
dy

.

Exercise 8H

1 Find the second derivative of each of the following:

x10a (2x + 5)8b sin(2x)c cos
( x
3

)
d

tan
(3x

2

)
e e−4xf loge(6x)g sin−1

( x
4

)
h

cos−1(2x)i tan−1
( x
2

)
j (x+2) arctan(x−4)k

2 Find the first derivative of each of the following:

(1 − 4x2)3a
1

√
2 − x

b sin(cos x)c cos(loge x)d

tan
(1

x

)
e ecos xf loge(4 − 3x)g sin−1(1 − x)h

cos−1(2x + 1)i tan−1(x + 1)j cos−1
(9

x

)
k

3 Find
dy
dx

for each of the following:

y =
loge x

x
a y =

x2 + 2
x2 + 1

b y = 1 − tan−1(1 − x)c

y = loge

( ex

ex + 1

)
d x =

√
sin y + cos ye y = loge

(
x +
√

1 + x2)f

y = sin−1(ex)g y =
sin x

ex + 1
h
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8H 8I Implicit di�erentiation 365

4 a If y = ax +
b
x

, find:

i
dy
dx

ii
d2y
dx2

b Hence show that x2 d2y
dx2 + x

dy
dx

= y.

5 a If y = sin(2x) + 3 cos(2x), find:

i
dy
dx

ii
d2y
dx2

b Hence show that
d2y
dx2 + 4y = 0.

8I Implicit di�erentiation
The rules for circles, ellipses and many other curves are not expressible in the form y = f (x)
or x = f (y). Equations such as

x2 + y2 = 1 and
x2

9
+

(y − 3)2

4
= 1

are said to be implicit equations. In this section, we introduce a technique for finding
dy
dx

for
such relations. The technique is called implicit differentiation, and it involves differentiating
both sides of an equation with respect to x.

If two algebraic expressions are always equal, then the value of each expression must
change in an identical way as one of the variables changes.

That is, if p and q are expressions in x and y such that p = q, for all x and y, then

dp
dx

=
dq
dx

and
dp
dy

=
dq
dy

For example, consider the relation x = y3. In Example 5, we found that
dy
dx

=
1

3y2 .

We can also use implicit differentiation to obtain this result. Differentiate both sides of the
equation x = y3 with respect to x:

d
dx

(
x
)

=
d
dx

(
y3) (1)

To simplify the right-hand side using the chain rule, we let u = y3. Then

d
dx

(
y3) =

du
dx

=
du
dy
×

dy
dx

= 3y2 ×
dy
dx

Hence equation (1) becomes

1 = 3y2 ×
dy
dx

dy
dx

=
1

3y2 provided y , 0∴
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366 Chapter 8: Di�erentiation and rational functions

For each of the following, find
dy
dx

by implicit differentiation:

x3 = y2a xy = 2x + 1b

Example 32

Solution
Differentiate both sides with
respect to x:

d
dx

(
x3) =

d
dx

(
y2)

3x2 = 2y
dy
dx

dy
dx

=
3x2

2y
∴

a Differentiate both sides with respect to x:

d
dx

(
xy

)
=

d
dx

(
2x + 1

)
d
dx

(
xy

)
= 2

Use the product rule on the left-hand side:

y + x
dy
dx

= 2

dy
dx

=
2 − y

x
∴

b

Find
dy
dx

if x2 + y2 = 1.

Example 33

Solution
Note that x2 + y2 = 1 leads to

y = ±
√

1 − x2 or x = ±
√

1 − y2

So y is not a function of x, and x is not a function of y. Implicit differentiation should be
used. Since x2 + y2 = 1 is the unit circle, we can also find the derivative geometrically.

Method 1: Using geometry
Let P(x, y) be a point on the unit circle
with x , 0.

The gradient of OP is
rise
run

=
y
x

.

Since the radius is perpendicular to the
tangent for a circle, the gradient of the
tangent is −

x
y

, provided y , 0.

That is,
dy
dx

= −
x
y

.

From the graph, when y = 0 the tangents are

parallel to the y-axis, hence
dy
dx

is not defined.

O
x

y

x2 + y2 = 1 tangent at P

P(x, y)
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8I Implicit di�erentiation 367

Method 2: Using implicit di�erentiation

x2 + y2 = 1

2x + 2y
dy
dx

= 0 (differentiate both sides with respect to x)

2y
dy
dx

= −2x∴

dy
dx

= −
x
y

for y , 0∴

Given xy − y − x2 = 0, find
dy
dx

.

Example 34

Solution
Method 1: Expressing y as a function of x

xy − y − x2 = 0

y(x − 1) = x2

y =
x2

x − 1

y = x + 1 +
1

x − 1
for x , 1Therefore

dy
dx

= 1 −
1

(x − 1)2Hence

=
(x − 1)2 − 1

(x − 1)2

=
x2 − 2x
(x − 1)2 for x , 1

Method 2: Using implicit di�erentiation

xy − y − x2 = 0

d
dx

(
xy

)
−

dy
dx
−

d
dx

(
x2) =

d
dx

(
0
)

(differentiate both sides with respect to x)∴ (
x ·

dy
dx

+ y · 1
)
−

dy
dx
− 2x = 0 (product rule)

x
dy
dx
−

dy
dx

= 2x − y

dy
dx

(
x − 1

)
= 2x − y

dy
dx

=
2x − y
x − 1

for x , 1∴

This can be checked, by substitution of y =
x2

x − 1
, to confirm that the results are identical.
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Consider the curve with equation 2x2 − 2xy + y2 = 5.

a Find
dy
dx

.

b Find the gradient of the tangent to the curve at the point (1, 3).

Example 35

Solution
a Neither x nor y can be expressed as a function, so implicit differentiation must be used.

2x2 − 2xy + y2 = 5

d
dx

(
2x2) − d

dx
(
2xy

)
+

d
dx

(
y2) =

d
dx

(
5
)

4x −
(
2x ·

dy
dx

+ y · 2
)

+ 2y
dy
dx

= 0 (by the product and chain rules)

4x − 2x
dy
dx
− 2y + 2y

dy
dx

= 0

2y
dy
dx
− 2x

dy
dx

= 2y − 4x

dy
dx

(
2y − 2x

)
= 2y − 4x

dy
dx

=
2y − 4x
2y − 2x

∴

=
y − 2x
y − x

for x , y

b When x = 1 and y = 3, the gradient is
3 − 2
3 − 1

=
1
2

.

Using the TI-Nspire
� For implicit differentiation, use menu >

Calculus > Implicit Di�erentiation or just
type impdif(.

� Complete as shown. This gives
dy
dx

in terms
of x and y.

� The gradient at the point (1, 3) is found by
substituting x = 1 and y = 3 as shown.

Note: If the positions of x and y are interchanged, then the result is
dx
dy

.
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Using the Casio ClassPad
� Enter and highlight the equation

2x2 − 2xy + y2 = 5.
� Go to Interactive > Calculation > impDi�.
� Complete with x as the independent variable and

y as the dependent variable.

Exercise 8ISkill-
sheet

1Example 32

Example 33

For each of the following, find
dy
dx

using implicit differentiation:

x2 − 2y = 3a x2y = 1b x3 + y3 = 1c
y3 = x2d x −

√
y = 2e xy − 2x + 3y = 0f

y2 = 4axg 4x + y2 − 2y − 2 = 0h

2Example 34 Find
dy
dx

for each of the following:

(x + 2)2 − y2 = 4a
1
x

+
1
y

= 1b y = (x + y)2c

x2 − xy + y2 = 1d y = x2eye sin y = cos2 xf
sin(x − y) = sin x − sin yg y5 − x sin y + 3y2 = 1h

3Example 35 For each of the following, find the equation of the tangent at the indicated point:

y2 = 8x at (2,−4)a x2 − 9y2 = 9 at
(
5,

4
3

)
b

xy − y2 = 1 at
(17

4
, 4

)
c

x2

16
+

y2

9
= 1 at (0,−3)d

4 Find
dy
dx

in terms of x and y, given that loge(y) = loge(x) + 1.

5 Find the gradient of the curve x3 + y3 = 9 at the point (1, 2).

6 A curve is defined by the equation x3 + y3 + 3xy − 1 = 0. Find the gradient of the curve
at the point (2,−1).

7 Given that tan x + tan y = 3, find the value of
dy
dx

when x =
π

4
.

8 Find the gradient at the point (1,−3) on the curve with equation y2 + xy − 2x2 = 4.

9 Consider the curve with equation x3 + y3 = 28.

Obtain an expression for
dy
dx

.a Show that
dy
dx

cannot be positive.b

Calculate the value of
dy
dx

when x = 1.c
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10 The equation of a curve is 2x2 + 8xy + 5y2 = −3. Find the equation of the two tangents
which are parallel to the x-axis.

11 The equation of a curve C is x3 + xy + 2y3 = k, where k is a constant.

a Find
dy
dx

in terms of x and y.

b The curve C has a tangent parallel to the y-axis. Show that the y-coordinate at the
point of contact satisfies 216y6 + 4y3 + k = 0.

c Hence show that k ≤
1
54

.

d Find the possible value(s) of k in the case where x = −6 is a tangent to C.

12 The equation of a curve is x2 − 2xy + 2y2 = 4.

a Find an expression for
dy
dx

in terms of x and y.

b Find the coordinates of each point on the curve at which the tangent is parallel to
the x-axis.

13 Consider the curve with equation y2 + x3 = 1.

a Find
dy
dx

in terms of x and y.

b Find the coordinates of the points where
dy
dx

= 0.

c Find the coordinates of the points where
dx
dy

= 0.

d Describe the behaviour as x→ −∞.
e Express y in terms of x.
f Find the coordinates of the points of inflection of the curve.
g Use a calculator to help you sketch the graph of y2 + x3 = 1.

14 The equation of a circle is (x − 2)2 + (y − 2)2 = 9.

a Find
dy
dx

in terms of x and y.

b Find the gradient of the tangent to the circle at the point in the first quadrant
where x = 1.

15 Given that
dy
dx

= (6 − y)2, find
d2y
dx2 in terms of y.

16 For the curve given by 4x2 + 3xy + y2 = 14, find the value of
d2y
dx2 at the point (1, 2).

17 Find the gradient of the curve with equation 2x2 cos(y) + 2xy =
π2

3
at the point

(
π

3
,
π

3

)
.

18 For the circle x2 + y2 = 169, find the values of
dy
dx

and
d2y
dx2 at the point (5, 12).

19 Find the equation of the tangent to the curve 2(x2 + y2)2 = 25(x2 − y2) at the point (3, 1).

20 For the curve with equation 4x2 + y2 = 1, find
dy
dx

and
d2y
dx2 .
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Assign-
ment

Nrich

Chapter summary

f (x) f ′(x)

xn nxn−1

eax aeax

loge |ax|
1
x

f (x) f ′(x)

sin(ax) a cos(ax)

cos(ax) −a sin(ax)

tan(ax) a sec2(ax)

f (x) f ′(x)

sin−1
( x
a

) 1
√

a2 − x2

cos−1
( x
a

)
−1

√
a2 − x2

tan−1
( x
a

) a
a2 + x2

� If y = f (x), then
dy
dx

= f ′(x) and
d2y
dx2 = f ′′(x).

Rational functions
� A rational function has a rule of the form:

f (x) =
a(x)
b(x)

where a(x) and b(x) are polynomials

= q(x) +
r(x)
b(x)

(quotient–remainder form)

� Vertical asymptotes occur where b(x) = 0.
� The non-vertical asymptote has equation y = q(x).
� The x-axis intercepts occur where a(x) = 0.

� The y-axis intercept is f (0) =
a(0)
b(0)

, provided b(0) , 0.

� The stationary points occur where f ′(x) = 0.

� If f (x) =
1

b(x)
, first sketch the graph of y = b(x) and then use reciprocals of ordinates to

sketch the graph of y = f (x).

� If f (x) = q(x) +
r(x)
b(x)

, use addition of ordinates of y = q(x) and y =
r(x)
b(x)

to sketch the

graph of y = f (x).

Reciprocal functions
� The x-axis intercepts of the original function determine the equations of the vertical

asymptotes for the reciprocal function.
� The reciprocal of a positive number is positive.
� The reciprocal of a negative number is negative.
� A graph and its reciprocal will intersect at a point if the y-coordinate is 1 or −1.
� Local maximums of the original function produce local minimums of the reciprocal.
� Local minimums of the original function produce local maximums of the reciprocal.

� If g(x) =
1

f (x)
, then g′(x) = −

f ′(x)
( f (x))2 . Therefore, at any given point, the gradient of the

reciprocal function is opposite in sign to that of the original function.
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Use of the second derivative in graph sketching

Concave up: f ′′(x) > 0� Concave down: f ′′(x) < 0�

� A point of inflection is where the curve changes from concave up to concave down or
from concave down to concave up.

� At a point of inflection of a twice differentiable function f , we must have f ′′(x) = 0.
However, this condition does not necessarily guarantee a point of inflection. At a point of
inflection, there must also be a change of concavity.

� Second derivative test For the graph of y = f (x):
• If f ′(a) = 0 and f ′′(a) > 0, then the point (a, f (a)) is a local minimum.
• If f ′(a) = 0 and f ′′(a) < 0, then the point (a, f (a)) is a local maximum.
• If f ′′(a) = 0, then further investigation is necessary.

Implicit di�erentiation
� Many curves are not defined by a rule of the form y = f (x) or x = f (y); for example, the

unit circle x2 + y2 = 1. Implicit differentiation is used to find the gradient at a point on
such a curve. To do this, we differentiate both sides of the equation with respect to x.

� Using operator notation:
d
dx

(
x2 + y2) = 2x + 2y

dy
dx

(use of chain rule)

d
dx

(
x2y) = 2xy + x2 dy

dx
(use of product rule)

Technology-free questions

1 Find
dy
dx

if:

y = x tan xa y = tan(tan−1 x)b y = cos(sin−1 x)c y = sin−1(2x − 1)d

2 Find f ′′(x) if:

f (x) = tan xa f (x) = loge(tan x)b f (x) = x sin−1 xc f (x) = sin(ex)d

3 For each of the following, state the coordinates of the point(s) of inflection:

y = x3 − 8x2a y = sin−1(x − 2)b y = loge(x) +
1
x

c y =
1
x2 −

1
x3d

4 Consider a function f : R→ R. Prove that if the graph of f is concave up, then the
graph of g(x) = e f (x) is also concave up.

5 Let g(x) = (x − a)3 f (x), where f is twice differentiable. Show that g′′(a) = 0.

6 Consider a function f : R→ R such that all the values of f are positive. Prove that if the
graph of f is concave down, then the graph of g(x) = loge( f (x)) is also concave down.
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7 Let f (x) =
1

arccos(x)
. Find the domain and rule of the derivative function f ′.

8 Let f :
[
π,

3π
2

]
→ R, f (x) = sin x.

a Sketch the graphs of f and f −1 on the same set of axes.
b Find the derivative of f −1.
c Find the point on the graph of f −1 where the tangent has a gradient of −2.

9 A curve is defined parametrically by x = arcsin(t) and y = loge(1 − t2) for t ∈ (−1, 1).

Find the value of
dy
dx

when t =
1
2

.a Find the value of
d2y
dx2 when t =

1
2

.b

10 This is the graph of y = f (x).
Sketch the graphs of:

a y =
1

f (x)

b y = f −1(x)

x

y

(−1, 0) (0, 1)

O

x −2=

11 These are the graphs of y = f (x) and y = g(x),
where f and g are quadratic functions.

a Sketch the graphs of:

i y = f (x) + g(x)

ii y =
1

f (x) + g(x)

iii y =
1

f (x)
+

1
g(x)

x

y

(−1, 0)

(0, −1)

(0, 1)

(1, 0)O

y = f (x) y = g(x)

b Use the points given to determine the rules y = f (x) and y = g(x).
c Hence determine, in simplest form, the rules:

i y = f (x) + g(x) ii y =
1

f (x) + g(x)
iii y =

1
f (x)

+
1

g(x)

12 Find
dy
dx

by implicit differentiation:

x2 + 2xy + y2 = 1a x2 + 2x + y2 + 6y = 10b
2
x

+
1
y

= 4c

(x + 1)2 + (y − 3)2 = 1d cos(x) + sin(y) = 1e x loge(y) = 10f

13 A point moves along the curve y = x3 in such a way that its velocity parallel to the
x-axis is a constant 3 cm/s. Find its velocity parallel to the y-axis when:

x = 6a y = 8b
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374 Chapter 8: Di�erentiation and rational functions

14 Consider the function f : R \ {−3, 3} → R, f (x) =
x + 1
x2 − 9

.

a Show that f ′(x) < 0 for all x ∈ R \ {−3, 3}.
b Find the coordinates of the axis intercepts of the graph of f .
c Find the equations of the asymptotes of the graph of f .

15 Given that the graph of y = x3 + ax2 + bx − 5 has a point of inflection at (1, 5), find the
values of a and b.

16 For the parametric curve defined by x = t2 + 1 and y = t3, find
dy
dx

and
d2y
dx2 .

17 Given that
dy
dx

= e2x arctan(y), find
d2y
dx2 .

Multiple-choice questions

1 The equation of the tangent to x2 + y2 = 1 at the point with coordinates
( 1
√

2
,

1
√

2

)
is

y = −xA y = −x + 2
√

2B y = −x + 1C
y = −2

√
x + 2D y = −x +

√
2E

2 If f (x) = 2x2 + 3x − 20, then the graph of y =
1

f (x)
has

A x-axis intercepts at x =
5
2

and x = −4 B vertical asymptotes at x =
5
2

and x = 4

C vertical asymptotes at x = −
5
2

and x = 4 D a local minimum at
(
−

3
4

,−
169

8

)
E a local maximum at

(
−

3
4

,−
8

169

)
3 The coordinates of the points of inflection of y = sin x for x ∈ [0, 2π] are(

π

2
, 1

)
and

(
−
π

2
,−1

)
A (π, 0)B (0, 0), (π, 0) and (2π, 0)C

(1, 0)D
(
π

4
,

1
√

2

)
,
(3π

4
,

1
√

2

)
and

(5π
4

,−
1
√

2

)
E

4 Let g(x) = e−x f (x), where the function f is twice differentiable. There is a point of
inflection on the graph of y = g(x) at (a, g(a)). An expression for f ′′(a) in terms of f ′(a)
and f (a) is

f ′′(a) = f (a) + f ′(a)A f ′′(a) = 2 f (a) f ′(a)B f ′′(a) = 2 f (a) + f ′(a)C

f ′′(a) =
f ′(a)
f (a)

D f ′′(a) = 2 f ′(a) − f (a)E

5 If x = t2 and y = t3, then
dx
dy

is equal to

1
t

A
2
3t

B
3t
2

C
2t
3

D
3
2t

E
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6 If y = cos−1
(4

x

)
and x > 4, then

dy
dx

is equal to

−1
√

16 − x2
A

−4
√

1 − 16x2
B

−4x
√

x2 − 16
C

4

x
√

x2 − 16
D

4
√

x2 − 16
E

7 The gradient of the line that is perpendicular to the curve 4y2 − 6xy − 2x2 = 2 at the
point (1, 2) is

−
2
3

A
2
5

B −
5
8

C
7
5

D −
3
7

E

8 Let y = sin−1
( x
2

)
for x ∈ [0, 1]. Then

d2y
dx2 is equal to

cos−1
( x
2

)
A x(4 − x2)−

3
2B

−x
√

4 − x2
C

−x
√

4 − x2 (4 − x2)
D

−1
√

4 − x2
E

9 If y = tan−1
( 1
3x

)
, then

dy
dx

is equal to

1
3(1 + x2)

A
−1

3(1 + x2)
B

1
3(1 + 9x2)

C
−3

9x2 + 1
D

9x2

9x2 + 1
E

10 Which of the following statements is false for the graph of y = cos−1(x), for x ∈ [−1, 1]
and y ∈ [0,π]?

A The gradient of the graph is negative for x ∈ (−1, 1).

B The graph has a point of inflection at
(
0,
π

2

)
.

C The gradient of the graph has a minimum value of −1.
D The gradient of the graph is undefined at the point (−1,π).

E At x =
1
2

, y =
π

3
.

11 Given that
dy
dx

= ex cos2(y), the value of
d2y
dx2 at the point

(
0,
π

6

)
is

−

√
3

2
A

3
4

B
3
8

(2 −
√

3)C
3
4

(2 −
√

3)D
1
2

E

12 If sin x = ey for 0 < x < π, then
dy
dx

is equal to

tan xA cot xB sec xC cosec xD − tan xE

13 Let y = tan t, where t = w −
1
w

and w = loge x. The value of
dy
dx

at x = e is

0A
2
e

B 12C
12
e

D tan eE

14 The second derivative of a function f is given by f ′′(x) = x sin x − 2. How many points
of inflection are there on the graph of y = f (x) for x ∈ (−10, 10)?

0A 2B 4C 6D 8E
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Extended-response questions

1 a Consider the cubic polynomial f (x) = 2x3 − 5x2 − 4x.

i Find the coordinates of the two turning points A and B on the graph of f .
ii Find the coordinates of the point of inflection C on the graph of f .
iii Show that C is the midpoint of the line segment AB.

b Now consider a cubic polynomial f (x) = ax3 + bx2 + cx, where a, b, c ∈ R and a , 0.

i Find the condition on a, b and c for which the graph of f has two turning points.
ii Prove that if the graph of f has two turning points A and B, then the point of

inflection C is the midpoint of the line segment AB.

2 Assume that the graph of f (x) = ax3 + bx2 + cx + d has a point of inflection at P(p, q).

a Express p and q in terms of a, b, c and d.
b Define g(x) = f (x + p) − q. This translates the point of inflection to the origin. Show

that g is an odd function. (That is, show that g(−x) = −g(x) for all x.)

3 In this question, we consider higher derivatives. For example, the derivative of
the second derivative of f is called the third derivative of f and is denoted by f (3).
In general, the nth derivative of f is denoted by f (n).

a Find the first three derivatives of f (x) = xex.
b Conjecture a rule for the nth derivative of f (x) = xex.
c Prove that your rule is correct using induction.
d Conjecture a rule for the nth derivative of f (x) = x2ex, and then prove that it is

correct using induction.

4 a Let f (x) = xn, where n ∈ N. Using mathematical induction, prove that f ′(x) = nxn−1.
(Hint: You will need to use the product rule.)

b Let f (x) =
1

g(x)
. Using first principles, prove that

f ′(x) = −
g′(x)

(g(x))2

c Now let f (x) = x−n, where n ∈ N. Using parts a and b, prove that f ′(x) = −nx−n−1.

5 Consider the curve defined by the parametric equations

x = sin t and y = sin
(
t +

π

3

)
for 0 < t <

π

2

a This curve can be described in the form y = f (x) for a function f . Find the rule,
domain and range of f .

b Find the equation of the tangent to the curve at t =
π

6
.

c Find the coordinates of the local maximum of the curve.
d Show that the curve is concave down.
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6 This diagram shows a solid triangular prism with
edge lengths as shown. All measurements are in cm.
The volume is 2000 cm3. The surface area is A cm2.

a Express A in terms of x and y.
b Establish a relationship between x and y.
c Hence express A in terms of x.
d Sketch the graph of A against x.
e Hence determine the minimum surface area of

the prism.

x

x

x

y

7 The triangular prism as shown in the diagram has a
right-angled triangle as its cross-section. The right
angle is at C and C′ on the ends of the prism.

The volume of the prism is 3000 cm3. The dimensions
of the prism are shown on the diagram. Assume that the
volume remains constant and x varies.

a i Find y in terms of x.
ii Find the total surface area, S cm2, in terms of x.
iii Sketch the graph of S against x for x > 0. Clearly

label the asymptotes and the coordinates of the
turning point.

C

A

B′A′

C ′

B
13x cm

13x cm

5x cm 12x cm 

5x cm 12x cm 

y cm

b Given that x is increasing at a constant rate of 0.5 cm/s, find the rate at which S is
increasing when x = 9.

c Find the values of x for which the surface area is 2000 cm2, correct to two decimal
places.

8 The diagram shows part of the curve x2 − y2 = 4.
The line segment PQ is parallel to the y-axis, and
R is the point (2, 0). The length of PQ is p.

a Find the area, A, of triangle PQR in terms of p.

b i Find
dA
dp

.

ii Use your CAS calculator to help sketch the
graph of A against p.

iii Find the value of p for which A = 50
(correct to two decimal places).

iv Prove that
dA
dp
≥ 0 for all p.

x

y

y = −x

y =
 x

(2, 0)O R P

p

Q

c Point Q moves along the curve and point P along the x-axis so that PQ is always
parallel to the y-axis and p is increasing at a rate of 0.2 units per second. Find the
rate at which A is increasing, correct to three decimal places, when:

i p = 2.5 ii p = 4 iii p = 50 iv p = 80

(Use calculus to obtain the rate.)
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9 a Sketch the graph of g : [0, 5]→ R, where g(x) = 4 −
8

2 + x2 .

b i Find g′(x). ii Find g′′(x).
c For what value of x is the gradient of the graph of y = g(x) a maximum?

d Sketch the graph of g : [−5, 5]→ R, where g(x) = 4 −
8

2 + x2 .

10 Consider the family of cubic functions, i.e. f : R→ R, f (x) = ax3 + bx2 + cx + d.

a Find f ′(x).
b Find f ′′(x).
c Under what conditions does the graph of f have no turning points?
d i Find the x-coordinate of the point where y = f ′(x) has a local minimum or

maximum.
ii State the conditions for y = f ′(x) to have a local maximum.

e If a = 1, find the x-coordinate of the stationary point of y = f ′(x).
f For y = x3 + bx2 + cx, find the relationship between b and c if:

i there is only one x-axis intercept
ii there are two turning points but only one x-axis intercept.

11 A function is defined by the rule f (x) =
1 − x2

1 + x2 .

a i Show that f ′(x) =
−4x

(1 + x2)2 . ii Find f ′′(x).

b Sketch the graph of y = f (x). Label the turning point and give the equation of the
asymptote.

c With the aid of a CAS calculator, sketch the graphs of y = f (x), y = f ′(x) and
y = f ′′(x) for x ∈ [−2, 2].

d The graph of y = f (x) crosses the x-axis at A and B and crosses the y-axis at C.

i Find the equations of the tangents at A and B.
ii Show that they intersect at C.

12 The volume, V litres, of water in a pool at time t minutes is given by the rule

V = −3000π
(
loge(1 − h) + h

)
where h metres is the depth of water in the pool at time t minutes.

a i Find
dV
dh

in terms of h.

ii Sketch the graph of
dV
dh

against h for 0 ≤ h ≤ 0.9.

b The maximum depth of the pool is 90 cm.

i Find the maximum volume of the pool to the nearest litre.
ii Sketch the graphs of y = −3000π loge(1 − x) and y = −3000πx. Use addition of

ordinates to sketch the graph of V against h for 0 ≤ h ≤ 0.9.

c If water is being poured into the pool at 15 litres/min, find the rate at which the depth
of the water is increasing when h = 0.2, correct to two significant figures.
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13 a Let f (x) = tan−1(x) + tan−1
(1

x

)
, for x , 0.

i Find f ′(x). ii If x > 0, find f (x). iii If x < 0, find f (x).
b Let y = cot x, where x ∈ (0,π).

i Find
dy
dx

. ii Find
dy
dx

in terms of y.

c Find the derivative with respect to x of the function y = cot−1 x, where y ∈ (0,π)
and x ∈ R.

d Find the derivative with respect to x of cot(x) + tan(x), where x ∈
(
0,
π

2

)
.

14 Consider the function f : R+ → R, where f (x) =
8
x2 − 32 + 16 loge(2x).

Find f ′(x).a Find f ′′(x).b

c Find the exact coordinates of any stationary points of the graph of y = f (x).
d Find the exact value of x for which there is a point of inflection.
e State the interval for x for which f ′(x) > 0.
f Find, correct to two decimal places, any x-axis intercepts other than x = 0.5.
g Sketch the graph of y = f (x).

15 An ellipse is described by the parametric equations x = 3 cos θ and y = 2 sin θ.

a Show that the tangent to the ellipse at the point P(3 cos θ, 2 sin θ) has equation
2x cos θ + 3y sin θ = 6.

b The tangent to the ellipse at the point P(3 cos θ, 2 sin θ) meets the line with equation
x = 3 at a point T .

i Find the coordinates of the point T .
ii Let A be the point with coordinates (−3, 0) and let O be the origin. Prove that

OT is parallel to AP.

c The tangent to the ellipse at the point P(3 cos θ, 2 sin θ) meets the x-axis at Q and the
y-axis at R.

i Find the midpoint M of the line segment QR in terms of θ.
ii Find the locus of M as θ varies.

d W(−3 sin θ, 2 cos θ) and P(3 cos θ, 2 sin θ) are points on the ellipse.

i Find the equation of the tangent to the ellipse at W.
ii Find the coordinates of Z, the point of intersection of the tangents at P and W, in

terms of θ.
iii Find the locus of Z as θ varies.

16 An ellipse has equation
x2

a2 +
y2

b2 = 1. The tangent at a point P(a cos θ, b sin θ) intersects

the axes at points M and N. The origin is O.

a Find the area of triangle OMN in terms of a, b and θ.
b Find the values of θ for which the area of triangle OMN is a minimum and state this

minimum area in terms of a and b.
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17 A hyperbola is described by the parametric equations x = a sec θ and y = b tan θ.

a Show that the equation of the tangent at the point P(a sec θ, b tan θ) can be written as
x
a

sec θ −
y
b

tan θ = 1.

b Find the coordinates of the points of intersection, Q and R, of the tangent with the

asymptotes y = ±
bx
a

of the hyperbola.

c Find the coordinates of the midpoint of the line segment QR.

18 A section of an ellipse is described by the parametric equations

x = 2 cos θ and y = sin θ for 0 < θ <
π

2
The normal to the ellipse at the point P(2 cos θ, sin θ) meets the x-axis at Q and
the y-axis at R.

a Find the area of triangle OQR, where O is the origin, in terms of θ.
b Find the maximum value of this area and the value of θ for which this occurs.
c Find the midpoint, M, of the line segment QR in terms of θ.
d Find the locus of the point M as θ varies.

19 An electronic game appears on a flat
screen, part of which is shown in
the diagram. Concentric circles of
radii one unit and two units appear
on the screen.

Points P and Q move around the
circles so that O, P and Q are
collinear and OP makes an angle
of θ with the x-axis.

A spaceship S moves around
between the two circles and a gun is
on the x-axis at G, which is 4 units from O.

x

y

O 1 2 4

G
S

P

Q

θ

The spaceship moves so that at any time it is at a point (x, y), where x is equal to the
x-coordinate of Q and y is equal to the y-coordinate of P. The player turns the gun and
tries to hit the spaceship.

a Find the Cartesian equation of the path C of S .

b Show that the equation of the tangent to C at the point (u, v) on C is y =
−u
4v

x +
1
v

.

c Show that in order to aim at the spaceship at any point on its path, the player needs to

turn the gun through an angle of at most 2α, where tanα =
1
6

√
3.
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9
Techniques of
integration

Objectives
I To review antidi�erentiation by rule.

I To investigate the relationship between the graph of a function and the graphs of
its antiderivatives.

I To use the inverse circular functions to find antiderivatives of the form∫ 1
√
a2 − x2

dx and
∫ a

a2 + x2
dx

I To apply the technique of substitution to integration.

I To apply trigonometric identities to integration.

I To apply partial fractions to integration.

I To use integration by parts.

Integration is used in many areas of this course. In the next chapter, integration is used to
find areas, volumes and lengths. In Chapter 11, it is used to help solve differential equations,
which are of great importance in mathematical modelling.

We begin this chapter by reviewing the methods of integration developed in Mathematical
Methods Units 3 & 4.

In the remainder of the chapter, we introduce techniques for integrating many more functions.
We will use the inverse circular functions, trigonometric identities, partial fractions and two
techniques which can be described as ‘reversing’ the chain rule and the product rule.
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382 Chapter 9: Techniques of integration

9A Antidi�erentiation
The derivative of x2 with respect to x is 2x. Conversely, given that an unknown expression
has derivative 2x, it is clear that the unknown expression could be x2. The process of finding
a function from its derivative is called antidifferentiation.

Now consider the functions f (x) = x2 + 1 and g(x) = x2 − 7.

We have f ′(x) = 2x and g′(x) = 2x. So the two different functions have the same derivative
function.

Both x2 + 1 and x2 − 7 are said to be
antiderivatives of 2x.

If two functions have the same derivative
function, then they differ by a constant.
So the graphs of the two functions can be
obtained from each other by translation
parallel to the y-axis.

The diagram shows several antiderivatives
of 2x.

Each of the graphs is a translation of y = x2

parallel to the y-axis.

x

y = x2 + 1

y = x2 − 1

y = x2 − 7

distance
7 units distance

7 units
−7

0
−1

y = x2

1

y

Notation for antiderivatives
The general antiderivative of 2x is x2 + c, where c is an arbitrary real number. We use the
notation of Leibniz to state this with symbols:∫

2x dx = x2 + c

This is read as ‘the general antiderivative of 2x with respect to x is equal to x2 + c’ or as
‘the indefinite integral of 2x with respect to x is x2 + c’.

To be more precise, the indefinite integral is the set of all antiderivatives and to emphasise
this we could write:∫

2x dx =
{

f (x) : f ′(x) = 2x
}

=
{

x2 + c : c ∈ R
}

This set notation is not commonly used, but it should be clearly understood that there is not a
unique antiderivative for a given function. We will not use this set notation, but it is advisable
to keep it in mind when considering further results.

In general:

If F′(x) = f (x), then
∫

f (x) dx = F(x) + c, where c is an arbitrary real number.
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9A Antidi�erentiation 383

Basic antiderivatives
The following antiderivatives are covered in Mathematical Methods Units 3 & 4.

f (x)
∫

f (x) dx

xn xn+1

n + 1
+ c where n , −1

(ax + b)n 1
a(n + 1)

(ax + b)n+1 + c where n , −1

x−1 loge x + c for x > 0

1
ax + b

1
a

loge(ax + b) + c for ax + b > 0

eax+b 1
a

eax+b + c

sin(ax + b) −
1
a

cos(ax + b) + c

cos(ax + b)
1
a

sin(ax + b) + c

The definite integral
For a continuous function f on an interval [a, b], the definite integral

∫ b

a
f (x) dx denotes

the signed area enclosed by the graph of y = f (x), the x-axis and the lines x = a and x = b.
By the fundamental theorem of calculus, we have∫ b

a
f (x) dx = F(b) − F(a)

where F is any antiderivative of f .

Note: In the expression
∫ b

a
f (x) dx, the number a is called the lower limit of integration

and b the upper limit of integration. The function f is called the integrand.

We will review the fundamental theorem of calculus in Chapter 10. In this chapter, our focus
is on developing techniques for calculating definite integrals using antidifferentiation.

Find an antiderivative of each of the following:

sin
(
3x −

π

4

)
a e3x+4b 6x3 −

2
x2c

Example 1

Solution

sin
(
3x −

π

4

)
is of the form sin(ax + b)∫

sin(ax + b) dx = −
1
a

cos(ax + b) + c∫
sin

(
3x −

π

4

)
dx = −

1
3

cos
(
3x −

π

4

)
+ c∴

a
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384 Chapter 9: Techniques of integration

e3x+4 is of the form eax+b∫
eax+b dx =

1
a

eax+b + c∫
e3x+4 dx =

1
3

e3x+4 + c∴

b
∫

6x3 −
2
x2 dx =

∫
6x3 − 2x−2 dx

=
6x4

4
+ 2x−1 + c

=
3
2

x4 +
2
x

+ c

c

Evaluate each of the following integrals:∫ π

2
0

cos(3x) dxa
∫ 1

0
e2x − ex dxb

∫ π

8
0

sec2(2x) dxc
∫ 1

0

√
2x + 1 dxd

Example 2

Solution∫ π

2
0

cos(3x) dx =

[1
3

sin(3x)
]π

2

0

=
1
3

(
sin

(3π
2

)
− sin 0

)
=

1
3

(−1 − 0)

= −
1
3

a
∫ 1

0
e2x − ex dx =

[1
2

e2x − ex
]1

0

=
1
2

e2 − e1 −

(1
2

e0 − e0
)

=
e2

2
− e −

(1
2
− 1

)
=

e2

2
− e +

1
2

b

From Chapter 8, we know
that if f (x) = tan(ax + b), then
f ′(x) = a sec2(ax + b). Hence∫

sec2(ax + b) dx =
1
a

tan(ax + b) + c

∴
∫ π

8
0

sec2(2x) dx =

[1
2

tan(2x)
]π

8

0

=
1
2

(
tan

(
π

4

)
− tan 0

)
=

1
2

(1 − 0)

=
1
2

c
∫ 1

0

√
2x + 1 dx =

∫ 1

0
(2x + 1)

1
2 dx

=

[ 1
2 × 3

2

(2x + 1)
3
2

]1

0

=
1
3

(
(2 + 1)

3
2 − 1

3
2
)

=
1
3

(
3

3
2 − 1

)
=

1
3

(3
√

3 − 1)

d

In the previous chapter, we showed that the derivative of loge |x| is
1
x

.

By the chain rule, the derivative of loge |ax + b| is
a

ax + b
.

This gives the following antiderivative.∫ 1
ax + b

dx =
1
a

loge |ax + b| + c for ax + b , 0
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9A Antidi�erentiation 385

Find an antiderivative of
1

4x + 2
.a

Evaluate
∫ 1

0

1
4x + 2

dx.b Evaluate
∫ −1

−2

1
4x + 2

dx.c

Example 3

Solution
1

4x + 2
is of the form

1
ax + b∫ 1

ax + b
dx =

1
a

loge |ax + b| + c∫ 1
4x + 2

dx =
1
4

loge |4x + 2| + c∴

a

∫ 1

0

1
4x + 2

dx =

[1
4

loge |4x + 2|
]1

0

=
1
4
(
loge 6 − loge 2

)
=

1
4

loge 3

b
∫ −1

−2

1
4x + 2

dx =

[1
4

loge |4x + 2|
]−1

−2

=
1
4
(
loge |−2| − loge |−6|

)
=

1
4

loge

(1
3

)
= −

1
4

loge 3

c

Graphs of functions and their antiderivatives
In each of the following examples in this section, the functions F and f are such that
F′(x) = f (x). That is, the function F is an antiderivative of f .

Consider the graphs of y = f (x) and y = F(x) shown.

Find:

a f (x)
b F(x)

O
x

y

(1, 1)

y = f(x)

y = F(x)

O
x

y

(0, 1)

Example 4

Solution
f (x) = mx

Since f (1) = 1, we have m = 1.

Hence f (x) = x.

a F(x) =
x2

2
+ c (by antidifferentiation)

But F(0) = 1 and therefore c = 1.

Hence F(x) =
x2

2
+ 1.

b
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386 Chapter 9: Techniques of integration

Note: The graph of y = f (x) is the gradient graph for the graph of y = F(x).
We have seen that there are infinitely many graphs defined by

∫
f (x) dx.

The graph of y = f (x) is as shown.

Sketch the graph of y = F(x), given that F(0) = 0.

O
x

y

(−1, 2)

y = f(x)

Example 5

Solution
The given graph y = f (x) is the gradient graph
of y = F(x).

Therefore the gradient of y = F(x) is always positive.
The minimum gradient is 2 and this occurs when x = −1.
There is a line of symmetry x = −1, which indicates
equal gradients for x-values equidistant from x = −1.
Also F(0) = 0.

A possible graph is shown.

O
x

y

−1

The graph of y = f (x) is as shown.

Sketch the graph of y = F(x), given that F(1) = 1.

O
x

y

2

Example 6

Solution
The given graph y = f (x) is the gradient graph of y = F(x).

Therefore the gradient of y = F(x) is positive for x > 2,
negative for x < 2 and zero for x = 2.

A possible graph is shown.

O
x

y

(1, 1)

2
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9A 9A Antidi�erentiation 387

Exercise 9A

1Example 1 Find an antiderivative of each of the following:

sin
(
2x +

π

4

)
a cos(πx)b sin

(2πx
3

)
c

e3x+1d e5(x+4)e
3

2x2f

6x3 − 2x2 + 4x + 1g

2Example 2 Evaluate each of the following integrals:∫ 1

−1
ex − e−x dxa

∫ 2

0
3x2 + 2x + 4 dxb

∫ π

2
0

sin(2x) dxc∫ 3

2

3
x3 dxd

∫ π

4
0

cos(x) + 2x dxe
∫ 1

0
e3x + x dxf∫ π

2
0

cos(4x) dxg
∫ π

2
−
π

2
sin

( x
2

)
dxh

∫ π

4
0

sec2 x dxi

3 aExample 3 Find an antiderivative of
1

2x − 5
.

b Evaluate
∫ 1

0

1
2x − 5

dx.

c Evaluate
∫ −1

−2

1
2x − 5

dx.

4 Evaluate each of the following integrals:∫ 1

0

1
3x + 2

dxa
∫ −1

−3

1
3x − 2

dxb
∫ 0

−1

1
4 − 3x

dxc

5 Find an antiderivative of each of the following:

(3x + 2)5a
1

3x − 2
b

√
3x + 2c

1
(3x + 2)2d

3x + 1
x + 1

e cos
(3x

2

)
f (5x − 1)

1
3g

2x + 1
x + 3

h

6Example 4 For each of the following, find the rules for f (x) and F(x), where F′(x) = f (x):

O
x

y

(1, 2)
y = f(x)

a

O
x

y

y = F(x)(−1, 4)
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388 Chapter 9: Techniques of integration 9A

O
x

y
y = f(x)
a parabola

(1, 4)

b

O
x

y

y = F(x)

O
x

y

(2, 0)

(0, _8) 
y = f(x)
a parabola

c

O
x

y

y = F(x)
(2, 4)

O
x

y

(0, −1) 

y = f(x)
(y = aebx)

(−loge 2, −2)

d

O
3

x

y

y = F(x)

O
x

y

y = f(x)

2
 3π

(2π, 0)(π, 0)

, −2 

2
π

, 2e

O
x

y

y = F(x)

(2π, 0)

(π, 4)
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9A 9A Antidi�erentiation 389

O
x

y

y = f(x)

(1, 0.4)

(0, 0.5)

f(x) = a
b + x2

f

O
x

y

y = F(x)

y = π

2
0,

π

7Example 5

Example 6

For each of the following, use the given graph of y = f (x) and the given value of F(0) to
sketch a possible graph of y = F(x), where F′(x) = f (x):

O
x

y

F(0) = 0

y = f(x)

1

a

O
x

y

F(0) = 1

y = f(x)

−1

b

O
x

y

F(0) = 0

(1, 2)

y = f(x)

c

O x

y

F(0) = 0

−1−5

y = f(x)

(−3, 4)

d

O
x

y

1 2

F(0) = 0

e

O x

y

y = f(x)

F(0) = 2

3

f
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390 Chapter 9: Techniques of integration

9B Antiderivatives involving inverse circular functions
In Chapter 8, the following rules for differentiation of inverse circular functions were
established:

f : (−a, a)→ R, f (x) = sin−1
( x
a

)
, f ′(x) =

1
√

a2 − x2

f : (−a, a)→ R, f (x) = cos−1
( x
a

)
, f ′(x) =

−1
√

a2 − x2

f : R→ R, f (x) = tan−1
( x
a

)
, f ′(x) =

a
a2 + x2

From these results, the following can be stated:

∫ 1
√

a2 − x2
dx = sin−1

( x
a

)
+ c for x ∈ (−a, a)∫ −1

√
a2 − x2

dx = cos−1
( x
a

)
+ c for x ∈ (−a, a)∫ a

a2 + x2 dx = tan−1
( x
a

)
+ c for x ∈ R

Note: It follows that sin−1
( x
a

)
+ cos−1

( x
a

)
must be constant for x ∈ (−a, a).

By substituting x = 0, we can see that sin−1
( x
a

)
+ cos−1

( x
a

)
=
π

2
for all x ∈ (−a, a).

Find an antiderivative of each of the following:
1

√
9 − x2

a
1

√
9 − 4x2

b
1

9 + 4x2c

Example 7

Solution∫ 1
√

9 − x2
dx = sin−1

( x
3

)
+ ca

∫ 1
√

9 − 4x2
dx =

∫ 1

2
√

9
4 − x2

dx

=
1
2

∫ 1√
9
4 − x2

dx

=
1
2

sin−1
(2x

3

)
+ c

b
∫ 1

9 + 4x2 dx =
∫ 1

4
( 9

4 + x2) dx

=
2
3

∫ 3
2

4
( 9

4 + x2) dx

=
1
6

∫ 3
2

9
4 + x2

dx

=
1
6

tan−1
(2x

3

)
+ c

c
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9B 9B Antiderivatives involving inverse circular functions 391

Evaluate each of the following definite integrals:∫ 1

0

1
√

4 − x2
dxa

∫ 2

0

1
4 + x2 dxb

∫ 1

0

3
√

9 − 4x2
dxc

Example 8

Solution∫ 1

0

1
√

4 − x2
dx =

[
sin−1

( x
2

)]1

0

= sin−1
(1
2

)
− sin−1 0

=
π

6

a

∫ 2

0

1
4 + x2 dx =

1
2

∫ 2

0

2
4 + x2 dx

=
1
2

[
tan−1

( x
2

)]2

0

=
1
2
(
tan−1 1 − tan−1 0

)
=
π

8

b
∫ 1

0

3
√

9 − 4x2
dx =

∫ 1

0

3

2
√

9
4 − x2

dx

=
3
2

∫ 1

0

1√
9
4 − x2

dx

=
3
2

[
sin−1

(2x
3

)]1

0

=
3
2

sin−1
(2
3

)
≈ 1.095

c

Exercise 9B

1Example 7 Find each of the following integrals:∫ 1
√

9 − x2
dxa

∫ 1
5 + x2 dxb

∫ 1
1 + t2 dtc

∫ 5
√

5 − x2
dxd∫ 3

16 + x2 dxe
∫ 1
√

16 − 4x2
dxf

∫ 10
√

10 − t2
dtg

∫ 1
9 + 16t2 dth∫ 1

√
5 − 2x2

dxi
∫ 7

3 + y2 dyj

2Example 8 Evaluate each of the following:∫ 1

0

2
1 + x2 dxa

∫ 1
2

0

3
√

1 − x2
dxb

∫ 1

0

5
√

4 − x2
dxc

∫ 5

0

6
25 + x2 dxd

∫ 3
2

0

3
9 + 4x2 dxe

∫ 2

0

1
8 + 2x2 dxf

∫ 3
2

0

1
√

9 − x2
dxg

∫ 3
√

2
4

0

1
√

9 − 4x2
dxh∫ 1

3
0

3√
1 − 9y2

dyi
∫ 2

0

1
1 + 3x2 dxj
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392 Chapter 9: Techniques of integration

9C Integration by substitution
In this section, we introduce the technique of substitution. The substitution will result in one
of the forms for integrands covered in Sections 9A and 9B.

First consider the following example.

Differentiate each of the following with respect to x:

(2x2 + 1)5a cos3 xb e3x2c

Example 9

Solution
Let y = (2x2 + 1)5 and u = 2x2 + 1.

Then y = u5,
dy
du

= 5u4 and
du
dx

= 4x.

By the chain rule for differentiation:
dy
dx

=
dy
du

du
dx

= 5u4 · 4x

= 20u4x

= 20x(2x2 + 1)4

a Let y = cos3 x and u = cos x.

Then y = u3,
dy
du

= 3u2 and
du
dx

= − sin x.

By the chain rule for differentiation:
dy
dx

=
dy
du

du
dx

= 3u2 · (− sin x)

= 3 cos2 x · (− sin x)

= −3 cos2 x sin x

b

Let y = e3x2
and u = 3x2.

Then y = eu,
dy
du

= eu and
du
dx

= 6x.

By the chain rule for differentiation:
dy
dx

=
dy
du

du
dx

= eu · 6x

= 6xe3x2

c

This example suggests that a ‘converse’ of the chain rule can be used to obtain a method for
antidifferentiating functions of a particular form.

� From Example 9a:
∫

20x(2x2 + 1)4 dx = (2x2 + 1)5 + c

This is of the form:
∫

5g′(x)
(
g(x)

)4 dx =
(
g(x)

)5
+ c where g(x) = 2x2 + 1

� From Example 9b:
∫
−3 cos2 x sin x dx = cos3 x + c

This is of the form:
∫

3g′(x)
(
g(x)

)2 dx =
(
g(x)

)3
+ c where g(x) = cos x

� From Example 9 c:
∫

6xe3x2
dx = e3x2

+ c

This is of the form:
∫

g′(x) eg(x) dx = eg(x) + c where g(x) = 3x2
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9C Integration by substitution 393

This suggests a method that can be used for integration.∫
2x(x2 + 1)5 dx =

(x2 + 1)6

6
+ c

[
g(x) = x2 + 1

]
e.g. ∫

cos x sin x dx =
sin2 x

2
+ c

[
g(x) = sin x

]
A formalisation of this idea provides a method for integrating functions of this form.

Let y =
∫

f (u) du, where u = g(x).

By the chain rule for differentiation:

dy
dx

=
dy
du

du
dx

= f (u) ·
du
dx

y =
∫

f (u)
du
dx

dx∴

This gives the following technique for integration.

Integration by substitution∫
f (u)

du
dx

dx =
∫

f (u) du

This is also called the change of variable rule.

Find an antiderivative of each of the following:

sin x cos2 xa 5x2(x3 − 1)
1
2b 3xex2c

Example 10

Solution∫
sin x cos2 x dx

Let u = cos x. Then f (u) = u2 and
du
dx

= − sin x.∫
sin x cos2 x dx = −

∫
cos2 x · (− sin x) dx∴

= −
∫

f (u)
du
dx

dx

= −
∫

f (u) du

= −
∫

u2 du

= −
u3

3
+ c

= −
cos3 x

3
+ c

a

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



394 Chapter 9: Techniques of integration

∫
5x2(x3 − 1)

1
2 dx

Let u = x3 − 1.

Then f (u) = u
1
2 and

du
dx

= 3x2.∫
5x2(x3 − 1)

1
2 dx∴

=
5
3

∫
(x3 − 1)

1
2 · 3x2 dx

=
5
3

∫
u

1
2

du
dx

dx

=
5
3

∫
u

1
2 du

=
5
3

(2
3

u
3
2

)
+ c

=
10
9

u
3
2 + c

=
10
9

(x3 − 1)
3
2 + c

b
∫

3xex2
dx

Let u = x2.

Then f (u) = eu and
du
dx

= 2x.∫
3xex2

dx∴

=
3
2

∫
eu · 2x dx

=
3
2

∫
eu du

dx
dx

=
3
2

∫
eu du

=
3
2

eu + c

=
3
2

ex2
+ c

c

Find an antiderivative of each of the following:
2

x2 + 2x + 6
a

3
√

9 − 4x − x2
b

Example 11

Solution
a Completing the square gives

x2 + 2x + 6 = x2 + 2x + 1 + 5

= (x + 1)2 + 5

Therefore∫ 2
x2 + 2x + 6

dx =
∫ 2

(x + 1)2 + 5
dx

Let u = x + 1. Then
du
dx

= 1 and hence∫ 2
(x + 1)2 + 5

dx =
∫ 2

u2 + 5
du

=
2
√

5

∫ √
5

u2 + 5
du

=
2
√

5
tan−1

( u
√

5

)
+ c

=
2
√

5
tan−1

( x + 1
√

5

)
+ c
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9C Integration by substitution 395

b
∫ 3
√

9 − 4x − x2
dx

Completing the square gives

9 − 4x − x2 = −(x2 + 4x − 9)

= −
(
(x + 2)2 − 13

)
= 13 − (x + 2)2

Therefore∫ 3
√

9 − 4x − x2
dx =

∫ 3√
13 − (x + 2)2

dx

Let u = x + 2. Then
du
dx

= 1 and hence∫ 3√
13 − (x + 2)2

dx =
∫ 3
√

13 − u2
du

= 3 sin−1
( u
√

13

)
+ c

= 3 sin−1
( x + 2
√

13

)
+ c

Linear substitutions
Antiderivatives of expressions such as

(2x + 3)
√

3x − 4,
2x + 5
√

3x − 4
,

2x + 5
(x + 2)2 , (2x + 4)(x + 3)20, x2

√
3x − 1

can be found using a linear substitution.

Find an antiderivative of each of the following:

(2x + 1)
√

x + 4a
2x + 1

(1 − 2x)2b x2
√

3x − 1c

Example 12

Solution
a Let u = x + 4. Then

du
dx

= 1 and x = u − 4.∫
(2x + 1)

√
x + 4 dx =

∫ (
2(u − 4) + 1

)
u

1
2 du∴

=
∫

(2u − 7)u
1
2 du

=
∫

2u
3
2 − 7u

1
2 du

= 2
(2
5

u
5
2

)
− 7

(2
3

u
3
2

)
+ c

=
4
5

(x + 4)
5
2 −

14
3

(x + 4)
3
2 + c
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396 Chapter 9: Techniques of integration

b
∫ 2x + 1

(1 − 2x)2 dx

Let u = 1 − 2x. Then
du
dx

= −2 and 2x = 1 − u.

Therefore∫ 2x + 1
(1 − 2x)2 dx = −

1
2

∫ 2 − u
u2 (−2) dx

= −
1
2

∫ 2 − u
u2

du
dx

dx

= −
1
2

∫
2u−2 − u−1 du

= −
1
2
(
−2u−1 − loge |u|

)
+ c

= u−1 +
1
2

loge |u| + c

=
1

1 − 2x
+

1
2

loge |1 − 2x| + c

c
∫

x2
√

3x − 1 dx

Let u = 3x − 1. Then
du
dx

= 3.

We have x =
u + 1

3
and so x2 =

(u + 1)2

9
.

Therefore∫
x2
√

3x − 1 dx =
∫ (u + 1)2

9
√

u dx

=
1
27

∫
(u + 1)2 u

1
2 (3) dx

=
1
27

∫
(u2 + 2u + 1) u

1
2

du
dx

dx

=
1
27

∫
u

5
2 + 2u

3
2 + u

1
2 du

=
1

27

(2
7

u
7
2 +

4
5

u
5
2 +

2
3

u
3
2

)
+ c

=
2
27

u
3
2

(1
7

u2 +
2
5

u +
1
3

)
+ c

=
2

2835
(3x − 1)

3
2
(
15(3x − 1)2 + 42(3x − 1) + 35

)
+ c

=
2

2835
(3x − 1)

3
2 (135x2 + 36x + 8) + c
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9C 9C Integration by substitution 397

Using the TI-Nspire
� To find an antiderivative, use menu > Calculus > Integral.
� Use factor from the Algebra menu to obtain the required form.

Note: The integral template can also be obtained directly from the 2D-template
palette t or by pressing shift + .

Using the Casio ClassPad
� Enter and highlight the expression x2

√
3x − 1.

� Go to Interactive > Calculation > ∫ . Make sure that
Indefinite is selected and that x is the variable.

� Tap ont to simplify the resulting expression.

Exercise 9C

1Example 10 Find each of the following:∫
2x(x2 + 1)3 dxa

∫ x
(x2 + 1)2 dxb

∫
cos x sin3 x dxc

∫ cos x

sin2 x
dxd∫

(2x + 1)5 dxe
∫

5x
√

9 + x2 dxf
∫

x(x2 − 3)5 dxg
∫ x + 1

(x2 + 2x)3 dxh∫ 2
(3x + 1)3 dxi

∫ 1
√

1 + x
dxj

∫
(x2 − 2x)(x3 − 3x2 + 1)4 dxk∫ 3x

x2 + 1
dxl

∫ 3x
2 − x2 dxm

∫ loge x
x

dxn
∫

xe−4x2
dxo

2Example 11 Find an antiderivative of each of the following:
1

x2 + 2x + 2
a

1
x2 − x + 1

b
1

√
21 − 4x − x2

c

1
√

10x − x2 − 24
d

1
√

40 − x2 − 6x
e

1
3x2 + 6x + 7

f
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398 Chapter 9: Techniques of integration 9C

3 Consider the integral
∫

sin x cos x dx.

a Find the integral by using the substitution u = sin x.
b Now find the same integral by using the substitution u = cos x.
c By comparing the two answers, show that cos2 x + sin2 x = c, for some constant c.
d Find the value of c by letting x = 0. What does this give?

4Example 12 Find an antiderivative of each of the following:

x
√

2x + 3a x
√

1 − xb 6x(3x − 7)−
1
2c (2x + 1)

√
3x − 1d

2x − 1
(x − 1)2e (x + 3)

√
3x + 1f (x + 2)(x + 3)

1
3g

5x − 1
(2x + 1)2h

x2
√

x − 1i
x2

√
x − 1

j

9D Definite integrals by substitution

Evaluate
∫ 4

0
3x
√

x2 + 9 dx.

Example 13

Solution

Let u = x2 + 9. Then
du
dx

= 2x and so∫
3x
√

x2 + 9 dx =
3
2

∫ √
x2 + 9 · 2x dx

=
3
2

∫
u

1
2

du
dx

dx

=
3
2

∫
u

1
2 du

=
3
2

(2
3

u
3
2

)
+ c

= u
3
2 + c

= (x2 + 9)
3
2 + c∫ 4

0
3x
√

x2 + 9 dx =

[
(x2 + 9)

3
2

]4

0
∴

= 25
3
2 − 9

3
2

= 125 − 27 = 98
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9D Definite integrals by substitution 399

In a definite integral which involves the change of variable rule, it is not necessary to return to
an expression in x if the values of u corresponding to each of the limits of x are found.

For the previous example:

� x = 0 implies u = 9
� x = 4 implies u = 25

Therefore the integral can be evaluated as

3
2

∫ 25

9
u

1
2 du =

3
2

[2
3

u
3
2

]25

9
= 125 − 27 = 98

Evaluate the following:∫ π

2
0

cos3 x dxa
∫ 1

0
2x2ex3

dxb

Example 14

Solution

a
∫ π

2
0

cos3 x dx =
∫ π

2
0

cos x (cos2 x) dx =
∫ π

2
0

cos x (1 − sin2 x) dx

Let u = sin x. Then
du
dx

= cos x.

When x =
π

2
, u = 1 and when x = 0, u = 0.

Therefore the integral becomes∫ 1

0
(1 − u2) du =

[
u −

u3

3

]1

0

= 1 −
1
3

=
2
3

b
∫ 1

0
2x2ex3

dx

Let u = x3. Then
du
dx

= 3x2.

When x = 1, u = 1 and when x = 0, u = 0.

Therefore the integral becomes
2
3

∫ 1

0
ex3
· (3x2) dx =

2
3

∫ 1

0
eu du

=
2
3
[
eu]1

0

=
2
3

(e1 − e0)

=
2
3

(e − 1)

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



400 Chapter 9: Techniques of integration 9D

Exercise 9DSkill-
sheet

1Example 13

Example 14

Evaluate each of the following definite integrals:∫ 3

0
x
√

x2 + 16 dxa
∫ π

4
0

cos x sin3 x dxb
∫ π

2
0

sin x cos2 x dxc∫ 4

3
x(x − 3)17 dxd

∫ 1

0
x
√

1 − x dxe
∫ e2

e

1
x loge x

dxf∫ 4

0

1
√

3x + 4
dxg

∫ 1

−1

ex

ex + 1
dxh

∫ π

4
0

sin x
cos3 x

dxi∫ 1

0

2x + 3
x2 + 3x + 4

dxj
∫ π

3
π

4

cos x
sin x

dxk
∫ −3

−4

2x
1 − x2 dxl∫ −1

−2

ex

1 − ex dxm

2 By using tan x =
sin x
cos x

, evaluate
∫ π

3
0

tan x dx.

9E Use of trigonometric identities for integration
Products of sines and cosines
Integrals of the form

∫
sinm x cosn x dx, where m and n are non-negative integers, can be

considered in the following three cases.

Case A: the power of sine is odd
If m is odd, write m = 2k + 1. Then

sin2k+1 x = (sin2 x)k sin x = (1 − cos2 x)k sin x

and the substitution u = cos x can now be made.

Case B: the power of cosine is odd
If m is even and n is odd, write n = 2k + 1. Then

cos2k+1 x = (cos2 x)k cos x = (1 − sin2 x)k cos x

and the substitution u = sin x can now be made.

Case C: both powers are even

If both m and n are even, then the identity sin2 x =
1
2
(
1 − cos(2x)

)
, cos2 x =

1
2
(
1 + cos(2x)

)
or sin(2x) = 2 sin x cos x can be used.

Also note that
∫

sec2(kx) dx =
1
k

tan(kx) + c. The identity 1 + tan2 x = sec2 x is used in the
following example.
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9E Use of trigonometric identities for integration 401

Find:∫
cos2 x dxa

∫
tan2 x dxb

∫
sin(2x) cos(2x) dxc∫

cos4 x dxd
∫

sin3 x cos2 x dxe

Example 15

Solution
a Use the identity cos(2x) = 2 cos2 x − 1. Rearranging gives

cos2 x =
1
2
(
cos(2x) + 1

)
∫

cos2 x dx =
1
2

∫
cos(2x) + 1 dx∴

=
1
2

(1
2

sin(2x) + x
)

+ c

=
1
4

sin(2x) +
x
2

+ c

b Use the identity 1 + tan2 x = sec2 x. This gives tan2 x = sec2 x − 1 and so∫
tan2 x dx =

∫
sec2 x − 1 dx

= tan x − x + c

c Use the identity sin(2θ) = 2 sin θ cos θ.

Let θ = 2x. Then sin(4x) = 2 sin(2x) cos(2x) and so sin(2x) cos(2x) =
1
2

sin(4x).∫
sin(2x) cos(2x) dx =

1
2

∫
sin(4x) dx∴

=
1
2

(
−

1
4

cos(4x)
)

+ c

= −
1
8

cos(4x) + c

d cos4 x = (cos2 x)2 =

(cos(2x) + 1
2

)2
=

1
4
(
cos2(2x) + 2 cos(2x) + 1

)
As cos(4x) = 2 cos2(2x) − 1, this gives

cos4 x =
1
4

(cos(4x) + 1
2

+ 2 cos(2x) + 1
)

=
1
8

cos(4x) +
1
2

cos(2x) +
3
8∫

cos4 x dx =
∫ 1

8
cos(4x) +

1
2

cos(2x) +
3
8

dx∴

=
1
32

sin(4x) +
1
4

sin(2x) +
3
8

x + c
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402 Chapter 9: Techniques of integration

e
∫

sin3 x cos2 x dx =
∫

sin x (sin2 x) cos2 x dx

=
∫

sin x (1 − cos2 x) cos2 x dx

Now let u = cos x. Then
du
dx

= − sin x. We obtain∫
sin3 x cos2 x dx = −

∫
(− sin x)(1 − u2)(u2) dx

= −
∫

(1 − u2) u2 du
dx

dx

= −
∫

u2 − u4 du

= −

(u3

3
−

u5

5

)
+ c

=
cos5 x

5
−

cos3 x
3

+ c

Products to sums
We recall the following identities from Chapter 3.

Product-to-sum identities

2 cos x cos y = cos(x − y) + cos(x + y)

2 sin x sin y = cos(x − y) − cos(x + y)

2 sin x cos y = sin(x + y) + sin(x − y)

These identities enable us to determine further integrals involving the circular functions.

Find:∫
sin(3x) sin(2x) dxa

∫
sin(5x) cos(2x) dxb

∫ π

2
0

cos(3x) cos(2x) dxc

Example 16

Solution

a
∫

sin(3x) sin(2x) dx =
1
2

∫
cos(3x − 2x) − cos(3x + 2x) dx

=
1
2

∫
cos x − cos(5x) dx

=
1
2

sin x −
1

10
sin(5x) + c

b
∫

sin(5x) cos(2x) dx =
1
2

∫
sin(5x + 2x) + sin(5x − 2x) dx

=
1
2

∫
sin(7x) + sin(3x) dx

= −
1
14

cos(7x) −
1
6

cos(3x) + c
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9E 9E Use of trigonometric identities for integration 403

c
∫ π

2
0

cos(3x) cos(2x) dx =
1
2

∫ π

2
0

cos(3x − 2x) + cos(3x + 2x) dx

=
1
2

∫ π

2
0

cos x + cos(5x) dx

=

[1
2

sin x +
1
10

sin(5x)
]π

2

0

=
1
2

+
1

10

=
3
5

Exercise 9ESkill-
sheet

1Example 15 Find an antiderivative of each of the following:

sin2 xa sin4 xb 2 tan2 xc

2 sin(3x) cos(3x)d sin2(2x)e tan2(2x)f

sin2 x cos2 xg cos2 x − sin2 xh cot2 xi

cos3(2x)j

2 Find an antiderivative of each of the following:

sec2 xa sec2(2x)b sec2( 1
2 x)c

sec2(kx)d tan2(3x)e 1 − tan2 xf

tan2 x − sec2 xg cosec2
(
x −

π

2

)
h

3 Evaluate each of the following definite integrals:∫ π

2
0

sin2 x dxa
∫ π

4
0

tan3 x dxb
∫ π

2
0

sin2 x cos x dxc∫ π

4
0

cos4 x dxd
∫ π

0
sin3 x dxe

∫ π

2
0

sin2(2x) dxf∫ π

3
0

sin2 x cos2 x dxg
∫ 1

0
sin2 x + cos2 x dxh

4 Find an antiderivative of each of the following:

cos3 xa sin3
( x
4

)
b cos2(4πx)c

7 cos7 td cos3(5x)e 8 sin4 xf

sin2 x cos4 xg cos5 xh
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404 Chapter 9: Techniques of integration 9E

5Example 16 Find an antiderivative of each of the following:

sin(4x) sin(2x)a cos(4x) cos(2x)b sin(4x) cos(2x)c

sin
(3x

2

)
cos

( x
2

)
d cos

(3x
2

)
cos

( x
2

)
e sin

(3x
2

)
sin

( x
2

)
f

6 Evaluate each of the following definite integrals:∫ π

0
cos(2x) cos

( x
2

)
dxa

∫ π

2
0

sin(2x) cos(6x) dxb∫ π

2
0

sin(8x) cos(10x) dxc

9F Further substitution∗
In Section 9C, we found the result∫

f (u)
du
dx

dx =
∫

f (u) du

If we interchange the variables x and u, then we can write this as follows.∫
f (x) dx =

∫
f (x)

dx
du

du

Note: For this substitution to work, the function that we substitute for x must be one-to-one.
You will see this in the following examples.

Find
∫ 1

x2 + 1
dx by using the substitution x = tan u, where −

π

2
< u <

π

2
.

Example 17

Solution
Let x = tan u. Then

dx
du

= sec2 u.

We substitute into
∫

f (x) dx =
∫

f (x)
dx
du

du.∫ 1
x2 + 1

dx =
∫ 1

tan2 u + 1
· sec2 u du

=
∫ 1

sec2 u
· sec2 u du since 1 + tan2 u = sec2 u

=
∫

1 du

= u + c

= arctan x + c

∗ This material is not required for examinations.
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9F Further substitution 405

Find
∫ 1

(x2 + 1)2 dx by using the substitution x = tan u, where −
π

2
< u <

π

2
.

Example 18

Solution
Let x = tan u. Then

dx
du

= sec2 u.

We substitute into
∫

f (x) dx =
∫

f (x)
dx
du

du.∫ 1
(x2 + 1)2 dx =

∫ 1
(tan2 u + 1)2

· sec2 u du

=
∫ 1

(sec2 u)2 · sec2 u du since 1 + tan2 u = sec2 u

=
∫

cos2 u du

=
1
2

∫
cos(2u) + 1 du since cos2 u =

1
2
(
1 + cos(2u)

)
=

1
2

(1
2

sin(2u) + u
)

+ c

Since x = tan u, we have sin u =
x

√
x2 + 1

and cos u =
1

√
x2 + 1

.∫ 1
(x2 + 1)2 dx =

1
2

sin u cos u +
u
2

+ c∴

=
1
2
·

x
√

x2 + 1
·

1
√

x2 + 1
+

1
2

arctan x + c

=
x

2(x2 + 1)
+

1
2

arctan x + c

Find
∫ 2

0

√
4 − x2 dx by using the substitution x = 2 sin u, where −

π

2
≤ u ≤

π

2
.

Example 19

Solution
Using the Pythagorean identity
Let x = 2 sin u. Then

4 − x2 = 4 − 4 sin2 u

= 4(1 − sin2 u)

= 4 cos2 u
√

4 − x2 =
√

4 cos2 u∴

= 2|cos u|

= 2 cos u since −
π

2
≤ u ≤

π

2
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406 Chapter 9: Techniques of integration 9F

We have shown that if x = 2 sin u, where −
π

2
≤ u ≤

π

2
, then

√
4 − x2 = 2 cos u.

Limits of integration
� x = 2 implies 2 = 2 sin u and so u =

π

2
� x = 0 implies 0 = 2 sin u and so u = 0

Changing variables

Since
dx
du

= 2 cos u, we obtain∫ x=2

x=0

√
4 − x2 dx =

∫ u=
π

2
u=0

2 cos u dx

=
∫ π

2
0

2 cos u · 2 cos u du

=
∫ π

2
0

4 cos2 u du

We use the identity cos2 u =
1
2
(
1 + cos(2u)

)
:∫ x=2

x=0

√
4 − x2 dx =

∫ π

2
0

2 + 2 cos(2u) du

=
[
2u + sin(2u)

]π
2
0

= π

Exercise 9F

1 Find
∫ 1

x2 + 9
dx by substituting x = 3 tan u, where −

π

2
< u <

π

2
.

2 Find
∫ −1
√

4 − x2
dx by substituting x = 2 cos u, where 0 ≤ u ≤ π.

3 Find
∫ 1

x +
√

x
dx by substituting x = u2, where u > 0.

4 Find
∫ 1

3
√

x + 4x
dx by substituting x = u2, where u > 0.

5 Find
∫ 1
√

9 − x2
dx by substituting x = 3 sin u, where −

π

2
≤ u ≤

π

2
.

6 Find
∫ √

9 − x2 dx by substituting x = 3 sin u, where −
π

2
≤ u ≤

π

2
.

7 Find
∫ 1

x(1 + 3
√

x)
dx by substituting x = u3, where u > 0.

8 Find
∫ 1

(1 − x2)
3
2

dx by substituting x = sin u, where −
π

2
< u <

π

2
.
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9G Partial fractions 407

9G Partial fractions
We studied graphs of rational functions in Chapter 8.

If g(x) and h(x) are polynomials, then f (x) =
g(x)
h(x)

is a rational function; e.g. f (x) =
4x + 2
x2 − 1

.

� If the degree of g(x) is less than the degree of h(x), then f (x) is a proper fraction.
� If the degree of g(x) is greater than or equal to the degree of h(x), then f (x) is an

improper fraction.

A rational function may be expressed as a sum of simpler functions by resolving it into what
are called partial fractions. For example:

4x + 2
x2 − 1

=
3

x − 1
+

1
x + 1

We will see that this is a useful technique for integration.

Proper fractions
For proper fractions, the method used for obtaining partial fractions depends on the type of
factors in the denominator of the original algebraic fraction. We only consider examples
where the denominators have factors that are either degree 1 (linear) or degree 2 (quadratic).

� For every linear factor ax + b in the denominator, there will be a partial fraction of

the form
A

ax + b
.

� For every repeated linear factor (ax + b)2 in the denominator, there will be partial

fractions of the form
A

ax + b
and

B
(ax + b)2 .

� For every irreducible quadratic factor ax2 + bx + c in the denominator, there will be a

partial fraction of the form
Ax + B

ax2 + bx + c
.

� For every repeated irreducible quadratic factor (ax2 + bx + c)2 in the denominator, there

will be partial fractions of the form
Ax + B

ax2 + bx + c
and

Cx + D
(ax2 + bx + c)2 .

Note: A quadratic expression is irreducible if it cannot be factorised over R, that is, if its
discriminant is negative. For example, both x2 + 1 and x2 + 4x + 10 are irreducible.

To resolve an algebraic fraction into its partial fractions:

Step 1 Write a statement of identity between the original fraction and a sum of the
appropriate number of partial fractions.

Step 2 Express the sum of the partial fractions as a single fraction, and note that the
numerators of both sides are equivalent.

Step 3 Find the values of the introduced constants A, B, C, . . . by substituting appropriate
values for x or by equating coefficients.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



408 Chapter 9: Techniques of integration

Resolve
3x + 5

(x − 1)(x + 3)
into partial fractions.

Example 20

Solution Explanation
Let

3x + 5
(x − 1)(x + 3)

=
A

x − 1
+

B
x + 3

(1)

for all x ∈ R \ {1,−3}. Then

3x + 5 = A(x + 3) + B(x − 1) (2)

Substitute x = 1 in equation (2):

8 = 4A

∴ A = 2

Substitute x = −3 in equation (2):

−4 = −4B

∴ B = 1

Hence
3x + 5

(x − 1)(x + 3)
=

2
x − 1

+
1

x + 3
.

We know that equation (2) is true for
all x ∈ R \ {1,−3}.

But if this is the case, then it also has
to be true for x = 1 and x = −3.

Notes:
� You could substitute any values

of x to find A and B in this way,
but these values simplify the
calculations.

� The method of equating coefficients
could also be used here.

Resolve
2x + 10

(x + 1)(x − 1)2 into partial fractions.

Example 21

Solution
Since the denominator has a repeated linear factor and a single linear factor, there are three
partial fractions:

2x + 10
(x + 1)(x − 1)2 =

A
x + 1

+
B

x − 1
+

C
(x − 1)2

This gives the equation

2x + 10 = A(x − 1)2 + B(x + 1)(x − 1) + C(x + 1)

12 = 2CLet x = 1:

∴ C = 6

8 = 4ALet x = −1:

∴ A = 2

10 = A − B + CLet x = 0:

∴ B = A + C − 10 = −2

Hence
2x + 10

(x + 1)(x − 1)2 =
2

x + 1
−

2
x − 1

+
6

(x − 1)2 .
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9G Partial fractions 409

Resolve
x2 + 6x + 5

(x − 2)(x2 + x + 1)
into partial fractions.

Example 22

Solution
Since the denominator has a single linear factor and an irreducible quadratic factor
(i.e. cannot be reduced to linear factors), there are two partial fractions:

x2 + 6x + 5
(x − 2)(x2 + x + 1)

=
A

x − 2
+

Bx + C
x2 + x + 1

This gives the equation

x2 + 6x + 5 = A(x2 + x + 1) + (Bx + C)(x − 2) (1)

Subsituting x = 2:

22 + 6(2) + 5 = A(22 + 2 + 1)

21 = 7A

∴ A = 3

We can rewrite equation (1) as

x2 + 6x + 5 = A(x2 + x + 1) + (Bx + C)(x − 2)

= A(x2 + x + 1) + Bx2 − 2Bx + Cx − 2C

= (A + B)x2 + (A − 2B + C)x + A − 2C

Since A = 3, this gives

x2 + 6x + 5 = (3 + B)x2 + (3 − 2B + C)x + 3 − 2C

Equate coefficients:

3 + B = 1 and 3 − 2C = 5

∴ B = −2 ∴ C = −1

Check: 3 − 2B + C = 3 − 2(−2) + (−1) = 6

Therefore
x2 + 6x + 5

(x − 2)(x2 + x + 1)
=

3
x − 2

+
−2x − 1

x2 + x + 1

=
3

x − 2
−

2x + 1
x2 + x + 1

Note: The values of B and C could also be found by substituting x = 0 and x = 1 in
equation (1).
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410 Chapter 9: Techniques of integration

Improper fractions
Improper algebraic fractions can be expressed as a sum of partial fractions by first dividing
the denominator into the numerator to produce a quotient and a proper fraction. This proper
fraction can then be resolved into its partial fractions using the techniques just introduced.

Express
x5 + 2
x2 − 1

as partial fractions.

Example 23

Solution
Dividing through:

x2 − 1
x3 + x)
x5 + 2
x5 − x3

x3 + 2
x3 − x

x + 2

Therefore
x5 + 2
x2 − 1

= x3 + x +
x + 2
x2 − 1

By expressing
x + 2
x2 − 1

=
x + 2

(x − 1)(x + 1)
as partial fractions, we obtain

x5 + 2
x2 − 1

= x3 + x −
1

2(x + 1)
+

3
2(x − 1)

Using the TI-Nspire
Use menu > Algebra > Expand as shown.

Note: The use of ‘, x’ is optional.

Using the Casio ClassPad

� InM, enter and highlight
x5 + 2
x2 − 1

.

� Go to Interactive > Transformation > expand and
choose the Partial Fraction option.

� Enter the variable and tap OK .
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9G Partial fractions 411

Summary

� Examples of resolving a proper fraction into partial fractions:

• Distinct linear factors
3x − 4

(2x − 3)(x + 5)
=

A
2x − 3

+
B

x + 5

• Repeated linear factor
3x − 4

(2x − 3)(x + 5)2 =
A

2x − 3
+

B
x + 5

+
C

(x + 5)2

• Irreducible quadratic factor
3x − 4

(2x − 3)(x2 + 5)
=

A
2x − 3

+
Bx + C
x2 + 5

• Repeated irreducible quadratic factor
3x − 4

(2x − 3)(x2 + 5)2 =
A

2x − 3
+

Bx + C
x2 + 5

+
Dx + E

(x2 + 5)2

� If f (x) =
g(x)
h(x)

is an improper fraction, i.e. if the degree of g(x) is greater than or equal

to the degree of h(x), then the division must be performed first.

These techniques work with more than two factors in the denominator.

� Distinct linear factors:
p(x)

(x − a1)(x − a2) . . . (x − an)
=

A1

x − a1
+

A2

x − a2
+ · · · +

An

x − an

� Repeated linear factor:
p(x)

(x − a)n =
A1

(x − a)
+

A2

(x − a)2 + · · · +
An

(x − a)n

Using partial fractions for integration
We now use partial fractions to help perform integration.

Distinct linear factors

Find
∫ 3x + 5

(x − 1)(x + 3)
dx.

Example 24

Solution
In Example 20, we found that

3x + 5
(x − 1)(x + 3)

=
2

x − 1
+

1
x + 3

Therefore∫ 3x + 5
(x − 1)(x + 3)

dx =
∫ 2

x − 1
dx +

∫ 1
x + 3

dx

= 2 loge |x − 1| + loge |x + 3| + c

= loge

(
(x − 1)2 |x + 3|

)
+ c (using logarithm rules)
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412 Chapter 9: Techniques of integration

Improper fractions
If the degree of the numerator is greater than or equal to the degree of the denominator, then
division must take place first.

Find
∫ x5 + 2

x2 − 1
dx.

Example 25

Solution
In Example 23, we divided through to find that

x5 + 2
x2 − 1

= x3 + x +
x + 2
x2 − 1

Expressing as partial fractions:

x5 + 2
x2 − 1

= x3 + x −
1

2(x + 1)
+

3
2(x − 1)

Hence∫ x5 + 2
x2 − 1

dx =
∫

x3 + x −
1

2(x + 1)
+

3
2(x − 1)

dx

=
x4

4
+

x2

2
−

1
2

loge |x + 1| +
3
2

loge |x − 1| + c

=
x4

4
+

x2

2
+

1
2

loge

(
|x − 1|3

|x + 1|

)
+ c

Repeated linear factor

Express
3x + 1

(x + 2)2 in partial fractions and hence find
∫ 3x + 1

(x + 2)2 dx.

Example 26

Solution
3x + 1

(x + 2)2 =
A

x + 2
+

B
(x + 2)2Write

3x + 1 = A(x + 2) + BThen

Substituting x = −2 gives −5 = B.

Substituting x = 0 gives 1 = 2A + B and therefore A = 3.

3x + 1
(x + 2)2 =

3
x + 2

−
5

(x + 2)2Thus ∫ 3x + 1
(x + 2)2 dx =

∫ 3
x + 2

−
5

(x + 2)2 dx∴

= 3 loge |x + 2| +
5

x + 2
+ c
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9G 9G Partial fractions 413

Irreducible quadratic factor

Find an antiderivative of
4

(x + 1)(x2 + 1)
by first expressing it as partial fractions.

Example 27

Solution
Write

4
(x + 1)(x2 + 1)

=
A

x + 1
+

Bx + C
x2 + 1

Then

4 = A(x2 + 1) + (Bx + C)(x + 1)

4 = 2ALet x = −1:

∴ A = 2

4 = A + CLet x = 0:

∴ C = 2

4 = 2A + 2(B + C)Let x = 1:

∴ B = −2

Hence
4

(x + 1)(x2 + 1)
=

2
x + 1

+
2 − 2x
x2 + 1

We now turn to the integration:∫ 4
(x + 1)(x2 + 1)

dx =
∫ 2

x + 1
+

2 − 2x
x2 + 1

dx

=
∫ 2

x + 1
dx +

∫ 2
x2 + 1

dx −
∫ 2x

x2 + 1
dx

= 2 loge |x + 1| + 2 arctan x − loge(x2 + 1) + c

= loge

( (x + 1)2

x2 + 1

)
+ 2 arctan x + c

Exercise 9GSkill-
sheet

1Example 20 Resolve the following rational expressions into partial fractions:
5x + 1

(x − 1)(x + 2)
a

−1
(x + 1)(2x + 1)

b
3x − 2
x2 − 4

c

4x + 7
x2 + x − 6

d
7 − x

(x − 4)(x + 1)
e

2Example 21 Resolve the following rational expressions into partial fractions:
2x + 3

(x − 3)2a
9

(1 + 2x)(1 − x)2b
2x − 2

(x + 1)(x − 2)2c
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414 Chapter 9: Techniques of integration 9G

3Example 22 Resolve the following rational expressions into partial fractions:
3x + 1

(x + 1)(x2 + x + 1)
a

3x2 + 2x + 5
(x2 + 2)(x + 1)

b
x2 + 2x − 13

2x3 + 6x2 + 2x + 6
c

4Example 23 Resolve
3x2 − 4x − 2
(x − 1)(x − 2)

into partial fractions.

5Example 24 Decompose
9

(x − 10)(x − 1)
into partial fractions and find its antiderivatives.

6Example 25 Decompose
x4 + 1

(x + 2)2 into partial fractions and find its antiderivatives.

7Example 26 Decompose
7x + 1

(x + 2)2 into partial fractions and find its antiderivatives.

8Example 27 Decompose
5

(x2 + 2)(x − 4)
into partial fractions and find its antiderivatives.

9 Decompose each of the following into partial fractions and find their antiderivatives:
7

(x − 2)(x + 5)
a

x + 3
x2 − 3x + 2

b
2x + 1

(x + 1)(x − 1)
c

2x2

x2 − 1
d

2x + 1
x2 + 4x + 4

e
4x − 2

(x − 2)(x + 4)
f

10 Find an antiderivative of each of the following:
2x − 3

x2 − 5x + 6
a

5x + 1
(x − 1)(x + 2)

b
x3 − 2x2 − 3x + 9

x2 − 4
c

4x + 10
x2 + 5x + 4

d
x3 + x2 − 3x + 3

x + 2
e

x3 + 3
x2 − x

f

11 Find an antiderivative of each of the following:
3x

(x + 1)(x2 + 2)
a

2
(x + 1)2(x2 + 1)

b
5x3

(x − 1)(x2 + 4)
c

16(4x + 1)
(x − 2)2(x2 + 4)

d
24(x + 2)

(x + 2)2(x2 + 2)
e

8
(x + 1)3(x2 − 1)

f

12 Evaluate the following:∫ 2

1

1
x(x + 1)

dxa
∫ 1

0

1
(x + 1)(x + 2)

dxb
∫ 3

2

x − 2
(x − 1)(x + 2)

dxc∫ 1

0

x2

x2 + 3x + 2
dxd

∫ 3

2

x + 7
(x + 3)(x − 1)

dxe
∫ 3

2

2x + 6
(x − 1)2 dxf∫ 3

2

x + 2
x(x + 4)

dxg
∫ 1

0

1 − 4x
3 + x − 2x2 dxh

∫ 2

1

1
x(x − 4)

dxi∫ −2

−3

1 − 4x
(x + 6)(x + 1)

dxj
∫ 1

0

3x4 + 4x3 + 16x2 + 20x + 9
(x + 2)(x2 + 3)2 dxk
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9G 9H Integration by parts 415

13 Evaluate the following:∫ 1

0

10x
(x + 1)(x2 + 1)

dxa
∫ √3

0

x3 − 8
(x − 2)(x2 + 1)

dxb∫ 1

0

x2 − 1
x2 + 1

dxc
∫ 0

−
1
2

6
(x2 + x + 1)(x − 1)

dxd

14 Let f (x) =
x2 + 6x + 5

(x − 2)(x2 + x + 1)
.

Express f (x) as partial fractions.a Hence find an antiderivative of f (x).b

Hence evaluate
∫ −1

−2
f (x) dx.c

15 In this question, we find an antiderivative of sec x.

a Prove that sec x =
cos x

(1 − sin x)(1 + sin x)
.

b Hence, by using the substitution u = sin x and then partial fractions, show that∫
sec x dx = loge

∣∣∣sec x + tan x
∣∣∣ + c

16 We now find an antiderivative of sec x by using the substitution x = 2 tan−1 t.

a i Show that sin x =
2t

1 + t2 . ii Show that cos x =
1 − t2

1 + t2 .

b Hence find
∫ 1

cos x
dx in terms of t.

c By using the same substitution, find
∫ sin x

1 + sin x
dx.

9H Integration by parts
The product rule is

d
dx

(
uv

)
= u

dv
dx

+ v
du
dx

Integrate both sides with respect to x:∫ d
dx

(
uv

)
dx =

∫
u

dv
dx

dx +
∫

v
du
dx

dx

By rearranging this equation, we obtain the following technique for integration.

Integration by parts∫
u

dv
dx

dx = uv −
∫

v
du
dx

dx

Note: We can use integration by parts to find an integral
∫

u
dv
dx

dx if the integral
∫

v
du
dx

dx
is easier to find.
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416 Chapter 9: Techniques of integration

Find an antiderivative of each of the following:

x cos xa xexb arcsin xc

Example 28

Solution
a Let u = x and

dv
dx

= cos x.

Then
du
dx

= 1 and v = sin x. (Choose v to be the simplest antiderivative of
dv
dx

.)∫
x cos x dx =

∫
u

dv
dx

dxSo

= uv −
∫

v
du
dx

dx

= x sin x −
∫

sin x dx

= x sin x + cos x + c

b
∫

xex dx

Let u = x and
dv
dx

= ex. Then
du
dx

= 1 and v = ex.∫
xex dx =

∫
u

dv
dx

dxSo

= uv −
∫

v
du
dx

dx

= xex −
∫

ex dx

= xex − ex + c

c
∫

arcsin x dx

Let u = arcsin x and
dv
dx

= 1. Then
du
dx

=
1

√
1 − x2

and v = x.∫
arcsin x dx =

∫
u

dv
dx

dxSo

= uv −
∫

v
du
dx

dx

= x arcsin x −
∫ x
√

1 − x2
dx

= x arcsin x +
√

1 − x2 + c

Note: We can find
∫ x
√

1 − x2
dx by using the substitution w = 1 − x2.
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9H Integration by parts 417

Using integration by parts more than once
In some cases, we need to use integration by parts more than once.

Find
∫

x2ex dx.

Example 29

Solution
Let u = x2 and

dv
dx

= ex. Then
du
dx

= 2x and v = ex.∫
x2ex dx =

∫
u

dv
dx

dxSo

= uv −
∫

v
du
dx

dx

= x2ex −
∫

2xex dx

= x2ex − 2(xex − ex) + c (using Example 28b)

= (x2 − 2x + 2)ex + c

Using integration by parts by solving for the unknown integral
Integration by parts can be applied to expressions of the form eax sin(bx) and eax cos(bx) in a
different way. Again, we use integration by parts twice. We form an equation which we can
solve for the unknown integral.

Find
∫

ex cos x dx.

Example 30

Solution
Let u = ex and

dv
dx

= cos x. Then
du
dx

= ex and v = sin x.

So, using integration by parts, we obtain∫
ex cos x dx = ex sin x −

∫
ex sin x dx (1)

Similarly, we can use integration by parts to obtain∫
ex sin x dx = −ex cos x +

∫
ex cos x dx (2)

Substitute (2) in (1) and then rearrange:∫
ex cos x dx = ex sin x −

(
−ex cos x +

∫
ex cos x dx

)
2
∫

ex cos x dx = ex sin x + ex cos x + c∴

Now dividing by 2 and renaming the constant gives∫
ex cos x dx =

1
2

ex(sin x + cos x) + c
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418 Chapter 9: Techniques of integration

Using reduction formulas
In the next example, we find the integral

∫
x3ex dx by considering integrals of the general

form In =
∫

xnex dx. We will see that the problem of finding the integral In can be reduced to
the simpler problem of finding the integral In−1.

a Find a recursive formula for
∫

xnex dx, where n ∈ N.

b Use your formula to find
∫

x3ex dx.

Example 31

Solution
a For each n ∈ N ∪ {0}, define In =

∫
xnex dx.

Now let n ∈ N. Using integration by parts, we find

In =
∫

xnex dx

=
∫

xn d
dx

(ex) dx

= xnex −
∫

ex d
dx

(xn) dx

= xnex −
∫

exnxn−1 dx

= xnex − n
∫

xn−1ex dx

= xnex − nIn−1

We have shown that

In = xnex − nIn−1 for all n ∈ N

b Using the formula from part a gives∫
x3ex dx = I3 (by the definition of I3)

= x3ex − 3I2 (expressing I3 in terms of I2)

= x3ex − 3
(
x2ex − 2I1

)
(expressing I2 in terms of I1)

= x3ex − 3x2ex + 6I1

= x3ex − 3x2ex + 6
(
xex − I0

)
(expressing I1 in terms of I0)

= x3ex − 3x2ex + 6xex − 6I0

= x3ex − 3x2ex + 6xex − 6
∫

ex dx (by the definition of I0)

= x3ex − 3x2ex + 6xex − 6ex + c

= (x3 − 3x2 + 6x − 6)ex + c

A recursive formula like the one found in Example 31a, which expresses an integral in terms
of a simpler integral of the same form, is called a reduction formula.
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Using integration by parts for definite integrals
We can also use integration by parts to evaluate definite integrals.∫ b

a
u

dv
dx

dx =
[
uv

]b
a −

∫ b

a
v

du
dx

dx

Evaluate
∫ 2

1
loge x dx.

Example 32

Solution
Let u = loge x and

dv
dx

= 1. Then
du
dx

=
1
x

and v = x.

We have∫ 2

1
loge x dx =

[
x loge x

]2
1 −

∫ 2

1
1 dx

=
[
x loge x

]2
1 −

[
x
]2
1

= 2 loge 2 − (2 − 1)

= 2 loge 2 − 1

Exercise 9H

1Example 28 Find an antiderivative of each of the following:

xe−xa loge xb x sin xc arccos xd
x cos(3x)e x sec2 xf x tan2 xg arcsin(2x)h
arctan xi (x + 1)e−xj x arctan xk x loge xl

x2 loge xm x−
1
2 loge xn (x + 3)exo x5 loge xp

xe2x+1q x loge(2x)r

2Example 29 Find an antiderivative of each of the following:

x2e−xa x2 sin xb

3Example 30 Find an antiderivative of each of the following:

ex sin xa e2x cos(3x)b e3x sin xc ex sin
( x
2

)
d

4Example 31 Find a reduction formula for
∫

xne2x dx and then use it to find
∫

x3e2x dx.

5 Find a reduction formula for
∫

(loge x)n dx and then use it to find
∫

(loge x)3 dx.

Hint: Write (loge x)n as (loge x)n · 1.

6 Let In =
∫

sinn x dx.

a Show that In = −
1
n

cos x sinn−1 x +
n − 1

n
In−2. b Hence find

∫
sin5 x dx.
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420 Chapter 9: Techniques of integration 9H

7 Let In =
∫

cosn x dx.

a Show that In =
1
n

sin x cosn−1 x +
n − 1

n
In−2. b Hence find

∫
cos5 x dx.

8 For each n ∈ N ∪ {0}, define In =
∫ π

2
0

sin2n+1 x dx.

a Find the values of I0 and I1.

b Using integration by parts, show that In =
2n

2n + 1
In−1 for all n ∈ N.

c Hence find the values of I2 and I3.
d Prove that

In =
2n

2n + 1
×

2n − 2
2n − 1

× · · · ×
4
5
×

2
3

for all n ∈ N.

9Example 32 Evaluate each of the following:∫ 2

0
xe2x dxa

∫ 2π

0
x sin(4x) dxb

∫ π

4
0

x cos(4x) dxc∫ 1

0
2xe3x dxd

∫ π

0
(4x − 3) sin

( x
4

)
dxe

∫ 1

0
x2e3x−1 dxf∫ 2

1
loge(3x) dxg

∫ 2

0
x2e2x dxh

∫ 3

1
x2 loge x dxi

9I Further techniques and miscellaneous exercises
In this section, the different techniques are arranged so that a choice must be made of the
most suitable one for a particular problem. Often there is more than one appropriate choice.

The relationship between a function and its derivative is also exploited. This is illustrated in
the following example.

a Find the derivative of sin−1(x) + x
√

1 − x2. b Hence evaluate
∫ 1

2
0

√
1 − x2 dx.

Example 33

Solution

a Let y = sin−1(x) + x
√

1 − x2. Then
dy
dx

=
1

√
1 − x2

+

(√
1 − x2 +

(−x)x
√

1 − x2

)
(using the product rule for x

√
1 − x2)

=
1

√
1 − x2

+
1 − x2 − x2

√
1 − x2

=
2(1 − x2)
√

1 − x2

= 2
√

1 − x2
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9I 9I Further techniques and miscellaneous exercises 421

b From part a, we have∫
2
√

1 − x2 dx = sin−1(x) + x
√

1 − x2 + c∫ 1
2

0
2
√

1 − x2 dx =
[
sin−1(x) + x

√
1 − x2

] 1
2
0

∴ ∫ 1
2

0

√
1 − x2 dx =

1
2

(
sin−1( 1

2
)

+ 1
2

√
1 −

( 1
2
)2
−

(
sin−1(0) + 0

))
∴

=
1
2

(
π

6
+

1
2
·

√
3

2

)
=
π

12
+

√
3

8

Exercise 9ISkill-
sheet

1 If
∫ 1

0

1
(x + 1)(x + 2)

dx = loge p, find p.

2 Evaluate each of the following:∫ π

6
0

sin2 x cos x dxa
∫ 1

0

e2x

1 + ex dxb∫ π

3
0

sin3 x cos x dxc
∫ 4

3

x
(x − 2)(x + 1)

dxd

3 If
∫ π

6
0

cos x
1 + sin x

dx = loge c, find c.

4 Find an antiderivative of sin(3x) cos5(3x).

5 If
∫ 6

4

2
x2 − 4

dx = loge p, find p.

6 If
∫ 6

5

3
x2 − 5x + 4

dx = loge p, find p.

7 Find an antiderivative of each of the following:
cos x

sin3 x
a x(4x2 + 1)

3
2b sin2 x cos3 xc

ex

e2x − 2ex + 1
d

8 Evaluate
∫ 3

0

x
√

25 − x2
dx.

9 Find an antiderivative of each of the following:
1

(x + 1)2 + 4
a

1
√

1 − 9x2
b

1
√

1 − 4x2
c

1
(2x + 1)2 + 9

d
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422 Chapter 9: Techniques of integration 9I

10Example 33 Let f : (1,∞)→ R, where f (x) = sin−1
( 1
√

x

)
.

a Find f ′(x)

b Using the result of a, find
∫ 4

2

1

x
√

x − 1
dx.

11 For each of the following, use an appropriate substitution to find an expression for the
antiderivative in terms of f (x):∫

f ′(x)
(
f (x)

)2 dxa
∫ f ′(x)(

f (x)
)2 dxb∫ f ′(x)

f (x)
dx, where f (x) > 0c

∫
f ′(x) sin

(
f (x)

)
dxd

12 If y = x
√

4 − x, find
dy
dx

and simplify. Hence evaluate
∫ 2

0

8 − 3x
√

4 − x
dx.

13 Find a, b and c such that
2x3 − 11x2 + 20x − 13

(x − 2)2 = ax + b +
c

(x − 2)2 for all x , 2.

Hence find
∫ 2x3 − 11x2 + 20x − 13

(x − 2)2 dx.

14 Evaluate each of the following:∫ π

4
0

sin2(2x) dxa
∫ 0

−1
(14 − 2x)

√
x2 − 14x + 1 dxb

9
∫ π

3
−
π

3

sin x
√

cos x
dxc

∫ e2

e

1
x loge x

dxd∫ π

4
0

tan2 x dxe
∫ π

2
0

sin x
2 + cos x

dxf

15 Find
∫

sin x cos x dx using:

the substitution u = sin xa the identity sin(2x) = 2 sin x cos xb

16 a If y = loge(x +
√

x2 + 1), find
dy
dx

. Hence find
∫ 1
√

x2 + 1
dx.

b If y = loge(x +
√

x2 − 1), find
dy
dx

. Hence show that
∫ 7

2

1
√

x2 − 1
dx = loge(2 +

√
3).

17 Find an antiderivative of each of the following:
1

4 + x2a
1

4 − x2b
4 + x2

x
c

x
4 + x2d

x2

4 + x2e
1

1 + 4x2f x
√

4 + x2g x
√

4 + xh

1
√

4 − x
i

1
√

4 − x2
j

x
√

4 − x
k

x
√

4 − x2
l
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9I 9I Further techniques and miscellaneous exercises 423

18 Find constants c and d such that
∫ 3

2

x3 − x + 2
x2 − 1

dx = c + loge d.

19 a Differentiate f (x) = sin x cosn−1 x.
b Hence verify that n

∫
cosn x dx = sin x cosn−1 x + (n − 1)

∫
cosn−2 x dx.

c Hence evaluate:∫ π

2
0

cos4 x dxi
∫ π

2
0

cos6 x dxii∫ π

2
0

cos4 x sin2 x dxiii
∫ π

4
0

sec4 x dxiv

20 Find:∫ x
(x + 1)n dxa

∫ 2

1
x(x − 1)n dxb

21 a Evaluate
∫ 1

0
(1 + ax)2 dx.

b For what value of a is the value of this integral a minimum?

22 a Differentiate
a sin x − b cos x
a cos x + b sin x

with respect to x.

b Hence evaluate
∫ π

2
0

1
(a cos x + b sin x)2 dx.

23 Let Un =
∫ π

4
0

tann x dx, where n ∈ Z with n > 1.

Express Un + Un−2 in terms of n.a Hence show that U6 =
13
15
−
π

4
.b

24 a Simplify
1

1 + tan x
+

1
1 + cot x

.

b Let ϕ =
π

2
− θ. Show that

∫ π

2
0

1
1 + tan θ

dθ =
∫ π

2
0

1
1 + cotϕ

dϕ.

c Use these results to evaluate
∫ π

2
0

1
1 + tan θ

dθ.

25 Consider the integral
∫

e
√

x dx.

a By using the substitution u =
√

x, show that
∫

e
√

x dx = 2
∫

ueu du.

b Hence, using integration by parts, show that
∫

e
√

x dx = e
√

x(
√

x − 1) + c.

26 a Find
∫

sin4 x dx using a reduction formula.

b Find
∫

sin4 x dx using the double angle formula cos(2x) = 1 − 2 sin2 x.
c Combine your two answers to obtain an impressive trigonometric identity.
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Assign-
ment

Nrich

Chapter summary

Antiderivatives involving inverse circular functions∫ 1
√

a2 − x2
dx = sin−1

( x
a

)
+ c

∫ −1
√

a2 − x2
dx = cos−1

( x
a

)
+ c

∫ a
a2 + x2 dx = tan−1

( x
a

)
+ c

Integration by substitution
� The change of variable rule is∫

f (u)
du
dx

dx =
∫

f (u) du where u is a function of x

� Linear substitution
A linear substitution can be used to find antiderivatives of expressions such as

(2x + 3)
√

3x − 4,
2x + 5
√

3x − 4
and

2x + 5
(x + 2)2

Consider
∫

f (x) g(ax + b) dx.

Let u = ax + b. Then x =
u − b

a
and so∫

f (x) g(ax + b) dx =
∫

f
(u − b

a

)
g(u) dx

=
1
a

∫
f
(u − b

a

)
g(u) du

� Definite integration involving the change of variable rule:
Let u = g(x). Then∫ b

a
f (u)

du
dx

dx =
∫ g(b)

g(a)
f (u) du

Useful trigonometric identities

sin(2x) = 2 sin x cos x

cos(2x) = 2 cos2 x − 1

= 1 − 2 sin2 x

= cos2 x − sin2 x

sec2 x = 1 + tan2 x
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Partial fractions
� A rational function may be expressed as a sum of simpler functions by resolving it into

partial fractions. For example:

4x + 2
x2 − 1

=
3

x − 1
+

1
x + 1

� Examples of resolving a proper fraction into partial fractions:

• Distinct linear factors
3x − 4

(2x − 3)(x + 5)
=

A
2x − 3

+
B

x + 5

• Repeated linear factor
3x − 4

(2x − 3)(x + 5)2 =
A

2x − 3
+

B
x + 5

+
C

(x + 5)2

• Irreducible quadratic factor
3x − 4

(2x − 3)(x2 + 5)
=

A
2x − 3

+
Bx + C
x2 + 5

� A quadratic polynomial is irreducible if it cannot be factorised over R.

� If f (x) =
g(x)
h(x)

is an improper fraction, i.e. if the degree of g(x) is greater than or equal to

the degree of h(x), then the division must be performed first. Write f (x) in the form

g(x)
h(x)

= q(x) +
r(x)
h(x)

where the degree of r(x) is less than the degree of h(x).

Integration by parts∫
u

dv
dx

dx = uv −
∫

v
du
dx

dx∫ b

a
u

dv
dx

dx =
[
uv

]b
a −

∫ b

a
v

du
dx

dx

Technology-free questions

1 Find an antiderivative of each of the following:

cos3(2x)a
2x + 3
4x2 + 1

b
1

1 − 4x2c
x

√
1 − 4x2

d

x2

1 − 4x2e x
√

1 − 2x2f sin2
(
x −

π

3

)
g

x
√

x2 − 2
h

sin2(3x)i sin3(2x)j x
√

x + 1k
1

1 + cos(2x)
l

e3x + 1
e3x+1m

x
x2 − 1

n sin2 x cos2 xo
x2

1 + x
p
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2 Evaluate each of the following integrals:∫ 1
2

0
x(1 − x2)

1
2 dxa

∫ 1
2

0
(1 − x2)−1 dxb

∫ 1
2

0
x(1 + x2)

1
2 dxc∫ 2

1

1
6x + x2 dxd

∫ 1

0

2x2 + 3x + 2
x2 + 3x + 2

dxe
∫ 1

0

1
√

4 − 3x
dxf∫ 1

0

1
√

4 − x2
dxg

∫ π

2
0

sin2(2x) dxh
∫ π

−π
sin2 x cos2 x dxi∫ π

2
0

sin2(2x) cos2(2x) dxj
∫ π

4
0

2 cos x − sin x
2 sin x + cos x

dxk
∫ 2

−1
x2
√

x3 + 1 dxl

3 Show that
x

x2 + 2x + 3
=

1
2

( 2x + 2
x2 + 2x + 3

)
−

1
x2 + 2x + 3

. Hence find
∫ x

x2 + 2x + 3
dx.

4 a Differentiate sin−1(√x
)

and hence find
∫ 1
√

x(1 − x)
dx.

b Differentiate sin−1(x2) and hence find
∫ 2x
√

1 − x4
dx.

5 Use integration by parts to find:∫
sin−1 x dxa

∫
loge x dxb

∫
tan−1 x dxc

6 Find an antiderivative of each of the following:

sin(2x) cos(2x)a x2(x3 + 1)2b
cos θ

(3 + 2 sin θ)2c

xe1−x2d tan2(x + 3)e
2x

√
6 + 2x2

f

tan2 x sec2 xg sec3 x tan xh tan2(3x)i

7 Evaluate the following:∫ π

2
0

sin5 x dxa
∫ 8

1
(13 − 5x)

1
3 dxb

∫ π

8
0

sec2(2x) dxc∫ 2

1
(3 − y)

1
2 dyd

∫ π

0
sin2 x dxe

∫ −1

−3

x2 + 1
x3 + 3x

dxf

8 Find the derivative of 2
(
x2 +

1
x

) 1
2

and hence evaluate
∫ 2

1
(2x − x−2)

(
x2 +

1
x

)− 1
2

dx.

9 Let f (x) =
4x2 + 16x

(x − 2)2(x2 + 4)
.

a Given that f (x) =
a

x − 2
+

6
(x − 2)2 −

bx + 4
x2 + 4

, find a and b.

b Given that
∫ 0

−2
f (x) dx =

c − π − loge d
2

, find c and d.
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10 Find an antiderivative of each of the following:

e−2x cos(2x + 3)a x sec2 xb e3x cos
( x
2

)
c

11 Evaluate each of the following definite integrals:∫ 2

1
x2 loge x dxa

∫ 2

1

loge x
x

dxb
∫ 1

0
xe−2x dxc

Multiple-choice questions

1 By using a suitable substitution, the integral
∫ 3

1
x2
√

3 − x dx can be expressed as∫ 0

2
9u

1
2 − 6u

3
2 + u

5
2 duA −

∫ 0

2
9u

1
2 + 6u

3
2 + u

5
2 duB −

∫ 0

3
9u

1
2 − 6u

3
2 + u

5
2 duC∫ 2

0
9u

1
2 − 6u

3
2 + u

5
2 duD

∫ 2

0
9u

1
2 + 6u

3
2 − u

5
2 duE

2 If
∫ m

0
tan x sec2 x dx =

3
2

, where m ∈
(
0,
π

2

)
, then the value of m is

0.5A 1B
π

3
C

π

6
D

π

8
E

3 An antiderivative of tan(2x) is
1
2 sec2(2x)A 1

2 loge |cos(2x)|B 1
2 loge |sec(2x)|C

1
2 loge |sin(2x)|D 1

2 tan2(2x)E

4
∫ π

2
π

4

sin(2x)
2 + cos(2x)

dx is equal to

1
√

2
A loge

( 1
√

2

)
B loge 2C

1
2

loge 2D 1E

5
∫ π

3
0

sin x cos3 x dx written as an integral with respect to u, where u = cos x, is∫ 1
1
2

u3 duA
∫ π

3
0

u3 duB
∫ 1

2
1

u3
√

1 − u2 duC∫ 0
1
2

u3
√

1 − u2 duD
∫ 1

2
1

u3 duE

6 The value of
∫ 2

0
cos2 x − sin2 x dx, correct to four decimal places, is

−0.0348A 0.0349B −0.3784C 2.0000D 0.3784E

7 The substitution u = sin x is made to the integral
∫

cos3 x sinn x dx. If the resulting
integral is

∫
u9 − u11 du, then the value of n is

3A 2B 9C 10D 11E

8 Suppose that f : R→ R is a twice differentiable function such that f (0) = 2, f (1) = 3,
f ′(0) = 6 and f ′(1) = 10. The value of

∫ 1

0
5x f ′′(x) dx is

−20A −16B 45C 10D 36E
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9 If
d
dx

(
x f (x)

)
= x f ′(x) + f (x) and x f ′(x) =

1
1 + x2 , then an antiderivative of f (x) is

x f (x) − tan−1(x)A loge(x2 + 1)B
1
2x

loge(x2 + 1)C

f (x) − tan−1(x)D tan−1(x)E

10 If F′(x) = f (x), then an antiderivative of 3 f (3 − 2x) is
3
2

F(3 − 2x)A −
3
4

(3 − 2x)2B
3
4

(3 − 2x)2C −
3
2

F(3 − 2x)D −
3
2

f (3 − 2x)E

Extended-response questions

1 In this question, you will establish reduction formulas for
∫

tann x dx and
∫

secn x dx.

a Prove that tann x = tann−2 x sec2 x − tann−2 x, for all n ∈ N with n ≥ 2.
b Define In =

∫
tann x dx. Prove the reduction formula

In =
1

n − 1
tann−1 x − In−2

for all n ∈ N with n ≥ 2.
c Use this reduction formula to find an antiderivative of each of the following:

i tan2 x ii tan3 x iii tan4 x iv tan5 x

d Find
∫

sec x dx by using sec x =
sec x (sec x + tan x)

sec x + tan x
.

e Use integration by parts to obtain a reduction formula for
∫

secn x dx.
f Use this reduction formula to find an antiderivative of each of the following:

i sec3 x ii sec4 x iii sec5 x

2 Define In =
∫ 1

(x2 + 1)n dx. Now let n ∈ N with n ≥ 2.

a Using integration by parts, show that In =
x

(x2 + 1)n + 2n
∫ x2

(x2 + 1)n+1 dx.

b Show that
x2

(x2 + 1)n+1 =
1

(x2 + 1)n −
1

(x2 + 1)n+1 .

c Prove the reduction formula In =
x

2(n − 1)(x2 + 1)n−1 +
2n − 3

2(n − 1)
In−1.

d Use this reduction formula to evaluate each of the following:

i
∫ 1

0

1
(x2 + 1)2 dx ii

∫ 1

0

1
(x2 + 1)3 dx iii

∫ 1

0

1
(x2 + 1)4 dx

3 a Let k ∈ N. Find an expression in terms of k for
∫ π

2
0

sin2k x dx.

b The binomial theorem states that (a + b)n =

n∑
k=0

nCkan−kbk for all n ∈ N.

Use the binomial theorem to help show that∫ π

2
0

cos2n+1 x dx =

n∑
k=0

nCk
(−1)k

2k + 1
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10
Applications of
integration

Objectives
I To determine the area under a curve.

I To determine the area between two curves.

I To use a CAS calculator to evaluate definite integrals.

I To determine the volume of a solid of revolution.

I To determine the length of a section of a curve.

I To determine the surface area of a solid of revolution.

In this chapter we revisit the fundamental theorem of calculus. We will apply the theorem
to the new functions introduced in this course, and use the integration techniques developed
in the previous chapter. We then study three further applications of integration.

First, we will use integration to find the volume of a solid formed by revolving a bounded
region defined by a curve around one of the axes.

If the region bounded by the curve with equation y = f (x) and the lines x = a and x = b is
rotated about the x-axis, then the volume V of the solid is given by

V = π
∫ b

a

(
f (x)

)2 dx

We will also use integration to find the surface area of such a solid.

These two applications can be used to derive the formulas for the volume and the surface area
of a sphere, which you have used for several years.

As a third application, we will use integration to find the length of a section of a curve.
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430 Chapter 10: Applications of integration

10A The fundamental theorem of calculus
In this section we review integration from Mathematical Methods Units 3 & 4. We consider
the graphs of some of the functions introduced in earlier chapters, and the areas of regions
defined through these functions. It may be desirable to use a graphing package or a CAS
calculator to help with the graphing in this section.

Signed area
Consider the graph of y = x + 1 shown to the right.

A1 = 1
2 × 3 × 3 = 4 1

2 (area of a triangle)

A2 = 1
2 × 1 × 1 = 1

2

The total area is A1 + A2 = 5.

The signed area is A1 − A2 = 4.
x

A1

y = x + 1

y

1

−1

−1−2

1

2

3

2OA2

Regions above the x-axis have
positive signed area.

Regions below the x-axis have
negative signed area.

The total area of the shaded
region is A1 + A2 + A3 + A4.

The signed area of the shaded
region is A1 − A2 + A3 − A4.

A1 A3

A2 A4
x

y

O

The definite integral
Let f be a continuous function on a closed interval [a, b]. The signed area enclosed by the
graph of y = f (x) between x = a and x = b is denoted by∫ b

a
f (x) dx

and is called the definite integral of f (x) from x = a to x = b.

Fundamental theorem of calculus

If f is a continuous function on an interval [a, b], then∫ b

a
f (x) dx = F(b) − F(a)

where F is any antiderivative of f .

Notes:
� If f (x) ≥ 0 for all x ∈ [a, b], the area between x = a and x = b is given by

∫ b

a
f (x) dx.

� If f (x) ≤ 0 for all x ∈ [a, b], the area between x = a and x = b is given by −
∫ b

a
f (x) dx.
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10A The fundamental theorem of calculus 431

The graph of y =
1

√
4 − x2

is shown.

Find the area of the shaded region.

y

x

1
2

O−2 −1 1 2

Example 1

Solution

Area =
∫ 1

−1

1
√

4 − x2
dx

= 2
∫ 1

0

1
√

4 − x2
dx (by symmetry)

= 2
[
sin−1

( x
2

)]1

0

= 2 sin−1
(1
2

)
= 2 ×

π

6

=
π

3

Find the area under the graph of y =
6

4 + x2 between x = −2 and x = 2.

Example 2

Solution

Area = 6
∫ 2

−2

1
4 + x2 dx

=
6
2

∫ 2

−2

2
4 + x2 dx

= 6
∫ 2

0

2
4 + x2 dx (by symmetry)

= 6
[
tan−1

( x
2

)]2

0

= 6 tan−1(1)

= 6 ×
π

4

=
3π
2

y

x
−2 2O
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432 Chapter 10: Applications of integration

Sketch the graph of f : [− 1
2 , 1

2 ]→ R, f (x) = sin−1(2x). Shade the region defined by the
inequalities 0 ≤ x ≤ 1

2 and 0 ≤ y ≤ f (x). Find the area of this region.

Example 3

Solution

Area =
∫ 1

2
0

sin−1(2x) dx

Note: This area could be calculated
directly using integration by
parts, but it is simpler to use the
following alternative method.

y

x

1
2

π
2

   ,

O

A 1
2

π
2

     ,
π
2

0,

1
2

, 0C 

B 

− −

Area = area rectangle OABC −
∫ π

2
0

1
2

sin y dy

=
π

4
−

1
2

[
− cos y

]π
2
0

=
π

4
−

1
2

Sketch the graph of y =
1

4 − x2 . Shade the region for the area determined by
∫ 1

−1

1
4 − x2 dx

and find this area.

Example 4

Solution

Area =
∫ 1

−1

1
4 − x2 dx

=
1
4

∫ 1

−1

1
2 − x

+
1

2 + x
dx

By symmetry:

Area =
1
2

∫ 1

0

1
2 − x

+
1

2 + x
dx

=
1
2

[
loge

(2 + x
2 − x

)]1

0

=
1
2
(
loge 3 − loge 1

)
=

1
2

loge 3

y

x
−2 −1 1 2O
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10A The fundamental theorem of calculus 433

The graph of y = cos3 x is shown.

Find the area of the shaded region.

y

x

1

O π
2

3π
2

−1

Example 5

Solution

Area = −
∫ 3π

2
π

2
cos3 x dx

= −
∫ 3π

2
π

2
cos x cos2 x dx

= −
∫ 3π

2
π

2
cos x (1 − sin2 x) dx

Let u = sin x. Then
du
dx

= cos x.

When x =
π

2
, u = 1. When x =

3π
2

, u = −1.

Area = −
∫ −1

1
1 − u2 du∴

= −

[
u −

u3

3

]−1

1

= −

(
−1 +

1
3
−

(
1 −

1
3

))
=

4
3

Properties of the definite integral

�
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx

�
∫ a

a
f (x) dx = 0

�
∫ b

a
k f (x) dx = k

∫ b

a
f (x) dx

�
∫ b

a
f (x) ± g(x) dx =

∫ b

a
f (x) dx ±

∫ b

a
g(x) dx

�
∫ b

a
f (x) dx = −

∫ a

b
f (x) dx
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434 Chapter 10: Applications of integration 10A

Exercise 10A

1Example 1 Sketch the graph of f :
(
−

3
2

,
3
2

)
→ R, f (x) =

1
√

9 − 4x2
.

Find the area of the region defined by the inequalities 0 ≤ y ≤ f (x) and −1 ≤ x ≤ 1.

2Example 2 Sketch the graph of f : R→ R, f (x) =
9

4 + x2 .

Find the area of the region defined by the inequalities 0 ≤ y ≤ f (x) and −2 ≤ x ≤ 2.

3 Sketch the graph of f (x) = x +
2
x

. Shade the region for which the area is determined by

the integral
∫ 2

1
f (x) dx and evaluate this integral.

4Example 3 For each of the following:

i sketch the appropriate graph and shade the required region
ii evaluate the integral.∫ 1

0
tan−1 x dxa

∫ 1
2

0
cos−1(2x) dxb

∫ 1
2

−
1
2

cos−1(2x) dxc∫ 1

0
2 sin−1 x dxd

∫ 2

0
sin−1

( x
2

)
dxe

∫ 2

−1
sin−1

( x
2

)
dxf

5Example 4 Sketch the graph of g : R \ {−3, 3} → R, g(x) =
4

9 − x2 and find the area of the region
with −2 ≤ x ≤ 2 and 0 ≤ y ≤ g(x).

6 For the curve with equation y = −1 +
2

x2 + 1
, find:

the coordinates of its turning pointa the equation of its asymptoteb
the area enclosed by the curve and the x-axis.c

7 Consider the graph of y = x −
4

x + 3
.

Find the coordinates of the intercepts with the axes.a
Find the equations of all asymptotes.b Sketch the graph.c
Find the area bounded by the curve, the x-axis and the line x = 8.d

8 a State the implied domain of the function g with rule g(x) =
1

(1 − x)(x − 2)
.

b Sketch the graph of y = g(x), indicating the equation of any asymptotes and the
coordinates of the turning points.

c State the range of g.
d Find the area of the region bounded by the graph of y = g(x), the x-axis and the lines

x = 4 and x = 3.

9 Sketch the graph of f : (−1, 1)→ R, f (x) =
−3

√
1 − x2

. Evaluate
∫ 1

2
0

−3
√

1 − x2
dx.

10 Find the area of the region enclosed by the curve y =
1

√
4 − x2

, the x-axis and the lines
x = 1 and x =

√
2.
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10A 10A The fundamental theorem of calculus 435

11 Sketch the curve with equation y = tan−1 x. Find the area enclosed between this curve,
the line x =

√
3 and the x-axis.

12 Find the area between the curve y =
2 loge x

x
and the x-axis from x = 1 to x = e.

Example 5 The graph of y = sin3(2x) for x ∈ [0,π]
is as shown. Find the area of the shaded
region.

13 The graph of y = sin x cos2 x for
x ∈ [0,π] is as shown. Find the area of
the shaded region.

14

y

x

1

O π π
2

−1

y

x

0.5

O π π
2

15 Sketch the curve with equation y =
2x

x + 3
, showing clearly how the curve approaches

its asymptotes. On your diagram, shade the finite region bounded by the curve and the
lines x = 0, x = 3 and y = 2. Find the area of this region.

16 a Show that the curve y =
3

(2x + 1)(1 − x)
has only one turning point.

b Find the coordinates of this point and determine its nature.
c Sketch the curve.
d Find the area of the region enclosed by the curve and the line y = 3.

17 Use integration by parts to find the area of the bounded region enclosed by:

a the graph of y = xex, the x-axis and the line x = 1

b the graph of y = arcsin x, the x-axis and the line x =

√
3

2
c the graph of y = x loge x and the x-axis

d the graph of y = x cos(4x) and the x-axis from x =
3π
8

to x =
5π
8

e the graph of y = x2 sin x and the x-axis from x = 0 to x = π.

18 Find an expression in terms of a for the area of the region enclosed by the curve
y = x

√
a2 − x2, the x-axis and the line x =

a
2

, where a > 0.

19 Let f (x) =
2x3 + 4
x2 + 1

. Find the area of the region bounded by the graph of y = f (x), the

two coordinate axes and the line x = 1.
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436 Chapter 10: Applications of integration

10B Area of a region between two curves
Let f and g be continuous functions on the
interval [a, b] such that

f (x) ≥ g(x) for all x ∈ [a, b]

Then the area of the region bounded by the
two curves and the lines x = a and x = b can
be found by evaluating∫ b

a
f (x) dx −

∫ b

a
g(x) dx =

∫ b

a
f (x) − g(x) dx

x

y

y = f(x)

y = g(x)

O a b

Find the area of the region bounded by the parabola y = x2 and the line y = 2x.

Example 6

Solution
We first find the coordinates of the point P:

x2 = 2x

x(x − 2) = 0

∴ x = 0 or x = 2

Therefore the coordinates of P are (2, 4).

Required area =
∫ 2

0
2x − x2 dx

=

[
x2 −

x3

3

]2

0

= 4 −
8
3

=
4
3

The area is
4
3

square units.

y

x
O

P

Calculate the area of the region enclosed by the curves with equations y = x2 + 1 and
y = 4 − x2 and the lines x = −1 and x = 1.

Example 7

Solution
Required area =

∫ 1

−1
4 − x2 − (x2 + 1) dx

=
∫ 1

−1
3 − 2x2 dx

=

[
3x −

2x3

3

]1

−1

= 3 −
2
3
−

(
−3 +

2
3

)
=

14
3

y

x
−1 1O
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10B Area of a region between two curves 437

In the two examples considered so far in this
section, the graph of one function is ‘above’
the graph of the other for all of the interval
considered.

What happens when the graphs cross?

y

xa Oc1 c2 bc3

f

g

To find the area of the shaded region, we must consider the intervals [a, c1], [c1, c2], [c2, c3]
and [c3, b] separately. Thus, the shaded area is given by∫ c1

a
f (x) − g(x) dx +

∫ c2

c1
g(x) − f (x) dx +

∫ c3

c2
f (x) − g(x) dx +

∫ b

c3
g(x) − f (x) dx

The absolute value function could also be used here:∣∣∣∣∫ c1

a
f (x) − g(x) dx

∣∣∣∣ +
∣∣∣∣∫ c2

c1
f (x) − g(x) dx

∣∣∣∣ +
∣∣∣∣∫ c3

c2
f (x) − g(x) dx

∣∣∣∣ +
∣∣∣∣∫ b

c3
f (x) − g(x) dx

∣∣∣∣
Find the area of the region enclosed by the graphs of f (x) = x3 and g(x) = x.

Example 8

Solution
The graphs intersect where f (x) = g(x):

x3 = x

x3 − x = 0

x(x2 − 1) = 0

∴ x = 0 or x = ±1

We see that:

� f (x) ≥ g(x) for −1 ≤ x ≤ 0
� f (x) ≤ g(x) for 0 ≤ x ≤ 1

x

y

−1 O

−1

1

1

Thus the area is given by∫ 0

−1
f (x) − g(x) dx +

∫ 1

0
g(x) − f (x) dx =

∫ 0

−1
x3 − x dx +

∫ 1

0
x − x3 dx

=

[ x4

4
−

x2

2

]0

−1
+

[ x2

2
−

x4

4

]1

0

= −

(
−

1
4

)
+

1
4

=
1
2

Note: The result could also be obtained by observing the symmetry of the graphs, finding the
area of the region where both x and y are non-negative, and then multiplying by 2.
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438 Chapter 10: Applications of integration

Using the TI-Nspire
Method 1
In a Calculator page:

� Enter the integral as shown.
(Use the 2D-template palette t for the
definite integral and the absolute value.)

Method 2
In a Graphs page:

� Enter the functions f 1(x) = x3 and f 2(x) = x
as shown.

� To find the area of the bounded region, use
menu > Analyze Graph > Bounded Area and

click on the lower and upper intersections of
the graphs.

Using the Casio ClassPad
Method 1
� InM, solve the equation x3 = x to find the limits

for the integral.
� Enter and highlight |x3 − x|.
� Go to Interactive > Calculation > ∫ .
� Select Definite. Enter −1 for the lower limit and

1 for the upper limit. Then tap OK .

Method 2
� Graph the functions y1 = x3 and y2 = x.
� Go to Analysis > G-Solve > Integral >

∫ dx intersection.
� Press execute at x = −1. Use the cursor key to go to

x = 1 and press execute again.

Note: Here the absolute value function is used to simplify the process of finding areas with a
CAS calculator. This technique is not helpful when doing these problems by hand.
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10B Area of a region between two curves 439

Find the area of the shaded
region.

x

y = cos x y = sin x

y

O π
2

3π
2

π 2π

Example 9

Solution
First find the x-coordinates of the two points of intersection:

sin x = cos x

tan x = 1∴

Therefore x =
π

4
or x =

5π
4

for x ∈ [0, 2π].

From the graph, we see that sin x ≥ cos x for all x ∈
[
π

4
,

5π
4

]
.

Hence

Area =
∫ 5π

4
π

4
sin x − cos x dx

=
[
− cos x − sin x

] 5π
4
π

4

= − cos
(5π

4

)
− sin

(5π
4

)
−

(
− cos

(
π

4

)
− sin

(
π

4

))
=

1
√

2
+

1
√

2
+

1
√

2
+

1
√

2

=
4
√

2

= 2
√

2

The area is 2
√

2 square units.
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440 Chapter 10: Applications of integration 10B

Find the area of the shaded region.
y

x
O

1
y = cos x

y = sin 2x

π
2

Example 10

Solution
First find the x-coordinates of the points of intersection:

cos x = sin(2x)

cos x = 2 sin x cos x

0 = cos x
(
2 sin x − 1

)
cos x = 0 or sin x =

1
2

∴

Therefore x =
π

2
or x =

π

6
for x ∈

[
0,
π

2

]
.

Area =
∫ π

6
0

cos x − sin(2x) dx +
∫ π

2
π

6
sin(2x) − cos x dx

=

[
sin x +

1
2

cos(2x)
]π

6

0
+

[
−

1
2

cos(2x) − sin x
]π

2

π

6

=

(1
2

+
1
4
−

1
2

)
+

(1
2
− 1 −

(
−

1
4
−

1
2

))
=

1
4
−

1
2

+
1
4

+
1
2

=
1
2

Exercise 10BSkill-
sheet

1Example 6 Find the points of intersection of the two curves with equations y = x2 − 2x and
y = −x2 + 8x − 12. Find the area of the region enclosed between the two curves.

2Example 7 Find the area of the region enclosed by the graphs of y = −x2 and y = x2 − 2x.

3 Find the area of:

a region A

b region B

y

x

y = x2

O 21
2

−

y = 1
x2

A B
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10B 10B Area of a region between two curves 441

4 Let f : R→ R, f (x) = x2 − 4. Sketch the graphs of y = f (x) and y =
16
f (x)

on the same

set of axes. Find the area of the region bounded by the two graphs and the lines x = 1
and x = −1.

5 The area of the region bounded by y =
12
x

, x = 1 and x = a is 24. Find the value of a.

6Example 8 Find the area of:

a region A

b region B

c region C

y

x

y = 4 − x2

x = 3

O 2

4

C

B

A

2

7Example 9

Example 10

For each of the following, find the area of the region enclosed by the lines and curves.
Draw a sketch graph and shade the appropriate region for each example.

a y = 2 sin x and y = sin(2x), for 0 ≤ x ≤ π

b y = sin(2x) and y = cos x, for −
π

2
≤ x ≤

π

2
c y =

√
x, y = 6 − x and y = 1

d y =
2

1 + x2 and y = 1

e y = sin−1 x, x =
1
2

and y = 0

f y = cos(2x) and y = 1 − sin x, for 0 ≤ x ≤ π

g y =
1
3

(x2 + 1) and y =
3

x2 + 1

8 Let f : R→ R, f (x) = xex.

a Find the derivative of f .
b Find { x : f ′(x) = 0 }.
c Sketch the curve y = f (x).
d Find the equation of the tangent to this curve at x = −1.
e Find the area of the region bounded by this tangent, the curve and the y-axis.

9 Let P be the point with coordinates (1, 1) on the curve with equation y = 1 + loge x.

a Find the equation of the normal to the curve at P.
b Find the area of the region enclosed by the normal, the curve and the x-axis.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



442 Chapter 10: Applications of integration 10B

10 a Find the coordinates of the points of intersection of the curves with equations

y = (x − 1)(x − 2) and y =
3(x − 1)

x
.

b Sketch the two curves on the one set of axes.
c Find the area of the region bounded by the two curves for 1 ≤ x ≤ 3.

11 Show that the area of the shaded region is 2. y

x

y = 4 sin x

y = 3 cos x

O

3

4

π
2

12 The graphs of y = 9 − x2 and y =
1

√
9 − x2

are

as shown.

a Find the coordinates of the points of
intersection of the two graphs.

b Find the area of the shaded region.
1
3 0,

y

x

y = 

−y = 9    x2
O

9
1

−3 3

9    x2 −

13 Find the area enclosed by the graphs of y = x2 and y = x + 2.

14 Consider the functions f (x) =
10

1 + x2 for x ≥ 0 and

g(x) = ex−3 for x ≥ 0.

The graphs of y = f (x) and y = g(x) intersect at the
point (3, 1). Find, correct to three decimal places,
the area of the region enclosed by the two graphs
and the line with equation x = 1.

y

x

y = g(x)

y = f(x)
(3, 1)

1O
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10B 10C Integration using a CAS calculator 443

15 The graph of the function f : [0, 6)→ R,

where f (x) =
8
√

5
√

36 − x2
− x, is shown.

a Find the values of a and b.
b Find the total area of the shaded regions.

y

x
a 6O b

16 The graphs of y = cos2 x and y = sin2 x
are shown for 0 ≤ x ≤ 2π. Find the total
area of the shaded regions.

y

x
O 2π

10C Integration using a CAS calculator
In Chapter 9, we discussed methods of integration by rule. In this section, we consider the
use of a CAS calculator in evaluating definite integrals. It is often not possible to determine
the antiderivative of a given function by rule, and so we will also look at numerical evaluation
of definite integrals.

Using a calculator to find exact values of definite integrals

Use a CAS calculator to evaluate
∫ 1

2
0

√
1 − x2 dx.

Example 11

Using the TI-Nspire
To find a definite integral, use menu > Calculus
> Integral.

Note: The integral template can also be
obtained directly from the 2D-template
palette t or by pressing shift + .
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444 Chapter 10: Applications of integration

Using the Casio ClassPad

� Enter and highlight the expression
√

1 − x2.
� Go to Interactive > Calculation > ∫ .
� Select Definite. Enter 0 for the lower limit and

1
2 for the upper limit. Then tap OK .

Note: The integral templatePcan also be found in
the Math2 keyboard.

Using the inverse function to find a definite integral

Find the area of the region bounded by the graph of y = loge x, the line x = 2 and the
x-axis by using the inverse function.

Example 12

Solution
From the graph, we see that∫ 2

1
loge x dx = 2 loge 2 −

∫ loge 2

0
ey dy

= 2 loge 2 −
(
eloge 2 − e0)

= 2 loge 2 − (2 − 1)

= 2 loge 2 − 1

The area is 2 loge 2 − 1 square units.

y

x
O (1, 0)

(2, loge 2) y = loge x

x = ey

2

Note: Alternatively, you could use integration by parts to evaluate the integral.

This area can also be found by using a CAS calculator to evaluate
∫ 2

1
loge x dx.

Using the TI-Nspire
To find a definite integral, use menu > Calculus
> Integral or select the integral template from
the 2D-template palette t.

Using the Casio ClassPad
� Enter and highlight the expression ln(x).
� Go to Interactive > Calculation > ∫ .
� Select Definite, enter the lower and upper limits

and tap OK .
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10C Integration using a CAS calculator 445

Using a calculator to find approximate values of definite integrals

The graph of y = esin x − 2 is as shown. Using a
CAS calculator, find the area of the shaded regions.

y

x
O

a
π
2

3π
2

−1

Example 13

Solution
Using a CAS calculator, first find the value of a, which is approximately 2.37575.

Required area =
∫ a
π

2
(esin x − 2) dx −

∫ 3π
2

a
(esin x − 2) dx

= 0.369 213 . . . + 2.674 936 . . .

= 3.044 149 . . .

The area is approximately 3.044 square units.

Using the fundamental theorem of calculus
We have used the fundamental theorem of calculus to find areas using antiderivatives. We can
also use the theorem to define antiderivatives using area functions.

If F is an antiderivative of a continuous function f , then F(b) − F(a) =
∫ b

a
f (x) dx. Using a

dummy variable t, we can write F(x) − F(a) =
∫ x

a
f (t) dt, giving F(x) = F(a) +

∫ x

a
f (t) dt.

If we define a function by G(x) =
∫ x

a
f (t) dt, then F and G differ by a constant, and so G is

also an antiderivative of f .

Plot the graph of F(x) =
∫ x

1

1
t

dt for x > 1.

Example 14

Using the TI-Nspire
In a Graphs page, enter the function

f 1(x) =
∫ x

1

1
t

dt

Note: The integral template can be obtained
from the 2D-template palette t.
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446 Chapter 10: Applications of integration

Using the Casio ClassPad
� Enter and define the function as shown.
� Graph the function with the restricted domain.

Note: The natural logarithm function can be defined by ln(x) =
∫ x

1

1
t

dt.
The number e can then be defined to be the unique real number a such that ln(a) = 1.

Use a CAS calculator to find an approximate value of
∫ π

3
0

cos(x2) dx and to plot the graph

of f (x) =
∫ x

0
cos(t2) dt for −

π

4
≤ x ≤ π.

Example 15

Using the TI-Nspire
Method 1
� Define the function f as shown and evaluate

at x =
π

3
.

Method 2
� Plot the graph of f 1(x) = cos(x2) for −

π

4
≤ x ≤ π.

� To find the required area, use the integral measurement tool from menu > Analyze
Graph > Integral. Type in the lower limit 0 and press enter . Move to the right, type in
the upper limit π/3 and press enter .
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10C 10C Integration using a CAS calculator 447

Using the Casio ClassPad
� Enter and highlight the expression cos(x2).
� Go to Interactive > Calculation > ∫ .
� Select Definite and enter the lower and upper limits

as shown.

� Define the function f (x) =
∫ x

0
cos(t2) dt.

� Graph the function with the restricted domain.

� The approximate value of f
(
π

3

)
can now be found

graphically using Analysis > G-Solve > y-Cal.

Exercise 10C

1Example 11 For each of the following, evaluate the integral using a CAS calculator to obtain an
exact value:∫ 3

0

√
9 − x2 dxa

∫ 3

0

√
9x2 − x3 dxb

∫ 3

0
loge(x2 + 1) dxc

2Example 12 For each of the following, determine the exact value both by using the inverse function
and by using your CAS calculator:∫ 1

2
0

arcsin(2x) dxa
∫ 4

3
loge(x − 2) dxb

∫ 1
2

0
arctan(2x) dxc

3Example 13 Using a CAS calculator, evaluate each of the following correct to two decimal places:∫ 2

0
esin x dxa

∫ π

0
x sin x dxb

∫ 3

1
(loge x)2 dxc

∫ 1

−1
cos(ex) dxd∫ 2

−1

ex

ex + e−x dxe
∫ 2

0

x
x4 + 1

dxf
∫ 2

1
x loge x dxg

∫ 1

−1
x2ex dxh∫ 1

0

√
1 + x4 dxi

∫ π

2
0

sin(x2) dxj
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448 Chapter 10: Applications of integration 10C

4 In each of the following, the rule of the function is defined as an area function. Find
f (x) in each case.

f (x) =
∫ x

1

1
t

dt, for x > 1

y

t
O 1 t = x

y = 1
t

a f (x) =
∫ 1

x

1
t

dt, for 0 < x < 1

y

t
O x 1

y = 1
t

b

f (x) =
∫ x

0
et dt, for x ∈ R

y

t
O x

y = et

c f (x) =
∫ x

0
sin t dt, for x ∈ R

y

t
O x

y = sin t

d

f (x) =
∫ x

−1

1
1 + t2 dt, for x ∈ R

y

t

y = 1

−1 O x

1 + t2

e f (x) =
∫ x

0

1
√

1 − t2
dt, for −1 < x < 1

y

t

y = 1

1−1 O

1

x

1 − t2

f

5Example 14 Use a CAS calculator to plot the graph of each of the following:

f (x) =
∫ x

0
tan−1 t dta f (x) =

∫ x

0
et2

dtb

f (x) =
∫ x

0
sin−1 t dtc f (x) =

∫ x

0
sin(t2) dtd

f (x) =
∫ x

1

sin t
t

dt, x > 1e
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10D Volumes of solids of revolution 449

10D Volumes of solids of revolution
A large glass flask has a shape as illustrated in the figure below. In order to find its
approximate volume, consider the flask as a series of cylinders.

30 cm

50 cm

10 cm

10 cm

10 cm

10 cm

10 cm

10 cm

15 cm

Radius of cylinder

5 cm

9 cm

11 cm

13 cm

15 cm

Volume of flask ≈ π
(
152 + 132 + 112 + 92 + 52) × 10∴

≈ 19 509.29 cm3

≈ 19 litres

This estimate can be improved by taking more cylinders to obtain a better approximation.

In Mathematical Methods Units 3 & 4,
it was shown that areas defined by well-
behaved functions can be determined as
the limit of a sum.

This can also be done for volumes. The
volume of a typical thin slice is Aδx, and
the approximate total volume is

x=b∑
x=a

Aδx

y

x
O ba

slice with thickness δx and
cross-sectional area A

Volume of a sphere
Consider the graph of f (x) =

√
4 − x2.

If the shaded region is rotated around the x-axis, it
will form a sphere of radius 2.

y

x
−2 O 2
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450 Chapter 10: Applications of integration

Divide the interval [−2, 2] into n subintervals
[xi−1, xi] with x0 = −2 and xn = 2.

The volume of a typical slice (a cylinder) is
approximately π

(
f (ci)

)2(xi − xi−1), where
ci ∈ [xi−1, xi].

The total volume will be approximated by
the sum of the volumes of these slices. As the
number of slices n gets larger and larger:

V = lim
n→∞

n∑
i=1

π
(
f (ci)

)2(xi − xi−1)

It has been seen that the limit of such a sum is
an integral and therefore:

V =
∫ 2

−2
π
(
f (x)

)2 dx

=
∫ 2

−2
π(4 − x2) dx

= π

[
4x −

x3

3

]2

−2

= π

(
8 −

8
3
−

(
−8 +

8
3

))
= π

(
16 −

16
3

)
=

32π
3

y

x−2 O 2

Volume of a cone
If the region between the line y = 1

2 x, the line x = 4
and the x-axis is rotated around the x-axis, then a solid
in the shape of a cone is produced.

The volume of the cone is given by:

V =
∫ 4

0
πy2 dx

=
∫ 4

0
π

(1
2

x
)2

dx

=
π

4

[ x3

3

]4

0

=
π

4
×

64
3

=
16π

3

y

x
O

(4, 2)

x = 4

y = x1
2
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10D Volumes of solids of revolution 451

Solids of revolution
In general, the solid formed by rotating a region
about a line is called a solid of revolution.

For example, if the region between the graph of
y = x2, the line y = 20 and the y-axis is rotated
about the y-axis, then a solid in the shape of the
top of a wine glass is produced.

y

x
O

y = x2

y = 20

Volume of a solid of revolution

� Rotation about the x-axis
If the region to be rotated is bounded by the curve with equation y = f (x), the lines
x = a and x = b and the x-axis, then

V =
∫ x=b

x=a
πy2 dx

= π
∫ b

a

(
f (x)

)2 dx

� Rotation about the y-axis
If the region to be rotated is bounded by the curve with equation x = f (y), the lines
y = a and y = b and the y-axis, then

V =
∫ y=b

y=a
πx2 dy

= π
∫ b

a

(
f (y)

)2 dy

Find the volume of the solid of revolution formed by rotating the curve y = x3 about:

the x-axis for 0 ≤ x ≤ 1a the y-axis for 0 ≤ y ≤ 1b

Example 16

Solution

V = π
∫ 1

0
y2 dx

= π
∫ 1

0
x6 dx

= π

[ x7

7

]1

0

=
π

7

a V = π
∫ 1

0
x2 dy

= π
∫ 1

0
y

2
3 dy

= π

[3
5

y
5
3
]1

0

=
3π
5

b
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452 Chapter 10: Applications of integration

Regions not bounded by the x-axis
If the shaded region is rotated about the x-axis, then the
volume V is given by

V = π
∫ b

a

(
f (x)

)2
−

(
g(x)

)2 dx

y

x
O a b

g

f

Find the volume of the solid of revolution when the region bounded by the graphs of
y = 2e2x, y = 1, x = 0 and x = 1 is rotated around the x-axis.

Example 17

Solution
The volume is given by

V = π
∫ 1

0
4e4x − 1 dx

= π
[
e4x − x

]1

0

= π
(
e4 − 1 − (1)

)
= π(e4 − 2)

Note: Here f (x) = 2e2x and g(x) = 1.

y

x

(0, 2)

O 1

y = 1

The shaded region is rotated around the x-axis.
Find the volume of the resulting solid.

y

x

f(x) = 2x

g(x) = x2

O

Example 18

Solution
The graphs meet where 2x = x2, i.e. at the points with coordinates (0, 0) and (2, 4).

Volume = π
∫ 2

0

(
f (x)

)2
−

(
g(x)

)2 dx

= π
∫ 2

0
4x2 − x4 dx

= π

[4x3

3
−

x5

5

]2

0

= π

(32
3
−

32
5

)
=

64π
15
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10D Volumes of solids of revolution 453

A solid is formed when the region bounded by the x-axis and the graph of y = 3 sin(2x),
0 ≤ x ≤

π

2
, is rotated around the x-axis. Find the volume of this solid.

Example 19

Solution

V = π
∫ π

2
0

(
3 sin(2x)

)2 dx

= π
∫ π

2
0

9 sin2(2x) dx

= 9π
∫ π

2
0

sin2(2x) dx

= 9π
∫ π

2
0

1
2
(
1 − cos(4x)

)
dx

=
9π
2

∫ π

2
0

1 − cos(4x) dx

=
9π
2

[
x −

1
4

sin(4x)
]π

2

0

=
9π
2

(
π

2

)
=

9π2

4

y

x

3

O π
2

The curve y = 2 sin−1 x, 0 ≤ x ≤ 1, is rotated around the y-axis to form a solid of
revolution. Find the volume of this solid.

Example 20

Solution

V = π
∫ π

0
sin2

( y
2

)
dy

=
π

2

∫ π

0
1 − cos y dy

=
π

2

[
y − sin y

]π
0

=
π2

2

y

x
O

(1, π)
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454 Chapter 10: Applications of integration 10D

Exercise 10DSkill-
sheet

1Example 16 Find the area of the region bounded by the x-axis and the curve whose equation is
y = 4 − x2. Also find the volume of the solid formed when this region is rotated about
the y-axis.

2 Find the volume of the solid of revolution when the region bounded by the given curve,
the x-axis and the given lines is rotated about the x-axis:

f (x) =
√

x, x = 4a f (x) = 2x + 1, x = 0, x = 4b

f (x) = 2x − 1, x = 4c f (x) = sin x, 0 ≤ x ≤
π

2
d

f (x) = ex, x = 0, x = 2e f (x) =
√

9 − x2, −3 ≤ x ≤ 3f

3 The hyperbola x2 − y2 = 1 is rotated around the x-axis to form a surface of revolution.
Find the volume of the solid enclosed by this surface between x = 1 and x =

√
3.

4 Find the volumes of the solids generated by rotating about the x-axis each of the regions
bounded by the following curves and lines:

y =
1
x

, y = 0, x = 1, x = 4a y = x2 + 1, y = 0, x = 0, x = 1b

y =
√

x, y = 0, x = 2c y =
√

a2 − x2, y = 0d

y =
√

9 − x2, y = 0e y =
√

9 − x2, y = 0, x = 0, given x ≥ 0f

5Example 17

Example 18

The region bounded by the line y = 5 and the curve y = x2 + 1 is rotated about
the x-axis. Find the volume generated.

6Example 19 The region, for which x ≥ 0, bounded by the curves y = cos x and y = sin x and the
y-axis is rotated around the x-axis, forming a solid of revolution. By using the identity
cos(2x) = cos2 x − sin2 x, obtain a volume for this solid.

7 The region enclosed by y =
4
x2 , x = 4, x = 1 and the x-axis is rotated about the x-axis.

Find the volume generated.

8 The region enclosed by y = x2 and y2 = x is rotated about the x-axis. Find the volume
generated.

9 A region is bounded by the curve y =
√

6 − x, the straight line y = x and the positive
x-axis. Find the volume of the solid of revolution formed by rotating this figure about
the x-axis.

10 The region bounded by the x-axis, the line x =
π

2
and the curve y = tan

( x
2

)
is rotated

about the x-axis. Prove that the volume of the solid of revolution is
π

2
(4 − π).

Hint: Use the result that tan2
( x
2

)
= sec2

( x
2

)
− 1.
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10D 10D Volumes of solids of revolution 455

11 Sketch the graphs of y = sin x and y = sin(2x) for 0 ≤ x ≤
π

2
. Show that the area of the

region bounded by these graphs is
1
4

square unit, and the volume formed by rotating this

region about the x-axis is
3
16
π
√

3 cubic units.

12 Let V be the volume of the solid formed when the region enclosed by y =
1
x

, y = 0,
x = 4 and x = b, where 0 < b < 4, is rotated about the x-axis. Find the value of b for
which V = 3π.

13 Find the volume of the solid generated when the region enclosed by y =
√

3x + 1,
y =
√

3x, y = 0 and x = 1 is rotated about the x-axis.

14Example 20 Find the volumes of the solids formed when the following regions are rotated around
the y-axis:

a x2 = 4y2 + 4 for 0 ≤ y ≤ 1
b y = loge(2 − x) for 0 ≤ y ≤ 2

15 a Find the area of the region bounded by the curve y = ex, the tangent at the point (1, e)
and the y-axis.

b Find the volume of the solid formed by rotating this region through a complete
revolution about the x-axis.

16 The region defined by the inequalities y ≥ x2 − 2x + 4 and y ≤ 4 is rotated about the
line y = 4. Find the volume generated.

17 The region enclosed by y = cos
( x
2

)
and the x-axis, for 0 ≤ x ≤ π, is rotated about

the x-axis. Find the volume generated.

18 Find the volume generated by revolving the region enclosed between the parabola
y = 3x − x2 and the line y = 2 about the x-axis.

19 The shaded region is rotated around the
x-axis to form a solid of revolution. Find
the volume of this solid.

y

x

x2 + y2 = 4

y2 = 3x

−2

−2

2

2O
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456 Chapter 10: Applications of integration 10D

20 The region enclosed between the curve y = ex − 1, the x-axis and the line x = loge 2 is
rotated around the x-axis to form a solid of revolution. Find the volume of this solid.

21 Show that the volume of the solid of revolution formed by rotating about the x-axis the

region bounded by the curve y = e−2x and the lines x = 0, y = 0 and x = loge 2 is
15π
64

.

22 Find the volume of the solid generated by revolving about the x-axis the region bounded
by the graph of y = 2 tan x and the lines x = −

π

4
, x =

π

4
and y = 0.

23 The region bounded by the parabola y2 = 4(1 − x) and the y-axis is rotated about:

a the x-axis
b the y-axis.

Prove that the volumes of the solids formed are in the ratio 15 : 16.

24 The region bounded by the graph of y =
1

√
x2 + 9

, the x-axis, the y-axis and the line

x = 4 is rotated about:

a the x-axis
b the y-axis.

Find the volume of the solid formed in each case.

25 A bucket is defined by rotating the curve with equation

y = 40 loge

( x − 20
10

)
, 0 ≤ y ≤ 40

about the y-axis. If x and y are measured in centimetres, find the maximum volume of
liquid that the bucket could hold. Give the answer to the nearest cm3.

26 An ellipse has equation
x2

a2 +
y2

b2 = 1. Find the volume of the solid generated when the

region bounded by the ellipse is rotated about:

a the x-axis
b the y-axis.

27 The diagram shows part of the curve y =
12
x

.

Points P(2, 6) and Q(6, 2) lie on the curve.
Find:

a the equation of the line PQ

b the volume obtained when the shaded region is
rotated about:

i the x-axis
ii the y-axis. x

y

O

P(2, 6)

Q(6, 2)
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10D 10D Volumes of solids of revolution 457

28 a Sketch the graph of y = 2x +
9
x

.

b Find the volume generated when the region bounded by the curve y = 2x +
9
x

and the
lines x = 1 and x = 3 is rotated about the x-axis.

29 The region shown is rotated about the x-axis to
form a solid of revolution. Find the volume of
the solid, correct to three decimal places.

x

y

O 1 2 3

y = loge x

30 The graphs of y = 2 sec x and y = 4 are shown

for 0 ≤ x ≤
π

3
.

The shaded region is rotated about the x-axis to
form a solid of revolution. Calculate the exact
volume of this solid.

O

y

x

4

2

, 
 

4
π
3

π
3

31 The graph of y =

√
4x2 − 1

2
, where 0 ≤ y ≤

√
3

2
, is rotated about the y-axis. Find the

volume of the solid of revolution.

32 The region bounded by the curve y =
2x

x + 2
, the x-axis and the line x = 2 is rotated

about the x-axis to form a solid of revolution. Find the volume of this solid.
Hint: Use the substitution u = x + 2.

33 The region bounded by the graph of y = sin−1(2x2 − 1) and the line y =
π

2
is rotated

about the y-axis to form a solid of revolution. Find the volume of this solid.

34 The region bounded by the curve y =
√

2 − cos2 x, the coordinate axes and the line
x = π is rotated about the x-axis to form a solid of revolution. Find the volume of
this solid.

35 The region bounded by the graph of y =

√
6 − 4x
4 + x2 and the coordinate axes is rotated

about the x-axis to form a solid of revolution. Find the volume of this solid.
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458 Chapter 10: Applications of integration

10E Lengths of curves in the plane
We have seen how the area under a curve may be found as the limit of a sum of areas of
rectangles, and how the volume of a solid of revolution may be found as the limit of a sum of
volumes of cylinders. We can do something very similar to find the length of a curve. We can
define the length as the limit of a sum of lengths of line segments. This is discussed here.

Note: In this course, you are expected to find lengths of parametric curves only. However,
we start by considering a curve of the form y = f (x) to illustrate the ideas.

The graph of f (x) = x2 + 1, 0 ≤ x ≤ 5,
is shown.

O

A
B

C

D

E

F

1 2 3 4 5
x

2
5

10

17

26

y

The points A(0, f (0)), B(1, f (1)), . . . , F(5, f (5)) on the curve are shown, as well as the line
segments AB, BC, CD, DE and EF. The length of the curve is approximated by the sum of
the lengths of these line segments.

We can use this idea to find the length of the curve by integral calculus. The following is not
a rigorous proof, but will help you to understand how integral calculus can be applied.

A portion of a curve is shown below. Let δs be the length of the curve from P to Q,
let PR = δx and let QR = δy.

By Pythagoras’ theorem applied to the
right-angled triangle PQR, we have

(δs)2 ≈ (δx)2 + (δy)2(
δs
δx

)2
≈ 1 +

(
δy
δx

)2
∴

δs ≈

√
1 +

(
δy
δx

)2
δx∴

R
δx

δy

P(x, y)

Q(x + δx, y + δy)

We can think of the length of the curve as the limit as δx→ 0 of the sum of these lengths.
Formally, we can state the result as follows.

Length of a curve

The length of the curve y = f (x) from x = a to x = b is given by

L =
∫ b

a

√
1 +

(dy
dx

)2
dx =

∫ b

a

√
1 + ( f ′(x))2 dx

Note: We are assuming that f is differentiable on [a, b] and that f ′ is continuous.
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10E Lengths of curves in the plane 459

The length of a parametric curve
Now consider a curve defined by parametric equations x = f (t) and y = g(t). We can give
another very informal argument to motivate the formula for the length of the curve using the
derivatives of x and y with respect to t:

(δs)2 ≈ (δx)2 + (δy)2(
δs
δt

)2
≈

(
δx
δt

)2
+

(
δy
δt

)2
∴

δs ≈

√(
δx
δt

)2
+

(
δy
δt

)2
δt∴

This leads to the following result, if you consider δt → 0.

Length of a parametric curve

Consider a curve defined by the parametric equations x = f (t) and y = g(t) for a ≤ t ≤ b.
If the point P

(
f (t), g(t)

)
traces the curve exactly once from t = a to t = b, then the length

of the curve is given by

L =
∫ b

a

√(dx
dt

)2
+

(dy
dt

)2
dt

Note: We are assuming that f and g are differentiable on [a, b], with f ′ and g′ continuous.

Find the length of the curve defined by the parametric equations

x = t and y = t
3
2 for 1 ≤ t ≤ 4

Example 21

Solution Alternative

We obtain
dx
dt

= 1 and
dy
dt

=
3
2

t
1
2 .

Therefore the length is∫ b

a

√(dx
dt

)2
+

(dy
dt

)2
dt =

∫ 4

1

√
1 +

9t
4

dt

=
1
2

∫ 4

1

√
4 + 9t dt

=
1
2

[2(4 + 9t)
3
2

27

]4

1

=

(40
3
2

27

)
−

(13
3
2

27

)
=

1
27

(
80
√

10 − 13
√

13
)

The Cartesian equation of

this curve is y = x
3
2 .

Alternatively, you could use
the formula for the length of
a curve y = f (x).

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



460 Chapter 10: Applications of integration 10E

Find the length of the curve defined by the parametric equations

x = cos t and y = sin t for 0 ≤ t ≤ 2π

Example 22

Solution

We obtain
dx
dt

= − sin t and
dy
dt

= cos t.

Thus the length is∫ b

a

√(dx
dt

)2
+

(dy
dt

)2
dt =

∫ 2π

0

√
sin2 t + cos2 t dt

=
∫ 2π

0

√
1 dt

=
[
t
]2π
0

= 2π

Many apparently easy curve-length questions will produce integrals that you cannot evaluate.
Sometimes it will be possible to evaluate these integrals exactly using a CAS calculator, but
sometimes it will only be possible to obtain an approximate answer.

Exercise 10ESkill-
sheet

1Example 21 Find the length of each of the following curves:

a x = t and y = 2t
3
2 , for 0 ≤ t ≤ 1

b x = t and y = 2t + 1, for 0 ≤ t ≤ 3

c x = t and y =
1
3

(t2 + 2)
3
2 , for 0 ≤ t ≤ 6

2 Find the length of each of the following curves:

a x = t − 1 and y = t
3
2 , for 0 ≤ t ≤ 1

b x = t3 + 3t2 and y = t3 − 3t2, for 0 ≤ t ≤ 3

c x = et and y =
2
3

e
3t
2 , for loge 2 ≤ t ≤ loge 3

d x =
1
2

t2 and y =
1
3

t3, for 0 ≤ t ≤
√

3

3Example 22 Consider the curve defined by the parametric equations

x = 3 sin(2t) and y = 3 cos(2t) for 0 ≤ t ≤
π

6
Find the length of this curve.
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10E 10E Lengths of curves in the plane 461

4 A curve is specified parametrically by
the equations

x = t − sin t, y = 1 − cos t

Find the length of the curve from t = 0
to t = 2π.

O π 2π x

1

2

y

5 A curve is specified parametrically by
the equations

x = cos3 t, y = sin3 t

The graph of the curve is shown. Find
the length of the curve. O 1−1

x

−1

1

y

6 Find the length of the curve defined by x = et sin(2t) and y = et cos(2t) for 0 ≤ t ≤ π.

7 The curve shown on the right is defined
by the parametric equations

x = 8 cos(t) + cos(8t)

y = 8 sin(t) − sin(8t)

Find the length of this curve.

O 5−5
x

−5

5

y

8 A parametric curve is defined by

x =
t3

3
and y = sin−1(t) + t

√
1 − t2 for 0 ≤ t ≤

1
2

Find the length of the curve.

9 A parametric curve is defined by

x = 4 cos(t) + cos(2t) and y = sin(2t) + 4 sin(t) + 2t for 0 ≤ t ≤
π

4
Find the length of the curve.
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462 Chapter 10: Applications of integration

10F Areas of surfaces of revolution
In this section, we use integration to find the areas of surfaces of revolution. The approach is
a little different from that used to find volumes in Section 10D. Here we use truncated cones
instead of cylinders for our approximations.

Surface area of a frustum
A truncated cone is called a frustum. The area of the
curved surface of a frustum is given by

A = π(r1 + r2)s

where r1 and r2 are the radii of the two circular faces and
s is the length of the slope.

s

r1

r2

Approximating surface area using frustums
Assume that the curve y = f (x) from x = a
to x = b is above the x-axis. We can rotate
this curve about the x-axis to form a curved
surface, called a surface of revolution.

To find the area, A, of this curved surface,
we approximate the surface using frustums,
as shown.

Say that we use n frustums, determined by
the x-values a = x0, x1, x2, . . . , xn = b.

Now consider the frustum between points
P(xi−1, f (xi−1)) and Q(xi, f (xi)). The radii
of the two circles are r1 = f (xi−1) and
r2 = f (xi). The length of the slope is

s =

√
(xi − xi−1)2 +

(
f (xi) − f (xi−1)

)2

x

y

a bO

P(xi−1, f (xi−1))
Q(xi, f (xi))

Therefore the area of the curved surface of this frustum is

Ai = π
(
f (xi−1) + f (xi)

)√
(xi − xi−1)2 +

(
f (xi) − f (xi−1)

)2

The total area is approximated by adding the surface areas of all n frustums:

A ≈
n∑

i=1

π
(
f (xi−1) + f (xi)

)√
(xi − xi−1)2 +

(
f (xi) − f (xi−1)

)2

=

n∑
i=1

π
(
f (xi−1) + f (xi)

)√
1 +

( f (xi) − f (xi−1)
xi − xi−1

)2
(xi − xi−1)

As n→ ∞, this sum converges to the integral

A =
∫ b

a
2πy

√
1 +

(dy
dx

)2
dx

A more rigorous version of this argument can be used to prove the following result.
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10F Areas of surfaces of revolution 463

Area of a surface of revolution

� Rotation about the x-axis If the curve y = f (x) from x = a to x = b is rotated about
the x-axis, then the area of the surface of revolution is given by

A = 2π
∫ b

a
y

√
1 +

(dy
dx

)2
dx

� Rotation about the y-axis If the curve x = f (y) from y = a to y = b is rotated about
the y-axis, then the area of the surface of revolution is given by

A = 2π
∫ b

a
x

√
1 +

(dx
dy

)2
dy

Note: We are assuming that f is non-negative and differentiable on [a, b], with f ′ continuous.

Find the area of the surface generated by revolving the part of the curve y = x3 from (0, 0)
to (2, 8) about the x-axis.

Example 23

Solution
We have y = x3 and

dy
dx

= 3x2.

The surface area is

A = 2π
∫ 2

0
x3

√
1 + (3x2)2 dx

= 2π
∫ 2

0
x3
√

1 + 9x4 dx

Let u = 1 + 9x4. Then
du
dx

= 36x3. Therefore

A =
π

18

∫ 145

1

√
u du

=
π

18

[2
3

u
3
2

]145

1

=
π

27
(
145
√

145 − 1
)

Surface area using inverse functions
We can reframe this result in the special case that the function f : [a, b]→ R is one-to-one
with inverse function g : [c, d]→ R, where g is differentiable on [c, d].

� Rotation about the x-axis If the curve x = g(y) from y = c to y = d is rotated about
the x-axis, then the area of the surface of revolution is given by

A = 2π
∫ d

c
y

√
1 +

(dx
dy

)2
dy

� Rotation about the y-axis If the curve y = g(x) from x = c to x = d is rotated about
the y-axis, then the area of the surface of revolution is given by

A = 2π
∫ d

c
x

√
1 +

(dy
dx

)2
dx
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464 Chapter 10: Applications of integration

Surface area using parameters

Area of a surface of revolution formed by a parametric curve

Consider a curve defined by the parametric equations x = f (t) and y = g(t) for a ≤ t ≤ b.
If the point P

(
f (t), g(t)

)
traces the curve exactly once from t = a to t = b, then the area of

the surface of revolution formed by rotating the curve about the x-axis is given by

A = 2π
∫ b

a
|g(t)|

√(dx
dt

)2
+

(dy
dt

)2
dt

Notes:
� We are assuming that f and g are differentiable on [a, b], with f ′ and g′ continuous.
� For rotation about the x-axis, we are assuming that the curve is the graph of a function.
� The area of a surface formed by rotating a parametric curve about the y-axis can be found

in a similar way by replacing g(t) with f (t) in this formula.

A semicircle with radius r is defined by the parametric equations

x = r cos t and y = r sin t for 0 ≤ t ≤ π

Find the area of the surface generated by revolving this semicircle about the x-axis.

Example 24

Solution

We have
dx
dt

= −r sin t and
dy
dt

= r cos t.

The surface area is

A = 2π
∫ π

0
r sin t ·

√
r2 sin2 t + r2 cos2 t dt

= 2πr2
∫ π

0
sin t dt

= 2πr2
[
− cos t

]π
0

= 4πr2

Note: This is the surface area of a sphere with radius r.

Total surface area of a solid of revolution
Suppose that the region under the curve y = f (x)
from x = a to x = b is rotated about the x-axis to
form a solid of revolution. To find the total surface
area of this solid, we first find the area, A, of the
curved surface of revolution and then add the areas
of the circular discs at each end:

total surface area = A + π( f (a))2 + π( f (b))2

x

y

O

(a, f (a))

(b, f (b))
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10F 10F Areas of surfaces of revolution 465

Exercise 10F

1Example 23 For each of the following, find the area of the surface generated when the given curve is
rotated about the x-axis:

y =
3
4

x for 0 ≤ x ≤ 8a y =
1
3

x + 4 for 0 ≤ x ≤ 3b

y =
1
4

x3 for 0 ≤ x ≤ 1c y =
√

4 − x2 for 0 ≤ x ≤ 1d

y =
√

4 − x2 for −1 ≤ x ≤ 1e y =
x3

6
+

1
2x

for
1
2
≤ x ≤ 1f

2 For each of the following, find the area of the surface generated when the given curve is
rotated about the y-axis:

y =
3
4

x for 0 ≤ y ≤ 10a y = −
3
4

x + 3 for 0 ≤ y ≤ 4b

y = x2 for 4 ≤ y ≤ 9c x =
√

2y − y2 for 0 ≤ y ≤ 1d

y =
3√3x for 0 ≤ y ≤ 2e y = x2 for 1 ≤ x ≤ 3f

3 Find the area of the curved surface formed by rotating the part of the graph of y = x2

from (1, 1) to (2, 4) about the y-axis by using:

y = x2 and
dy
dx

= 2xa x =
√

y and
dx
dy

=
1

2
√

y
b

4 Find the area of the surface formed by rotating the parabola y = 1 − x2, for x ∈ [0, 1],
about the y-axis.

5Example 24 A curve is defined parametrically by

x = 4 cos(2t) and y = 4 sin(2t) for 0 ≤ t ≤
π

2
Find the area of the surface obtained by revolving this curve about the x-axis.

6 For each of the following, find the area of the surface obtained by revolving the given
parametric curve about the given axis:

a x = 6 + 2t2 and y = 4t, for 0 ≤ t ≤ 4, about the x-axis

b x = 1 − t2 and y = 2t, for 0 ≤ t ≤ 1, about the x-axis

c x = 3t − t3 and y = 3t2, for 0 ≤ t ≤ 1, about the x-axis

d x = t and y = t2 − 2, for 0 ≤ t ≤ 3, about the y-axis

e x = t +
√

3 and y = 1
2 t2 +

√
3t, for −

√
3 ≤ t ≤

√
3, about the y-axis

f x = 3 + 2 cos t and y = 4 + 2 sin t, for 0 ≤ t ≤
π

2
, about the y-axis

g x = 4t and y = t2 − 2 loge t, for 1 ≤ t ≤ 3, about the x-axis

7 A curve is defined parametrically by x = cos t and y = 4 + sin t, for 0 ≤ t ≤ π. Find the
area of the surface obtained by revolving this curve about the x-axis.
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466 Chapter 10: Applications of integration 10F

8 A curve is defined parametrically by x = cos3 t and y = sin3 t, for 0 ≤ t ≤
π

2
. Find the

area of the surface obtained by revolving this curve about the x-axis.

9 Let a > 0. A parametric curve is defined by x = a cos2 t and y = a sin2 t, for 0 ≤ t ≤
π

2
.

Find the area of the surface obtained by revolving this curve about the x-axis.

10 Let r and h be positive constants. Find the area of the surface that is formed by rotating
the graph of y =

r
h

x over the interval 0 ≤ x ≤ h about the x-axis.

11 A sphere of radius r is cut by two parallel planes at a distance h apart. Prove that the
surface area of the part of the sphere cut off by the two planes is 2πrh.

12 Use your CAS calculator to find the surface area of the solid of revolution formed by
rotating the half ellipse defined by the parametric equations x = 3 cos t and y = 2 sin t,
for 0 ≤ t ≤ π, about the x-axis.

13 Let R > r > 0. The circle with centre (R, 0) and radius r is rotated about the y-axis.
What is the surface area of the resulting solid?

Hint: The resulting solid is called a torus and looks like a doughnut.

Work towards obtaining the integral 2πr
∫ R+r

R−r

x√
r2 − (x − R)2

dx.

14 Let M > 1.

a Sketch the curve y =
1
x

over the interval [1, M].

b Sketch the surface obtained when this curve is rotated about the x-axis.

c Show that the volume of the solid of revolution is π
(
1 −

1
M

)
.

d Show that the curved surface area of the solid of revolution is greater than 2π loge M.
e Determine the volume and surface area as M → ∞.

Note: The solid of revolution obtained in the limit is called Gabriel’s horn.
Remarkably, it has a finite volume and an infinite surface area.
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Assign-
ment

Nrich

Chapter summary

Fundamental theorem of calculus
� If f is a continuous function on an interval [a, b], then

∫ b

a
f (x) dx = F(b) − F(a), where

F is any antiderivative of f .
� If f is a continuous function and the function G is defined by G(x) =

∫ x

a
f (t) dt, then G is

an antiderivative of f .

Areas of regions between curves
� If f and g are continuous functions such that

f (x) ≥ g(x) for all x ∈ [a, b], then the area
of the region bounded by the curves and the
lines x = a and x = b is given by∫ b

a
f (x) − g(x) dx x

y

O a

y = f(x)

y = g(x)

b

� For graphs that cross, consider intervals.
For example, the area of the shaded region
is given by∫ c1

a
f (x) − g(x) dx +

∫ c2

c1
g(x) − f (x) dx

+
∫ c3

c2
f (x) − g(x) dx +

∫ b

c3
g(x) − f (x) dx

y

xa Oc1 c2 bc3

f

g

Volumes of solids of revolution
� Region bounded by the x-axis If the region to be rotated about the x-axis is bounded

by the curve with equation y = f (x), the lines x = a and x = b and the x-axis, then the
volume V is given by

V =
∫ b

a
πy2 dx = π

∫ b

a

(
f (x)

)2 dx

� Region not bounded by the x-axis If the shaded
region is rotated about the x-axis, then the volume V is
given by

V = π
∫ b

a

(
f (x)

)2
−

(
g(x)

)2 dx

y

x

f

g

a bLengths of curves
� The length of the curve y = f (x) from x = a to x = b is given by

L =
∫ b

a

√
1 +

(dy
dx

)2
dx

� For a parametric curve defined by x = f (t) and y = g(t), if the point P
(
f (t), g(t)

)
traces the

curve exactly once from t = a to t = b, then the length of the curve is given by

L =
∫ b

a

√(dx
dt

)2
+

(dy
dt

)2
dt
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Areas of surfaces of revolution
� Rotation about the x-axis If the curve y = f (x) from x = a to x = b is rotated about

the x-axis, then the area of the surface of revolution is given by

A = 2π
∫ b

a
y

√
1 +

(dy
dx

)2
dx

� Rotation about the y-axis If the curve x = f (y) from y = a to y = b is rotated about
the y-axis, then the area of the surface of revolution is given by

A = 2π
∫ b

a
x

√
1 +

(dx
dy

)2
dy

� Parametric curve Consider a curve defined by x = f (t) and y = g(t) for a ≤ t ≤ b. If the
point P

(
f (t), g(t)

)
traces the curve exactly once from t = a to t = b, then the area of the

surface of revolution formed by rotating the curve about the x-axis is given by

A = 2π
∫ b

a
|g(t)|

√(dx
dt

)2
+

(dy
dt

)2
dt

Technology-free questions

1 Calculate the area of the region enclosed by the graph of y =
x

√
x − 2

and the line y = 3.

2 a If y = 1 − cos x, find the value of
∫ π

2
0

y dx. On a sketch graph, indicate the region for
which the area is represented by this integral.

b Hence find
∫ 1

0
x dy.

3 Find the volume of revolution of each of the following. (Rotation is about the x-axis.)

y = sec x between x = 0 and x =
π

4
a y = sin x between x = 0 and x =

π

4
b

y = cos x between x = 0 and x =
π

4
c the region between y = x2 and y = 4xd

y =
√

1 + x between x = 0 and x = 8e

4 Find the volume generated when the region bounded by the curve y = 1 +
√

x, the x-axis
and the lines x = 1 and x = 4 is rotated about the x-axis.

5 The region S in the first quadrant of the Cartesian plane is bounded by the axes, the
line x = 3 and the curve y =

√
1 + x2. Find the volume of the solid formed when S

is rotated:

about the x-axisa about the y-axis.b

6 Sketch the graph of y = sec x for x ∈
(
−
π

2
,
π

2

)
. Find the volume of the solid of

revolution obtained by rotating this curve about the x-axis for x ∈
[
−
π

4
,
π

4

]
.
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7 a Find the coordinates of the points of intersection of the graphs of y2 = 8x and y = 2x.
b Find the volume of the solid formed when the area enclosed by these graphs is

rotated about the x-axis.

8 a On the one set of axes, sketch the graphs of y = 1 − x2 and y = x − x3 = x(1 − x2).
(Turning points of the second graph do not have to be determined.)

b Find the area of the region enclosed between the two graphs.

9 The curves y = x2 and x2 + y2 = 2 meet at the points A
and B.

a Find the coordinates of A, B and C.
b Find the volume of the solid of revolution formed by

rotating the shaded region about the x-axis.

O

y

x

A B
C

10 a Sketch the graph of y = 2x − x2 for y ≥ 0.
b Find the area of the region enclosed between this curve and the x-axis.
c Find the volume of the solid of revolution formed by rotating this region about

the x-axis.

11 a Let the curve f : [0, b]→ R, f (x) = x2 be rotated:

i around the x-axis to define a solid of revolution, and find the volume of this solid
in terms of b (where the region rotated is between the curve and the x-axis)

ii around the y-axis to define a solid of revolution, and find the volume of this solid
in terms of b (where the region rotated is between the curve and the y-axis).

b For what value of b are the two volumes equal?

12 a Sketch the graph of
{

(x, y) : y =
1

4x2 + 1

}
.

b Find
dy
dx

and hence find the equation of the tangent to this curve at x = 1
2 .

c Find the area of the region bounded by the curve and the tangent to the curve
at x = 1

2 .

13 Let f : R→ R, f (x) = x and g : R \ {0} → R, g(x) =
9
x

.

a Sketch, on the same set of axes, the graphs of f + g and f − g.
b Find the area of the region bounded by the two graphs sketched in part a and the

lines x = 1 and x = 3.

14 Sketch the graph of
{

(x, y) : y = x − 5 +
4
x

}
. Find the area of the region bounded by

this curve and the x-axis.
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15 Sketch the graph of
{

(x, y) : y =
1

2 + x − x2

}
. Find the area of the region bounded by

this graph and the line y = 1
2 .

16 The region bounded by the graph of y = x
1
2 sin(2x), the x-axis and the line x =

π

4
is

rotated about the x-axis to form a solid of revolution. Find its volume.

17 Find the length of the curve defined by x = 2t−2 sin t and y = 2−2 cos t for
π

3
≤ t ≤ 2π.

18 Find the length of the curve defined by x = cos3 t and y = sin3 t for 0 ≤ t ≤
π

4
.

19 Consider the graph of y = xex over the interval 0 ≤ x ≤ 1. Using integration by parts
twice, find the volume obtained when this curve is rotated about the x-axis.

20 Let a > b > 0. The curve defined parametrically by x = a cos θ and y = b sin θ is an
ellipse. Show that the circumference of this ellipse is given by

C = a
∫ 2π

0

√
1 − e2 cos2 θ dθ where e =

√
1 −

b2

a2

(The quantity e is known as the eccentricity of the ellipse.)

Multiple-choice questions

1 The volume of the solid of revolution formed when the region bounded by the axes, the

line x = 1 and the curve with equation y =
1

√
4 − x2

is rotated about the x-axis is

π2

6
A

π2

3
B

π

4
loge(3)C π

√
3 loge(3)D

2π2

3
E

2 The shaded region shown below is enclosed by the curve y =
6

√
5 + x2

, the straight line

y = 2 and the y-axis. The region is rotated about the x-axis to form a solid of revolution.
The volume of this solid, in cubic units, is given by

A π
∫ 2

0

( 6
√

5 + x2
− 2

)2
dx

B 6π tan−1
(2
5

)
C

36π
√

5
tan−1

( 2
√

5

)
D π

∫ 2

0

( 6
√

5 + x2

)2

− 4 dx

E 36π

y

x

(2, 2)

O

2

y = 6
5 + x2
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3 The graphs of y = sin2 x and y = 1
2 cos(2x) are shown in the diagram. The total area of

the shaded regions is equal to

A
∫ 2π

0
sin2 x − 1

2 cos(2x) dx

B 4
∫ π

6
0

1
2 cos(2x) − sin2 x dx

+ 2
∫ 5π

6
π

6
sin2 x − 1

2 cos(2x) dx

C 3.14

D π

E
√

3
2

+
π

3

1.5

−1.5

0.5

−0.5

1

0

−1

y

x
π 2π3π

2
π
2

4 The shaded region in the diagram is bounded by the lines x = e2 and x = e3, the x-axis
and the graph of y = loge x. The volume of the solid of revolution formed by rotating
this region about the x-axis is equal to

A π
∫ 3

2
e2x dx

B π
∫ 20

7
(loge x)2 dx

C π
∫ e3

e2 (loge x)2 dx

D π(e3 − e2)

E π2
∫ e3

e2 (loge x)2 dx

5

2.5

1.5

0.5

−0.5 10 15 20

2

1

0

−1

y

x

5 The graph represents the function y = sin x
where 0 ≤ x ≤ 2π. The total area of the
shaded regions is

A 1 − cos a

B −2 sin a

C 2(1 − cos a)
D 0
E −2(1 − cos a)

π + a
2ππ − a

π

y

x
O

6 The area of the region enclosed between the curve with equation y = sin3 x, x ∈ [0, a],
the x-axis and the line with equation x = a, where 0 < a <

π

2
, is

3 cos2 aA 2
3 −

1
3 sin3 aB

( 2
3 −

1
3 sin2 a

)
cos a + 2

3C
1
3 cos3 a sin aD 2

3 − cos a + 1
3 cos3 aE
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7 The shaded region shown is
rotated around the x-axis to form
a solid of revolution. The volume
of the solid of revolution is

A 1 − loge( 1
3 )

B π(loge 3 − 1)
C 0.099
D π

(
−1 + loge( 1

3 )
)

E 0.1

0.2

−0.5

0.5

1

0

−1

y

x
0.4 0.6 0.8 1.2 1.41

y = x
4 − x2

8 The shaded region shown in the diagram is rotated around the x-axis to form a solid of
revolution, where f ′(x) > 0 and f ′′(x) > 0 for all x ∈ [a, b] and the volume of the solid
of revolution is V cubic units. Which of the following statements is false?
A V < π

(
f (b)

)2(b − a)

B V > π
(
f (a)

)2(b − a)

C V = π
∫ b

a

(
f (x)

)2 dx

D V = π
((

F(b)
)2
−

(
F(a)

)2
)
,

where F′(x) = f (x)

E V < π
((

f (b)
)2b −

(
f (a)

)2a
)

a

y

b
x

O

y = f (x)

9 The length of the curve defined by the parametric equations x = 4 sin t and y = 3 cos t,
for 0 ≤ t ≤ π, is given by∫ π

0

√
16 cos2 t − 9 sin2 t dtA

∫ π

0

√
7 + 9 sin2 t dtB∫ π

0

√
9 cos2 t + 16 sin2 t dtC

∫ π

0
4 cos2 t + 9 sin2 t dtD∫ π

0

√
9 + 7 cos2 t dtE

10 The region bounded by the coordinate axes and the graph of y = cos x, for 0 ≤ x ≤
π

2
,

is rotated about the y-axis to form a solid of revolution. The volume of the solid is
given by

π
∫ 1

0
cos2 x dxA π

∫ π

2
0

cos2 x dxB π
∫ 1

0
cos−1 y dxC

π
∫ π

2
0

(cos−1 y)2 dyD π
∫ 1

0
(cos−1 y)2 dyE

11 The area of the surface formed by rotating the curve y =
1
x

, for 1 ≤ x ≤ a, about the
x-axis is given by

2π
∫ a

1

√
1 + x2

x
dxA 2π

∫ a

1
1 +

1
x2 dxB 2π

∫ a

1

√
1 + x4

x3 dxC

2π
∫ a

1

√
1 +

1
x4 dxD 2π

∫ a

1

√
x2 +

1
x4 dxE
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12 The area of the region enclosed by the graph of y = 2x2 sec2 x tan x, the x-axis and the
line x =

π

4
is given by

π2

8
−
∫ π

4
0

2x sec2 x dxA
3π
4
−
∫ π

4
0

x2 tan2 x dxB

π2

16
−
∫ π

4
0

x sec2 x dxC
π2

8
−
∫ π

4
0

2x2 sec2 x tan2 x dxD

−
π

2
+
π2

8
−
∫ π

4
0

2x sec2 x dxE

Extended-response questions

1 a Sketch the curve with equation y = 1 −
1

x + 2
.

b Find the area of the region bounded by the x-axis, the curve and the lines x = 0
and x = 2.

c Find the volume of the solid of revolution formed when this region is rotated around
the x-axis.

2 a i Using integration by parts twice, find
∫

(loge x)2 dx.
ii Hence find the volume of the solid of revolution formed by rotating the curve

y = loge x from x = 1 to x = e about the x-axis.
b Sketch the graph of f : [−2, 2]→ R,

f (x) =

ex x ∈ [0, 2]

e−x x ∈ [−2, 0)

c The interior of a wine glass is formed by rotating the curve y = ex from x = 0 to
x = 2 about the y-axis. If the units are in centimetres find, correct to two significant
figures, the volume of liquid that the glass contains when full.

3 A bowl is modelled by rotating the curve y = x2 for 0 ≤ x ≤ 1 around the y-axis.

a Find the volume of the bowl.
b If liquid is poured into the bowl at a rate of R units of volume per second, find the

rate of increase of the depth of liquid in the bowl when the depth is 1
4 .

Hint: Use the chain rule:
dv
dt

=
dv
dy

dy
dt

.

c i Find the volume of liquid in the bowl when the depth of liquid is 1
2 .

ii Find the depth of liquid in the bowl when it is half full.

4 a On the same set of axes, sketch the graphs of y = 3 sec2 x and y = 16 sin2 x
for 0 ≤ x ≤

π

4
.

b Find the coordinates of the point of intersection of these two curves.
c Find the area of the region bounded by the two curves and the y-axis.
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5 The curves y = ax2 and y = 1 −
x2

a
are shown, where a > 0.

a Show that the area enclosed by

the two curves is
4
3

√
a

a2 + 1
.

b i Find the value of a which
gives the maximum area.

ii Find the maximum area.
O

y

x

1

√ a
a2 + 1

a2

a2 + 1
,

c Find the volume of the solid formed when the region bounded by these curves is
rotated about the y-axis.

6 Consider the curve defined by the parametric equations

x = 3 + 2 cos(2t) and y = 2 sin(2t) for 0 ≤ t ≤
π

4
a This curve can be described in the form y = f (x) for a function f . Find the rule,

domain and range of f .
b Find the equation of the tangent to the curve at t =

π

8
.

c Find the length of the curve.
d Show that the area of the region bounded by the curve, the line x = 3 and the x-axis

is equal to π.

Hint: Use the observation that
∫

y dx =
∫

y
dx
dt

dt.

e Find the total surface area of the solid of revolution formed when the region bounded
by the curve, the line x = 3 and the x-axis is rotated about the x-axis.

7 Let f : (1,∞)→ R be such that:

� f ′(x) =
1

x − a
, where a is a positive constant

� f (2) = 1
� f (1 + e−1) = 0

a Find a and use it to determine f (x).
b Sketch the graph of f .
c If f −1 is the inverse of f , show that f −1(x) = 1 + ex−1. Give the domain and range

of f −1.
d Find the area of the region enclosed by y = f −1(x), the x-axis, the y-axis and the

line x = 1.
e Find

∫ 2

1+e−1 f (x) dx.

8 The curves cy2 = x3 and y2 = ax (where a > 0 and c > 0) intersect at the origin, O, and
at a point P in the first quadrant. The areas of the regions enclosed by the curves OP,
the x-axis and the vertical line through P are A1 and A2 respectively for the two curves.
The volumes of the two solids formed by rotating these regions about the x-axis are V1

and V2 respectively. Show that A1 : A2 = 3 : 5 and V1 : V2 = 1 : 2.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
eview

Chapter 10 review 475

9 Let f : [0, a]→ R, where f (x) = 3 cos( 1
2 x).

a Find the largest value of a for which f has an inverse function, f −1.
b i State the domain and range of f −1.

ii Find f −1(x).
iii Sketch the graph of f −1.

c Find the gradient of the curve y = f −1(x) at the point where the curve crosses
the y-axis.

d Let V1 be the volume of the solid of revolution formed by rotating the curve y = f (x)
between x = 0 and x = π about the x-axis. Let V2 be the volume of the solid of
revolution formed by rotating the curve y = f −1(x) between y = 0 and y = π about
the y-axis. Find V1 and hence find V2.

10 a Find the area of the circle formed when a sphere is cut
by a plane at a distance y from the centre, where y < r.

b By integration, prove that the volume of a ‘cap’ of
height 1

4 r cut from the top of the sphere, as shown in

the diagram, is
11πr3

192
.

O

_ r
1
4

11 Consider the section of a hyperbola with
x2

a2 −
y2

b2 = 1 and a ≤ x ≤ 2a (where a > 0).

Find the volume of the solid formed when region bounded by the hyperbola and the line
with equation x = 2a is rotated about:

a the x-axis
b the y-axis.

12 a Show that the line y =
3x
2

does not meet the curve y =
1

√
1 − x2

.

b Find the area of the region bounded by the curve with equation y =
1

√
1 − x2

and the

lines y =
3x
2

, x = 0 and x =
1
2

.

c Find the volume of the solid of revolution formed by rotating the region defined in b
about the x-axis. Express your answer in the form π(a + loge b).

13 a For 0 ≤ a ≤ 1, let Ta be the triangle whose vertices are
(0, 0), (1, 0) and (a, 1). Find the volume of the solid of
revolution when Ta is rotated about the x-axis.

b For 0 ≤ k ≤ 1, let Tk be the triangle whose vertices are
(0, 0), (k, 0) and (0,

√
1 − k2). The triangle Tk is rotated

about the x-axis. What value of k gives the maximum
volume? What is the maximum volume?

(0, 0) (1, 0)

(a, 1)

y

x

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
ev

ie
w

476 Chapter 10: Applications of integration

14 A model for a bowl is formed by rotating a section of the graph of a cubic function
f (x) = ax3 + bx2 + cx + d around the x-axis to form a solid of revolution. The cubic is
chosen to pass through the points with coordinates (0, 0), (5, 1), (10, 2.5) and (30, 10).

a i Write down the four simultaneous equations that can be used to determine the
coefficients a, b, c and d.

ii Using a CAS calculator, or otherwise, find the values of a, b, c and d. (Exact
values should be stated.)

b Find the area of the region enclosed by the curve and the line x = 30.
c i Write the expression that can be used to determine the volume of the solid of

revolution when the section of the curve 0 ≤ x ≤ 30 is rotated around the x-axis.
ii Use a CAS calculator to determine this volume.

d Using the initial design, the bowl is unstable.
The designer is very fond of the cubic y = f (x), and
modifies the design so that the base of the bowl has radius
5 units. Using a CAS calculator:

i find the value of w such that f (w) = 5
ii find the new volume, correct to four significant

figures.

e A mathematician looks at the design and suggests that
it may be more pleasing to the eye if the base is chosen
to occur at a point where x = p and f ′′(p) = 0. Find the
values of coordinates of the point (p, f (p)).

O

y

x

y = f(x)
(w, 5)

w

15 A model of a bowl is formed by rotating the line
segment AB about the y-axis to form a solid of
revolution.

a Find the volume, V cm3, of the bowl in terms
of a, b and H. (Units are centimetres.)

b If the bowl is filled with water to a height
H
2

,
find the volume of water.

c Find an expression for the volume of water in
the bowl when the radius of the water surface is
r cm. (The constants a, b and H are to be used.)

d i Find
dV
dr

.

ii Find an expression for the depth of the water,
h cm, in terms of r.

x

y

O

B(b, H)

A(a, 0)

h cm

r cm

e Now assume that a = 10, b = 20 and H = 20.

i Find
dV
dr

in terms of r.

ii If water is being poured into the bowl at 3 cm3/s, find
dr
dt

and
dh
dr

when r = 12.
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11
Di�erential equations

Objectives
I To verify a solution of a di�erential equation.

I To apply techniques to solve di�erential equations of the form
dy
dx

= f(x) and
d2y
dx2

= f(x).

I To apply techniques to solve di�erential equations of the form
dy
dx

= g(y).

I To construct di�erential equations from a given situation.

I To apply di�erential equations to solve problems.

I To solve di�erential equations which can be written in the form
dy
dx

= f(x) g(y) using
separation of variables.

I To solve di�erential equations using a CAS calculator.

I To use Euler’s method to obtain approximate solutions to a given di�erential equation.

I To construct a slope field for a given di�erential equation.

Differential equations arise when we have information about the rate of change of a quantity,
rather than the quantity itself. For example, we know that the rate of decay of a radioactive
substance is proportional to the mass m of substance remaining at time t. We can write this as
a differential equation:

dm
dt

= −km

where k is a constant. What we would really like is an expression for the mass m at time t.
Using techniques developed in this chapter, we will find that the general solution to this
differential equation is m = Ae−kt.

Differential equations have many applications in science, engineering and economics, and
their study is a major branch of mathematics. For Specialist Mathematics, we consider only a
limited variety of differential equations.
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478 Chapter 11: Di�erential equations

11A An introduction to di�erential equations
A differential equation contains derivatives of a particular function or variable. The following
are examples of differential equations:

dy
dx

= cos x,
d2y
dx2 − 4

dy
dx

= 0,
dy
dx

=
y

y + 1

The solution of a differential equation is a clear definition of the function or relation, without
any derivatives involved.

For example, if
dy
dx

= cos x, then y =
∫

cos x dx and so y = sin x + c.

Here y = sin x + c is the general solution of the differential equation
dy
dx

= cos x.

This example displays the main features of such solutions. The general solution of a
differential equation is a family of functions or relations.

To obtain a particular solution, we require further information, which is usually given as an
ordered pair belonging to the function or relation. For equations with second derivatives, we
need two items of information.

Verifying a solution of a di�erential equation
We can verify that a particular expression is a solution of a differential equation by
substitution. This is demonstrated in the following examples.

We will use the following notation to denote the y-value for a given x-value:

y(0) = 3 will mean that when x = 0, y = 3.

We consider y as a function of x. This notation is useful in differential equations.

a Verify that y = Aex − x − 1 is a solution of the differential equation
dy
dx

= x + y.

b Hence find the particular solution of the differential equation given that y(0) = 3.

Example 1

Solution
a Let y = Aex − x − 1. We need to check that

dy
dx

= x + y.

LHS =
dy
dx

= Aex − 1

RHS = x + y

= x + Aex − x − 1

= Aex − 1

Hence LHS = RHS and so y = Aex − x − 1 is a solution of
dy
dx

= x + y.
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11A An introduction to di�erential equations 479

b y(0) = 3 means that when x = 0, y = 3.

Substituting in the solution y = Aex − x − 1 verified in a:

3 = Ae0 − 0 − 1

3 = A − 1

A = 4∴

The particular solution is y = 4ex − x − 1.

Verify that y = e2x is a solution of the differential equation
d2y
dx2 +

dy
dx
− 6y = 0.

Example 2

Solution

y = e2xLet
dy
dx

= 2e2xThen

d2y
dx2 = 4e2xand

Now consider the differential equation:

LHS =
d2y
dx2 +

dy
dx
− 6y

= 4e2x + 2e2x − 6e2x (from above)

= 0

= RHS

Verify that y = ae2x + be−3x is a solution of the differential equation
d2y
dx2 +

dy
dx
− 6y = 0.

Example 3

Solution

y = ae2x + be−3xLet
dy
dx

= 2ae2x − 3be−3xThen

d2y
dx2 = 4ae2x + 9be−3xand

LHS =
d2y
dx2 +

dy
dx
− 6ySo

=
(
4ae2x + 9be−3x) +

(
2ae2x − 3be−3x) − 6

(
ae2x + be−3x)

= 4ae2x + 9be−3x + 2ae2x − 3be−3x − 6ae2x − 6be−3x

= 0

= RHS
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480 Chapter 11: Di�erential equations 11A

Find the constants a and b if y = e4x(2x + 1) is a solution of the differential equation

d2y
dx2 − a

dy
dx

+ by = 0

Example 4

Solution

y = e4x(2x + 1)Let
dy
dx

= 4e4x(2x + 1) + 2e4xThen

= 2e4x(4x + 2 + 1)

= 2e4x(4x + 3)

d2y
dx2 = 8e4x(4x + 3) + 4 × 2e4xand

= 8e4x(4x + 3 + 1)

= 8e4x(4x + 4)

= 32e4x(x + 1)

If y = e4x(2x + 1) is a solution of the differential equation, then

d2y
dx2 − a

dy
dx

+ by = 0

32e4x(x + 1) − 2ae4x(4x + 3) + be4x(2x + 1) = 0i.e.

We can divide through by e4x (since e4x > 0):

32x + 32 − 8ax − 6a + 2bx + b = 0(
32 − 8a + 2b

)
x +

(
32 − 6a + b

)
= 0i.e.

Thus

32 − 8a + 2b = 0 (1)

32 − 6a + b = 0 (2)

Multiply (2) by 2 and subtract from (1):

−32 + 4a = 0

Hence a = 8 and b = 16.

Exercise 11A

1Example 1 For each of the following, verify that the given function or relation is a solution of the
differential equation. Hence find the particular solution from the given information.

Di�erential equation Function or relation Added information

a
dy
dt

= 2y + 4 y = Ae2t − 2 y(0) = 2
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11A 11A An introduction to di�erential equations 481

Di�erential equation Function or relation Added information

b
dy
dx

= loge |x| y = x loge |x| − x + c y(1) = 3

c
dy
dx

=
1
y

y =
√

2x + c y(1) = 9

d
dy
dx

=
y + 1

y
y − loge |y + 1| = x + c y(3) = 0

e
d2y
dx2 = 6x2 y =

x4

2
+ Ax + B y(0) = 2, y(1) = 2

f
d2y
dx2 = 4y y = Ae2x + Be−2x y(0) = 3, y(loge 2) = 9

g
d2x
dt2 + 9x = 18 x = A sin(3t) + B cos(3t) + 2 x(0) = 4, x

(
π

2

)
= −1

2Example 2

Example 3

For each of the following, verify that the given function is a solution of the differential
equation:

dy
dx

= 2y, y = 4e2xa
dy
dx

= −4xy2, y =
1

2x2b

dy
dx

= 1 +
y
x

, y = x loge |x| + xc
dy
dx

=
2x
y2 , y =

3√
3x2 + 27d

d2y
dx2 −

dy
dx
− 6y = 0, y = e−2x + e3xe

d2y
dx2 − 8

dy
dx

+ 16y = 0, y = e4x(x + 1)f

d2y
dx2 = −n2y, y = a sin(nx)g

d2y
dx2 = n2y, y = enx + e−nxh

dy
dx

=
1 + y2

1 + x2 , y =
x + 1
1 − x

i y
d2y
dx2 = 2

(dy
dx

)2
, y =

4
x + 1

j

3Example 4 If the differential equation x2 d2y
dx2 − 2x

dy
dx
− 10y = 0 has a solution y = axn, find the

possible values of n.

4 Find the constants a, b and c if y = a + bx + cx2 is a solution of the differential equation
d2y
dx2 + 2

dy
dx

+ 4y = 4x2.

5 Find the constants a and b if x = t
(
a cos(2t) + b sin(2t)

)
is a solution of the differential

equation
d2x
dt2 + 4x = 2 cos(2t).

6 Find the constants a, b, c and d if y = ax3 + bx2 + cx + d is a solution to the differential

equation
d2y
dx2 + 2

dy
dx

+ y = x3.
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482 Chapter 11: Di�erential equations

11B Di�erential equations involving a function of the
independent variable
In this section we solve differential equations of the following two forms:

dy
dx

= f (x) and
d2y
dx2 = f (x)

Solving di�erential equations of the form
dy
dx

= f(x)
The simplest differential equations are those of the form

dy
dx

= f (x)

Such a differential equation can be solved provided an antiderivative of f (x) can be found.

If
dy
dx

= f (x), then y =
∫

f (x) dx.

Find the general solution of each of the following:
dy
dx

= x4 − 3x2 + 2a
dy
dt

= sin(2t)b

dx
dt

= e−3t +
1
t

c
dx
dy

=
1

1 + y2d

Example 5

Solution
dy
dx

= x4 − 3x2 + 2

∴ y =
∫

x4 − 3x2 + 2 dx

∴ y =
x5

5
− x3 + 2x + c

a
dy
dt

= sin(2t)

∴ y =
∫

sin(2t) dt

∴ y = −
1
2

cos(2t) + c

b

dx
dt

= e−3t +
1
t

∴ x =
∫

e−3t +
1
t

dt

∴ x = −
1
3

e−3t + loge |t| + c

c
dx
dy

=
1

1 + y2

∴ x =
∫ 1

1 + y2 dy

∴ x = tan−1(y) + c

This can also be written as y = tan(x − c).

d
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11B Di�erential equations involving a function of the independent variable 483

Using the TI-Nspire
a Use menu > Calculus > Di�erential Equation

Solver and complete as shown.

Note: Access the derivative symbol (′)
using ctrl k or ¹ .

d � Use menu > Calculus > Di�erential
Equation Solver and complete as shown.

Note: This differential equation is of the

form
dx
dy

= f (y), so the roles of the

variables x and y are reversed.

� Solve for y in terms of x.

Using the Casio ClassPad
a � InM, enter and highlight the differential equation y′ = x4 − 3x2 + 2.

Note: The derivative symbol (′) is found in the Math3 keyboard.

� Select Interactive > Advanced > dSolve.
� Enter x for the Independent variable and y for the Dependent variable. Tap OK .

d � InM, enter and highlight the differential equation x′ =
1

1 + y2 .
� Select Interactive > Advanced > dSolve.
� Enter y for the Independent variable and x for the Dependent variable. Tap OK .
� Solve for y in terms of x.
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484 Chapter 11: Di�erential equations

Families of solution curves
Solving a differential equation requires finding an equation that connects the variables, but
does not contain a derivative. There are no specific values for the variables. By solving
differential equations, it is possible to determine what function or functions might model a
particular situation or physical law.

For example, if
dy
dx

= x, then y = 1
2 x2 + k, where k is a constant.

The general solution of the differential equation
dy
dx

= x is

y = 1
2 x2 + k.

If different values of the constant k are taken, then a family of
curves is obtained. This differential equation represents the
family of curves y = 1

2 x2 + k, where k ∈ R.
x

−1

0

1

2

3

k = 3
k = 2
k = 1
k = 0
k = −1

y

A particular solution of the differential equation corresponds to a particular curve from
the family. This can be found if we know a specific point in the plane through which the
curve passes.

For instance, the particular solution of
dy
dx

= x for which y = 2 when x = 4 is the solution
curve of the differential equation that passes through the point (4, 2).

From above:

y = 1
2 x2 + k

2 = 1
2 × 16 + k∴

2 = 8 + k

k = −6∴

Thus the solution is y = 1
2 x2 − 6.

x
4O

2

(0, −6)

(4, 2)

y
y =    x2 − 6 

1
2

a Find the family of solution curves for the differential equation
dy
dx

= e2x.

b Find the particular solution if the solution curve passes through the point (0, 3).

Example 6

Solution

a
dy
dx

= e2x

∴ y =
∫

e2x dx

= 1
2 e2x + c
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11B Di�erential equations involving a function of the independent variable 485

The general solution y = 1
2 e2x + c represents

a family of curves, since c can take any real
number value. The diagram shows some of
these curves.

b Substituting x = 0 and y = 3 into the general
equation y = 1

2 e2x + c, we have

3 = 1
2 e0 + c

c = 5
2∴

The equation is y = 1
2 e2x + 5

2 .

x

y y =    e2x + 1
1
2

y =    e2x − 1
1
2

1
2
1
2

1
2

y =    e2x1
21

−

O

Solving di�erential equations of the form
d2y
dx2

= f(x)
These differential equations are similar to those discussed above, with antidifferentiation
being applied twice.

Let p =
dy
dx

. Then
d2y
dx2 =

dp
dx

= f (x).

The technique involves first finding p as the solution of the differential equation
dp
dx

= f (x),

and then substituting p into
dy
dx

= p and solving this differential equation.

Find the general solution of each of the following:
d2y
dx2 = 10x3 − 3x + 4a

d2y
dx2 = cos(3x)b

d2y
dx2 = e−xc

d2y
dx2 =

1
√

x + 1
d

Example 7

Solution

a Let p =
dy
dx

.

dp
dx

= 10x3 − 3x + 4Then

p =
5x4

2
−

3x2

2
+ 4x + c∴

dy
dx

=
5x4

2
−

3x2

2
+ 4x + c∴

y =
x5

2
−

x3

2
+ 2x2 + cx + d, where c, d ∈ R∴
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486 Chapter 11: Di�erential equations

b
d2y
dx2 = cos(3x)

Let p =
dy
dx

. Then
dp
dx

= cos(3x).

p =
∫

cos(3x) dxThus

=
1
3

sin(3x) + c

dy
dx

=
1
3

sin(3x) + c∴

y =
∫ 1

3
sin(3x) + c dx∴

= −
1
9

cos(3x) + cx + d, where c, d ∈ R

The p substitution can be omitted:

c
d2y
dx2 = e−x

∴
dy
dx

=
∫

e−x dx

= −e−x + c

∴ y =
∫
−e−x + c dx

= e−x + cx + d (c, d ∈ R)

d
d2y
dx2 =

1
√

x + 1

∴
dy
dx

=
∫

(x + 1)−
1
2 dx

= 2(x + 1)
1
2 + c

∴ y =
∫

2(x + 1)
1
2 + c dx

=
4
3

(x + 1)
3
2 + cx + d (c, d ∈ R)

Consider the differential equation
d2y
dx2 = cos2 x.

a Find the general solution.

b Find the solution given that when x = 0, y = −
1
8

and
dy
dx

= 0.

Example 8

Solution

a Now
d2y
dx2 = cos2 x

∴
dy
dx

=
∫

cos2 x dx
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11B Di�erential equations involving a function of the independent variable 487

Use the trigonometric identity cos(2x) = 2 cos2 x − 1:
dy
dx

=
∫

cos2 x dx

=
∫ 1

2
(
cos(2x) + 1

)
dx

=
1
4

sin(2x) +
1
2

x + c

y =
∫ 1

4
sin(2x) +

1
2

x + c dx∴

Hence y = −
1
8

cos(2x) +
1
4

x2 + cx + d is the general solution.

b First use that
dy
dx

= 0 when x = 0. We have

dy
dx

=
1
4

sin(2x) +
1
2

x + c (from a)

0 =
1
4

sin 0 + 0 + c (substituting given condition)

c = 0∴

y = −
1
8

cos(2x) +
1
4

x2 + d∴

Now use that y = −
1
8

when x = 0. We substitute and find

−
1
8

= −
1
8

cos 0 + 0 + d

d = 0∴

Hence y = −
1
8

cos(2x) +
1
4

x2 is the solution.

Using the TI-Nspire
� Use menu > Calculus > Di�erential Equation

Solver and complete as follows:

deSolve
(

y′′ = (cos(x))2 and y(0) =
−1
8

and

y′(0) = 0, x, y
)

� The answer can be simplified using
expand and tCollect ( menu > Algebra >

Trigonometry > Collect).

Note: Access the derivative symbol (′) using ctrl k or ¹ . To enter the second
derivative y′′, use the derivative symbol (′) twice.
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488 Chapter 11: Di�erential equations 11B

Using the Casio ClassPad
� InM, enter and highlight the differential equation

y′′ = (cos(x))2.
� Select Interactive > Advanced > dSolve.
� Tap Include condition.
� Enter x for Inde var and y for Depe var.
� Enter the conditions y′(0) = 0 and y(0) = −1/8.

Note: You must enter y using the abc keyboard.

� Tap OK to obtain the solution.

Exercise 11BSkill-
sheet

1Example 5 Find the general solution of each of the following differential equations:
dy
dx

= x2 − 3x + 2a
dy
dx

=
x2 + 3x − 1

x
b

dy
dx

= (2x + 1)3c

dy
dx

=
1
√

x
d

dy
dt

=
1

2t − 1
e

dy
dt

= sin(3t − 2)f

dy
dt

= tan(2t)g
dx
dy

= e−3yh
dx
dy

=
1√

4 − y2
i

dx
dy

= −
1

(1 − y)2j

2Example 7 Find the general solution of each of the following differential equations:
d2y
dx2 = 5x3a

d2y
dx2 =

√
1 − xb

d2y
dx2 = sin

(
2x +

π

4

)
c

d2y
dx2 = e

x
2d

d2y
dx2 =

1
cos2 x

e
d2y
dx2 =

1
(x + 1)2f

3Example 6 Find the solution for each of the following differential equations:

a
dy
dx

=
1
x2 , given that y =

3
4

when x = 4

b
dy
dx

= e−x, given that y(0) = 0

c
dy
dx

=
x2 − 4

x
, given that y =

3
2

when x = 1
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11B 11B Di�erential equations involving a function of the independent variable 489

d
dy
dx

=
x

x2 − 4
, given that y(2

√
2) = loge 2

e
dy
dx

= x
√

x2 − 4, given that y =
1

4
√

3
when x = 4

f
dy
dx

=
1

√
4 − x2

, given that y(1) =
π

3

g
dy
dx

=
1

4 − x2 , given that y = 2 when x = 0

h
dy
dx

=
1

4 + x2 , given that y(2) =
3π
8

i
dy
dx

= x
√

4 − x, given that y = −
8
15

when x = 0

j
dy
dx

=
ex

ex + 1
, given that y(0) = 0

4Example 8 Find the solution for each of the following differential equations:

a
d2y
dx2 = e−x − ex, given that y(0) = 0 and that

dy
dx

= 0 when x = 0

b
d2y
dx2 = 2 − 12x, given that when x = 0, y = 0 and

dy
dx

= 0

c
d2y
dx2 = 2 − sin(2x), given that when x = 0, y = −1 and

dy
dx

=
1
2

d
d2y
dx2 = 1 −

1
x2 , given that y(1) =

3
2

and that
dy
dx

= 0 when x = 1

e
d2y
dx2 =

2x
(1 + x2)2 , given that when x = 0,

dy
dx

= 0 and that when x = 1, y = 1

f
d2y
dx2 = 24(2x + 1), given that y(−1) = −2 and that

dy
dx

= 6 when x = −1

g
d2y
dx2 =

x

(4 − x2)
3
2

, given that when x = 0,
dy
dx

=
1
2

and when x = −2, y = −
π

2

5 Find the family of curves defined by each of the following differential equations:
dy
dx

= 3x + 4a
d2y
dx2 = −2xb

dy
dx

=
1

x − 3
c

6 Find the equation of the curve defined by each of the following:
dy
dx

= 2 − e−x, y(0) = 1a
dy
dx

= x + sin(2x), y(0) = 4b

dy
dx

=
1

2 − x
, y(3) = 2c

7 Assume that
dx
dy

is inversely proportional to y. That is, assume that
dx
dy

=
k
y

, for k ∈ R+.

Given that when x = 0, y = 2 and when x = 2, y = 4, find y when x = 3.
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490 Chapter 11: Di�erential equations

11C Di�erential equations involving a function of the
dependent variable
In this section we solve differential equations of the form

dy
dx

= g(y)

Using the identity
dx
dy

=
1
dy
dx

, this becomes
dx
dy

=
1

g(y)
.

If
dy
dx

= g(y), then x =
∫ 1

g(y)
dy.

Note: This is a special case of separation of variables, which is covered in Section 11F.

Find the general solution of each of the following differential equations:
dy
dx

= 2y + 1, for y > − 1
2a

dy
dx

= e2yb

dy
dx

=
√

1 − y2, for y ∈ (−1, 1)c
dy
dx

= 1 − y2, for −1 < y < 1d

Example 9

Solution

a
dy
dx

= 2y + 1 gives
dx
dy

=
1

2y + 1

x =
∫ 1

2y + 1
dyTherefore

= 1
2 loge |2y + 1| + k where k ∈ R

= 1
2 loge(2y + 1) + k as y > − 1

2

2(x − k) = loge(2y + 1)So

2y + 1 = e2(x−k)

y = 1
2
(
e2(x−k) − 1

)
i.e.

This can also be written as y = 1
2
(
Ae2x − 1

)
, where A = e−2k.

Note: For y < − 1
2 , the general solution is y = − 1

2
(
Ae2x + 1

)
, where A = e−2k.

b
dy
dx

= e2y gives
dx
dy

= e−2y

x =
∫

e−2y dyThus

x = − 1
2 e−2y + c

e−2y = −2(x − c)

−2y = loge
(
−2(x − c)

)
y = − 1

2 loge
(
−2(x − c)

)
∴

= − 1
2 loge(2c − 2x), x < c
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11C Di�erential equations involving a function of the dependent variable 491

c
dy
dx

=
√

1 − y2 gives
dx
dy

=
1√

1 − y2

x =
∫ 1√

1 − y2
dySo

x = sin−1(y) + c

y = sin(x − c)∴

d
dy
dx

= 1 − y2 gives
dx
dy

=
1

1 − y2

x =
∫ 1

1 − y2 dyThus

=
∫ 1

2(1 − y)
+

1
2(1 + y)

dy

= − 1
2 loge(1 − y) + 1

2 loge(1 + y) + c (since −1 < y < 1)

x − c = 1
2 loge

(1 + y
1 − y

)
So

e2(x−c) =
1 + y
1 − y

Let A = e−2c. Then

Ae2x =
1 + y
1 − y

Ae2x(1 − y) = 1 + y

Ae2x − 1 = y(1 + Ae2x)

y =
Ae2x − 1
Ae2x + 1

∴

Using the TI-Nspire
Use menu > Calculus > Di�erential Equation
Solver and complete as shown.

Using the Casio ClassPad
� InM, enter and highlight the differential equation.

� Go to Interactive >

Advanced > dSolve.
� Enter x for Inde var and

y for Depe var.
� Tap OK .
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492 Chapter 11: Di�erential equations 11C

Constant solutions
When we convert

dy
dx

= g(y) into
dx
dy

=
1

g(y)
, we are assuming that g(y) , 0.

We need to take care when dividing that we do not lose constant solutions. This is
demonstrated in the next example.

Find the general solution of the differential equation
dy
dx

= y − 2.

Example 10

Solution
Constant solution
First observe that the constant function y = 2 is a solution.

Non-constant solutions
The solution curves do not intersect. Since the line y = 2 is a solution curve, every other
solution curve must satisfy either y > 2 or y < 2. Therefore

dy
dx

= y − 2 gives
dx
dy

=
1

y − 2
since y , 2

x =
∫ 1

y − 2
dy

= loge |y − 2| + k where k ∈ R

x − k = loge |y − 2|

|y − 2| = ex−k

This can be written as |y − 2| = Aex, where A = e−k ∈ R+.

There are two cases:

� If y > 2, then y − 2 = Aex and so y = Aex + 2.
� If y < 2, then −(y − 2) = Aex and so y = −Aex + 2.

In both cases, we can write the solution as y = Bex + 2, for some constant B ∈ R \ {0}.

General solution
Note that the constant solution y = 2 is covered by the case B = 0. Therefore we can write
the general solution as y = Bex + 2, for B ∈ R.

Exercise 11CSkill-
sheet

1Example 9 Find the general solution of each of the following differential equations:
dy
dx

= 3y − 5, y >
5
3

a
dy
dx

= 1 − 2y, y >
1
2

b
dy
dx

= e2y−1c

dy
dx

= cos2 y, |y| <
π

2
d

dy
dx

= cot y, y ∈
(
0,
π

2

)
e

dy
dx

= y2 − 1, |y| < 1f

dy
dx

= 1 + y2g
dy
dx

=
1

5y2 + 2y
h

dy
dx

=
√

y, y > 0i
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11C 11D Applications of di�erential equations 493

2 Find the solution for each of the following differential equations:
dy
dx

= y, given that y = e when x = 0a
dy
dx

= y + 1, given that y(4) = 0b

dy
dx

= 2y, given that y = 1 when x = 1c
dy
dx

= 2y + 1, given that y(0) = −1d

dy
dx

=
ey

ey + 1
, if y = 0 when x = 0e

dy
dx

=
√

9 − y2, given that y(0) = 3f

dy
dx

= 9 − y2, if y = 0 when x =
7
6

g
dy
dx

= 1 + 9y2, given that y
(
−
π

12

)
= −

1
3

h

dy
dx

=
y2 + 2y

2
, given that y = −4 when x = 0i

3Example 10 Find the general solution of each of the following differential equations. Take care to
consider constant solutions separately.

dy
dx

= y + 3a
dy
dx

= 2y − 1b
dy
dx

= y(y + 1)c
dy
dx

= (y− 3)(y− 4)d

11D Applications of di�erential equations
Many differential equations arise from scientific or business situations and are constructed
from observations and data obtained from experiment.

For example, the following two results from science are described by differential equations:

� Newton’s law of cooling The rate at which a body cools is proportional to the difference
between its temperature and the temperature of its immediate surroundings.

� Radioactive decay The rate at which a radioactive substance decays is proportional to
the mass of the substance remaining.

These two results will be investigated further in worked examples in this section.

The table gives the observed rate of change of a
variable x with respect to time t.

a Construct the differential equation which
applies to this situation.

t 0 1 2 3 4

dx
dt

0 2 8 18 32

b Solve the differential equation to find x in terms of t, given that x = 2 when t = 0.

Example 11

Solution
a From the table, it can be established that

dx
dt

= 2t2.

b Therefore x =
∫

2t2 dt =
2t3

3
+ c.

When t = 0, x = 2. This gives 2 = 0 + c and so c = 2. Hence x =
2t3

3
+ 2.
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494 Chapter 11: Di�erential equations

Differential equations can also be constructed from statements, as shown in the following.

The population of a city is P at time t years from a certain date. The population increases
at a rate that is proportional to the square root of the population at that time. Construct and
solve the appropriate differential equation and sketch the population–time graph.

Example 12

Solution
Remembering that the derivative is a rate, we have

dP
dt
∝
√

P. Therefore
dP
dt

= k
√

P,

where k is a constant. Since the population is increasing, we have k > 0.

The differential equation is

dP
dt

= k
√

P, k > 0

Since there are no initial conditions given here, only a general solution for this differential

equation can be found. Note that it is of the form
dy
dx

= g(y).

dt
dP

=
1

k
√

P
Now

t =
1
k

∫
P−

1
2 dP∴

=
1
k
· 2P

1
2 + c

The general solution is

t =
2
k

√
P + c where c ∈ R

Rearranging to make P the subject:

t =
2
k

√
P + c

√
P =

k
2

(t − c)

P =
k2

4
(t − c)2∴

The graph is a section of the parabola P =
k2

4
(t − c)2

with vertex at (c, 0).

t

P

O

k2c2

4
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11D Applications of di�erential equations 495

In another city, with population P at time t years after a certain date, the population
increases at a rate proportional to the population at that time. Construct and solve the
appropriate differential equation and sketch the population–time graph.

Example 13

Solution

Here
dP
dt
∝ P.

The differential equation is

dP
dt

= kP, k > 0

dt
dP

=
1

kP
∴

t =
1
k

∫ 1
P

dP∴

t =
1
k

loge P + c since P > 0∴

This is the general solution.

Rearranging to make P the subject:

k(t − c) = loge P

ek(t−c) = P

P = Aekt, where A = e−kc∴

The graph is a section of the exponential curve P = Aekt. t
O

P

A

Suppose that a tank containing liquid has a vent at the top and an outlet at the bottom
through which the liquid drains.

Torricelli’s law states that if, at time t seconds after opening the outlet, the depth of the
liquid is h m and the surface area of the liquid is A m2, then

dh
dt

=
−k
√

h
A

where k > 0

(The constant k depends on factors such as the viscosity of the liquid and the cross-
sectional area of the outlet.)

Apply Torricelli’s law to a cylindrical tank that is initially full, with a height of 1.6 m and
a radius length of 0.4 m. Use k = 0.025. Construct the appropriate differential equation,
solve it and find how many seconds it will take the tank to empty.

Example 14
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496 Chapter 11: Di�erential equations

Solution
We start by drawing a diagram.

Since the surface area is a circle with
constant area A = π × 0.42, we have

dh
dt

=
−0.025

√
h

π × 0.42

=
−0.025

√
h

0.16π

=
−5
√

h
32π

1.6 m

h m

0.8 m

Surface area is A m2

The appropriate differential equation is

dh
dt

=
−5
√

h
32π

dt
dh

=
−32π

5
· h−

1
2∴

t =
−32π

5

∫
h−

1
2 dh∴

t =
−32π

5
· 2h

1
2 + c∴

t =
−64π

5

√
h + c∴

Now use the given condition that the tank is initially full: when t = 0, h = 1.6.

By substitution:

0 =
−64π

5

√
1.6 + c

c =
64π

5

√
1.6∴

So the particular solution for this differential equation is

t =
−64π

5

√
h +

64π
5

√
1.6

t =
−64π

5
(√

h −
√

1.6
)

∴

Now we find the time when the tank is empty. That is, we find t when h = 0.

By substitution:

t =
64π

5
(√

1.6
)

t ≈ 50.9∴

It will take approximately 51 seconds to empty this tank.
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11D Applications of di�erential equations 497

The following example uses Newton’s law of cooling.

An iron bar is placed in a room which has a temperature of 20◦C. The iron bar initially has
a temperature of 80◦C. It cools to 70◦C in 5 minutes. Let T be the temperature of the bar at
time t minutes.

a Construct a differential equation. b Solve this differential equation.
c Sketch the graph of T against t. d How long does it take the bar to cool to 40◦C?

Example 15

Solution
Newton’s law of cooling yields

dT
dt

= −k(T − 20) where k ∈ R+

(Note the use of the negative sign as the temperature is decreasing.)

a

dt
dT

=
−1

k(T − 20)

∴ t = −
1
k

loge(T − 20) + c, T > 20

When t = 0, T = 80. This gives

0 = −
1
k

loge(80 − 20) + c

c =
1
k

loge 60

t =
1
k

loge

( 60
T − 20

)
∴

When t = 5, T = 70. This gives

1
k

=
5

loge
( 6

5
)

t =
5

loge
( 6

5
) loge

( 60
T − 20

)
∴

This equation can be rearranged to make T the subject:

t
5
· loge

(6
5

)
= loge

( 60
T − 20

)
loge

((6
5

) t
5
)

= loge

( 60
T − 20

)
(6
5

) t
5

=
60

T − 20

Hence T = 20 + 60
(5
6

) t
5

.

b
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498 Chapter 11: Di�erential equations

t

T = 20

T

80

O

c When T = 40, we have

t =
5

loge
( 6

5
) loge

( 60
40 − 20

)
= 30.1284 . . .

The bar reaches a temperature of 40◦C
after 30.1 minutes.

d

Di�erence of rates
Consider the following two situations:

� A population is increasing due to births, but at the same time is diminishing due to deaths.
� A liquid is being poured into a container, while at the same time the liquid is flowing out.

In both of these situations:

rate of change = rate of increase − rate of decrease

For example, if water is flowing into a container at 8 litres per minute and at the same time
water is flowing out of the container at 6 litres per minute, then the overall rate of change is
dV
dt

= 8 − 6 = 2, where the volume of water in the container is V litres at time t minutes.

A certain radioactive isotope decays at a rate that is proportional to the mass, m kg,
present at any time t years. The rate of decay is 2m kg per year. The isotope is formed as a
byproduct from a nuclear reactor at a constant rate of 0.5 kg per year. None of the isotope
was present initially.

a Construct a differential equation. b Solve the differential equation.
c Sketch the graph of m against t. d How much isotope is there after two years?

Example 16

Solution
dm
dt

= rate of increase − rate of decrease = 0.5 − 2m

i.e.
dm
dt

=
1 − 4m

2

a

dt
dm

=
2

1 − 4m

t = − 2
4 loge |1 − 4m| + cThus

= − 1
2 loge(1 − 4m) + c (since 0.5 − 2m > 0)

When t = 0, m = 0 and therefore c = 0.

−2t = loge(1 − 4m)So

e−2t = 1 − 4m

m = 1
4
(
1 − e−2t)∴

b
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11D Applications of di�erential equations 499

m = 1
4
(
1 − e−2t)

t

m

0.25

O

c When t = 2,

m = 1
4
(
1 − e−4)

= 0.245 . . .

After two years, the mass of the isotope
is 0.245 kg.

d

Pure oxygen is pumped into a 50-litre tank of air at 5 litres per minute. The oxygen is well
mixed with the air in the tank. The mixture is removed at the same rate.

a Construct a differential equation, given that plain air contains 23% oxygen.
b After how many minutes does the mixture contain 50% oxygen?

Example 17

Solution
a Let Q litres be the volume of oxygen in the tank at time t minutes.

When t = 0, Q = 50 × 0.23 = 11.5.

dQ
dt

= rate of inflow − rate of outflow

= 5 −
Q
50
× 5

dQ
dt

=
50 − Q

10
i.e.

b
dt
dQ

=
10

50 − Q

t = −10 loge |50 − Q| + c∴

= −10 loge(50 − Q) + c (as Q < 50)

When t = 0, Q = 11.5. Therefore

c = 10 loge(38.5)

t = 10 loge

( 77
2(50 − Q)

)
∴

When the mixture is 50% oxygen, we have Q = 25 and so

t = 10 loge

( 77
2 × 25

)
= 10 loge

(77
50

)
= 4.317 . . .

The tank contains 50% oxygen after 4 minutes and 19.07 seconds.
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Exercise 11D

1Example 11 Each of the following tables gives the results of an experiment where a rate of change

was found to be a linear function of time, i.e.
dx
dt

= at + b. For each table, set up a

differential equation and solve it using the additional information.

a t 0 1 2 3

dx
dt

1 3 5 7

and x(0) = 3

b t 0 1 2 3

dx
dt

−1 2 5 8

and x(1) = 1

c t 0 1 2 3

dx
dt

8 6 4 2

and x(2) = −3

2 For each of the following, construct (but do not attempt to solve) a differential equation:

a A family of curves is such that the gradient at any point (x, y) is the reciprocal of the
y-coordinate (for y , 0).

b A family of curves is such that the gradient at any point (x, y) is the square of the
reciprocal of the y-coordinate (for y , 0).

c The rate of increase of a population of size N at time t years is inversely proportional
to the square of the population.

d A particle moving in a straight line is x m from a fixed point O after t seconds. The
rate at which the particle is moving is inversely proportional to the distance from O.

e The rate of decay of a radioactive substance is proportional to the mass of substance
remaining. Let m kg be the mass of the substance at time t minutes.

f The gradient of the normal to a curve at any point (x, y) is three times the gradient of
the line joining the same point to the origin.

3Example 12

Example 13

A city, with population P at time t years after a certain date, has a population which
increases at a rate proportional to the population at that time.

a i Set up a differential equation to describe this situation.
ii Solve to obtain a general solution.

b If the initial population was 1000 and after two years the population had risen
to 1100:

i find the population after five years
ii sketch a graph of P against t.
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11D 11D Applications of di�erential equations 501

4Example 14 An island has a population of rabbits of size P at time t years after 1 January 2010.
Due to a virus, the population is decreasing at a rate proportional to the square root of
the population at that time.

a i Set up a differential equation to describe this situation.
ii Solve to obtain a general solution.

b If the population was initially 15 000 and decreased to 13 500 after five years:

i find the population after 10 years
ii sketch a graph of P against t.

5 A city has population P at time t years from a certain date. The population increases at a
rate inversely proportional to the population at that time.

a i Set up a differential equation to describe this situation.
ii Solve to obtain a general solution.

b Initially the population was 1 000 000, but after four years it had risen to 1 100 000.

i Find an expression for the population in terms of t.
ii Sketch the graph of P against t.

6 A curve has the property that its gradient at any point is one-tenth of the y-coordinate at
that point. It passes through the point (0, 10). Find the equation of the curve.

7Example 15 A body at a temperature of 80◦C is placed in a room which is kept at a constant
temperature of 20◦C. After 20 minutes, the temperature of the body is 60◦C. Assuming
Newton’s law of cooling, find the temperature after a further 20 minutes.

8 If the thermostat in an electric heater fails, the rate of increase in its temperature,
dθ
dt

,
is 0.01θ K per minute, where the temperature θ is measured in kelvins (K) and the
time t in minutes. If the heater is switched on at a room temperature of 300 K and the
thermostat does not function, what is the temperature of the heater after 10 minutes?

9 The rate of decay of a radioactive substance is proportional to the amount Q of matter

present at any time t. The differential equation for this situation is
dQ
dt

= −kQ, where
k is a constant. Given that Q = 50 when t = 0 and that Q = 25 when t = 10, find the
time t at which Q = 10.

10 The rate of decay of a substance is km, where k is a positive constant and m is the mass
of the substance remaining. Show that the half-life (i.e. the time in which the amount of

the original substance remaining is halved) is given by
1
k

loge 2.

11 The concentration, x grams per litre, of salt in a solution at time t minutes is given by
dx
dt

=
20 − 3x

30
.

a If the initial concentration was 2 grams per litre, solve the differential equation,
giving x in terms of t.

b Find the time taken, to the nearest minute, for the salt concentration to rise to
6 grams per litre.
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502 Chapter 11: Di�erential equations 11D

12 If
dy
dx

= 10 −
y

10
and y = 10 when x = 0, find y in terms of x. Sketch the graph of the

equation for x ≥ 0.

13 The number n of bacteria in a colony grows according to the law
dn
dt

= kn, where k is a
positive constant. If the number increases from 4000 to 8000 in four days, find, to the
nearest hundred, the number of bacteria after three days more.

14 A town had a population of 10 000 in 2010 and 12 000 in 2020. If the population is N at
a time t years after 2010, find the predicted population in the year 2030 assuming:

dN
dt
∝ Na

dN
dt
∝

1
N

b
dN
dt
∝
√

Nc

15 For each of the following, construct a differential equation, but do not solve it:

a Water is flowing into a tank at a rate of 0.3 m3 per hour. At the same time, water
is flowing out through a hole in the bottom of the tank at a rate of 0.2

√
V m3 per

hour, where V m3 is the volume of the water in the tank at time t hours. (Find an

expression for
dV
dt

.)

b A tank initially contains 200 litres of pure water. A salt solution containing 5 kg of
salt per litre is added at the rate of 10 litres per minute, and the mixed solution is
drained simultaneously at the rate of 12 litres per minute. There is m kg of salt in the

tank after t minutes. (Find an expression for
dm
dt

.)

c A partly filled tank contains 200 litres of water in which 1500 grams of salt have
been dissolved. Water is poured into the tank at a rate of 6 L/min. The mixture,
which is kept uniform by stirring, leaves the tank through a hole at a rate of 5 L/min.

There is x grams of salt in the tank after t minutes. (Find an expression for
dx
dt

.)

16Example 16 A certain radioactive isotope decays at a rate that is proportional to the mass, m kg,
present at any time t years. The rate of decay is m kg per year. The isotope is formed as
a byproduct from a nuclear reactor at a constant rate of 0.25 kg per year. None of the
isotope was present initially.

a Construct a differential equation.
b Solve the differential equation.
c Sketch the graph of m against t.
d How much isotope is there after two years?

17Example 17 A tank holds 100 litres of water in which 20 kg of sugar was dissolved. Water runs into
the tank at the rate of 1 litre per minute. The solution is continually stirred and, at the
same time, the solution is being pumped out at 1 litre per minute. At time t minutes,
there is m kg of sugar in the solution.

a At what rate is the sugar being removed at time t minutes?
b Set up a differential equation to represent this situation.
c Solve the differential equation.
d Sketch the graph of m against t.
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18 A tank holds 100 litres of pure water. A sugar solution containing 0.25 kg per litre
is being run into the tank at the rate of 1 litre per minute. The liquid in the tank is
continuously stirred and, at the same time, liquid from the tank is being pumped out
at the rate of 1 litre per minute. After t minutes, there is m kg of sugar dissolved in
the solution.

a At what rate is the sugar being added to the solution at time t?
b At what rate is the sugar being removed from the tank at time t?
c Construct a differential equation to represent this situation.
d Solve this differential equation.
e Find the time taken for the concentration in the tank to reach 0.1 kg per litre.
f Sketch the graph of m against t.

19 A laboratory tank contains 100 litres of a 20% serum solution (i.e. 20% of the contents
is pure serum and 80% is distilled water). A 10% serum solution is then pumped in at
the rate of 2 litres per minute, and an amount of the solution currently in the tank is
drawn off at the same rate.

a Set up a differential equation to show the relation between x and t, where x litres is
the amount of pure serum in the tank at time t minutes.

b How long will it take for there to be an 18% solution in the tank? (Assume that at all
times the contents of the tank form a uniform solution.)

20 A tank initially contains 400 litres of water in which is dissolved 10 kg of salt. A salt
solution of concentration 0.2 kg/L is poured into the tank at the rate of 2 L/min. The
mixture, which is kept uniform by stirring, flows out at the rate of 2 L/min.

a If the mass of salt in the tank is x kg after t minutes, set up and solve the differential
equation for x in terms of t.

b If instead the mixture flows out at 1 L/min, set up (but do not solve) the differential
equation for the mass of salt in the tank.

21 A tank contains 20 litres of water in which 10 kg of salt is dissolved. Pure water is
poured in at a rate of 2 litres per minute, mixing occurs uniformly (owing to stirring)
and the water is released at 2 litres per minute. The mass of salt in the tank is x kg at
time t minutes.

a Construct a differential equation representing this information, expressing
dx
dt

as a
function of x.

b Solve the differential equation.
c Sketch the mass–time graph.
d How long will it take the original mass of salt to be halved?

22 A country’s population N at time t years after 1 January 2020 changes according to the

differential equation
dN
dt

= 0.1N − 5000. (There is a 10% growth rate and 5000 people
leave the country every year.)

a Given that the population was 5 000 000 at the start of 2020, find N in terms of t.
b In which year will the country have a population of 10 million?
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11E The logistic di�erential equation
In the previous section, we modelled the growth of a population, P, over time, t, using a
differential equation of the form

dP
dt

= kP

The solution is P = P0ekt, where P0 is the initial population.

This exponential growth model can be appropriate for a short time. However, it is not realistic
over a long period of time. This model implies that the population will grow without limit.
But the population will be limited by the available resources, such as food and space.

We need a model which acknowledges that there is an upper limit to growth.

A population grows according to the differential equation

dP
dt

= 0.025P
(
1 −

P
1000

)
, 0 < P < 1000

where P is the population at time t. When t = 0, P = 20.

Find the population P at time t.a Sketch the graph of P against t.b
Find the population P when the rate of growth is at a maximum.c

Example 18

Solution

a Write
dP
dt

=
P(1000 − P)

40 000

Then t =
∫ 40 000

P(1000 − P)
dP

= 40
∫ 1

P
+

1
1000 − P

dP

= 40
(
loge |P| − loge |1000 − P|

)
+ c

= 40 loge

( P
1000 − P

)
+ c since 0 < P < 1000

∴ e
t−c
40 =

P
1000 − P

Let A = e−
c

40 . Then we have

Ae
t

40 =
P

1000 − P

When t = 0, P = 20. This implies that A =
1
49

, and so

(1000 − P)e
t

40 = 49P

1000e
t

40 = 49P + Pe
t

40

Hence P =
1000e

t
40

49 + e
t

40

.
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11E 11E The logistic di�erential equation 505

P =
1000e

t
40

49 + e
t

40

O
20 t

1000

P
b The maximum rate of increase occurs

at the point of inflection on the graph.
We have

dP
dt

=
1000P − P2

40 000

The chain rule gives

d2P
dt2 =

1000 − 2P
40 000

·
dP
dt

Since 0 < P < 1000, we have
dP
dt
, 0.

Therefore
d2P
dt2 = 0 implies P = 500.

c

Note: Since
dP
dt

is a quadratic in P, the maximum rate of increase occurs at the vertex of

the parabola, which is midway between its intercepts at P = 0 and P = 1000.

Logistic di�erential equation

dP
dt

= rP
(
1 −

P
K

)
, 0 < P < K

This differential equation can be used to model a population P at time t, where:

� the constant r is called the growth parameter
� the constant K is called the carrying capacity.

Notes:
� As in the example, we can show that the solution of this differential equation is

P(t) =
P0K

P0 + (K − P0)e−rt =
P0Kert

P0ert + (K − P0)
where P0 = P(0)

� The carrying capacity K is the upper limit on the population: the rate of increase
approaches 0 as P approaches K; the population P approaches K as t → ∞.

� The maximum rate of increase occurs when P =
K
2

.

Exercise 11E

1 Solve the differential equation
dP
dt

= P(1 − P), where P(0) = 2.

2Example 18 A population grows according to the differential equation
dP
dt

= 0.02P
(
1 −

P
500

)
, 0 < P < 500

where P is the population at time t. When t = 0, P = 100.

Find the population P at time t.a Sketch the graph of P against t.b
Find the population P when the rate of growth is at a maximum.c
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3 Let P(t) be the population of a species of fish in a lake after t years. Suppose that P(t) is
modelled by a logistic differential equation with a growth parameter of r = 0.3 and a
carrying capacity of K = 10 000.

a Write down the logistic differential equation for this situation.
b If P(0) = 2500, solve the differential equation for P(t).
c Sketch the graph of P(t) against t.
d Find the number of fish in the lake after 5 years.
e Find the time that it will take for there to be 5000 fish in the lake.

4 A population of wasps is growing according to the logistic differential equation, where
P is the number of wasps after t months. If the carrying capacity is 500 and the growth
parameter is 0.1, what is the maximum possible growth rate for the population?

5 A population of bacteria grows according to the differential equation

dP
dt

= 0.05P(1 − 0.001P), P0 = 300, 0 < P < 1000

Find the population P at time t.

6 Suppose that t weeks after the start of an epidemic in a certain community, the number
of people who have caught the disease, P(t), is given by the logistic function

P(t) =
2000

5 + 395e−
4t
5

a How many people had the disease when the epidemic began?
b Approximately how many people in total will get the disease?
c When was the disease spreading most rapidly?
d How fast was the disease spreading at the peak of the epidemic?
e At what rate was the disease spreading when 300 people had caught the disease?

7 Consider the differential equation
dP
dt

= 0.01P
(
1 −

P
1000

)
. For each of the following

cases, solve the differential equation and sketch the graph of P against t:

a P0 = 1500 and P > 1000 b P0 = 200 and 0 < P < 1000 c P0 = 1000

8 A population of rabbits grows in a way described by the logistic differential equation

dP
dt

= 0.1P
(
1 −

P
25 000

)
where P is the number of rabbits after t months, and the initial population is P0 = 2000.

a Solve the differential equation for P.
b How many rabbits are there after:

i 6 months ii 5 years?
c After how many months is the population increasing most rapidly?
d How long does it take for the population to reach 20 000?
e Sketch the graph of P against t.
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9 Consider the differential equation
dy
dx

= −

(
1 −

y
K1

)(
1 −

y
K2

)
where K1 and K2 are positive constants. Taking K1 = 5 and K2 = 10, solve the
differential equation for each of the following cases:

y(0) = 20, y > 10a y(0) = 8, 5 < y < 10b y(0) = 3, 0 < y < 5c

11F Separation of variables
A first-order differential equation is separable if it can be written in the form

dy
dx

= f (x) g(y)

Divide both sides by g(y) (for g(y) , 0):

1
g(y)

dy
dx

= f (x)

Integrate both sides with respect to x:∫
f (x) dx =

∫ 1
g(y)

dy
dx

dx

=
∫ 1

g(y)
dy

If
dy
dx

= f (x) g(y), then
∫

f (x) dx =
∫ 1

g(y)
dy.

Solve the differential equation
dy
dx

= e2x(1 + y2).

Example 19

Solution
First we write the equation in the form∫

f (x) dx =
∫ 1

g(y)
dy∫

e2x dx =
∫ 1

1 + y2 dyi.e.

Integrating gives
1
2

e2x + c1 = tan−1(y) + c2

Solve for y:

tan−1(y) =
1
2

e2x + c (where c = c1 − c2)

y = tan
(1
2

e2x + c
)

∴
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508 Chapter 11: Di�erential equations

Find the solution of the differential equation

dy
dx

=
sin2 x

y2

that also satisfies y(0) = 1.

Example 20

Solution
First we write the equation in the form∫

f (x) dx =
∫ 1

g(y)
dy∫

sin2 x dx =
∫

y2 dyi.e.

Left-hand side
We use the trigonometric identity cos(2x) = 1 − 2 sin2 x, which transforms to

sin2 x =
1
2
(
1 − cos(2x)

)
∫

sin2 x dx =
1
2

∫
1 − cos(2x) dx∴

=
1
2

(
x −

1
2

sin(2x)
)

+ c1

Right-hand side∫
y2 dy =

y3

3
+ c2

General solution
We now obtain

1
2

(
x −

1
2

sin(2x)
)

+ c1 =
y3

3
+ c2

1
2

(
x −

1
2

sin(2x)
)

=
y3

3
+ c (where c = c2 − c1)∴

Particular solution
By substituting y(0) = 1, we find that c = −

1
3

. Hence

1
2

(
x −

1
2

sin(2x)
)

=
y3

3
−

1
3

Making y the subject:

y3 = 3
(

1
2
(
x − 1

2 sin(2x)
)

+ 1
3

)
y =

3
√

3
2
(
x − 1

2 sin(2x)
)

+ 1∴
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A tank contains 30 litres of a solution of a chemical in water. The concentration of the
chemical is reduced by running pure water into the tank at a rate of 1 litre per minute
and allowing the solution to run out of the tank at a rate of 2 litres per minute. The tank
contains x litres of the chemical at time t minutes after the dilution starts.

a Show that
dx
dt

=
−2x

30 − t
.

b Find the general solution of this differential equation.
c Find the fraction of the original chemical still in the tank after 20 minutes.

Example 21

Solution
a At time t minutes, the volume of solution in the tank is 30 − t litres, since solution is

flowing out at 2 litres per minute and water is flowing in at 1 litre per minute.

At time t minutes, the fraction of the solution which is the chemical is
x

30 − t
.

Hence the rate of flow of the chemical out of the tank is 2 ·
x

30 − t
.

Therefore
dx
dt

=
−2x

30 − t
.

b Using separation of variables, we have∫ 1
30 − t

dt =
∫ −1

2x
dx

− loge(30 − t) + c1 = − 1
2 loge x + c2∴

loge x = 2 loge(30 − t) + c (where c = 2c2 − 2c1)∴

Let A0 be the initial amount of chemical in the solution.
Thus x = A0 when t = 0, and therefore

c = loge(A0) − 2 loge(30) = loge

( A0

900

)
Hence

loge x = 2 loge(30 − t) + loge

( A0

900

)
loge x = loge

( A0

900
(30 − t)2

)
x =

A0

900
(30 − t)2∴

c When t = 20, x =
1
9

A0. The amount of chemical is one-ninth of the original amount.

Notes on separation of variables

� We observe that differential equations of the form
dy
dx

= g(y) can also be solved by

separation of variables if g(y) , 0. The solution will be given by
∫ 1

g(y)
dy =

∫
1 dx.

� When undertaking separation of variables, be careful that you do not lose solutions when

dividing. For example, the differential equation
dy
dx

= y − 2 has a constant solution y = 2.
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510 Chapter 11: Di�erential equations 11F

Exercise 11FSkill-
sheet

1Example 19 Find the general solution of each of the following:

a
dy
dx

= yx, y > 0 b
dy
dx

=
x
y

c
4
x2

dy
dx

= y, y > 0 d
dy
dx

=
1
xy

2 Determine the general solution of the differential equation

dy
dx

= xy2

using separation of variables. First consider what happens if y = 0 as a separate case.

3 Determine the general solution of the differential equation

dy
dx

= y sin x − sin x

using separation of variables. First consider what happens if y = 1 as a separate case.

4 Determine the general solution of the differential equation

dy
dx

= 2x(1 − y)2

using separation of variables. First consider what happens if y = 1 as a separate case.

5 aExample 20 Solve the differential equation
dy
dx

= −
x
y

, given that y(1) = 1.

b Solve the differential equation
dy
dx

=
y
x

, given that y(1) = 1.

c Sketch the graphs of both solutions on the one set of axes.

6 Solve (1 + x2)
dy
dx

= 4xy if y = 2 when x = 1.

7 Find the equation of the curve which satisfies the differential equation
dy
dx

=
x
y

and

passes through the point (2, 3).

8 Solve the differential equation
dy
dx

=
x + 1
3 − y

and describe the solution curves.

9 Find the general solution of the differential equation y2 dy
dx

=
1
x3 .

10 Find the general solution of the differential equation x3 dy
dx

= y2(x − 3), y , 0.

11 Find the general solution of each of the following:
dy
dx

= y(1 + ex)a
dy
dx

= 9x2yb
4
y3

dy
dx

=
1
x

c

dy
dx

=
loge x

yx
d

dy
dx

= yxex2e
dy
dx

= 2y2x
√

1 − x2f

12 Solve each of the following differential equations:

y
dy
dx

= 1 + x2, y(0) = 1a x2 dy
dx

= cos2 y, y(1) =
π

4
b
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11F 11G Di�erential equations with related rates 511

13 Find the general solution of the differential equation
dy
dx

=
x2 − x
y2 − y

.

14Example 21 A tank contains 50 litres of a solution of a chemical in water. The concentration of the
chemical is reduced by running pure water into the tank at a rate of 2 litres per minute
and allowing the solution to run out of the tank at a rate of 4 litres per minute. The tank
contains x litres of the chemical at time t minutes after the dilution starts.

a Show that
dx
dt

=
−4x

50 − 2t
.

b Find the general solution of this differential equation.
c Find the fraction of the original chemical still in the tank after 10 minutes.

15 Bacteria in a tank of water increase at a rate proportional to the number present. Water
is drained out of the tank, initially containing 100 litres, at a steady rate of 2 litres per
hour. Let N be the number of bacteria present at time t hours after the draining starts.

a Show that
dN
dt

= kN −
2N

100 − 2t
.

b If k = 0.6 and at t = 0, N = N0, find in terms of N0 the number of bacteria after
24 hours.

16 Solve the differential equation x
dy
dx

= y + x2y, given that y = 2
√

e when x = 1.

17 Find y in terms of x if
dy
dx

= (1 + y)2 sin2 x cos x and y = 2 when x = 0.

11G Di�erential equations with related rates
In Chapter 8, the concept of related rates was introduced. This is a useful technique for
constructing and solving differential equations in a variety of situations.

For the variables x, y and t, it is known that
dx
dt

= tan t and y = 3x.

a Find
dy
dt

as a function of t.

b Find the solution of the resulting differential equation.

Example 22

Solution
a We are given that y = 3x and

dx
dt

= tan t.

Using the chain rule:
dy
dt

=
dy
dx

dx
dt

dy
dt

= 3 tan t∴

b
dy
dt

=
3 sin t
cos t

Let u = cos t. Then
du
dt

= − sin t.

y = −3
∫ 1

u
du∴

= −3 loge |u| + c

y = −3 loge |cos t| + c∴
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512 Chapter 11: Di�erential equations

An inverted cone has height h cm and radius length r cm.
It is being filled with water, which is flowing from a tap
at k litres per minute. The depth of water in the cone is
x cm at time t minutes.

Construct an appropriate differential equation for
dx
dt

and
solve it, given that initially the cone was empty.

x cm

h cm

2r cm
Example 23

Solution
Let V cm3 be the volume of water at time t minutes.

Since k litres is equal to 1000k cm3, the given rate of change is
dV
dt

= 1000k, where k > 0.

To find an expression for
dx
dt

, we can use the chain rule:

dx
dt

=
dx
dV

dV
dt

(1)

To find
dx
dV

, we first need to establish the relationship between x and V .

The formula for the volume of a cone gives

V =
1
3
πy2x (2)

where y cm is the radius length of the surface when the depth is x cm.

By similar triangles:
y
r

=
x
h

y =
rx
h

∴

V =
1
3
π ·

r2x2

h2 · x (substitution into (2))So

V =
πr2

3h2 · x
3∴

dV
dx

=
πr2

h2 · x
2 (by differentiation)∴

dx
dV

=
h2

πr2 ·
1
x2∴

dx
dt

=
h2

πr2 ·
1
x2 · 1000k (substitution into (1))So

dx
dt

=
1000kh2

πr2 ·
1
x2 where k > 0∴

x

h
y

r
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11G Di�erential equations with related rates 513

To solve this differential equation:

dt
dx

=
πr2

1000kh2 · x
2

t =
πr2

1000kh2

∫
x2 dx∴

=
πr2

1000kh2 ·
x3

3
+ c

t =
πr2x3

3000kh2 + c∴

The cone was initially empty, so x = 0 when t = 0, and therefore c = 0.

t =
πr2x3

3000kh2∴

x3 =
3000kh2t
πr2∴

Hence x =
3

√
3000kh2t
πr2 is the solution of the differential equation.

Using the TI-Nspire
� Use menu > Calculus > Di�erential Equation Solver and complete as shown.
� Solve for x in terms of t.

Using the Casio ClassPad
� InM, enter and highlight the differential

equation t′ =
πr2

1000kh2 × x2.

� Select Interactive > Advanced > dSolve.
� Tap Include condition.
� Enter x for Inde var and t for Depe var.
� Enter the condition t(0) = 0. (You must

select t from the abc keyboard.) Tap OK .
� Copy the answer to the next entry line and

solve for x.
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514 Chapter 11: Di�erential equations 11G

Exercise 11GSkill-
sheet

1 Construct, but do not solve, a differential equation for each of the following:

a An inverted cone with depth 50 cm and radius 25 cm is initially full of water, which
drains out at 0.5 litres per minute. The depth of water in the cone is h cm at time

t minutes. (Find an expression for
dh
dt

.)

b A tank with a flat bottom and vertical sides has a constant horizontal cross-section
of A m2. The tank has a tap in the bottom through which water is leaving at a rate
of c
√

h m3 per minute, where h m is the height of the water in the tank and c is a
constant. Water is being poured into the tank at a rate of Q m3 per minute. (Find an

expression for
dh
dt

.)

c Water is flowing at a constant rate of 0.3 m3 per hour into a tank. At the same time,
water is flowing out through a hole in the bottom of the tank at the rate of 0.2

√
V m3

per hour, where V m3 is the volume of the water in the tank at time t hours. It is
known that V = 6πh, where h m is the height of the water at time t. (Find an

expression for
dh
dt

.)

d A cylindrical tank 4 m high with base radius 1.5 m is initially full of water. The
water starts flowing out through a hole at the bottom of the tank at the rate of
√

h m3 per hour, where h m is the depth of water remaining in the tank after t hours.

(Find an expression for
dh
dt

.)

2Example 22 For the variables x, y and t, it is known that
dx
dt

= sin t and y = 5x.

a Find
dy
dt

as a function of t.

b Find the solution of the resulting differential equation.

3Example 23 A conical tank has a radius length at the top equal to its height. Water, initially with a
depth of 25 cm, leaks out through a hole in the bottom of the tank at the rate of 5

√
h cm3

per minute, where the depth is h cm at time t minutes.

a Construct a differential equation expressing
dh
dt

as a
function of h, and solve it.

b Hence find how long it will take for the tank to empty.

h cm
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11G 11G Di�erential equations with related rates 515

4 A cylindrical tank is lying on its side.
The tank has a hole in the top, and
another in the bottom so that the water
in the tank leaks out. The depth of
water is x m at time t minutes and

dx
dt

=
−0.025

√
x

A

where A m2 is the surface area of the
water at time t minutes.

6 m

4 m
x m

a Construct the differential equation expressing
dx
dt

as a function of x only.

b Solve the differential equation given that initially the tank was full.
c Find how long it will take to empty the tank.

5 A spherical drop of water evaporates so that the volume remaining is V mm3 and the
surface area is A mm2 when the radius is r mm at time t seconds.

Given that
dV
dt

= −2A2:

a Construct the differential equation expressing
dr
dt

as a function of r.

b Solve the differential equation given that the initial radius was 2 mm.
c Sketch the graph of A against t and the graph of r against t.

6 A water tank of uniform cross-sectional area A cm2 is being filled by a pipe which
supplies Q litres of water every minute. The tank has a small hole in its base through
which water leaks at a rate of kh litres every minute, where h cm is the depth of water in
the tank at time t minutes. Initially the depth of the water is h0 cm.

a Construct the differential equation expressing
dh
dt

as a function of h.

b Solve the differential equation if Q > kh0.

c Find the time taken for the depth to reach
Q + kh0

2k
.

7 A tank has the shape of an inverted cone with a height of 1 m and a top radius of 1 m.

a First suppose that the tank is initially empty and that water flows into the tank at a
rate of 0.1 m3 per minute. Let h m be the depth of water in the tank after t minutes.

i Find a formula for the rate of change of the depth of water in the tank (in metres
per minute) when the depth of water is h m.

ii Find a formula for the depth of water in the tank (in metres) after t minutes.

b Now suppose that the tank is initially full and that water begins to flow out of the
tank at a rate of 0.1

√
t m3 per minute, where t is the time in minutes since the tank

began to empty. Find a formula for the depth of water in the tank (in metres) after
t minutes.
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516 Chapter 11: Di�erential equations

11H Using a definite integral to solve a di�erential equation
There are many situations in which an exact solution to a differential equation

dy
dx

= f (x) is
not required. Indeed, in some cases it may not even be possible to obtain an exact solution.
However, we can find an approximate solution by numerically evaluating a definite integral.

Using antidi�erentiation
For a differential equation of the form

dy
dx

= f (x), consider the problem of finding the value
of y when x = b, given that we know the value of y when x = a.

For the differential equation
dy
dx

= x2 + 2, given that y = 7 when x = 1, find y when x = 3.

Example 24

Solution
dy
dx

= x2 + 2

y =
x3

3
+ 2x + c∴

Since y = 7 when x = 1, we have

7 =
1
3

+ 2 + c

c =
14
3

∴

y =
x3

3
+ 2x +

14
3

∴

When x = 3:

y =
1
3
× 33 + 2 × 3 +

14
3

=
59
3

Using a definite integral
Again, consider a differential equation of the form

dy
dx

= f (x), and suppose that we know the
value of y when x = a. We have

dy
dx

= f (x)

y = F(x) + c where F is an antiderivative of f

y(a) = F(a) + c substituting y = y(a) when x = a

c = y(a) − F(a)

y = F(x) − F(a) + y(a)∴

Using the fundamental theorem of calculus, we obtain

y =
∫ x

a
f (t) dt + y(a)
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11H Using a definite integral to solve a di�erential equation 517

For a differential equation of the form
dy
dx

= f (x), with y = y(a) when x = a, the values
of y can be found using

y =
∫ x

a
f (t) dt + y(a)

Use a definite integral for each of the following:

a Solve the differential equation
dy
dx

= x2 + 2 at x = 3, given that y = 7 at x = 1.

b Solve the differential equation
dy
dx

= cos x at x =
π

4
, given that y = 1 at x = 0.

Example 25

Solution

When x = 3:

y =
∫ 3

1
t2 + 2 dt + 7

=

[ t3

3
+ 2t

]3

1
+ 7

=
1
3
× 33 + 2 × 3 −

(1
3

+ 2
)

+ 7

=
59
3

a When x =
π

4
:

y =
∫ π

4
0

cos t dt + 1

=
[
sin t

]π4
0 + 1

= sin
(
π

4

)
+ 1

=
1
√

2
+ 1 =

2 +
√

2
2

b

This idea is very useful for solving a differential equation that cannot be antidifferentiated,
because we can use numerical methods to approximate the definite integral.

Solve the differential equation f ′(x) =
1
√

2π
e−

1
2 x2

at x = 1, given that f (0) = 0.5.

Give your answer correct to four decimal places.

Example 26

Solution
Calculus methods are not available for this differential equation and, since an approximate
answer is acceptable, the use of a CAS calculator is appropriate.

The fundamental theorem of calculus gives

f (x) =
∫ x

0

1
√

2π
e−

1
2 t2

dt + 0.5

f (1) =
∫ 1

0

1
√

2π
e−

1
2 t2

dt + 0.5So

The required answer is 0.8413, correct to four decimal places.
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518 Chapter 11: Di�erential equations 11H

Exercise 11H

1Example 25 For each of the following, use a definite integral to find the required value:

a
dy
dx

= sin(2x) and y = 2 when x =
π

2
. Find y when x =

3π
4

.

b
dy
dx

= e2x and y = 3 when x = 1. Find y when x = 2.

c
dy
dx

=
2

4 − x2 and y = 2 when x = 1. Find y when x =
3
2

.

2Example 26 For each of the following, use a calculator to find values correct to four decimal places:

a
dy
dx

=
√

cos x and y = 1 when x = 0. Find y when x =
π

4
.

b
dy
dx

=
1

√
cos x

and y = 1 when x = 0. Find y when x =
π

4
.

c
dy
dx

= loge(x2) and y = 2 when x = 1. Find y when x = e.

d
dy
dx

=
√

loge x and y = 2 when x = 1. Find y when x = e.

11I Using Euler’s method to solve a di�erential equation
In this section we discuss a method of finding an approximate solution to a differential
equation. This is done by finding a sequence of points (x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn)
that lie on a curve that approximates the solution curve of the given differential equation.

Linear approximation to a curve
From the diagram, we have

f (x + h) − f (x)
h

≈ f ′(x) for small h

Rearranging this equation gives

f (x + h) ≈ f (x) + h f ′(x)

This is shown on the diagram. The line ` is a tangent
to y = f (x) at the point with coordinates (x, f (x)).

This gives an approximation to the curve y = f (x) in
that the y-coordinate of B is an approximation to the
y-coordinate of A on the graph of y = f (x).

x

(x + h, f(x + h))

(x, f(x))

x

h

B

A ℓ

x + h

y = f(x)

hf  ′(x)

O

y
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11I Using Euler’s method to solve a di�erential equation 519

The start of the process
For example, consider the differential equation

f ′(x) = x2 − 2x with f (3) = 0

We start with the point (x0, y0) = (3, 0).

The graph shown is a section of the solution curve for the
differential equation. In this case, we are taking h = 0.1,
and so f (x + h) ≈ f (x) + h f ′(x) gives

f (3.1) ≈ 0 + 0.1 × 3 = 0.3

So the next point in the sequence is (x1, y1) = (3.1, 0.3).

Note that the actual value of f (3.1) is
961
3000

≈ 0.32.

x

y = f(x)

(3, 0)
3.1

(3.1, 0.3)
0.1 × 3

961
30003.1, 

ℓ

The general process
This process can be repeated to generate a longer
sequence of points.

We start again at the beginning. Consider the
differential equation

dy
dx

= g(x) with y(x0) = y0

Then x1 = x0 + h and y1 = y0 + hg(x0).

x

(x1, y1)

hg(x0)

y0

x0 x1

h

O

y Solution curve
ℓ

The process is now applied repeatedly
to approximate the value of the function
at x2, x3, . . . .

The result is:

x2 = x1 + h and y2 = y1 + hg(x1)

x3 = x2 + h and y3 = y2 + hg(x2)

and so on.

The point (xn, yn) is found in the nth step of the
iterative process.

x
h h hO

y
Solution curve

(x1, y1)

(x0, y0)

(x2, y2)

(x3, y3)

This iterative process can be summarised as follows.

Formula for Euler’s method

If
dy
dx

= g(x) with y = y0 when x = x0, then

xn+1 = xn + h and yn+1 = yn + hg(xn)
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520 Chapter 11: Di�erential equations

The accuracy of this formula, and the associated process, can be checked against the values
obtained through the solution of the differential equation, where the result is known.

Euler’s method for f′(x) = x2 − 2x
The table gives the sequence of points (xi, yi),
0 ≤ i ≤ 10, when Euler’s method is applied to
the differential equation

f ′(x) = x2 − 2x with f (3) = 0

using a step size of h = 0.1.

The solution to this differential equation is

f (x) =
x3

3
− x2

The values f (xi) of the solution are given in
the last column of the table.

As can be seen, the y-values obtained using
Euler’s method are reasonably close to the
actual values of the solution.

i xi yi g(xi) f (xi)

0 3 0 3 0

1 3.1 0.3 3.41 0.320

2 3.2 0.641 3.84 0.683

3 3.3 1.025 4.29 1.089

4 3.4 1.454 4.76 1.541

5 3.5 1.93 5.25 2.042

6 3.6 2.455 5.76 2.592

7 3.7 3.031 6.29 3.194

8 3.8 3.66 6.84 3.851

9 3.9 4.344 7.41 4.563

10 4.0 5.085 5.333

A smaller step size h would yield a better approximation. For example, using h = 0.01, the
approximation to f (4) is 5.3085. The percentage error for x = 4 using h = 0.1 is 4.65%, but
using h = 0.01 the error is 0.46%.

Let
dy
dx

= 2x with y(0) = 3. Apply Euler’s method to find y4 using steps of 0.1.

Example 27

Solution
Here g(x) = 2x and h = 0.1.

Step 0 x0 = 0 and y0 = 3

Step 1 x1 = 0 + 0.1 = 0.1 and y1 = 3 + 0.1 × 2 × 0 = 3

Step 2 x2 = 0.1 + 0.1 = 0.2 and y2 = 3 + 0.1 × 2 × 0.1 = 3.02

Step 3 x3 = 0.2 + 0.1 = 0.3 and y3 = 3.02 + 0.1 × 2 × 0.2 = 3.06

Step 4 x4 = 0.3 + 0.1 = 0.4 and y4 = 3.06 + 0.1 × 2 × 0.3 = 3.12

General version of Euler’s method
We can apply Euler’s method to a more general type of differential equation.

General formula for Euler’s method

If
dy
dx

= g(x, y) with y = y0 when x = x0, then

xn+1 = xn + h and yn+1 = yn + hg(xn, yn)
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11I Using Euler’s method to solve a di�erential equation 521

Let
dy
dx

= x2y with y(1) = 4. Apply Euler’s method to find y3 using steps of 0.2.

Example 28

Solution
Here g(x, y) = x2y and h = 0.2.

Step 0 x0 = 1 and y0 = 4

Step 1 x1 = 1 + 0.2 = 1.2 and y1 = 4 + 0.2 × 12 × 4 = 4.8

Step 2 x2 = 1.2 + 0.2 = 1.4 and y2 = 4.8 + 0.2 × (1.2)2 × 4.8 = 6.1824

Step 3 x3 = 1.4 + 0.2 = 1.6 and y3 = 6.1824 + 0.2 × (1.4)2 × 6.1824 = 8.6059 . . .

Using a calculator for Euler’s method

Use a CAS calculator to approximate the solution of the differential equation
dy
dx

= esin x

with y(0) = 1:

using step size 0.1a using step size 0.01.b

Example 29

Using the TI-Nspire
� Choose a Lists & Spreadsheet application.
� Add the column headings as shown.
� Enter 0 in A1, 0 in B1, 1 in C1, and = esin(b1) in D1.

� Fill down in Column D. To do this, select
cell D1 and then menu > Data > Fill. Use
the arrow keys to go down to cell D10 and
press enter .

a Now in A2, enter = a1 + 1.
In B2, enter = b1 + 0.1.
In C2, enter = c1 + 0.1 × d1.
Select A2, B2 and C2 and fill down to
row 10.

b In B2, enter = b1 + 0.01.
In C2, enter = c1 + 0.01 × d1.
Select B2 and C2 and fill down to row 10.
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522 Chapter 11: Di�erential equations

Using the Casio ClassPad
Inm, select Sequence . Tap the Recursive tab and choose the setting .̂

a To generate the x-values with step size 0.1:

� Tap on an+1 and enter an + 0.1. (Note that an can
be selected from the menu bar.)

� Tap on a0 and enter the initial value 0.

To generate the y-values:

� Tap on bn+1 and enter bn + 0.1esin(an).
� Tap on b0 and enter the initial value 1.

To view the table of values:

� First tap8 to set the table to 15 rows.

� Tick all boxes and tap the table icon(.
� Resize to view all 15 rows.

b To generate the x-values with step size 0.01:

� Tap on an+1 and enter an + 0.01.
� Tap on a0 and enter the initial value 0.

To generate the y-values:

� Tap on bn+1 and enter bn + 0.01esin(an).
� Tap on b0 and enter the initial value 1.

To view the table of values:

� Tick all boxes and tap the table icon(.
� Resize to view all 15 rows.

Note: By moving the cursor to a particular cell in the
table, you can see a fuller expression of the
value in that cell at the bottom of the window.
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Using pseudocode for Euler’s method
We now describe Euler’s method as an algorithm using pseudocode. As an example, we will
apply Euler’s method to solve the differential equation

dy
dx

=
x

2y
with y(x0) = y0

First we define the function for the right-hand side of the differential equation.

define g(x, y):

return
x

2y

Now we define a function euler(x0, y0, h, n), where h is the step size and n is the number of
iterations to perform.

define euler(x0, y0, h, n):

x← x0

y← y0

for i from 1 to n

y← y + h × g(x, y)

x← x + h

print i, (x, y)

end for

return

This function will print the values of (x1, y1), (x2, y2), . . . , (xn, yn).

Note: For instructions on how to implement Euler’s method as a program, see the coding
appendices in the Interactive Textbook.

Exercise 11I

1Example 27 For each of the following, apply Euler’s method to find the indicated yn-value using the
given step size h. Give each answer correct to four decimal places.

a
dy
dx

= cos x, given y0 = y(0) = 1, find y3 using h = 0.1

b
dy
dx

=
1
x2 , given y0 = y(1) = 0, find y4 using h = 0.01

c
dy
dx

=
√

x, given y0 = y(1) = 1, find y3 using h = 0.1

d
dy
dx

=
1

x2 + 3x + 2
, given y0 = y(0) = 0, find y3 using h = 0.01
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2Example 29 Solve each of the following differential equations using:

i a calculus method
ii a spreadsheet or a program with a step size of 0.01.

a
dy
dx

= cos x, given y(0) = 1, find y(1) b
dy
dx

=
1
x2 , given y(1) = 0, find y(2)

c
dy
dx

=
√

x, given y(1) = 1, find y(2) d
dy
dx

=
1

x2 + 3x + 2
, given y(0) = 0, find y(2)

3 Solve the differential equation
dy
dx

= sec2 x at x = 1, given that y = 2 when x = 0, using:

a a calculus method
b a spreadsheet or a program with a step size of:

i 0.1 ii 0.05 iii 0.01

4Example 28 Use Euler’s method with steps of size 0.1 to find an approximate value of y at x = 0.5

if
dy
dx

= y3 and y = 1 when x = 0.

5 Use Euler’s method with steps of size 0.1 to find an approximate value of y at x = 1

if
dy
dx

= y2 + 1 and y = 1 when x = 0.

6 Use Euler’s method with steps of size 0.1 to find an approximate value of y at x = 1

if
dy
dx

= xy and y = 1 when x = 0.

7 Use Euler’s method with steps of size 0.1 to find an approximate value of y at x = 1

if
dy
dx

= y − x and y =
1
2

when x = 0.

8 The graph for the standard normal distribution is given by the rule

f (x) =
1
√

2π
e−

1
2 x2

Probabilities can be found using

Pr(Z ≤ z) =
∫ z

−∞
f (x) dx =

1
2

+
∫ z

0
f (x) dx

Let y = Pr(Z ≤ z). Then
dy
dz

= f (z) with y(0) =
1
2

.

a Use Euler’s method with a step size of 0.1 to find an approximation for Pr(Z ≤ z),
where z = 0, 0.1, 0.2, . . . , 0.9, 1.

b Compare the values found in a with the probabilities found using a CAS calculator.
c Use a step size of 0.01 to obtain an approximation for:

i Pr(Z ≤ 0.5) ii Pr(Z ≤ 1)
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11J Slope field for a di�erential equation
Consider a differential equation of the form

dy
dx

= f (x).

The slope field of this differential equation assigns to each point P(x, y) in the plane (for
which x is in the domain of f ) the number f (x), which is the gradient of the solution curve
through P.

For the differential equation
dy
dx

= 2x, a gradient value

is assigned for each point P(x, y).

� For (1, 3) and (1, 5), the gradient value is 2.
� For (−2, 5) and (−2,−2), the gradient value is −4.

A slope field can, of course, be represented in a graph.

The slope field for
dy
dx

= 2x is shown opposite.

When initial conditions are given, a particular solution
curve can be drawn.

Here the solution curve with y = 2 when x = 0 has been

superimposed on the slope field for
dy
dx

= 2x.

Changing the initial conditions changes the particular
solution.

A slope field is defined similarly for any differential

equation of the form
dy
dx

= f (x, y).

a Use a CAS calculator to plot the slope field for the differential equation
dy
dx

= y.

b On the plot of the slope field, plot the graphs of the particular solutions for:

i y = 2 when x = 0 ii y = −3 when x = 1.

Example 30

Using the TI-Nspire
a � In a Graphs application, select menu >

Graph Entry/Edit > Di� Eq.
� Enter the differential equation as y1′ = y1.
� Press enter to plot the slope field.

Note: The notation must match when
entering the differential equation.
(Here y1 is used for y.)
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526 Chapter 11: Di�erential equations

b In the graph entry line, you have the option of adding several initial conditions.
� To show the graph entry line, press tab or double click in an open area.
� Arrow up to y1′ and add the first set of initial conditions: x = 0 and y1 = 2.
� Click on the ‘plus’ icon to add more initial conditions: x = 1 and y1 = −3.
� Select OK to plot the solution curves for the given initial conditions.

Note: You can grab the initial point and drag to show differing initial conditions.

Using the Casio ClassPad
a � Open the menum.
� Select Di�EqGraph .
� Tap on y′ and type y.
� Tap the slope field iconO.

b � Tap the IC window.
� Enter the initial conditions as shown.
� Tap the slope field iconO.
� Tap6 to adjust the window.
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The differential equation
dy
dx

= y from Example 30 can be solved as follows.

Note that y = 0 is a constant solution. For y , 0, we can write
dx
dy

=
1
y

.

Then x = loge |y| + c, which implies |y| = ex−c = Aex.

� If y = 2 when x = 0, then A = 2 and therefore y = 2ex, as y > 0.
� If y = −3 when x = 1, then A = 3e−1 and therefore y = −3ex−1, as y < 0.

Exercise 11J

1 For each of the following differential equations, sketch a slope field graph and the
solution curve for the given initial conditions, using −3 ≤ x ≤ 3 and −3 ≤ y ≤ 3.
Use calculus to solve the differential equation in each case.

a
dy
dx

= 3x2, given y = 0 when x = 1

b
dy
dx

= sin x, given y = 0 when x = 0 (use radian mode)

c
dy
dx

= e−2x, given y = 1 when x = 0

d
dy
dx

= y2, given y = 1 when x = 1

e
dy
dx

= y2, given y = −1 when x = 1

f
dy
dx

= y(y − 1), given y = −1 when x = 0

g
dy
dx

= y(y − 1), given y = 2 when x = 0

h
dy
dx

= tan x, given y = 0 when x = 0

2 For each of the following differential equations, sketch a slope field graph and the
solution curve for the given initial conditions, using −3 ≤ x ≤ 3 and −3 ≤ y ≤ 3.

a
dy
dx

= −
x
y

, given that at x = 0, y = ±1

b
dy
dx

= −
x
y

, given that at x =
1
2

, y =

√
3

2
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Assign-
ment

Nrich

Chapter summary

� A differential equation is an equation that contains at least one derivative.
� A solution of a differential equation is a function that satisfies the differential equation

when it and its derivatives are substituted. The general solution is the family of functions
that satisfy the differential equation.

Di�erential equation Method of solution
dy
dx

= f (x)
dy
dx

= f (x)

∴ y =
∫

f (x) dx

= F(x) + c, where F′(x) = f (x)

d2y
dx2 = f (x)

d2y
dx2 = f (x)

dy
dx

=
∫

f (x) dx

= F(x) + c, where F′(x) = f (x)

∴ y =
∫

F(x) + c dx

= G(x) + cx + d, where G′(x) = F(x)

dy
dx

= g(y)
dy
dx

= g(y)

dx
dy

=
1

g(y)

∴ x =
∫ 1

g(y)
dy

= F(y) + c, where F′(y) =
1

g(y)
dy
dx

= f (x) g(y)
dy
dx

= f (x) g(y)

f (x) =
1

g(y)
dy
dx∫

f (x) dx =
∫ 1

g(y)
dy

� Slope field
The slope field of a differential equation

dy
dx

= f (x, y)

assigns to each point P(x, y) in the plane (for which f (x, y) is defined) the number f (x, y),
which is the gradient of the solution curve through P.
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� Euler’s method
For

dy
dx

= g(x) with y = y0 when x = x0:

x1 = x0 + h and y1 = y0 + hg(x0)

x2 = x1 + h and y2 = y1 + hg(x1)

x3 = x2 + h and y3 = y2 + hg(x2)
...

...
xn+1 = xn + h and yn+1 = yn + hg(xn)

x

hg(x0)

O

y

h

solution
curve

correct solution

(x0, y0)

(x1, y1)

The sequence of points (x0, y0), (x1, y1), (x2, y2), . . . , (xn, yn) approximate a solution curve
for the differential equation.

Technology-free questions

1 Find the general solution of each of the following differential equations:
dy
dx

=
x2 + 1

x2 , x > 0a
1
y
·

dy
dx

= 10, y > 0b

d2y
dt2 =

1
2
(
sin(3t) + cos(2t)

)
, t ≥ 0c

d2y
dx2 =

e−x + ex

e2xd

dy
dx

=
3 − y

2
, y < 3e

dy
dx

=
3 − x

2
f

2 Find the solution of the following differential equations under the stated conditions:

a
dy
dx

= π cos(2πx), if y = −1 when x =
5
2

b
dy
dx

= cot(2x), if y = 0 when x =
π

4

c
dy
dx

=
1 + x2

x
, if y = 0 when x = 1

d
dy
dx

=
x

1 + x2 , if y(0) = 1

e 6
dy
dx

= −3y, if y = e−1 when x = 2

f
d2x
dt2 = −10, given that

dx
dt

= 4 when x = 0 and that x = 0 when t = 4

3 a If y = x sin x is a solution of the differential equation x2 d2y
dx2 − kx

dy
dx

+ (x2 −m)y = 0,
find k and m.

b Show that y = xe2x is a solution of the differential equation
d2y
dx2 −

dy
dx
− 3e2x = 2xe2x.

4 The curve with equation y = f (x) passes through the point P
(
π

4
, 3

)
, with a gradient of 1

at this point, and f ′′(x) = 2 sec2(x).

Find the gradient of the curve at x =
π

6
.a Find f ′′

(
π

6

)
.b
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5 Find all real values of n such that y = enx is a solution of
d2y
dx2 − 2

dy
dx
− 15y = 0.

6 Let
dy
dx

= (y + 4)2 + 9 and y0 = y(0) = 0.

a Solve this differential equation, giving y as a function of x.
b Using Euler’s method with a step size of 0.2, find y1.

7 a Use Euler’s method to find y2 if
dy
dx

=
1
x2 , given that y0 = y(1) =

1
2

and h = 0.1.

b Solve the differential equation.
c Find the value of y approximated by y2.

8 Consider the differential equation
dy
dx

= 4 + y2.

a Sketch the slope field of this differential equation for y = −2,−1, 0, 1, 2 at
x = −2,−1, 0, 1, 2.

b If y = −1 when x = 2, solve the differential equation, giving your answer with y in
terms of x.

9 A container of water is heated to boiling point (100◦C) and then placed in a room with a
constant temperature of 25◦C. After 10 minutes, the temperature of the water is 85◦C.

Newton’s law of cooling gives
dT
dt

= −k(T − 25), where T ◦C is the temperature of the
water at time t minutes after being placed in the room.

a Find the value of k.
b Find the temperature of the water 15 minutes after it was placed in the room.

10 Solve the differential equation
dy
dx

= 2x
√

25 − x2, for −5 ≤ x ≤ 5, given that y = 25
when x = 4.

11 If y = ex sin(x) is a solution to the differential equation
d2y
dx2 + k

dy
dx

+ y = ex cos(x), find
the value of k.

12 If a hemispherical bowl of radius 6 cm contains water to a depth of x cm, the volume,
V cm3, is given by

V =
π

3
x2(18 − x)

If water is poured into the bowl at the rate of 3 cm3/s, construct the differential equation

expressing
dx
dt

as a function of x.

13 A circle has area A cm2 and circumference C cm at time t seconds. If the area is

increasing at a rate of 4 cm2/s, construct the differential equation expressing
dC
dt

as
a function of C.

14 A population of size x is decreasing according to the law
dx
dt

= −
x

100
, where t denotes

the time in days. If initially the population is of size x0, find to the nearest day how long
it takes for the size of the population to be halved.
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15 Some students put 3 kilograms of soap powder into a water fountain. The soap powder
totally dissolved in the 1000 litres of water, thus forming a solution in the fountain.
When the soap solution was discovered, clean water was run into the fountain at the
rate of 40 litres per minute. The clean water and the solution in the fountain mixed
instantaneously and the excess mixture was removed immediately at a rate of 40 litres
per minute. If S kilograms was the amount of soap powder in the fountain t minutes
after the soap solution was discovered, construct and solve the differential equation to fit
this situation.

16 A metal rod that is initially at a temperature of 10◦C is placed in a warm room. After

t minutes, the temperature, θ◦C, of the rod is such that
dθ
dt

=
30 − θ

20
.

a Solve this differential equation, expressing θ in terms of t.
b Calculate the temperature of the rod after one hour has elapsed, giving the answer

correct to the nearest degree.
c Find the time taken for the temperature of the rod to rise to 20◦C, giving the answer

correct to the nearest minute.

17 A fire broke out in a forest and, at the moment of detection, covered an area of
0.5 hectares. From an aerial surveillance, it was estimated that the fire was spreading at
a rate of increase in area of 2% per hour. If the area of the fire at time t hours is denoted
by A hectares:

a Write down the differential equation that relates
dA
dt

and A.

b What would be the area of the fire 10 hours after it is first detected?
c When would the fire cover an area of 3 hectares (to the nearest quarter-hour)?

18 A flexible beam is supported at its ends, which are at the same horizontal level and
at a distance L apart. The deflection, y, of the beam, measured downwards from the
horizontal through the supports, satisfies the differential equation

16
d2y
dx2 = L − 3x, 0 ≤ x ≤ L

where x is the horizontal distance from one end. Find where the deflection has its
greatest magnitude, and also the value of this magnitude.

19 A vessel in the shape of a right circular cone has a
vertical axis and a semi-vertex angle of 30◦.

There is a small hole at the vertex so that liquid leaks
out at the rate of 0.05

√
h m3 per hour, where h m is

the depth of liquid in the vessel at time t hours.

Given that the liquid is poured into this vessel at a
constant rate of 2 m3 per hour, set up (but do not
attempt to solve) a differential equation for h.

h m30°
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Multiple-choice questions

1 The acceleration, a m/s2, of an object moving in a straight line at time t seconds is given
by a = sin(2t). If the object has an initial velocity of 4 m/s, then v is equal to

2 cos(2t) + 4A 2 cos(2t) + 2B
∫ t

0
sin(2x) dx + 4C

−
1
2

cos(2t) + 4D
∫ t

0
sin(2x) dx − 4E

2 If f ′(x) = x2 − 1 and f (1) = 3, an approximate value of f (1.4) using Euler’s method
with a step size of 0.2 is

3.88A 3.688B 3.6̇C 3.088D 3E

3 Euler’s method with a step size of 0.1 is used to approximate the solution of the

differential equation
dy
dx

= x loge x with y(2) = 2. When x = 2.2, the value obtained for y
is closest to

2.314A 2.294B 2.291C 2.287D 2.277E

4 Assume that
dy
dx

=
2 − y

4
and that x = 3 when y = 1. The value of x when y =

1
2

is
given by

x =
∫ 1

2
1

4
2 − t

dt + 3A x =
∫ 1

2
3

4
2 − t

dt + 1B x =
∫ 1

2
1

2 − t
4

dt + 3C

x =
∫ 1

2
3

2 − t
4

dt + 1D x =
∫ 1

2
1

2 − y
4

dy + 3E

5 If
dy
dx

=
2x + 1

4
and y = 0 when x = 2, then y is equal to

1
4

(x2 + x) +
1
2

A
x(x + 1)

4
B

1
4

(x2 + x) + 2C

1
4

(x2 + x − 1)D
1
4

(x2 + x − 6)E

6 If
dy
dx

=
1
5

(y − 1)2 and y = 0 when x = 0, then y is equal to

5
1 − x

− 5A 1 +
5

x + 5
B

x
x + 5

C
5

x + 5
− 1D 1 −

5
x

E

7 The solution of the differential equation
dy
dx

= e−x2
, where y = 4 when x = 1, is

y =
∫ 4

1
e−x2

dxA y =
∫ 4

1
e−x2

dx + 4B y =
∫ x

1
e−u2

du − 4C

y =
∫ x

1
e−u2

du + 4D y =
∫ x

4
e−u2

du + 1E

8 For which one of the following differential equations is y = 2xe2x a solution?
dy
dx
− 2y = 0A

d2y
dx2 − 2

dy
dx

= 0B
dy
dx

+ 2y
dy
dx

= 0C

d2y
dx2 − 4y = e2xD

d2y
dx2 − 4y = 8e2xE
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9 Water is leaking from an initially full container with a depth of 40 cm. The volume,
V cm3, of water in the container is given by V = π(5h2 + 225h), where h cm is the depth
of the water at time t minutes.

If water leaks out at the rate of
5
√

h
2h + 45

cm3/min, then the rate of change of the depth is

−
√

h
π(2h + 45)2 cm/minA 5π(2h + 45) cm/minB

√
h

π(2h + 45)2 cm/minC

1
5π(2h + 45)

cm/minD
−1

5π(2h + 45)
cm/minE

10 The solution of the differential equation
dy
dx

= y, where y = 2 when x = 0, is

y = e2xA y = e
x
2B y = 2exC y =

1
2

exD y = loge

( x
2

)
E

11 The rate at which a particular disease spreads through a population of 2000 cattle
is proportional to the product of the number of infected cows and the number of
non-infected cows. Initially four cows are infected. If N denotes the number of infected
cows at time t days, then a differential equation to describe this is

dN
dt

= kN(2000 − N)A
dN
dt

= k(4 − N)(200 − N)B
dN
dt

= kN(200 − N)C

dN
dt

= kN2(2000 − N2)D
dN
dt

=
k(2000 − N)

2000
E

12 Consider the differential equation
dy
dx

=
1

x2 + 2x + 2
with y0 = 2 and x0 = 0. Using

Euler’s method with a step size of 0.1, the value of y2, correct to three decimal places, is

2.123A 2.675B 2.567C 1.987D 2.095E

13 The differential equation that best matches the slope
field shown is

A
dy
dx

= x B
dy
dx

= −x C
dy
dx

= x2

D
dy
dx

= −x2 E
dy
dx

=
x
y

14 The amount of a salt Q in a tank at time t is given by the differential equation

dQ
dt

= 3 −
5

5 − t
with Q0 = Q(0) = 10

Using Euler’s method with a step size of 0.5 in the values of t, the value of Q correct to
three decimal places when t = 1 is

12.123A 9.675B 8.967C 10.587D 11.944E
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15 Water containing 3 grams of salt per litre flows at the rate of 20 litres per minute into
a tank that initially contained 100 litres of pure water. The concentration of salt in the
tank is kept uniform by stirring, and the mixture flows out of the tank at the rate of
10 litres per minute. If M grams is the amount of salt in the tank t minutes after the
water begins to flow, the differential equation relating M to t is

dM
dt

= 60 −
10M

100 − 10t
A

dM
dt

= 3 −
10M

100 − 10t
B

dM
dt

= 60 −
10M

100 + 10t
C

dM
dt

= 20 − 10tD
dM
dt

= −
10M

100 + 10t
E

16 The differential equation that best matches the
slope field shown is

A
dy
dx

=
y
x

B
dy
dx

= −
x2

y

C
dy
dx

=
x − 2y
2y + x

D
dy
dx

= −
y
x

E
dy
dx

=
x
y

Extended-response questions

1 The percentage of radioactive carbon-14 in living matter decays, from the time of death,
at a rate proportional to the percentage present.

a If x% is present t years after death:

i Construct an appropriate differential equation.
ii Solve the differential equation, given that carbon-14 has a half-life of 5760 years,

i.e. 50% of the original amount will remain after 5760 years.

b A sample was taken from a tree buried by volcanic ash and was found to contain
45.1% of the amount of carbon-14 present in living timber. How long ago did the
eruption occur?

c Sketch the graph of x against t.

2 Two chemicals, A and B, are put together in a solution, where they react to form a
compound, X. The rate of increase of the mass, x kg, of X is proportional to the product
of the masses of unreacted A and B present at time t minutes. It takes 1 kg of A and
3 kg of B to form 4 kg of X. Initially, 2 kg of A and 3 kg of B are put together in
solution, and 1 kg of X forms in 1 minute.

Set up the appropriate differential equation expressing
dx
dt

as a function of x.a

Solve the differential equation.b Find the time taken to form 2 kg of X.c
Find the mass of X formed after 2 minutes.d
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3 Newton’s law of cooling states that the rate of cooling of a body is proportional to the
excess of its temperature above that of its surroundings. The body has a temperature
of T ◦C at time t minutes, while the temperature of the surroundings is a constant TS

◦C.

a Construct a differential equation expressing
dT
dt

as a function of T .

b A teacher pours a cup of coffee at lunchtime. The lunchroom is at a constant
temperature of 22◦C, while the coffee is initially 72◦C. The coffee becomes
undrinkable (too cold) when its temperature drops below 50◦C. After 5 minutes, the
temperature of the coffee has fallen to 65◦C. Find correct to one decimal place:

i the length of time, after it was poured, that the coffee remains drinkable
ii the temperature of the coffee at the end of 30 minutes.

4 On a cattle station there were p head of cattle at time t years after 1 January 2015. The
population naturally increases at a rate proportional to p. Every year 1000 head of cattle
are withdrawn from the herd.

a Show that
dp
dt

= kp − 1000, where k is a constant.

b If the herd initially had 5000 head of cattle, find an expression for t in terms of k
and p.

c The population increased to 6000 head of cattle after 5 years.

i Show that 5k = loge

(6k − 1
5k − 1

)
.

ii Use a CAS calculator to find an approximation for the value of k.

d Sketch a graph of p against t.

5 In the main lake of a trout farm, the trout population is N at time t days after
1 January 2020. The number of trout harvested on a particular day is proportional to the
number of trout in the lake at that time. Every day 100 trout are added to the lake.

a Construct a differential equation with
dN
dt

in terms of N and k, where k is a constant.

b Initially the trout population was 1000. Find an expression for t in terms of k and N.
c The trout population decreases to 700 after 10 days. Use a CAS calculator to find an

approximation for the value of k.
d Sketch a graph of N against t.
e If the procedure at the farm remains unchanged, find the eventual trout population in

the lake.

6 A thin horizontal beam, AB, of length L cm, is bent under a load so that the deflection,
y cm at a point x cm from the end A, satisfies the differential equation

d2y
dx2 =

9
40L2 (3x − L), 0 ≤ x ≤ L

Given that the deflection of the beam and its inclination to the horizontal are both zero
at A, find:

a where the maximum deflection occurs
b the magnitude of the maximum deflection.
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7 The water in a hot-water tank cools at a rate which is proportional to T − T0, where
T ◦C is the temperature of the water at time t minutes and T0

◦C is the temperature of the
surrounding air. When T = 60, the water is cooling at 1◦C per minute. When switched
on, the heater supplies sufficient heat to raise the water temperature by 2◦C each minute
(neglecting heat loss by cooling). If T = 20 when the heater is switched on and T0 = 20:

a Construct a differential equation for
dT
dt

as a function of T (where both heating and
cooling are taking place).

b Solve the differential equation.
c Find the temperature of the water 30 minutes after turning on the heater.
d Sketch the graph of T against t.

8 a The rate of growth of a population of iguanas on an island is
dW
dt

= 0.04W, where
W is the number of iguanas alive after t years. Initially there were 350 iguanas.

i Solve the differential equation.
ii Sketch the graph of W against t.
iii Give the value of W to the nearest integer when t = 50.

b If
dW
dt

= kW and there are initially 350 iguanas, find the value of k for which the
population remains constant.

c A more realistic population model for the iguanas is determined by the logistic

differential equation
dW
dt

= (0.04 − 0.00005W)W. Initially there were 350 iguanas.

i Solve the differential equation.
ii Sketch the graph of W against t.
iii Find the population after 50 years.

9 A hospital patient is receiving a drug at a constant rate of R mg per hour through a drip.
At time t hours, the amount of the drug in the patient is x mg. The rate of loss of the
drug from the patient is proportional to x.

a When t = 0, x = 0:

i Show that
dx
dt

= R − kx, where k is a positive constant.

ii Find an expression for x in terms of t, k and R.

b If R = 50 and k = 0.05:

i Sketch the graph of x against t.
ii Find the time taken for there to be 200 mg in the patient, correct to two decimal

places.

c When the patient contains 200 mg of the drug, the drip is disconnected.

i Assuming that the rate of loss remains the same, find the time taken for the
amount of the drug in the patient to fall to 100 mg, correct to two decimal places.

ii Sketch the graph of x against t, showing the rise to 200 mg and fall to 100 mg.
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12
Kinematics

Objectives
I To model motion in a straight line.

I To use calculus to solve problems involving motion in a straight line with constant or
variable acceleration.

I To use graphical methods to solve problems involving motion in a straight line.

I To use techniques for solving di�erential equations to solve problems of the form

v = f(x), a = f(v) and a = f(x)

where x, v and a represent position, velocity and acceleration respectively.

Kinematics is the study of motion without reference to the cause of the motion.

In this chapter, we will consider the motion of a particle in a straight line only. Such motion
is called rectilinear motion. When referring to the motion of a particle, we may in fact be
referring to an object of any size. However, for the purposes of studying its motion, we can
assume that all forces acting on the object, causing it to move, are acting through a single
point. Hence we can consider the motion of a car or a train in the same way as we would
consider the motion of a dimensionless particle.

When studying motion, it is important to make a distinction between vector quantities and
scalar quantities:

Vector quantities Position, displacement, velocity and acceleration must be specified by
both magnitude and direction.

Scalar quantities Distance, time and speed are specified by their magnitude only.

Since we are considering movement in a straight line, the direction of each vector quantity is
simply specified by the sign of the numerical value.
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538 Chapter 12: Kinematics

12A Position, velocity and acceleration
Position
The position of a particle moving in a straight line is determined by its distance from a
fixed point O on the line, called the origin, and whether it is to the right or left of O. By
convention, the direction to the right of the origin is considered to be positive.

PO

x

Consider a particle which starts at O and begins to move. The position of the particle at any
instant can be specified by a real number x. For example, if the unit is metres and if x = −3,
the position is 3 m to the left of O; while if x = 3, the position is 3 m to the right of O.

Sometimes there is a rule that enables the position at any instant to be calculated. In this case,
we can view x as being a function of t. Hence x(t) is the position at time t.

For example, imagine that a stone is dropped from the top of a vertical cliff 45 metres
high. Assume that the stone is a particle travelling in a straight line. Let x(t) metres be the
downwards position of the particle from O, the top of the cliff, t seconds after the particle is
dropped. If air resistance is neglected, then an approximate model for the position is

x(t) = 5t2 for 0 ≤ t ≤ 3

A particle moves in a straight line so that its position, x cm, relative to O at time t seconds
is given by x = t2 − 7t + 6, t ≥ 0.

a Find its initial position. b Find its position at t = 4.

Example 1

Solution
a At t = 0, x = +6, i.e. the particle is 6 cm to the right of O.
b At t = 4, x = (4)2 − 7(4) + 6 = −6, i.e. the particle is 6 cm to the left of O.

Displacement and distance
The displacement of a particle is defined as the change in position of the particle.

It is important to distinguish between the scalar quantity distance and the vector quantity
displacement (which has a direction). For example, consider a particle that starts at O and
moves first 5 units to the right to point P, and then 7 units to the left to point Q.

1 2 3 4 5 60−1−2−3−4

POQ

The difference between its final position and its initial position is −2. So the displacement of
the particle is −2 units. However, the distance it has travelled is 12 units.
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12A Position, velocity and acceleration 539

Velocity and speed
You are already familiar with rates of change through your studies in Mathematical Methods.

Average velocity
The average rate of change of position with respect to time is average velocity.

A particle’s average velocity for a time interval [t1, t2] is given by

average velocity =
change in position

change in time
=

x2 − x1

t2 − t1
where x1 is the position at time t1 and x2 is the position at time t2.

Instantaneous velocity
The instantaneous rate of change of position with respect to time is instantaneous velocity.
We will refer to the instantaneous velocity as simply the velocity.

If a particle’s position, x, at time t is given as a function of t, then the velocity of the particle
at time t is determined by differentiating the rule for position with respect to time.

If x is the position of a particle at time t, then

velocity v =
dx
dt

Note: Velocity is also denoted by ẋ or ẋ(t).

Velocity is a vector quantity. For motion in a straight line, the direction is specified by the
sign of the numerical value.

If the velocity is positive, the particle is moving to the right, and if it is negative, the particle
is moving to the left. A velocity of zero means the particle is instantaneously at rest.

Speed and average speed
Speed is a scalar quantity; its value is always non-negative.

� Speed is the magnitude of the velocity.

� Average speed for a time interval [t1, t2] is given by
distance travelled

t2 − t1

Units of measurement
Common units for velocity (and speed) are:

1 metre per second = 1 m/s = 1 m s−1

1 centimetre per second = 1 cm/s = 1 cm s−1

1 kilometre per hour = 1 km/h = 1 km h−1
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540 Chapter 12: Kinematics

The first and third units are connected in the following way:

1 km/h = 1000 m/h =
1000

60 × 60
m/s =

5
18

m/s

∴ 1 m/s =
18
5

km/h

A particle moves in a straight line so that its position, x cm, relative to O at time t seconds
is given by x = 3t − t3, for t ≥ 0. Find:

its initial positiona its position when t = 2b
its initial velocityc its velocity when t = 2d
its speed when t = 2e when and where the velocity is zero.f

Example 2

Solution
a When t = 0, x = 0. The particle is initially at O.

b When t = 2, x = 3 × 2 − 8 = −2. The particle is 2 cm to the left of O.

c Given x = 3t − t3, the velocity is

v =
dx
dt

= 3 − 3t2

When t = 0, v = 3 − 3 × 0 = 3.

The velocity is 3 cm/s. The particle is initially moving to the right.

d When t = 2, v = 3 − 3 × 4 = −9.

The velocity is −9 cm/s. The particle is moving to the left.

e When t = 2, the speed is 9 cm/s. (The speed is the magnitude of the velocity.)

f v = 0 implies 3 − 3t2 = 0

3(1 − t2) = 0

∴ t = 1 or t = −1

But t ≥ 0 and so t = 1. When t = 1, x = 3 × 1 − 1 = 2.

At time t = 1 second, the particle is at rest 2 cm to the right of O.

Note: The motion of the particle can now be shown on a number line.

x
−4−5 −3 −2 −1 0 1 2 3 4 5

t = 2 
x = −2

t = 1
x = 2
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12A Position, velocity and acceleration 541

The motion of a particle moving along a straight line is defined by x(t) = t2 − t, where x m
is the position of the particle relative to O at time t seconds (t ≥ 0). Find:

a the average velocity of the particle in the first 3 seconds
b the distance travelled by the particle in the first 3 seconds
c the average speed of the particle in the first 3 seconds.

Example 3

Solution
a Average velocity =

x(3) − x(0)
3

=
6 − 0

3
= 2 m/s

b To find the distance travelled in the first 3 seconds, it is useful to show the motion of the
particle on a number line. The critical points are where it starts and where and when it
changes direction.

The particle starts at the origin. The turning points occur when the velocity is zero.

We have v =
dx
dt

= 2t − 1. Therefore v = 0 when t = 1
2 .

The particle changes direction when t = 1
2 and x = ( 1

2 )2 − 1
2 = − 1

4 .

When 0 ≤ t < 1
2 , v is negative and when t > 1

2 , v is positive.

x
−4−5−6 −3 −2 −1 0 1 2 3 4 5

t = 
1
2

1
4

x = −

From the number line, the particle travels a distance of 1
4 m in the first 1

2 second. It then
changes direction. When t = 3, the particle’s position is x(3) = 6 m to the right of O, so
the particle has travelled a distance of 6 + 1

4 = 6 1
4 m from when it changed direction.

The total distance travelled by the particle in the first 3 seconds is 1
4 + 6 1

4 = 6 1
2 m.

c Average speed =
distance travelled

time taken

= 6 1
2 ÷ 3

=
13
2
÷ 3

=
13
6

m/s
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542 Chapter 12: Kinematics

Acceleration
The acceleration of a particle is the rate of change of its velocity with respect to time.

� Average acceleration for the time interval [t1, t2] is given by
v2 − v1

t2 − t1
, where v2 is the

velocity at time t2 and v1 is the velocity at time t1.

� Instantaneous acceleration a =
dv
dt

=
d
dt

(dx
dt

)
=

d2x
dt2

Note: The second derivative
d2x
dt2 is also denoted by ẍ or ẍ(t).

Acceleration may be positive, negative or zero. Zero acceleration means the particle is
moving at a constant velocity.

The direction of motion and the acceleration need not coincide. For example, a particle
may have a positive velocity, indicating it is moving to the right, but a negative acceleration,
indicating it is slowing down.

Also, although a particle may be instantaneously at rest, its acceleration at that instant need
not be zero. If acceleration has the same sign as velocity, then the particle is ‘speeding up’.
If the sign is opposite, the particle is ‘slowing down’.

The most commonly used units for acceleration are cm/s2 and m/s2.

An object travelling in a horizontal line has position x metres, relative to an origin O, at
time t seconds, where x = −4t2 + 8t + 12, t ≥ 0.

a Sketch the position–time graph, showing key features.
b Find the velocity at time t seconds and sketch the velocity–time graph.
c Find the acceleration at time t seconds and sketch the acceleration–time graph.
d Represent the motion of the object on a number line.
e Find the displacement of the object in the third second.
f Find the distance travelled in the first 3 seconds.

Example 4

Solution
a x = −4t2 + 8t + 12, for t ≥ 0

(3, 0)

(1, 16)

(0, 12)

O

x

t
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12A Position, velocity and acceleration 543

b v =
dx
dt

= −8t + 8, for t ≥ 0

(1, 0)

(0, 8)

O

v

t

When t ∈ [0, 1), the velocity is positive.
When t > 1, the velocity is negative.

c a =
dv
dt

= −8, for t ≥ 0

(0, −8)

O

a

t

The acceleration is −8 m/s2.
The direction of the acceleration is
always to the left.

d Starting point: When t = 0, x = 12.

Turning point: When v = −8t + 8 = 0, t = 1 and x = 16.

When 0 ≤ t < 1, v > 0 and when t > 1, v < 0. That is, when 0 ≤ t < 1, the object is
moving to the right, and when t > 1, the object is moving to the left.

x
−24 −20 −16 −12 −8 −4 4 8 12 16 20 24 280

t = 1
x = 16

e The displacement of the object in the third second is given by

x(3) − x(2) = 0 − 12

= −12

The displacement is 12 metres to the left.

f From the position–time graph in a, the distance travelled in the first 3 seconds is
4 + 16 = 20 m.
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544 Chapter 12: Kinematics

An object moves in a horizontal line such that its position, x m, relative to a fixed point at
time t seconds is given by x = −t3 + 3t + 2, t ≥ 0. Find:

a when the position is zero, and the velocity and acceleration at that time
b when the velocity is zero, and the position and acceleration at that time
c when the acceleration is zero, and the position and velocity at that time
d the distance travelled in the first 3 seconds.

Example 5

Solution

Now x = −t3 + 3t + 2

v = ẋ = −3t2 + 3

a = ẍ = −6t

(The acceleration is variable in this case.)

a x = 0 when −t3 + 3t + 2 = 0

t3 − 3t − 2 = 0

(t − 2)(t + 1)2 = 0

Therefore t = 2, since t ≥ 0.

At t = 2, v = −3 × 22 + 3 = −9.
At t = 2, a = −6 × 2 = −12.

When the position is zero, the velocity is −9 m/s and the acceleration is −12 m/s2.

b v = 0 when −3t2 + 3 = 0

t2 = 1

Therefore t = 1, since t ≥ 0.

At t = 1, x = −13 + 3 × 1 + 2 = 4.
At t = 1, a = −6 × 1 = −6.

When the object is at rest, the position is 4 m and the acceleration is −6 m/s2.

c a = 0 when −6t = 0

∴ t = 0

At t = 0, x = 2 and v = 3.

When the object has zero acceleration, the position is 2 m and the velocity is 3 m/s.

d
x

−16 −14 −12 −10 −8 −4 −2 2 4−6 0

t = 3
x = −16

t = 0 t = 1
x = 2 x = 4

The distance travelled is 2 + 4 + 16 = 22 metres.
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12A Position, velocity and acceleration 545

Using antidi�erentiation
In the previous examples, we were given a rule for the position of a particle in terms of time,
and from it we derived rules for the velocity and the acceleration by differentiation.

We may be given a rule for the acceleration of a particle in terms of time, and by using
antidifferentiation and some additional information, we can deduce rules for both velocity
and position.

The acceleration of a particle moving in a straight line, in m/s2, is given by

d2y
dt2 = cos(πt)

at time t seconds. The particle’s initial velocity is 3 m/s and its initial position is y = 6.
Find its position, y m, at time t seconds.

Example 6

Solution
Find the velocity by antidifferentiating the acceleration:

dy
dt

=
∫ d2y

dt2 dt

=
∫

cos(πt) dt

=
1
π

sin(πt) + c

When t = 0,
dy
dt

= 3, so c = 3.

dy
dt

=
1
π

sin(πt) + 3∴

Antidifferentiating again:

y =
∫ dy

dt
dt

=
∫ 1
π

sin(πt) + 3 dt

= −
1
π2 cos(πt) + 3t + d

When t = 0, y = 6:

6 = −
1
π2 + d

d =
1
π2 + 6∴

y = −
1
π2 cos(πt) + 3t +

1
π2 + 6Hence
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546 Chapter 12: Kinematics

A cricket ball projected vertically upwards from ground level experiences a gravitational
acceleration of 9.8 m/s2. If the initial speed of the cricket ball is 25 m/s, find:

a its speed after 2 seconds b its height after 2 seconds
c the greatest height d the time it takes to return to ground level.

Example 7

Solution
A frame of reference is required. The path of the cricket ball is considered as a vertical
straight line with origin O at ground level. Vertically up is taken as the positive direction.

We are given a = −9.8, v(0) = 25 and x(0) = 0.

a a =
dv
dt

= −9.8

v =
∫ dv

dt
dt =

∫
−9.8 dt = −9.8t + c

Since v(0) = 25, we have c = 25 and therefore

v = −9.8t + 25

When t = 2, v = −9.8 × 2 + 25 = 5.4.
The speed of the cricket ball is 5.4 m/s after 2 seconds.

O

positive

b v =
dx
dt

= −9.8t + 25

x =
∫
−9.8t + 25 dt = −4.9t2 + 25t + d

Since x(0) = 0, we have d = 0 and therefore

x = −4.9t2 + 25t

When t = 2, x = −19.6 + 50 = 30.4.
The ball is 30.4 m above the ground after 2 seconds.

c The greatest height is reached when the ball is instantaneously at rest,

i.e. when v = −9.8t + 25 = 0, which implies t =
25
9.8

.

When t =
25
9.8

, x = −4.9 ×
( 25
9.8

)2
+ 25 ×

25
9.8
≈ 31.89.

The greatest height reached is 31.89 m.

d The cricket ball reaches the ground again when x = 0.

x = 0 implies 25t − 4.9t2 = 0

t(25 − 4.9t) = 0

∴ t = 0 or t =
25
4.9

The ball returns to ground level after
25
4.9
≈ 5.1 seconds.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



12A Position, velocity and acceleration 547

A particle travels in a line such that its velocity, v m/s, at time t seconds is given by

v = 2 cos
(1
2

t −
π

4

)
, t ≥ 0

The initial position of the particle is −2
√

2 m, relative to O.

a i Find the particle’s initial velocity.
ii Find the particle’s maximum and minimum velocities.
iii For 0 ≤ t ≤ 4π, find the times when the particle is instantaneously at rest.
iv Determine the period of the motion.
Use this information to sketch the graph of velocity against time.

b i Find the particle’s position at time t.
ii Find the particle’s maximum and minimum position.
iii Find when the particle first passes through the origin.
iv Find the relation between the particle’s velocity and position.

c i Find the particle’s acceleration at time t.
ii Find the particle’s maximum and minimum acceleration.
iii Find the relation between the particle’s acceleration and position.
iv Find the relation between the particle’s acceleration and velocity.

d Use the information obtained in a–c to describe the motion of the particle.

Example 8

Solution
a i v = 2 cos

(1
2

t −
π

4

)
At t = 0, v = 2 cos

(
−
π

4

)
=

2
√

2
=
√

2 m/s.

ii By inspection, vmax = 2 m/s and vmin = −2 m/s.

iii v = 0 implies

cos
(1
2

t −
π

4

)
= 0

1
2

t −
π

4
=
π

2
,

3π
2

, . . .

1
2

t =
3π
4

,
7π
4

, . . .

t =
3π
2

,
7π
2

, . . .

For 0 ≤ t ≤ 4π, the velocity is zero at t =
3π
2

and t =
7π
2

.

iv The period of v = 2 cos
(1
2

t −
π

4

)
is 2π ÷

1
2

= 4π seconds.
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548 Chapter 12: Kinematics

v = 2 cos
(1
2

t −
π

4

)
v

O
t

7π

(0, √2)

2
, 0

5π
2

, −2

3π
2

, 0

π
2

, 2

2

−2

(4π, √2)

b i x =
∫

v dt =
∫

2 cos
(1
2

t −
π

4

)
dt

Let u =
1
2

t −
π

4
. Then

du
dt

=
1
2

and so

x = 2
∫

2 cos u
du
dt

dt

= 4
∫

cos u du

= 4 sin u + c

x = 4 sin
(1
2

t −
π

4

)
+ c∴

Substituting x = −2
√

2 at t = 0:

−2
√

2 = 4 sin
(
−
π

4

)
+ c

−2
√

2 = 4 ×
(
−

1
√

2

)
+ c

c = 0∴

x = 4 sin
(1
2

t −
π

4

)
Hence

ii By inspection, xmax = 4 m and xmin = −4 m.

iii The particle passes through the origin when x = 0, which implies

sin
(1
2

t −
π

4

)
= 0

1
2

t −
π

4
= 0, π, 2π, . . .

1
2

t =
π

4
,

5π
4

,
9π
4

, . . .

t =
π

2
,

5π
2

,
9π
2

, . . .∴

Thus the particle first passes through the origin at t =
π

2
seconds.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



12A Position, velocity and acceleration 549

iv We have v = 2 cos
(1
2

t −
π

4

)
and x = 4 sin

(1
2

t −
π

4

)
.

Using the Pythagorean identity:

cos2
(1
2

t −
π

4

)
+ sin2

(1
2

t −
π

4

)
= 1

This gives( v
2

)2
+

( x
4

)2
= 1

v
2

= ±

√
1 −

x2

16

v
2

= ±
1
4

√
16 − x2

∴ v = ±
1
2

√
16 − x2

c i a =
dv
dt

=
d
dt

(
2 cos

(1
2

t −
π

4

))
∴ a = − sin

(1
2

t −
π

4

)
(using the chain rule)

ii By inspection, amax = 1 m/s2 and amin = −1 m/s2.

iii We have a = − sin
(1
2

t −
π

4

)
and x = 4 sin

(1
2

t −
π

4

)
.

Therefore a = −
x
4

.

iv We have a = − sin
(1
2

t −
π

4

)
and v = 2 cos

(1
2

t −
π

4

)
.

Using the Pythagorean identity again:

a2 +

( v
2

)2
= 1

a = ±

√
1 −

v2

4

∴ a = ±
1
2

√
4 − v2

d The particle oscillates between positions ±4 m, relative to O, taking 4π seconds for
each cycle. The particle’s velocity oscillates between ±2 m/s, and its acceleration
oscillates between ±1 m/s2.

Maximum and minimum acceleration occurs when the particle is at the maximum
distance from the origin; this is where the particle is instantaneously at rest.
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Exercise 12ASkill-
sheet

1Example 2

Example 3

The position of a particle travelling in a horizontal line, relative to a point O on the line,
is x metres at time t seconds. The position is described by x = 3t − t2, t ≥ 0.

a Find the position of the particle at times t = 0, 1, 2, 3, 4 and illustrate the motion of
the particle on a number line.

b Find the displacement of the particle in the fifth second.
c Find the average velocity in the first 4 seconds.
d Find the relation between velocity, v m/s, and time, t s.
e Find the velocity of the particle when t = 2.5.
f Find when and where the particle changes direction.
g Find the distance travelled in the first 4 seconds.
h Find the particle’s average speed for the first 4 seconds.

2Example 4 An object travelling in a horizontal line has position x metres, relative to an origin O, at
time t seconds, where x = −3t2 + 10t + 8, t ≥ 0.

a Sketch the position–time graph, showing key features.
b Find the velocity at time t seconds and sketch the velocity–time graph.
c Find the acceleration at time t seconds and sketch the acceleration–time graph.
d Represent the motion of the object on a number line for 0 ≤ t ≤ 6.
e Find the displacement of the object in the third second.
f Find the distance travelled in the first 3 seconds.

3Example 5 A particle travels in a straight line through a fixed point O. Its position, x metres,
relative to O is given by x = t3 − 9t2 + 24t, t ≥ 0, where t is the time in seconds after
passing O. Find:

a the values of t for which the velocity is instantaneously zero
b the acceleration when t = 5
c the average velocity of the particle during the first 2 seconds
d the average speed of the particle during the first 4 seconds.

4 A particle moves in a straight line. Relative to a fixed point O on the line, the particle’s
position, x m, at time t seconds is given by x = t(t − 3)2. Find:

a the velocity of the particle after 2 seconds
b the values of t for which the particle is instantaneously at rest
c the acceleration of the particle after 4 seconds.

5 A particle moving in a straight line has position given by x = 2t3 − 4t2 − 100. Find the
time(s) when the particle has zero velocity.
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12A 12A Position, velocity and acceleration 551

6 A particle moving in a straight line passes through a fixed point O. Its velocity, v m/s, at
time t seconds after passing O is given by v = 4 + 3t − t2. Find:

a the maximum value of v b the distance of the particle from O when t = 4.

7 A particle moves in a straight line such that, at time t seconds after passing through a
fixed point O, its velocity, v m/s, is given by v = 3t2 − 30t + 72. Find:

a the initial acceleration of the particle
b the two values of t for which the particle is instantaneously at rest
c the distance moved by the particle during the interval between these two values
d the total distance moved by the particle between t = 0 and t = 7.

8Example 6 A particle moving in a straight line passes through a fixed point O with velocity 8 m/s.
Its acceleration, a m/s2, at time t seconds after passing O is given by a = 12 − 6t. Find:

a the velocity of the particle when t = 2
b the displacement of the particle from O when t = 2.

9 A particle moving in a straight line passes through a fixed point O on the line with
a velocity of 30 m/s. The acceleration, a m/s2, of the particle at time t seconds after
passing O is given by a = 13 − 6t. Find:

a the velocity of the particle 3 seconds after passing O

b the time taken to reach the maximum distance from O in the initial direction
of motion

c the value of this maximum distance.

10Example 7 An object is dropped down a well. It takes 2 seconds to reach the bottom. During its
fall, the object travels under a gravitational acceleration of 9.8 m/s2.

a Find an expression in terms of t for:

i the velocity, v m/s ii the position, x m, measured from the top of the well.

b Find the depth of the well.
c At what speed does the object hit the bottom of the well?

11Example 8 An object travels in a line such that its velocity, v m/s, at time t seconds is given by

v = cos
( t
2

)
, t ∈ [0, 4π]. The initial position of the object is 0.5 m, relative to O.

a Find an expression for the position, x m, of the object in terms of t.
b Sketch the position–time graph for the motion, indicating clearly the values of t at

which the object is instantaneously at rest.
c Find an expression for the acceleration, a m/s2, of the object in terms of t.
d Find a relation (not involving t) between:

position and accelerationi position and velocityii
velocity and acceleration.iii
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552 Chapter 12: Kinematics 12A

12 A particle moves horizontally in a line such that its position, x m, relative to O at time

t seconds is given by x = t3 −
15
2

t2 + 12t + 10. Find:

a when and where the particle has zero velocity
b the average velocity during the third second
c the velocity at t = 2
d the distance travelled in the first 2 seconds
e the closest the particle comes to O.

13 An object moves in a line such that at time t seconds the acceleration, ẍ m/s2, is given

by ẍ = 2 sin
(1
2

t
)
. The initial velocity is 1 m/s.

a Find the maximum velocity.
b Find the time taken for the object to first reach the maximum velocity.

14 From a balloon ascending with a velocity of 10 m/s, a stone was dropped and reached
the ground in 12 seconds. Given that the gravitational acceleration is 9.8 m/s2, find:

a the height of the balloon when the stone was dropped
b the greatest height reached by the stone.

15 An object moves in a line with acceleration, ẍ m/s2, given by ẍ =
1

(2t + 3)2 . If the object

starts from rest at the origin, find the position–time relationship.

16 A particle moves in a line with acceleration, ẍ m/s2, given by ẍ =
2t

(1 + t2)2 . If the initial

velocity is 0.5 m/s, find the distance travelled in the first
√

3 seconds.

17 An object moves in a line with velocity, ẋ m/s, given by ẋ =
t

1 + t2 . The object starts
from the origin. Find:

a the initial velocity b the maximum velocity
c the distance travelled in the third second d the position–time relationship
e the acceleration–time relationship
f the average acceleration over the third second g the minimum acceleration.

18 An object moves in a horizontal line such that its position, x m, at time t seconds is
given by x = 2 +

√
t + 1. Find when the acceleration is −0.016 m/s2.

19 A particle moves in a straight line such that the position, x metres, of the particle
relative to a fixed origin at time t seconds is given by x = 2 sin t + cos t, for t ≥ 0.
Find the first value of t for which the particle is instantaneously at rest.

20 The acceleration of a particle moving in a straight line, in m/s2, at time t seconds is

given by
d2x
dt2 = 8 − e−t. If the initial velocity is 3 m/s, find the velocity when t = 2.
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12B Constant acceleration 553

12B Constant acceleration
If an object is moving due to a constant force (for example, gravity), then its acceleration is
constant. There are several useful formulas that apply in this situation.

Formulas for constant acceleration

For a particle moving in a straight line with constant acceleration a, we can use the
following formulas, where u is the initial velocity, v is the final velocity, s is the
displacement and t is the time taken:

v = u + at1 s = ut +
1
2

at22 v2 = u2 + 2as3 s =
1
2

(u + v)t4

Proof 1 We can write
dv
dt

= a

where a is a constant and v is the velocity at time t. By antidifferentiating with
respect to t, we obtain

v = at + c

where the constant c is the initial velocity. We denote the initial velocity by u, and
therefore v = u + at.

2 We now write
dx
dt

= v = u + at

where x is the position at time t. By antidifferentiating again, we have

x = ut +
1
2

at2 + d

where the constant d is the initial position. The particle’s displacement (change in
position) is given by s = x − d, and so we obtain the second equation.

3 Transform the first equation v = u + at to make t the subject:

t =
v − u

a

Now substitute this into the second equation:

s = ut +
1
2

at2

s =
u(v − u)

a
+

a(v − u)2

2a2

2as = 2u(v − u) + (v − u)2

= 2uv − 2u2 + v2 − 2uv + u2

= v2 − u2

4 Similarly, the fourth equation can be derived from the first and second equations.
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554 Chapter 12: Kinematics

These four formulas are very useful, but it must be remembered that they only apply when
the acceleration is constant.

When approaching problems involving constant acceleration, it is a good idea to list the
quantities you are given, establish which quantity or quantities you require, and then use the
appropriate formula. Ensure that all quantities are converted to compatible units.

An object is moving in a straight line with uniform acceleration. Its initial velocity
is 12 m/s and after 5 seconds its velocity is 20 m/s. Find:

a the acceleration
b the distance travelled during the first 5 seconds
c the time taken to travel a distance of 200 m.

Example 9

Solution
We are given u = 12, v = 20 and t = 5.

Find a using

v = u + at

20 = 12 + 5a

a = 1.6

The acceleration is 1.6 m/s2.

a Find s using

s = ut +
1
2

at2

= 12(5) +
1
2

(1.6)52 = 80

The distance travelled is 80 m.

b

Note: Since the object is moving in one direction, the distance travelled is equal to
the displacement.

c We are now given a = 1.6, u = 12 and s = 200.

s = ut +
1
2

at2Find t using

200 = 12t +
1
2
× 1.6 × t2

200 = 12t +
4
5

t2

1000 = 60t + 4t2

250 = 15t + t2

t2 + 15t − 250 = 0

(t − 10)(t + 25) = 0

t = 10 or t = −25∴

As t ≥ 0, the only allowable solution is t = 10.

The object takes 10 s to travel a distance of 200 m.
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12B Constant acceleration 555

A body is moving in a straight line with uniform acceleration and an initial velocity
of 12 m/s. If the body stops after 20 metres, find the acceleration of the body.

Example 10

Solution
We are given u = 12, v = 0 and s = 20.

Find a using

v2 = u2 + 2as

0 = 144 + 2 × a × 20

0 = 144 + 40a

a = −
144
40

∴

The acceleration is −
18
5

m/s2.

A stone is thrown vertically upwards from the top of a cliff which is 25 m high. The
velocity of projection of the stone is 22 m/s. Find the time it takes to reach the base of
the cliff. (Give answer correct to two decimal places.)

Example 11

Solution
Take the origin at the top of the cliff and vertically
upwards as the positive direction.

We are given s = −25, u = 22 and a = −9.8.

Find t using

s = ut + 1
2 at2

−25 = 22t + 1
2 × (−9.8) × t2

−25 = 22t − 4.9t2

Therefore

4.9t2 − 22t − 25 = 0

By the quadratic formula:

t =
22 ±

√
222 − 4 × 4.9 × (−25)

2 × 4.9

t = 5.429 . . . or t = −0.9396 . . .∴

positive

25 m

Cliff

O

But t ≥ 0, so the only allowable solution is t = 5.429 . . . .

It takes 5.43 seconds for the stone to reach the base of the cliff.
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Exercise 12BSkill-
sheet

1 An object with constant acceleration starts with a velocity of 15 m/s. At the end of the
eleventh second, its velocity is 48 m/s. What is its acceleration?

2 A car accelerates uniformly from 5 km/h to 41 km/h in 10 seconds. Express this
acceleration in:

km/h2a m/s2b

3Example 9 An object is moving in a straight line with uniform acceleration. Its initial velocity
is 10 m/s and after 5 seconds its velocity is 25 m/s. Find:

a the acceleration
b the distance travelled during the first 5 seconds
c the time taken to travel a distance of 100 m.

4Example 10 A body moving in a straight line has uniform acceleration and an initial velocity
of 20 m/s. If the body stops after 40 metres, find the acceleration of the body.

5 A particle starts from a fixed point O with an initial velocity of −10 m/s and a uniform
acceleration of 4 m/s2. Find:

a the displacement of the particle from O after 6 seconds
b the velocity of the particle after 6 seconds
c the time when the velocity is zero
d the distance travelled in the first 6 seconds.

6 aExample 11 A stone is thrown vertically upwards from ground level at 21 m/s. The acceleration
due to gravity is 9.8 m/s2.

i What is its height above the ground after 2 seconds?
ii What is the maximum height reached by the stone?

b If the stone is thrown vertically upwards from a cliff 17.5 m high at 21 m/s:

i How long will it take to reach the ground at the base of the cliff?
ii What is the velocity of the stone when it hits the ground?

7 A basketball is thrown vertically upwards with a velocity of 14 m/s. The acceleration
due to gravity is 9.8 m/s2. Find:

a the time taken by the ball to reach its maximum height
b the greatest height reached by the ball
c the time taken for the ball to return to the point from which it is thrown.
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8 A car sliding on ice is decelerating at the rate of 0.1 m/s2. Initially the car is travelling
at 20 m/s. Find:

a the time taken before it comes to rest
b the distance travelled before it comes to rest.

9 An object is dropped from a point 100 m above the ground. The acceleration due to
gravity is 9.8 m/s2. Find:

a the time taken by the object to reach the ground
b the velocity at which the object hits the ground.

10 An object is projected vertically upwards from a point 50 m above ground level.
(Acceleration due to gravity is 9.8 m/s2.) If the initial velocity is 10 m/s, find:

a the time the object takes to reach the ground (correct to two decimal places)
b the object’s velocity when it reaches the ground.

11 A book is pushed across a table and is subjected to a retardation of 0.8 m/s2 due to
friction. (Retardation is acceleration in the opposite direction to motion.) If the initial
speed of the book is 1 m/s, find:

a the time taken for the book to stop
b the distance over which the book slides.

12 A box is pushed across a bench and is subjected to a constant retardation, a m/s2, due
to friction. The initial speed of the box is 1.2 m/s and the box travels 3.2 m before
stopping. Find:

a the value of a

b the time taken for the box to come to rest.

13 A particle travels in a straight line with a constant velocity of 4 m/s for 12 seconds. It is
then subjected to a constant acceleration in the opposite direction for 20 seconds, which
returns the particle to its original position. Find the acceleration of the particle.

14 A child slides from rest down a slide 4 m long. The child undergoes constant
acceleration and reaches the end of the slide travelling at 2 m/s. Find:

a the time taken to go down the slide
b the acceleration which the child experiences.
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12C Velocity–time graphs
Velocity–time graphs are valuable when considering motion in a straight line.

Information from a velocity–time graph

� Acceleration is given by the gradient.
� Displacement is given by the signed area bounded by the graph and the t-axis.
� Distance travelled is given by the total area bounded by the graph and the t-axis.

A person walks east for 8 seconds at 2 m/s and then west for 4 seconds at 1.5 m/s. Sketch
the velocity–time graph for this journey and find the displacement from the start of the
walk and the total distance travelled.

Example 12

Solution
The velocity–time graph is as shown.

Distance travelled to the east
= 8 × 2 = 16 m

Distance travelled to the west
= 4 × 1.5 = 6 m

Displacement (signed area)
= 8 × 2 + 4 × (−1.5) = 10 m

Distance travelled (total area)
= 8 × 2 + 4 × 1.5 = 22 m

t

v

0 2

2

1

4 6 8 10 12

−1.5

Consider a particle moving in a straight line
with its motion described by the velocity–time
graph shown opposite.

The shaded area represents the total distance
travelled by the particle from t = 0 to t = b.

The signed area represents the displacement
(change in position) of the particle for this
time interval.

t

v

b
aO

Using integral notation to describe the areas yields the following:

� Distance travelled over the time interval [0, a] =
∫ a

0
v(t) dt

� Distance travelled over the time interval [a, b] = −
∫ b

a
v(t) dt

� Total distance travelled over the time interval [0, b] =
∫ a

0
v(t) dt −

∫ b

a
v(t) dt

� Displacement over the time interval [0, b] =
∫ b

0
v(t) dt
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12C Velocity–time graphs 559

The graph shows the motion of a particle.

a Describe the motion.
b Find the distance travelled.

Velocity is measured in m/s and time
in seconds.

t

v

(0, 10)

(10, 0) (17, 0)

(16, −2)(12, −2)

O

Example 13

Solution
a The particle decelerates uniformly from an initial velocity of 10 m/s. After 10 seconds,

it is instantaneously at rest before it accelerates uniformly in the opposite direction for
2 seconds, until its velocity reaches −2 m/s. It continues to travel in this direction with
a constant velocity of −2 m/s for a further 4 seconds. Finally, it decelerates uniformly
until it comes to rest after 17 seconds.

b Distance travelled =
( 1

2 × 10 × 10
)

+
( 1

2 × 2 × 2
)

+
(
4 × 2

)
+

( 1
2 × 1 × 2

)
= 61 m

A car travels from rest for 10 seconds, with uniform acceleration, until it reaches a speed
of 90 km/h. It then travels with this constant speed for 15 seconds and finally decelerates
at a uniform 5 m/s2 until it stops. Calculate the distance travelled from start to finish.

Example 14

Solution
First convert the given speed to standard units:

90 km/h = 90 000 m/h =
90 000
3600

m/s = 25 m/s

Now sketch a velocity–time graph showing the given
information.

The gradient of BC is −5 (deceleration):

gradient =
25

25 − c
= −5

−5(25 − c) = 25

−125 + 5c = 25

c = 30∴

t

v

A(10, 25)
B(25, 25)

C(c, 0)

O

Now calculate the distance travelled using the area of trapezium OABC:

area = 1
2 (15 + 30) × 25 = 562.5

The total distance travelled in 562.5 metres.
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A motorist is travelling at a constant speed of 120 km/h when he passes a stationary police
car. He continues at that speed for another 15 s before uniformly decelerating to 100 km/h
in 5 s. The police car takes off after the motorist the instant that he passes. It accelerates
uniformly for 25 s, by which time it has reached 130 km/h. It continues at that speed until
it catches up to the motorist. After how long does the police car catch up to the motorist
and how far has he travelled in that time?

Example 15

Solution
We start by representing the information on a
velocity–time graph.

The distances travelled by the motorist and the
police car will be the same, so the areas under
the two velocity–time graphs will be equal.
This fact can be used to find T , the time taken
for the police car to catch up to the motorist.

130

100

2015 25

120

t (s)

v (km/h)

police car

motorist

TO

Note: The factor
5
18

changes velocities from km/h to m/s.

The distances travelled (in metres) after T seconds are given by

Distance for motorist =
5
18

(
120 × 15 +

1
2

(120 + 100) × 5 + 100(T − 20)
)

=
5
18

(
1800 + 550 + 100T − 2000

)
=

5
18

(
100T + 350

)
Distance for police car =

5
18

(1
2
× 25 × 130 + 130(T − 25)

)
=

5
18

(
130T − 1625

)
When the police car catches up to the motorist:

100T + 350 = 130T − 1625

30T = 1975

T =
395

6
The police car catches up to the motorist after 65.83 s.

Distance for motorist =
5

18
(
100T + 350

)
where T =

395
6

∴

=
52 000

27
m

= 1.926 km

The motorist has travelled 1.926 km when the police car catches up.
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An object travels in a line. Its acceleration decreases uniformly from 0 m/s2 to −5 m/s2 in
15 seconds. If the initial velocity was 24 m/s, find:

a the velocity at the end of the 15 seconds
b the distance travelled in the 15 seconds.

Example 16

Solution
a The acceleration–time graph shows the uniform change in acceleration from 0 m/s2 to
−5 m/s2 in 15 seconds.

From the graph, we can write a = mt + c.

But m =
−5
15

= −
1
3

and c = 0, giving

a = −
1
3

t

v = −
1
6

t2 + d∴

At t = 0, v = 24, so d = 24.

v = −
1
6

t2 + 24∴

Now, at t = 15,

v = −
1
6
× 152 + 24

= −13.5

The velocity at 15 seconds is −13.5 m/s.

t

a

O

(15, −5)

b To sketch the velocity–time graph, first find the t-axis
intercepts:

−
1
6

t2 + 24 = 0

t2 = 144∴

t = 12 (since t ≥ 0)∴

t

v

O

(0, 24)

12

The distance travelled is given by the area of the
shaded region.

Area =
∫ 12

0

(
−

1
6

t2 + 24
)

dt +
∣∣∣∣∫ 15

12

(
−

1
6

t2 + 24
)

dt
∣∣∣∣

= 192 + |−19.5|

= 211.5

The distance travelled in 15 seconds is 211.5 metres.

t

v

O

t = 15

12
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Exercise 12CSkill-
sheet

1Example 13 Each of the following graphs shows the motion of a particle. For each graph:

i describe the motion ii find the distance travelled.

Velocity is measured in m/s and time in seconds.

t

v

10

6

O

a

t

v

O

(5, 8)

b

t

v

O 10

6

4

c

t

v

O 15

5

7

d

t

v

O

4

6 8

12

e

t

v

O
5

7

2.51

f

t

v

O

10

1 3
8

g

t

v

O 1063

−4

13

h
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2 For each of the following velocity–time graphs, the object starts from the origin and
moves in a line. In each case, find the relationship between time and:

i velocity ii acceleration iii position.

t

v

(0, 5)

(10, 0)

O

a

t

v

(0, 10)

(5, 0)
O

b

This is a curve of the form v = at2 + b

t

v

(5, 0)

(0, −10)

O

c

t

v

(0, 30)

(5, 0)(1, 0)
O

d

This is a curve of the form
v = at2 + bt + c

t

v

(5, 20)

(0, 10)

(15, 0)

(20, 10)

O

e

t

v

(0, 10)
(loge 2, 40)

O

f

This is a curve of the form
v = a sin(bt) + c

This is a curve of the form v = aebt

3Example 14 A car travels from rest for 15 seconds, with uniform acceleration, until it reaches a
speed of 100 km/h. It then travels with this constant speed for 120 seconds and finally
decelerates at a uniform 8 m/s2 until it stops. Calculate the total distance travelled.

4 A particle moves in a straight line with a constant velocity of 20 m/s for 10 seconds.
It is then subjected to a constant acceleration of 5 m/s2 in the opposite direction for
T seconds, at which time the particle is back to its original position.

a Sketch the velocity–time graph representing the motion.
b Find how long it takes the particle to return to its original position.
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564 Chapter 12: Kinematics 12C

5 An object travels in a line starting from rest. It accelerates uniformly for 3 seconds
until it reaches a speed of 14 m/s. It then travels at this speed for 10 seconds. Finally,
it decelerates uniformly to rest in 4 seconds. Sketch a velocity–time graph and find the
total distance travelled.

6 Two tram stops, A and B, are 500 metres apart. A tram starts from A and travels with
acceleration a m/s2 to a certain point. It then decelerates at 4a m/s2 until it stops at B.
The total time taken is 2 minutes. Sketch a velocity–time graph. Find the value of a and
the maximum speed reached by the tram.

7 The maximum rate at which a bus can accelerate or decelerate is 2 m/s2. It has a
maximum speed of 60 km/h. Find the shortest time the bus can take to travel between
two bus stops 1 km apart on a straight stretch of road.

8 A car being tested on a straight level road starts from rest and accelerates uniformly to
90 km/h. It travels at this speed for a time, then comes to rest with a uniform retardation
of 1.25 m/s2. The total distance travelled is 525 metres and the total time is 36 seconds.
Find the time taken in the acceleration phase and how far the car travels at 90 km/h.

9Example 15 Cars A and B are stationary on a straight road, side by side. Car A moves off with
acceleration 1 m/s2, which it maintains for 20 seconds, after which it moves at constant
speed. Car B starts 20 seconds after car A; it sets off with acceleration 2 m/s2, until it
draws level with A. Find the time taken and the distance travelled by B to catch A.

10Example 16 An object is travelling in a line with an initial velocity of 6 m/s. The deceleration
changes uniformly from 1 m/s2 to 3 m/s2 over 1 second. If this deceleration continues
until the object comes to rest, find:

the time takena the distance travelled.b

11 A stationary police motorcycle is passed by a car travelling at 72 km/h. The motorcycle
starts in pursuit 3 seconds later. Moving with constant acceleration for a distance of
300 metres, it reaches a speed of 108 km/h, which it maintains. Find the time it takes
the motorcyclist to catch the car (from when the motorcycle starts pursuit).

12 Two cars A and B, each moving with constant acceleration, are travelling in the same
direction along the parallel lanes of a divided road. When A passes B, the speeds
are 64 km/h and 48 km/h respectively. Three minutes later, B passes A, travelling
at 96 km/h. Find:

a the distance travelled by A and B at this instant (since they first passed) and the speed
of A

b the instant at which both are moving with the same speed, and the distance between
them at this time.

13 A particle, starting from rest, falls vertically with acceleration, ÿ m/s2, at time t seconds
given by ÿ = ke−t, where k < 0.

a Find the velocity–time relationship and sketch the velocity–time graph.
b Briefly describe the motion.
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12D Di�erential equations of the form v = f(x) and a = f(v)
When we are given information about the motion of an object in one of the forms

v = f (x) or a = f (v)

we can apply techniques for solving differential equations to obtain other information about
the motion.

The velocity of a particle moving along a straight line is inversely proportional to its
position. The particle is initially 1 m from point O and is 2 m from point O after 1 second.

a Find an expression for the particle’s position, x m, at time t seconds.
b Find an expression for the particle’s velocity, v m/s, at time t seconds.

Example 17

Solution
a The information can be written as

v =
k
x

for k ∈ R+, x(0) = 1 and x(1) = 2

This gives

dx
dt

=
k
x

dt
dx

=
x
k

∴

t =
∫ x

k
dx∴

=
x2

2k
+ c

Since x(0) = 1: 0 =
1
2k

+ c (1)

Since x(1) = 2: 1 =
4
2k

+ c (2)

Subtracting (1) from (2) yields 1 =
3
2k

and therefore k =
3
2

.

Substituting in (1) yields c = −
1
2k

= −
1
3

.

t =
x2

3
−

1
3

Now

x2 = 3t + 1

x = ±
√

3t + 1∴

But when t = 0, x = 1 and therefore

x =
√

3t + 1
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566 Chapter 12: Kinematics

b x =
√

3t + 1 implies

v =
dx
dt

= 3 ×
1
2
×

1
√

3t + 1

=
3

2
√

3t + 1

A body moving in a straight line has an initial velocity of 25 m/s and its acceleration,
a m/s2, is given by a = −k(50 − v), where k is a positive constant and v m/s is its velocity.
Find v in terms of t and sketch the velocity–time graph for the motion.

(The motion stops when the body is instantaneously at rest for the first time.)

Example 18

Solution

a = −k(50 − v)
dv
dt

= −k(50 − v)

dt
dv

=
1

−k(50 − v)

t = −
1
k

∫ 1
50 − v

dv

= −
1
k

(
− loge |50 − v|

)
+ c

t =
1
k

loge(50 − v) + c (Note that v ≤ 25 since a < 0.)∴

When t = 0, v = 25, and so c = −
1
k

loge 25.

t =
1
k

loge

(50 − v
25

)
Thus

ekt =
50 − v

25

v = 50 − 25ekt∴

t

v

O

25

_ loge 2
1
k

The acceleration, a, of an object moving along a line is given by a = −(v + 1)2, where v is
the velocity of the object at time t. Also v(0) = 10 and x(0) = 0, where x is the position of
the object at time t. Find:

a an expression for the velocity of the object in terms of t

b an expression for the position of the object in terms of t.

Example 19
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Solution
a a = −(v + 1)2 gives

dv
dt

= −(v + 1)2

dt
dv

=
−1

(v + 1)2

t = −
∫ 1

(v + 1)2 dv

t =
1

v + 1
+ c∴

Since v(0) = 10, we obtain c = −
1
11

and so

t =
1

v + 1
−

1
11

This can be rearranged as

v =
11

11t + 1
− 1

b
dx
dt

= v =
11

11t + 1
− 1

∴ x =
∫ 11

11t + 1
− 1 dt

= loge |11t + 1| − t + c

Since x(0) = 0, c = 0 and therefore x = loge |11t + 1| − t.

Exercise 12D

1Example 17 A particle moves in a line such that the velocity, ẋ m/s, is given by ẋ =
1

2x − 4
, x > 2.

If x = 3 when t = 0, find:

a the position at 24 seconds
b the distance travelled in the first 24 seconds.

2 A particle moves in a straight line such that its velocity, v m/s, and position, x m, are
related by v = 1 + e−2x.

a Find x in terms of time t seconds (t ≥ 0), given that x = 0 when t = 0.
b Hence find the acceleration when t = loge 5.

3Example 18 An object moves in a straight line such that its acceleration, a m/s2, and velocity, v m/s,
are related by a = 3 + v. If the object is initially at rest at the origin, find:

v in term of ta a in terms of tb x in terms of tc
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568 Chapter 12: Kinematics 12D

4 An object falls from rest with acceleration, a m/s2, given by a = g − kv, k > 0. Find:

a an expression for the velocity, v m/s, at time t seconds
b the terminal velocity, i.e. the limiting velocity as t → ∞.

5Example 19 A body is projected along a horizontal surface. Its deceleration is 0.3(v2 + 1), where
v m/s is the velocity of the body at time t seconds. If the initial velocity is

√
3 m/s, find:

a an expression for v in terms of t

b an expression for x m, the displacement of the body from its original position, in
terms of t.

6 The velocity, v m/s, and acceleration, a m/s2, of an object t seconds after it is dropped

from rest are related by a =
450 − v

50
for v < 450. Express v in terms of t.

7 The brakes are applied in a car travelling in a straight line. The acceleration, a m/s2, of
the car is given by a = −0.4

√
225 − v2. If the initial velocity of the car was 12 m/s, find

an expression for v, the velocity of the car, in terms of t, the time after the brakes were
first applied.

8 An object moves in a straight line such that its velocity is directly proportional to x m,
its position relative to a fixed point O on the line. The object starts 5 m to the right of O
with a velocity of 2 m/s.

a Express x in terms of t, where t is the time after the motion starts.
b Find the position of the object after 10 seconds.

9 The velocity, v m/s, and the acceleration, a m/s2, of an object t seconds after it is

dropped from rest are related by the equation a =
1
50

(500 − v), 0 ≤ v < 500.

a Express t in terms of v.
b Express v in terms of t.

10 A particle is travelling in a horizontal straight line. The initial velocity of the particle
is u and the acceleration is given by −k(2u − v), where v is the velocity of the particle
at any instant and k is a positive constant. Find the time taken for the particle to come
to rest.

11 A boat is moving at 8 m/s. When the boat’s engine stops, its acceleration is given by
dv
dt

= −
1
5

v. Express v in terms of t and find the velocity when t = 4.

12 A particle, initially at a point O, slows down under the influence of an acceleration,
a m/s2, such that a = −kv2, where v m/s is the velocity of the particle at any instant.
Its initial velocity is 30 m/s and its initial acceleration is −20 m/s2. Find:

a its velocity at time t seconds
b its position relative to the point O when t = 10.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



12E Other expressions for acceleration 569

12E Other expressions for acceleration
In the earlier sections of this chapter, we have written acceleration as

dv
dt

and
d2x
dt2 . In this

section, we use two further expressions for acceleration.

Expressions for acceleration

a = v
dv
dx

and a =
d
dx

(1
2

v2
)

Proof Using the chain rule:

a =
dv
dt

=
dv
dx

dx
dt

=
dv
dx

v

Using the chain rule again:

d
dx

(1
2

v2
)

=
d
dv

(1
2

v2
) dv

dx
= v

dv
dx

= a

The different expressions for acceleration are useful in different situations:

Given Initial conditions Useful form

a = f (t) in terms of t and v a =
dv
dt

a = f (v) in terms of t and v a =
dv
dt

a = f (v) in terms of x and v a = v
dv
dx

a = f (x) in terms of x and v a =
d
dx

(1
2

v2
)

Note: In the last case, it is also possible to use a = v
dv
dx

and separation of variables.

An object travels in a line such that the velocity, v m/s, is given by v2 = 4 − x2. Find the
acceleration at x = 1.

Example 20

Solution
Given v2 = 4 − x2, we can use implicit differentiation to obtain:

d
dx

(
v2) =

d
dx

(
4 − x2)

2v
dv
dx

= −2x

a = −x∴

So, at x = 1, a = −1. The acceleration at x = 1 is −1 m/s2.
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570 Chapter 12: Kinematics

An object moves in a line so that the acceleration, ẍ m/s2, is given by ẍ = 1 + v. Its velocity
at the origin is 1 m/s. Find the position of the object when its velocity is 2 m/s.

Example 21

Solution
Since we are given a as a function of v and initial conditions involving x and v, it is

appropriate to use the form a = v
dv
dx

.

ẍ = 1 + vNow

v
dv
dx

= 1 + v

dv
dx

=
1 + v

v
dx
dv

=
v

1 + v

x =
∫ v

1 + v
dv∴

=
∫

1 −
1

1 + v
dv

x = v − loge |1 + v| + c∴

Since v = 1 when x = 0, we have

0 = 1 − loge 2 + c

c = loge 2 − 1∴

x = v − loge |1 + v| + loge 2 − 1Hence

= v + loge

( 2
1 + v

)
− 1 (as v > 0)

Now, when v = 2,

x = 2 + loge( 2
3 ) − 1

= 1 + loge( 2
3 )

≈ 0.59

So, when the velocity is 2 m/s, the position is 0.59 m.

A particle is moving in a straight line. Its acceleration, a m/s2, is described by a = −
√

x,
where x m is its position with respect to an origin O. Find a relation between v and x
which describes the motion, given that v = 2 m/s when the particle is at the origin.

Example 22
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12E Other expressions for acceleration 571

Solution

a = −
√

xGiven

d
dx

(1
2

v2
)

= −x
1
2

1
2

v2 = −
2
3

x
3
2 + c

When x = 0, v = 2, and therefore c = 2.

1
2

v2 = 2 −
2
3

x
3
2Thus

v2 =
4
3

(
3 − x

3
2
)

∴

Note: This problem can also be solved using a = v
dv
dx

and separation of variables.

An object falls from a hovering helicopter over the ocean 1000 m above sea level. Find the
velocity of the object when it hits the water:

a neglecting air resistance b assuming air resistance is 0.2v2.

Example 23

Solution
a An appropriate starting point is ÿ = −9.8.

Since the initial conditions involve y and v, use ÿ =
d
dy

(1
2

v2
)
.

d
dy

(1
2

v2
)

= −9.8Now

1
2

v2 = −9.8y + c

Using v = 0 at y = 1000 gives

0 = −9.8 × 1000 + c

c = 9800∴

1
2

v2 = −9.8y + 9800Hence

v2 = −19.6y + 19 600∴

The object is falling, so v < 0.

v = −
√

19 600 − 19.6y

At sea level, y = 0 and therefore

v = −
√

19 600 = −140

The object has a velocity of −140 m/s at sea level (504 km/h).
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572 Chapter 12: Kinematics

b In this case, we have

ÿ = −9.8 + 0.2v2

=
v2 − 49

5

Because of the initial conditions given, use ÿ = v
dv
dy

:

v
dv
dy

=
v2 − 49

5

dv
dy

=
v2 − 49

5v

y =
∫ 5v

v2 − 49
dv

=
5
2

∫ 2v
v2 − 49

dv

y =
5
2

loge |v
2 − 49| + c∴

Now, when v = 0, y = 1000, and so c = 1000 −
5
2

loge 49.

y =
5
2

loge |49 − v2| + 1000 −
5
2

loge 49∴

=
5
2

(
loge |49 − v2| − loge 49

)
+ 1000

=
5
2

loge

∣∣∣∣∣49 − v2

49

∣∣∣∣∣ + 1000

Assume that −7 < v < 7. Then

y − 1000 =
5
2

loge

(
1 −

v2

49

)
2
5

(y − 1000) = loge

(
1 −

v2

49

)
e

2
5 (y−1000)

= 1 −
v2

49

v2 = 49
(
1 − e

2
5 (y−1000)

)
∴

But the object is falling and thus v < 0. Therefore

v = −7

√
1 − e

2
5 (y−1000)

At sea level, y = 0 and therefore

v = −7
√

1 − e−400

The object has a velocity of approximately −7 m/s at sea level (25.2 km/h).

Note: If v < −7, then v2 = 49
(
1 + e

2
5 (y−1000)

)
and the initial conditions are not satisfied.
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Exercise 12ESkill-
sheet

1Example 20 An object travels in a line such that the velocity, v m/s, is given by v2 = 9 − x2. Find the
acceleration at x = 2.

2Example 21

Example 22

For each of the following, a particle moves in a horizontal line such that, at time
t seconds, the position is x m, the velocity is v m/s and the acceleration is a m/s2.

a If a = −x and v = 0 at x = 4, find v at x = 0.
b If a = 2 − v and v = 0 when t = 0, find t when v = −2.
c If a = 2 − v and v = 0 when x = 0, find x when v = −2.

3 The motion of a particle is in a horizontal line such that, at time t seconds, the position
is x m, the velocity is v m/s and the acceleration is a m/s2.

a If a = −v3 and v = 1 when x = 0, find v in terms of x.
b If v = x + 1 and x = 0 when t = 0, find:

i x in terms of t ii a in terms of t iii a in terms of v.

4 An object is projected vertically upwards from the ground with an initial velocity
of 100 m/s. Assuming that the acceleration, a m/s2, is given by a = −g − 0.2v2, find x in
terms of v. Hence find the maximum height reached.

5 The velocity, v m/s, of a particle moving along a line is given by v = 2
√

1 − x2. Find:

a the position, x m, in terms of time t seconds, given that when t = 0, x = 1
b the acceleration, a m/s2, in terms of x.

6 Each of the following gives the acceleration, a m/s2, of an object travelling in a line.
Given that v = 0 and x = 0 when t = 0, solve for v in each case.

a =
1

1 + t
a a =

1
1 + x

, x > −1b a =
1

1 + v
c

7 A particle moves in a straight line from a position of rest at a fixed origin O. Its velocity
is v when its displacement from O is x. If its acceleration is (2 + x)−2, find v in terms
of x.

8 A particle moves in a straight line and, at time t, its position relative to a fixed origin is x
and its velocity is v.

a If its acceleration is 1 + 2x and v = 2 when x = 0, find v when x = 2.
b If its acceleration is 2 − v and v = 0 when x = 0, find the position at which v = 1.

9Example 23 A particle is projected vertically upwards. The speed of projection is 50 m/s. The

acceleration of the particle, a m/s2, is given by a = −
1
5

(v2 + 50), where v m/s is the
velocity of the particle when it is x m above the point of projection. Find:

a the height reached by the particle
b the time taken to reach this highest point.
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Assign-
ment

Nrich

Chapter summary

� The position of a particle moving in a straight line is determined by its distance from
a fixed point O on the line, called the origin, and whether it is to the right or left of O.
By convention, the direction to the right of the origin is considered to be positive.

� Displacement is the change in position (i.e. final position minus initial position).

� Average velocity =
change in position

change in time

� For a particle moving in a straight line with position x at time t:

• velocity (v) is the rate of change of position with respect to time
• acceleration (a) is the rate of change of velocity with respect to time

v =
dx
dt

, a =
dv
dt

=
d2x
dt2

• velocity at time t is also denoted by ẋ(t)
• acceleration at time t is also denoted by ẍ(t)

� Scalar quantities
• Distance travelled means the total distance travelled.
• Speed is the magnitude of the velocity.

• Average speed =
distance travelled

change in time

� Constant acceleration
If acceleration is constant, then the following formulas can be used (for acceleration a,
initial velocity u, final velocity v, displacement s and time taken t):

v = u + at1 s = ut +
1
2

at22 v2 = u2 + 2as3 s =
1
2

(u + v)t4

� Velocity–time graphs
• Acceleration is given by the gradient.
• Displacement is given by the signed area bounded by the graph and the t-axis.
• Distance travelled is given by the total area bounded by the graph and the t-axis.

� Acceleration
d2x
dt2 =

dv
dt

= v
dv
dx

=
d
dx

(1
2

v2
)

Technology-free questions

1 A particle is moving in a straight line with position, x metres, at time t seconds (t ≥ 0)
given by x = t2 − 7t + 10. Find:

a when its velocity equals zero
b its acceleration at this time
c the distance travelled in the first 5 seconds
d when and where its velocity is −2 m/s.
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2 An object moves in a straight line so that its acceleration, a m/s2, at time t seconds
(t ≥ 0) is given by a = 2t − 3. Initially, the position of the object is 2 m to the right of a
point O and its velocity is 3 m/s. Find the position and velocity after 10 seconds.

3 Two tram stops are 800 m apart. A tram starts at rest from the first stop and accelerates
at a constant rate of a m/s2 for a certain time and then decelerates at a constant rate
of 2a m/s2, before coming to rest at the second stop. The time taken to travel between
the stops is 1 minute 40 seconds. Find:

a the maximum speed reached by the tram in km/h
b the time at which the brakes are applied
c the value of a.

4 The velocity–time graph shows the journey of a bullet fired into the wall of a practice
range made up of three successive layers of soil, wood and brick.

t (s)

v

O
Soil Wood Brick

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

150
125
100

75
50

(m/s)

Calculate:

a the deceleration of the bullet as it passes through the soil
b the thickness of the layer of soil
c the deceleration of the bullet as it passes through the wood
d the thickness of the layer of wood
e the deceleration of the bullet passing through the brick
f the depth penetrated by the bullet into the layer of brick.

5 A helicopter climbs vertically from the top of a 110-metre tall building, so that its
height in metres above the ground after t seconds is given by h = 110 + 55t − 5.5t2.
Calculate:

a the average velocity of the helicopter from t = 0 to t = 2
b its instantaneous velocity at time t

c its instantaneous velocity at time t = 1
d the time at which the helicopter’s velocity is zero
e the maximum height reached above the ground.

6 A golf ball is putted across a level putting green with an initial velocity of 8 m/s. Owing
to friction, the velocity decreases at the rate of 2 m/s2. How far will the golf ball roll?
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7 A particle moves in a straight line such that after t seconds its position, x metres,
relative to a point O on the line is given by x =

√
9 − t2, 0 ≤ t < 3.

a When is the position
√

5?
b Find expressions for the velocity and acceleration of the particle at time t.
c Find the particle’s maximum distance from O.
d When is the velocity zero?

8 A particle moving in a straight line passes through a fixed point O with velocity 8 m/s.
Its acceleration, a m/s2, at time t seconds after passing O is given by a = 12 − 6t. Find:

a the velocity of the particle when t = 2
b the displacement of the particle from O when t = 2.

9 A particle travels at 12 m/s for 5 seconds. It then accelerates uniformly for the next
8 seconds to a velocity of x m/s, and then decelerates uniformly to rest during the
next 3 seconds. Sketch a velocity–time graph. Given that the total distance travelled
is 218 m, calculate:

the value of xa the average velocity.b

10 A ball is thrown vertically upwards from ground level with an initial velocity of 35 m/s.
Let g m/s2 be the acceleration due to gravity. Find:

a the velocity, in terms of g, and the direction of motion of the ball after:

i 3 seconds ii 5 seconds
b the total distance travelled by the ball, in terms of g, when it reaches the

ground again
c the velocity with which the ball strikes the ground.

11 A car is uniformly accelerated from rest at a set of traffic lights until it reaches a speed
of 10 m/s in 5 seconds. It then continues to move at the same constant speed of 10 m/s
for 6 seconds before the car’s brakes uniformly retard it at 5 m/s2 until it comes to rest
at a second set of traffic lights. Draw a velocity–time graph of the car’s journey and
calculate the distance between the two sets of traffic lights.

12 A particle moves in a straight line so that its position, x, relative to a fixed point O on
the line at any time t ≥ 2 is given by x = 4 loge(t − 1). Find expressions for the velocity
and acceleration at time t.

13 A missile is fired vertically upwards from a point on the ground, level with the base of a
tower 64 m high. The missile is level with the top of the tower 0.8 seconds after being
fired. Let g m/s2 be the acceleration due to gravity. Find in terms of g:

a the initial velocity of the missile
b the time taken to reach its greatest height
c the greatest height
d the length of time for which the missile is higher than the top of the tower.
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Multiple-choice questions

1 A particle moves in a straight line so that its position, x cm, relative to a point O at time
t seconds (t ≥ 0) is given by x = t3 − 9t2 + 24t − 1. The position (in cm) of the particle
at t = 3 is

17A 16B 24C −17D 8E

2 A particle moves in a straight line so that its position, x cm, relative to a fixed point O at
time t seconds (t ≥ 0) is given by x = t3 − 9t2 + 24t − 1. The average speed (in cm/s) of
the particle in the first 2 seconds is

0A −12B 10C −10D 9.5E

3 A body is projected up from the ground with a velocity of 30 m/s. Its acceleration due
to gravity is −10 m/s2. The body’s velocity (in m/s) at time t = 2 seconds is

10A −10B 0C 20D −20E

4 A car accelerating uniformly from rest reaches a speed of 50 km/h in 5 seconds. The
car’s acceleration during the 5 seconds is

10 km/s2A 10 m/s2B 2.78 m/s2C
25
9

m/s2D
25
3

m/s2E

5 A particle moves in a straight line such that, at time t (t ≥ 0), its velocity v is given by

v = 5 −
2

t + 2
. The initial acceleration of the particle is

0A
1
2

B 1C 2D 4E

6 The velocity–time graph shown
describes the motion of a particle.
The time (in seconds) when the
velocity of the particle is first zero
is closest to

A 0 B 125
C 147 D 150
E 250

(80, 20)(0, 20)

O

(180, −10)

t (s)

v (m/s)

(250, 0)

7 A particle is travelling in a straight line. Its position, x metres, relative to the origin is
given by x = 2t3 − 10t2 − 44t + 112. In the interval 0 ≤ t ≤ 10, the number of times that
the particle passes through the origin is

0A 1B 2C 3D 4E
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578 Chapter 12: Kinematics

8 An object is moving in a straight line. Its acceleration, a m/s2, and its position relative
to the origin, x m, are related by a = −x, where −

√
3 ≤ x ≤

√
3. If the object starts from

the origin with a velocity of
√

3 m/s, then its velocity, v m/s, is given by

−
√

3 − x2A
√

3 − x2B ±
√

3 − x2C −
√

x2 − 3D
√

x2 − 3E

9 The position, x metres, with respect to an origin of a particle travelling in a straight line

is given by x = 2 − 2 cos
(3π

2
t −

π

2

)
. The velocity (in m/s) at time t =

8
3

seconds is

−3πA 3πB 0C −
3π
2

D
3π
2

E

10 An object starting at the origin has a velocity given by v = 10 sin(πt). The distance that
the object travels from t = 0 to t = 1.6, correct to two decimal places, is

1.60A 2.20B 4.17C 6.37D 10.53E

Extended-response questions

1 A stone initially at rest is released and falls vertically. Its velocity, v m/s, at time

t seconds satisfies 5
dv
dt

+ v = 50.

a Find the acceleration of the stone when t = 0.
b Find v in terms of t.
c i Sketch the graph of v against t.

ii Find the value of t for which v = 47.5. (Give your answer correct to two
decimal places.)

d Let x m be the distance fallen after t seconds.

i Find x in terms of t.
ii Sketch the graph of x against t (t ≥ 0).
iii After how many seconds has the stone fallen 8 metres? (Give your answer correct

to two decimal places.)

2 A particle is moving along a straight line. At time t seconds after it passes a point O on
the line, its velocity is v m/s, where v = A − loge(t + B) for positive constants A and B.

a If A = 1 and B = 0.5:

i Sketch the graph of v against t.
ii Find the position of the particle when t = 3 (correct to two decimal places).
iii Find the distance travelled by the particle in the 3 seconds after passing O

(correct to two decimal places).

b If the acceleration of the particle is −
1
20

m/s2 when t = 10 and the particle comes to

rest when t = 100, find the exact value of B and the value of A correct to two decimal
places.
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3 The velocity, v km/h, of a train which moves along a straight track from station A,
where it starts at rest, to station B, where it next stops, is given by

v = kt
(
1 − sin(πt)

)
where t hours is the time measured from when the train left station A and k is a
positive constant.

a Find the time that the train takes to travel from A to B.
b i Find an expression for the acceleration at time t.

ii Find the interval of time for which the velocity is increasing. (Give your answer
correct to two decimal places.)

c Given that the distance from A to B is 20 km, find the value of k. (Give your answer
correct to three significant figures.)

4 A particle A moves along a horizontal line so that its position, x m, relative to a point O
is given by x = 28 + 4t − 5t2 − t3, where t is the time in seconds after the motion starts.

a Find:

i the velocity of A in terms of t

ii the acceleration of A in terms of t

iii the value of t for which the velocity is zero (to two decimal places)
iv the times when the particle is 28 m to the right of O (to two decimal places)
v the time when the particle is 28 m to the left of O (to two decimal places).

b A second particle B moves along the same line as A. It starts from O at the same time
that A begins to move. The initial velocity of B is 2 m/s and its acceleration at time t
is (2 − 6t) m/s2.

i Find the position of B at time t.
ii Find the time at which A and B collide.
iii At the time of collision are they going in the same direction?

5 A particle moves in a straight line. At time t seconds its position, x cm, with respect to a

fixed point O on the line is given by x = 5 cos
(
π

4
t +

π

3

)
.

a Find:

i the velocity in terms of t ii the acceleration in terms of t.
b Find:

i the velocity in terms of x ii the acceleration in terms of x.
c Find the speed of the particle when x = −2.5, correct to one decimal place.
d Find the acceleration when t = 0, correct to two decimal places.
e Find:

i the maximum distance of the particle from O

ii the maximum speed of the particle
iii the maximum magnitude of acceleration of the particle.
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580 Chapter 12: Kinematics

6 In a tall building, two lifts simultaneously pass the 40th floor, each travelling
downwards at 24 m/s. One lift immediately slows down with a constant retardation
of 6

7 m/s2. The other continues for 6 seconds at 24 m/s and then slows down with a
retardation of 1

3 (t − 6) m/s2, where t seconds is the time that has elapsed since passing
the 40th floor. Find the difference between the heights of the lifts when both have come
to rest.

7 The motion of a bullet through a special shield is modelled by the equation
a = −30(v + 110)2, v ≥ 0, where a m/s2 is its acceleration and v m/s its velocity
t seconds after impact. When t = 0, v = 300.

a Find v in terms of t.
b Sketch the graph of v against t.
c Let x m be the penetration into the shield at time t seconds.

i Find x in terms of t

ii Find x in terms of v.
iii Find how far the bullet penetrates the shield before coming to rest.

d Another model for the bullet’s motion is a = −30(v2 + 11 000), v ≥ 0. Given that
when t = 0, v = 300:

i Find t in terms of v.
ii Find v in terms of t.
iii Sketch the graph of v against t.
iv Find the distance travelled by the bullet in the first 0.0001 seconds after impact.

8 A motorist is travelling at 25 m/s along a straight road and passes a stationary police
officer on a motorcycle. Four seconds after the motorist passes, the police officer starts
in pursuit. The police officer’s motion for the first 6 seconds is described by

v(t) =
−3
10

(
t3 − 21t2 +

364
3

t −
1281

6

)
, 4 ≤ t ≤ 10

where v(t) m/s is his speed t seconds after the motorist has passed. After 6 seconds, he
reaches a speed of v1 m/s, which he maintains until he overtakes the motorist.

a Find the value of v1.

b i Find
dv
dt

for 4 ≤ t ≤ 10.

ii Find the time when the police officer’s acceleration is a maximum.
c On the same set of axes, sketch the velocity–time graphs for the motorist and the

police officer.
d i How far has the police officer travelled when he reaches his maximum speed

at t = 10?
ii Write down an expression for the distance travelled by the police officer

for t ∈ [4, 10].
e For what value of t does the police officer draw level with the motorist? (Give your

answer correct to two decimal places.)
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9 Two cyclists, A and B, pass a starting post together (but at different velocities) and race
along a straight road. They are able to pass each other. At time t hours after they pass
the post, their velocities (in km/h) are given by

VA =

9 − t2 for 0 ≤ t ≤ 3

2t − 6 for t > 3
and VB = 8, for t ≥ 0

a On the one set of axes, draw the velocity–time graphs for the two cyclists.
b Find the times at which the two cyclists have the same velocity.
c Find the time in hours, correct to one decimal place, when:

i A passes B ii B passes A.

10 Two particles, P and Q, move along the same straight path and can overtake each other.
Their velocities are VP = 2 − t + 1

4 t2 and VQ = 3
4 + 1

2 t respectively at time t, for t ≥ 0.

a i Find the times when the velocities of P and Q are the same.
ii On the same diagram, sketch velocity–time graphs to represent the motion of P

and the motion of Q.
b If the particles start from the same point at time t = 0:

i Find the time when P and Q next meet again (correct to one decimal place).
ii State the times during which P is further than Q from the starting point (correct

to one decimal place).

11 Annabelle and Cuthbert are ants on a picnic table. Annabelle falls off the edge of the
table at point X. She falls 1.2 m to the ground. (Assume g = 9.8 for this question.)

a Assuming that Annabelle’s acceleration down is g m/s2, find:

i Annabelle’s velocity when she hits the ground, correct to two decimal places
ii the time it takes for Annabelle to hit the ground, correct to two decimal places.

b Assume now that Annabelle’s acceleration is slowed by air resistance and is given by
(g − t) m/s2, where t is the time in seconds after leaving the table.

i Find Annabelle’s velocity, v m/s, at time t.
ii Find Annabelle’s position, x m, relative to X at time t.
iii Find the time in seconds, correct to two decimal places, when Annabelle hits

the ground.

c When Cuthbert reaches the edge of the table, he observes Annabelle groaning on the
ground below. He decides that action must be taken and fashions a parachute from a
small piece of potato chip. He jumps from the table and his acceleration is

g
2

m/s2

down.

i Find an expression for x, the distance in metres that Cuthbert is from the ground
at time t seconds.

ii Unfortunately, Annabelle is very dizzy and on seeing Cuthbert coming down
jumps vertically with joy. Her initial velocity is 1.4 m/s up and her acceleration is
g m/s2 down. She jumps 0.45 seconds after Cuthbert leaves the top of the table.
How far above the ground (to the nearest cm) do the two ants collide?
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582 Chapter 12: Kinematics

12 On a straight road, a car starts from rest with an acceleration of 2 m/s2 and travels until
it reaches a velocity of 6 m/s. The car then travels with constant velocity for 10 seconds
before the brakes cause a deceleration of (v + 2) m/s2 until it comes to rest, where v m/s
is the velocity of the car.

a For how long is the car accelerating?
b Find an expression for v, the velocity of the car, in terms of t, the time in seconds

after it starts.
c Find the total time taken for the motion of the car, to the nearest tenth of a second.
d Draw a velocity–time graph of the motion.
e Find the total distance travelled by the car to the nearest tenth of a metre.

13 A particle is first observed at time t = 0 and its position at this point is taken as its
initial position. The particle moves in a straight line such that its velocity, v, at time t is
given by

v =

3 − (t − 1)2 for 0 ≤ t ≤ 2

6 − 2t for t > 2

a Draw the velocity–time graph for t ≥ 0.
b Find the distance travelled by the particle from its initial position until it first comes

to rest.
c If the particle returns to its original position at t = T , calculate T correct to two

decimal places.
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13
Vector functions and
vector calculus

Objectives
I To sketch the graphs of curves in the plane specified by vector functions.

I To understand the concept of position vectors as a function of time.

I To represent the path of a particle moving in two dimensions as a vector function.

I To di�erentiate and antidi�erentiate vector functions.

I To use vector calculus to analyse the motion of a particle along a curve, by finding the
velocity, acceleration and speed.

I To find the distance travelled by a particle moving along a curve.

In Chapter 4, we introduced vectors and applied them to physical and geometric situations.

In Chapter 12, we studied motion in a straight line and used the vector quantities of position,
displacement, velocity and acceleration to describe this motion. In this chapter, we consider
motion in two dimensions and we again employ vectors.

The motion of a particle in space can be described by giving its position vector with
respect to an origin in terms of a variable t. The variable in this situation is referred to as
a parameter. This idea has been used in Section 1G, where parametric equations were
introduced to describe circles, ellipses and hyperbolas, and also in Chapter 5, where vector
equations were introduced to describe straight lines. Differentiation involving parametric
equations was used in Chapter 8.

In two dimensions, the position vector can be described through the use of two functions. The
position vector at time t is given by

r(t) = x(t)i + y(t) j

We say that r(t) is a vector function.
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584 Chapter 13: Vector functions and vector calculus

13A Vector functions
Describing a particle’s path using a vector function
Consider the vector r = (3 + t)i + (1 − 2t) j, where t ∈ R.

Then r represents a family of vectors defined by different values of t.

If the variable t represents time, then r is a vector function of time. We write

r(t) = (3 + t)i + (1 − 2t) j, t ∈ R

Further, if r(t) represents the position of a particle with respect to time, then the graph of the
endpoints of r(t) will represent the path of the particle in the Cartesian plane.

A table of values for a range of values of t is given below. These position vectors can be
represented in the Cartesian plane as shown in Figure A.

t −3 −2 −1 0 1 2 3

r(t) 7 j i + 5 j 2i + 3 j 3i + j 4i − j 5i − 3 j 6i − 5 j

x
2 4 6 80

−4

−6

−2

4

2

6

8

y

x
2 4 6 80

−4

−6

−2

4

2

6

8

y

Figure A Figure B

The graph of the position vectors (Figure A) is not helpful. But when only the endpoints
are plotted (Figure B), the pattern of the path is more obvious. We can find the Cartesian
equation for the path as follows.

Let (x, y) be the point on the path at time t.

Then r(t) = xi + y j and therefore

xi + y j = (3 + t)i + (1 − 2t) j

This implies that

x = 3 + t (1) and y = 1 − 2t (2)

Now we eliminate the parameter t from the equations.

From (1), we have t = x − 3. Substituting in (2) gives y = 1 − 2(x − 3) = 7 − 2x.

The particle’s path is the straight line with equation y = 7 − 2x.
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13A Vector functions 585

Describing curves in the plane using vector functions
Now consider the Cartesian equation y = x2. The graph can also be described by a vector
function using a parameter t, which does not necessarily represent time.

Define the vector function r(t) = t i + t2 j, t ∈ R.

Using similar reasoning as before, if xi + y j = t i + t2 j, then x = t and y = t2, so eliminating t
yields y = x2.

This representation is not unique. It is clear that r(t) = t3i + t6 j, t ∈ R, also represents the
graph with Cartesian equation y = x2. Note that if these two vector functions are used to
describe the motion of particles, then the paths are the same, but the particles are at different
locations at a given time (with the exception of t = 0 and t = 1).

Also note that r(t) = t2i + t4 j, t ∈ R, only represents the equation y = x2 for x ≥ 0.

In the rest of this section, we consider graphs defined by vector functions, but without
relating them to the motion of a particle. We view a vector function as a mapping from a
subset of the real numbers into the set of all two-dimensional vectors.

Find the Cartesian equation for the graph represented by each vector function:

r(t) = (2 − t)i + (3 + t2) j, t ∈ Ra r(t) = (1 − cos t) i + sin t j, t ∈ Rb

Example 1

Solution
Let (x, y) be any point on the curve.

x = 2 − t (1)Then

y = 3 + t2 (2)and

Equation (1) gives t = 2 − x.

Substitute in (2):

y = 3 + (2 − x)2

y = x2 − 4x + 7, x ∈ R∴

a Let (x, y) be any point on the curve.

x = 1 − cos t (3)Then

y = sin t (4)and

From (3): cos t = 1 − x

From (4):

y2 = sin2 t = 1 − cos2 t

= 1 − (1 − x)2

= −x2 + 2x

The Cartesian equation is y2 = −x2 + 2x.

b

For a vector function r(t) = x(t)i + y(t) j:

� The domain of the Cartesian relation is given by the range of the function x(t).
� The range of the Cartesian relation is given by the range of the function y(t).

In Example 1b, the domain of the corresponding Cartesian relation is the range of the
function x(t) = 1 − cos t, which is [0, 2]. The range of the Cartesian relation is the range of
the function y(t) = sin t, which is [−1, 1].

Note that the Cartesian equation y2 = −x2 + 2x can be written as (x − 1)2 + y2 = 1; it is the
circle with centre (1, 0) and radius 1.
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586 Chapter 13: Vector functions and vector calculus

Find the Cartesian equation of each of the following. State the domain and range and
sketch the graph of each of the relations.

r(t) = cos2(t) i + sin2(t) j, t ∈ Ra r(t) = t i + (1 − t) j, t ∈ Rb

Example 2

Solution
a Let (x, y) be any point on the curve defined by

r(t) = cos2(t) i + sin2(t) j, t ∈ R. Then

x = cos2(t) and y = sin2(t)

Therefore

y = sin2(t) = 1 − cos2(t) = 1 − x

Hence y = 1 − x.

Note that 0 ≤ cos2(t) ≤ 1 and 0 ≤ sin2(t) ≤ 1,
for all t ∈ R. The domain of the relation
is [0, 1] and the range is [0, 1].

x
O 1

1

y

b Let (x, y) be any point on the curve defined by
r(t) = t i + (1 − t) j, t ∈ R. Then

x = t and y = 1 − t

Hence y = 1 − x.

The domain is R and the range is R.
x

O 1

1

y

For each of the following, state the Cartesian equation, the domain and range of the
corresponding Cartesian relation and sketch the graph:

r(λ) =
(
1 − 2 cos(λ)

)
i + 3 sin(λ) ja r(λ) = 2 sec(λ) i + tan(λ) jb

Example 3

Solution
a Let x = 1 − 2 cos(λ) and y = 3 sin(λ). Then

x − 1
−2

= cos(λ) and
y
3

= sin(λ)

Squaring each and adding yields

(x − 1)2

4
+

y2

9
= cos2(λ) + sin2(λ) = 1

The graph is an ellipse with centre (1, 0).
The domain of the relation is [−1, 3] and
the range is [−3, 3].

x

y

(1, 3)

(1, 0)

(1, −

−

3)

3O1

Note: The entire ellipse is obtained by taking λ ∈ [0, 2π].
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13A 13A Vector functions 587

b r(λ) = 2 sec(λ) i + tan(λ) j, for λ ∈ R \
{ (2n + 1)π

2
: n ∈ Z

}
Let (x, y) be any point on the curve. Then

x = 2 sec(λ) and y = tan(λ)

x2 = 4 sec2(λ) and y2 = tan2(λ)∴

x2

4
= sec2(λ) and y2 = tan2(λ)∴

But sec2(λ) − tan2(λ) = 1 and therefore

x2

4
− y2 = 1

The domain of the relation is the range of x(λ) = 2 sec(λ), which is (−∞,−2] ∪ [2,∞).
The range of the relation is the range of y(λ) = tan(λ), which is R.

The graph is a hyperbola centred
at the origin with asymptotes

y = ±
x
2

.

Note: The graph is produced for

λ ∈

(
−
π

2
,
π

2

)
∪

(
π

2
,

3π
2

)
. x

2O−2

y

y = y =−x
2

x
2

Exercise 13A

1Example 1

Example 2

For each of the following vector functions, find the corresponding Cartesian equation,
and state the domain and range of the Cartesian relation:

r(t) = t i + 2t j, t ∈ Ra r(t) = 2i + 5t j, t ∈ Rb
r(t) = −t i + 7 j, t ∈ Rc r(t) = (2 − t)i + (t + 7) j, t ∈ Rd
r(t) = t2i + (2 − 3t) j, t ∈ Re r(t) = (t − 3)i + (t3 + 1) j, t ∈ Rf

r(t) = (2t + 1)i + 3t j, t ∈ Rg r(t) =

(
t −

π

2

)
i + cos(2t) j, t ∈ Rh

r(t) =
1

t + 4
i + (t2 + 1) j, t , −4i r(t) =

1
t

i +
1

t + 1
j, t , 0,−1j

2Example 3 For each of the following vector functions, find the corresponding Cartesian relation,
state the domain and range of the relation and sketch the graph:

r(t) = 2 cos(t) i + 3 sin(t) j, t ∈ Ra r(t) = 2 cos2(t) i + 3 sin2(t) j, t ∈ Rb
r(t) = t i + 3t2 j, t ≥ 0c r(t) = t3i + 3t2 j, t ≥ 0d

e r(λ) = cos(λ) i + sin(λ) j, λ ∈

[
0,
π

2

]
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588 Chapter 13: Vector functions and vector calculus 13A

f r(λ) = 3 sec(λ) i + 2 tan(λ) j, λ ∈

(
0,
π

2

)
g r(t) = 4 cos(2t) i + 4 sin(2t) j, t ∈

[
0,
π

2

]
h r(λ) = 3 sec2(λ) i + 2 tan2(λ) j, λ ∈

(
−
π

2
,
π

2

)
i r(t) = (3 − t)i + (5t2 + 6t) j, t ∈ R

3 Find a vector function which corresponds to each of the following. Note that the
answers given are the ‘natural choice’, but your answers could be different.

y = 3 − 2xa x2 + y2 = 4b (x − 1)2 + y2 = 4c
x2 − y2 = 4d y = (x − 3)2 + 2(x − 3)e 2x2 + 3y2 = 12f

4 A circle of radius 5 has its centre at the point C with position vector 2i + 6 j relative
to the origin O. A general point P on the circle has position r relative to O. The angle
between i and

−−→
CP, measured anticlockwise from i to

−−→
CP, is denoted by θ.

Give the vector function for P.a Give the Cartesian equation for P.b

13B Position vectors as a function of time
Consider a particle travelling at a constant speed along a circular path with radius length
1 unit and centre O. The path is represented in Cartesian form as{

(x, y) : x2 + y2 = 1
}

If the particle starts at the point (1, 0) and travels anticlockwise, taking 2π units of time to
complete one circle, then its path is represented in parametric form as{

(x, y) : x = cos t and y = sin t, for t ≥ 0
}

This is expressed in vector form as

r(t) = cos t i + sin t j

where r(t) is the position vector of the particle at time t.

The graph of a vector function is the set of points
determined by the function r(t) as t varies.

In two dimensions, the x- and y-axes are used. x

y

P(x, y)

r(t)
O

In three dimensions, three mutually perpendicular axes
are used. It is best to consider the x- and y-axes as in the
horizontal plane and the z-axis as vertical and through
the point of intersection of the x- and y-axes.

y

z

P(x, y, z)

r(t)

x

O
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13B Position vectors as a function of time 589

Information from the vector function
The vector function gives much more information about the motion of the particle than the
Cartesian equation of its path.

For example, the vector function r(t) = cos t i + sin t j, t ≥ 0, indicates that:

� At time t = 0, the particle has position vector r(0) = i. That is, the particle starts at (1, 0).
� The particle moves with constant speed on the curve with equation x2 + y2 = 1.
� The particle moves in an anticlockwise direction.
� The particle moves around the circle with a period of 2π, i.e. it takes 2π units of time to

complete one circle.

The vector function r(t) = cos(2πt) i + sin(2πt) j describes a particle moving anticlockwise
around the circle with equation x2 + y2 = 1, but this time the period is 1 unit of time.

The vector function r(t) = − cos(2πt) i + sin(2πt) j again describes a particle moving around
the unit circle, but the particle starts at (−1, 0) and moves clockwise.

Sketch the path of a particle where the position at time t is given by

r(t) = 2t i + t2 j, t ≥ 0

Example 4

Solution
Now x = 2t and y = t2.

This implies t =
x
2

and so y =

( x
2

)2
.

The Cartesian form is y =
x2

4
, for x ≥ 0.

Since r(0) = 0 and r(1) = 2i + j, it can be seen
that the particle starts at the origin and moves

along the parabola y =
x2

4
with x ≥ 0. x

y

y x2

4

Pr(t)

O

=

Notes:
� The equation r(t) = t i + 1

4 t2 j, t ≥ 0, gives the
same Cartesian path, but the rate at which the
particle moves along the path is different.

� If r(t) = −t i + 1
4 t2 j, t ≥ 0, then again the

Cartesian equation is y =
x2

4
, but x ≤ 0.

Hence the motion is along the curve shown
and in the direction indicated. x

y

y x2

4

O

=
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590 Chapter 13: Vector functions and vector calculus

� Motion in two dimensions
When a particle moves along a curve in a plane, its position is specified by a vector
function of the form

r(t) = x(t)i + y(t) j

� Motion in three dimensions
When a particle moves along a curve in three-dimensional space, its position is
specified by a vector function of the form

r(t) = x(t)i + y(t) j + z(t)k

An object moves along a path where the position vector is given by

r(t) = cos t i + sin t j + 2k, t ≥ 0

Describe the motion of the object.

Example 5

Solution
Being unfamiliar with the graphs of relations in three dimensions, it is probably best to
determine a number of position vectors (points) and try to visualise joining the dots.

t r(t) Point

0 i + 2k (1, 0, 2)
π

2
j + 2k (0, 1, 2)

π −i + 2k (−1, 0, 2)
3π
2

− j + 2k (0,−1, 2)

2π i + 2k (1, 0, 2)

y

x

z

O
starting point

(−1, 0, 2)

(0, 1, 2)

(0, 0, 2)

(1, 0, 2)

(0, −1, 2)

The object is moving along a circular path, with centre (0, 0, 2) and radius length 1,
starting at (1, 0, 2) and moving anticlockwise when viewed from above, always at a
distance of 2 above the x–y plane (horizontal plane).
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13B Position vectors as a function of time 591

The motion of two particles is given by the vector functions r1(t) = (2t − 3)i + (t2 + 10) j
and r2(t) = (t + 2)i + 7t j, where t ≥ 0. Find:

a the point at which the particles collide
b the points at which the two paths cross
c the distance between the particles when t = 1.

Example 6

Solution
a The two particles collide when they share the same position at the same time:

r1(t) = r2(t)

(2t − 3)i + (t2 + 10) j = (t + 2)i + 7t j

Therefore

2t − 3 = t + 2 (1) and t2 + 10 = 7t (2)

From (1), we have t = 5.

Check in (2): t2 + 10 = 35 = 7t.

The particles are at the same point when t = 5, i.e. they collide at the point (7, 35).

b At the points where the paths cross, the two paths share common points which may
occur at different times for each particle. Therefore we need to distinguish between the
two time variables:

r1(t) = (2t − 3)i + (t2 + 10) j

r2(s) = (s + 2)i + 7s j

When the paths cross:

2t − 3 = s + 2 (3)

t2 + 10 = 7s (4)

We now solve these equations simultaneously.

Equation (3) becomes s = 2t − 5.

Substitute in (4):

t2 + 10 = 7(2t − 5)

t2 − 14t + 45 = 0

(t − 9)(t − 5) = 0

t = 5 or t = 9∴

The corresponding values for s are 5 and 13.

These values can be substituted back into the vector equations to obtain the points at
which the paths cross, i.e. (7, 35) and (15, 91).
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592 Chapter 13: Vector functions and vector calculus 13B

c When t = 1: r1(1) = −i + 11 j

r2(1) = 3i + 7 j

The vector representing the displacement between the two particles after 1 second is

r1(1) − r2(1) = −4i + 4 j

The distance between the two particles is
√

(−4)2 + 42 = 4
√

2 units.

Exercise 13B

1Example 4 The path of a particle with respect to an origin is described as a function of time, t, by
the vector equation r(t) = cos t i + sin t j, t ≥ 0.

a Find the Cartesian equation of the path.
b Sketch the path of the particle.
c Find the times at which the particle crosses the y-axis.

2 Repeat Question 1 for the paths described by the following vector functions:

r(t) = (t2 − 9)i + 8t j, t ≥ 0a r(t) = (t + 1)i +
1

t + 2
j, t > −2b

r(t) =
t − 1
t + 1

i +
2

t + 1
j, t > −1c

3Example 6 The paths of two particles with respect to time t are described by the vector equations
r1(t) = (3t − 5)i + (8 − t2) j and r2(t) = (3 − t)i + 2t j, where t ≥ 0. Find:

a the point at which the two particles collide
b the points at which the two paths cross
c the distance between the two particles when t = 3.

4 Repeat Question 3 for the paths described by the vector equations
r1(t) = (2t2 + 4)i + (t − 2) j and r2(t) = 9t i + 3(t − 1) j, where t ≥ 0.

5 The path of a particle defined as a function of time t is given by the vector equation
r(t) = (1 + t)i + (3t + 2) j. Find:

a the distance of the particle from the origin when t = 3
b the times at which the distance of the particle from the origin is 1 unit.

6 Let r(t) = t i + 2t j − 3k be the vector equation representing the motion of a particle with
respect to time t, where t ≥ 0. Find:

a the position, A, of the particle when t = 3
b the distance of the particle from the origin when t = 3
c the position, B, of the particle when t = 4
d the displacement of the particle in the fourth second in vector form.
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13B 13B Position vectors as a function of time 593

7 Let r(t) = (t + 1)i + (3 − t) j + 2tk be the vector equation representing the motion of a
particle with respect to time t, where t ≥ 0. Find:

a the position of the particle when t = 2
b the distance of the particle from the point (4,−1, 1) when t = 2.

8 Let r(t) = at2i + (b − t) j be the vector equation representing the motion of a particle
with respect to time t. When t = 3, the position of the particle is (6, 4). Find a and b.

9 A particle travels in a path such that the position vector, r(t), at time t is given by
r(t) = 3 cos(t) i + 2 sin(t) j, t ≥ 0.

a Express this vector function as a Cartesian relation.
b Find the initial position of the particle.
c The positive y-axis points north and the positive x-axis points east. Find, correct to

two decimal places, the bearing of the point P, the position of the particle at t =
3π
4

,
from:

i the origin ii the initial position.

10 An object moves so that the position vector at time t is given by r(t) = et i + e−t j, t ≥ 0.

a Express this vector function as a Cartesian relation.
b Find the initial position of the object.
c Sketch the graph of the path travelled by the object, indicating the direction

of motion.

11 An object is moving so that its position, r, at time t is given by
r(t) = (et + e−t)i + (et − e−t) j, t ≥ 0.

Find the initial position of the object.a Find the position at t = loge 2.b
Find the Cartesian equation of the path.c

12 An object is projected so that its position, r, at time t is given by
r(t) = 100t i +

(
100
√

3t − 5t2) j, for 0 ≤ t ≤ 20
√

3.

a Find the initial and final positions of the object.
b Find the Cartesian form of the path.
c Sketch the graph of the path, indicating the direction of motion.

13 Two particles A and B have position vectors rA(t) and rB(t) respectively at time t, given
by rA(t) = 6t2i + (2t3 − 18t) j and rB(t) = (13t − 6)i + (3t2 − 27) j, where t ≥ 0. Find
where and when the particles collide.

14Example 5 The motion of a particle is described by the vector equation r(t) = 3 cos t i + 3 sin t j + k,
t ≥ 0. Describe the motion of the particle.

15 The motion of a particle is described by the vector equation r(t) = t i + 3t j + tk, t ≥ 0.
Describe the motion of the particle.
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594 Chapter 13: Vector functions and vector calculus 13B

16 The motion of a particle is described by the vector equation
r(t) =

(
1 − 2 cos(2t)

)
i +

(
3 − 5 sin(2t)

)
j, for t ≥ 0. Find:

a the Cartesian equation of the path
b the position at:

i t = 0 ii t =
π

4
iii t =

π

2
c the time taken by the particle to return to its initial position
d the direction of motion along the curve.

17 For each of the following vector equations:

i find the Cartesian equation of the particle’s path
ii sketch the path
iii describe the motion of the particle.

a r(t) = cos2(3πt) i + 2 cos2(3πt) j, t ≥ 0
b r(t) = cos(2πt) i + cos(4πt) j, t ≥ 0
c r(t) = et i + e−2t j, t ≥ 0

13C Vector calculus
Consider the curve defined by r(t).

Let P and Q be points on the curve with position
vectors r(t) and r(t + h) respectively.

Then
−−→
PQ = r(t + h) − r(t).

It follows that
1
h
(
r(t + h) − r(t)

)
is a vector parallel to

−−→
PQ.

As h→ 0, the point Q approaches P along the curve.

x

y

r(t)

r(t + h)

O

Q

P

The derivative of r with respect to t is denoted by ṙ
and is defined by

ṙ(t) = lim
h→0

r(t + h) − r(t)
h

provided that this limit exists.

The vector ṙ(t) points along the tangent to the curve
at P, in the direction of increasing t.

Note: The derivative of a vector function r(t) is also

denoted by
dr
dt

or r′(t).

x

y

r(t)

ṙ(t)

O

P
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13C Vector calculus 595

Derivative of a vector function

Let r(t) = x(t)i + y(t) j. If both x(t) and y(t) are differentiable, then

ṙ(t) = ẋ(t)i + ẏ(t) j

Proof By the definition, we have

ṙ(t) = lim
h→0

r(t + h) − r(t)
h

= lim
h→0

(
x(t + h)i + y(t + h) j

)
−

(
x(t)i + y(t) j

)
h

= lim
h→0

x(t + h)i − x(t)i
h

+ lim
h→0

y(t + h) j − y(t) j
h

=

(
lim
h→0

x(t + h) − x(t)
h

)
i +

(
lim
h→0

y(t + h) − y(t)
h

)
j

ṙ(t) =
dx
dt

i +
dy
dt

j∴

The second derivative of r(t) is

r̈(t) =
d2x
dt2 i +

d2y
dt2 j = ẍ(t)i + ÿ(t) j

This can be extended to three-dimensional vector functions:

r(t) = x(t)i + y(t) j + z(t)k

ṙ(t) =
dx
dt

i +
dy
dt

j +
dz
dt

k

r̈(t) =
d2x
dt2 i +

d2y
dt2 j +

d2z
dt2 k

Find ṙ(t) and r̈(t) if r(t) = 20t i + (15t − 5t2) j.

Example 7

Solution

ṙ(t) = 20i + (15 − 10t) j

r̈(t) = −10 j

Find ṙ(t) and r̈(t) if r(t) = cos t i − sin t j + 5tk.

Example 8

Solution

ṙ(t) = − sin t i − cos t j + 5k

r̈(t) = − cos t i + sin t j
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596 Chapter 13: Vector functions and vector calculus

If r(t) = t i +
(
(t − 1)3 + 1

)
j, find ṙ(α) and r̈(α), where r(α) = i + j.

Example 9

Solution

r(t) = t i +
(
(t − 1)3 + 1

)
j

ṙ(t) = i + 3(t − 1)2 j

r̈(t) = 6(t − 1) j

We have

r(α) = αi +
(
(α − 1)3 + 1

)
j = i + j

Therefore α = 1, and ṙ(1) = i and r̈(1) = 0.

If r(t) = et i +
(
(et − 1)3 + 1

)
j, find ṙ(α) and r̈(α), where r(α) = i + j.

Example 10

Solution

r(t) = et i +
(
(et − 1)3 + 1

)
j

ṙ(t) = et i + 3et(et − 1)2 j

r̈(t) = et i +
(
6e2t(et − 1) + 3et(et − 1)2) j

We have

r(α) = eα i +
(
(eα − 1)3 + 1

)
j = i + j

Therefore α = 0, and ṙ(0) = i and r̈(0) = i.

A curve is described by the vector equation r(t) = 2 cos t i + 3 sin t j.

a Find:

i ṙ(t) ii r̈(t)
b Find the gradient of the curve at the point (x, y), where x = 2 cos t and y = 3 sin t.

Example 11

Solution
a i ṙ(t) = −2 sin t i + 3 cos t j

ii r̈(t) = −2 cos t i − 3 sin t j

b We can find
dy
dx

using related rates:

dy
dx

=
dy
dt

dt
dx

,
dx
dt

= −2 sin t,
dy
dt

= 3 cos t

dy
dx

= 3 cos t ·
1

−2 sin t
= −

3
2

cot t∴

Note that the gradient is undefined when sin t = 0.
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13C Vector calculus 597

A curve is described by the vector equation r(t) = sec(t) i + tan(t) j, with t ∈
(
−
π

2
,
π

2

)
.

a Find the gradient of the curve at the point (x, y), where x = sec(t) and y = tan(t).
b Find the gradient of the curve where t =

π

4
.

Example 12

Solution

a x = sec(t) =
1

cos(t)
= (cos t)−1 and y = tan(t)

dx
dt

= −(cos t)−2(− sin t)
dy
dt

= sec2(t)

=
sin(t)

cos2(t)

= tan(t) sec(t)

Hence
dy
dx

=
dy
dt

dt
dx

= sec2(t) ·
1

tan(t) sec(t)

= sec(t) cot(t)

=
1

sin(t)

b When t =
π

4
,

dy
dx

=
1

sin
(
π

4

) =
√

2

We have the following results for differentiating vector functions.

Properties of the derivative of a vector function

�
d
dt

(
c
)

= 0, where c is a constant vector

�
d
dt

(
kr(t)

)
= k

d
dt

(
r(t)

)
, where k is a real number

�
d
dt

(
r1(t) + r2(t)

)
=

d
dt

(
r1(t)

)
+

d
dt

(
r2(t)

)
�

d
dt

(
f (t) r(t)

)
= f (t)

d
dt

(
r(t)

)
+

d
dt

(
f (t)

)
r(t), where f is a real-valued function
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598 Chapter 13: Vector functions and vector calculus

Antidi�erentiation
Consider

∫
r(t) dt =

∫
x(t)i + y(t) j + z(t)k dt

=
(∫

x(t) dt
)

i +
(∫

y(t) dt
)

j +
(∫

z(t) dt
)

k

= X(t)i + Y(t) j + Z(t)k + c

where
dX
dt

= x(t),
dY
dt

= y(t),
dZ
dt

= z(t) and c is a constant vector. Note that
dc
dt

= 0.

Given that r̈(t) = 10i − 12k, find:

ṙ(t) if ṙ(0) = 30i − 20 j + 10ka r(t) if also r(0) = 0i + 0 j + 2kb

Example 13

Solution

a ṙ(t) = 10t i − 12tk + c1, where c1 is a constant vector

ṙ(0) = 30i − 20 j + 10k

c1 = 30i − 20 j + 10kThus

ṙ(t) = 10t i − 12tk + 30i − 20 j + 10kand

= (10t + 30)i − 20 j + (10 − 12t)k

b r(t) = (5t2 + 30t)i − 20t j + (10t − 6t2)k + c2, where c2 is a constant vector

r(0) = 0i + 0 j + 2k

c2 = 2kThus

r(t) = (5t2 + 30t)i − 20t j + (10t − 6t2 + 2)kand

Given r̈(t) = −9.8 j with r(0) = 0 and ṙ(0) = 30i + 40 j, find r(t).

Example 14

Solution

r̈(t) = −9.8 j

ṙ(t) =
(∫

0 dt
)

i +
(∫
−9.8 dt

)
j∴

= −9.8t j + c1

But ṙ(0) = 30i + 40 j, giving c1 = 30i + 40 j.

ṙ(t) = 30i + (40 − 9.8t) j∴

r(t) =
(∫

30 dt
)

i +
(∫

40 − 9.8t dt
)

jThus

= 30t i + (40t − 4.9t2) j + c2

Now r(0) = 0 and therefore c2 = 0.

Hence r(t) = 30t i + (40t − 4.9t2) j.
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13C 13C Vector calculus 599

Exercise 13CSkill-
sheet

1Example 7

Example 8

Find ṙ(t) and r̈(t) for each of the following:

r(t) = et i + e−t ja r(t) = t i + t2 jb
r(t) = 1

2 t i + t2 jc r(t) = 16t i − 4(4t − 1)2 jd
r(t) = sin(t) i + cos(t) je r(t) = (3 + 2t)i + 5t jf
r(t) = 100t i +

(
100
√

3t − 4.9t2) jg r(t) = tan(t) i + cos2(t) jh

2Example 9

Example 10

Sketch graphs for each of the following, for t ≥ 0, and find r(t0), ṙ(t0) and r̈(t0) for the
given t0:

r(t) = et i + e−t j, t0 = 0a r(t) = t i + t2 j, t0 = 1b

r(t) = sin(t) i + cos(t) j, t0 =
π

6
c r(t) = 16t i − 4(4t − 1)2 j, t0 = 1d

r(t) =
1

t + 1
i + (t + 1)2 j, t0 = 1e

3Example 11

Example 12

Find the gradient at the point on the curve determined by the given value of t for each of
the following:

r(t) = cos(t) i + sin(t) j, t =
π

4
a r(t) = sin(t) i + cos(t) j, t =

π

2
b

r(t) = et i + e−2t j, t = 1c r(t) = 2t2i + 4t j, t = 2d

r(t) = (t + 2)i + (t2 − 2t) j, t = 3e r(t) = cos(πt) i + cos(2πt) j, t =
1
4

f

4Example 13

Example 14

Find r(t) for each of the following:

a ṙ(t) = 4i + 3 j, where r(0) = i − j
b ṙ(t) = 2t i + 2 j − 3t2 k, where r(0) = i − j
c ṙ(t) = e2t i + 2e0.5t j, where r(0) = 1

2 i
d r̈(t) = i + 2t j, where ṙ(0) = i and r(0) = 0
e r̈(t) = sin(2t) i − cos

( 1
2 t
)

j, where ṙ(0) = − 1
2 i and r(0) = 4 j

5 The position of a particle at time t is given by r(t) = sin(t) i + t j + cos(t) k, where t ≥ 0.
Prove that ṙ(t) and r̈(t) are always perpendicular.

6 The position of a particle at time t is given by r(t) = 2t i + 16t2(3 − t) j, where t ≥ 0.
Find:

a when ṙ(t) and r̈(t) are perpendicular
b the pairs of perpendicular vectors ṙ(t) and r̈(t).

7 A particle has position r(t) at time t determined by r(t) = at i +
a2t2

4
j, a > 0 and t ≥ 0.

a Sketch the graph of the path of the particle.
b Find when the magnitude of the angle between ṙ(t) and r̈(t) is 45◦.
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600 Chapter 13: Vector functions and vector calculus 13C

8 A particle has position r(t) at time t specified by r(t) = 2t i + (t2 − 4) j, where t ≥ 0.

a Sketch the graph of the path of the particle.
b Find the magnitude of the angle between ṙ(t) and r̈(t) at t = 1.
c Find when the magnitude of the angle between ṙ(t) and r̈(t) is 30◦.

9 Given r = 3t i + 1
3 t3 j + t3 k, find:

ṙa |ṙ|b r̈c
|r̈|d t when |r̈| = 16e

10 Given that r = (V cosα)t i +
(
(V sinα)t − 1

2 gt2) j specifies the position of an object at
time t ≥ 0, find:

ṙa r̈b
when ṙ and r̈ are perpendicularc
the position of the object when ṙ and r̈ are perpendicular.d

13D Velocity and acceleration for motion along a curve
Consider a particle moving along a curve in the plane, with position vector at time t given by

r(t) = x(t)i + y(t) j

We can find the particle’s velocity and acceleration at time t as follows.

Velocity
Velocity is the rate of change of position.

Therefore v(t), the velocity at time t, is given by

v(t) = ṙ(t) = ẋ(t)i + ẏ(t) j

The velocity vector gives the direction of motion at time t.

Acceleration
Acceleration is the rate of change of velocity.

Therefore a(t), the acceleration at time t, is given by

a(t) = v̇(t) = r̈(t) = ẍ(t)i + ÿ(t) j

Speed
Speed is the magnitude of velocity. At time t, the speed is |ṙ(t)|.

Distance between two points on the curve
The (shortest) distance between two points on the curve is found using |r(t1) − r(t0)|.
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13D Velocity and acceleration for motion along a curve 601

The position of an object is r(t) metres at time t seconds, where r(t) = et i +
2
9

e2t j, t ≥ 0.

Find at time t:

the velocity vectora the acceleration vectorb the speed.c

Example 15

Solution

a v(t) = ṙ(t) = et i +
4
9

e2t j

b a(t) = r̈(t) = et i +
8
9

e2t j

c Speed = |v(t)| =
√(

et)2
+

( 4
9 e2t)2

=

√
e2t +

16
81

e4t m/s

The position vector of a particle at time t is given by r(t) = (2t − t2)i + (t2 − 3t) j + 2tk,
where t ≥ 0. Find:

a the velocity of the particle at time t

b the speed of the particle at time t

c the minimum speed of the particle.

Example 16

Solution
a ṙ(t) = (2 − 2t)i + (2t − 3) j + 2k

b Speed = |ṙ(t)| =
√

4 − 8t + 4t2 + 4t2 − 12t + 9 + 4

=
√

8t2 − 20t + 17

c Minimum speed occurs when 8t2 − 20t + 17 is a minimum.

8t2 − 20t + 17 = 8
(
t2 −

5t
2

+
17
8

)
= 8

(
t2 −

5t
2

+
25
16

+
17
8
−

25
16

)
= 8

((
t −

5
4

)2
+

9
16

)
= 8

(
t −

5
4

)2
+

9
2

Hence the minimum speed is

√
9
2

=
3
√

2
=

3
√

2
2

.

(This occurs when t = 5
4 .)
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602 Chapter 13: Vector functions and vector calculus

The position of a projectile at time t is given by r(t) = 400t i + (500t − 5t2) j, for t ≥ 0,
where i is a unit vector in a horizontal direction and j is a unit vector vertically up.
The projectile is fired from a point on the ground. Find:

a the time taken to reach the ground again
b the speed at which the projectile hits the ground
c the maximum height of the projectile
d the initial speed of the projectile.

Example 17

Solution
a The projectile is at ground level when the j-component of r is zero:

500t − 5t2 = 0

5t(100 − t) = 0

t = 0 or t = 100∴

The projectile reaches the ground again at t = 100.

b ṙ(t) = 400i + (500 − 10t) j

The velocity of the projectile when it hits the ground is

ṙ(100) = 400i − 500 j

Therefore the speed is

|ṙ(100)| =
√

4002 + 5002

= 100
√

41

The projectile hits the ground with speed 100
√

41.

c The projectile reaches its maximum height when the j-component of ṙ is zero:

500 − 10t = 0

t = 50∴

The maximum height is 500 × 50 − 5 × 502 = 12 500.

d The initial velocity is

ṙ(0) = 400i + 500 j

So the initial speed is

|ṙ(0)| =
√

4002 + 5002

= 100
√

41
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13D Velocity and acceleration for motion along a curve 603

The position vector of a particle at time t is given by r(t) = 2 sin(2t) i + cos(2t) j + 2tk,
where t ≥ 0. Find:

the velocity at time ta the speed of the particle at time tb
the maximum speedc the minimum speed.d

Example 18

Solution
a ṙ(t) = 4 cos(2t) i − 2 sin(2t) j + 2k

b Speed = |ṙ(t)| =
√

16 cos2(2t) + 4 sin2(2t) + 4

=
√

12 cos2(2t) + 8

c Maximum speed =
√

20 = 2
√

5, when cos(2t) = 1

d Minimum speed =
√

8 = 2
√

2, when cos(2t) = 0

The position vectors, at time t ≥ 0, of particles A and B are given by

rA(t) = (t3 − 9t + 8)i + t2 j

rB(t) = (2 − t2)i + (3t − 2) j

Prove that A and B collide while travelling at the same speed but at right angles to
each other.

Example 19

Solution
When the particles collide, they must be at the same position at the same time:

(t3 − 9t + 8)i + t2 j = (2 − t2)i + (3t − 2) j

t3 − 9t + 8 = 2 − t2 (1)Thus

t2 = 3t − 2 (2)and

t3 + t2 − 9t + 6 = 0 (3)From (1):

t2 − 3t + 2 = 0 (4)From (2):

Equation (4) is simpler to solve:

(t − 2)(t − 1) = 0

t = 2 or t = 1∴

Now check in (3):

t = 1 LHS = 1 + 1 − 9 + 6 = −1 , RHS

t = 2 LHS = 8 + 4 − 18 + 6 = 0 = RHS

The particles collide when t = 2.
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604 Chapter 13: Vector functions and vector calculus

Now consider the speeds when t = 2.

ṙA(t) = (3t2 − 9)i + 2t j ṙB(t) = −2t i + 3 j

ṙA(2) = 3i + 4 j r̈B(2) = −4i + 3 j∴

The speed of particle A is
√

32 + 42 = 5.

The speed of particle B is
√

(−4)2 + 32 = 5.

The speeds of the particles are equal at the time of collision.

Consider the scalar product of the velocity vectors for A and B at time t = 2.

ṙA(2) · ṙB(2) = (3i + 4 j) · (−4i + 3 j)

= −12 + 12

= 0

Hence the velocities are perpendicular at t = 2.

The particles are travelling at right angles at the time of collision.

Distance travelled along a curve
In Section 10E, we considered the length of a curve defined by parametric equations. We can
use the same result to find the distance travelled by a particle along a curve.

If r(t) = x(t)i + y(t) j describes the path of a particle, then the distance travelled along the
path in the time interval from t = a to t = b is given by∫ b

a

√(dx
dt

)2
+

(dy
dt

)2
dt

A particle moves along a line such that its position at time t is given by the vector function

r(t) = (3t − 2)i + (4t + 3) j, t ≥ 0

How far along the line does the particle travel from t = 1 to t = 3?

Example 20

Solution
We have x(t) = 3t − 2 and y(t) = 4t + 3.

Hence the distance travelled is∫ b

a

√(dx
dt

)2
+

(dy
dt

)2
dt =

∫ 3

1

√
32 + 42 dt

=
∫ 3

1
5 dt

=
[
5t

]3
1

= 10
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13D 13D Velocity and acceleration for motion along a curve 605

A particle moves along a curve such that its position vector at time t is given by

r(t) = sin(t) i + 1
2 sin(2t) j, t ≥ 0

a How far along the curve does the particle travel from t = 0 to t =
π

3
?

(Give your answer correct to three decimal places.)
b Find the shortest distance between these two points.

Example 21

Solution

a x = sin(t) and y = 1
2 sin(2t)

dx
dt

= cos(t) and
dy
dt

= cos(2t)

Hence the distance travelled is∫ b

a

√(dx
dt

)2
+

(dy
dt

)2
dt =

∫ π

3
0

√
cos2(t) + cos2(2t) dt ≈ 1.061

using a calculator.

b We have r(0) = 0i + 0 j and r
(
π

3

)
=

√
3

2
i +

√
3

4
j.

Thus r
(
π

3

)
− r(0) =

√
3

2
i +

√
3

4
j.

Hence the shortest distance between the two points is
∣∣∣∣∣
√

3
2

i +

√
3

4
j
∣∣∣∣∣ =

√
15
4
≈ 0.968.

Exercise 13DSkill-
sheet

All distances are measured in metres and time in seconds.

1Example 15 The position of a particle at time t is given by r(t) = t2i − (1 + 2t) j, for t ≥ 0. Find:

the velocity at time ta the acceleration at time tb

the average velocity for the first 2 seconds, i.e.
r(2) − r(0)

2
.c

2 The acceleration of a particle at time t is given by r̈(t) = −g j, where g = 9.8. Find:

a the velocity at time t if ṙ(0) = 2i + 6 j
b the position at time t if also r(0) = 0i + 6 j.

3Example 16 The velocity of a particle at time t is given by ṙ(t) = 3i + 2t j + (1 − 4t)k, for t ≥ 0.

a Find the acceleration of the particle at time t.
b Find the position of the particle at time t if initially the particle is at j + k.
c Find an expression for the speed at time t.
d i Find the time at which the minimum speed occurs.

ii Find this minimum speed.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



606 Chapter 13: Vector functions and vector calculus 13D

4 The acceleration of a particle at time t is given by r̈(t) = 10i − gk, where g = 9.8. Find:

a the velocity of the particle at time t, given that ṙ(0) = 20i − 20 j + 40k
b the position of the particle at time t, given also that r(0) = 0i + 0 j + 0k.

5 The position of an object at time t is given by r(t) = 5 cos(1 + t2) i + 5 sin(1 + t2) j. Find
the speed of the object at time t.

6 The position of a particle, r(t), at time t seconds is given by r(t) = 2t i + (t2 − 4) j. Find
the magnitude of the angle between the velocity and acceleration vectors at t = 1.

7 The position vector of a particle is given by r(t) = 12
√

t i + t
3
2 j, for t ≥ 0. Find the

minimum speed of the particle and its position when it has this speed.

8Example 17 The position, r(t), of a projectile at time t is given by r(t) = 400t i + (300t − 4.9t2) j, for
t ≥ 0. If the projectile is initially at ground level, find:

a the time taken to return to the ground
b the speed at which the object hits the ground
c the maximum height reached
d the initial speed of the object
e the initial angle of projection from the horizontal.

9 The acceleration of a particle at time t is given by r̈(t) = −3
(
sin(3t) i + cos(3t) j

)
.

a Find the position vector r(t), given that ṙ(0) = i and r(0) = −3i + 3 j.
b Show that the path of the particle is circular and state the position of its centre.
c Show that the acceleration is always perpendicular to the velocity.

10Example 18 The position vector of a particle at time t is r(t) = 2 cos(t) i + 4 sin(t) j + 2tk. Find the
maximum and minimum speeds of the particle.

11 The velocity vector of a particle at time t seconds is given by

v(t) = (2t + 1)2i +
1

√
2t + 1

j

a Find the magnitude and direction of the acceleration after 1 second.
b Find the position vector at time t seconds if the particle is initially at O.

12 The acceleration of a particle moving in the x–y plane is −g j. The particle is initially
at O with velocity given by V cos(α) i + V sin(α) j, for some positive real number α.

a Find r(t), the position vector at time t.
b Prove that the particle’s path has Cartesian equation y = x tanα −

gx2

2V2 sec2 α.

13Example 19 Particles A and B move in the x–y plane with constant velocities.

� ṙA(t) = i + 2 j and rA(2) = 3i + 4 j
� ṙB(t) = 2i + 3 j and rB(3) = i + 3 j

Prove that the particles collide, finding:

a the time of collision b the position vector of the point of collision.
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13D 13D Velocity and acceleration for motion along a curve 607

14 A body moves horizontally with a constant speed of 20 m/s on a bearing of (360 − α)◦,
where 0 < α < 90 and tan(α◦) = 4

3 . If i is a horizontal unit vector due east and j is a
horizontal unit vector due north, find:

the velocity of the body at time ta the position of the body after 5 seconds.b

15 The position vector of a particle at time t is r(t) = 4 sin(2t) i + 4 cos(2t) j, t ≥ 0. Find:

a the velocity at time t b the speed at time t c the acceleration in terms of r.

16 The velocity of a particle is given by ṙ(t) = (2t − 5)i, t ≥ 0. Initially, the position of the
particle relative to an origin O is −2i + 2 j.

a Find the position of the particle at time t.
b Find the position of the particle when it is instantaneously at rest.
c Find the Cartesian equation of the path followed by the particle.

17 A particle has path defined by r(t) = 6 sec(t) i + 4 tan(t) j, t ≥ 0. Find:

the Cartesian equation of the patha the particle’s velocity at time t.b

18 A particle moves such that its position vector, r(t), at time t is given by
r(t) = 4 cos(t) i + 3 sin(t) j, 0 ≤ t ≤ 2π.

a Find the Cartesian equation of the path of the particle and sketch the path.
b i Find when the velocity of the particle is perpendicular to its position vector.

ii Find the position vector of the particle at each of these times.
c i Find the speed of the particle at time t.

ii Write the speed in terms of cos2 t.
iii State the maximum and minimum speeds of the particle.

19Example 20 A particle moves along a line such that its position at time t is given by the vector
function r(t) = (t + 2)i + (6t + 1) j, t ≥ 0. How far along the line does the particle travel
from t = 1 to t = 3?

20 A particle moves around a circle such that its position at time t is given by the vector
function r(t) = cos(2t) i + sin(2t) j, t ≥ 0. How far along the circle does the particle

travel from t = 0 to t =
π

4
?

21Example 21 A particle moves along a curve such that its position at time t is given by the vector
function r(t) =

√
t i + (2t + 4) j, t ≥ 0.

a How far along the curve does the particle travel from t = 1 to t = 4?
(Give your answer correct to three decimal places.)

b Find the shortest distance between these two points.

22 A particle moves around an ellipse such that its position vector at time t is given by
r(t) = 4 cos(t) i + 3 sin(t) j, 0 ≤ t ≤ 2π.

a How far along the ellipse does the particle travel from t = 0 to t =
π

4
?

(Give your answer correct to three decimal places.)
b Find the shortest distance between these two points.
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608 Chapter 13: Vector functions and vector calculus

Assign-
ment

Nrich

Chapter summary

� We state the following results for motion in three dimensions. The statements for motion
in two dimensions are analogous.

• The position of a particle at time t can be described by a vector function:

r(t) = f (t)i + g(t) j + h(t)k

• The velocity of the particle at time t is

ṙ(t) = f ′(t)i + g′(t) j + h′(t)k

• The acceleration of the particle at time t is

r̈(t) = f ′′(t)i + g′′(t) j + h′′(t)k

� The velocity vector ṙ(t) has the direction of the motion of the particle at time t.
� Speed is the magnitude of velocity. At time t, the speed is |ṙ(t)|.
� The (shortest) distance between the points on the path corresponding to t = t0 and t = t1 is

given by |r(t1) − r(t0)|.
� If r(t) = x(t)i + y(t) j describes the path of a particle, then the distance travelled along the

path in the time interval from t = a to t = b is given by∫ b

a

√(dx
dt

)2
+

(dy
dt

)2
dt

Technology-free questions

1 The position, r(t) metres, of a particle moving in a plane is given by r(t) = 2t i + (t2 −4) j
at time t seconds.

a Find the velocity and acceleration when t = 2.
b Find the Cartesian equation of the path.

2 Find the velocity and acceleration vectors of the position vectors:

r = 2t2i + 4t j + 8ka r = 4 sin t i + 4 cos t j + t2 kb

3 At time t, a particle has coordinates (6t, t2 + 4). Find the unit vector along the tangent to
the path when t = 4.

4 The position vector of a particle is given by r(t) = 10 sin(2t) i + 5 cos(2t) j.

a Find its position vector when t =
π

6
.

b Find the cosine of the angle between its directions of motion at t = 0 and t =
π

6
.

5 Find the unit tangent vector of the curve r = (cos t + t sin t)i + (sin t − t cos t) j, t > 0.

6 A particle moves on a curve with equation r = 5(cos t i + sin t j). Find:

the velocity at time ta the speed at time tb
the acceleration at time tc ṙ · r̈, and comment.d
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7 Particles A and B move with velocities VA = cos t i + sin t j and VB = sin t i + cos t j
respectively. At time t = 0, the position vectors of A and B are rA = i and rB = j. Prove
that the particles collide, finding the time of collision.

8 The position vector of a particle at any time t is given by r = (1 + sin t)i + (1 − cos t) j.

a Show that the magnitudes of the velocity and acceleration are constants.
b Find the Cartesian equation of the path described by the particle.
c Find the first instant that the position is perpendicular to the velocity.

9 The velocities of two particles A and B are given by VA = 2i + 3 j and VB = 3i − 4 j. The
initial position vector of particle A is rA = i − j. If the particles collide after 3 seconds,
find the initial position vector of particle B.

10 A particle starts from point i − 2 j and travels with a velocity given by t i + j, at time
t seconds from the start. A second particle travels in the same plane and its position
vector is given by r = (s − 4)i + 3 j, at time s seconds after it started.

a Find an expression for the position of the first particle.
b Find the point at which their paths cross.
c If the particles actually collide, find the time between the two starting times.

11 A particle travels with constant acceleration, given by r̈(t) = i + 2 j. Two seconds after
starting, the particle passes through the point i, travelling at a velocity of 2i − j. Find:

a an expression for the velocity of the particle at time t

b an expression for its position
c the initial position and velocity of the particle.

12 Two particles travel with constant acceleration given by r̈1(t) = i − j and r̈2(t) = 2i + j.
The initial velocity of the second particle is −4i and that of the first particle is k j.

a Find an expression for:

i the velocity of the second particle
ii the velocity of the first particle.

b At one instant both particles have the same velocity. Find:

i the time elapsed before that instant
ii the value of k

iii the common velocity.

13 The position of an object is given by r(t) = et i + 4e2t j, t ≥ 0.

a Show that the path of the particle is the graph of f : [1,∞)→ R, f (x) = 4x2.
b Find:

i the velocity vector at time t

ii the initial velocity
iii the time at which the velocity is parallel to the vector i + 12 j.
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610 Chapter 13: Vector functions and vector calculus

14 The velocity of a particle is given by ṙ(t) = (t − 3) j, t ≥ 0.

a Show that the path of this particle is linear.
b Initially, the position of the particle is 2i + j.

i Find the Cartesian equation of the path followed by the particle.
ii Find the point at which the particle is momentarily at rest.

Multiple-choice questions

1 A particle moves in a plane such that, at time t, its position is r(t) = 2t2i + (3t − 1) j.
Its acceleration at time t is given by

A 4t i + 3 j B 2
3 t3i +

( 3
2 t2 − t

)
j C 4i + 3 j D 0i + 0 j E 4i + 0 j

2 The position vector of a particle at time t, t ≥ 0, is given by r = sin(3t) i − 2 cos(t) j.
The speed of the particle when t = π is

2A 2
√

2B
√

5C 0D 3E

3 A particle moves with constant velocity 5i − 4 j + 2k. Its initial position is 3i − 6k.
Its position vector at time t is given by

(3t + 5)i − 4 j + (2 − 6t)kA (5t + 3)i − 4t j + (2t − 6)kB

5t i − 4t j + 2tkC −5t i − 4t j + 2tkD (5t − 3)i + (2t − 6)kE

4 A particle moves with its position vector defined with respect to time t by the vector
function r(t) = (2t3 − 1)i + (2t2 + 3) j + 6tk. The acceleration when t = 1 is given by

A 6i + 4 j + 6k B 12i + 4 j + 6k C 12i D 2
√

10 E 12i + 4 j

5 The position vector of a particle at time t seconds is r(t) = (t2 − 4t)(i − j + k), measured
in metres from a fixed point. The distance in metres travelled in the first 4 seconds is

0A 4
√

3B 8
√

3C 4D
√

3E

6 The initial position, velocity and constant acceleration of a particle are given by 3i, 2 j
and 2i − j respectively. The position vector of the particle at time t is given by

(2i − j)t + 3iA t2i − 1
2 t2 jB (t2 + 3)i +

(
2t − 1

2 t2) jC
3i + 2t jD 1

2 t2(2i − j)E

7 The position of a particle at time t = 0 is r(0) = i − 5 j + 2k. The position of the particle
at time t = 3 is r(3) = 7i + 7 j − 4k. The average velocity for the interval [0, 3] is

1
3 (8i + 2 j − 2k)A 1

3 (21i + 21 j − 12k)B 2i + 4 j − 2kC

i + 2 j − kD 2i − j + kE

8 A particle is moving so its velocity vector at time t is ṙ(t) = 2t i + 3 j, where r(t) is the
position vector at time t. If r(0) = 3i + j, then r(t) is equal to

2iA (3t + 1)i + (3t2 + 1) jB 2t2i + 3t j + 3i + jC
5i + 3 jD (t2 + 3)i + (3t + 1) jE
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9 The velocity of a particle is given by the vector ṙ(t) = t i + et j. At time t = 0, the
position of the particle is given by r(0) = 3i. The position of the particle at time t is
given by

r(t) = 1
2 t2i + et jA r(t) = 1

2 (t2 + 3)i + et jB r(t) = ( 1
2 t2 + 3)i + (et − 1) jC

r(t) = ( 1
2 t2 + 3)i + et jD r(t) = 1

2 (t2 + 3)i + (et − 1) jE

10 A curve is described by the vector equation r(t) = 2 cos(πt) i + 3 sin(πt) j. With respect
to a set of Cartesian axes, the gradient of the curve at the point (

√
3, 1.5) is

A −
√

3
2

B −(πi + 3
√

3π j) C πi + 3
√

3π j D −
3
√

3
2

π E −
3
√

3
2

Extended-response questions

1 Two particles P and Q are moving in a horizontal plane. The particles are moving with
velocities 9i + 6 j m/s and 5i + 4 j m/s respectively.

a Determine the speeds of the particles.
b At time t = 4, particles P and Q have position vectors rP(4) = 96i + 44 j and

rQ(4) = 100i + 96 j. (Distances are measured in metres.)

i Find the position vectors of P and Q at time t = 0.
ii Find the vector

−−→
PQ at time t.

c Find the time at which P and Q are nearest to each other and the magnitude of
−−→
PQ at

this instant.

2 Two particles A and B move in the plane. The velocity of A is (−3i + 29 j) m/s while that
of B is v(i + 7 j) m/s, where v is a constant. (All distances are measured in metres.)

a Find the vector
−−→
AB at time t seconds, given that when t = 0,

−−→
AB = −56i + 8 j.

b Find the value of v such that the particles collide.
c If v = 3:

i Find
−−→
AB. ii Find the time when the particles are closest.

3 A child is sitting still in some long grass watching a bee. The bee flies at a constant
speed in a straight line from its beehive to a flower and reaches the flower 3 seconds
later. The position vector of the beehive relative to the child is 10i + 2 j + 6k and the
position vector of the flower relative to the child is 7i + 8 j, where all the distances are
measured in metres.

a If B is the position of the beehive and F the position of the flower, find
−−→
BF.

b Find the distance BF.
c Find the speed of the bee.
d Find the velocity of the bee.
e Find the time when the bee is closest to the child and its distance from the child at

this time.
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4 Initially, a motorboat is at a point J at the end of a jetty and a police boat is at a point P.
The position vector of P relative to J is 400i − 600 j. The motorboat leaves the point J
and travels with constant velocity 6i. At the same time, the police boat leaves its
position at P and travels with constant velocity u(8i + 6 j), where u is a real number. All
distances are measured in metres and all times are measured in seconds.

a If the police boat meets the motorboat after t seconds, find:

i the value of t

ii the value of u

iii the speed of the police boat
iv the position of the point where they meet.

b Find the time at which the police boat was closest to J and its distance from J at
this time.

5 A particle A is at rest on a smooth horizontal table at a point with position vector
−i + 2 j, relative to an origin O. Point B is on the table such that

−−→
OB = 2i + j. (All

distances are measured in metres and time in seconds.) At time t = 0, the particle is
projected along the table with velocity (6i + 3 j) m/s.

a Determine:

i
−−→
OA at time t ii

−−→
BA at time t.

b Find the time when |
−−→
BA| = 5.

c Using the time found in b:

i Find a unit vector c along
−−→
BA.

ii Find a unit vector d perpendicular to
−−→
BA.

Hint: The vector yi − x j is perpendicular to xi + y j.
iii Express 6i + 3 j in the form pc + qd.

6 a Sketch the graph of the Cartesian relation corresponding to the vector equation

r(θ) = cos(θ) i − sin(θ) j, 0 < θ <
π

2

b A particle P describes a circle of radius 16 cm about the origin. It completes
the circle every π seconds. At t = 0, P is at the point (16, 0) and is moving in a
clockwise direction. It can be shown that

−−→
OP = a cos(nt) i + b sin(nt) j.

Find the values of:

i a ii b iii n iv State the velocity and acceleration of P at time t.

c A second particle Q has position vector given by
−−→
OQ = 8 sin(t) i + 8 cos(t) j, where

measurements are in centimetres. Obtain an expression for:

i
−−→
PQ ii |

−−→
PQ|2

d Find the minimum distance between P and Q.
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7 At time t, a particle has velocity v = (2 cos t)i − (4 sin t cos t) j, t ≥ 0. At time t = 0, it is
at the point with position vector 3 j.

a Find the position of the particle at time t.
b Find the position of the particle when it first comes to rest.
c i Find the Cartesian equation of the path of the particle.

ii Sketch the path of the particle.
d Express |v|2 in terms of cos t and, without using calculus, find the maximum speed of

the particle.
e Give the time at which the particle is at rest for the second time.
f i Show that the distance, d, of the particle from the origin at time t is given by

d2 = cos2(2t) + 2 cos(2t) + 6.
ii Find the time(s) at which the particle is closest to the origin.

8 A golfer hits a ball from a point referred to as the origin with a velocity of ai + b j + 20k,
where i, j and k are unit vectors horizontally forwards, horizontally to the right and
vertically upwards respectively. After being hit, the ball is subject to an acceleration
2 j − 10k. (All distances are measured in metres and all times in seconds.) Find:

a the velocity of the ball at time t

b the position vector of the ball at time t

c the time of flight of the ball
d the values of a and b if the golfer wishes to hit a direct hole-in-one, where the

position vector of the hole is 100i
e the angle of projection of the ball if a hole-in-one is achieved.

9 Particles P and Q have variable position vectors p and q respectively, given by
p(t) = cos(t) i + sin(t) j − k and q(t) = cos(2t) i − sin(2t) j + 1

2 k, where 0 ≤ t ≤ 2π.

a i For p(t), describe the path.
ii Find the distance of particle P from the origin at time t.
iii Find the velocity of particle P at time t.
iv Show that the vector cos(t) i + sin(t) j is perpendicular to the velocity vector of P

for any value of t.
v Find the acceleration, p̈(t), at time t.

b i Find the vector
−−→
PQ at time t.

ii Show that the distance between P and Q at time t is
√

17
4 − 2 cos(3t).

iii Find the maximum distance between the particles.
iv Find the times at which this maximum occurs.
v Find the minimum distance between the particles.
vi Find the times at which this minimum occurs.

c i Show that p(t) · q(t) = cos(3t) − 1
2 .

ii Find an expression for cos(∠POQ).
iii Find the greatest magnitude of angle POQ.
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10 Particles A and B move such that, at any time t ≥ 0, their position vectors are
rA = 2t i + t j and rB =

(
4 − 4 sin(αt)

)
i + 4 cos(αt) j, where α is a positive constant.

a Find the speed of B in terms of α.
b Find the Cartesian equations of the paths of A and B.
c On the same set of axes, sketch the paths of A and B, showing directions of travel.
d Find the coordinates of the points where the paths of A and B cross.
e Find the least value of α, correct to two decimal places, for which particles A and B

will collide.

11 A bartender slides a glass along a bar for a
customer to collect. Unfortunately, the customer
has turned to speak to a friend. The glass slides
over the edge of the bar with a horizontal
velocity of 2 m/s. Assume that air resistance is
negligible and that the acceleration due to gravity
is 9.8 m/s2 in a downwards direction.

0i + 0j
O

j

i

a i Give the acceleration of the glass as a vector expression.
ii Give the vector expression for the velocity of the glass at time t seconds, where

t is measured from when the glass leaves the bar.
iii Give the position of the glass with respect to the edge of the bar, O, at time

t seconds.
b It is 0.8 m from O to the floor directly below. Find:

i the time it takes for the glass to hit the floor
ii the horizontal distance from the bar where the glass hits the floor.

12 A yacht is returning to its marina at O.
At midday, the yacht is at Y . The yacht takes
a straight-line course to O. Point L is the
position of a navigation sign on the shore.
Coordinates represent distances east and
north of the marina, measured in kilometres.

a i Write down the position vector of the
navigation sign L.

ii Find the unit vector in the direction of
−−→
OL.

i

j Y(7, 4)

L(6, −3)

Land

O

b Find the vector resolute of
−−→
OY in the direction of

−−→
OL and hence find the coordinates

of the point on shore closest to the yacht at midday.
c The yacht sails towards O. The position vector at time t hours after 12 p.m. is given

by r(t) =
(
7 − 7

2 t
)

i + (4 − 2t) j.

i Find an expression for
−→
LP, where P is the position of the yacht at time t.

ii Find the time when the yacht is closest to the navigation sign.
iii Find the closest distance between the sign and the yacht.
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14A Technology-free questions
1 Find the derivative of each of the following with respect to x:

1
arcsin x

a
1

arctan x
b

1
(arcsin x)2c

2 A tank initially contains 20 L of water in which 1 kg of salt has been dissolved.
Pure water flows into the tank at a rate of 4 L per minute. The mixture flows out of
the tank at a rate of 2 L per minute. Let Q kg be the amount of salt in the tank at time
t minutes (t ≥ 0).

a Construct a differential equation to model this situation.
b Solve the differential equation to find Q in terms of t.

3 Solve the differential equation
dy
dx

= −
x

4 + x2 given that y = 2 when x = 1.

4 The graph of y = 3 arccos
( x
2

)
is shown opposite.

a Find the area bounded by the
graph, the x-axis and the line
x = −2.

b Find the volume of the solid
of revolution formed when
the graph is rotated about
the y-axis.

O 2−2
x

3π
2

3π

y
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5 Consider the relation 5x2 + 2xy + y2 = 13.

a Find the gradient of each of the tangents to the graph at the points where x = 1.
b Find the equation of the normal to the graph at the point in the first quadrant

where x = 1.

6 The motion of a particle in a straight line is modelled by

dx
dt

= x2 sin(2t)

where x cm is the position of the particle relative to an origin O at time t seconds

(t ≥ 0). The initial position of the particle is x =
1
2

.

a Find an expression for x in terms of t.
b Find the maximum distance of the particle from the origin, and the times at which

this occurs.

7 Sketch the graph of y =
4 − x3

3x2 . Give the coordinates of any turning points and axis

intercepts and state the equations of all asymptotes.

8 Let f (x) =
1 + x2

4 − x2 .

a Express f (x) as partial fractions.
b Find the area enclosed by the graph of y = f (x) and the lines x = 1 and x = −1.

9 Consider the curve defined by the parametric equations

x = 2 cos2(θ) and y = sin(2θ) for 0 ≤ θ ≤
π

4
a Compute the length of the curve.
b This curve can be described in the form y = f (x) for a function f . Find the rule,

domain and range of f .
c Find the area of the surface of revolution formed by rotating the curve y = f (x) about

the x-axis.

10 Find each of the following antiderivatives:∫
x sec2(2x) dxa

∫
loge(x + 5) dxb

∫
e2x sin x dxc

11 Find y as a function of x given that
dy
dx

= e2y sin(2x) and that y = 0 when x = 0.

12 Find the solution of the differential equation (1 + x2)
dy
dx

= 2xy, given y = 2 when x = 0.

13 Let f (x) = arcsin(4x2 − 3). Find the maximal domain of f .

14 Sketch the graph of f (x) =
4x2 + 5
x2 + 1

.
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15 For the curve defined by the parametric equations

x = 2 sin t + 1 and y = 2 cos t − 3

find
dy
dx

and its value at t =
π

4
.

16 Find the length of the curve defined by x = et − t and y = 4e
t
2 for 0 ≤ t ≤ 1.

17 Let a be a positive constant. The curve defined by the parametric equations

x = at2 and y = 2at for 0 ≤ t ≤
√

3

is rotated about the x-axis to form a surface of revolution.

a Find the volume of the corresponding solid of revolution. (Hint: First find the
Cartesian equation of the curve.)

b Find the area of the surface of revolution.

18 Evaluate:∫ 1

0
e2x cos(e2x) dxa

∫ 2

1
(x − 1)

√
2 − x dxb

∫ 1

0

x − 2
x2 − 7x + 12

dxc∫ 5

3

6
x2 − 6x + 4

dxd
∫ 7

2

2 + x
√

2 + x
dxe

∫ π

4
0

sec3 x tan x dxf

19 For the differential equation
dy
dx

= −2x2 with y = 2 when x = 1, find y3 using Euler’s
method with step size 0.1.

20 Find the volume of the solid formed when the region bounded by the x-axis and the

curve with equation y = a −
x2

16a3 , where a > 0, is rotated about the y-axis.

21 A particle is moving in a straight line and is subject to a retardation of 1 + v2 m/s2,
where v m/s is the speed of the particle at time t seconds. The initial speed is u m/s.
Find an expression for the distance travelled, in metres, for the particle to come to rest.

22 A particle falls vertically from rest such that the acceleration, a m/s2, is given by
a = g − 0.4v, where v m/s is the speed at time t seconds. Find an expression for v in
terms of t in the form v = A(1 − e−Bt), where A and B are positive constants. Hence state
the values of A and B.

23 A train, when braking, has an acceleration, a m/s2, given by

a = −

(
1 +

v
100

)
where v m/s is the velocity. The brakes are applied when the train is moving at 20 m/s
and it travels x metres after the brakes are applied. Find the distance that the train
travels to come to rest in the form x = A loge(B) + C, where A, B and C are positive
constants.
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24 Consider the graph of f (x) =
2x

x2 + 1
.

a Show that
dy
dx

=
−2(x2 − 1)
(x2 + 1)2 .

b Find the coordinates of any points of inflection.

25 The position of a particle at time t seconds, relative to an origin O, is given by

r(t) = sin(t) i +
1
2

sin(2t) j, t ≥ 0

a Find the velocity of the particle at time t.
b Find the acceleration at time t.
c Find an expression for the distance of the particle from the origin at time t in terms

of sin(t).
d Find an expression for the speed of the particle at time t in terms of sin(t).
e Find the Cartesian equation of the path of the particle.

26 The position vector of a particle moving relative to the origin at time t seconds is given

by r(t) = 2 sec(t) i +
1
2

tan(t) j, for t ∈
[
0,
π

2

)
.

a Find the Cartesian equation of the path.
b Find the velocity of the particle at time t.
c Find the speed of the particle when t =

π

3
.

27 A particle moves such that, at time t seconds, the velocity, v m/s, is given by
v = e2t i − e−2t k. Given that, at t = 0, the position of the particle is i + j − 2k, find the
position at t = loge 2.

28 A particle has acceleration, a m/s2, given by a = −g j, where j is a unit vector vertically
upwards. Let i be a horizontal unit vector in the plane of the particle’s motion. The
particle is projected from the origin with an initial speed of 20 m/s at an angle of 60◦ to
the horizontal.

a Prove that the velocity, in m/s, at t seconds is given by v = 10i +
(
10
√

3 − gt
)
j.

b Hence find the Cartesian equation of the path of the particle.

29 The velocity, v, of a particle at time t seconds is given by

v(t) = −2 sin(2t) i + 2 cos(2t) j, 0 ≤ t ≤ 2π

The particle moves in the horizontal plane. Let i be the unit vector in the easterly
direction and j be the unit vector in the northerly direction. Find:

a the position vector, r(t), given that r(0) = 2i − j
b the Cartesian equation of the path of the particle
c the time(s) when the particle is moving in the westerly direction.
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30 A particle is projected from the origin such that its position vector, r(t) metres, after
t seconds is given by

r(t) = 14
√

3t i +

(
14t −

g
2

t2
)

j

where i is the unit vector in the direction of the x-axis, horizontally, and j is the unit
vector in the direction of the y-axis, vertically. The x-axis represents ground level. Find:

a the time (in seconds) taken for the particle to reach the ground, in terms of g

b the Cartesian equation of the parabolic path
c the maximum height reached by the particle (in metres), in terms of g.

31 a Solve the differential equation

dy
dx

= y(1 + y)(1 − x)

given that y = 1 when x = 1. Write your answer in the form y = f (x).
b Find the local maximum of the curve y = f (x).

32 The curve defined parametrically by x = t and y = 1
2 (et + e−t) is called a catenary;

it has the shape of a string suspended from both ends. Find the length of this curve
from t = −1 to t = 1.

33 On the moon, the acceleration due to gravity is 1.6 m/s2. An astronaut is standing on
the moon and then jumps upwards with an initial velocity of 3.2 m/s.

a How high does she get off the surface of the moon?
b For how long is she off the surface of the moon?

34 a Let f : [0, a]→ R be continuous. Show that
∫ a

0
f (x) dx =

∫ a

0
f (a − x) dx.

b Hence evaluate
∫ π

2
0

√
sin x

√
sin x +

√
cos x

dx.

14B Multiple-choice questions
1 The graph of the function f (x) =

x2 + x + 2
x

has asymptotes with equations

y = x and y = x2 + x + 2A y = x and y = x + 1B
x = 0 and y = x2 + x + 2C x = 0 and y = x + 1D

y =
2
x

and y = x + 1E

2 One solution of the differential equation
d2y
dx2 = 2 cos x + 1 is

y = −4 + cos x + xA y = 2 sin x + x + 1B y = −
1
4

cos(2x) +
x2

2
+ xC

y = −2 cos x +
x2

2
+ xD y = 2 cos x +

x2

2
+ xE
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3 A curve passes through the point (2, 3) and is such that the tangent to the curve at each
point (a, b) is perpendicular to the tangent to y = 2x3 at (a, 2a3). The equation of the
curve can be found by using the differential equation

dy
dx

= 2x3A
dy
dx

= −
1

6x2B
dy
dx

= −6x2C
dy
dx

=
2
x

+ cD
dy
dx

= −
1

2x3E

4 Car P leaves a garage, accelerates at a constant rate to a speed of 10 m/s and continues
at that speed. Car Q leaves the garage 5 seconds later, accelerates at the same rate as
car P to a speed of 15 m/s and continues at that speed until it hits the back of car P.
Which one of the following pairs of graphs represents the motion of these cars?

0

v

15

10

5
t

A

0

v

15

10

5
t

B

v

15

10

5
t

0

C

0

v

15

10

5
t

D

v

15

10

5
t

0

E

5 A curve passes through the point (1, 1) and is such that the gradient at any point is twice
the reciprocal of the x-coordinate. The equation of this curve can be found by solving
the differential equation with the given boundary condition

x
dy
dx

= 2, y(1) = 1A
d2y
dx2 =

x
2

, y(1) = 1B y
dy
dx

= 2, y(1) = 1C

dy
dx

= x, y(1) = 1D
1
2

dy
dx

= x, y(1) = 1E
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6 A container initially holds 20 L of pure water. A salt solution of concentration 3 g/L is
poured into the container at a rate of 2 L/min. The mixture is kept uniform by stirring
and flows out at a rate of 2 L/min. If Q g is the amount of salt in the container t minutes
after pouring begins, then Q satisfies the equation

dQ
dt

=
Q
10

A
dQ
dt

= QB
dQ
dt

= 6 −
Q
10

C

dQ
dt

= 6 −
Q

10 + t
D

dQ
dt

= 6 −
Q
20

E

7 The equation of the particular member of the family of curves defined by
dy
dx

= 3x2 + 1
that passes through the point (1, 3) is

y = 6xA y = x3 + x2 + 1B y = x3 + x + 1C

y = x3 + x + 3D y =
x3

3
+ xE

8 For which one of the following derivative functions does the graph of y = g(x) have
no points of inflection?

g′(x) = 5(x − 4)3 + 5A g′(x) = 6x3 − 4xB g′(x) = (x − 2)2 − 3C
g′(x) = (x − 2)2 − 3xD g′(x) = 4x − 5(x − 2)3E

9 One solution of the differential equation
d2y
dx2 = e3x is

y = 3e3xA y =
1
3

e3xB y =
1
3

e3x + xC

y = 9e3x + xD y =
1
9

e3x + xE

10 A body initially travelling at 12 m/s is subject to a constant deceleration of 4 m/s2. The
time taken to come to rest (t seconds) and the distance travelled before it comes to rest
(s metres) are

t = 3, s = 24A t = 3, s = 18B t = 3, s = 8C
t = 4, s = 18D t = 4, s = 8E

11 A tank initially contains 50 litres of water in which 0.5 kg of salt has been dissolved.
Fresh water flows into the tank at a rate of 10 litres per minute, and the solution (kept
uniform by stirring) flows out at a rate of 8 litres per minute. Let x kg be the mass of
salt in solution in the tank after t minutes. Which one of the following describes the
relationship between x and t?∫ 1

4x
dx = −

∫ 1
25 + t

dtA
∫ 1

4x
dx =

∫ 1
25 + t

dtB∫ 1
6x

dx = −
∫ 1

25 − t
dtC

∫ 1
6x

dx =
∫ 1

25 − t
dtD∫ 1

10x
dx = −

∫ 6
25 − t

dtE
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12 If x = 2 sin2(y), then
dy
dx

equals

4 sin(y)A
1
2

cosec(2y)B 4
√

x
2

C 2
√

2xD
1
2

sin−1(2y)E

13 The rate of decay of a radioactive substance is proportional to the amount, x, of the

substance present. This is described by the differential equation
dx
dt

= −kx, where k is

a positive constant. Given that initially x = 20 and that x = 5 when t = 20, the time at
which x = 2 is closest to

22.33A 10.98B 50C 30.22D 33.22E

14
∫ π

3
0

tan2 x sec2 x dx is given by∫ √3

0
u2 duA

∫ 2
√

3
0 1 − u2 duB

∫ π

3
0

u2(1 − u2) duC∫ π

3
0

u2(1 + u2) duD
∫ π

3
0

1 − u2 duE

15 Assume that ÿ = ex + e−2x. If y = 0 and ẏ =
1
2

when x = 0, then

y = ex +
1
4

e−2x −
5
4

A y = ex + e−2x −
1
2

B y = ex + e−2xC

y = ex + e−2x +
1
2

D y = ex + e−2x +
5
4

x −
5
4

E

16 If
dy
dx

= 2y + 1 and y = 3 when x = 0, then

y =
7e2x − 1

2
A y =

1
2

loge(2x + 1)B y = y2 + y + 1C

y = e2xD y =
2e2x + 1

7
E

17 If y = x tan−1(x), then
dy
dx

=
x

1 + x2 + tan−1(x). It follows that an antiderivative

of tan−1(x) is

x tan−1(x)A x tan−1(x) −
x

1 + x2B x tan−1(x) − loge
(√

1 + x2)C
1

1 + x2 +
1
x

tan−1(x)D
x

1 + x2E

18 The velocity–time graph shows the motion
of a train between two stations. The distance
between the stations, in metres, is

A 2500 B 2900 C 3000
D 3400 E 5800

0

v
(m/s)

t (s)

10

50 290 360
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19 The equation of the particular member of the family of curves defined by
dy
dx

= 1 − e−x

that passes through the point (0, 6) is

y = x − e−x + 5A y = x + e−x + 5B y = x + e−x + 7C
y = x + e−x + 6D y = x − e−x + 6E

20 This could be the graph of

A y =
1

(x − 1)(x − 2)

B y =
x

(x − 1)(x − 2)

C y =
(x − 1)(x − 2)

x

D y =
1

(x − 2)(x − 1)2

E y =
1

(x − 1)(x − 2)2

O

y

x

x = 1 x = 2

21 The values of m for which y = emx satisfies the differential equation
d2y
dx2 − 2

dy
dx
− 3y = 0

are

m = 1, m = 2A m = 3, m = −1B m = −2, m = 3C
m = ±1D m = ±3E

22 A particle is projected vertically upwards from ground level with a velocity of 20 m/s
and returns to the point of projection. The velocity–time graph illustrating this could be

0

v

t (s)

(m/s)

20

−20

4

A
(m/s) 

0

20

−20

2 4

v

t (s)

B

0

 

20

4 t (s)

(m/s)
vC

40

20

−20

t (s)

(m/s)
vD

0

20

−20

4

(m/s)
v

t (s)

E
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23 Which one of the following differential equations is satisfied by y = e3x for all values
of x?

d2y
dx2 + 9y = 0A

d2y
dx2 − 9y = 0B

d2y
dx2 +

y
9

= 0C

d2y
dx2 − 27y = 0D

d2y
dx2 − 8y = 0E

24 A particle has initial velocity 3 m/s and its acceleration t seconds later is given by
(6t2 + 5t − 3) m/s2. After 2 seconds, its velocity in m/s is

15A 18B 21C 27D 23E

25 A particle starts from rest at a point O and moves in a straight line so that after t seconds
its velocity, v, is given by v = 4 sin(2t). Its displacement from O is given by

s = 8 cos(2t)A s = 2 cos(2t)B s = −2 cos(2t)C
s = 8 cos(2t) − 8D s = 2 − 2 cos(2t)E

26 The volume of the solid of revolution when the shaded region of the diagram is rotated
about the y-axis is given by

A π
∫ 1

2 loge 2

0
e2x dx

B π
∫ 2

0

1
2

loge y dy

C π

(
loge 2 −

∫ 1
2 loge 2

0
e2x dx

)
D π

∫ 2

0

1
4

(loge y)2 dy −
π

2

E π
∫ 2

1

1
4

(loge y)2 dy
O

y

x

1
y = 2

y = e2x

27 The area of the shaded region in the graph is

A
∫ 1

0
f (x) dx +

∫ −2

0
f (x) dx

B
∫ 1

−2
f (x) dx

C
∫ 0

−2
f (x) dx +

∫ 1

0
f (x) dx

D −
∫ 0

1
f (x) dx +

∫ −2

0
f (x) dx

E −
∫ −2

0
f (x) dx +

∫ 1

0
f (x) dx

O

y

y = f(x)

x
1−2

28 An arrangement of the integrals

P =
∫ π

2
0

sin2 x dx, Q =
∫ π

4
0

cos2 x dx, R =
∫ π

4
0

sin2 x dx

in ascending order of magnitude is

P, R, QA Q, P, RB R, Q, PC R, P, QD Q, R, PE
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29 In the diagram on the right, the area of the region
enclosed between the graphs with equations y = x2 − 9
and y = 9 − x2 is given by

A
∫ 3

−3
2x2 − 18 dx B

∫ 3

−3
18 − 2x2 dx

C 0 D
∫ 9

−9
2x2 − 18 dx

E
∫ 9

−9
18 − 2x2 dx

O

y

x
3

9

−3

−9

30 The volume of the solid of revolution when the
shaded region of this graph is rotated about the
x-axis is given by

A π
∫ 1

0
4e4x − 4 dx

B π
∫ 1

0
e2x − 4 dx

C π
∫ 1

0
(2e2x − 2)2 dx

D π
∫ 2e

2
1 dy

E π
∫ 1

0
4 − 4e2x dx

O

y

 x
x = 1

y = 2

y = 2e2x

31 A body moves in a straight line so that its acceleration (in m/s2) at time t seconds

is given by
d2x
dt2 = 4 − e−t. If the body’s initial velocity is 3 m/s, then when t = 2 its

velocity (in m/s) is

e−2A 2 + e−2B 8 + e−2C 10 + e−2D 12 + e−2E

32 A particle moves with velocity v m/s.
The distance travelled, in metres, by
the particle in the first 8 seconds is

A 40 B 50
C 60 D 70
E 80 0

v

t8

2 4 6

10

−10

33 A particle moves in a straight line such that its velocity, v m/s, at time t seconds is given

by v =
loge t

t
, for t ≥ 1. When does the particle have its maximum velocity?

t = 1A t = e
1
2B t = eC t = e

3
2D t = e2E
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34 If
dy
dx

= −
x

yex2 and y = 2 when x = 0, then

y = 3 − e−x2A y2 = 3 + e−x2B y =
5
2
− e−x2C y2 =

5
2
− e−x2D y2 = 3 + ex2E

35 The area of the region shaded in the graph is
equal to

A
∫ c

0
f (x) − g(x) dx

B
∫ c

b
f (x) − g(x) dx +

∫ b

0
f (x) − g(x) dx

C
∫ c

b
f (x) − g(x) dx +

∫ 0

b
f (x) − g(x) dx

D
∫ c

b
f (x) dx +

∫ b

0
g(x) dx

E
∫ c

0
f (x) + g(x) dx

O

y

x

y = f(x)y = g(x)

b c

36 A partial fraction expansion of
1

(2x + 6)(x − 4)
shows that it has an antiderivative

a
2

loge |2x + 6| + b loge |x − 4|, where

a = −
1
7

, b =
1
14

A a = 1, b = 1B a =
1
2

, b =
1
2

C

a = −1, b = −1D a =
1
11

, b =
1
7

E

37
∫ 1

0
x
√

2x + 1 dx is equal to

1
2

∫ 1

0
(u − 1)

√
u duA

∫ 1

0
u
√

u duB
1
4

∫ 3

1

√
u duC

2
∫ 3

1

√
u duD

1
4

∫ 3

1
u

3
2 − u

1
2 duE

38
∫ 1

0

ex

(1 + ex)2 dx is equal to∫ e

1

u
(1 + u)2 duA

∫ 1

0

u
(1 + u)2 duB

∫ 1

0

1
(1 + u)2 duC∫ e

1

1
(1 + u)2 duD

∫ e

1

u
1 + u2 duE

39 If
∫ π

6
0

sinn x cos x dx =
1
64

, then n equals

6A 5B 4C 3D 7E

40 Given that
∫

x2 sin x dx = g(x) +
∫

2x cos x dx, the rule for g can be written in the form

g(x) = −x2 cos x + cA g(x) = 2 cos x + 2x sin x + cB
g(x) = (2 − x2) cos x + 2x sin x + cC g(x) = 4 sin x − 2x cos x + cD
g(x) = (2x − x2) sin x + cE
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41 Of the integrals∫ π

0
sin3

θ cos3 θ dθ,
∫ 2

0
t3(4 − t2)2 dt,

∫ π

0
x2 cos x dx

one is negative, one is positive and one is zero. Without evaluating them, determine
which is the correct order of signs.

− 0 +A + − 0B + 0 −C 0 − +D 0 + −E

42
∫ π

4
0

cos(2x) dx is equal to

1
2

∫ π

2
0

sin(2x) dxA
1
2

∫ π

2
0

cos(2x) dxB
∫ 0

−
π

4
sin(2x) dxC

1
2

∫ π

2
0

sin(4x) dxD
1
2

∫ π

2
0

cos(4x) dxE

43
∫ a

−a
tan x dx can be evaluated if a equals
π

2
A

3π
2

B
π

4
C πD −

3π
2

E

44 If e f (x) = x2 + 9, then f ′(x) is equal to
1

x2 + 9
A

2x
x2 + 9

B 2x(x2 + 9)C 2xe2xD 2x loge(x2 + 9)E

45 Which one of the following expressions is equivalent to
∫

x3 sin(3x) dx?

x3

3
cos(3x) −

1
3

∫
x3 cos(3x) dxA −

x3

3
cos(3x) +

∫
x2 cos(3x) dxB

x3

3
cos(3x) + cC x2 cos(3x) + cD −

1
3

cos(3x) + cE

46 Let f (x) = loge(x2 + 5). The graph of y = f (x) is concave up for

−
√

5 < x <
√

5A −
√

6 < x <
√

6B x >
√

5 or x < −
√

5C
x > 2 or x < −2D −2

√
5 < x < 2

√
5E

47 The volume of the solid of revolution formed by rotating the region bounded by the
curve y = 2 sin x − 1 and the lines with equations x = 0, x =

π

4
and y = 0 about the

x-axis is given by∫ π

2
0
π2(2 sin x − 1)2 dxA

∫ π

4
0
π(4 sin2 x − 1) dxB

∫ π

4
0
π(1 − 2 sin x)2 dxC∫ π

4
0

(2 sin x − 1)2 dxD
∫ π

4
0
π(2 sin x − 1) dxE

48 The area of the region bounded by the graphs of f :
[
0,
π

2

)
→ R, f (x) = sin x and

g :
[
0,
π

2

)
→ R, g(x) = sin(2x) is∫ π

2
0

sin x − x sin(2x) dxA
∫ π

3
0

sin(2x) − sin x dxB
∫ π

2
π

4
sin(2x) − sin x dxC∫ π

2
π

4
sin x − sin(2x) dxD

∫ π

4
π

3
sin(2x) − sin x dxE
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49 The number of bacteria in a culture at time t is growing at a rate of 4000e0.4t bacteria per
unit of time. When t = 0, the number of bacteria was 10 000. When t = 10, the number
of bacteria will be closest to

5000e4A 10 000e2B 7000e3C 10 000e4D 7500e4E

50 The shaded region is bounded by the curve y = f (x), the
coordinate axes and the line x = a. Which one of the
following statements is false?

A The area of the shaded region is
∫ a

0
f (x) dx.

B The volume of the solid of revolution formed by
rotating the region about the x-axis is

∫ a

0
π( f (x))2 dx.

C The volume of the solid of revolution formed by
rotating the region about the y-axis is

∫ f (a)

f (0)
πx2 dy.

D The area of the shaded region is greater than a f (0).

E The area of the shaded region is less than a f (a).

O

y

x

y = f(x)

a

51 The general solution of the differential equation
dy
dx

+ y = 1 (with P being an arbitrary
constant) is

2x + (1 − y)2 = PA 2x − (1 − y)2 = PB y = 1 + PexC
y = 1 + Pe−xD y = Pe−x − 1E

52 Air leaks from a spherical balloon at a constant rate of 2 m3/s. When the radius of the
balloon is 5 m, the rate (in m2/s) at which the surface area is decreasing is

4
5

A
8
5

B
1

50
πC

1
100

πD none of theseE

53 A curve is defined parametrically by x = sin2(2t) and y = cos(3t) for 0 ≤ t ≤
π

2
.

The length of this curve is given by∫ π

2
0

√
2 sin(4t) − 3 sin(3t) dtA

∫ π

2
0

√
sin4(2t) + cos2(3t) dtB∫ π

2
0

√
2 sin(4t) + 3 sin(3t) dtC

∫ π

2
0

√
4 cos4(2t) + 9 sin2(3t) dtD∫ π

2
0

√
4 sin2(4t) + 9 sin2(3t) dtE

54 At a certain instant, a sphere is of radius 10 cm and the radius is increasing at a rate
of 2 cm/s. The rate of increase (in cm3/s) of the volume of the sphere is

80πA
800π

3
B 400πC 800πD

8000π
3

E
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55
d

dθ

(
loge(sec θ + tan θ)

)
equals

sec θA sec2 θB sec θ tan θC cot θ − tan θD tan θE

56 A particle is moving along the x-axis such that x = 3 cos(2t) at time t. When t =
π

2
, the

acceleration of the particle in the positive x-direction is

−12A −6B 0C 6D 12E

57 A particle moves in the Cartesian plane such that its position vector, r metres, at time
t seconds is given by r = 2t2i + t3 j. When t = 1, the speed of the particle (in m/s) is

3
4

A
√

5B 5C 7D 25E

58 The position of a particle at time t = 0 is r(0) = 2i + 5 j + 2k, and its position at time
t = 2 is r(2) = 4i − j + 4k. The average velocity for the time interval [0, 2] is

1
2 (6i + 4 j + 6k)A i − 3 j + kB 24i + kC
i − 2 j + 3kD 1

2 i − 3
2 j + 1

2 kE

59 The acceleration of a particle at time t is given by ẍ(t) = 2i + t j. If the velocity of the
particle at time t = 0 is described by the vector 2i, then the velocity at time t is

ẋ(t) = 2t i + 1
2 t2 jA ẋ(t) = (2t + 2)i + 1

2 t2 jB ẋ(t) = 2i + (2i + t j)tC
ẋ(t) = 2(2i + t j)D ẋ(t) = 2 + 2t i + 1

2 t2 jE

60 A particle is moving so its velocity vector at time t is ṙ(t) = 2t i + 3 j, where r(t) is the
position vector of the particle at time t. If r(0) = 3i + j, then r(t) is equal to

2iA 5i + 3 jB (3t + 1)i + (3t2 + 1) jC
(t2 + 3)i + (3t + 1) jD 2t2i + 3t j + 3i + jE

61 A particle has its position in metres from a given point at time t seconds defined by the
vector r(t) = 4t i − 1

3 t2 j. The magnitude of the displacement in the third second is

4 mA 3 2
3 mB 4 1

3 mC 6 2
3 mD 9 mE

62 The position of a particle at time t seconds is given by r(t) = (t2 − 2t)(i − 2 j + 2k),
measured in metres from a fixed point. The distance travelled by the particle in the first
2 seconds is

0 mA 2 mB −2 mC 6 mD 10 mE

63 Suppose that f : R→ R is a twice differentiable function such that:

f (0) = 3� f (3) = 6� f ′(0) = 8� f ′(3) = 11�

Then the value of
∫ 3

0
4x f ′′(x) dx is

98A 112B 120C 132D 142E
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64 The position of a particle at time t seconds is given by the vector

r(t) =

(1
3

t3 − 4t2 + 15t
)

i +

(
t3 −

15
2

t2
)

j

When the particle is instantaneously at rest, its acceleration vector is given by

15iA −18 jB 2i + 15 jC −8i − 15 jD −2i + 3 jE

65 A particle moves with its position defined with respect to time t by the vector function

r(t) = (3t3 − t)i + (2t2 + 1) j + 5tk

When t = 1
2 , the magnitude of the acceleration is

12A 17B 4
√

3C 4
√

5D none of theseE

66 The velocity of a particle is given by the vector ṙ(t) = sin(t) i + cos(2t) j. At time t = 0,
the position of the particle is given by the vector 6i − 4 j. The position of the particle at
time t is given by

(6 − cos t)i +
( 1

2 sin(2t) + 4
)
jA (5 − cos t)i +

( 1
2 sin(2t) − 3

)
jB

(5 + cos t)i +
(
2 sin(2t) − 4

)
jC (6 + cos t)i +

(
2 sin(2t) − 4

)
jD

(7 − cos t)i +
( 1

2 sin(2t) − 4
)
jE

67 The initial position, velocity and constant acceleration of a particle are given by 2i, 3 j
and i − j respectively. The position of the particle at time t is given by

(4 + t)i + (3 − 1
2 t2) jA 2i + 3t jB 2t i + 3t jC

(2 + 1
2 t2)i + (3t − 1

2 t2) jD (2 + t)i + (3 − t) jE

14C Extended-response questions
1 A bowl can be described as the solid of revolution formed by rotating the graph of

y =
1
4

x2 around the y-axis for 0 ≤ y ≤ 25.

a Find the volume of the bowl.
b The bowl is filled with water and then, at time t = 0, the water begins to run out of

a small hole in the base. The rate at which the water runs out is proportional to the
depth, h, of the water at time t. Let V denote the volume of water at time t.

i Show that
dh
dt

=
−k
4π

, where k > 0.

ii Given that the bowl is empty after 30 seconds, find the value of k.
iii Find h in terms of t.
iv Find V in terms of t.

c Sketch the graph of:

i V against h

ii V against t
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2 Let In =
∫ 1

0
xn tan−1(x) dx, where n ∈ N ∪ {0}.

a For each n ∈ N ∪ {0}, show that (n + 1)In =
π

4
−
∫ 1

0

xn+1

1 + x2 dx.

b Evaluate I0 and I1.

c For each n ∈ N ∪ {0}, show that (n + 3)In+2 + (n + 1)In =
π

2
−

1
n + 2

.

d Hence evaluate:

i I2 ii I3 iii I4 iv I5

3 Let In =
∫ 1

0
xn loge(x + 1), where n ∈ N ∪ {0}.

a Using integration by parts, find the value of I0.

b For each n ∈ N, show that (n + 1)In = 2 loge 2 −
1

n + 1
− nIn−1.

c Hence prove that, if n is odd, then (n + 1)In = 1 −
1
2

+
1
3
−

1
4

+ · · · −
1

n + 1
.

4 Consider the graph of the relation 2(x + y) = (x − y)2.

a Find the coordinates of the axis intercepts of the graph.
b Find the coordinates of the point of intersection of the graph with the line y = x.
c Explain why the image of the graph reflected in the line y = x is itself.

d Find
dy
dx

and
d2y
dx2 in terms of x and y.i If

dy
dx

= 0, find the values of x and y.ii

If
dx
dy

= 0, find the values of x and y.iii If
dy
dx

= 0, find the value of
d2y
dx2 .iv

e Let F be the point with coordinates ( 1
4 , 1

4 ) and let P(x, y) be any point on the graph
of the relation 2(x + y) = (x − y)2. Show that PF = PM, where M is the point on the
line y = −x − 1

2 such that the line PM has gradient 1.
f A linear transformation maps the graph of y2 = x to the graph of 2(x + y) = (x − y)2.

Determine the 2 × 2 matrix that represents this transformation.

5 a Sketch the curve with equation y + 3 =
6

x − 1
.

b Find the coordinates of the points where the line y + 3x = 9 intersects the curve.
c Find the area of the region enclosed between the curve and the line.
d Find the equations of two tangents to the curve that are parallel to the line.

6 Point O is the centre of a city with a population of 600 000.
All of the population lives within 6 km of the city centre. The
number of people who live within r km (0 ≤ r ≤ 6) of the city

centre is given by
∫ r

0
2πk(6 − x)

1
2 x2 dx.

a Find the value of k, correct to three significant figures.
b Find the number of people who live within 3 km of the

city centre, correct to three significant figures.

6 km
O
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7 The vertical cross-section of a bucket is shown in
this diagram. The sides are arcs of a parabola with
the y-axis as the central axis and the horizontal
cross-sections are circular. The depth is 36 cm,
the radius length of the base is 10 cm and the
radius length of the top is 20 cm.

a Prove that the parabolic sides are arcs of the
parabola y = 0.12x2 − 12.

b Prove that the bucket holds 9π litres when full.

O

y

x

Water starts leaking from the bucket, initially full, at the rate given by
dv
dt

=
−
√

h
A

,

where at time t seconds the depth is h cm, the surface area is A cm2 and the volume
is v cm3.

c Prove that
dv
dt

=
−3
√

h
25π(h + 12)

.

d Show that v = π
∫ h

0

(25y
3

+ 100
)

dy.

e Hence construct a differential equation expressing:

i
dv
dh

as a function of h ii
dh
dt

as a function of h

f Hence find the time taken for the bucket to empty.

8 A hemispherical bowl can be described as the solid of revolution generated by rotating
x2 + y2 = a2 about the y-axis for −a ≤ y ≤ 0. The bowl is filled with water. At time
t = 0, water starts running out of a small hole in the bottom of the bowl, so that the
depth of water in the bowl at time t is h cm. The rate at which the volume is decreasing
is proportional to h. (All length units are centimetres.)

a i Show that, when the depth of water is h cm, the volume, V cm3, of water
remaining is V = π

(
ah2 − 1

3 h3), where 0 < h ≤ a.
ii If a = 10, find the depth of water in the bowl if the volume is 1 litre.

b Show that π(2ah − h2)
dh
dt

= −kh, for a positive constant k.

c Given that the bowl is empty after time T , show that k =
3πa2

2T
.

d If a = 10 and T = 30, find k (correct to three significant figures).
e Sketch the graph of:

i
dV
dt

against h for 0 ≤ h ≤ a ii
dh
dt

against h for 0 ≤ h ≤ a

f Find the rate of change of the depth with respect to time when:

i h =
a
2

ii h =
a
4

g If a = 10 and T = 30, find the rate of change of depth with respect to time when
there is 1 litre of water in the bowl.
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9 Let N be the number of insects in a colony at time t weeks, where N(0) = 1000.

a First consider the model
dN
dt

=
k
N

, where k ∈ R. If N(1) = 1500, find N in terms of t.

b Now consider the model
dN
dt

=
N2

4000e0.2t .

i Find N in terms of t.
ii According to this model, when will there be 1500 insects in the colony?

c Compare the long-term behaviour of the two models.

10 Consider the function with rule f (x) =
1

ax2 + bx + c
, where a , 0.

a Find f ′(x).

b State the coordinates of the turning point and state the nature of this turning point if:

i a > 0 ii a < 0

c If b2 − 4ac < 0, sketch the graph of y = f (x) for:

i a > 0 ii a < 0
State the equations of all asymptotes.

d If b2 − 4ac = 0, sketch the graph of y = f (x) for:

i a > 0 ii a < 0

e If b2 − 4ac > 0 and a > 0, sketch the graph of y = f (x), stating the equations of
all asymptotes.

11 Consider the family of curves with equations of the form y = ax2 +
b
x2 , where a, b ∈ R+.

a Find
dy
dx

.

b State the coordinates of the turning points of a member of this family in terms of a
and b, and state the nature of each.

c Consider the family y = ax2 +
1
x2 . Show that the coordinates of the turning points

are
( 1

4
√

a
, 2
√

a
)

and
(
−1
4
√

a
, 2
√

a
)
.

12 Let f : [0, 4π]→ R, f (x) = e−x sin x.

a Find
{

x : f ′(x) = 0
}
.

b Determine the ratio f (a + 2π) : f (a).
c Find the coordinates of all stationary points for x ∈ [0, 4π], and state their nature.

d Evaluate
∫ π

0
e−x sin x dx.

e Use the results of b and d to determine
∫ 3π

2π
f (x) dx.

13 a Evaluate
∫ π

4
0

tan4 θ sec2 θ dθ.

b Hence show that
∫ π

4
0

tan6 θ dθ =
1
5
−
∫ π

4
0

tan4 θ dθ.

c Deduce that
∫ π

4
0

tan6 θ dθ =
13
15
−
π

4
.
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14 A disease spreads through a population. Let p denote the proportion of the population
who have the disease at time t. The rate of change of p is proportional to the product
of p and the proportion 1 − p who do not have the disease.

When t = 0, p =
1

10
and when t = 2, p =

1
5

.

a i Show that t =
1
k

loge

( 9p
1 − p

)
, where k = loge

(3
2

)
.

ii Hence show that
9p

1 − p
=

(3
2

)t
.

b Find p when t = 4.
c Find p in terms of t.

d Find the values of t for which p >
1
2

.
e Sketch the graph of p against t.

15 A car moves along a straight level road. Its speed, v, is related to its displacement, x, by
the differential equation

v
dv
dx

=
p
v
− kv2

where p and k are constants.

a Given that v = 0 when x = 0, show that v3 =
1
k
(
p − pe−3x).

b Find lim
x→∞

v.

16 A projection screen is 6 metres in height and
has its lower edge 2 metres above the eye level
of an observer. The angle between the lines
of sight of the upper and lower edges of the
screen is θ. Let x m be the horizontal distance
from the observer to the screen.

θ

x m

2 m

6 m
screen

Find θ in terms of x.a Find
dθ
dx

.b

What values can θ take?c Sketch the graph of θ against x.d
If 1 ≤ x ≤ 25, find the minimum value of θ.e

17 A vertical rod AB of length 3 units is held with
its lower end, B, at a distance 1 unit vertically
above a point O. The angle subtended by AB at a
variable point P on the horizontal plane through O
is θ.

a Show that θ = tan−1(x) − tan−1
( x
4

)
, where

x = OP.
b Prove that:

i θ is a maximum when x = 2
ii the maximum value of θ is tan−1

(3
4

)
.

θ

A

B

P O

3 units

1 unit
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18 An open rectangular tank is to have a square base. The capacity of the tank is to
be 4000 m3. Let x m be the length of an edge of the square base and A m2 be the
amount of sheet metal used to construct the tank.

a Show that A = x2 +
16 000

x
.

b Sketch the graph of A against x.
c Find, correct to two decimal places, the value(s) of x for which 2500 m2 of sheet

metal is used.
d Find the value of x for which A is a minimum.

19 A closed rectangular box is made of very thin sheet metal and its length is three times
its width. If the volume of the box is 288 cm3, show that its surface area, A(x) cm2,

is given by A(x) =
768

x
+ 6x2, where x cm is the width of the box. Find the minimum

surface area of the box.

20 This container has an open rectangular
horizontal top, PQSR, and parallel vertical
ends, PQO and RST . The ends are parabolic in
shape. The x-axis and y-axis intersect at O, with
the x-axis horizontal and the y-axis the line of
symmetry of the end PQO. The dimensions are
shown on the diagram.

a Find the equation of the parabolic arc QOP.

O

y

x

Q
S

R

P

20 cm

60 cm
40 cm

T

b If water is poured into the container to a depth of y cm, with a volume of V cm3, find
the relationship between V and y.

c Calculate the depth, to the nearest mm, when the container is half full.
d Water is poured into the empty container so that the depth is y cm at time t seconds.

If the water is poured in at the rate of 60 cm3/s, construct a differential equation

expressing
dy
dt

as a function of y and solve it.

e Calculate, to the nearest second:

i how long it will take the water to reach a depth of 20 cm
ii how much longer it will take for the container to be completely full.

21 Moving in the same direction along parallel tracks, objects A and B pass the point O
simultaneously with speeds of 20 m/s and 10 m/s respectively.

From then on, the deceleration of A is
v3

400
m/s2 and the deceleration of B is

v2

100
m/s2,

when the speeds are v m/s.

a Find the speeds of A and B at time t seconds after passing O.
b Find the positions of A and B at time t seconds after passing O.
c Use a CAS calculator to plot the graphs of the positions of objects A and B.
d Use a CAS calculator to find, to the nearest second, when the objects pass.
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22 A stone, initially at rest, is released and falls vertically. Its velocity, v m/s, at time t s

after release is determined by the differential equation 5
dv
dt

+ v = 50.

a Find an expression for v in terms of t.
b Find v when t = 47.5.
c Sketch the graph of v against t.
d i Let x be the displacement from the point of release at time t. Find an expression

for x in terms of t.
ii Find x when t = 6.

23 The rate of change of a population, y, is given by
dy
dt

=
2y(N − y)

N
, where N is a positive

constant. When t = 0, y =
N
4

.

a Find y in terms of t and find
dy
dt

in terms of t.

b What limiting value does the population size approach for large values of t?
c Explain why the population is always increasing.
d What is the population when the population is increasing most rapidly?
e For N = 106:

i Sketch the graph of
dy
dt

against y.

ii At what time is the population increasing most rapidly?

24 An object projected vertically upwards from the surface of the Earth experiences
an acceleration of a m/s2 at a point x m from the centre of the Earth (neglecting air

resistance). This acceleration is given by a =
−gR2

x2 , where g m/s2 is the acceleration

due to gravity and R m is the radius length of the Earth.

a Given that g = 9.8, R = 6.4 × 106 and the object has an upwards velocity of u m/s at
the Earth’s surface:

i Express v2 in terms of x, using a =
d
dx

(1
2

v2
)
.

ii Use the result of part i to find the position of the object when it has zero velocity.
iii For what values of u does the result in part ii not exist?

b The minimum value of u for which the object does not fall back to Earth is called the
escape velocity. Determine the escape velocity in km/h.

25 Define f (x) =
ex − e−x

ex + e−x .

Find f (0).a Find lim
x→∞

f (x).b Find lim
x→−∞

f (x).c

Find f ′(x).d Sketch the graph of f .e Find f −1(x).f

g If g(x) = f −1(x), find g′(x).

h Sketch the graph of g′ and prove that the area measure of the region bounded by the
graph of y = g′(x), the x-axis, the y-axis and the line x = 1

2 is loge
(√

3
)
.
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26 The diagram shows a plane circular section through O, the
centre of the Earth (which is assumed to be stationary for the
purpose of this problem).

From the point A on the surface, a rocket is launched vertically
upwards. After t hours, the rocket is at B, which is h km
above A. Point C is on the horizon as seen from B, and the
length of the chord AC is y km. The angle AOC is θ radians.
The radius of the Earth is r km.

a i Express y in terms of r and θ.
ii Express cos θ in terms of r and h.

B

A
Cr

O

h

θ

b Suppose that after t hours the vertical velocity of the rocket is
dh
dt

= r sin t, t ∈ [0,π).
Assume that r = 6000.

Find
dy
dθ

and
dy
dt

.i How high is the rocket when t =
π

2
?ii

Find
dy
dt

when t =
π

2
.iii

27 a Differentiate f (x) = e−xxn and hence prove that∫
e−xxn dx = n

∫
e−xxn−1 dx − e−xxn

b Let g : R+ → R, g(n) =
∫ ∞

0
e−xxn dx.

Note:
∫ ∞

a
f (x) dx = lim

b→∞

∫ b

a
f (x) dx

i Show that g(0) = 1.
ii Using the answer to a, show that g(n) = ng(n − 1).
iii Using your answers to b i and b ii, show that g(n) = n!, for n = 0, 1, 2, 3, . . . .

28 A large weather balloon is in the shape of a hemisphere on a cone, as
shown in this diagram. When inflated, the height of the cone is twice
the radius length of the hemisphere. The shapes and conditions are
true as long as the radius of the hemisphere is at least 2 metres.

At time t minutes, the radius length of the hemisphere is r metres and
the volume of the balloon is V m3, for r ≥ 2.

The balloon has been inflated so that the radius length is 10 m and it
is ready to be released, when a leak develops. The gas leaks out at
the rate of t2 m3 per minute.

a Find the relationship between V and r.

b Construct a differential equation of the form f (r)
dr
dt

= g(t).

c Solve the differential equation with respect to t, given that the initial radius length
is 10 m.

d Find how long it will take for the radius length to reduce to 2 metres.
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29 The position vector of a particle at time t seconds is given by r1(t) = 2t i − (t2 + 2) j,
where distances are measured in metres.

a What is the average velocity of the particle for the interval [0, 10]?
b By differentiation, find the velocity at time t.
c In what direction is the particle moving when t = 3?
d When is the particle moving with minimum speed?
e At what time is the particle moving at the average velocity for the first 10 seconds?
f A second particle has its position at time t seconds given by r2(t) = (t3 − 4)i − 3t j.

Are the two particles coincident at any time t?

30 The acceleration vector, r̈(t) m/s2, of a particle at time t seconds is given by
r̈(t) = −16

(
cos(4t) i + sin(4t) j

)
.

a Find the position vector, r(t) m, given that ṙ(0) = 4 j and r(0) = j.
b Show that the path of the particle is a circle and state the position vector of its centre.
c Show that the acceleration is always perpendicular to the velocity.

31 An ice-skater describes an elliptic path.
His position at time t seconds is given by

r = 18 cos
( t
3

)
i + 13.5 sin

( t
3

)
j

When t = 0, r = 18i.

a How long does the skater take to go
around the path once?

18

13.5 18 cos , 13.5 sin

x

t

3

y

P
t

3

b i Find the velocity of the ice-skater at t = 2π.
ii Find the acceleration of the ice-skater at t = 2π.

c i Find an expression for the speed of the ice-skater at time t.
ii At what time is his speed greatest?

d Prove that the acceleration satisfies r̈ = kr, and hence find when the acceleration has
a maximum magnitude.

32 a The velocity vector of a particle P at time t is

ṙ1(t) = 3 cos(2t) i + 4 sin(2t) j

where r1(t) is the position relative to O at time t. Find:

i r1(t), given that r1(0) = −2 j
ii the acceleration vector at time t

iii the times when the position and velocity vectors are perpendicular
iv the Cartesian equation of the path.

b At time t, a second particle Q has a position vector (relative to O) given by

r2(t) = 3
2 sin(2t) i + 2 cos(2t) j + (a − t)k

Find the possible values of a in order for the particles to collide.
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33 An aircraft takes off from the end of a runway in a southerly direction and climbs at an
angle of tan−1( 1

2 ) to the horizontal at a speed of 225
√

5 km/h.

a Show that, t seconds after take-off, the position vector r of the aircraft with respect

to the end of the runway is given by r1 =
t

16
(2i + k), where i, j and k are vectors of

magnitude 1 km in the directions south, east and vertically upwards respectively.
b At time t = 0, a second aircraft, flying horizontally south-west at 720

√
2 km/h, has

position vector −1.2i + 3.2 j + k.

i Find its position vector r2 at time t in terms of i, j and k.
ii Show that there will be a collision and state the time at which it will occur.

34 A particle is fired from the top of a cliff h m above sea level with an initial velocity
of V m/s inclined at an angle α above the horizontal. Let i and j define the horizontal
and vertically upwards vectors in the plane of the particle’s path.

a Define:

i the initial position vector of the particle
ii the particle’s initial velocity.

b The acceleration vector of the particle under gravity is given by a = −g j. Find:

i the velocity vector of the particle t seconds after it is projected
ii the corresponding position vector.

c Use the velocity vector to find the time at which the particle reaches its highest point.
d Show that the time at which the particle hits the sea is given by

t =
V sinα +

√
(V sinα)2 + 2gh

g

35 A particle travels on a path given by the Cartesian equation y = x2 + 2x.

a Show that one possible vector representing the position of the particle is

r(t) = (t − 1)i + (t2 − 1) j

b Show that another possible vector representing the position of the particle is

r(t) = (e−t − 1)i + (e−2t − 1) j

c Two particles travel simultaneously. At time t ≥ 0, the positions of the two particles
are given by

r1(t) = (t − 1)i + (t2 − 1) j

r2(t) = (e−t − 1)i + (e−2t − 1) j

i Find the initial positions of the two particles.
ii Show that the particles travel in opposite directions along the path y = x2 + 2x.
iii Find, correct to two decimal places, the point at which the two particles collide.
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36 A ball is projected against a wall that rebounds the ball in its plane of flight. If the
ball has velocity ai + b j just before hitting the wall, its velocity of rebound is given
by −0.8ai + b j. The ball is projected from ground level, and its position vector before
hitting the wall is defined by r(t) = 10t i + t(10

√
3 − 4.9t) j, t ≥ 0.

a Find:

i the initial position vector of the ball
ii the initial velocity vector of the ball, and hence the magnitude of the velocity and

direction (to be stated as an angle of elevation)
iii an expression for the acceleration of the ball.

b The wall is at a horizontal distance x from the point of projection. Find in terms of x:

i the time taken by the ball to reach the wall
ii the position vector of the ball at impact
iii the velocity of the ball immediately before impact with the wall
iv the velocity of the ball immediately after impact.

c Let the second part of the flight of the ball be defined in terms of t1, a time variable,
where t1 = 0 at impact. Assuming that the ball is under the same acceleration vector,
find in terms of x and t1:

i a new velocity vector of the rebound
ii a new position vector of the rebound.

d Find the time taken for the ball to hit the ground after the rebound.
e Find the value of x (correct to two decimal places) for which the ball will return to its

initial position.

37 An aeroplane takes off from an airport and, with respect to a given frame of reference,
its path with respect to time t is described by the vector r(t) = (5 − 3t)i + 2t j + tk, for
t ≥ 0, where t = 0 seconds at the time of take-off.

a Find the position vector that represents the position of the plane at take-off.
b Find:

i the position of the plane at times t1 and t2
ii the vector which defines the displacement between these two positions in terms

of t1 and t2 (t2 > t1).

c Hence show that the plane is travelling along a straight line and state a position
vector parallel to the flight.

d A road on the ground is defined by the vector r1(s) = si, s ≤ 0.

i Find the magnitude of the acute angle between the path of the plane and the road,
correct to two decimal places.

ii Hence, or otherwise, find the shortest distance from the plane to the road
6 seconds after take-off, correct to two decimal places.
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38 Two trains, T1 and T2, are moving on perpendicular tracks that cross at the point O.
Relative to O, the position vectors of T1 and T2 at time t are given by r1 = Vt i and
r2 = 2V(t − t0) j respectively, where V and t0 are positive constants.

a i Which train goes through O first?
ii How much later does the other train go through O?

b i Show that the trains are closest together when t =
4t0
5

.

ii Calculate their distance apart at this time.
iii Draw a diagram to show the positions of the trains at this time. Also show the

directions in which they are moving.

39 The vector function r1(t) = (2 − t)i + (2t + 1) j represents the path of a particle with
respect to time t, measured in seconds.

a Find the Cartesian equation that describes the path of the particle. (Assume t ≥ 0.)
b i Rearrange the rule for the vector function in the form r1(t) = a + tb, where

a and b are vectors.
ii Describe the vectors a and b geometrically with respect to the path of the

particle.
c A second particle which started at the same time as the first particle travels along

a path that is represented by r2(t) = c + t(2i + j), t ≥ 0. The particles collide after
5 seconds.

i Find c.
ii Find the distance between the two starting points.

40 The paths of two aeroplanes in an aerial display are simultaneously defined by the
vectors

r1(t) = (16 − 3t)i + t j + (3 + 2t)k

r2(t) = (3 + 2t)i + (1 + t) j + (11 − t)k

where t represents the time in minutes. Find:

a the position of the first plane after 1 minute
b the unit vector in the direction of motion for each of the two planes
c the acute angle between their lines of flight, correct to two decimal places
d the point at which their two paths cross
e the vector which represents the displacement between the two planes after t seconds
f the shortest distance between the two planes during their flight.
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14D Algorithms and pseudocode
You may like to use a device to implement the algorithms in this section; see the coding
appendices in the Interactive Textbook for instructions.

1 Riemann sums In Section 1H, we used Riemann sums to approximate the area under
a curve. In this question, we also approximate volume, arc length and surface area.

a Area The following algorithm finds the trapezoidal estimate for the area between
the curve y = x2 − 4 and the x-axis from x = 1 to x = 4. We use the curve y = |x2 − 4|.

define f (x):

return abs(x2 − 4)

a← 1

b← 4

n← 6

h←
b − a

n
x← a

sum← 0

for i from 1 to n

area← 1
2
(
f (x) + f (x + h)

)
× h

sum← sum + area

x← x + h

end for

print sum

O

y = x 2− 4

1
2 4

x

y

O

y = |x2 − 4|

1 2 3 4
x

y

i Perform a desk check for this algorithm.
ii Modify the algorithm to estimate the area between the curves y = sin(2x) and

y = cos x for 0 ≤ x ≤ 2π with 12 strips. (Hint: Use y = |cos x − sin(2x)|.)

b Volume In Section 10D, we used cylinders to approximate the volume of the solid
of revolution formed by rotating a curve y = f (x) about the x-axis for x ∈ [a, b]. Here
we will divide the interval [a, b] into n equal subintervals [xi−1, xi], each of length h,
and so we can write

V ≈
n∑

i=1

π
(
f (xi−1)

)2h

i Write an algorithm in pseudocode that finds an estimate for the volume of the
solid of revolution formed by rotating the curve y = sin−1(x) about the x-axis
for x ∈ [0, 0.5]. Use five cylinders.

ii Perform a desk check for your algorithm.
iii Modify the algorithm to estimate the volume of the solid formed when the region

enclosed by the graphs of y = x2 and y = x is rotated about the x-axis.
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c Arc length In Section 10E, we saw
that we can approximate the length
of a curve by forming line segments
along the curve and finding the sum
of their lengths.

i Consider the algorithm on the
right. What does this algorithm
find an estimate for?

ii Perform a desk check for this
algorithm.

iii Modify the algorithm to find
an estimate for the length of
the curve y = x3 from x = 0 to
x = 2. Use 10 line segments.

define f (x):

return x2

a← 0

b← 1

n← 5

h←
b − a

n
x← a

sum← 0

for i from 1 to n

length←
√

h2 + ( f (x + h) − f (x))2

sum← sum + length

x← x + h

end for

print sum

d Surface area In Section 10F, we used frustums to approximate the area of a
surface of revolution. The algorithm for arc length can be adapted for this task using:

area← π ×
(
f (x) + f (x + h)

)
×

√
h2 + ( f (x + h) − f (x))2

i Write an algorithm in pseudocode to estimate the area of the surface formed by
rotating the curve y = x2 from (0, 0) to (1, 1) about the x-axis. Use five frustums.

ii Write an algorithm in pseudocode to estimate the area of the surface formed by
rotating the curve y = x2 from (0, 0) to (1, 1) about the y-axis. Use five frustums.

2 Numerical solution of di�erential equations

a Using Euler’s method We introduced Euler’s method in Section 11I. Consider the
differential equation

dy
dx

= x2y where y = 1 when x = 0

Using pseudocode, write an algorithm that applies Euler’s method to estimate the
value of y when x = 3.

b Using a definite integral In Section 11H, we saw that for a differential equation of

the form
dy
dx

= f (x), the values of y can be found using y =
∫ x

a
f (t) dt + y(a).

Consider the differential equation

dy
dx

=
√

sin x where y = 0 when x = 0

Using pseudocode, write an algorithm to estimate the value of y when x =
π

4
.

Use the trapezoidal estimate for the definite integral.
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3 Monte Carlo integration
The graph of y = x − x loge x is shown below. The given algorithm finds an estimate for
the area of the shaded region, which is∫ e

1
x − x loge x dx

The enclosing rectangle has area e − 1. By randomly choosing points in this rectangle,
we estimate what proportion of the rectangle lies below the curve.

define f (x):

return x − x loge x

count ← 0

for i from 1 to 106

x← (e − 1) × random( ) + 1

y← random( )

if y < f (x) then

count ← count + 1

end if

end for

area←
count
106 × (e − 1)

print area

y

x
1 e

1

Note: Here we are using the pseudocode function random( ) to generate a random
number in the interval (0, 1). So the instruction b × random( ) + a produces a
random number in the interval (a, a + b).

a Write an algorithm in pseudocode that uses a Monte Carlo method to estimate the
value of

∫ π

0
sin3 x dx.

b Write an algorithm in pseudocode that uses a Monte Carlo method to estimate the
value of

∫ π

0

√
sin x dx.
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Linear combinations of
random variables and
the sample mean

Objectives
I To investigate the distribution of a linear function of a random variable.

I To determine the mean and variance of a linear function of a random variable.

I To determine the mean and variance of a linear combination of independent random
variables.

I To investigate the behaviour of a linear combination of independent normal random
variables.

I To understand the sample mean X̄ as a random variable.

I To use simulation to understand the distribution of the sample mean X̄.

I To introduce the central limit theorem.

I To use the central limit theorem to understand the normal approximation to the
binomial distribution.

Some of the most interesting and useful applications of probability are concerned not with a
single random variable, but with combinations of random variables.

For example, the time that it takes to build a house (which is a random variable) is the sum of
the times taken for each of the component parts of the build, such as digging the foundations,
constructing the frame, installing the plumbing, and so on. Each component is a random
variable in its own right, and so has a distribution which can be examined and understood.

In this chapter, we consider linear combinations of independent random variables, and their
application to the sample mean.

Note: The statistics material in Specialist Mathematics Units 3 & 4 requires a knowledge of
probability and statistics from Mathematical Methods Units 3 & 4.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



646 Chapter 15: Linear combinations of random variables and the sample mean

15A Linear functions of a random variable
In this section, we consider a random variable Y which is a linear function of another random
variable X. That is,

Y = aX + b

where a and b are constants. We can consider b as a location parameter and a as a scale
parameter.

Discrete random variables
If X is a discrete random variable, then Y = aX + b is also a discrete random variable. We can
determine probabilities associated with Y by using the original probability distribution of X,
as illustrated in the following example.

The probability distribution of X, the number of cars that Matt sells in a week, is given in
the following table.

Number of cars sold, x 0 1 2 3 4

Pr(X = x) 0.45 0.25 0.20 0.08 0.02

Suppose that Matt is paid $750 each week, plus $1000 commission on each car sold.

a Express S , Matt’s weekly salary, as a linear function of X.
b What is the probability distribution of S ?
c What is the probability that Matt earns more than $2000 in any given week?

Example 1

Solution
a S = 1000X + 750
b We can use the rule from part a to determine the possible values of S .

Weekly salary, s 750 1750 2750 3750 4750

Pr(S = s) 0.45 0.25 0.20 0.08 0.02

c From the table, we have

Pr(S > 2000) = 0.20 + 0.08 + 0.02 = 0.30

Continuous random variables
A continuous random variable X has a probability density function f such that:

1 f (x) ≥ 0 for all x

2
∫ ∞
−∞

f (x) dx = 1

Moreover, we have

Pr(X ≤ c) =
∫ c

−∞
f (x) dx
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15A Linear functions of a random variable 647

If X is a continuous random variable and a , 0, then Y = aX + b is also a continuous random
variable. If a > 0, then

Pr(Y ≤ y) = Pr(aX + b ≤ y) = Pr
(
X ≤

y − b
a

)
giving

Pr(Y ≤ y) =
∫ y−b

a
−∞

f (x) dx

Assume that the random variable X has density function f given by

f (x) =

1.5(1 − x2) if 0 ≤ x ≤ 1

0 if x > 1 or x < 0

Find Pr(X ≤ 0.5).a Let Y = 2X + 3. Find Pr(Y ≤ 3.5).b

Example 2

Solution
Pr(X ≤ 0.5) =

∫ 0.5

0
f (x) dx

=
∫ 0.5

0
1.5(1 − x2) dx

= 1.5
[
x −

x3

3

]0.5

0

= 1.5
(
0.5 −

0.53

3

)
= 0.6875

a Pr(Y ≤ 3.5) =
∫ 3.5−3

2
0

f (x) dx

=
∫ 0.25

0
1.5(1 − x2) dx

= 1.5
[
x −

x3

3

]0.25

0

= 1.5
(
0.25 −

0.253

3

)
= 0.3672

b

The mean of a linear function of a random variable
Now we consider the mean of Y , where Y = aX + b.

Discrete random variables
For a discrete random variable X, by definition we have

E(X) =
∑

x

x · Pr(X = x)

E(Y) = E(aX + b)Thus

=
∑

x

(ax + b) · Pr(X = x)

=
∑

x

ax · Pr(X = x) +
∑

x

b · Pr(X = x)

= a
∑

x

x · Pr(X = x) + b
∑

x

Pr(X = x)

= a E(X) + b since
∑

x

Pr(X = x) = 1
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648 Chapter 15: Linear combinations of random variables and the sample mean

Continuous random variables
Similarly, for a continuous random variable X, we have

E(X) =
∫ ∞
−∞

x · f (x) dx

E(Y) = E(aX + b)Thus

=
∫ ∞
−∞

(ax + b) · f (x) dx

=
∫ ∞
−∞

ax · f (x) dx +
∫ ∞
−∞

b · f (x) dx

= a
∫ ∞
−∞

x · f (x) dx + b
∫ ∞
−∞

f (x) dx

= a E(X) + b since
∫ ∞
−∞

f (x) dx = 1

Mean of a linear function of a random variable

Let X be a random variable with mean µ. If Y = aX + b, where a and b are constants, then

E(Y) = E(aX + b) = a E(X) + b = aµ + b

The variance of a linear function of a random variable
What can we say about the variance of Y , where Y = aX + b? Whether the random variable X
is discrete or continuous, we have

Var(aX + b) = E[(aX + b)2] − [E(aX + b)]2

[E(aX + b)]2 = [a E(X) + b]2Now

= (aµ + b)2

= a2
µ

2 + 2abµ + b2

E[(aX + b)2] = E(a2X2 + 2abX + b2)and

= a2 E(X2) + 2abµ + b2

Var(aX + b) = a2 E(X2) + 2abµ + b2 − a2
µ

2 − 2abµ − b2Thus

= a2 E(X2) − a2
µ

2

= a2 Var(X)

Note: This calculation uses sums of random variables, which we discuss in the next section.

Variance of a linear function of a random variable

Let X be a random variable with variance σ2. If Y = aX + b, where a and b are constants,
then

Var(Y) = Var(aX + b) = a2 Var(X) = a2
σ

2

sd(Y) = sd(aX + b) =
√

a2σ2 = |a|σ
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15A 15A Linear functions of a random variable 649

Although initially the absence of b in the variance may seem surprising, on reflection it
makes sense that adding a constant merely changes the location of the distribution, and has
no effect on its spread. Similarly, multiplying by a is in effect a scale change, and this is
consistent with the result obtained.

Suppose that X is a continuous random variable with mean µ = 10 and variance σ2 = 2.

Find E(2X + 1).a Find Var(1 − 3X).b

Example 3

Solution
E(2X + 1) = 2 E(X) + 1

= 2 × 10 + 1 = 21

a Var(1 − 3X) = (−3)2 Var(X)

= 9 × 2 = 18

b

Exercise 15ASkill-
sheet

1Example 1 The number of chocolate bars produced by a manufacturer in any week has the
following distribution.

x 1000 1500 2000 2500 3000 4000

Pr(X = x) 0.05 0.15 0.35 0.25 0.15 0.05

It costs the manufacturer $450 per week, plus an additional 50 cents per chocolate bar,
to produce the bars.

a Express C, the manufacturer’s weekly cost of production, as a linear function of X.
b What is the probability distribution of C?
c What is the probability that the cost is more than $2000 in any given week?

2 Sam plays a game with his sister Annabelle. He tosses a coin three times, and counts the
number of times that the coin comes up heads. Annabelle charges him $5 to play, and
gives him $2.50 for each head that he tosses.

a Express W, the net amount he wins, in terms of X, the number of heads observed in
the three tosses.

b What is the probability distribution of W?
c What is the probability that the net amount he wins in a game is more than $2?

3Example 2 A continuous random variable X has probability density function:

f (x) =

3x2 if 0 ≤ x ≤ 1

0 otherwise

a Find Pr(X < 0.3).
b Let Y = X + 1. Find Pr(Y ≤ 1.5).
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650 Chapter 15: Linear combinations of random variables and the sample mean 15A

4 A continuous random variable X has probability density function:

f (x) =


π

4
cos

(
πx
4

)
if 0 ≤ x ≤ 2

0 otherwise

a Find Pr(X < 0.5).
b Let Y = 3X − 1. Find Pr(Y > 2).

5 The probability density function f of a random variable X is given by

f (x) =


x + 2
16

if 0 ≤ x ≤ 4

0 otherwise

a Find Pr(X < 2.5).
b Let Y = 4X + 2. Find Pr(Y > 2).

6Example 3 Suppose that X is a random variable with mean µ = 25 and variance σ2 = 9.

a Let Y = 3X + 2. Find E(Y) and Var(Y).
b Let U = 5 − 2X. Find E(U) and sd(U).
c Let V = 4 − 0.5X. Find E(V) and Var(V).

7 Suppose that X is a random variable with mean µ = 25 and variance σ2 = 16.
Let Y = mX + n, where m ∈ R+ and n ∈ R.

a Given that E(Y) = 45 and Var(Y) = 64, find the values of m and n.
b Hence find the value of Y when the value of X is 20.

8 A random variable X has density function f given by

f (x) =


0.2 if −1 ≤ x ≤ 0

0.2 + 1.2x if 0 < x ≤ 1

0 if x < −1 or x > 1

a Find E(X).
b Find Var(X).
c Hence find E(4X + 2) and sd(4X + 2).

9 A machine dispenses soft drink into cylindrical cans of diameter 6 cm. The machine
has an automatic switch that stops the liquid flowing when it reaches a depth of X cm in
the can. The random variable X has a mean of 15 cm and a standard deviation of 2 mm.
Let V mL be the volume of soft drink in a can. (Note that 1 mL = 1 cm3.)

a Find the expected value of V . Give your answer correct to one decimal place.
b Find the variance of V . Give your answer correct to one decimal place.
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15A 15B Linear combinations of random variables 651

10 An investment account pays simple interest, with the interest rate being fixed over the
period of the investment. The interest rate, X% p.a., is a random variable with a mean
of 2% and a standard deviation of 0.2%. Suppose that an initial amount of $100 000 is
invested for five years.

a Find the expected value of the investment at the end of five years.
b Find the standard deviation of the value of the investment at the end of five years.

11 The probability distribution of X, the number of houses that Madeline sells in a week,
is given in the following table.

x 0 1 2 3 4

Pr(X = x) 0.40 0.33 0.22 0.04 0.01

Suppose that Madeline is paid $1000 each week, plus $5000 commission on each
house sold.

a Find Madeline’s expected total weekly income, correct to the nearest dollar.
b Find the standard deviation of Madeline’s total weekly income, correct to the nearest

dollar.
c How much extra commission on a sale should Madeline request so that her expected

weekly income increases by $500?

15B Linear combinations of random variables
From Mathematical Methods, you are familiar with the idea of independent events, that is,
events A and B such that

Pr(A ∩ B) = Pr(A) × Pr(B)

The term independent can also be applied to random variables. While a formal definition of
independent random variables is beyond the scope of this course, we say that two random
variables are independent if their joint probability function is a product of their individual
probability functions.

The sum of two independent identically distributed
random variables
We start by investigating sums of random variables that are not only independent, but also
identically distributed. This means that they will have the same values for their means and
standard deviations.

Consider, for example, the numbers observed when two six-sided dice are rolled. Let X1 be
the number observed when the first die is rolled, and X2 be the number observed when the
second die is rolled. The two random variables X1 and X2 are independent and have identical
distributions.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



652 Chapter 15: Linear combinations of random variables and the sample mean

What can we say about the distribution of X1 + X2?

Since the rolling of these two dice can be considered as independent events, we can find
probabilities associated with the sum by multiplying probabilities associated with each
individual random variable. For example:

Pr(X1 + X2 = 2) = Pr(X1 = 1, X2 = 1)

= Pr(X1 = 1) × Pr(X2 = 1) =
1
6
×

1
6

=
1

36

Suppose that X1 is the number observed when one fair die is rolled, and X2 is the number
observed when another fair die is rolled. Find the probability distribution of Y = X1 + X2.

Example 4

Solution
We can construct the following table to determine the possible values of Y = X1 + X2.

X2

1 2 3 4 5 6

X1

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

For example, consider Y = 4. The possible outcomes for this value are:

� X1 = 1, X2 = 3 � X1 = 2, X2 = 2 � X1 = 3, X2 = 1

Therefore

Pr(Y = 4)

= Pr(X1 = 1, X2 = 3) + Pr(X1 = 2, X2 = 2) + Pr(X1 = 3, X2 = 1)

= Pr(X1 = 1) × Pr(X2 = 3) + Pr(X1 = 2) × Pr(X2 = 2) + Pr(X1 = 3) × Pr(X2 = 1)

=

(1
6
×

1
6

)
+

(1
6
×

1
6

)
+

(1
6
×

1
6

)
=

3
36

Continuing in this way, we can obtain the probability distribution of Y = X1 + X2.

y 2 3 4 5 6 7 8 9 10 11 12

Pr(Y = y)
1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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15B Linear combinations of random variables 653

The mean and variance of the sum of two independent
identically distributed random variables
We can consider the mean and variance of the sum of two independent identically distributed
random variables using the previous simple example.

Consider again the random variable Y = X1 + X2 from Example 4. Find:

E(Y)a Var(Y)b

Example 5

Solution
Using the probability distribution of Y = X1 + X2 from Example 4:

E(Y) =
∑

y

y · Pr(Y = y)

=
2 + 6 + 12 + · · · + 12

36

=
252
36

= 7

a Var(Y) = E(Y2) − [E(Y)]2

E(Y2) =
∑

y

y2 · Pr(Y = y)

=
4 + 18 + 48 + · · · + 144

36

=
1974
36

∴ Var(Y) =
1974
36
− 49 =

35
6

b

How do these values compare to the mean and variance of X1 and X2?

We can easily determine that E(X1) = E(X2) = 3.5, and we know that E(X1 + X2) = 7. Thus
we have

E(X1 + X2) = E(X1) + E(X2)

Similarly, we can calculate Var(X1) = Var(X2) =
35
12

, and we know that Var(X1 + X2) =
35
6

.
Thus we have

Var(X1 + X2) = Var(X1) + Var(X2)

These results hold for any two independent identically distributed random variables X1

and X2, and we can generalise our findings as follows.

Let X be a random variable with mean µ and variance σ2. Then if X1 and X2 are
independent random variables with identical distributions to X, we have

E(X1 + X2) = E(X1) + E(X2) = 2µ

Var(X1 + X2) = Var(X1) + Var(X2) = 2σ2

sd(X1 + X2) =
√

Var(X1 + X2) =
√

2σ

Note: Since sd(X1) + sd(X2) = 2σ, we see that sd(X1 + X2) , sd(X1) + sd(X2) for σ , 0.
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654 Chapter 15: Linear combinations of random variables and the sample mean

The sum of n independent identically distributed
random variables
So far we have looked at the sum of two independent identically distributed random variables.
In the next example, we consider a sum of three random variables.

Consider a random variable X which has a probability distribution as follows:

x 0 1 2

Pr(X = x)
1
4

1
2

1
4

Let X1, X2 and X3 be independent random variables with identical distributions to X.

a Find the probability distribution of X1 + X2 + X3.
b Hence find the mean, variance and standard deviation of X1 + X2 + X3.

Example 6

Solution
a Using a tree diagram or a similar strategy, we can list all the possible combinations of

values of X1, X2 and X3 as follows:

(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2)

(1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)

(2, 0, 0), (2, 0, 1), (2, 0, 2), (2, 1, 0), (2, 1, 1), (2, 1, 2), (2, 2, 0), (2, 2, 1), (2, 2, 2)

The value of X1 + X2 + X3 can be determined for each of the 27 outcomes. Since the
three random variables are independent, we can determine the probability of each
outcome by multiplying the probabilities of the individual outcomes.

For example:

Pr(X1 + X2 + X3 = 0) = Pr(X1 = 0, X2 = 0, X3 = 0)

= Pr(X1 = 0) × Pr(X2 = 0) × Pr(X3 = 0)

=
1
4
×

1
4
×

1
4

=
1
64

Continuing in this way, we can obtain the probability distribution of X1 + X2 + X3.

y 0 1 2 3 4 5 6

Pr(X1 + X2 + X3 = y)
1
64

3
32

15
64

5
16

15
64

3
32

1
64
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15B Linear combinations of random variables 655

b Using the probability distribution from part a, we have

E(X1 + X2 + X3) = 0 ×
1
64

+ 1 ×
3

32
+ 2 ×

15
64

+ · · · + 6 ×
1

64
= 3

E[(X1 + X2 + X3)2] = 02 ×
1

64
+ 12 ×

3
32

+ 22 ×
15
64

+ · · · + 62 ×
1

64
=

21
2

Var(X1 + X2 + X3) =
21
2
− 32 =

3
2

Thus

sd(X1 + X2 + X3) =

√
3
2

= 1.225and

It is easy to verify in the previous example that

E(X1 + X2 + X3) = 3 E(X)

Var(X1 + X2 + X3) = 3 Var(X)

We can extend our findings in this section to the sum of n independent identically distributed
random variables.

The sum of n independent identically distributed random variables

Let X be a random variable with mean µ and variance σ2. Then if X1, X2, . . . , Xn are
independent random variables with identical distributions to X, we have

E(X1 + X2 + · · · + Xn) = E(X1) + E(X2) + · · · + E(Xn) = nµ

Var(X1 + X2 + · · · + Xn) = Var(X1) + Var(X2) + · · · + Var(Xn) = nσ2

sd(X1 + X2 + · · · + Xn) =
√

Var(X1 + X2 + · · · + Xn) =
√

nσ

Note: The result for the expected value holds even if the random variables X1, X2, . . . , Xn are
not independent.

Let X be a random variable with mean µ = 10 and variance σ2 = 9. If X1, X2, X3, X4 are
independent random variables with identical distributions to X, find:

E(X1 + X2 + X3 + X4)a Var(X1 + X2 + X3 + X4)b sd(X1 + X2 + X3 + X4)c

Example 7

Solution
E(X1 + X2 + X3 + X4)

= 4µ = 40

a Var(X1 + X2 + X3 + X4)

= 4σ2 = 36

b sd(X1 + X2 + X3 + X4)

=
√

4σ = 2σ = 6

c

We can see from Example 6 that determining the probability distribution of a sum of random
variables from first principles is very tedious by hand, even for a simple example. However,
such probability distributions can be determined efficiently using a computer program.
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656 Chapter 15: Linear combinations of random variables and the sample mean

Linear combinations of two independent random variables
We now consider a random variable Y which is a linear combination of two independent
random variables X1 and X2. That is,

Y = a1X1 + a2X2

where a1 and a2 are constants.

We will consider linear combinations of independent random variables that do not necessarily
have the same distribution (and so they most likely have different values for their means and
standard deviations). We begin with a simple example to illustrate the distribution of a linear
combination of two independent random variables.

Let X1 and X2 be independent random variables with the probability distributions given in
the following tables. Find the probability distribution of Y = 2X1 + 3X2.

x1 0 1 2

Pr(X1 = x1)
1
3

1
3

1
3

x2 0 1

Pr(X2 = x2)
1
2

1
2

Example 8

Solution
We can construct the following table to determine the possible values of Y = 2X1 + 3X2.

X2

0 1

X1

0 0 + 0 = 0 0 + 3 = 3

1 2 + 0 = 2 2 + 3 = 5

2 4 + 0 = 4 4 + 3 = 7

Since X1 and X2 are independent, we can determine the probability of each outcome by
multiplying the probabilities of the individual outcomes. For example:

Pr(Y = 7) = Pr(X1 = 2, X2 = 1)

= Pr(X1 = 2) × Pr(X2 = 1)

=
1
3
×

1
2

=
1
6

Continuing in this way, we can obtain the probability distribution of Y = 2X1 + 3X2.

y 0 2 3 4 5 7

Pr(Y = y)
1
6

1
6

1
6

1
6

1
6

1
6
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15B Linear combinations of random variables 657

The mean and variance of a linear combination of
two independent random variables
We can consider the mean and variance of a linear combination of two independent random
variables using the previous simple example.

Consider again the random variable Y = 2X1 + 3X2 from Example 8. Find:

E(Y)a Var(Y)b

Example 9

Solution
Using the probability distribution of Y = 2X1 + 3X2 from Example 8:

E(Y) =
∑

y

y · Pr(Y = y)

=
0 + 2 + 3 + 4 + 5 + 7

6

=
21
6

=
7
2

a Var(Y) = E(Y2) − [E(Y)]2

E(Y2) =
∑

y

y2 · Pr(Y = y)

=
0 + 4 + 9 + 16 + 25 + 49

6

=
103
6

∴ Var(Y) =
103
6
−

49
4

=
59
12

b

Again we should compare these values to the means and variances of X1 and X2.

We can easily determine that E(X1) = 1 and E(X2) =
1
2

, and we know that E(2X1 + 3X2) =
7
2

.
Thus we have

E(2X1 + 3X2) = 2 E(X1) + 3 E(X2)

We can calculate Var(X1) =
2
3

and Var(X2) =
1
4

, and we know that Var(2X1 + 3X2) =
59
12

.
Thus we have

Var(2X1 + 3X2) = 22 Var(X1) + 32 Var(X2)

These results hold for any two independent random variables X1 and X2, and we can
generalise our findings as follows.

Let X1 and X2 be independent random variables, where X1 has mean µ1 and variance σ2
1,

and X2 has mean µ2 and variance σ2
2. Then if a1 and a2 are constants, we have

E(a1X1 + a2X2) = a1 E(X1) + a2 E(X2) = a1µ1 + a2µ2

Var(a1X1 + a2X2) = a2
1 Var(X1) + a2

2 Var(X2) = a2
1σ

2
1 + a2

2σ
2
2

sd(a1X1 + a2X2) =
√

Var(a1X1 + a2X2) =

√
a2

1σ
2
1 + a2

2σ
2
2

Note: For the sum of two independent random variables X1 and X2, take a1 = 1 and a2 = 1.
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658 Chapter 15: Linear combinations of random variables and the sample mean

A manufacturing process involves two stages:

� The time taken to complete the first stage, X1 hours, is a continuous random variable
with mean µ1 = 4 and standard deviation σ1 = 1.5.

� The time taken to complete the second stage, X2 hours, is a continuous random variable
with mean µ2 = 7 and standard deviation σ2 = 1.

Assume that the second stage is able to commence immediately after the first stage ends.

a Find the mean and standard deviation of the total processing time, if the times taken at
each stage are independent.

b If the cost of processing is $200 per hour for the first stage and $300 per hour for the
second stage, find the mean and standard deviation of the total processing cost.

Example 10

Solution
a The total processing time is X1 + X2 hours.

The mean of the total processing time is

E(X1 + X2) = E(X1) + E(X2)

= 4 + 7 = 11 hours

The variance of the total processing time is

Var(X1 + X2) = Var(X1) + Var(X2)

= 1.52 + 12 = 3.25

Hence the standard deviation of the total processing time is

sd(X1 + X2) =
√

3.25 = 1.803 hours

b Let $C be the total processing cost. Then C = 200X1 + 300X2.

The mean of the total processing cost is

E(C) = E(200X1 + 300X2)

= 200 E(X1) + 300 E(X2)

= 200 × 4 + 300 × 7

= $2900

The variance of the total processing cost is

Var(C) = Var(200X1 + 300X2)

= 2002 Var(X1) + 3002 Var(X2)

= 2002 × 1.52 + 3002 × 12

= 180 000

Hence the standard deviation of the total processing cost is

sd(C) =
√

180 000 = $424.26
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15B 15B Linear combinations of random variables 659

Linear combinations of n independent random variables
The results of this section can be generalised to linear combinations of more than two
independent random variables, as follows.

A linear combination of n independent random variables

Let X1, X2, . . . , Xn be independent random variables with means µ1, µ2, . . . , µn and
variances σ2

1, σ2
2, . . . , σ2

n respectively. Then if a1, a2, . . . , an are constants, we have

E(a1X1 + a2X2 + · · · + anXn) = a1 E(X1) + a2 E(X2) + · · · + an E(Xn)

= a1µ1 + a2µ2 + · · · + anµn

Var(a1X1 + a2X2 + · · · + anXn) = a2
1 Var(X1) + a2

2 Var(X2) + · · · + a2
n Var(Xn)

= a2
1σ

2
1 + a2

2σ
2
2 + · · · + a2

nσ
2
n

sd(a1X1 + a2X2 + · · · + anXn) =

√
a2

1σ
2
1 + a2

2σ
2
2 + · · · + a2

nσ
2
n

Note: The result for the expected value holds even if the random variables X1, X2, . . . , Xn are
not independent.

Exercise 15BSkill-
sheet

1Example 4 Pippi is going on a school family picnic. Family groups will sit together on tables in the
park. The number of children in a family, X, follows the distribution shown.

x 1 2 3 4

Pr(X = x) 0.5 0.3 0.15 0.05

The number of children in a family is independent of the number of children in any
other family. Find the probability that, if two families sit at the one table, there will be
more than three children in the combined group.

2Example 5 Suppose that X1 is the number observed when a five-sided die is rolled, and X2 is the
number observed when another five-sided die is rolled. Find from first principles:

E(X1)a Var(X1)b
E(X1 + X2)c Var(X1 + X2)d

3Example 7 The random variables X1 and X2 are independent and identically distributed, with mean
µ = 10 and variance σ2 = 9. Find:

E(X1 + X2)a Var(X1 + X2)b sd(X1 + X2)c

4 The random variables X1, X2, X3, X4 and X5 are independent and identically distributed,
with mean µ = 7 and standard deviation σ = 2. Find:

E(X1 + X2 + X3 + X4 + X5)a Var(X1 + X2 + X3 + X4 + X5)b
sd(X1 + X2 + X3 + X4 + X5)c
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660 Chapter 15: Linear combinations of random variables and the sample mean 15B

5 Let X1, X2 and X3 be independent identically distributed random variables, each with
the probability density function given by

f (x) =

2x3 − x + 1 if 0 ≤ x ≤ 1

0 otherwise

Find:

E(X1 + X2 + X3)a Var(X1 + X2 + X3)b sd(X1 + X2 + X3)c

6Example 8 The independent random variables X and Y have probability distributions as shown.

x 1 2 3

Pr(X = x)
1
2

1
3

1
6

y 2 4

Pr(Y = y)
1
3

2
3

Let S = X + Y .

a Complete a table to show the probability distribution of S .
b Find Pr(S ≤ 5).

7 Suppose that X1 is the number observed when a six-sided die is rolled, and X2 is the
number observed when another six-sided die is rolled.

Find Pr(X1 − X2 = 0).a Find Pr(X1 + 3X2 = 6).b

8Example 9 Use the probability distribution of S from Question 6 to find:

E(S )a sd(S )b

9Example 10 To get to school, Jasmine first rides her bike to her friend’s house and then travels by car
the rest of the way.

� The time taken for the bike ride, X1 minutes, is a continuous random variable with
mean µ1 = 17 and standard deviation σ1 = 4.9.

� The time taken for the car journey, X2 minutes, is a continuous random variable with
mean µ2 = 32 and standard deviation σ2 = 7.

If they leave by car immediately after Jasmine arrives at her friend’s house, find the
mean and standard deviation of the total time taken for her to get to school (assuming
that the times taken for each part of the journey are independent).

10 A coffee machine automatically dispenses coffee into a cup, followed by hot milk.
The volume of coffee dispensed has a mean of 50 mL and a standard deviation of 5 mL.
The volume of hot milk dispensed has a mean of 145 mL and a standard deviation
of 10 mL.

a What are the mean and standard deviation of the total amount of liquid dispensed by
the machine?

b If the cost of the coffee is $10 per litre and the cost of the milk is $4 per litre, what
are the mean and standard deviation of the total cost of a cup of coffee?
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15B 15C Linear combinations of normal random variables 661

11 The random variables X and Y are independent. The mean and variance of X are 2 and 3
respectively, while the mean and variance of Y are 3 and 4 respectively. Find the values
of a, b ∈ N if the mean and variance of aX + bY are 19 and 111 respectively.

12 At a greengrocer, the bags of apples have a mean weight of 1000 g, with a variance
of 50 g2, and the bags of bananas have a mean weight of 750 g, with a variance of 25 g2.

a If the cost of apples is $4.50 per kg and the cost of bananas is $3 per kg, find the
mean and standard deviation of the total cost of buying one bag of each.

b Suppose that Danni buys two bags of apples and three bags of bananas. What are the
mean and standard deviation of the total weight of her purchases?

15C Linear combinations of normal random variables
In the previous section, we looked at the mean and variance of a linear combination of
independent random variables. However, we were not able to say much about the form of the
distribution or to calculate probabilities, except in very simple examples. In this section, we
investigate the special case when the random variables are normally distributed.

It can be proved, but is beyond the scope of this course, that a linear combination of
independent normal random variables is also normally distributed.

A linear combination of n independent normal random variables

Let X1, X2, . . . , Xn be independent normal random variables and let a1, a2, . . . , an be
constants. Then the random variable a1X1 + a2X2 + · · · + anXn is also normally distributed.

The time taken to prepare a house for painting is known to be normally distributed with a
mean of 10 hours and a standard deviation of 4 hours. The time taken to paint the house is
independent of the preparation time, and is normally distributed with a mean of 20 hours
and a standard deviation of 3 hours. What is the probability that the total time taken to
prepare and paint the house is more than 35 hours?

Example 11

Solution
Let X represent the time taken to prepare the house, and Y the time taken to paint the
house. Since X and Y are independent normal random variables, the distribution of X + Y
is also normal, with

E(X + Y) = E(X) + E(Y) = 10 + 20 = 30

Var(X + Y) = Var(X) + Var(Y) = 42 + 32 = 25

sd(X + Y) =
√

25 = 5

Therefore

Pr(X + Y > 35) = Pr
(
Z >

35 − 30
5

)
= Pr(Z > 1) = 0.1587

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



662 Chapter 15: Linear combinations of random variables and the sample mean 15C

Exercise 15CSkill-
sheet

Note that many of the real-world variables used in this exercise can only be approximately
normally distributed, as there are practical limitations to the values they can take.

1Example 11 The time taken to prepare a meal at a certain restaurant is normally distributed, with a
mean of 12 minutes and a standard deviation of 3 minutes. The time taken to cook the
meal is independent of the preparation time, and is normally distributed with a mean
of 14 minutes and a standard deviation of 3 minutes. What is the probability that a diner
will have to wait more than 30 minutes for their meal to be served?

2 Batteries of type A have a mean voltage of 5.0 volts, with variance 0.0225. Type B
batteries have a mean voltage of 8.0 volts, with variance 0.04. If we form a series
connection containing one battery of each type, what is the probability that the
combined voltage exceeds 13.4 volts?

3 Scores on the mathematics component of a standardised test are normally distributed
with a mean of 63 and a standard deviation of 10. Scores on the English component
of the test are normally distributed with a mean of 68 and a standard deviation of 7.
Assuming that the two components of the test are independent of each other, find the
probability that a student’s mathematics score is higher than their English score.

4 The clearance between two components of a device is important, as component A must
fit inside component B. The outer diameter of component A is normally distributed with
mean µA = 0.425 cm and variance σ2

A = 0.0001, and the inner diameter of component B
is normally distributed with mean µB = 0.428 cm and variance σ2

B = 0.0004. What is the
probability that component A will not fit inside component B?

5 Two students are known to have equal ability in playing an electronic game, so that each
of their scores are normally distributed with mean 25 000 and standard deviation 3000.
The two scores are independent. What is the probability that, in a particular game, the
students’ scores will differ by more than 7500 points?

6 The weight of bananas is normally distributed with a mean of 180 g and a standard
deviation of 20 g. The bananas are packed in bags of six. Find the probability that the
weight of a randomly chosen bag of six bananas is less than 1 kg.

7 Suppose that the weights of people are normally distributed with a mean of 82 kg and a
standard deviation of 9 kg. What is the maximum number of people who can get into an
elevator which has a weight limit of 680 kg, if we want to be at least 99% sure that the
elevator does not exceed capacity?

8 An alarm system has 20 batteries that are connected so that, when one battery fails,
the next one takes over. (Only one battery is working at any one time.) The batteries
operate independently, and each has a mean life of 7 hours and a standard deviation of
0.5 hours. What is the probability that the alarm system is still working after 145 hours?
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9 Certain machine components have lifetimes, in hours, which are independent and
normally distributed with mean 300 and variance 100. Find the probability that:

a the total life of three components is more than 950 hours
b the total life of four components is more than 1250 hours.

10 The independent random variables X and Y each have a normal distribution. The
means of X and Y are 10 and 12 respectively, and the standard deviations are 3 and 4
respectively. Find Pr(X < Y).

15D The sample mean of a normal random variable
In Section 15C, we saw that a linear combination of independent normal random variables is
also normally distributed. An important application of this result is to the sample mean, X̄.

Populations and samples
You met the following concepts in Specialist Mathematics Units 1 & 2:

� A population is the set of all eligible members of a group which we intend to study.
A population does not have to be a group of people. For example, it could consist of all
apples produced in a particular area, or all components produced by a factory.

� A sample is a subset of the population which we select in order to make inferences about
the population. Generalising from the sample to the population will not be useful unless
the sample is representative of the population.

� The simplest way to obtain a valid sample is to choose a random sample, where every
member of the population has an equal chance of being included in the sample.

� The population mean µ is the mean of all values of a measure in the entire population;
the sample mean x̄ is the mean of these values in a particular sample.

� Since x̄ varies according to the contents of the random samples, we consider the sample
means x̄ as being the values of a random variable, which we denote by X̄.

The sample mean
Let X be a normal random variable which represents a particular measure on a population
(for example, IQ scores or rope lengths). The mean of X is µ and the standard deviation is σ.

Samples of size n selected from this population can be described by independent random
variables X1, X2, . . . , Xn with identical distributions to X.

The sample mean is defined as

X̄ =
X1 + X2 + · · · + Xn

n

Since X̄ is a linear combination of independent normal random variables, the random
variable X̄ is also normally distributed.
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664 Chapter 15: Linear combinations of random variables and the sample mean

The expected value of X̄ can be found using our general result for linear combinations:

E(X̄) = E
(X1 + X2 + · · · + Xn

n

)
= E

(1
n

X1 +
1
n

X2 + · · · +
1
n

Xn

)
=

1
n

E(X1) +
1
n

E(X2) + · · · +
1
n

E(Xn) where a1 = a2 = · · · = an =
1
n

= n ×
1
n
× µ since E(Xi) = E(X) = µ

= µ

Similarly, we can find the variance of X̄:

Var(X̄) = Var
(X1 + X2 + · · · + Xn

n

)
=

1
n2 Var(X1) +

1
n2 Var(X2) + · · · +

1
n2 Var(Xn)

= n ×
1
n2 × σ

2

=
σ2

n

We can summarise our results as follows.

The sample mean of a normal random variable

Let X be a normally distributed random variable with mean µ and standard deviation σ.
Let X1, X2, . . . , Xn represent a sample of size n selected from this population. The sample
mean is defined as

X̄ =
X1 + X2 + · · · + Xn

n

The sample mean X̄ is normally distributed with E(X̄) = µ and sd(X̄) =
σ
√

n
.

If we know that a random variable has a normal distribution and we know its mean and
standard deviation, then we know exactly the distribution of the sample mean.

Experience has shown that the heights of a certain population of women can be assumed to
be normally distributed with mean µ = 160 cm and standard deviation σ = 8 cm. What can
be said about the distribution of the sample mean for a sample of size 16?

Example 12

Solution
Let X be the height of a woman chosen at random from this population.

The distribution of the sample mean X̄ is normal with mean µX̄ = µ = 160 and standard

deviation σX̄ =
σ
√

n
=

8
√

16
= 2.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



15D 15D The sample mean of a normal random variable 665

Consider the population described in Example 12. What is the probability that:

a a woman chosen at random has a height greater than 168 cm
b a sample of four women chosen at random has an average height greater than 168 cm?

Example 13

Solution

a Pr(X > 168) = Pr
(
Z >

168 − 160
8

)
= Pr(Z > 1) = 0.1587

b The distribution of the sample mean X̄ is normal with mean µX̄ = µ = 160 and standard

deviation σX̄ =
σ
√

n
=

8
√

4
= 4.

Thus Pr(X̄ > 168) = Pr
(
Z >

168 − 160
4

)
= Pr(Z > 2) = 0.0228

Exercise 15DSkill-
sheet

1Example 12 The distribution of final marks in an examination is normal with a mean of 74 and a
standard deviation of 8. A random sample of three students is selected and their mean
mark calculated. What are the mean and standard deviation of this sample mean?

2 A machine produces nails which have an intended diameter of µ = 25.025 mm, with a
standard deviation of σ = 0.003 mm. A sample of five nails is selected for inspection
each hour and their average diameter calculated. What are the mean and standard
deviation of this average diameter?

3Example 13 The distribution of final marks in a statistics course is normal with a mean of 70 and a
standard deviation of 6.

a Find the probability that a randomly selected student has a final mark above 80.
b Find the probability that the mean final mark for two randomly selected students is

above 80.
c Compare the answers to parts a and b.

4 Suppose that IQ in a certain population is a normally distributed random variable, X,
with mean µ = 100 and standard deviation σ = 15.

a Find the probability that a randomly selected individual has an IQ greater than 120.
b Find the probability that the mean IQ of three randomly selected individuals is

greater than 120.
c Compare the answers to parts a and b.

5 Gestation time for pregnancies without problems in humans is approximately normally
distributed, with a mean of µ = 266 days and a standard deviation of σ = 16 days. In the
maternity ward of a large hospital, a random sample of seven women who had just given
birth after pregnancies without problems was selected. What is the probability that the
average gestation period for these seven pregnancies exceeded 280 days?
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666 Chapter 15: Linear combinations of random variables and the sample mean 15D

6 The annual income for those in the 18–25 age group living in a certain town is normally
distributed with mean µ = $42 500 and standard deviation σ = $6000. What is the
probability that 10 randomly chosen individuals in this age group have an average
income of less than $38 000?

7 The IQ scores of adults are known to be normally distributed with mean µ = 100
and standard deviation σ = 15. Find the probability that a randomly chosen group of
25 adults will have an average IQ of more than 105.

8 The actual weight of sugar in a 1 kg package produced by a food-processing company is
normally distributed with mean µ = 1.00 kg and standard deviation σ = 0.03 kg. What
is the probability that the average weight for a randomly chosen sample of 20 packages
is less than 0.98 kg?

9 The adult length of a certain species of fish is known to be normally distributed with
mean µ = 10 cm and standard deviation σ = 0.5 cm. A random sample of 50 fish is
chosen and the average length determined. Find the probability that this average is more
than 10.1 cm.

10 The time for a customer to be served at a fast-food outlet is normally distributed with
a mean of 3.5 minutes and a standard deviation of 1.0 minutes. What is the probability
that 20 customers can be served in less than one hour?

15E Investigating the distribution of the sample mean
using simulation
In the previous section, we made assertions about the distribution of the sample mean X̄,
when X is a normally distributed random variable. In this section, we use simulation to
validate these assertions empirically.

Consider the random variable IQ, which we assume is normally distributed with a mean
of µ = 100 and a standard deviation of σ = 15 in a given population. We will begin by
simulating the drawing of a random sample of size 10 from this population.

Using the TI-Nspire
To generate a random sample of size 10 from a
normal population with µ = 100 and σ = 15:

� Start from a Lists & Spreadsheet page.
� Name the list ‘iq’ in Column A.
� In the formula cell of Column A, enter

the formula using menu > Data >

Random > Normal and complete as:
= randnorm(100, 15, 10)

Note: The syntax is: randnorm(mean, standard deviation, sample size)
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15E Investigating the distribution of the sample mean using simulation 667

Using the Casio ClassPad
To generate a random sample of size 10 from a
normal population with µ = 100 and σ = 15:

� InM, press the Keyboard button.
� Find and then select Catalog by first tapping H at

the bottom of the left sidebar.
� Scroll across the alphabet to the letter R.
� Select randNorm( and type: 15, 100, 10)
� Tap I to view all the values.

Notes:
� The syntax is: randNorm(standard deviation,

mean, sample size)
� Alternatively, the random sample can be generated

in the Statistics application.

One random sample of 10 scores, obtained by simulation, is

105, 109, 104, 86, 118, 100, 81, 94, 70, 88

Recall that the sample mean is denoted by x̄ and that

x̄ =

∑
x

n

where
∑

means ‘sum’ and n is the size of the sample.

Here the sample mean is

x̄ =
105 + 109 + 104 + 86 + 118 + 100 + 81 + 94 + 70 + 88

10
= 95.5

A second sample, also obtained by simulation, is

114, 124, 128, 133, 95, 107, 117, 91, 115, 104

with sample mean

x̄ =
114 + 124 + 128 + 133 + 95 + 107 + 117 + 91 + 115 + 104

10
= 112.8

Since x̄ varies according to the contents of the random samples, we consider the sample
means x̄ as being the values of a random variable, which we denote by X̄.

Since x̄ is a statistic which is calculated from a sample, the probability distribution of the
random variable X̄ is called a sampling distribution.

The sampling distribution of the sample mean
Generating random samples and then calculating the mean from the sample is quite a tedious
process if we wish to investigate the sampling distribution of X̄ empirically. Luckily, we can
also use technology to simulate values of the sample mean.
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Using the TI-Nspire
To generate the sample means for 10 random
samples of size 25 from a normal population
with µ = 100 and σ = 15:

� Start from a Lists & Spreadsheet page.
� Name the list ‘iq’ in Column A.
� In cell A1, enter the formula using menu >

Data > Random > Normal and complete as:
= mean(randnorm(100, 15, 25))

� Fill down to obtain the sample means for
10 random samples.

For a large number of simulations, an alternative
method is easier.

To generate the sample means for 500 random
samples of size 25, enter the following formula
in the formula cell of Column A:

= seq(mean(randnorm(100, 15, 25)), k, 1, 500)

The dotplot on the right was created this way.

Using the Casio ClassPad
To generate the sample means for 500 random samples of size 25 from a normal
population with µ = 100 and σ = 15:

� Open the Spreadsheet application .
� Tap in cell A1.
� Type: = mean(randNorm(15, 100, 25))

Note: The commands mean( and randNorm( can be
selected from Catalog .

� Tap the tick icon and then tap again in cell A1.
� Go to Edit > Fill > Fill Range.
� Enter A1:A500 for the range, using the symbols A

and : from the toolbar. Tap OK .

To sketch a histogram of these sample means:

� Select Column A by tapping on the column header ‘A’ above cell A1.
� Select Graph and tap Histogram.
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15E Investigating the distribution of the sample mean using simulation 669

This histogram shows the distribution of
the sample mean when 1000 samples (each
of size 25) were selected from a population
with mean 100 and standard deviation 15.

We see from this plot that the distribution
of sample means is symmetric and
bell-shaped, confirming that the sampling
distribution of the sample mean may also
be described by the normal distribution. 92
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The mean and standard deviation of the sample mean
We can also use simulation to explore the mean and standard deviation of the sample mean.
We know from Section 15D that E(X̄) = µ and sd(X̄) =

σ
√

n
, where n is the sample size.

The following dotplots show the sample means x̄ obtained when 200 samples of size 25, then
size 100 and then size 200 were chosen from a population.

92
n = 200

n = 100

n = 25

94

Each symbol represents up to 2 observations.

96 98 100 102 104 106 108 110

We can see from the dotplots that all three sampling distributions appear to be centred at 100,
the value of the population mean µ. Furthermore, as the sample size increases, the values of
the sample mean x̄ are more tightly clustered around that value.

These observations are confirmed in the following table, which gives the mean and standard
deviation for each of the three simulated sampling distributions shown in the dotplots. The
theoretical values of the mean and standard deviation of X̄ are included for comparison.

Sample size 25 100 200

Theoretical mean of X̄ 100 100 100

Mean of the values of x̄ 99.24 100.24 100.03

Theoretical standard deviation of X̄ 3 1.5 1.06

Standard deviation of the values of x̄ 3.05 1.59 1.06
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The sizes of kindergarten classes in a certain city are normally distributed, with a mean
size of µ = 24 children and a standard deviation of σ = 2.

a Use your calculator to generate the sample means for 100 samples, each of size 20.
Find the mean and standard deviation of these values of the sample mean.

b Use your calculator to generate the sample means for 100 samples, each of size 50.
Find the mean and standard deviation of these values of the sample mean.

c Compare the values of the mean and standard deviation calculated in a and b.

Example 14

Solution

a

b

c The means determined from the simulations are very similar, and close to the
population mean of 24, as expected. The standard deviation for the samples of size 50
is much smaller than the standard deviation for the samples of size 20.

Exercise 15E

1Example 14 The lengths of a species of fish are normally distributed with mean length µ = 40 cm
and standard deviation σ = 4 cm.

a Use your calculator to simulate 100 values of the sample mean calculated from a
sample of size 50 drawn from this population of fish.

b Summarise the values obtained in part a in a dotplot.
c Find the mean and standard deviation of these values of the sample mean.
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2 The marks in a statistics examination in a certain university are normally distributed
with a mean of µ = 48 marks and a standard deviation of σ = 15 marks.

a Use your calculator to simulate 100 values of the sample mean calculated from a
sample of size 20 drawn from the students at this university.

b Summarise the values obtained in part a in a dotplot.
c Find the mean and standard deviation of these values of the sample mean.

3 At the Fizzy Drinks Company, the volume of soft drink in a 1 litre bottle is normally
distributed with mean µ = 1 litre and standard deviation σ = 0.01 litres.

a Use your calculator to simulate 100 values of the sample mean calculated from a
sample of 25 bottles from this company. Determine the mean and standard deviation
of these values of the sample mean.

b Determine the theoretical mean and standard deviation of the sample mean, and
compare them with your answers from part a.

15F The distribution of the sample mean
We know that the sample mean X̄ is normally distributed if the random variable X is normally
distributed. What can we say about the distribution of X̄ if X is not normally distributed?

First consider a discrete random variable X with a uniform distribution given by

Pr(X = x) =
1
10

for x = 1, 2, . . . , 10

We can use a calculator to generate sample means for 500 random samples of size 50 and to
summarise the results in an appropriate plot.

Using the TI-Nspire
To generate the sample means for 500 random samples of size 50 from the uniform
distribution with values 1, 2, . . . , 10:

� Start from a Lists & Spreadsheet page, and give Column A the name ‘smeans’.
� In the formula cell of Column A, enter:

= approx(seq(mean(randInt(1, 10, 50)), k, 1, 500))

Note: The approximate command ensures that
the sample means are in decimal form.

� Open a Data & Statistics page, and generate a
dotplot of the sample means.
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672 Chapter 15: Linear combinations of random variables and the sample mean

Using the Casio ClassPad
To generate the sample means for 500 random
samples of size 50 from the uniform distribution with
values 1, 2, . . . , 10:

� Open the Spreadsheet application.
� Tap in cell A1.
� Type: = mean(randList(50, 1, 10))
� Tap the tick icon and then tap again in cell A1.
� Go to Edit > Fill > Fill Range.
� Enter A1:A500 for the range. Tap OK .
� Tap on the column header A.
� Select Graph and tap Histogram.

We can see in this example that, even though the distribution of X is clearly not normal, the
sampling distribution of X̄ is quite well approximated by a normal distribution.

Let’s look at another example. This time we will consider a binomial random variable X with
parameters n = 20 and p = 0.3. Here we have

Pr(X = x) =

(
20
x

)
0.3x 0.720−x for x = 0, 1, . . . , 20

Again, we can use a calculator to generate sample means for 500 random samples of size 50
and to summarise the results in an appropriate plot.

Using the TI-Nspire
To generate the sample means for 500 random samples of size 50 from a binomial
distribution with n = 20 and p = 0.3:

� Start from a Lists & Spreadsheet page, and give Column A the name ‘smeans’.
� In the formula cell of Column A, enter:

= approx(seq(mean(randBin(20, 0.3, 50)), k, 1, 500))

� Open a Data & Statistics page, and generate a
dotplot of the sample means.
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15F The distribution of the sample mean 673

Using the Casio ClassPad
To generate the sample means for 500 random samples
of size 50 from a binomial distribution with n = 20 and
p = 0.3:

� Open the Spreadsheet application.
� Tap in cell A1.
� Type: = mean(randBin(20, 0.3, 50))
� Tap the tick icon and then tap again in cell A1.
� Go to Edit > Fill > Fill Range.
� Enter A1:A500 for the range. Tap OK .
� Tap on the column header A.
� Select Graph and tap Histogram.

Once again we can see in this example that, even though the distribution of X is not normal,
the sampling distribution of X̄ is quite well approximated by a normal distribution.

The central limit theorem
From these two examples we have found that, for different underlying distributions, the
sampling distribution of the sample mean is approximately normal, provided the sample
size n is large enough. Furthermore, the approximation to the normal distribution improves as
the sample size increases. This fact is known as the central limit theorem.

Central limit theorem

Let X be any random variable, with mean µ and standard deviation σ. Then, provided that
the sample size n is large enough, the distribution of the sample mean X̄ is approximately
normal with mean E(X̄) = µ and standard deviation sd(X̄) =

σ
√

n
.

Note: The required sample size n depends on the symmetry of the distribution of X. Unless
the distribution is very skewed, a sample size of 25 to 30 is sufficient. We will assume
for the remainder of this chapter that the central limit theorem can be applied.

The central limit theorem can be used to solve problems associated with sample means, as
illustrated in the following example.
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674 Chapter 15: Linear combinations of random variables and the sample mean

The amount of coffee, X mL, dispensed by a machine has a distribution with probability
density function f defined by

f (x) =


1
20

if 160 ≤ x ≤ 180

0 otherwise

Find the probability that the average amount of coffee contained in 25 randomly chosen
cups will be more than 173 mL.

Example 15

Solution
The central limit theorem tells us that the sample mean X̄ has an approximately normal
distribution. To find the mean and standard deviation of X̄, we first find the mean and
standard deviation of X:

E(X) =
∫ 180

160

x
20

dx =

[ x2

40

]180

160
= 170

E(X2) =
∫ 180

160

x2

20
dx =

[ x3

60

]180

160
= 28 933.33and

sd(X) =
√

28 933.33 − 1702 = 5.77So

By the central limit theorem, the sample mean X̄ is (approximately) normally distributed
with

E(X̄) = E(X) = 170 and sd(X̄) =
sd(X)
√

n
=

5.77
5

= 1.15

Therefore

Pr(X̄ > 173) = Pr
(
Z >

173 − 170
1.15

)
= Pr(Z > 2.61) = 1 − 0.9955 = 0.0045

The normal approximation to the binomial distribution
The fact that the binomial distribution can be well approximated by the normal distribution
was discussed in Mathematical Methods Units 3 & 4.

If X is a binomial random variable with parameters n and p, then the distribution of X
is approximately normal, with mean µ = np and standard deviation σ =

√
np(1 − p),

provided np > 5 and n(1 − p) > 5.

This approximation can now be justified using the central limit theorem.

We know that a binomial random variable, X, is the number of successes in n independent
trials, each with probability of success p. We can express X as the sum of n independent
random variables Y1, Y2, . . . , Yn, called Bernoulli random variables.
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15F 15F The distribution of the sample mean 675

Each Yi takes values 0 and 1, with Pr(Yi = 1) = p and Pr(Yi = 0) = 1 − p, where the value 1
corresponds to success and the value 0 corresponds to failure. We can write

X = Y1 + Y2 + · · · + Yn

and therefore
X
n

=
Y1 + Y2 + · · · + Yn

n
= Ȳ

By the central limit theorem, the sample mean Ȳ has an approximately normal distribution,
for large n. Since X = nȲ , we see that X also has an approximately normal distribution.

Note: For a binomial random variable X, we can consider the sample mean
X
n

, with

E
(X

n

)
=

E(X)
n

=
np
n

= p

Var
(X

n

)
=

Var(X)
n2 =

np(1 − p)
n2 =

p(1 − p)
n

This random variable is denoted by P̂ in Mathematical Methods Units 3 & 4.

The population in a particular state is known to be 50% female. What is the probability
that a random sample of 100 people will contain less than 45% females?

Example 16

Solution
Let X denote the number of females in the sample. Then X has a binomial distribution
with n = 100 and p = 0.5.

By the central limit theorem, the distribution of the sample mean
X
n

is approximately
normal, with

E
(X

n

)
= p = 0.5 and Var

(X
n

)
=

p(1 − p)
n

=
0.5 × 0.5

100
= 0.0025

Thus

Pr
(X

n
< 0.45

)
= Pr

(
Z <

0.45 − 0.5
0.05

)
= Pr(Z < −1) = 0.1587

Exercise 15FSkill-
sheet

1Example 15 The lengths of blocks of cheese, X cm, produced by a machine have a distribution with
probability density function

f (x) =

5 if 10.0 ≤ x ≤ 10.2

0 otherwise

a Find the probability that a randomly selected block is more than 10.1 cm long.
b Find the probability that the average length of 30 randomly selected blocks is more

than 10.12 cm.
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676 Chapter 15: Linear combinations of random variables and the sample mean 15F

2 The number of accidents per week at an intersection has a mean of 0.25 and a standard
deviation of 0.10. What is the probability that the average number of accidents per week
at the intersection over a year is less than 0.22?

3 The working life of a particular brand of electric light bulb has a mean of 1200 hours
and a standard deviation of 200 hours. What is the probability that the mean life of a
sample of 64 bulbs is less than 1150 hours?

4 The amount of pollutant emitted from a smokestack in a day, X kg, has probability
density function f defined by

f (x) =


4
9

x(5 − x2) if 0 ≤ x ≤ 1

0 if x > 1 or x < 0

a Find the probability that the amount of pollutant emitted on any one day is more
than 0.5 kg.

b Find the probability that the average amount of pollutant emitted on a random
sample of 30 days is more than 0.5 kg.

5 The incubation period for a certain disease is between 5 and 11 days after contact. The
probability of showing the first symptoms at various times during the incubation period
is described by the probability density function

f (x) =


1
36

(t − 5)(11 − t) if 5 ≤ x ≤ 11

0 otherwise

Find the probability that the average time for the appearance of symptoms for a random
sample of 40 people with the disease was less than 7.5 days.

6Example 16 The manager of a car-hire company knows from experience that 55% of their customers
prefer automatic cars. If there are 50 automatic cars available on a particular day, use
the normal approximation to the binomial distribution to estimate the probability that
the company will not be able to meet the demand of the next 100 customers.

7 If 15% of people are left-handed, use the normal approximation to the binomial
distribution to find the probability that at least 200 people in a randomly selected group
of 1000 people are left-handed.

8 The thickness of silicon wafers is normally distributed with mean 1 mm and standard
deviation 0.1 mm. A wafer is acceptable if it has a thickness between 0.85 and 1.1.

a What is the probability that a wafer is acceptable?
b If 200 wafers are selected, estimate the probability that between 140 and 160 wafers

are acceptable.
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Chapter summary

Linear functions of a random variable
� If Y = aX + b is a linear function of a random variable X, where a and b are constants

with a > 0, then Pr(Y ≤ y) = Pr
(
X ≤

y − b
a

)
.

� For a random variable X and constants a and b:

E(aX + b) = a E(X) + b• Var(aX + b) = a2 Var(X)• sd(aX + b) = |a| sd(X)•

Linear combinations of independent random variables
� Let X be a random variable with mean µ and variance σ2. Then if X1, X2, . . . , Xn are

independent random variables with identical distributions to X:

• E(X1 + X2 + · · · + Xn) = E(X1) + E(X2) + · · · + E(Xn) = nµ

• Var(X1 + X2 + · · · + Xn) = Var(X1) + Var(X2) + · · · + Var(Xn) = nσ2

• sd(X1 + X2 + · · · + Xn) =
√

Var(X1 + X2 + · · · + Xn) =
√

nσ

� Let X1, X2, . . . , Xn be independent random variables with means µ1, µ2, . . . , µn and
variances σ2

1, σ2
2, . . . , σ2

n respectively. Then if a1, a2, . . . , an are constants:

• E(a1X1 + a2X2 + · · · + anXn) = a1 E(X1) + a2 E(X2) + · · · + an E(Xn)

= a1µ1 + a2µ2 + · · · + anµn

• Var(a1X1 + a2X2 + · · · + anXn) = a2
1 Var(X1) + a2

2 Var(X2) + · · · + a2
n Var(Xn)

= a2
1σ

2
1 + a2

2σ
2
2 + · · · + a2

nσ
2
n

• sd(a1X1 + a2X2 + · · · + anXn) =

√
a2

1σ
2
1 + a2

2σ
2
2 + · · · + a2

nσ
2
n

� Let X1, X2, . . . , Xn be independent normal random variables and let a1, a2, . . . , an be
constants. Then the random variable a1X1 + a2X2 + · · · + anXn is also normally distributed.

Distribution of the sample mean
� The population mean µ is the mean of all values of a measure in a population.

The sample mean x̄ is the mean of these values in a particular sample.
� The sample mean X̄ can be viewed as a random variable, and its distribution is called a

sampling distribution.
� If X is a normally distributed random variable with mean µ and standard deviation σ,

then the distribution of the sample mean X̄ will also be normal, with mean E(X̄) = µ and
standard deviation sd(X̄) =

σ
√

n
, where n is the sample size.

� Central limit theorem
Let X be any random variable, with mean µ and standard deviation σ. Then, provided that
the sample size n is large enough, the distribution of the sample mean X̄ is approximately
normal with mean E(X̄) = µ and standard deviation sd(X̄) =

σ
√

n
.

� If X is a binomial random variable with parameters n and p, then the distribution of X
is approximately normal, with mean µ = np and standard deviation σ =

√
np(1 − p),

provided np > 5 and n(1 − p) > 5.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
ev

ie
w
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Technology-free questions

1 Suppose that X is a random variable with mean µ = 15 and variance σ2 = 25.

a Let Y = 2X + 1. Find E(Y) and Var(Y).
b Let U = 10 − 3X. Find E(U) and sd(U).
c Let V = Y + 2U. Find E(V) and Var(V).

2 A continuous random variable X has probability density function:

f (x) =


2
(
1 −

1
x2

)
if 1 ≤ x ≤ 2

0 if x < 1 or x > 2

a Find Pr(X ≤ 1.6).
b Let Y = 2X − 1. Find Pr(Y ≤ 2.5).

3 A machine that produces plastic blocks dispenses the melted plastic into a mould in the
shape of a rectangular prism. The block produced has a square base 3 cm by 3 cm and
a height of X cm, where X is a random variable with a mean of 3 cm and a standard
deviation of 0.01 cm.

a Find the expected volume of the blocks (in cm3).
b Find the variance of the volume of the blocks (in cm6).
c Find the expected surface area of the blocks (in cm2).

4 A coffee machine automatically dispenses coffee into a cup, followed by hot milk.
The volume of coffee dispensed has a mean of 60 mL and a standard deviation of 5 mL.
The volume of hot milk dispensed has a mean of 140 mL and a standard deviation
of 12 mL.

a What are the mean and standard deviation of the total amount of liquid dispensed by
the machine?

b If the cost of the coffee is $12 per litre and the cost of the milk is $3 per litre, what is
the mean total cost of a cup of coffee?

5 The random variables X and Y are independent. The mean and variance of X are 3 and 5
respectively, while the mean and variance of Y are 2 and 4 respectively. Find the values
of a, b ∈ N if the mean and variance of aX − bY are 7 and 49 respectively.

6 At a supermarket, the bags of oranges have a mean weight of 500 g, with a variance
of 25 g2, and the bags of lemons have a mean weight of 585 g, with a variance of 36 g2.

a If there are four oranges in each bag, what are the mean and standard deviation of the
weight of an individual orange?

b If there are nine lemons in each bag, what are the mean and standard deviation of the
weight of an individual lemon?

c If you purchase three bags of oranges and three bags of lemons, what are the mean
and variance of the total weight of the six bags?
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7 A random variable X has probability density function given by

f (x) =


0.2 if −1 ≤ x ≤ 0

0.2 + 1.2x if 0 < x ≤ 1

0 if x < −1 or x > 1

Let X1, X2, X3 and X4 be independent random variables, each with the same probability
density function as X. If V = X1 + X2 + X3 + X4, find the mean of V .

8 The final marks in a mathematics examination are normally distributed with mean 65
and standard deviation 7. A random sample of 25 students are selected and their mean
mark calculated. What are the mean and standard deviation of this sample mean?

9 A machine produces nails which have an intended diameter of µ = 25.025 mm, with
a standard deviation of σ = 0.003 mm. A sample of nails is selected for inspection
each hour, and the average diameter of the nails in the sample, X̄, is determined. If the
manufacturer requires the standard deviation of the average diameter to be less than
0.00075 mm, how many nails should be included in the sample?

Multiple-choice questions

1 Let P and Q be independent normally distributed random variables, where P has a
mean of 10 and a variance of 4, and Q has a mean of 5 and a variance of 1. Define the
random variable R = 2P − 2Q + 2. In terms of the standard normal random variable Z,
the probability Pr(R > 6) is equal to

Pr
(
Z >

−2
√

5

)
A Pr

(
Z >

−3
√

6

)
B Pr

(
Z <

−3
√

5

)
C Pr

(
Z >

−3
√

5

)
D Pr

(
Z >

3
√

5

)
E

2 An aeroplane is only allowed a total passenger weight of 10 000 kg. If the weights of
people are normally distributed with a mean of 80 kg and a standard deviation of 10 kg,
the probability that the combined weight of 100 passengers will exceed 10 000 kg is

0.0228A 0.0022B 0C 0.9772D 0.0013E

3 Mangoes from a certain supplier have a mean weight of 150 g, with variance 4 g2.
Pineapples from the same supplier have a mean weight of 1000 g, with variance 36 g2.
The mean and standard deviation of the weight (in grams) of a bag containing four
mangoes and two pineapples are

2600, 2
√

22A 2600, 4
√

13B 4300, 2
√

38C 2600, 20D 2600, 400E

4 The time required to assemble an electronic component is normally distributed, with a
mean of 10 minutes and a standard deviation of 1.5 minutes. The probability that the
time required to assemble a box of 12 components is greater than 130 minutes is

0.2892A 0.7108B 0.0092C 0.9910D 0.0271E
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680 Chapter 15: Linear combinations of random variables and the sample mean

5 Suppose that X is a random variable with mean µ = 3.6 and variance σ2 = 1.44.
If Y = 3 − 4X, then E(Y) and sd(Y) are

E(Y) = −11.4, sd(Y) = 4.8A E(Y) = −11.4, sd(Y) = 5.76B
E(Y) = −11.4, sd(Y) = 23.04C E(Y) = −3.6, sd(Y) = 4.8D
E(Y) = −3.6, sd(Y) = 5.76E

6 Let X be a random variable with E(X) = 2.0 and Var(X) = 0.5. Let Y = mX + n, where
m ∈ R+ and n ∈ R. If E(Y) = 2.1 and Var(Y) = 0.32, then when the value of X is 2.2, the
value of Y is closest to

2.2A 2.3B 2.5C 2.9D 3.0E

7 The monthly mortgage payments for recent home buyers are normally distributed with
mean $2489 and standard deviation $554. A random sample of 100 recent home buyers
is selected. The distribution of the mean of this sample is normal with

mean $24.89, sd $5.54A mean $2489, sd $55.40B mean $2489, sd $5.54C
mean $2489, sd $554D mean $248.90, sd $55.40E

8 The lengths of a species of fish are normally distributed with a mean of 40 cm and a
standard deviation of 4 cm. The probability that the mean length of a sample of 25 of
these fish is greater than 42 cm is

0A 0.0062B 0.3085C 0.6915D 0.9938E

9 Jo and Ann regularly play golf together. The distance that Jo hits her driver is normally
distributed, with mean 150 m and standard deviation 20 m. The distance that Ann hits
her driver is normally distributed, with mean 140 m and standard deviation 25 m. The
percentage of times that Ann hits her driver further than Jo is closest to

41%A 62%B 59%C 38%D 51%E

Extended-response questions

1 Jan uses the lift in her multi-storey office building each day. She has noted that,
when she goes to her office each morning, the time she waits for the lift is normally
distributed with a mean of 60 seconds and a standard deviation of 20 seconds.

a What is the probability that Jan will wait less than 54 seconds on a particular day?
b Find a and b such that the probability that Jan waits between a seconds and

b seconds is 0.95.
c During a five-day working week, find the probability that:

i Jan’s average waiting time is less than 54 seconds
ii Jan’s total waiting time is less than 270 seconds
iii she waits for less than 54 seconds on more than two days in the week.

d Find c and d such that there is a probability of 0.95 that her average waiting time
over a five-day period is between c seconds and d seconds.
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2 The daily rainfall in Briswin is normally distributed with mean µ mm and standard
deviation σ mm. The rainfall on one day is independent of the rainfall on any other
day. On a randomly selected day, there is a 5% chance that the rainfall is more than
10.2 mm. In a randomly selected seven-day week, there is a probability of 0.025 that the
mean daily rainfall is less than 6.1 mm. Find the values of µ and σ.

3 An aeroplane is licensed to carry 100 passengers.

a If the weights of passengers are normally distributed with a mean of 80 kg and
a standard deviation of 20 kg, find the probability that the combined weight of
100 passengers will exceed 8500 kg.

b The weight of the luggage that passengers check in before they travel is normally
distributed, with a mean of 27 kg and a standard deviation of 4 kg. Find the
probability that the combined weight of the checked luggage of 100 passengers is
more than 2850 kg.

c Passengers are also allowed to take hand luggage on the plane. The weight of the
hand luggage that they carry is normally distributed, with a mean of 8 kg and a
standard deviation of 2.5 kg. Find the probability that the combined weight of the
hand luggage for 100 passengers is more than 900 kg.

d What is the probability that the combined weight of the 100 passengers, their
checked luggage and their hand luggage is more than 12 000 kg?

4 A probability density function for the lifetime, T hours, of a brand of battery is

f (t) =
1

250
e−

t
250 , t > 0

a If batteries are sold in boxes of 100, find the probability that the average lifetime of
batteries in a randomly chosen box is less than 220 hours.

b The manufacturer would like the probability that the average lifetime of batteries in
a box is greater than 220 hours to be 0.80. What is the minimum number of batteries
that should be packed in a box?
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16
Confidence intervals and
hypothesis testing
for the mean

Objectives
I To introduce the concept of a confidence interval when estimating the mean.

I To construct approximate confidence intervals for the mean.

I To introduce the logic of hypothesis testing, including the formulation of a
null hypothesis and an alternative hypothesis.

I To introduce the concept of a p-value.

I To determine the p-value for the sample mean of a sample drawn from a normal
distribution with known variance, or for the sample mean of a large sample.

I To understand the implications of one-tail and two-tail tests on the p-value.

I To introduce Type I and Type II errors in hypothesis testing.

Statistical inference involves making a decision about a population (an inference) based on
the information which has been collected from a sample. There are two key components of
statistical inference which will be addressed in this chapter:

� Estimation This involves using the sample mean to determine an interval estimate
(confidence interval) for the value of the population mean, which is unknown.

� Hypothesis testing Here we ask the question: ‘Has the population mean changed?’
For example, suppose that medical researchers know that the mean time for recovery from
a certain virus using the drug currently being prescribed is five days. They have developed
a new drug for the treatment of this virus, which they hope will result in a speedier
recovery. Thus their question is: ‘Is the mean time for recovery using the new drug less
than five days?’ Such a question is addressed using the discipline of hypothesis testing.
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16A Confidence intervals for the population mean 683

16A Confidence intervals for the population mean
In practice, the reason we analyse samples is to further our understanding of the population
from which they are drawn. That is, we know what is in the sample, and from that knowledge
we would like to infer something about the population.

Point estimates
Suppose, for example, we are interested in the mean IQ score of all Year 12 mathematics
students in Australia. The value of the population mean µ is unknown. Collecting information
about the whole population is not feasible, and so a random sample must suffice.

What information can be obtained from a single sample? Certainly, the sample mean x̄ gives
some indication of the value of the population mean µ, and can be used when we have no
other information.

The value of the sample mean x̄ can be used to estimate the population mean µ. Since this
is a single-valued estimate, it is called a point estimate of µ.

Thus, if we select a random sample of 100 Year 12 mathematics students and find that their
mean IQ is 108.6, then the value x̄ = 108.6 serves as an estimate of the population mean µ.

Interval estimates
The value of the sample mean x̄ obtained from a single sample is going to change from
sample to sample, and while sometimes the value will be close to the population mean µ,
at other times it will not. To use a single value to estimate µ can be rather risky. What is
required is an interval that we are reasonably sure contains the parameter value µ.

An interval estimate for the population mean µ is called a confidence interval for µ.

Approximate 95% confidence intervals
The central limit theorem was introduced in Section 15F. This theorem tells us that, whatever
the underlying distribution of the random variable X, if the sample size n is large, then the
sampling distribution of X̄ is approximately normal with

E(X̄) = µ and sd(X̄) =
σ
√

n
For the standard normal random variable Z, we have

Pr(−1.9600 < Z < 1.9600) = 0.95

So we can state that, for large n:

Pr
(
−1.9600 <

X̄ − µ
σ
√

n

< 1.9600
)
≈ 0.95
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Multiplying through gives

Pr
(
−1.9600

σ
√

n
< X̄ − µ < 1.9600

σ
√

n

)
≈ 0.95

Further simplifying, we obtain

Pr
(
X̄ − 1.9600

σ
√

n
< µ < X̄ + 1.9600

σ
√

n

)
≈ 0.95

This final expression gives us an interval which, with 95% probability, will contain the value
of the population mean µ (which we do not know).

95% confidence interval

An approximate 95% confidence interval for µ is given by(
x̄ − 1.9600

σ
√

n
, x̄ + 1.9600

σ
√

n

)
where:

� µ is the population mean (unknown)
� x̄ is a value of the sample mean
� σ is the value of the population standard deviation
� n is the size of the sample from which x̄ was calculated.

Note: Often when determining a confidence interval for the population mean, the population
standard deviation σ is unknown. If the sample size is large (say n ≥ 30), then we
can use the sample standard deviation s in this formula as an approximation to the
population standard deviation σ.

Find an approximate 95% confidence interval for the mean IQ of Year 12 mathematics
students in Australia, if we select a random sample of 100 students and find the sample
mean x̄ to be 108.6. Assume that the standard deviation for this population is 15.

Example 1

Solution
The interval is found by substituting x̄ = 108.6, n = 100 and σ = 15 into the expression for
an approximate 95% confidence interval:(

x̄ − 1.9600
σ
√

n
, x̄ + 1.9600

σ
√

n

)
=

(
108.6 − 1.9600 ×

15
√

100
, 108.6 + 1.9600 ×

15
√

100

)
= (105.66, 111.54)

Thus, based on a sample of size 100 and a sample estimate of 108.6, an approximate
95% confidence interval for the population mean µ is (105.66, 111.54).
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16A Confidence intervals for the population mean 685

Using the TI-Nspire
In a Calculator page:

� Use menu > Statistics > Confidence
Intervals > z Interval.

� If necessary, change the Data Input Method
to Stats.

� Enter the given values and the confidence
level as shown.

� The ‘CLower’ and ‘CUpper’ values give the
95% confidence interval (105.66, 111.54).

Note: ‘ME’ stands for margin of error, which is
covered later in this section.

Using the Casio ClassPad
� In , go to Calc > Interval.
� Select One–Sample Z Int and Variable. Tap Next .

� Enter the confidence level and the given values
as shown. Tap Next .

� The ‘Lower’ and ‘Upper’ values give the
95% confidence interval (105.66, 111.54).
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Changing the level of confidence
We can find an approximate confidence interval with a level of confidence other than 95% by
using the same principles. For example, since we know that

Pr(−1.6449 < Z < 1.6449) = 0.90

an approximate 90% confidence interval for µ is given by(
x̄ − 1.6449

σ
√

n
, x̄ + 1.6449

σ
√

n

)
We can generalise these two examples as follows.

C% confidence interval

An approximate C% confidence interval for µ is given by(
x̄ − z

σ
√

n
, x̄ + z

σ
√

n

)
where:

� z is such that Pr(−z < Z < z) = C%
� µ is the population mean (unknown)
� x̄ is a value of the sample mean
� σ is the value of the population standard deviation
� n is the size of the sample from which x̄ was calculated.

Note: The values of z (to four decimal places) for commonly used confidence intervals are:

• 90% z = 1.6449 • 95% z = 1.9600 • 99% z = 2.5758

Calculate and compare 90%, 95% and 99% confidence intervals for the mean IQ of
Year 12 mathematics students in Australia, if we select a random sample of 100 students
and find the sample mean x̄ to be 108.6. (Assume that σ = 15.)

Example 2

Solution
From Example 1, we know that the 95% confidence interval is (105.66, 111.54).

The 90% confidence interval is(
108.6 −

1.6449 × 15
10

, 108.6 +
1.6449 × 15

10

)
= (106.13, 111.07)

The 99% confidence interval is(
108.6 −

2.5758 × 15
10

, 108.6 +
2.5758 × 15

10

)
= (104.74, 112.46)

We see that increasing the level of confidence increases the width of the confidence
interval.
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16A Confidence intervals for the population mean 687

Interpretation of confidence intervals
The 95% confidence interval found in Example 1 should not be interpreted as meaning that
Pr(105.66 < µ < 111.54) = 0.95. Since µ is a constant, the value either does or does not lie in
the stated interval.

The particular confidence interval found is just one of any number of confidence intervals
which could be found for the population mean µ, each one depending on the particular value
of the sample mean x̄.

The correct interpretation of a 95% confidence interval is that we expect approximately
95% of such intervals to contain the population mean µ. Whether or not the particular
confidence interval obtained contains the population mean µ is generally not known.

If we were to repeat the process of taking a sample and
calculating a confidence interval many times, the result would
be something like that indicated in the diagram.

The diagram shows the confidence intervals obtained when
20 different samples were drawn from the same population.
The round dot indicates the value of the sample estimate in each
case. The intervals vary, because the samples themselves vary.
The value of the population mean µ is indicated by the vertical
line, and it is of course constant.

It is quite easy to see from the diagram that none of the values of
the sample estimate is exactly the same as the population mean,
but that all the intervals except one (19 out of 20, or 95%) have
captured the value of the population mean, as would be expected
in the case of a 95% confidence interval.

µ

Suppose that the process of taking a sample and determining a confidence interval based
on the sample mean was repeated 200 times. How many of these intervals would be
expected to contain the value of the population mean µ if the level of confidence is:

a 90% b 95% c 99%?

Example 3

Solution
a We expect 0.90 × 200 = 180 of the 90% confidence intervals to contain µ.

b We expect 0.95 × 200 = 190 of the 95% confidence intervals to contain µ.

c We expect 0.99 × 200 = 198 of the 99% confidence intervals to contain µ.
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688 Chapter 16: Confidence intervals and hypothesis testing for the mean

E�ect of sample size on the width of confidence intervals
We saw in Example 2 that increasing the level of confidence increases the width of the
confidence interval. The width of a confidence interval is important, as for a confidence
interval to be useful it should not be too wide. The distance between the sample mean and the
endpoints of a confidence interval is called the margin of error. The smaller the margin of
error, the better the estimate of the population mean.

Since the width of the confidence interval is inversely proportional to the square root of the
sample size, it makes sense that a better way to decrease the width of the confidence interval
is to increase the sample size.

Calculate and compare 95% confidence intervals for the mean IQ of Year 12 mathematics
students in Australia, if:

� we select a random sample of 100 students and find the sample mean x̄ to be 108.6
� we select a random sample of 400 students and find the sample mean x̄ to be 108.6.

(Assume that σ = 15.)

Example 4

Solution
From Example 1, the first 95% confidence interval is (105.66, 111.54).

The second 95% confidence interval is(
108.6 − 1.9600 ×

15
√

400
, 108.6 + 1.9600 ×

15
√

400

)
= (107.13, 110.07)

Thus the confidence interval based on a sample of size 400 is narrower than the confidence
interval based on a sample of size 100.

In this example, by increasing the sample size, we obtained a narrower 95% confidence
interval and therefore a better estimate for the population mean µ. In fact, since we have
increased the sample size by a factor of 4 (from 100 to 400), we can readily verify that we
have decreased the width of the confidence interval by a factor of 2.

A confidence interval is used to estimate the population mean µ based on a sample mean x̄.
By what factor must the sample size be increased in order to decrease the width of the
confidence interval by 80%?

Example 5

Solution
Let n1 be the current sample size, and let n2 be the new sample size.

Let W1 be the width of the current confidence interval, and let W2 be the width of the new
confidence interval. Then

W1 = 2z
σ
√

n1
and W2 = 2z

σ
√

n2

where the value of z is determined by the level of confidence.
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For the width to decrease by 80%, we require

W2 = 0.2 ×W1

2z
σ
√

n2
= 0.2 × 2z

σ
√

n1

√
n2 = 5

√
n1

n2 = 25n1∴

The sample size should be increased by a factor of 25.

Consider again the problem of estimating the mean IQ of Year 12 mathematics students in
Australia. What size sample is required in order to ensure that the difference between the
sample mean and the population mean is 1.5 points or less at the 95% confidence level?
(Assume that σ = 15.)

Example 6

Solution
The distance between the sample mean x̄ and the endpoints of the 95% confidence interval
should be less than or equal to 1.5. Therefore we require

1.9600 ×
15
√

n
≤ 1.5

Hence

n ≥
(1.9600 × 15

1.5

)2
= 384.16

We require a sample of at least 385 students.

Exercise 16ASkill-
sheet

1Example 1 A university lecturer selects a sample of 40 of her first-year students to determine
how many hours per week they spend on study outside class time. She finds that their
average study time is 7.4 hours. If the standard deviation of study time, σ, is 1.8 hours,
find a 95% confidence interval for the mean study time for the population of first-year
students.

2Example 2 Calculate and compare approximate 90%, 95% and 99% confidence intervals for the
mean battery life for a certain brand of batteries, if the mean life of 64 batteries was
found to be 35.7 hours. Assume that σ = 15 hours.

3 In an investigation of physical fitness of students, resting heart rates were recorded for
a sample of 15 female students. The sample had a mean of 71.1 beats per minute. The
investigator knows from experience that resting heart rates are normally distributed and
have a standard deviation of 6.4 beats per minute. Find a 99% confidence interval for
the mean resting heart rate of the relevant population of female students.
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690 Chapter 16: Confidence intervals and hypothesis testing for the mean 16A

4 A random sample of 49 of a certain brand of batteries was found to last an average of
14.6 hours. If the standard deviation of battery life is known to be 90 minutes, find a
90% confidence interval for the mean time that the batteries will last.

5 The lengths of time (in seconds) for which each of a randomly selected sample of
12-year-old girls could hold their breath are as follows.

14 43 16 25 25 35 14 42 23 33 20 60

39 68 18 20 25 30 20 32 54 35 45 48

If breath-holding time is known to be normally distributed, with a standard deviation of
15 seconds, find a 98% confidence interval for the mean time for which a 12-year-old
girl can hold her breath.

6 Twenty-two air samples taken at the same place over a period of six months showed the
following amounts of suspended matter (in micrograms per cubic metre of air).

68 22 36 32 42 24 28 38 39 26 21

79 45 57 59 34 43 57 30 31 28 30

Assuming these measurements to be a random sample from a normally distributed
population with standard deviation 10, construct an approximate 95% confidence
interval for the mean amount of suspended matter during that time period.

7 The birth weights, in kilograms, of a random sample of 30 full-term babies with no
complications born at a hospital are as follows.

2.9 2.7 3.5 3.6 2.8 3.6 3.7 3.6 3.6 2.9 3.7 3.6 3.2 2.9 3.2

2.5 2.6 3.8 3.0 4.2 2.8 3.5 3.3 3.1 3.0 4.2 3.2 2.4 4.3 3.2

Find an approximate 99% confidence interval for the mean weight of full-term babies
with no complications, if the birth weights of full-term babies are normally distributed
with a standard deviation of 400 g.

8 Fifty plots are planted with a new variety of corn. The average yield for these plots is
130 bushels per acre. Assume that the standard deviation is equal to 10.

a Find an approximate 95% confidence interval for the mean yield of this variety.
b Find an approximate 99% confidence interval for the mean yield of this variety.
c Compare your answers to parts a and b.

9 The average amount of time (in hours per week) spent in physical exercise by a random
sample of 24 male Year 12 students is as follows.

4.0 3.3 4.5 0.0 8.0 2.0 3.3 2.5 7.0 2.0 12.0 4.0

8.0 3.0 6.0 2.5 1.0 0.5 5.0 6.0 4.0 1.0 0.0 7.0

Assume that the time spent per week in physical exercise by Year 12 males is normally
distributed with a mean of µ hours and a standard deviation of 3 hours.

a Find an approximate 90% confidence interval for µ.
b Find an approximate 95% confidence interval for µ.
c Compare your answers to parts a and b.
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16A 16A Confidence intervals for the population mean 691

10 A random sample of 100 married males were asked to give the age at which they
married. The average age given by this sample was 29.5 years. Assume that the
standard deviation of age at marriage is known to be 8 years.

a Find an approximate 90% confidence interval for the mean age at marriage for males.
b Find an approximate 98% confidence interval for the mean age at marriage for males.
c Compare your answers to parts a and b.

11Example 3 Suppose that the process of taking a sample and determining a confidence interval based
on the sample mean was repeated 100 times. How many of these intervals would be
expected to contain the value of the population mean µ if the level of confidence is:

a 80% b 85% c 90%?

12 A researcher determines an approximate 95% confidence interval for the mean weight
of a certain species of frog. Her colleague, using a different sample of data, determines
a 95% confidence interval for the mean weight of the same species of frog.

a What is the probability that both of these confidence intervals contain the population
mean weight for this species of frog?

b What is the probability that at least one of these confidence intervals contains the
population mean weight for this species of frog?

13Example 4 A quality-control engineer in a factory needs to estimate the mean weight, µ grams, of
bags of potato chips that are packed by a machine. The engineer knows by experience
that σ = 2.0 grams for this machine.

a Find a 95% confidence interval for µ, if the engineer takes a random sample of
36 bags and finds the sample mean to be 25.4 grams.

b Find a 95% confidence interval for µ, if the engineer takes a random sample of
100 bags and finds the sample mean to be 25.4 grams.

c Compare your confidence intervals in parts a and b.

14 A confidence interval is used to estimate the population mean µ based on a sample
mean x̄.

aExample 5 By what factor must the sample size be increased in order to decrease the width of
the confidence interval by 50%?

b What percentage increase in the sample size is required in order to decrease the
width of the confidence interval by 20%?

c If the sample size is increased by a factor of 9, what is the change in the width of
the confidence interval?

d If the sample size is decreased by a factor of 16, what is the change in the width of
the confidence interval?

15Example 6 For a population with a standard deviation of 100, how large a random sample is needed
in order to be 95% confident that the sample mean is within 20 of the population mean?

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



692 Chapter 16: Confidence intervals and hypothesis testing for the mean 16A

16 A quality-control engineer in a factory needs to estimate the mean weight, µ grams, of
bags of potato chips that are packed by a machine. The engineer knows by experience
that σ = 2.0 grams for this machine. What size sample is required to ensure that we can
be 95% confident that the estimate will be within 0.5 grams of µ?

17 The number of customers per day at a fast-food outlet is known to have a standard
deviation of 50. What size sample is required so that the owner can be 99% confident
that the difference between the sample mean and the true mean is not more than 10?

18 A manufacturer knows that the standard deviation of the lifetimes of their light bulbs is
150 hours. What size sample is required so that the manufacturer can be 90% confident
that the sample mean, x̄, will be within 20 hours of the population mean?

19 Consider once again the problem of estimating the mean IQ score, µ, of Year 12
mathematics students. (Assume that σ = 15.)

a What size sample is required to ensure with 95% confidence that the sample mean IQ
will be within 2 points of µ?

b What size sample is required to ensure with 99% confidence that the sample mean IQ
will be within 2 points of µ?

16B Hypothesis testing for the mean
The mean and standard deviation for IQ scores in the general population are µ = 100 and
σ = 15. Suppose we believe that, in general, Year 12 mathematics students score higher on
IQ tests than members of the general population. To investigate, we select a random sample
of 100 Year 12 mathematics students and determine their mean IQ to be 103.6. This is
3.6 points higher than the mean IQ of people in general.

Is it reasonable to conclude that Year 12 mathematics students score higher on IQ tests than
the general public? We already know that sample means will vary from sample to sample,
and we would not expect the mean of an individual sample to have exactly the same value as
the mean of the population from which it is drawn.

� One explanation is that Year 12 mathematics students perform no better on IQ tests than
members of the general public, and the difference between the mean score of the sample,
x̄ = 103.6, and that of the general population, µ = 100, is due to sampling variability.

� Another explanation is that Year 12 mathematics students actually do better than average
on IQ tests, and a sample mean of x̄ = 103.6 is consistent with this explanation.

Hypothesis testing is concerned with deciding which of the two explanations is more likely,
which we do on the basis of probability.
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16B Hypothesis testing for the mean 693

The logic of a hypothesis test
A hypothesis test can be likened to a trial in a court of law. We begin with a hypothesis that
we wish to find evidence to support. In a court, as a prosecutor, your intention is to show that
the person is guilty. However, the starting point in the trial is that the person is innocent. It is
up to the prosecutor to provide enough evidence to show that this assumption is untenable.

The assumption of innocence in hypothesis-testing terms is called the null hypothesis,
denoted by H0. If we can collect evidence to show that the null hypothesis is untenable,
we can conclude that there is support for an alternative hypothesis, denoted by H1.

Setting up the hypotheses
In this IQ example, our hypothesis is that Year 12 mathematics students perform better than
the general population on IQ tests. To test this with a hypothesis test, we start by assuming
the opposite: we assume that Year 12 mathematics students perform no better on IQ tests than
members of the general public. In statistical terms, we are saying that the distribution of IQ
scores for these students is the same as for the general public.

For the general public, we know that IQ is normally distributed with a mean of µ = 100 and
a standard deviation of σ = 15. The null hypothesis is that the students are drawn from a
population in which the mean is µ = 100. We express this null hypothesis symbolically as

H0 : µ = 100

The null hypothesis

The null hypothesis, H0, says that the sample is drawn from a population which has
the same mean as before (i.e. the population mean has not changed). Under the null
hypothesis, any difference between the values of a sample statistic and the population
parameter is explained by sample-to-sample variation.

In this case, we are hypothesising that the mean IQ of Year 12 mathematics students is higher
than that of the general population – that the sample comes from a population with mean
µ > 100. We express this alternative hypothesis symbolically as

H1 : µ > 100

The alternative hypothesis

The alternative hypothesis, H1, says that the population mean has changed. That is, while
there will always be some sampling variability, the amount of variation is so much that it is
more likely that the sample has been drawn from a population with a different mean.

Note: Hypotheses are always expressed in terms of population parameters.
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The average fuel consumption for a particular model of car is 13.7 litres per 100 km. The
manufacturer is claiming that the new model will use less petrol. A sample of 25 of the
new model cars had an average fuel consumption of 12.5 litres per 100 km. Write down
the null and alternative hypotheses that the manufacturer will use in testing this claim.

Example 7

Solution
We start by assuming that the new model of the car is no better than the previous model,
and that the difference between the population mean µ = 13.7 and the sample mean
x̄ = 12.5 is due only to sampling variability. Thus:

H0 : µ = 13.7

The alternative hypothesis asserts that the sample mean is lower than the previous
population mean because the sample has been drawn from a population with a mean that is
lower than that of the previous model. That is:

H1 : µ < 13.7

The test statistic
How do we decide between the two hypotheses? Both in a court of law and in statistical
hypothesis testing, evidence is collected. This evidence is then weighed up (considered) so
that a decision can be made. In the court room, the jury functions as the decision maker,
weighing the evidence to make a decision of guilty (the alternative hypothesis) or not guilty
(the null hypothesis). In hypothesis testing, the evidence is contained in the sample data.

To help us make our decision, we generally summarise the data into a single statistic, called
the test statistic. There are many test statistics that can be used. If we are testing a hypothesis
about a population mean µ, then the obvious test statistic is the sample mean x̄.

If we find that the sample mean observed is very unlikely to have been obtained from a
sample drawn from the hypothesised population, this will cause us to doubt the credibility of
that hypothesised population mean. The statistical tool we use to determine the likelihood of
this value of a test statistic is the distribution of sample means.

The p-value
Hypothesis testing requires us to make a decision between the null and alternative
hypotheses. To do this, we determine the probability of obtaining a value of the sample
statistic as extreme as or more extreme than the one found from the sample, assuming that the
null hypothesis is true. This probability is known as the p-value of the test.

The p-value

The p-value is the probability of observing a value of the sample statistic as extreme as
or more extreme than the one observed, assuming that the null hypothesis is true.
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16B Hypothesis testing for the mean 695

Consider again the hypothesis that the mean IQ of Year 12 mathematics students is higher
than that of the general population.

We have hypotheses

H0 : µ = 100

H1 : µ > 100

and the mean of a sample of size 100 is x̄ = 103.6.

Thus we can write:

p-value = Pr(X̄ ≥ 103.6 | µ = 100)

To get a picture as to how much we could reasonably expect the sample mean to vary from
sample to sample, we can use simulation. The following dotplot shows the values of x̄
obtained from 100 samples (each of size 100) taken from a normal distribution with mean
µ = 100 and standard deviation σ = 15.

96.0 97.2 98.4 99.6 100.8 102.0 103.2 104.4

We can clearly see from the dotplot that a sample mean of x̄ = 103.6 is very unlikely. In fact,
we obtained a sample mean as big as or bigger than this only once in 100 samples.

To determine the p-value exactly, we can use a result from Chapter 15:

Distribution of the sample mean

If X is a normally distributed random variable with mean µ and standard deviation σ,
then the distribution of the sample mean X̄ will also be normal, with mean E(X̄) = µ and
standard deviation sd(X̄) =

σ
√

n
, where n is the sample size.

Thus, if the null hypothesis is true, then X̄ is normally distributed with

E(X̄) = µ = 100 and sd(X̄) =
σ
√

n
=

15
√

100
= 1.5

Therefore

p-value = Pr(X̄ ≥ 103.6 | µ = 100)

= Pr
(
Z ≥

103.6 − 100
1.5

)
= Pr(Z ≥ 2.4)

= 0.0082

Thus, the p-value tells us that, if the mean IQ of Year 12 mathematics students is 100, then
the likelihood of observing a sample mean as high as or higher than 103.6 is extremely small,
only 0.0082.
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Consider again Example 7, where we are testing the hypotheses:

H0 : µ = 13.7

H1 : µ < 13.7

Assume that fuel consumption is normally distributed with a standard deviation of
σ = 2.8 litres per 100 km. If the average fuel consumption for a sample of 25 cars is
x̄ = 12.5 litres per 100 km, determine the p-value for this test.

Example 8

Solution
If the null hypothesis is true, then X̄ is normally distributed with

E(X̄) = µ = 13.7 and sd(X̄) =
σ
√

n
=

2.8
√

25
= 0.56

Thus

p-value = Pr(X̄ ≤ 12.5 | µ = 13.7)

= Pr
(
Z ≤

12.5 − 13.7
0.56

)
= Pr(Z ≤ −2.143)

= 0.0161

Using the TI-Nspire
In a Calculator page:

� Use menu > Statistics > Stat Tests > z Test.
� If necessary, change the Data Input Method

to Stats.
� Enter the given values as shown and select

the form of the alternative hypothesis.

Note: Check carefully the sign required for the
Alternate Hyp. If necessary, use the right
arrow to access the dropdown menu.
In this case, use Ha : µ < µ0.

� The result ‘PVal’ gives the p-value 0.0161.
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Using the Casio ClassPad
� In , go to Calc > Test.
� Select One–Sample Z–Test and Variable. Tap Next .
� Set the µ condition to < and enter the given values as shown below. Tap Next .

� The result ‘prob’ gives the p-value 0.0161.

Strength of evidence
Consider again our IQ example. The more unlikely it is that the sample we observed could be
drawn from a population with a mean IQ of 100, the more convinced we are that the sample
must come from a population with a higher IQ.

In general, the smaller the p-value, the smaller the probability that the sample is from a
population with the mean under the null hypothesis, and thus the stronger the evidence
against the null hypothesis.

How small does the p-value have to be to provide convincing evidence against the null
hypothesis? The following table gives some conventions.

p-value Conclusion

p-value > 0.05 insufficient evidence against H0

p-value < 0.05 (5%) good evidence against H0

p-value < 0.01 (1%) strong evidence against H0

p-value < 0.001 (0.1%) very strong evidence against H0

For our IQ example, we interpret the p-value of 0.0082 as strong evidence against the null
hypothesis and in support of our hypothesis that Year 12 mathematics students perform better
than the general population on IQ tests.

In Example 8, we obtained a p-value of 0.0161. How do we interpret this p-value?

Example 9

Solution
We interpret this p-value of 0.0161 as good evidence against the null hypothesis and in
support of the hypothesis that fuel consumption is lower for the new model.
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Statistical significance
Our goal in hypothesis testing is generally to choose between the two hypotheses under
consideration. Therefore, we need to decide just how unlikely a sample result must be in
order to throw sufficient doubt on the null hypothesis that we should reject it and choose the
alternative hypothesis. We need an agreed value against which we can compare the p-value
of the test. This value is called the significance level of the test, and is generally denoted by
the Greek letter α.

Statistical significance

The significance level of a test, α, is the condition for rejecting the null hypothesis:

� If the p-value is less than α, then we reject the null hypothesis in favour of the
alternative hypothesis.

� If the p-value is greater than α, then we do not reject the null hypothesis.

The most commonly used value for the significance level is 0.05 (5%), although 0.01 (1%)
and 0.001 (0.1%) are sometimes used.

� If the p-value is less than the significance level, say 0.05, then we say that the result is
statistically significant at the 5% level.

� If the p-value is greater than the significance level, then we say that the result is not
statistically significant at the 5% level.

This approach to hypothesis testing is commonly used.

The lifetimes of a certain brand of ‘long-life’ batteries are normally distributed, with
a mean of 240 hours and a standard deviation of 40 hours. After introducing a new
manufacturing process, the company has had a number of customer complaints that have
led them to believe that the batteries may have a shorter life than before. In order to check
the length of battery life, a random sample of 25 batteries was selected and the mean
battery life found to be 230 hours.

a Write down the null and alternative hypotheses for this test.
b Determine the p-value for this test.
c Has the lifetime of the batteries decreased? Test at the 5% level of significance.

Example 10

Solution
a We are using the sample data to decide whether the mean battery life is still 240 hours

or has decreased. That is:

H0 : µ = 240

H1 : µ < 240
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16B 16B Hypothesis testing for the mean 699

b If the null hypothesis is true, then X̄ is normally distributed with

E(X̄) = µ = 240 and sd(X̄) =
σ
√

n
=

40
√

25
= 8

Therefore

p-value = Pr(X̄ ≤ 230 | µ = 240)

= Pr
(
Z ≤

230 − 240
8

)
= Pr(Z ≤ −1.25)

= 0.1056

c Since the p-value (0.1056) is greater than the significance level (0.05), we fail to reject
the null hypothesis. We do not have enough evidence to conclude that the mean battery
life has decreased.

Since we are able to use the normal distribution to determine the p-value for a hypothesis test
for the mean of a normal distribution, this hypothesis test is named appropriately:

z-test

The hypothesis test for a mean of a sample drawn from a normally distributed population
with known standard deviation is called a z-test.

Large samples
The central limit theorem tells us that, if the sample size is large enough, then the distribution
of the sample mean of any random variable is approximately normal. Thus, a z-test can be
used even when the distribution of the random variable is not known, provided the sample
size is large enough. (For most distributions, a sample size of 30 is sufficient.)

Exercise 16BSkill-
sheet

1Example 7 In a certain country, the average number of children per family in the 1990s was 2.4.
Researchers believe that the average number of children has decreased over the last
30 years. To test this hypothesis, they select a random sample of 20 families and find the
average number of children to be 2.2. Write down the null and alternative hypotheses
for this test.

2 A local school reports that its students’ GPA scores are normally distributed with a
mean of 2.66. After the introduction of a new program designed to improve GPA at
the school, they find that the mean GPA for a group of 25 randomly selected students
is 2.78. Write down the null and alternative hypotheses which could be used to test the
effectiveness of the new program.
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700 Chapter 16: Confidence intervals and hypothesis testing for the mean 16B

3Example 8 The weight of a certain species of fish living in the Yerra River is known to be normally
distributed with a mean of 60 g and a standard deviation of 4.5 g. Researchers believe
that the same species of fish living in the Merry River grow larger than this. To test the
hypotheses

H0 : µ = 60

H1 : µ > 60

the researchers select a random sample of 10 fish from the Merry River, and find that
their average weight is 65.8 g. Assuming that the standard deviation of the weight of
fish from the Merry River is 4.5 g, determine the p-value for this test.

4 The concentration of a certain chemical pollutant in Rapid River is monitored at
a testing station every hour. The concentration is normally distributed with mean
µ = 34 ppm (parts per million) and standard deviation σ = 8 ppm. A representative of
a company that discharges liquids into the river is now claiming that they have lowered
the mean concentration of the pollutant by using improved filtration devices. A scientist
selects 50 random samples of water from various locations along the river and finds a
mean concentration of the chemical of 32.5 ppm.

H0 : µ = 34

H1 : µ < 34

What is the p-value for this test?

5Example 9 Write a statement interpreting each of the following p-values in terms of the strength of
evidence it provides against the null hypothesis:

p-value = 0.033a p-value = 0.245b p-value = 0.003c
p-value = 0.0049d p-value = 0.0008e

6 Suppose that, when testing the following hypotheses, we find a p-value of 0.0355.

H0 : µ = 50

H1 : µ < 50

What would you conclude based on this p-value?

7 Suppose that, when testing the following hypotheses, we find a p-value of 0.099.

H0 : µ = 10

H1 : µ > 10

What would you conclude based on this p-value?

8 Suppose that, when testing the following hypotheses, we find a p-value of 0.013.

H0 : µ = 40

H1 : µ < 40

What would you conclude based on this p-value?
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16B 16B Hypothesis testing for the mean 701

9Example 10 The monthly weight gain of a certain breed of cattle (when aged between one year
and two years) is normally distributed, with a mean of 2.9 kg and a standard deviation
of 1 kg. A researcher believes that a special high-protein feed will result in higher
monthly weight gain. To test this hypothesis, she feeds a random sample of 30 cattle
with the special feed for a month, and notes that their average weight gain is 3.4 kg.

a Write down the null and alternative hypotheses for this test.
b Determine the p-value for this test.
c Can the researcher conclude that the special high-protein feed will increase weight

gain in this breed of cattle? Test at the 5% level of significance.

10 According to a census held in 1992, the mean number of residents per household
in an inner suburb, Richthorn, was 3.6, with a standard deviation of 1.2. An urban
planner believes that the mean has reduced over the last 30 years, due to the increasing
number of apartments and townhouses in the suburb. In 2022, a random sample of
11 households was drawn from the suburb and the mean number of residents per
household was found to be 2.6.

a Write down the null and alternative hypotheses for this test.
b Determine the p-value for this test.
c Can we conclude that the mean size of households has reduced? Use α = 0.05.

11 The yearly income for families living in a certain state is normally distributed with a
mean of µ = $42 150 and a standard deviation of σ = $10 000. A social researcher
believes that the residents living in a particular country town have lower incomes than
this. She takes a random sample of 20 families from this town and finds that they have
an average yearly income of $39 500.

a Write down the null and alternative hypotheses for this test.
b Determine the p-value for this test.
c Can the social researcher conclude that average income for families in this town is

lower than that for the rest of the state? Test at the 5% level of significance.

12 The length of time taken for a customer to be served at a fast-food outlet has a mean
of 3.5 minutes and a standard deviation of 1.5 minutes. After the introduction of a new
range of products, the manager feels that the mean time for serving a customer has
increased. To test this, he records the service time for a random sample of 50 customers
and finds the average service time to be 4.0 minutes.

a Write down the null and alternative hypotheses for this test.
b Determine the p-value for this test.
c Can we conclude that the average service time has increased? Use α = 0.05.

13 A researcher predicts that sleeping for at least 8 hours before taking a test will improve
test scores. The scores for a certain test are known to be normally distributed with a
mean of 20 and a standard deviation of 3. She obtains a sample mean of 23 for the
test scores of 12 randomly chosen students who had at least 8 hours of sleep. Is this
evidence that students who sleep for at least 8 hours before taking the test have better
test scores? Test at the 1% level of significance.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



702 Chapter 16: Confidence intervals and hypothesis testing for the mean

16C One-tail and two-tail tests
In the previous section, we considered only situations where we had a pretty good idea as to
the direction in which the mean might have changed. That is, we considered only that the
mean IQ of Year 12 mathematics students might be higher than the general population, or that
the fuel consumption of the new model car might be lower than the previous model. These
are examples of directional hypotheses. When we translate these hypotheses into testable
alternative hypotheses, we say that our sample has come from a population with mean more
than 100 (for the IQ example) or less than 13.7 (for the fuel-consumption example).

The presence of a ‘less than’ sign (<) or a ‘greater than’ sign (>) in the alternative hypothesis
indicates that we are dealing with a directional hypothesis. Only values of the sample mean
more than 100 (for the IQ example) or less than 13.7 (for the fuel-consumption example) will
lend support to the alternative hypothesis.

Now suppose that we do not know whether the fuel consumption of our new model car
has increased or decreased. In this case, we would hypothesise that the fuel consumption
is different for the new model (a non-directional hypothesis). We have to allow for the
possibility of the sample mean being less than or greater than 13.7 litres per 100 km.

We express this symbolically by using a ‘not equal to’ sign (,) in the alternative hypothesis:

H1 : µ , 13.7

The presence of the ‘not equal to’ sign (,) in the alternative hypothesis indicates that we are
dealing with a non-directional hypothesis. A sample mean either greater than 13.7 or less
than 13.7 could provide evidence to support this hypothesis.

One-tail tests
The directionality of the alternative hypothesis H1 determines how the p-value is calculated.

For the directional hypothesis

H1 : µ > 13.7

only a sample mean considerably
greater than 13.7 will lend support to
this hypothesis. Thus, in calculating
the p-value, we only consider values
in the upper tail of the normal curve.

p-value = area in upper tail

For the directional hypothesis

H1 : µ < 13.7

only a sample mean considerably
less than 13.7 will lend support to this
hypothesis. Thus, in calculating the
p-value, we only consider values in
the lower tail of the normal curve.

p-value = area in lower tail
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16C One-tail and two-tail tests 703

Because the p-values for directional tests are given by an area in just one tail of the curve,
these tests are commonly called one-tail tests.

Two-tail tests
For the non-directional hypothesis

H1 : µ , 13.7

a sample mean that is either considerably less than 13.7 or considerably greater than 13.7 will
lend support to this hypothesis. Thus, in calculating the p-value, we need to consider values
in both tails of the normal curve.

p-value = area in both tails

Because the p-values for non-directional tests are given by an area in both tails of the curve,
these tests are commonly called two-tail tests.

As can be seen from the diagram for a two-tail test, the areas in the two tails of the
distribution are equal, so the p-value for a two-tail test is twice the p-value for a one-tail test.

One-tail and two-tail tests

� When the alternative hypothesis is directional (< or >), we carry out a one-tail test.
� When the alternative hypothesis is non-directional (,), we carry out a two-tail test.

p-value (two-tail test) = 2 × p-value (one-tail test)

The volume of coffee dispensed by a coffee machine is known to be normally distributed,
with a mean of 200 mL and a standard deviation of 5 mL. After a routine service, a test
was carried out on the machine to check that it is still functioning properly. A random
sample of 15 cups yielded a mean volume of 197.7 mL.

a Write down the null and alternative hypotheses for this test.
b Use the given data to test whether the mean volume of coffee dispensed by the machine

is still 200 mL. Test at the 5% level of significance.

Example 11

Solution
a Since we do not know before we collect the data whether the mean volume is more or

less than 200 mL, we should carry out a two-tail test.

H0 : µ = 200

H1 : µ , 200
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b If the null hypothesis is true, then X̄ is normally distributed with

E(X̄) = µ = 200 and sd(X̄) =
σ
√

n
=

5
√

15
= 1.291

Therefore

p-value = 2 × Pr(X̄ ≤ 197.7 | µ = 200)

= 2 × Pr
(
Z ≤

197.7 − 200
1.291

)
= 2 × Pr(Z ≤ −1.782)

= 2 × 0.0374

= 0.0748

Since the p-value (0.0748) is greater than the significance level (0.05), we fail to reject
the null hypothesis. We do not have enough evidence to conclude that the mean volume
of coffee dispensed has changed.

Using the TI-Nspire
In a Calculator page:

� Use menu > Statistics > Stat Tests > z Test.
� If necessary, change the Data Input Method

to Stats.
� Enter the given values as shown and select

the form of the alternative hypothesis.

Note: Check carefully the sign required for the
Alternate Hyp. If necessary, use the right
arrow to access the dropdown menu.
In this case, use Ha : µ , µ0.

� The result ‘PVal’ gives the p-value 0.0748.

Using the Casio ClassPad
� In , go to Calc > Test.
� Select One–Sample Z–Test and Variable. Tap Next .
� Set the µ condition to , and enter the given values

as shown. Tap Next .
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16C One-tail and two-tail tests 705

� Tap$ to view
the graph.

When do we use a two-tail test?
The decision of whether to use a one-tail test or a two-tail test is important, as it may mean
the difference between rejecting or not rejecting the null hypothesis.

In Example 11, we carried out a two-tail test, and thus calculated a p-value of 0.0748. This
was greater than the significance level, and thus we had insufficient evidence to conclude that
the coffee machine was malfunctioning. If we had carried out a one-tail test, we would have
calculated a p-value of 0.0374. This is less than the significance level, and thus we would
have had sufficient evidence to conclude that the coffee machine was malfunctioning.

A two-tail test is more conservative than a one-tail test, requiring the sample mean to be more
different from the population mean in order to reject the null hypothesis.

In practice, you should only use a one-tail test when you have a very good theoretical reason
to expect that the difference will be in a particular direction. In practice, the hypotheses are
established before the data is collected, so we cannot use the direction of the difference seen
in the data to establish the hypotheses.

Relating a two-tail test to a confidence interval
We established in Section 16A that a 95% confidence interval for the population mean µ is
given by(

x̄ − 1.9600
σ
√

n
, x̄ + 1.9600

σ
√

n

)
There is a close relationship between confidence intervals and two-tail hypothesis tests.
To explain this, we will use the following basic fact about intervals of the real number line:

a ∈ (b − c, b + c) ⇔ |a − b| < c ⇔ b ∈ (a − c, a + c)

Now suppose that we are testing the hypotheses

H0 : µ = µ0

H1 : µ , µ0

Then we have

µ0 <
(
x̄ − 1.9600

σ
√

n
, x̄ + 1.9600

σ
√

n

)
⇔ x̄ <

(
µ0 − 1.9600

σ
√

n
, µ0 + 1.9600

σ
√

n

)
Hence, the 95% confidence interval does not contain µ0 if and only if we should reject the
null hypothesis at the 5% level of significance.
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706 Chapter 16: Confidence intervals and hypothesis testing for the mean 16C

a Use the information from Example 11 to determine a 95% confidence interval for the
mean volume of coffee dispensed by the coffee machine after the service.

b Use this confidence interval to test the following hypotheses at the 5% level of
significance. How does this compare with your answer for Example 11b?

H0 : µ = 200

H1 : µ , 200

c Use this confidence interval to test the following hypotheses at the 5% level of
significance.

H0 : µ = 198

H1 : µ , 198

Example 12

Solution
a Based on the sample mean x̄ = 197.7, a 95% confidence interval is (195.17, 200.23).
b Since the interval contains the hypothesised mean value of 200, we would not reject the

null hypothesis. This is consistent with the conclusion reached in Example 11b, where
we also did not reject the null hypothesis.

c Since the interval contains the hypothesised mean value of 198, we would again not
reject the null hypothesis.

In Example 12, we failed to reject both that the population mean is 200 mL, and that the
population mean is 198 mL. Remember that in hypothesis testing, just like in a court of
law, we cannot conclude that the null hypothesis is true (innocent), only that we do not have
sufficient evidence to say that it is false (guilty).

Exercise 16CSkill-
sheet

1Example 11 A manufacturing process produces ball bearings with diameters that are normally
distributed with a mean of 0.50 cm and a standard deviation of 0.04 cm. Ball bearings
with diameters that are too small or too large are unacceptable. In order to test whether
or not the machine is still producing acceptable ball bearings, a sample of 25 ball
bearings was selected at random, and the mean diameter found to be 0.52 cm.

a Write down the null and alternative hypotheses for this test.
b Determine the p-value for this test.
c Can we conclude that the average diameter has changed? Use α = 0.05.

2 The weight of sugar in a 2 kg package produced by a food-processing company
is normally distributed, with a mean of µ = 2.00 kg and a standard deviation of
σ = 0.02 kg. A new packing machine has been introduced, and a random sample of
20 packages was found to have an average weight of sugar of 1.99 kg. Can the company
conclude that the average weight of sugar in a 2 kg package has changed? Use α = 0.05.
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3 The mean length of stay in hospital among patients with different diagnoses is of
interest to health planners. The number of days that patients suffering from disease A
remain in hospital is known to be approximately normally distributed with a mean
of 40 days and a standard deviation of 10 days. A random sample of 56 patients with
disease A, admitted to a particular hospital, remained in that hospital an average of
43 days. Test, at the 5% level of significance, the hypothesis that the mean length of
stay in this hospital is different from the other hospitals.

4 Over the past three years, the number of visitors per day to a city museum had a mean
of 484 people and a standard deviation of 42. In order to test whether this has recently
changed, the manager collected data on the number of visitors on each of 30 randomly
chosen days, and found the mean to be 456. Is this evidence that the average number of
daily visitors to the museum has changed? Use α = 0.01.

5 In the 1990s, the number of hours of television watched each day by school children
in a certain town was known to be approximately normally distributed with a mean
of 2 and a standard deviation of 1.2. To see if this has changed, a researcher collected
the number of hours of television watched in a day by a randomly selected group
of school children. Use these data to test the hypothesis that the average number of
hours of television watched by school children is no longer 2. Test at the 5% level of
significance.

4 1 1 1 2 4 6 4 1 1

2 2 3 4 6 2 8 2 1 2

6 The lifetime of a certain brand of batteries has a mean of 60 hours and a standard
deviation of 10 hours. After implementing a new process, the manufacturer finds that
the mean life of a random sample of 30 batteries is 65 hours. Is this evidence that the
mean battery life has changed? Use α = 0.05.

7Example 12 Suppose that the number of hours that children sleep per night in a certain community is
approximately normally distributed with a mean of 9 hours and a standard deviation of
2 hours. A study was conducted to see if this average has changed. The study was based
on a sample of 20 children, and their sample mean number of hours slept was 8.5 hours.

a Does this data provide evidence that the mean number of hours slept per night by
children in this community has changed? Use a significance level of 0.05.

b Determine a 95% confidence interval for the mean number of hours slept by children
in this community.

c Use this confidence interval to test the hypotheses from part a at the 5% level of
significance. How does your conclusion compare with your answer for part a?
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8 According to the records, the average starting salary for a university graduate in a
certain state is $55 000, with a standard deviation of $5000. The vice-chancellor of a
large university wishes to determine whether their graduates earn more or less than this.
A group of 50 randomly selected graduates are surveyed, and their average salary is
found to be $53 445.

a Does this data provide evidence that the average starting salary for a graduate from
this university is different from the rest of the state? Use a significance level of 0.05.

b Determine a 95% confidence interval for the average starting salary for a graduate
from this university.

c Use this confidence interval to test the hypotheses from part a at the 5% level of
significance. How does your conclusion compare with your answer for part a?

16D Two-tail tests revisited
Before we revisit two-tail tests, it is useful to consider probability statements which include
the absolute value function, as illustrated in the following two examples.

Suppose that Z is a standard normal random variable. Find Pr(|Z| ≥ 2).

Example 13

Solution Explanation

Pr(|Z| ≥ 2) = Pr(Z ≤ −2) + Pr(Z ≥ 2)

= 2 × Pr(Z ≤ −2)

= 2 × 0.02275

= 0.0455

Since the standard normal distribution
is symmetric about 0, we have
Pr(Z ≥ 2) = Pr(Z ≤ −2).

In order to apply the symmetry of the normal distribution to determine such probabilities, the
random variable must first be standardised.

Suppose that X is a normally distributed random variable with mean µ = 10 and standard
deviation σ = 5. Find the probability that a single value of X is at least 2 units from
the mean.

Example 14

Solution

Pr(|X − µ| ≥ 2) = Pr
(∣∣∣∣∣X − µσ

∣∣∣∣∣ ≥ 2
5

)
= Pr(|Z| ≥ 0.4)

= 2 × Pr(Z ≤ −0.4)

= 2 × 0.3446

= 0.6892
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16D Two-tail tests revisited 709

We can use the concept of absolute value to reconsider the definition of the p-value for a
two-tail test. We perform a two-tail test when addressing the question: ‘Has the population
mean changed or is it still the same?’ That is, we don’t know whether the population mean
may have increased or decreased from the previously accepted value. Thus an observed value
of the sample mean which is either much larger or much smaller than the hypothesised mean
can be taken as evidence against the null hypothesis.

Suppose that the fuel consumption for another model of car is known to be normally
distributed with a mean of 10 litres per 100 km, and we are again testing the claim that the
fuel consumption is different for the newer model of this car. Here we have the hypotheses:

H0 : µ = 10

H1 : µ , 10

To test these hypotheses, we compare the observed value of the sample mean with the value
of the population mean under the null hypothesis. If the null hypothesis is true, and the
standard deviation for fuel consumption is σ = 2.5 litres per 100 km, then the sample mean X̄
for samples of size 25 has the following distribution.

0.0

Sample mean = 8.5 Sample mean = 11.5

8.5 9.0 9.5 10.0

µ = 10

10.5 11.0 11.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

� If we observe a value of the sample mean as large as 11.5, for example, then we are likely
to think that the mean fuel consumption for the new model of the car is more than 10 litres
per 100 km.

� If we observe a value of the sample mean as small as 8.5, for example, then we are likely
to think that the mean fuel consumption for the new model of the car is less than 10 litres
per 100 km.

In general terms, we will be persuaded to reject the null hypothesis if the distance between
the observed sample mean and the hypothesised population mean is more than would be
explained by normal sampling variability. If X̄ is the random variable representing the mean
of a sample of size n, we can write this distance symbolically as |X̄ − µ|.
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The p-value for a two-tail test

For a two-tail test, we can define

p-value = Pr(|X̄ − µ| ≥ |x̄ − µ|)

= Pr
(
|Z| ≥

∣∣∣∣∣ x̄ − µ
σ/
√

n

∣∣∣∣∣)
where:

� µ is the population mean under the null hypothesis
� x̄ is the observed value of the sample mean
� σ is the value of the population standard deviation
� n is the sample size.

Suppose that the weight, X kg, of sand in a bag is a normally distributed random variable
with a mean of 50 kg and a standard deviation of 1.5 kg. A random sample of 10 bags
is taken.

a Find the probability that the mean weight of the 10 bags in the sample differs by 1 kg or
more from the population mean of 50 kg.

b Suppose that the mean weight of the 10 bags is 49.1 kg.

i Determine the p-value appropriate to test the hypotheses:

H0 : µ = 50

H1 : µ , 50

ii Based on this p-value, what is your conclusion? (Use α = 0.05.)

Example 15

Solution

a Pr(|X̄ − µ| ≥ 1) = Pr
(∣∣∣∣∣ X̄ − µ
σ/
√

n

∣∣∣∣∣ ≥
√

10
1.5

)
= Pr(|Z| ≥ 2.108)

= 2 × Pr(Z ≤ −2.108)

= 2 × 0.0175

= 0.035

b i p-value = Pr(|X̄ − µ| ≥ |x̄ − µ|)

= Pr
(
|Z| ≥

∣∣∣∣∣49.1 − 50

1.5/
√

10

∣∣∣∣∣) (standardising)

= Pr(|Z| ≥ |−1.897|)

= Pr(|Z| ≥ 1.897)

= 2 × 0.0289

= 0.0578
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ii Since the p-value is greater than 0.05, there is insufficient evidence to conclude that
the mean weight of the bags of sand is not 50 kg.

Exercise 16D

1Example 13 Suppose that Z is a standard normal random variable. Find:

Pr(|Z| ≥ 1)a Pr(|Z| ≤ 0.5)b Pr(|Z| ≥ 1.75)c
Pr(|Z| ≤ 2.1)d Pr(|Z| ≥ 0.995)e

2Example 14 Suppose that X is a normally distributed random variable with mean µ = 5 and
standard deviation σ = 5. Find Pr(|X − µ| ≥ 5).

3 Suppose that X is a normally distributed random variable with mean µ = 47.5 and
standard deviation σ = 6.4. Find Pr(|X − µ| ≥ 8.5).

4 Suppose that X is a normally distributed random variable with mean µ = 620 and
variance σ2 = 100. Find Pr(|X − µ| ≥ 23).

5Example 15a Suppose that X is a normally distributed random variable with mean µ = 10 and
standard deviation σ = 5. Let X̄ represent the mean of a random sample of size 20
drawn from this population. Find the probability that the sample mean differs from the
population mean by at least 1 unit.

6Example 15b Suppose that X is a normally distributed random variable with mean µ = 2.56 and
standard deviation σ = 0.09. If X̄ represents the mean of a random sample of size 30
drawn from this population and x̄ represents an observed value of the sample mean,
find Pr(|X̄ − µ| ≥ |x̄ − µ|) when:

x̄ = 2.52a x̄ = 2.57b

7 Suppose that X is a normally distributed random variable with mean µ = 27 583 and
standard deviation σ = 13 525. If X̄ represents the mean of a random sample of size 100
drawn from this population and x̄ represents an observed value of the sample mean,
find Pr(|X̄ − µ| ≥ |x̄ − µ|) when:

x̄ = 25 450a x̄ = 30 000b

8 Scores for a certain aptitude test are known to be normally distributed with a mean of 30
and a standard deviation of 7. A group of 25 students are randomly selected to take the
test. Find the probability that the mean test score of this group differs by 3 points or
more from the population mean of 30.

9 The weights of a certain species of fish are normally distributed with a mean of 2 kg and
a standard deviation of 0.5 kg. A researcher collects a random sample of 10 fish from
a particular lake. Find the probability that the mean weight of this group of fish differs
from the population mean by 0.25 kg or more.
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712 Chapter 16: Confidence intervals and hypothesis testing for the mean 16D

10 To plan its work schedule, a manufacturing company uses the knowledge that the
time taken to assemble a certain component is normally distributed with a mean of
15 minutes and a standard deviation of 5 minutes.

a If the actual mean assembly time for 20 randomly selected components is recorded,
what is the probability that this will differ by at least 2 minutes from the accepted
mean of 15 minutes?

b If a difference of at least 2 minutes was observed, would this cause you to question
whether the mean assembly time was actually 15 minutes? Explain your answer in
terms of an appropriate hypothesis test. (Use α = 0.05.)

c What size difference between a sample mean determined from a sample of size 20
and the hypothesised population mean would lead you to reject the hypothesis that
the population mean is 15 minutes?

16E Errors in hypothesis testing
As discussed in Section 16B, the logic of a hypothesis test parallels that of a criminal trial.
In a trial, it is always possible that the verdict will be wrong. This can happen in two ways:

� The first is to convict an innocent person. In the language of hypothesis testing, this is
called a Type I error.

� The second is to let a guilty person go free. In the language of hypothesis testing, this is
called a Type II error.

The following table shows how Type I and Type II errors can arise in a court of law.

Situation: A person is to be tried for a crime by a jury

H0 : The person is not guilty
H1 : The person is guilty

Actual situation

Jury’s decision Did not commit crime
(H0 true)

Did commit crime
(H0 not true)

Guilty
(reject H0)

Type I error Correct decision

Not guilty
(do not reject H0)

Correct decision Type II error

Type I and Type II errors are always potentially present in hypothesis testing and are formally
defined as follows.
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16E Errors in hypothesis testing 713

Type I and Type II errors

� A Type I error occurs if we reject the null hypothesis H0 when it is true.
� A Type II error occurs if we do not reject the null hypothesis H0 when it is false.

Suppose that we are testing a new drug for controlling migraine, with hypotheses:

H0 : The drug is ineffective in controlling migraine

H1 : The drug is effective in controlling migraine

Describe the Type I and Type II errors in this situation.

Example 16

Solution
� A Type I error would be committed if we decided that the drug is effective when it

is not.
� A Type II error would be committed if we decided that the drug is not effective when it

really does work.

Probability of Type I and Type II errors
We consider the probability of making a Type I or Type II error after we have set up our test
(i.e. after deciding on our hypotheses, sample size and significance level), but before we have
selected our random sample and determined the sample mean.

Probability of a Type I error
If the null hypothesis is false, then we cannot make a Type I error. If the null hypothesis is
true, then

Pr(Type I error) = Pr(H0 is rejected |H0 is true)

This is equal to the probability of selecting a random sample that produces a p-value less
than α, given that the null hypothesis is true. But the definition of p-value means that this
probability is equal to α.

Thus the probability of committing a Type I error is directly related to the significance level
of the test, α. If the null hypothesis is true and we decide to reject the null hypothesis for a
p-value less than 0.05, then the chance of committing a Type I error is 0.05, or 5%. We can
reduce this chance by testing at a lower significance level, say 1%.

Probability of a Type II error
If the alternative hypothesis is true, then

Pr(Type II error) = Pr(H0 is not rejected |H1 is true)

This probability cannot be calculated without making some further assumptions about the
true value of the population mean µ, as illustrated in the next example.
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714 Chapter 16: Confidence intervals and hypothesis testing for the mean

Student scores on a spelling test are known to be normally distributed with a mean of 20.0
and a standard deviation of 6.0. A new method of teaching spelling has been introduced,
which teachers believe will improve the students’ results. A random sample of 16 students
were taught using the new method, and their average score x̄ determined.

a At the 5% level of significance, find the values of the sample mean that would support
the conclusion that the mean score achieved using the new teaching method is greater
than 20.0.

b Suppose that the true mean score achieved using the new teaching method is 24.0. Find
the probability that the teachers conclude that the new teaching method is no better than
the original teaching method (that is, a Type II error). Assume σ = 6.0.

Example 17

Solution
a We wish to find the values of c such that Pr(X̄ ≥ c | µ = 20.0) < 0.05.

If the null hypothesis is true, then X̄ is normally distributed with

E(X̄) = µ = 20.0 and sd(X̄) =
σ
√

n
=

6.0
√

16
= 1.5

Therefore we require

Pr(X̄ ≥ c | µ = 20.0) = Pr
(
Z ≥

c − 20.0
1.5

)
< 0.05

c − 20.0
1.5

> 1.6449

c > 22.467

For any value of the sample mean greater than 22.467 (from a sample of size 16), the
teachers will conclude that the population mean for the new teaching method is greater
than 20.0.

b If the null hypothesis is not true and µ = 24.0, then X̄ is normally distributed with

E(X̄) = µ = 24.0 and sd(X̄) =
σ
√

n
=

6.0
√

16
= 1.5

The teachers will conclude that the new teaching method is no better than the original
teaching method if x̄ < 22.467. We have

Pr(X̄ < 22.467 | µ = 24.0) = Pr
(
Z <

22.467 − 24.0
1.5

)
= 0.153

Thus there is a probability of 0.153 that the teachers will make a Type II error.

Part of the researcher’s job is to reduce the probability of committing these errors, as the
nature of hypothesis testing (where decisions are made on the basis of probabilities) means
that the potential for such errors to occur is always there.

However, this is a balancing act, as decreasing the chance of a Type I error will increase
the chance of a Type II error. One way of decreasing the chance of a Type II error (without
increasing the chance of a Type I error) is to increase the size of the sample used.
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16E 16E Errors in hypothesis testing 715

Exercise 16E

1Example 16 Researchers test the hypothesis that cattle given a special high-protein feed for a month
will have a higher average weight gain than those given regular feed.

a Describe a Type I error in this scenario.
b Describe a Type II error in this scenario.

2 In testing for tuberculosis (TB), there are always a certain proportion of patients who
show up as having TB but do not actually have the disease. In medical testing, this is
called a ‘false positive’.

a In hypothesis testing, does this correspond to a Type I or a Type II error?
b In testing for TB, what would be a ‘false negative’? Would this be a Type I or a

Type II error?

3Example 17 Gavin knows that the time it takes him to drive to work is normally distributed with
a mean of 28.3 minutes and a standard deviation of 5.1 minutes. Road works have
recently been undertaken to remove a level crossing on his route, and he is hoping that
his mean travel time has been reduced. He measured his travel time on a random sample
of 20 days after the road works, and determined his average travel time, x̄ minutes.

a At the 1% level of significance, find the largest value of the sample mean that would
support the conclusion that Gavin’s mean travel time is now less than 28.3 minutes.
That is, find the value of c such that Pr(X̄ ≤ c | µ = 28.3) = 0.01. Give your answer
correct to three decimal places.

b Suppose that the true mean travel time after the road works is 24.0 minutes. Find the
probability that Gavin concludes that his travel time has not been reduced. That is,
find Pr(X̄ > c | µ = 24.0). Assume the standard deviation is 5.1 minutes. Give your
answer correct to three decimal places.

4 Scores on a statewide examination are normally distributed with a mean of 60 and
a standard deviation of 14. A new syllabus has been introduced, which teachers feel
students might find more difficult, resulting in a lower mean score. A random sample of
100 students were given the examination, and their mean score x̄ determined.

a At the 5% level of significance, find the largest value of the sample mean that would
support the conclusion that the mean examination score is now less than 60. That is,
find the value of c such that Pr(X̄ ≤ c | µ = 60) = 0.05. Give your answer correct to
three decimal places.

b Suppose that the true mean examination score is 58 under the new syllabus. Find the
probability that teachers conclude that the new syllabus has not resulted in a lower
mean score. That is, find Pr(X̄ > c | µ = 58). Assume the standard deviation is 14.
Give your answer correct to three decimal places.
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716 Chapter 16: Confidence intervals and hypothesis testing for the mean 16E

5 According to the records of a university, the average age of students graduating from a
Bachelor degree is 23.6 years, with a standard deviation of 2.8 years. A lecturer thinks
that the average age has increased over the last few years. She determines the average
age at graduation, x̄ years, for a random sample of 100 recent graduates.

a At the 1% level of significance, find the values of the sample mean that would
support the conclusion that the average age at graduation is more than 23.6 years.
Give your answer correct to three decimal places.

b Suppose that the average age at graduation is now 24.5 years. Find the probability
that the lecturer concludes that the average age has not increased (a Type II error).
Assume the standard deviation is 2.8 years. Give your answer correct to three
decimal places.

6 The daily sales in a boutique are known to be normally distributed with a mean
of $2000 and a standard deviation of $500. The owner has engaged a marketing
firm to promote her boutique, which she hopes will increase sales. To see if sales
have increased, a random sample of 10 days was selected and the mean daily sales
determined.

a At the 5% level of significance, find the values of the sample mean that would
support the conclusion that sales have increased after the marketing campaign.
Give your answer correct to the nearest dollar.

b Suppose that the true mean daily sales after the marketing campaign is $2400.
Find the probability that the boutique owner concludes that sales have not increased
(a Type II error). Assume the standard deviation is $500. Give your answer correct to
three decimal places.

7 The time taken to complete a task is normally distributed with a mean of 27.5 seconds
and standard deviation of 3.2 seconds. In an experiment to investigate the effect of
alcohol on manual dexterity, a researcher asked a random sample of 25 adults to
complete this task with a blood alcohol content of 0.05%. The researcher has already
decided that if the sample mean is more than 29.3 seconds, then he will conclude that
the population mean time to complete this task with a blood alcohol content of 0.05% is
more than 27.5 seconds.

a What is probability that the researcher rejects the null hypothesis when it is true
(a Type I error)? Give your answer correct to four decimal places.

b If the population mean time to complete this task with a blood alcohol content
of 0.05% is actually 29.0 seconds, what is the probability that the researcher fails
to reject the null hypothesis (a Type II error)? Assume the standard deviation
is 3.2 seconds. Give your answer correct to four decimal places.

c Do you think the researcher has set up an effective study? Explain your answer.
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Chapter summary

Confidence intervals for the mean
� The value of the sample mean x̄ can be used to estimate the population mean µ. Since this

is a single-valued estimate, it is called a point estimate of µ.
� An interval estimate for the population mean µ is called a confidence interval for µ.
� An approximate C% confidence interval for the population mean µ is given by(

x̄ − z
σ
√

n
, x̄ + z

σ
√

n

)
where:
• z is such that Pr(−z < Z < z) = C%
• x̄ is a value of the sample mean
• σ is the value of the population standard deviation
• n is the size of the sample from which x̄ was calculated.

� The values of z (to four decimal places) for commonly used confidence intervals are:

• 90% z = 1.6449 • 95% z = 1.9600 • 99% z = 2.5758

Hypothesis testing for the mean
� When carrying out a hypothesis test for the mean, we are choosing between two scenarios:

• The null hypothesis, H0, asserts that the sample is drawn from a population with the
same mean as before.

• The alternative hypothesis, H1, asserts that the sample is drawn from a population
with a mean which differs from that of the original population.

� Symbolically, we can express the null and alternative hypotheses in one of the following
three forms:

H0 : µ = µ0 H0 : µ = µ0 H0 : µ = µ0

H1 : µ > µ0 H1 : µ < µ0 H1 : µ , µ0

� The p-value is the probability of observing a value of the sample statistic as extreme as
or more extreme than the one observed, assuming that the null hypothesis is true.

� The significance level of a test, α, is the condition for rejecting the null hypothesis:

• If the p-value is less than α, then we reject the null hypothesis in favour of the
alternative hypothesis.

• If the p-value is greater than α, then we do not reject the null hypothesis.

� The hypothesis test for a mean of a sample drawn from a normally distributed population
with known standard deviation is called a z-test.

� When the alternative hypothesis is directional (< or >), we carry out a one-tail test.
� When the alternative hypothesis is non-directional (,), we carry out a two-tail test.
� p-value (two-tail test) = 2 × p-value (one-tail test)
� A Type I error occurs if we reject the null hypothesis H0 when it is true.
� A Type II error occurs if we do not reject the null hypothesis H0 when it is false.
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718 Chapter 16: Confidence intervals and hypothesis testing for the mean

Technology-free questions

Note: For Questions 1–3, use the approximation Pr(−2 < Z < 2) ≈ 0.95 to simplify your
calculations.

1 The number of customers per day at a fast-food outlet is known to be normally
distributed with a standard deviation of 50. In a sample of 25 randomly chosen days,
a total of 4000 customers were served.

a Give a point estimate for µ, the mean number of customers served per day.
b Calculate an approximate 95% confidence interval for µ.

2 A manufacturer knows that the lifetimes of their light bulbs are normally distributed
with a standard deviation of 150 hours.

a What size sample is required in order to ensure that the distance between the sample
mean and the population mean is less than 20 hours at the 95% confidence level?

b If the number of light bulbs in the sample were doubled, what would be the effect on
the width of the confidence interval?

3 The heights of trees of a particular species are normally distributed with a mean of µ cm
and a standard deviation of 200 cm.

a From a random sample of n trees of this species, a 95% confidence interval for µ was
calculated to be (2430, 2530). Find the value of the sample mean, x̄ cm, and the value
of the sample size n.

b What size sample is required to ensure that a 95% confidence interval for µ has a
width of 80 cm?

4 Suppose that 60 independent random samples are taken from a large population and a
95% confidence interval for the population mean is computed from each of them.

a How many of the 95% confidence intervals would you expect to contain the
population mean µ?

b Write down an expression for the probability that all 60 confidence intervals contain
the population mean µ.

5 For each of the following p-values:

i What is the decision if α = 0.05?
ii What is the decision if α = 0.01?

p = 0.1000a p = 0.0250b
p = 0.0050c p = 0.0001d
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6 In order to see if the level of background noise reduces concentration, an experiment
is carried out as follows. A randomly selected group of students are given puzzles to
complete under noisy conditions, and their mean completion time is compared with the
mean found when there is no background noise. The p-value is 0.02.

a Write down (in words) the null and alternative hypotheses for this experiment.
b What conclusion can you draw about the statistical significance of the effect of noise

level on concentration and why?
c How often are you likely to see a p-value less than 0.02 if the noise level has not

reduced concentration?

7 A psychologist studies the effects of praise on happiness. She believes that children
who receive praise are happier overall than children who do not receive praise. She
measures happiness by counting the number of times that a child smiles in a one-hour
period. She knows that children who do not receive praise smile an average of 4 times
per hour, with a standard deviation of 0.5, and that these data are normally distributed.
She selects a sample of 25 children who she knows receive praise, and finds that they
smile an average of 4.3 times per hour. Given that Pr(−3 < Z < 3) = 0.9973:

a Write down appropriate null and alternative hypotheses for this research.
b Determine the p-value for this test, correct to three decimal places.
c At the 1% level of significance, what would be your conclusion?

8 A training college has established that the time taken to learn a specific technology
system is normally distributed, with a mean of 50 hours and a standard deviation
of 10 hours. A new version of the technology system has been released, and the
company believes that the time to learn it has been reduced. A random sample of
49 new employees were trained using the new version, and their mean time to learn
the technology was 46 hours. Given that Pr(−2.8 < Z < 2.8) = 0.9949:

a Write down appropriate null and alternative hypotheses for this research.
b Determine the p-value for this test, correct to three decimal places.
c At the 5% level of significance, what would be your conclusion?

9 Will each of the following increase, decrease or have no effect on the p-value of a z-test
(if everything else stays the same)?

a The sample size is increased.
b The population variance is decreased.
c The sample variance is doubled.
d The difference between the sample mean and the population mean is decreased.

10 Let Z represent the standard normal random variable. Given that Pr(Z > 1.5) = 0.0668
and Pr(Z < −1.7) = 0.0446, find:

Pr(|Z| > 1.5)a Pr(|Z| < 1.7)b
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11 To investigate the hypotheses

H0 : µ = 20

H1 : µ , 20

a researcher collected a random sample, determined the sample mean x̄ and used her
results to determine Pr(|X̄ − µ| ≥ 2) = 0.044.

a What value of the sample mean did the researcher observe?
b What is the p-value for the hypothesis test, based on her results?
c What conclusion should she reach? (Use α = 0.05.)

Multiple-choice questions

1 The amount of money that customers spend at the supermarket each week in a
certain town is known to be normally distributed with a standard deviation of $84.
If the average amount spent by a random sample of 50 customers is $162, then a
95% confidence interval for the population mean is

($39.10, $128.90)A (−$233.50, $401.51)B
($151.31, $172.69)C ($138.72, $185.28)D
($15.36, $84.64)E

2 A random sample of 100 observations is taken from a population that is known to be
normally distributed with a standard deviation of 25. The sample mean is 45. At the
95% confidence level, the distance between the sample mean and the population mean
is at most

4.9A 0.49B 0.98C 40.1D 9.8E

3 In order to be 95% confident that the sample mean is within 1.4 of the population mean
when a random sample is drawn from a population with a standard deviation of 6.7, the
minimum size of the sample should be

10A 14B 56C 67D 88E

4 If 50 random samples are chosen from a population and a 90% confidence interval for
the population mean µ is computed from each sample, then on average we would expect
the number of intervals which contain µ to be

50A 48B 45C 40D none of theseE

5 If the sample mean remains unchanged, then an increase in the level of confidence will
lead to a confidence interval which is

narrowerA widerB unchangedC asymmetricD
cannot be determined from the information givenE
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6 A confidence interval is to be used to estimate the population mean µ based on a sample

mean x̄. To decrease the width of the confidence interval by
2
3

, the sample size must be
increased by a factor of

2
3

A
9
4

B 3C 9D 16E

7 Which of the following statements is true?

I The centre of a confidence interval is a population parameter.

II The higher the level of confidence, the smaller the confidence interval.

III The confidence interval is a type of point estimate.

IV The true value of a population mean is an example of a point estimate.

I onlyA II onlyB III onlyC IV onlyD none of theseE

8 If a researcher increases her sample size by a factor of 4, then the width of a
95% confidence interval would

increase by a factor of 2A increase by a factor of 4B
decrease by a factor of 2C decrease by a factor of 4D
none of theseE

9 A 95% confidence interval for the mean attention span of an audience in a lecture, based
on a sample of 16 participants, was found to be from 6.7 minutes to 10.5 minutes. The
standard deviation of the attention span of the audience is closest to

8.6 minutesA 3.8 minutesB 1.0 minutesC
1.9 minutesD 3.9 minutesE

10 A significance level of 0.05 means that

A if H0 is true, then there is a 5% chance that it will be wrongly rejected
B there is more than a 95% chance that H0 is not true
C if you retain the null hypothesis, then you have at least a 5% chance of making the

wrong decision
D if you make a Type II error, there is a 95% chance of making a Type I error as well
E the probability of making a Type I error is less than the probability of making a

Type II error

11 Suppose the null hypothesis is that you are not guilty of murder. If you are found
‘not guilty’, then

a Type I error is possibleA a Type II error is possibleB
there is no errorC both A and BD
none of theseE
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12 If the p-value for a test is less than 0.01, then

A you have strong evidence that the null hypothesis is true
B if the null hypothesis is true, then fewer than 1% of samples would give a result as

extreme as or more extreme than the observed result
C there is a 1% chance that both hypotheses are true
D you have failed to reject H0

E there is more than a 99% chance that H0 is not true

13 A local gymnasium instructor found that, during a recent power blackout, the intensity
levels of the aerobics participants seemed higher than usual. The average intensity levels
(measured in heartbeats per minute) in a well-lit room has been established as normally
distributed with mean µ = 70 and standard deviation σ = 10. In a follow-up study, an
aerobics class was run in the dark, and the mean intensity level for the 25 participants
was 76.5. The p-value for the two-tail test is closest to

0.0017A 0.9991B 0.0012C 3.25D 2.0E

14 Suppose that you are a medical researcher who is trying to establish that the new drug
you have developed is more effective than the existing drug. Which outcome would you
most prefer?

p < 0.01A p < 0.05B p > 0.05C α = 0.05D α = 0.01E

15 A fast-food franchiser is considering building a restaurant at a certain location. Based
on financial analysis, a site is acceptable only if the number of pedestrians passing
the location averages at least 100 per hour. A random sample of 50 hours produced
a sample mean of x̄ = 96 pedestrians. If the standard deviation is σ = 21, what is the
probability that a sample mean as small as or smaller than 96 would be observed if the
average number of pedestrians is 100 per hour?

0.05A 0.9109B 0.1780C 0.4245D 0.0890E

16 In a one-sided statistical test at the 1% level of significance, it would be concluded that

H0 should not be rejected if p = 0.006A H0 should be rejected if p = 0.008B
H0 should be rejected if p = 0.06C H0 should not be rejected if p , 0.01D
H0 should be rejected if p > 0.05E

17 Which of the following is a two-tail test?

A a test to see whether women smoke cigarettes more than men
B a test to see whether exercise promotes weight loss
C a test to see whether the mean age of Year 12 students is 18 years old
D a test to see whether test scores of students who have tutors are higher on average

than those of high-income students
E a test to see whether people who are stressed tend to eat more
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18 The number of hours that people sleep at night in a certain community is normally
distributed with a mean of 8 hours and a standard deviation of 2 hours. A study was
conducted to see whether Year 12 students sleep less than 8 hours on average. The study
was based on a sample of 25 students, and the sample mean was 7.5 hours. What is the
p-value for this test?

0.932A 0.2113B 0.4013C 0.8944D 0.1056E

19 When carrying out a z-test, increasing the sample size (and keeping everything else
constant) has the effect of

increasing the chance of a Type I errorA increasing the chance of a Type II errorB
increasing the p-valueC decreasing the p-valueD
increasing the level of significanceE

20 Suppose that X is a normally distributed random variable with mean µ = 34 and
variance σ2 = 10. If X̄ represents the mean of a random sample of size 12 drawn
from this population and x̄ = 31.5 is an observed value of the sample mean, then
Pr(|X̄ − µ| ≥ |x̄ − µ|) is equal to

0.0031A 0.0062B 0.1932C 0.2145D 0.3865E

21 Let Z be a standard normal random variable and let a > 0. If Pr(Z < a) = k, then
Pr(|Z| > a) =

kA 2kB 1 − kC 2(1 − k)D 2(k − 1)E

Extended-response questions

1 a Researchers have established that the time it takes for a certain drug to cure a
headache is normally distributed, with a mean of 14.5 minutes and a standard
deviation of 2.4 minutes. Find the probability that in a random sample of 20 patients,
the mean time for the headache to be cured is between 12 and 15 minutes.

b The researchers modify the formula for the drug, and carry out some trials to
determine the new mean time for a headache to be cured.

i Determine a 95% confidence interval for the mean time for a headache to be
cured, if the average time it took for the headache to be cured in a random sample
of 20 subjects was 12.5 minutes. (Assume that σ = 2.4.)

ii Determine a 95% confidence interval for the mean time for a headache to be
cured, if the average time it took for the headache to be cured in a random sample
of 50 subjects was 13.5 minutes. (Assume that σ = 2.4.)

iii Determine a 95% confidence interval for the mean time for a headache to be
cured based on the combined data from the two studies in i and ii.

iv The researchers want to determine a 95% confidence interval for the mean time
for a headache to be cured that has a width of at most 1 minute. What size sample
should the researchers use?
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2 A sociologist asked randomly selected workers in two different industries to fill out a
questionnaire on job satisfaction. The answers were scored from 1 to 20, with higher
scores indicating greater job satisfaction.

a The scores on the questionnaire for industry A are known to be normally distributed
with a standard deviation of 2.2. The mean score on the questionnaire from a random
sample of 30 people from industry A was 15.3. Find a 95% confidence interval
for µA, the mean satisfaction score in industry A.

b The scores on the questionnaire for industry B were known to be normally
distributed with a mean of 11.3 and a standard deviation of 3.1. The management
team in industry B has now introduced programs to increase job satisfaction. To test
the effectiveness of the new programs, they selected a random sample of 35 people
from industry B, and found their mean score on the questionnaire to be 12.1.

i Write down suitable null and alternative hypotheses for this test.
ii Determine the p-value for this test, correct to three decimal places.
iii At the 5% level of significance, what would be your conclusion?

c Another random sample of 25 people from industry B is given the questionnaire.

i At the 5% level of significance, find the range of values for the sample mean that
would support the hypothesis that the mean job satisfaction score for industry B
is more than 11.3. Give your answer correct to three decimal places.

ii Suppose that the new mean for industry B is in fact 13.0. Find the probability that
the management team conclude that their new programs have not been effective.
Assume the standard deviation is 3.1. Give your answer correct to three decimal
places.

3 The time that it takes to assemble a bookcase is normally distributed, with a mean of
42 minutes and a standard deviation of 5 minutes. The manufacturers have developed
a new model of the bookcase, which they claim is assembled more quickly. A random
sample of 20 of the new bookcases are assembled, and the sample mean is found to be
40 minutes.

a Find a 99% confidence interval for the mean time to assemble the new bookcase.
b The manufacturer decides to carry out a hypothesis test to determine whether the

mean time has decreased.

i Write down the null and alternative hypotheses for this test.
ii Find the p-value for this test, correct to three decimal places.
iii If the significance level is 0.05, what is your conclusion based on this p-value?

c At the 5% level of significance, find the largest value of the mean assembly time
for 20 bookcases that would support the null hypothesis being rejected. Give your
answer correct to three decimal places.

d Suppose that the mean time to assemble the new model bookcase is actually
37 minutes. What is the probability that the null hypothesis will not be rejected?
Give your answer correct to three decimal places.
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4 For a certain model of phone, the length of time between battery charges is normally
distributed with mean 70 hours and standard deviation 10 hours. The manufacturer
brings out a new model of the phone with an enhanced battery, which they claim lasts
longer than the previous battery. To test this claim, a random sample of 25 phones was
selected, and the average time between charges was found to be 75 hours.

a Write down the null and alternative hypotheses for this test.
b Find the p-value for this test, correct to three decimal places.
c If the significance level is 5%, what is your conclusion based on this p-value?
d What is the largest value of the mean time between charges for 25 phones for which

the null hypothesis would not be rejected at the 5% level of significance? Give your
answer correct to three decimal places.

e Suppose that the actual mean time between charges for the new model is k hours,
where k > 70. If the probability that the null hypothesis will not be rejected at the
5% level of significance is equal to 0.20, what is the value of k? Give your answer
correct to one decimal place.

5 When using the recommended fertiliser, the monthly growth in a certain species of
plant is normally distributed with a mean of 8.2 cm and a standard deviation of 1.2 cm.
A gardener decides to start using a new brand of fertiliser on his plants, but he is unsure
what effect this will have on their growth. To investigate, he uses the new fertiliser for a
month on a sample of 36 plants, and finds their mean growth to be 8.7 cm.

a i Write down suitable null and alternative hypotheses for this test.
ii Determine the p-value for this test, correct to four decimal places.
iii At the 5% level of significance, what would be your conclusion?

b Another gardener wants to conduct the same test, and she also uses the new fertiliser
for a month on a sample of 36 plants.

i Find the value of c such that Pr(X̄ ≤ c | µ = 8.2) = 0.025. Give your answer
correct to three decimal places.

ii Find the value of d such that Pr(X̄ ≥ d | µ = 8.2) = 0.025. Give your answer
correct to three decimal places.

iii Suppose that the actual mean monthly growth using the new fertiliser is 8.6 cm.
Find the probability that the second gardener concludes that the new fertiliser
changes the mean monthly growth. Assume the standard deviation is 1.2. Give
your answer correct to three decimal places.
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17A Technology-free questions
1 Suppose that X is a random variable with mean µ = 5 and variance σ2 = 16.

a Let Y = 3X − 1. Find E(Y) and Var(Y).
b Let U = 3 − 2X. Find E(U) and sd(U).
c Let V = 2Y − 2U. Find E(V) and Var(V).

2 A machine produces components in the shape of a cone. The base of the cone is a circle
of area 1.5 cm2 and the height of the cone is X cm, where X is a random variable with a
mean of 2 cm and a standard deviation of 0.02 cm. The volume of a cone is given by

V =
1
3
πr2h

where r is the radius of the base and h is the height.

a Find the expected volume of the components (in cm3).
b Find the variance of the volume of the components (in cm6).

3 A factory produces nuts and bolts. The mass of each nut is normally distributed with
mean 5 g and standard deviation 0.2 g. The mass of each bolt is normally distributed
with mean 20 g and standard deviation 0.1 g. For distribution, two nuts are screwed
onto each bolt. What are the mean and standard deviation of the resulting total mass?

4 The random variables X and Y are independent. The mean and variance of X are 2
and 3 respectively, while the mean and variance of Y are −2 and 3 respectively. Find the
values of a, b ∈ N if the mean and variance of aX + bY are −2 and 75 respectively.
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5 At a farmers’ market, the bags of mandarins have a mean weight of 500 g, with a
variance of 25 g2, and the bags of passionfruit have a mean weight of 160 g, with a
variance of 10 g2.

a If there are five mandarins in each bag, what are the mean and variance of the weight
of an individual mandarin?

b If there are eight passionfruit in each bag, what are the mean and variance of the
weight of an individual passionfruit?

c If you buy two bags of mandarins and three bags of passionfruit from the market,
what are the mean and variance of the total weight of the five bags?

6 A random variable X has probability density function f given by

f (x) =

2(1 − x) if 0 ≤ x ≤ 1

0 otherwise

a Let Y = 3X. Find the mean and variance of Y .
b Let X1, X2 and X3 be independent random variables, each with the same probability

density function as X. If V = X1 + X2 + X3, find the mean and variance of V .

7 The final marks in a chemistry examination are normally distributed with mean 68 and
standard deviation 8. A random sample of 16 students are selected and their mean mark
calculated. What are the mean and standard deviation of this sample mean?

8 The cost of a certain brand of phone has a mean of µ = $1600 and a standard deviation
of σ = $200. A sample of phones is selected and the average price of the phones in the
sample, $X̄, determined. In order for the standard deviation of the average price to be
less than $25, how many phones should be included in the sample?

9 A random sample of 36 fish was removed from a large nursery tank. The average
weight of these fish was 84.0 grams, and the population weight is known to have
a standard deviation of 12.0 grams. Using Pr(−1.96 < Z < 1.96) = 0.95, find an
approximate 95% confidence interval for the mean weight of the fish in the tank.

10 For this question, use the approximation Pr(−2 < Z < 2) ≈ 0.95 in your calculations.
The adult weights of a particular species of fish are normally distributed with a mean
of µ g and a standard deviation of 25 g.

a From a random sample of n fish of this species, a 95% confidence interval for µ was
calculated to be (430, 450). Find the value of the sample mean, x̄ g, and the value of
the sample size n.

b What size sample is required to ensure that a 95% confidence interval for µ has a
width of 4 g?
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11 Consider the following hypotheses:

H0 : µ = 20

H1 : µ < 20

a If the p-value is 0.045, what is your conclusion (at the 5% level of significance)?
b Suppose that the same data are used to carry out a two-tail test.

i What is the p-value for the two-tail test?
ii What is your conclusion for the two-tail test (at the 5% level of significance)?

12 The time that students take to complete a puzzle is normally distributed, with a mean
of 95 seconds and a standard deviation of 15 seconds. Researchers believe that students
who meditate for 20 minutes before they do the puzzle will complete it more quickly.
A random sample of 25 students, who first meditated, completed the puzzle in an
average time of 89 seconds. Given that Pr(−2 < Z < 2) = 0.9545:

a Write down appropriate null and alternative hypotheses for this research.
b Determine the p-value for this test, correct to three decimal places.
c At the 5% level of significance, what would be your conclusion?

17B Multiple-choice questions
1 Let V and W be independent normally distributed random variables, where V has a

mean of 4 and a variance of 2, and W has a mean of 3 and a variance of 5. Define the
random variable X = 2V − 2W + 3. In terms of the standard normal random variable Z,
the probability Pr(X > 4) is equal to

Pr
(
Z >

−1
√

28

)
A Pr

(
Z >

1
√

28

)
B Pr

(
Z <

−1
√

28

)
C Pr

(
Z >

−1
√

14

)
D Pr

(
Z >

−1
√

31

)
E

2 The random variable X is normally distributed with mean 58 and standard deviation 8.
The random variable Y is normally distributed with mean 52 and standard deviation 6.
If X and Y are independent, then Pr(X < Y) is equal to

0.3341A 0.2743B 0.0013C 0.7257D 0.6659E

3 The weight of a certain type of large dog is normally distributed with mean 42 kg and
standard deviation 4.5 kg. The probability that the average weight of 20 of these dogs,
randomly selected, is between 38 kg and 43 kg is closest to

0.8398A 0.4009B 0.7564C 0.6862D 0.9332E

4 The weight of a large loaf of bread is normally distributed with mean 420 g and
standard deviation 30 g. The weight of a small loaf of bread is normally distributed with
mean 220 g and standard deviation 10 g. The mean, µ g, and standard deviation, σ g,
of the total weight of 5 large loaves and 10 small loaves are

µ = 4300, σ = 10
√

55A µ = 4300, σ = 250B µ = 4300, σ = 50
√

13C
µ = 5300, σ = 250D µ = 5300, σ = 10

√
55E
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5 The mean cost of a 500 g loaf of bread is $2.84, with a standard deviation of $0.88.
A random sample of 16 loaves of bread is selected. The mean and standard deviation
of the mean cost of the loaves in this sample are

mean $2.84, sd $0.88A mean $2.84, sd $0.22B mean $0.71, sd $0.22C
mean $45.44, sd $14.08D mean $2.84, sd $0.06E

6 The mean cost of a 1 kg bag of bananas is $3.68, with a standard deviation of $1.05.
The probability that the mean cost of a random sample of 25 bags of bananas is less
than $3.60 is

0.3516A 0.6484B 0.4696C 0.5304D 0.0939E

7 For a statistician to be 99% confident that the sample mean will differ by less than
0.3 units from the population mean, given that the population standard deviation
is 1.365, the minimum sample size should be

56A 80B 113C 138D 145E

8 The time taken to complete task A is normally distributed with a mean of 5 hours and
a standard deviation of 1 hour. The time taken to complete task B is independent of the
time taken to complete task A, and has a mean of 8 hours and a standard deviation of
1.5 hours. A tradesperson wishes to quote a total completion time for both tasks that he
will be 99% certain to achieve. This quote, in hours, would be closest to

14.5A 15.2B 16.5C 17.2D 18.5E

9 A 98% confidence interval for the mean amount spent per person in a restaurant,
based on a sample of 21 patrons, was found to be from $32.00 to $45.00. The standard
deviation of the amount spent per person is closest to

$14.89A $50.67B $6.40C $38.50D $12.80E

10 A production line is designed to produce bicycle wheels with mean diameter 42 cm.
It is known that the diameters are normally distributed with standard deviation 1.5 cm.
In order to test the hypothesis that the mean diameter is indeed 42 cm, a random sample
of 25 wheels is selected. The sample mean is found to be 41.5 cm. The p-value for a
two-tail test is closest to

0.9522A 0.0956B 0.0372C 0.0477D 0.0556E

11 The VCAA scores in all studies (the population) have a mean of 30 and a standard
deviation of 7. A Specialist Mathematics teacher takes her class of 15 students to be
a random sample. Her class mean score was 36.2. If these data are used to test the
hypotheses H0 : µ = 30 and H1 : µ > 30, with α = 0.05, then the p-value for her class
and the conclusion are

p = 0.0030 and reject H0A p = 0.0030 and do not reject H0B
p = 0.3000 and reject H0C p = 0.0003 and reject H0D
p = 0.0003 and do not reject H0E
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12 Which of the following statements is true about hypothesis testing for µ with known σ?

A The hypothesis test can be conducted even if α is unknown.
B The p-value is independent of H0.
C The p-value is a statistic calculated as (x̄ − µ)

√
n/σ.

D If the p-value is greater than α, where α is the significance level, this is insufficient
evidence to reject H0.

E The hypothesis test is only valid if the population from which the sample is selected
is normally distributed.

13 A confidence interval is to be used to estimate the population mean µ based on a sample
mean x̄. To decrease the width of the confidence interval by 75%, the sample size must
be multiplied by a factor of

3
4

A
1
4

B 4C 16D 64E

14 An engineer is checking the quality of a shipment of electronic components. If the
rating (on a scale of 1 to 10) is less than 7, then the shipment will be rejected. A random
sample of 12 components is selected, and their quality level is rated by the engineer. He
determines that the average rating for this sample is 6.8. He must now decide whether to
reject the shipment. In this situation, the alternative hypothesis H1 is

µ < 6.8A µ , 7B µ , 6.8C µ > 6.8D µ < 7E

15 In a one-sided statistical test at the 5% level of significance, it would be concluded that

H0 should not be rejected if p = 0.026A H0 should be rejected if p = 0.048B
H0 should be rejected if p = 0.06C H0 should not be rejected if p , 0.05D
H0 should not be rejected if p < 0.05E

17C Extended-response questions
1 Let X1, X2, . . . , X30 be independent random variables, each having a probability

distribution given by

Pr(X = x) = 0.4x−1 × 0.6 for x = 1, 2, 3, . . .

with E(X) =
5
3

and Var(X) =
10
9

. Find:

Pr(X = 4)a Pr(X > 4)b

Given that Y = X1 + X2 + · · · + X30, and using the central limit theorem, find:

E(Y)c Var(Y)d Pr(Y > 60), correct to two decimal places.e

2 The volume of liquid in a 1 litre bottle is normally distributed with a mean of µ mL
and a standard deviation of σ mL. In a randomly selected bottle, there is a probability
of 0.057 that there is more than 1.02 litres. In a randomly selected six-pack of bottles,
there is a probability of 0.033 that the mean volume of liquid is more than 1.01 litres.
Find the values of µ and σ.
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3 Suppose that people’s weights, X kg, are normally distributed with a mean of 80 kg and
a standard deviation of 20 kg.

a Find k1 and k2 such that, for a person chosen at random, Pr(k1 < X < k2) = 0.95.
b Suppose that we plan to take a random sample of 20 people and determine their

mean weight, X̄ kg. Find c1 and c2 such that Pr(c1 < X̄ < c2) = 0.95.
c Suppose that researchers are no longer sure that the mean weight of people is 80 kg.

They believe that it might have changed, due to changes in diet. To investigate
this possibility, they take a random sample of 20 people and determine a sample
mean of 85 kg. Based on this value (and a standard deviation of 20 kg), determine a
95% confidence interval for the mean.

4 A machine packs sugar into 1 kg bags. A random sample of 10 bags was taken and their
weights, in grams, were as follows:

1000, 998, 1005, 999, 1002, 1001, 999, 1000, 1003, 1001

It is suspected that the machine overfills the bags and needs adjustment. It is known that
the weights of the bags are normally distributed with a standard deviation of 1.75 g.

a The manufacturer decides to carry out a hypothesis test to determine whether the
mean weight of the bags is more than 1 kg.

i Write down the null and alternative hypotheses for this test.
ii Find the p-value for this test, correct to three decimal places.
iii If the significance level is 0.05, what is your conclusion based on this p-value?

b At the 5% level of significance, find the largest value of the mean weight for a
random sample of 10 bags that would support the null hypothesis being rejected.
Give your answer correct to two decimal places.

c Suppose that the actual mean weight is 1.002 kg. What is the probability that the null
hypothesis will not be rejected? Give your answer correct to three decimal places.

5 Linh rides her bike to work each day. She knows that the time it takes is normally
distributed with a mean of 55 minutes and a standard deviation of 5 minutes.

a A new bike path has recently been opened, and Linh thinks that her average riding
time may have decreased. In the week following the opening of the new bike path,
she determines that her average riding time for the 10 trips is 50 minutes.

i Write down the null and alternative hypotheses for a test to determine if Linh’s
average riding time has decreased.

ii Find the p-value for this test, correct to four decimal places.
iii If the significance level is 0.05, what is your conclusion based on this p-value?

b At the 5% level of significance, find the largest value of the average riding time for
10 trips that would support the null hypothesis being rejected. Give your answer
correct to three decimal places.

c Suppose that Linh’s average riding time is now actually 52 minutes. What is the
probability that the null hypothesis will not be rejected? Give your answer correct to
three decimal places.
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17D Algorithms and pseudocode
You may like to use a device to implement the algorithms in this section; see the coding
appendices in the Interactive Textbook for instructions.

1 Three dice
Let X1, X2 and X3 represent the numbers observed when three fair dice are rolled.
In this question, we consider the probability distribution of the sum X1 + X2 + X3.

The pseudocode function given
on the right outputs a sorted list of
the values of X1 + X2 + X3 for all
possible combinations of values
of X1, X2 and X3.

define sums( ):

S ← [ ]

for i from 1 to 6

for j from 1 to 6

for k from 1 to 6

append i + j + k to S

end for

end for

end for

sort S into ascending order

return S

The list produced by this function is

sums( ) = [3, 4, 4, 4, 5, 5, 5, 5, 5, 5, . . . , 17, 17, 17, 18]

The pseudocode function given
on the right converts a sorted list
of values into a frequency table.

define freq(A):

T ← [ ]

n← length(A)

for i from 1 to n

if i = 1 or A[i] , A[i − 1] then

count ← 1

for j from i + 1 to n

if A[ j] = A[i] then

count ← count + 1

end if

end for

append [A[i], count] to T

end if

end for

return T
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If we apply the second function to the sorted list produced by the first function, then
we obtain

freq(sums( )) = [[3, 1], [4, 3], [5, 6], [6, 10], [7, 15], [8, 21], . . . , [17, 3], [18, 1]]

This corresponds to the following frequency table for the values of X1 + X2 + X3.

Sum 3 4 5 6 7 8 . . . 17 18

Frequency 1 3 6 10 15 21 . . . 3 1

a Perform a desk check for the function freq(A) using A = [1, 1, 2, 3, 3].
b By modifying the function freq(A), write a new pseudocode function relfreq(A) that

converts a sorted list of values into a relative frequency table.
c Using the two pseudocode functions sums( ) and relfreq(A), write an algorithm in

pseudocode to find:

i Pr(X1 + X2 + X3 = 5) ii Pr(7 ≤ X1 + X2 + X3 ≤ 12) iii E(X1 + X2 + X3)

2 Sum of two random variables
In this question, we consider the sum of two independent discrete random variables X1

and X2 that do not have uniform distributions.

x1 0 1 2 3

Pr(X1 = x1)
3
8

1
4

1
4

1
8

x2 0 1 2

Pr(X2 = x2)
1
2

1
3

1
6

We can represent these two distributions with the following four lists:

X1 = [0, 1, 2, 3] X2 = [0, 1, 2]

P1 = [3/8, 1/4, 1/4, 1/8] P2 = [1/2, 1/3, 1/6]

a Write a pseudocode function sums(A, B) that inputs two lists of values A and B,
and outputs a sorted list of all the possible sums of one value from A and one value
from B. (Hint: Look at the function sums( ) from Question 1.)

b Write a pseudocode function unique(A) that inputs a sorted list of values A, and
outputs the list A with repetitions removed. (Hint: Look at the function freq(A) from
Question 1.)

We can apply these two functions to find the list of unique values of X1 + X2:

Y = unique(sums(X1, X2)) = [0, 1, 2, 3, 4, 5]

We now aim to calculate the probability distribution of X1 + X2:

D = [[0, 0.1875], [1, 0.25], [2, 0.27083̇], [3, 0.1875], [4, 0.083̇], [5, 0.02083̇]]

c Using pseudocode, write an algorithm that produces the probability distribution D
of X1 + X2. (Hint: You can do this using three nested for loops, where the outer loop
goes over the list Y and the inner two loops go over the lists X1 and X2.)
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18A Technology-free questions
1 Prove by induction that for all n ∈ N:1 1

0 1

n

=

1 n
0 1

a
5 −8
2 −3

n

=

4n + 1 −8n
2n 1 − 4n

b

2 Consider the points A(3, 2, 4), B(−2, 3, 5) and C(1, 0, 2) in three-dimensional space.

a Express the vectors
−−→
CA and

−−→
CB in component form.

b Find
−−→
CA ×

−−→
CB.

c Find the area of the triangle ABC.
d Find the area of the parallelogram spanned by the vectors

−−→
CA and

−−→
CB.

3 Let ` be the line with vector equation r = −8i + 4 j + 10k + t(i + 7 j − 2k), t ∈ R, and
let Π be the plane with Cartesian equation 12x − 2y − z = 17. Show that the line ` and
the plane Π do not intersect.

4 The line given by r = 2i − 2 j + k + t(−3i + 9 j + k), t ∈ R, crosses the x–z plane and the
y–z plane at the points A and B respectively. What is the length of the line segment AB?

5 Find a vector equation that represents the line of intersection of the planes defined by
the equations 3x − y + 2z = 100 and x + 3y = 45.

6 Determine the distance between the two parallel lines 5x + 5y− 11 = 0 and x + y− 1 = 0
in the Cartesian plane.

7 Let n be a natural number, and consider the statement:

� If n has an odd number of factors, then n is a perfect square.

For this statement, write:

the conversea the contrapositiveb the negation.c
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8 Prove by induction that 2n+2 + 32n+1 is divisible by 7, for each positive integer n.

9 a Find the gradient of the curve 2y2 − xy3 = 8 at the point where y = −1.
b Find the length of the parametric curve defined by x = 3 sin(2t) and y = −3 cos(2t),

for
π

6
≤ t ≤

2π
3

.

10 Let f (x) = 4 arccos(2x − 1). Find:

the maximal domaina the rangeb
f
( 1

2
)

c a, if f (a) = 3πd
the equation of the tangent to the graph at the point where x = 1

2 .e

11 A tank originally holds 40 litres of water, in which 10 grams of a chemical is dissolved.
Pure water is poured into the tank at 4 litres per minute. The mixture is well stirred and
flows out at 6 litres per minute until the tank is empty.

a State how long it takes the tank to empty.
b Set up a differential equation for the mass, m grams, of chemical in the tank at time

t minutes, including the initial condition.
c Express m in terms of t.
d Hence determine how long it takes for the concentration of the solution to reach

0.2 grams per litre.

12 For the graph of f (x) =
x + 3
x2 + 3

, find:

a the equations of any asymptotes
b the coordinates of any stationary points
c the area bounded by the x-axis, the y-axis, the line x = 3 and the graph of y = f (x).

13 A curve is defined by the parametric equations x = t and y = 3t
3
2 − 1, for 0 ≤ t ≤ 1.

Let P and Q be the points (0,−1) and (1, 2) respectively.

a Find the length of the arc PQ.
b Find the length of the line segment PQ.

14 a Find each of the following complex numbers in Cartesian form:

i (5 + i)(4 + i) ii
(√

3 + i
)(
−2
√

3 + i
)

iii
(1
2

+ i
) (
−

3
4

+ i
)

iv (1.2 − i)(0.4 + i)

b Let z = a + i and w = b + i, where both a and b are integers.

i Find zw, in terms of a and b.
ii If Re(zw) = Im(zw), express b in terms of a.
iii Hence sketch the graph of b against a.

15 The random variable X takes values −1, 0, 1 with probabilities
1
6

,
1
2

,
1
3

respectively.

Let X1 and X2 be independent random variables with this same distribution and
let Y = X1 + X2. Find:

Pr(Y = 2)a Pr(Y = 0)b Pr(Y = 1)c E(Y)d
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16 Suppose that the mean weight of males is 80 kg with a standard deviation of 12 kg, and
the mean weight of females is 70 kg with a standard deviation of 10 kg. If five men and
five women get into a lift, what are the mean and standard deviation of the total weight
in the lift?

17 The graph of y =
loge x

x
is shown.

Point P is the stationary point, and
Q is the point of intersection of the
graph with the x-axis.

a Find the coordinates of P and Q.
b Find the area of the region bounded

by the x-axis, the curve and the
line x = e.

O
x

y

18 A machine dispenses liquid into bottles. The volume of liquid in a bottle, V mL, has a
mean of 502 mL and a standard deviation of 1 mL. A sample of bottles is selected for
inspection each hour, and the average volume of liquid in the sample bottles, V̄ mL,
determined. If the manufacturer requires the standard deviation of the average volume
to be less than 0.2 mL, how many bottles should be included in each sample?

19 a Solve the differential equation
dy
dx

= ex+y, y(1) = 1, expressing y as a function of x.

b State the maximal domain of this function.
c Find the equation of the tangent to the curve at x = 0.

20 a Solve the differential equation
dy
dx

= x(4 + y2), y(0) = 2, expressing y as a function
of x.

b State the maximal domain of this function.

c Find the equation of the normal to the curve at x =
1
2

√
π

3
.

21 a Express
x

(1 − x)2 as partial fractions.

b Hence find the area of the region defined by the graphs of y =
x

(1 − x)2 , x = 2, x = 4

and the x-axis.

22 a Show that
x

√
x − 1

=
√

x − 1 +
1

√
x − 1

b The graph of f (x) =
x

√
x − 1

, for x ∈ [2, a], is rotated about the x-axis to form a solid

of revolution. Find the volume of this solid in terms of a.

23 Determine the asymptotes, intercepts and stationary points for the graph of the relation

y =
x3 + 3x2 − 4

x2 . Hence sketch the graph.
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24 Let P be a point on the line x + y = 1 and write
−−→
OP = mi + n j, where O is the origin

and m, n ∈ R.

a Find the unit vectors parallel to the line x + y = 1.
b Find a relation between m and n, and hence express

−−→
OP in terms of m only.

c Find the two values of m such that
−−→
OP makes an angle of 60◦ with the line x + y = 1.

25 Points A, B and C are represented by position vectors i + 2 j − k, 2i + m j + k and
3i + 3 j + k respectively.

a The position vector r =
−−→
OA + t

−−→
AC, t ∈ R can be used to represent any point on the

line AC. Find the value of t for which r is perpendicular to
−−→
AC.

b Find the value of m such that ∠BAC is a right angle.

26 Let f (x) =
4x2 + 16x

(x − 2)2(x2 + 4)
.

a Given that f (x) =
a

x − 2
+

6
(x − 2)2 −

bx + 4
x2 + 4

, find a and b.

b Given that
∫ 0

−2
f (x) dx =

c − π − loge d
2

, find c and d.

27 Consider the polynomial P(z) = z2 − (m + 2i)z + n(1 + i), where m and n are real numbers
such that P(1 + 3i) = 0.

Determine the values of m and n.a Solve the equation P(z) = 0 for z.b

28 Find an antiderivative of each of the following:

(2x − 6)exa x loge(2x)b x sec2(3x)c x tan2(x)d

29 Prove by induction that
√

1 +
√

2 + · · · +
√

n ≤
4n + 3

6
√

n for all n ∈ N

30 a Let M be a 2 × 2 matrix and assume that

M = A
a 0
0 b

 A−1

where A is an invertible 2 × 2 matrix and a, b ∈ R. Prove by induction that

Mn = A
an 0

0 bn

 A−1 for all n ∈ N

b Show that
 −4 2
−21 9

 =

1 2
3 7

 2 0
0 3

 1 2
3 7

−1

. Hence find a formula for
 −4 2
−21 9

n

.

31 The cost of a 1 L carton of milk in Australia is known to be normally distributed with a
standard deviation of $0.50. A random sample of 25 cartons was selected from different
shops across the country, and the mean cost for this sample was $1.70.

a Give a point estimate for µ, the mean cost of a 1 L carton of milk in Australia.
b Calculate an approximate 95% confidence interval for µ.

Note: Use the approximation Pr(−2 < Z < 2) ≈ 0.95 in your calculation.
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32 On average, a certain type of battery lasts for 8.3 hours before it requires recharging,
with a standard deviation of 2.4 hours. The manufacturers are introducing a new model
of the battery, which they hope will last longer. To test this, they select a random sample
of 36 new-model batteries and find that they last on average 8.9 hours.

a Write down appropriate null and alternative hypotheses for this test.
b Given that Pr(Z < 1.5) = 0.9332, determine the p-value for this test, correct to three

decimal places.
c At the 5% level of significance, what would be your conclusion?

33 Let In =
∫ 1

0
(1 − x2)n dx, where n ∈ N ∪ {0}.

a Use integration by parts to show that In =
2n

2n + 1
In−1 for all n ∈ N.

Hint: After applying integration by parts, you may need to use x2 = 1 − (1 − x2).

b Hence prove by induction that In =
22n(n!)2

(2n + 1)!
for all n ∈ N.

18B Multiple-choice questions
1 A normal vector to the plane with Cartesian equation 8x + 6y − 3z = −12 is

8i + 6 j − 3kA −8i − 6 j − 3kB 6i + 3 j − 8kC
−12i + 6 j − 3kD 6i − 3 j − 12kE

2 Consider the statement:

� For all integers n, if n is a multiple of 9, then n is a multiple of 3.

Which one of the following is the contrapositive of this statement?

A For all integers n, if n is a multiple of 3, then n is a multiple of 9.
B For all integers n, if n is not a multiple of 9, then n is not a multiple of 3.
C For all integers n, if n is not a multiple of 3, then n is not a multiple of 9.
D There exists an integer n such that n is a multiple of 9 and not a multiple of 3.
E There exists an integer n such that n is a multiple of 3 and not a multiple of 9.

3 Consider the statement:

� For all integers n, if n is a multiple of 9, then n is a multiple of 3.

Which one of the following is the negation of this statement?

A For all integers n, if n is a multiple of 3, then n is a multiple of 9.
B For all integers n, if n is not a multiple of 9, then n is not a multiple of 3.
C For all integers n, if n is not a multiple of 3, then n is not a multiple of 9.
D There exists an integer n such that n is a multiple of 9 and not a multiple of 3.
E There exists an integer n such that n is a multiple of 3 and not a multiple of 9.

4 Let z = a + i, where a ∈ R. If Arg(z9) = Arg(z), then a possible value of a is

−
√

2A −
1
√

2
B 0C

1
√

2
D

√
2E
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5 The stationary points of the function f (x) =
2x2 − x + 1

x − 1
occur when x equals

1A 0 or 2B 0 onlyC 1
4D −1E

6 The point of inflection of the graph of y =
x2 − 3x + 2

x2 has x-coordinate

0A −1B 1C 2D −2E

7 The gradient of the curve with equation x3 + y3 + 3xy = 1 at the point (2,−1) is

0A −1B 1C −2D 2E

8 The graph of the function f (x) = ex sin x, 0 ≤ x ≤ π, has a maximum gradient of

1A
π

2
B e−

π

2C eπD e
π

2E

9 If
∫ k

0
xe−x dx = 0.5 and k > 0, then k is closest to

0.7A 1.7B 2.7C 3.7D 4.7E

10 If
dy
dx

= x loge x with y(2) = 2, then y(3) is closest to

4.31A 2.3B −1.7C 0D 1.3E

11 Consider the surface of revolution formed by revolving the curve y =
4
x

, for 1 ≤ x ≤ b,
about the x-axis. The surface area is given by

8π
∫ b

1

1
x

dxA 8π
∫ b

1

1
x2 dxB 8π

∫ b

1

√
16 + x4

x3 dxC

8π
∫ b

1

√
1 +

16
x2 dxD 8π

∫ b

1

√
1 +

16
x4 dxE

12 The solution of the inequality cot
(
θ

2

)
≥
√

3, for −π ≤ θ ≤ π, is(
−π,

π

3

)
A

[
−π,

π

3

)
B

[
0,
π

3

]
C

(
0,
π

3

]
D

[
π

3
,π

]
E

13 The velocity, v m/s, of a particle at time t seconds is given by v =
4t

1 + t2 , t ≥ 0.

The distance, in metres, travelled by the particle in the first 10 seconds is closest to

9.23A 533.33B 1C 2D 1.73E

14 A small rocket is fired vertically upwards. The initial speed of the rocket is 200 m/s.
The acceleration of the rocket, a m/s2, is given by

a = −
20 + v2

50

where v m/s is the velocity of the rocket at time t seconds. The time that the rocket takes
to reach the highest point, in seconds, is closest to

5A 8B 12C 17D 25E

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
ev

is
io
n

740 Chapter 18: Revision of Chapters 1–17

15 The graph of y = − sec(ax + b) is identical to the graph of y = cosec
(
x +

π

3

)
. The values

of a and b could be

a = 1 and b =
π

6
A a = −1 and b =

π

6
B a = 1 and b =

2π
3

C

a = −1 and b =
7π
6

D none of theseE

16
d
dx

(
x loge y

)
−

x
y

dy
dx

=

0A loge yB x loge yC

loge y −
x
y

dy
dx

D
1 − x

y
dy
dx

E

17 The graph with parametric equations x = 2 + 3 sec(t) and y = 1 + 2 tan(t), where

t ∈
[
0,
π

2

)
∪

(
π

2
,π

]
, has

two asymptotes, y =
2x
3
−

1
3

and y = −
2x
3

+
7
3

A

two asymptotes, y =
2
3

(x − 1) and y = −
2
3

(x − 1)B

two asymptotes, y − 1 =
3
2

(x − 2) and y − 1 = −
3
2

(x − 2)C

one asymptote, y =
2x
3
−

1
3

D one asymptote, 3y = 7 − 2xE

18 Consider the vectors a = 2i + 3 j − k, b = j − 3k and c = i − 2 j − 2k. Solving the
equation 3i = ma + nb + pc produces

A m = 1, n = −1, p = 1 and a, b and c are linearly independent vectors
B m = 1, n = 3

8 , p = 1
8 and a, b and c are linearly independent vectors

C m = 1, n = −1, p = 1 and a, b and c are linearly dependent vectors
D m = 1, n = 3

8 , p = 1
8 and a, b and c are linearly dependent vectors

E no values of m, n and p satisfy this equation

19
∫ 2π

3
π

6
cos2(2x) dx is not equal to

1
2

∫ 4π
3

π

3
cos2(x) dxA

π

2
−
∫ 2π

3
π

6
sin2(2x) dxB

1
2

∫ 2π
3

π

6
1 + cos(4x) dxC∫ 2π

3
π

6
sin2( 1

2 (π − 4x)
)

dxD
[1
6

cos3(2x)
] 2π

3

π

6

E

20 Let z = a + bi, where a, b ∈ R. If z2(1 + i) = 2 − 2i, then the Cartesian form of one value
of z could be
√

2iA −
√

2iB −1 − iC −1 + iD
√
−2E

21 The gradient of the tangent to the graph of y = exy at the point where x = 0 is

0A 1B 2C loge 2D undefinedE
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22 Let a = pi + q j + k and b = i − 2 j + 2k. If the scalar resolute of a in the direction of b
is 2

3 and the scalar resolute of b in the direction of a is 2, then the values of p and q are

p = 0 and q = 0A p = 2 −
√

7 and q =
√

7B

p =
8 +
√

10
5

and q =
4
√

10
5

C p = 1 and q = 0.5D

p = −2 and q = −1E

23 Let f (x) = a cos(x + c) for x ∈
[
π − c,

3π
2
− c

]
, where a > 0. Then f −1(x) =

a cos−1(x − c)A cos−1
( x
a
− c

)
B π − c − cos−1

( x
a

)
C

π + c − cos−1
( x
a

)
D 2π − c − cos−1

( x
a

)
E

24 The position of a particle at time t seconds is defined by r =
a

t + 1
i + (1 + t2) j, t ≥ 0,

where a > 0. The Cartesian equation which represents the path of the particle is

y =
a2

x2 , for x ∈ [0,∞)A y =
a2 − 2ax + 2x2

x2 , for x ∈ [a,∞)B

y =

(a
x
− 1

)2
+ 1, for x ∈ (0, a]C y =

x2 − 2ax + 2a2

a2 , for x ∈ R \ {−1}D

y =
a2

(x − 1)2 + 1, for x ∈ [0,∞)E

25 Using an appropriate substitution, the integral
∫ 2

1
x(2 − x)(x3 − 3x2 + 4) dx can be

expressed as

3
∫ 2

1
u duA

1
3

∫ 1

2
u duB

1
6

∫ 0

2
u2 duC

∫ 0

2
3u duD −

1
3

∫ 0

2
u duE

26 This is the slope field for a differential
equation, produced by a calculator, with
0 ≤ x ≤ 2 and −3 ≤ y ≤ 3.

A solution for the differential equation
could be

y = −
1
x2A y = −

1
x3B y =

1
x

C y = exD y = −
1
√

x
E

27 This is the slope field for a differential
equation, produced by a calculator, with
−π ≤ x ≤ π and −3 ≤ y ≤ 3.

The differential equation could be

dy
dx

= sin xA
dy
dx

= − cos xB
dy
dx

= tan xC
dy
dx

= sin(2x)D
dy
dx

= cos xE

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



R
ev

is
io
n

742 Chapter 18: Revision of Chapters 1–17

28 This is the slope field for a differential
equation, produced by a calculator, with
−3 ≤ x ≤ 3 and −3 ≤ y ≤ 3.

A solution for the differential equation
could be

y =
1
x

A x = y3B y =
1
x2C x = −

1
y

D x = loge yE

29 This is the slope field for a differential
equation, produced by a calculator, with
−3 ≤ x ≤ 3 and −3 ≤ y ≤ 3.

The differential equation could be

dy
dx

= x2A
dy
dx

= −
y
x

B
dy
dx

=
y
x

C
dy
dx

=
x
y

D
dy
dx

= −
x
y

E

30 A particle is projected at an angle of arctan
(3
4

)
to the horizontal with a speed of 40 m/s.

After 2 seconds, the particle is moving in a direction at an angle of θ to the horizontal.
If the acceleration due to gravity is taken as g = 10 m/s2, then tan θ is equal to

1
8

A
1
2

B 2C 4D 8E

31 Which one of the following points is equidistant from the two planes given by the
equations −2x + y − 2z + 3 = 0 and −2x + y − 2z + 21 = 0?

(4, 3, 4)A (2, 4, 6)B (3,−5, 5)C (1, 3, 5)D (−1, 4,−6)E

32 A random sample is drawn from a population with a standard deviation of 15.6. For the
difference between the sample mean and the population mean to be less than 2.0 at the
99% confidence level, the minimum size of the sample should be

41A 404B 403C 1614D 1615E

33 A manufacturer claims that the average lifetime of their tyres is µ = 40 000 km.
Laboratory testing of 30 tyres produced a sample mean lifetime of x̄ = 38 500 km.
Given that the standard deviation is σ = 3000 km, what is the probability that a sample
mean as small as or smaller than 38 500 km would be observed if the average lifetime of
the tyres is 40 000 km?

0.05A 0.0031B 0.0062C 0.6915D 0.9969E
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18C Extended-response questions
1 a Let a and b be integers.

i Show that if both a and b are even, then there exist integers x and y such that
x + y = a and x − y = b.

ii Show that if both a and b are odd, then there exist integers x and y such that
x + y = a and x − y = b.

iii However, show that if a is even and b is odd, then there do not exist integers
x and y such that x + y = a and x − y = b.

b Using part a, prove each of the following:

i If an integer n is the product of two even integers a and b, then n is a difference
of perfect squares.

ii If an integer n is the product of two odd integers a and b, then n is a difference
of perfect squares.

c Using part b, prove each of the following:

i Every odd integer is a difference of perfect squares.
ii Every multiple of 4 is a difference of perfect squares.

2 A curve has equation x2 + y2 + 2x + 4y = 24.

a Find the gradient of this curve at the point (1, 3).
b Find the equation of the tangent to this curve at the point (1, 3).
c The curve can be described by parametric equations of the form

x = −1 + b cos t and y = −2 + d sin t

where b and d are positive constants. Find the values of b and d.
d Using the parametric representation, find the area of the surface of revolution formed

by rotating the curve:

i about the x-axis for
π

6
≤ t ≤

π

3
ii about the y-axis for

π

6
≤ t ≤

π

3
.

e A particle moves along the curve. When the particle is at the point (1, 3), its
y-coordinate is increasing by 2 units per second. Find the corresponding rate of
change in its x-coordinate.

3 a Use mathematical induction to prove that
n∑

r=1

r(r2 + 1) =
1
4

n(n + 1)(n2 + n + 2)

for every natural number n.
b Using pseudocode, describe an algorithm to find the smallest value of n such that

n∑
r=1

r3(r2 + 1) ≥ 10 000

Hint: Use a while loop in your algorithm.
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4 The points A, B and C have position vectors a = i + 2 j + 2k, b = 2i + j + 2k and
c = 2i + 2 j + k respectively, with respect to an origin O.

a Find a vector equation of the line BC.
b Find a vector equation of the plane Π that contains the point A and is perpendicular

to the line OA.
c Show that the line BC is parallel to the plane Π.
d A circle with centre O passes through A and B. Find the length of the minor arc AB.
e Verify that 2i + 2 j − 3k is perpendicular to the plane OAB. Write down a

vector perpendicular to the plane OAC. Hence, find the acute angle between the
planes OAB and OAC.

5 The plane Π1 is given by the Cartesian equation 3x + 2y − z = −1, and the line `1 is
given by the vector equation r = (4 − t)i + (2t − 3) j + (t + 7)k, t ∈ R.

a Show that the line `1 lies in the plane Π1.

The line `2 is given by the vector equation r = 10 j + 7k + t(i + 3 j + 2k), t ∈ R, and the
line `2 intersects the plane Π1 at the point A.

b Find the coordinates of the point A.
c Find a Cartesian equation of the plane Π2 that passes through the point A and is

perpendicular to the line `1.
d Find the coordinates of the point where the line `1 intersects the plane Π2.
e Find a vector equation of the line `3 that lies in the plane Π1 and is perpendicular to

the line `1.

6 A plane Π1 in three-dimensional space has vector equation r · (2i + 3 j) = −6.

a Find a vector equation of the line that is normal to Π1 and passes through P(2, 1, 4).
b Find the coordinates of Q, the foot of the perpendicular on Π1 from the point P.
c Find the angle between OQ and Π1.
d Planes Π2 and Π3 have vector equations r · (i + j + k) = 5 and r · i = 0 respectively.

Find the point of intersection of the three planes Π1, Π2 and Π3.

7 The independent random variables R and S each have a normal distribution. The means
of R and S are 10 and 12 respectively, and the variances are 9 and 16 respectively. Find
the following probabilities, giving your answers correct to three decimal places:

a Pr(R < S )
b Pr(2R > S1 + S2), where S1 and S2 are independent random variables, each with the

same distribution as S .

8 A machine produces sheets of paper, the thickness of which are normally distributed
with mean 0.1 mm and standard deviation 0.005 mm.

a Find the mean and standard deviation of the normal random variable of the total
thickness of eight randomly selected sheets of paper.

b Find the mean and standard deviation of the normal random variable of the total
thickness if a single sheet of paper is folded three times to give eight ‘thicknesses’.
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9 The length of a rectangular tile is a normal random variable with mean 20 cm and
standard deviation 0.1 cm. The width is an independent normal random variable with
mean 10 cm and standard deviation 0.1 cm.

a Find the probability that the sum of the lengths of four randomly chosen tiles
exceeds 80 cm.

b Find the probability that the width of a randomly chosen tile is less than half
its length.

c Let S be the random variable formed from the sum of the lengths of 50 randomly
chosen tiles, and let T be the random variable formed from the sum of the widths of
80 randomly chosen tiles. Find the mean and variance of S − T .

10 Consider the function

f (x) =

x loge x − 3x if x > 0

0 if x = 0

a Find the derivative for x > 0.
b One x-axis intercept is at (0, 0). Find the coordinates of the other x-axis intercept, A.
c Find the equation of the tangent at A.
d Find the ratio of the area of the region bounded by the tangent and the coordinate

axes to the area of the region bounded by the graph of y = f (x) and the x-axis.

11 a Consider y =
a + b sin x
b + a sin x

, where 0 < a < b.

i Find
dy
dx

.

ii Find the maximum and minimum values of y.

b For the graph of y =
1 + 2 sin x
2 + sin x

, −π ≤ x ≤ 2π:

i State the coordinates of the y-axis intercept.
ii Determine the coordinates of the x-axis intercepts.
iii Determine the coordinates of the stationary points.
iv Sketch the graph of y = f (x).
v Find the area measure of the region bounded by the graph and the line with

equation y = −1.

12 Consider the function

f (x) = cos x +
√

3 sin x, 0 ≤ x ≤ 2π

Given that f (x) can be expressed in the form r cos(x − a), where r > 0 and 0 < a <
π

2
:

Find the values of r and a.a Find the range of the function.b
Find the y-axis intercept.c Find the x-axis intercepts.d

Find x, if f (x) =
√

2.e If g(x) =
1

f (x)
, evaluate

∫ π

2
0

g(x) dx.f

g Find the volume measure of the solid formed when the region bounded by the graph
of y = f (x), the x-axis and the y-axis is rotated about the x-axis.
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13 A particle moves in a line such that the velocity, v m/s, at time t seconds (t ≥ 0) satisfies
the differential equation

dv
dt

=
−v
50

(1 + v2)

The particle starts from O with an initial velocity of 10 m/s.

a i Express as an integral the time taken for the particle’s velocity to decrease from
10 m/s to 5 m/s.

ii Hence calculate the time taken for this to occur.
b i Show that, for v ≥ 0, the motion of this particle is described by the differential

equation

dv
dx

=
−(1 + v2)

50

where x metres is the displacement from O.
ii Given that v = 10 when x = 0, solve this differential equation, expressing x in

terms of v.
iii Hence show that

v =

10 − tan
( x
50

)
1 + 10 tan

( x
50

)
iv Hence find the displacement of the particle from O, to the nearest metre, when it

first comes to rest.

14 Let f (x) = sin(πx) + px, x ∈ [0, 1].

a i Find the value of p for which f ′(1) = 0.
ii Hence show that f ′(x) ≥ 0 for x ∈ [0, 1].

b Sketch the graph of y = f (x), x ∈ [0, 1].
c Find the exact value for the volume of revolution formed when the graph of y = f (x),

x ∈ [0, 1], is rotated around the x-axis.
d For g(x) = k arcsin(x), x ∈ [0, 1], find the value of k such that f (1) = g(1).
e Find the area of the region enclosed by the graphs of y = f (x) and y = g(x), correct to

three decimal places.
f If f (x) − g(x) has a maximum at x = a, find a, correct to three decimal places.

15 a Let z5 − 1 = (z − 1)P(z), where P(z) is a polynomial. Find P(z) by division.

b Show that z = cis
(2π

5

)
is a solution of the equation z5 − 1 = 0.

c Hence find another complex solution of the equation z5 − 1 = 0.
d Find all the complex solutions of z5 − 1 = 0.
e Hence factorise P(z) as a product of two quadratic polynomials with real coefficients.
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16 Points A and B are represented by position vectors a = 2i − j + 2k and b = m(i + j − k)
respectively, relative to a point O, where m > 0.

a Find the value of m for which A and B are equidistant from O.

Points A and B lie on a circle with centre O. Point C is represented by the position
vector −a.

b i Give reasons why C also lies on the circle.
ii By using the scalar product, show that ∠ABC = 90◦.

Now assume that all points on this circle can be represented by the general position
vector d = ka + `b, for different values of k and `.

c i Show that the relation between k and ` is given by 9k2 − 2
√

3k` + 9`2 = 9.
ii When k = 1, find the two position vectors that represent points on the circle.

d Let P be a point on the circle such that OP bisects AB. Find the position vectors
which represent P. Do not attempt to simplify your answer.

A particle is travelling such that its position at time t seconds is given by

r = (5 − t)i + (2 + t) j + (t − 3)k

e Find the value of t when r can be expressed in the form ka + `b, and find the
corresponding values of k and `.

f Hence determine whether the particle lies inside, outside or on this circle at this time.

17 A curve is defined by the parametric equations x = 3 sin(t) and y = 6 cos(t) − a, where
0 ≤ a < 6.

a i Find the Cartesian equation of the curve.
ii Find the intercepts of the curve with the x-axis.

b Define the function which represents the part of the curve above the x-axis.
c Differentiate x

√
9 − x2.

d i Show that
x2

√
9 − x2

can be expressed in the form
A

√
9 − x2

−
√

9 − x2 by finding

the appropriate value for A.

ii Hence show that the result in c can be written as 2
√

9 − x2 −
9

√
9 − x2

.

e Use this result and calculus to find an antiderivative of
√

9 − x2.
f Hence find the area of the region enclosed by the curve above the x-axis.
g For a = 0, find the area of the region enclosed by the curve.
h For a = 0, find the volume of the solid of revolution formed when the curve is rotated

about its horizontal axis.

18 A curve is defined by the parametric equations x = t2 and y = 1
3 t3 − t.

a The curve can be described by a Cartesian equation of the form y2 = g(x). Find g(x).
b Find the coordinates of the stationary points of the curve.
c Find the area of a region enclosed by the curve.
d Find the volume of the solid formed by rotating this region around the x-axis.
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19 A curve is defined by the parametric
equations

x = sin(t), y = sin(4t)

for 0 ≤ t ≤ 2π. The graph is shown
on the right.

a Find the Cartesian equation of the
curve with y in terms of x.

b Find
dx
dt

,
dy
dt

and
dy
dx

in terms of t.

y

x
1.00.5−0.5−1.0

−1.0

−0.5

0.5

1.0

c i Find the values of t for which
dy
dx

= 0.

ii Find the values of x for which
dy
dx

= 0.

iii Find the coordinates of the stationary points of the graph.

iv Find the gradients of the graph at x =
1
√

2
, at x =

−1
√

2
and at the origin.

v Show that the gradient is undefined when x = −1 or x = 1.
d Find the total area of the regions enclosed by the curve.
e Find the volume of the solid of revolution formed by rotating the curve around

the x-axis.

20 Let f (x) =
x3

x2 + a
, where a is a positive real constant.

a Find f ′(x) and f ′′(x).
b Find the coordinates of the stationary point and state its nature.
c Find the coordinates of the points of inflection (non-stationary).
d Find the equation of the asymptote of the graph of f .
e Sketch the graph of f .
f Find the value of a such that the area between the curve, the line y = x and the

line x = a is equal to 1
2 loge 2.

21 Let f (x) =
x3

x2 − a
, where a is a positive real constant.

a Find f ′(x) and f ′′(x).
b Find the coordinates of the stationary points of f in terms of a and state their nature.
c Find the coordinates of the point of inflection of f .
d Find the equation of the asymptotes of the graph of f .
e Sketch the graph of f .
f Find the value of a if a stationary point of f occurs where x = 4

√
3.
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22 Let f : [−1, 1]→ R, f (x) = x arcsin(x) and g : [−1, 1]→ R, g(x) = arcsin(x).

a Find f ′(x) and the coordinates of any turning points for x ∈ (−1, 1).
b Find f ′′(x) and show that there are no points of inflection for x ∈ (−1, 1).
c Prove that f (x) ≥ 0 for all x ∈ [−1, 1].
d Find the values of x for which f (x) = g(x).
e Sketch the graphs of f and g on the one set of axes.
f Find the area of the region enclosed by the graphs of f and g.

23 The coordinates, P(x, y), of points on a curve satisfy the differential equations

dx
dt

= −3y and
dy
dt

= sin(2t)

and when t = 0, y = − 1
2 and x = 0.

a Find x and y in terms of t.
b Find the Cartesian equation of the curve.
c Find the gradient of the tangent to the curve at a point P(x, y) in terms of t.
d Find the axis intercepts of the tangent in terms of t.
e Let the x- and y-axis intercepts of the tangent be points A and B respectively, and

let O be the origin. Find an expression for the area of triangle AOB in terms of t,
and hence find the minimum area of this triangle and the values of t for which
this occurs.

f Give a pair of parametric equations in terms of t which describe the circle with centre
the origin and the same x-axis intercepts as the curve.

g Find the volume of the solid formed by rotating the region between the circle and the
curve about the x-axis.

24 Linh rides her bike to work each day. She knows that the time it takes is normally
distributed with a mean of 55 minutes and a standard deviation of 5 minutes.

a What is the probability that Linh will ride to work in less than 48 minutes on a
particular day?

b Find k1 and k2 such that the probability that Linh takes between k1 and k2 minutes to
ride to work is 0.95.

c During a five-day working week, Linh makes the ride 10 times. Find the probability
that, in a randomly chosen week:

i Linh’s average riding time is less than 50 minutes
ii Linh’s total riding time is more than 580 minutes
iii the ride takes less than 50 minutes more than three times during the week.

d Find c1 and c2 such that there is a probability of 0.95 that her average riding time
over a five-day period is between c1 and c2 minutes.
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25 A continuous random variable X has the probability density function

f (x) =


1
b

if 0 ≤ x ≤ b

0 otherwise

where b is a positive constant.

a Find the mean and standard deviation of X in terms of b.
b Find the mean and standard deviation of X̄ in terms of b and n, where X̄ is the mean

of a random sample of size n.
c For a particular random sample of size 50, the sample mean was 2.4. Give an

expression in terms of b for a 90% confidence interval for the mean of X.
d What does this confidence interval tell us about the value of b?

26 Let z be a non-zero complex number such that

z +
4
z

= k for some k ∈ R

and let z be written in Cartesian form as z = x + yi, where x, y ∈ R.

a Prove that y = 0 or x2 + y2 = 4.
b Prove that if y = 0, then |k| ≥ 4.
c Prove that if x2 + y2 = 4, then |k| ≤ 4.

27 Riley’s factory has two machines, A and B, for making nails. The nails produced by
machine A have a mean diameter of 3 mm, with a standard deviation of 0.03 mm.
The nails produced by machine B have a mean diameter of 3.01 mm, with a standard
deviation of 0.02 mm.

a A random sample of 30 nails is collected from machine A. Find the approximate
probability that the mean diameter of the nails in this sample is less than 2.99 mm or
greater than 3.01 mm.

b A random sample of 30 nails is collected from machine B. Find the approximate
probability that the mean diameter of the nails in this sample is less than 2.99 mm or
greater than 3.01 mm.

c Morgan brings Riley another random sample of 30 nails, but cannot remember which
of the two machines they were collected from. Riley finds that this sample of nails
has a mean diameter of 3.0 mm, with a standard deviation of 0.025 mm.

i Use this sample to determine a 95% confidence interval for the mean diameter of
the population of nails.

ii Which machine do you think this sample came from, and why?
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28 The population, P, of goats on an island grows at a rate proportional to P− 0.5P0, where
P0 is the initial population and time t is measured in years.

a Write down a differential equation that represents this situation.
b Solve the differential equation, given that the initial population was 1000 and the

population increased to 1100 after 1 year.
c Find the increase in population in the third year.
d Find the time taken for the population to reach 2000. (Answer in years, correct to

two decimal places.)

29 In the diagram, the x-axis represents
horizontal ground, the y-axis is vertical and
the unit of distance is metres.

O 100

30° β°
x

y

Particle A is projected with speed 60 m/s from the origin at an angle of 30◦ to the
positive x-direction. At the same time, particle B is projected with speed 50 m/s from
the point (100, 0) at an angle of β◦ to the negative x-direction.

a Give expressions for rA(t) and rB(t), the position vectors of particles A and B after
t seconds. (Let g m/s2 be the acceleration due to gravity.)

b Given that the two particles collide, find the value of β.
c Find the time of collision (in seconds, correct to two decimal places).
d Determine the coordinates of the point of collision (correct to two decimal places).

30 A light-bulb manufacturer advertises that 90% of the light bulbs they produce will last
longer than 100 hours.

a Assume that the lifetimes of the light bulbs are normally distributed with a standard
deviation of 10 hours. If the manufacturer’s claim is true, what is the mean lifetime,
µ hours, of their light bulbs? Give your answer correct to one decimal place.

b A consumer-protection association suspects that the actual mean lifetime of the light
bulbs is less than the value determined in part a. They select a random sample of
40 light bulbs and determine that their average lifetime is x̄ = 110.5 hours.

i Write down the null and alternative hypotheses for the one-tail test to investigate
the manufacturer’s claim.

ii Determine the p-value for this test. (Again assume that the lifetimes of the light
bulbs are normally distributed with a standard deviation of 10 hours.)

iii At the 5% level of significance, what can be concluded about the manufacturer’s
advertising?
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A
Absolute value function [p. 29] The absolute
value of a real number x is defined by

|x| =

x if x ≥ 0
−x if x < 0

Also called the modulus function

Acceleration [pp. 542, 600] the rate of change
of velocity with respect to time

Acceleration, average [p. 542]

average acceleration =
change in velocity

change in time

Acceleration, instantaneous [pp. 542, 569]

a =
dv
dt

=
d2 x
dt2 = v

dv
dx

=
d
dx

(1
2

v2
)

Addition of complex numbers [p. 240]
If z1 = a + bi and z2 = c + di, then
z1 + z2 = (a + c) + (b + d)i.

Addition of vectors [p. 145]
If a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k,
then a + b = (a1 + b1)i + (a2 + b2) j + (a3 + b3)k.

Adjacency matrix [SM1&2] a matrix that
represents a graph. The entries of the matrix give
the number of edges joining each pair of vertices.
For example:

v1 v2

v3 
v1 v2 v3

v1 1 1 0
v2 1 0 2
v3 0 2 0


Adjacent vertices [SM1&2] Two vertices of a
graph are adjacent if they are joined by an edge.

Algorithm [p. 51] a finite, unambiguous
sequence of instructions for performing a
specific task

Alternative hypothesis, H1 [p. 693] asserts
that the sample is drawn from a population with
a mean which differs from that of the original
population

Amplitude of circular functions [p. 4]
The distance between the mean position and the
maximum position is called the amplitude.
The graph of y = a sin x has an amplitude of |a|.

Angle between a vector and an axis [p. 159]
If the vector a = a1i + a2 j + a3 k makes angles α, β
and γ with the positive directions of the x-, y- and
z-axes respectively, then

cosα =
a1

|a|
, cos β =

a2

|a|
, cos γ =

a3

|a|

Angle between two lines [p. 210] Let θ be
the angle between two vectors d1 and d2 that are
parallel to the two lines. The angle between the
lines is θ or 180◦ − θ, whichever is in [0◦, 90◦].

Angle between two planes [p. 225] Let θ be
the angle between two vectors n1 and n2 that are
normal to the two planes. The angle between the
planes is θ or 180◦ − θ, whichever is in [0◦, 90◦].

Angle between two vectors [p. 169] can be
found using the scalar product:
a · b = |a| |b| cos θ
where θ is the angle between a and b

Antiderivative [p. 382] To find the general
antiderivative of f (x): If F′(x) = f (x), then∫

f (x) dx = F(x) + c
where c is an arbitrary real number.

Antiderivative of a vector function [p. 598]
If r(t) = x(t)i + y(t) j + z(t)k, then∫

r(t) dt = X(t)i + Y(t) j + Z(t)k + c

where
dX
dt

= x(t),
dY
dt

= y(t),
dZ
dt

= z(t)

and c is a constant vector.
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Arccos [p. 116] see inverse cosine function

Arcsin [p. 115] see inverse sine function

Arctan [p. 116] see inverse tangent function

Area of a parallelogram [p. 212] The area of
the parallelogram spanned by two vectors a and b
is given by |a × b|.

Area of a region between two curves
[p. 436]∫ b

a
f (x) dx −

∫ b

a
g(x) dx =

∫ b

a
f (x) − g(x) dx

where f (x) ≥ g(x) for all x ∈ [a, b]

y

x
O a b

y = g(x)

y = f (x)

Area of a surface of revolution [p. 462]
For a differentiable function f : [a, b]→ R with
non-negative values:
� Rotation about the x-axis

If the curve y = f (x) from x = a to x = b is
rotated about the x-axis, then the area of the
surface of revolution is given by

A = 2π
∫ b

a
y

√
1 +

( dy
dx

)2

dx

� Rotation about the y-axis
If the curve x = f (y) from y = a to y = b is
rotated about the y-axis, then the area of the
surface of revolution is given by

A = 2π
∫ b

a
x

√
1 +

(dx
dy

)2

dy

Argand diagram [p. 242] a geometric
representation of the set of complex numbers

Re(z)

Im(z)

0 a

b

θ

P z = a + bi

Argument of a complex number [p. 251]
� An argument of a non-zero complex number z is

an angle θ from the positive direction of the real
axis to the line segment joining the origin to z.
� The principal value of the argument, denoted

by Arg z, is the angle in the interval (−π,π].

Argument, properties [pp. 256, 257]
� Arg(z1z2) = Arg(z1) + Arg(z2) + 2kπ,

where k = 0, 1 or −1

� Arg
( z1

z2

)
= Arg(z1) − Arg(z2) + 2kπ,

where k = 0, 1 or −1

� Arg
(1

z

)
= −Arg(z),

provided z is not a negative real number

Arithmetic sequence [p. 20] a sequence
in which each successive term is found by
adding a fixed amount to the previous term;
e.g. 2, 5, 8, 11, . . . . An arithmetic sequence has a
recurrence relation of the form tn = tn−1 + d, where
d is the common difference. The nth term can be
found using tn = a + (n − 1)d, where a = t1.

Arithmetic series [p. 21] the sum of the terms
in an arithmetic sequence. The sum of the first
n terms is given by the formula

Sn =
n
2

(
2a + (n − 1)d

)
where a = t1 and d is the common difference.

C
Ã [p. 238] the set of complex numbers:
C = { a + bi : a, b ∈ R }

Cartesian equation An equation in variables x
and y can describe a curve in the plane by giving
the relationship between the x- and y-coordinates
of the points on the curve; e.g. y = x2 + 1.
An equation in x, y and z can describe a surface in
three-dimensional space; e.g. x + 2y + z = 3.

Cartesian form of a complex number
[p. 242] A complex number is expressed in
Cartesian form as z = a + bi, where a is the real
part of z and b is the imaginary part of z.

Central limit theorem [p. 673] Let X be
any random variable, with mean µ and standard
deviation σ. Then, provided that the sample size n
is large enough, the distribution of the sample
mean X̄ is approximately normal with mean
E(X̄) = µ and standard deviation sd(X̄) =

σ
√

n
.

Chain rule [p. 317]
� If f (x) = h(g(x)), then f ′(x) = h′

(
g(x)

)
g′(x).

� If y = h(u) and u = g(x), then
dy
dx

=
dy
du

du
dx

.

Change of variable rule [p. 393] see
integration by substitution

Circle, general Cartesian equation [p. 34]
The circle with radius r and centre (h, k) has
equation (x − h)2 + (y − k)2 = r2.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



G
lo
ss

ar
y

C
754 Glossary

Circular functions [p. 2] the sine, cosine and
tangent functions

cis θ [p. 251] cos θ + i sin θ

Collinear points [p. 176] Three or more points
are collinear if they all lie on a single line.
Three distinct points A, B, C (with position vectors
a, b, c) are collinear if and only if there exists a
non-zero number m such that c = (1 − m)a + mb.

Common di�erence, d [p. 20] the difference
between two consecutive terms of an arithmetic
sequence, i.e. d = tn − tn−1

Common ratio, r [p. 21] the quotient of two
consecutive terms of a geometric sequence, i.e.

r =
tn

tn−1

Complex conjugate, z [pp. 246, 252]
� If z = a + bi, then z = a − bi.
� If z = r cis θ, then z = r cis(−θ).

Complex conjugate, properties [p. 247]
� z + z = 2 Re(z) � zz = |z|2

� z1 + z2 = z1 + z2 � z1 · z2 = z1 · z2

Complex number [p. 238] an expression of the
form a + bi, where a and b are real numbers

Complex plane [p. 242] see Argand diagram

Compound angle formulas [p. 109]
� cos(x + y) = cos x cos y − sin x sin y
� cos(x − y) = cos x cos y + sin x sin y
� sin(x + y) = sin x cos y + cos x sin y
� sin(x − y) = sin x cos y − cos x sin y

� tan(x + y) =
tan x + tan y

1 − tan x tan y

� tan(x − y) =
tan x − tan y

1 + tan x tan y

Concavity [p. 336]
� If f ′′(x) > 0 for all x ∈ (a, b), then the gradient

of the curve is increasing over the interval; the
curve is said to be concave up.
� If f ′′(x) < 0 for all x ∈ (a, b), then the gradient

of the curve is decreasing over the interval; the
curve is said to be concave down.

Concurrent lines [p. 180] Three or more
lines are concurrent if they all pass through a
single point.

Conditional statement [p. 68] a statement of
the form ‘If P is true, then Q is true’, which can be
abbreviated to P⇒ Q

Confidence interval [p. 683] an interval
estimate for the population mean µ based on the
value of the sample mean x̄

Conjugate root theorem [p. 267]
If a polynomial has real coefficients, then the
complex roots occur in conjugate pairs.

Constant acceleration formulas [p. 553]

� v = u + at � s = ut +
1
2

at2

� v2 = u2 + 2as � s =
1
2

(u + v)t

Contrapositive [p. 69] The contrapositive
of P⇒ Q is the statement (not Q)⇒ (not P).
The contrapositive is equivalent to the original
statement.

Convergent series [p. 23] An infinite series
t1 + t2 + t3 + · · · is convergent if the sum of the first
n terms, Sn, approaches a limiting value as n→ ∞.
An infinite geometric series is convergent if |r| < 1,
where r is the common ratio.

Converse [p. 70] The converse of P⇒ Q is the
statement Q⇒ P.

Cosecant function [p. 102] cosec θ =
1

sin θ
for sin θ , 0

Cosine function [p. 2] cosine θ is defined as the
x-coordinate of the point P on the unit circle where
OP forms an angle of θ radians with the positive
direction of the x-axis.

x
O−1 1

1

−1

P(θ) = (cos θ, sin θ)

θ
sin θ

cos θ

y

Cosine rule [p. 16] For triangle ABC:
a2 = b2 + c2 − 2bc cos A

A

B

C

ac

b

Cotangent function [p. 103] cot θ =
cos θ
sin θ

for sin θ , 0

Counterexample [p. 76] an example that shows
that a universal statement is false. For example,
the number 2 is a counterexample to the claim
‘Every prime number is odd.’

Cross product [p. 212] see vector product
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D
De Moivre’s theorem [p. 258]
(r cis θ)n = rn cis(nθ), where n ∈ Z

De Morgan’s laws [p. 68]
� ‘not (P and Q)’ is ‘(not P) or (not Q)’
� ‘not (P or Q)’ is ‘(not P) and (not Q)’

Definite integral [pp. 383, 430]
∫ b

a
f (x) dx

denotes the signed area enclosed by the graph of
y = f (x) between x = a and x = b.

Degree of a vertex of a graph [SM1&2] the
number of edges that end at the vertex, with each
edge that is a loop counted twice. For example:

v1 v2

v3 Vertex Degree
v1 3
v2 3
v3 2

Derivative function [p. 317] also called the
gradient function. The derivative f ′ of a function f
is given by

f ′(x) = lim
h→0

f (x + h) − f (x)
h

Derivative of a vector function [p. 594]
r(t) = x(t)i + y(t) j + z(t)k

ṙ(t) =
dx
dt

i +
dy
dt

j +
dz
dt

k

r̈(t) =
d2 x
dt2 i +

d2y
dt2 j +

d2z
dt2 k

Derivatives, basic [pp. 317, 318, 320]

f (x) f ′(x)

xn nxn−1

eax aeax

loge |ax|
1
x

f (x) f ′(x)

sin(ax) a cos(ax)

cos(ax) −a sin(ax)

tan(ax) a sec2(ax)

Derivatives, inverse circular [pp. 327–328]

f (x) f ′(x)

sin−1
( x

a

) 1
√

a2 − x2

cos−1
( x

a

)
−1

√
a2 − x2

tan−1
( x

a

) a
a2 + x2

Desk check [p. 52] To carry out a desk check of
an algorithm, you carefully follow the algorithm
step by step, and construct a table of the values of
all the variables after each step.

Determinant of a matrix [SM1&2] Associated
with each square matrix A, there is a real number
called the determinant of A, which is denoted
by det(A). A square matrix A has an inverse if and
only if det(A) , 0.

If A =

[
a b
c d

]
, then det(A) = ad − bc.

Di�erential equation [p. 478] an equation
involving derivatives of a particular function or
variable; e.g.
dy
dx

= cos x,
d2y
dx2 − 4

dy
dx

= 0,
dy
dx

=
y

y + 1

Di�erential equation, general solution
[p. 478] y = sin x + c is the general solution of the

differential equation
dy
dx

= cos x.

Di�erential equation, particular solution
[p. 478] y = sin x is the particular solution of the

differential equation
dy
dx

= cos x, given y(0) = 0.

Direct proof [p. 68] To give a direct proof of a
conditional statement P⇒ Q, we assume that P is
true and show that Q follows.

Displacement [p. 538] the change in position.
If a particle moves from point A to point B, then its
displacement is described by the vector

−−→
AB.

Distance from a point P to a line [p. 202]
given by |

−−→
PQ|, where Q is the point on the line

such that PQ is perpendicular to the line

Distance from a point P to a plane [p. 223]
given by |

−−→
PQ · n̂|, where n̂ is a unit vector normal

to the plane and Q is any point on the plane

Distance in the complex plane [p. 277] The
distance between complex numbers z1 and z2 is
equal to |z2 − z1|.

Divisible [p. 66] For two integers a and b, we say
that a is divisible by b if there exists an integer k
such that a = bk.

Division of complex numbers [pp. 248, 257]
z1

z2
=

z1

z2
×

z2

z2
=

z1z2

|z2|
2

If z1 = r1 cis θ1 and z2 = r2 cis θ2, then
z1

z2
=

r1

r2
cis(θ1 − θ2)

Divisor [p. 66] For two integers a and b, we say
that b is a divisor of a if there exists an integer k
such that a = bk.

Dot product [p. 167] see scalar product
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Double angle formulas [p. 112]
� cos(2x) = cos2 x − sin2 x

= 2 cos2 x − 1

= 1 − 2 sin2 x

� sin(2x) = 2 sin x cos x

� tan(2x) =
2 tan x

1 − tan2 x

E
Ellipse [p. 36] The graph of the equation
(x − h)2

a2 +
(y − k)2

b2 = 1

is an ellipse centred at the point (h, k).

Equality of complex numbers [p. 240]
a + bi = c + di if and only if a = c and b = d

Equivalence of vectors [p. 155]
Let a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k.
If a = b, then a1 = b1, a2 = b2 and a3 = b3.

Equivalent statements [p. 71]
Statements P and Q are equivalent if P⇒ Q
and Q⇒ P; this is abbreviated to P⇔ Q.
For equivalent statements P and Q, we also say
‘P is true if and only if Q is true’.

Euler’s method [p. 518] a numerical method for
solving a differential equation.

If
dy
dx

= g(x) with y = y0 when x = x0, then

xn+1 = xn + h and yn+1 = yn + hg(xn)
The sequence of points (x0, y0), (x1, y1), (x2, y2), . . .
approximates a solution curve.

Existence statement [p. 75] a statement
claiming that a property holds for some member of
a given set. Such a statement can be written using
the quantifier ‘there exists’.

Expected value of a random variable, E(X)
[p. 647] also called the mean, µ.
� For a discrete random variable X:

E(X) =
∑

x

x · Pr(X = x)

� For a continuous random variable X:
E(X) =

∫ ∞
−∞

x f (x) dx

F
Factor theorem [p. 266] A polynomial P(z) has
z − α as a factor if and only if P(α) = 0.

Factorise [p. 270] In the complex number
system, every non-constant polynomial can be
expressed as a product of linear factors.

Fundamental theorem of algebra [p. 270]
Every non-constant polynomial with complex
coefficients has at least one linear factor in the
complex number system.

Fundamental theorem of calculus [p. 430]
If f is a continuous function on an interval [a, b],
then∫ b

a
f (x) dx = F(b) − F(a)

where F is any antiderivative of f and
∫ b

a
f (x) dx

is the definite integral from a to b.

G
Geometric sequence [p. 21] a sequence
in which each successive term is found by
multiplying the previous term by a fixed amount;
e.g. 2, 6, 18, 54, . . . . A geometric sequence has a
recurrence relation of the form tn = rtn−1, where
r is the common ratio. The nth term can be found
using tn = arn−1, where a = t1.

Geometric series [p. 22] the sum of the terms
in a geometric sequence. The sum of the first
n terms is given by the formula

Sn =
a(rn − 1)

r − 1
=

a(1 − rn)
1 − r

where a = t1 and r is the common ratio.

Gradient function see derivative function

Graph [SM1&2] A graph consists of a finite
non-empty set of vertices, a finite set of edges and
an edge-endpoint function that maps each edge to
a set of either one or two vertices. A graph can be
represented by a diagram, where the vertices are
shown as points and the edges as lines connecting
the vertices. For example:

v1 v2

v3

e1
e2

e3 e4

Edge Endpoints
e1 {v1}

e2 {v1, v2}

e3 {v2, v3}

e4 {v2, v3}

H
Hyperbola [p. 39] The graph of the equation
(x − h)2

a2 −
(y − k)2

b2 = 1

is a hyperbola centred at the point (h, k);
the asymptotes are given by

y − k = ±
b
a

(
x − h

)
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I
Imaginary number i [p. 238] i 2 = −1

Imaginary part of a complex number
[p. 238] If z = a + bi, then Im(z) = b.

Implication [p. 68] see conditional statement

Implicit di�erentiation [p. 365] used to
find the gradient at a point on a curve such as
x2 + y2 = 1, which is not defined by a rule of the
form y = f (x) or x = f (y)

Infinite geometric series [p. 22] If |r| < 1,
then the sum to infinity is given by

S∞ =
a

1 − r
where a = t1 and r is the common ratio.

Integers [p. 66] Z = {. . . ,−2,−1, 0, 1, 2, . . . }

Integrals, standard [pp. 383, 390]

f (x)
∫

f (x) dx

(ax + b)n 1
a(n + 1)

(ax + b)n+1 + c

1
ax + b

1
a

loge |ax + b| + c

eax+b 1
a

eax+b + c

sin(ax + b) −
1
a

cos(ax + b) + c

cos(ax + b)
1
a

sin(ax + b) + c

1
√

a2 − x2
sin−1

( x
a

)
+ c

−1
√

a2 − x2
cos−1

( x
a

)
+ c

a
a2 + x2 tan−1

( x
a

)
+ c

Integration by parts [p. 415]∫
u

dv
dx

dx = uv −
∫

v
du
dx

dx

Integration by substitution [p. 393]∫
f (u)

du
dx

dx =
∫

f (u) du

Inverse cosine function (arccos) [p. 116]
cos−1 x = y if cos y = x,
for x ∈ [−1, 1] and y ∈ [0,π]

Inverse sine function (arcsin) [p. 115]
sin−1 x = y if sin y = x,

for x ∈ [−1, 1] and y ∈
[
−
π

2
,
π

2

]

Inverse tangent function (arctan) [p. 116]
tan−1 x = y if tan y = x,

for x ∈ R and y ∈
(
−
π

2
,
π

2

)
Iteration [p. 51] In an algorithm, we can use
looping constructs to repeat steps in a controlled
way; e.g. for loops and while loops.

Iterative rule [p. 19] see recurrence relation

L
Length of a parametric curve [p. 459] If the
point P

(
f (t), g(t)

)
traces the curve exactly once

from t = a to t = b, then

L =
∫ b

a

√(dx
dt

)2

+

(dy
dt

)2

dt

Limits of integration [p. 383] In the expression∫ b

a
f (x) dx, the number a is called the lower limit

of integration and b the upper limit of integration.

Line in three dimensions [pp. 198, 200] can be
described as follows, where a = a1i + a2 j + a3 k
is the position vector of a point A on the line, and
d = d1i + d2 j + d3 k is parallel to the line:

Vector equation r = a + td, t ∈ R

Parametric
equations

x = a1 + d1t
y = a2 + d2t
z = a3 + d3t

Cartesian form
x − a1

d1
=

y − a2

d2
=

z − a3

d3

Linear approximation formula [p. 518]
f (x + h) ≈ f (x) + h f ′(x)

Linear combination of independent normal
random variables [p. 661] If X and Y are
independent normal random variables and a, b ∈ R,
then aX + bY is also a normal random variable
(provided a and b are not both zero).

Linear combination of independent random
variables [p. 656] If X and Y are independent
random variables and a, b ∈ R, then:
� E(aX + bY) = a E(X) + b E(Y)
� Var(aX + bY) = a2 Var(X) + b2 Var(Y)

Linear combination of vectors [p. 150]
A vector w is a linear combination of vectors
v1, v2, . . . , vn if it can be expressed in the form
w = k1v1 + k2v2 + · · · + knvn

where k1, k2, . . . , kn are real numbers.
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Linear dependence [p. 150]
� A set of vectors is linearly dependent if at least

one of its members can be expressed as a linear
combination of other vectors in the set.
� Vectors a, b and c are linearly dependent if

there exist real numbers k, ` and m, not all zero,
such that ka + `b + mc = 0.

Linear function of a random variable [p. 646]
� E(aX + b) = a E(X) + b
� Var(aX + b) = a2 Var(X)

Linear independence [p. 150]
� A set of vectors is linearly independent if

no vector in the set is expressible as a linear
combination of other vectors in the set.
� Vectors a, b and c are linearly independent if

ka + `b + mc = 0 implies k = ` = m = 0.

Local maximum stationary point [p. 340]
If f ′(a) = 0 and f ′′(a) < 0, then the point (a, f (a))
is a local maximum, as the curve is concave down.

Local minimum stationary point [p. 340]
If f ′(a) = 0 and f ′′(a) > 0, then the point (a, f (a))
is a local minimum, as the curve is concave up.

Locus [p. 277] a set of points described by a
geometric condition; e.g. the locus of the equation
|z − 1 − i| = 2 is the circle with centre 1 + i and
radius 2

Logistic di�erential equation [p. 505]
dP
dt

= rP
(
1 −

P
K

)
, 0 < P < K

This differential equation can be used to model a
population P at time t, where:
� the constant r is called the growth parameter
� the constant K is called the carrying capacity.

Loop in a graph [SM1&2] an edge that joins a
vertex to itself

Loop in an algorithm [p. 51] a sequence of
instructions that is to be repeated. Each repeat is a
pass of the loop.

M
Magnitude of a vector [p. 144] the length of a
directed line segment corresponding to the vector.
� If u = xi + y j, then |u| =

√
x2 + y2.

� If u = xi + y j + zk, then |u| =
√

x2 + y2 + z2.

Mathematical induction [p. 84] a proof
technique for showing that a statement is true
for all natural numbers; uses the principle of
mathematical induction

Matrices, multiplication [SM1&2] If A is an
m × n matrix and B is an n × r matrix, then the
product AB is the m × r matrix whose entries are
determined as follows:

To find the entry in row i and column j of AB,
single out row i in matrix A and column j in
matrix B. Multiply the corresponding entries
from the row and column and then add up the
resulting products.

For 2 × 2 matrices:[
a1 b1

c1 d1

] [
a2 b2

c2 d2

]
=

[
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

]
Matrix [SM1&2] a rectangular array of numbers.
A matrix that has m rows and n columns is said to
be an m × n matrix.

Matrix, identity [SM1&2] For square matrices
of a given size (e.g. 2 × 2), there is a multiplicative
identity matrix I.

For 2 × 2 matrices, the identity is I =

[
1 0
0 1

]
,

and AI = A = IA for each 2 × 2 matrix A.

Matrix, inverse [SM1&2] If A is a square
matrix and there exists a matrix B such that
AB = I = BA, then B is called the inverse of A.
When it exists, the inverse of a square matrix A is
unique and is denoted by A−1.

If A =

[
a b
c d

]
, then A−1 =

1
ad − bc

[
d −b
−c a

]
provided ad − bc , 0.

Matrix, square [SM1&2] A matrix with the
same number of rows and columns is called a
square matrix; e.g. a 2 × 2 matrix.

Mean of a random variable, µ [p. 647]
see expected value of a random variable, E(X)

Modulus–argument form [p. 251] see
polar form of a complex number

Modulus function [p. 29] The modulus of a real
number x is defined by

|x| =

x if x ≥ 0
−x if x < 0

Also called the absolute value function

Modulus of a complex number, |z| [pp. 246,
251] the distance of the complex number from the
origin. If z = a + bi, then |z| =

√
a2 + b2.

Modulus, properties [p. 246]
For complex numbers z1 and z2:
� |z1z2| = |z1| |z2| (the modulus of a product is

the product of the moduli)

�

∣∣∣∣∣ z1

z2

∣∣∣∣∣ =
|z1|

|z2|
(the modulus of a quotient is
the quotient of the moduli)
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Multiplication of a complex number by a
real number [pp. 241, 256]
� If z = a + bi and k ∈ R, then kz = ka + kbi.
� If z = r cis θ and k > 0, then kz = kr cis θ.
� If z = r cis θ and k < 0, then kz = |k|r cis(θ + π).

Multiplication of a vector by a scalar
[p. 145] If a = a1i + a2 j + a3 k and m ∈ R, then
ma = ma1i + ma2 j + ma3 k.

Multiplication of complex numbers
[pp. 244, 256] If z1 = a + bi and z2 = c + di, then
z1z2 = (ac − bd) + (ad + bc)i
If z1 = r1 cis θ1 and z2 = r2 cis θ2, then
z1z2 = r1r2 cis(θ1 + θ2)

N
Natural numbers [p. 66] N = {1, 2, 3, 4, . . . }

Negation [pp. 68, 75–76] The negation of a
statement P is the opposite statement, called
‘not P’.

Normal vector to a plane [p. 217] a vector that
is perpendicular to the plane

Null hypothesis, H0 [p. 693] asserts that the
sample is drawn from a population with the same
mean as before

O
One-tail test [p. 703] used when the alternative
hypothesis is directional (< or >)

Operator notation for di�erentiation
[p. 319] emphasises that differentiation
is an operation on an expression; e.g.
d
dx

(
x2 + 5x + 3

)
= 2x + 5

P
p-value [p. 694] the probability of observing a
value of the sample statistic as extreme as or more
extreme than the one observed, assuming that the
null hypothesis is true

Parametric equations [p. 43] A pair of
equations of the form x = f (t) and y = g(t)
describes a curve in the plane, where t is called the
parameter of the curve. For example:
� Circle x = a cos t and y = a sin t
� Ellipse x = a cos t and y = b sin t
� Hyperbola x = a sec t and y = b tan t

Similarly, equations x = f (t), y = g(t) and z = h(t)
describe a curve in three-dimensional space.

Partial fractions [p. 407] Some rational
functions may be expressed as a sum of partial
fractions; e.g.

A
ax + b

+
B

cx + d
+

C
(cx + d)2 +

Dx + E
ex2 + f x + g

Particle model [p. 537] an object is considered
as a point. This can be done when the size of the
object can be neglected in comparison with other
lengths in the problem being considered, or when
rotational motion effects can be ignored.

Period of a function [p. 4] A function f
with domain R is periodic if there is a positive
constant a such that f (x + a) = f (x) for all x.
The smallest such a is called the period of f .
� Sine and cosine have period 2π.
� Tangent has period π.
� A function of the form y = a cos(nx + ε) + b or

y = a sin(nx + ε) + b has period
2π
n

.

Pi notation [p. 89] see product notation

Plane in three dimensions [p. 217] can be
described as follows, where a is the position vector
of a point A on the plane, n = n1i + n2 j + n3 k is
normal to the plane, and k = a · n:

Vector equation r · n = a · n

Cartesian equation n1 x + n2 y + n3z = k

Point estimate [p. 683] If the value of the
sample mean x̄ is used as an estimate of the
population mean µ, then it is called a point
estimate of µ.

Point of inflection [p. 336] a point where a
curve changes from concave up to concave down
or from concave down to concave up. That is, a
point of inflection occurs where the sign of the
second derivative changes.

Polar form of a complex number [p. 251]
A complex number is expressed in polar form as
z = r cis θ, where r is the modulus of z and θ is an
argument of z.

Re(z)

Im(z)

0 a

b
r

θ

P z = a + bi

Population [p. 663] the set of all eligible
members of a group which we intend to study

Population mean, µ [p. 663] the mean of all
values of a measure in the entire population
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Population parameter a statistical measure
that is based on the whole population; the value is
constant for a given population

Position [p. 538] For a particle moving in a
straight line, the position of the particle relative to
a point O on the line is determined by its distance
from O and whether it is to the right or left of O.
The direction to the right of O is positive.

Position vector [p. 147] A position vector,
−−→
OP, indicates the position in space of the point P
relative to the origin O.

Principle of mathematical induction [p. 84]
To prove that a statement P(n) is true for every
natural number n:
� Show that P(1) is true.
� Show that, for every natural number k, if P(k) is

true, then P(k + 1) is true.

Product notation [p. 89] used for writing
products concisely. For example:

n∏
k=1

(2k − 1) = 1 × 3 × 5 × · · · × (2n − 1)

Product rule [p. 317]
� If f (x) = g(x) h(x), then

f ′(x) = g′(x) h(x) + g(x) h′(x).

� If y = uv, then
dy
dx

= u
dv
dx

+ v
du
dx

.

Product-to-sum identities [p. 129]
� 2 cos x cos y = cos(x − y) + cos(x + y)
� 2 sin x sin y = cos(x − y) − cos(x + y)
� 2 sin x cos y = sin(x + y) + sin(x − y)

Proof by contradiction [p. 69] a proof that
begins by assuming the negation of what is to
be proved

Proof by induction [p. 84] a proof that uses the
principle of mathematical induction

Pseudocode [p. 51] a notation for describing
algorithms that is less formal than a programming
language

Pythagorean identity [pp. 6, 105]
� cos2 θ + sin2

θ = 1
� 1 + tan2 θ = sec2 θ

� cot2 θ + 1 = cosec2 θ

Q
Quadratic formula [p. 264] An equation of the
form az2 + bz + c = 0, with a , 0, may be solved
using the quadratic formula:

z =
−b ±

√
b2 − 4ac

2a

Quantifier [p. 75] ‘for all’, ‘there exists’

Quotient rule [p. 317]

� If f (x) =
g(x)
h(x)

, then

f ′(x) =
g′(x) h(x) − g(x) h′(x)(

h(x)
)2 .

� If y =
u
v

, then
dy
dx

=

v
du
dx
− u

dv
dx

v2 .

R
Radian [p. 3] One radian (written 1c) is the angle
subtended at the centre of the unit circle by an arc
of length 1 unit.

Random sample [p. 663] a sample chosen using
a random process so that each member of the
population has an equal chance of being included

Rational function [p. 354] a function of

the form f (x) =
g(x)
h(x)

, where g(x) and h(x) are

polynomials

Real part of a complex number [p. 238]
If z = a + bi, then Re(z) = a.

Reciprocal circular functions [p. 102]
the cosecant, secant and cotangent functions

Reciprocal function [p. 358] The reciprocal of

the function y = f (x) is defined by y =
1

f (x)
.

Recurrence relation [p. 19] a rule which
enables each subsequent term of a sequence
to be found from previous terms; e.g. t1 = 1,
tn = tn−1 + 2

Reduction formula [p. 418] a recursive formula
that expresses an integral in terms of a simpler
integral of the same form

Remainder theorem [p. 266] Let α ∈ C.
When a polynomial P(z) is divided by z − α,
the remainder is P(α).

Restricted cosine function [p. 116]
f : [0,π]→ R, f (x) = cos x

Restricted sine function [p. 115]

f :
[
−
π

2
,
π

2

]
→ R, f (x) = sin x

Restricted tangent function [p. 116]

f :
(
−
π

2
,
π

2

)
→ R, f (x) = tan x

Roots of a complex number [p. 274]
The nth roots of a complex number a are the
solutions of the equation zn = a. If a = 1, then
the solutions are called the nth roots of unity.
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S
Sample [p. 663] a subset of the population which
we select in order to make inferences about the
whole population

Sample mean, x̄ [p. 663] the mean of all values
of a measure in a particular sample. The values x̄
are the values of a random variable X̄.

Sample statistic a statistical measure that is
based on a sample from the population; the value
varies from sample to sample

Scalar [p. 145] a real number; name used when
working with vectors or matrices

Scalar product [p. 167] The scalar product
of two vectors a = a1i + a2 j + a3 k and
b = b1i + b2 j + b3 k is given by
a · b = a1b1 + a2b2 + a3b3

Scalar product, properties [p. 168]
� a · b = b · a
� k(a · b) = (ka) · b = a · (kb)
� a · 0 = 0
� a · (b + c) = a · b + a · c
� a · a = |a|2

Scalar quantity [p. 537] a quantity determined
by its magnitude; e.g. distance, time, speed

Scalar resolute [p. 172] The scalar resolute

of a in the direction of b is given by a · b̂ =
a · b
|b|

.

Secant function [p. 102] sec θ =
1

cos θ
for cos θ , 0

Second derivative [p. 331]
� The second derivative of a function f with rule

f (x) is denoted by f ′′ and has rule f ′′(x).
� The second derivative of y with respect to x is

denoted by
d2y
dx2 .

Second derivative test [p. 340]
� If f ′(a) = 0 and f ′′(a) > 0, then the point

(a, f (a)) is a local minimum.
� If f ′(a) = 0 and f ′′(a) < 0, then the point

(a, f (a)) is a local maximum.
� If f ′′(a) = 0, then further investigation is

necessary.

Selection [p. 51] In an algorithm, we can use
decision-making constructs to specify whether
certain steps should be followed based on some
condition; e.g. if-then blocks.

Separation of variables [p. 507]

If
dy
dx

= f (x) g(y), then
∫

f (x) dx =
∫ 1

g(y)
dy.

Sequence [p. 19] a list of numbers, with the
order being important; e.g. 1, 1, 2, 3, 5, 8, 13, . . .
The numbers of a sequence are called its terms,
and the nth term is often denoted by tn.

Series [p. 21] the sum of the terms in a sequence

Sigma notation [p. 87] see summation notation

Signed area [p. 430]
� Regions above the x-axis are defined to have

positive signed area.
� Regions below the x-axis are defined to have

negative signed area.
For example, the signed area of the shaded region
in the following graph is A1 − A2 + A3 − A4.

y

x
O

A1 A3

A2 A4

Significance level, α [p. 698] the condition for
rejecting the null hypothesis:
� If the p-value is less than α, then we reject

the null hypothesis in favour of the alternative
hypothesis.
� If the p-value is greater than α, then we do not

reject the null hypothesis.

Simulation [p. 666] using technology (calcu-
lators or computers) to repeat a random process
many times; e.g. random sampling

Sine function [p. 2] sine θ is defined as the
y-coordinate of the point P on the unit circle where
OP forms an angle of θ radians with the positive
direction of the x-axis.

x
O−1 1

1

−1

P(θ) = (cos θ, sin θ)

θ
sin θ

cos θ

y

Sine rule [p. 14] For triangle ABC:
a

sin A
=

b
sin B

=
c

sin C

A

B

C

ac

b
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Skew lines [p. 207] In three-dimensional space,
two lines are skew if they do not intersect and are
not parallel.

Slope field [p. 525]
The slope field of a
differential equation
dy
dx

= f (x, y)

y

x

assigns to each point P(x, y) in the plane the
number f (x, y), which is the gradient of the
solution curve through P.

Solid of revolution [p. 451] the solid formed by
rotating a region about a line

Speed [pp. 539, 600] the magnitude of velocity

Speed, average [p. 539]

average speed =
total distance travelled

total time taken

Standard deviation of a random variable, σ
a measure of the spread or variability, given by
sd(X) =

√
Var(X)

Subtraction of complex numbers [p. 240]
If z1 = a + bi and z2 = c + di, then
z1 − z2 = (a − c) + (b − d)i.

Subtraction of vectors [p. 146]
If a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k,
then a − b = (a1 − b1)i + (a2 − b2) j + (a3 − b3)k.

Sum of independent random variables
[pp. 651, 656] If X and Y are independent random
variables, then:
� E(X + Y) = E(X) + E(Y)
� Var(X + Y) = Var(X) + Var(Y)

Sum to infinity [p. 23] The sum to infinity of an
infinite geometric series exists provided |r| < 1 and
is given by

S∞ =
a

1 − r
where a = t1 and r is the common ratio.

Sum-to-product identities [p. 130]

� cos x + cos y = 2 cos
( x + y

2

)
cos

( x − y
2

)
� cos x − cos y = −2 sin

( x + y
2

)
sin

( x − y
2

)
� sin x + sin y = 2 sin

( x + y
2

)
cos

( x − y
2

)
� sin x − sin y = 2 sin

( x − y
2

)
cos

( x + y
2

)
Summation notation [p. 87] used for writing
sums concisely. For example:

n∑
k=1

k2 = 12 + 22 + 32 + · · · + n2

Surface area of a solid of revolution [p. 464]
equals the area of the curved surface of revolution
plus the areas of the circular discs at each end

Surface of revolution [p. 462] the curved
surface formed by rotating a section of a curve
about a line

T
Tangent function [p. 2] tan θ =

sin θ
cos θ

for cos θ , 0

Telescopic cancelling [p. 82] can be used to
find the partial sums of some sequences

Two-tail test [p. 703] used when the alternative
hypothesis is non-directional (,)

Type I error [p. 713] occurs if we reject the null
hypothesis H0 when it is true

Type II error [p. 713] occurs if we do not reject
the null hypothesis H0 when it is false

U
Unit vector [p. 155] a vector of magnitude 1.
The unit vectors in the positive directions of the
x-, y- and z-axes are i, j and k respectively. The
unit vector in the direction of a is given by

â =
1
|a|

a

Universal statement [p. 75] a statement
claiming that a property holds for all members of
a given set. Such a statement can be written using
the quantifier ‘for all’.

V
Variance of a random variable, σ2 [p. 648]
a measure of the spread or variability, defined by
Var(X) = E[(X − µ)2]
An alternative (computational) formula is
Var(X) = E(X2) −

[
E(X)

]2

Vector [p. 144] a set of equivalent directed line
segments

Vector equation [pp. 198, 584] An equation
of the form r = f (t)i + g(t) j describes a curve in
the plane. This curve can also be described by the
parametric equations x = f (t) and y = g(t).
Similarly, an equation r = f (t)i + g(t) j + h(t)k
describes a curve in three-dimensional space.

Vector function [p. 584] If r(t) = f (t)i + g(t) j,
then we say that r is a vector function of t.

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



G
lossary

Z
Glossary 763

Vector product, formula [p. 214]
For a = a1i + a2 j + a3 k and b = b1i + b2 j + b3 k,
the vector product a × b is given by
(a2b3 − a3b2)i − (a1b3 − a3b1) j + (a1b2 − a2b1)k

Vector product, geometric properties
[p. 212]
� Magnitude |a × b| = |a| |b| sin θ, where θ is the

angle between vectors a and b
� Direction a × b is perpendicular to both a

and b (if a and b are non-parallel non-zero
vectors)

Vector product, properties [pp. 212–214]
� k(a × b) = (ka) × b = a × (kb)
� a × (b + c) = a × b + a × c
� b × a = −(a × b)
� a × a = a × 0 = 0

Vector quantity [p. 537] a quantity determined
by its magnitude and direction; e.g. position,
displacement, velocity, acceleration

Vector resolute [p. 172] The vector resolute
of a in the direction of b is given by
a · b
b · b

b = (a · b̂) b̂

Vectors, parallel [p. 147] Two non-zero vectors
a and b are parallel if and only if a = kb for some
k ∈ R \ {0}.

Vectors, perpendicular [p. 168] Two non-zero
vectors a and b are perpendicular if and only if
a · b = 0.

Vectors, properties [p. 148]
� a + b = b + a commutative law
� (a + b) + c = a + (b + c) associative law
� a + 0 = a zero vector
� a + (−a) = 0 additive inverse
� m(a + b) = ma + mb distributive law

Vectors, resolution [p. 172] A vector a is
resolved into rectangular components by writing
it as a sum of two vectors, one parallel to a given
vector b and the other perpendicular to b.

Velocity [pp. 539, 600] the rate of change of
position with respect to time

Velocity, average [p. 539]

average velocity =
change in position

change in time

Velocity, instantaneous [p. 539] v =
dx
dt

Velocity–time graph [p. 558]
� Acceleration is given by the gradient.
� Displacement is given by the signed area

bounded by the graph and the t-axis.
� Distance travelled is given by the total area

bounded by the graph and the t-axis.

Volume of a solid of revolution [p. 451]
� Rotation about the x-axis

If the region is bounded by the curve y = f (x),
the lines x = a and x = b and the x-axis, then

V =
∫ b

a
πy2 dx = π

∫ b

a

(
f (x)

)2 dx

� Rotation about the y-axis
If the region is bounded by the curve x = f (y),
the lines y = a and y = b and the y-axis, then

V =
∫ b

a
πx2 dy = π

∫ b

a

(
f (y)

)2 dy

� Region not bounded by the x-axis
If the shaded region is rotated about the x-axis,
then the volume V is given by

V = π
∫ b

a

(
f (x)

)2
−

(
g(x)

)2 dx

y

x
O a b

y = g(x)

y = f (x)

Z
z-test [p. 699] the hypothesis test for a mean
of a sample drawn from a normally distributed
population with known standard deviation

Zero vector, 0 [p. 146] a line segment of zero
length with no direction
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Chapter 1
Exercise 1A

1 a i 4π ii 3π iii −
5π
2

iv
π

12
v −

π

18
vi −

7π
4

b i 225◦ ii −120◦ iii 105◦

iv −330◦ v 260◦ vi −165◦

2 a i 0.12c ii −1.75c iii −0.44c

iv 0.89c v 3.60c vi −7.16c

b i 97.40◦ ii −49.85◦ iii 160.43◦

iv 5.73◦ v −171.89◦ vi −509.93◦

3 a
1
√

2
b

1
2

c
√

3
2

d −
1
2

e
1
√

2
f
√

3
2

4 a
√

3
2

b −
1
√

2
c

1
2

d −
1
√

2
e

1
√

2
f −
√

3
2

g −
√

3
2

h −
√

3
2

i
1
2

5 a −
√

3
2

b −
1
√

3

6 a −
√

51
10

b
√

51
7

7 a −
√

3
2

b
1
√

3

8 a
√

91
10

b −
3
√

91
91

9 2π − a, 2π − b, 2π − c, 2π − d

10 a
4π
3

,
5π
3

b
2π
3

,
5π
6

,
5π
3

,
11π

6

c
π

3
,

2π
3

,
4π
3

,
5π
3

d
5π
6

,
3π
2

e 0,
π

3
, π,

4π
3

, 2π f
π

2
,

2π
3

,
3π
2

,
5π
3

11 a

1

y

x0

−1

π
4

π
2

π3π
4

7π 2π
4

3π
2

5π
4

b

π

1

y

x
0

−1

2
1

−
2
1

π
6

2π
3

, 1π
3

− )(

π −
2
1,( )

π
3

−

c

1

y

x0

−1

−
2
1

π
6

π −
2
1,( )

5π
12

2π
3

π11π
12
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d

3

(π, 1)

y

x0

1

2

π
−1

π
6

π
2

7π
18

5π
6

11π
18

e y

x
0 π

2 + √3

√3 − √2

√3 − 2

√3

7π
4

3π

2π

4
19π
12

23π
12

√3 − √22π, )(

12 a 1 b
√

3 c
1
√

3
d
√

3

13 a −
√

17
17

b −
4
√

17
17

c −
1
4

d −
1
4

14 a
√

21
7

b −
2
√

7
7

c
√

3
2

d −
√

3
2

15 a
2π
3

,
5π
3

b
π

9
,

4π
9

,
7π
9

,
10π

9
,

13π
9

,
16π

9

c
3π
2

d
π

8
,

5π
8

,
9π
8

,
13π

8

16 a

x
π
4

π
2

3π
4

πO

y

b y

x
O

3−

π
3

5π
6 √3 )(π, −√

c y

x
O π

3

√3 2 
√3 2 

π, )(

7π
12

5π
6

π
12

d y

x
O

11π
24

23π
24

7π
12

π
12

√3 − 2π, )( 2
√3 − 2 2

Exercise 1B
1 a 11.67 cm b 9.62 cm
2 a 58.08◦, 121.92◦ b 10.01 cm, 4.09 cm
3 a 7.15 cm b 50.43◦

4 a 54.90◦ b 100.95◦

5 16.71 cm
6 a 6.71 cm

b 121.33◦ (acute angle is inconsistent)
7 6
√

6 cm
8
√

7 cm
9 30.10 cm

10 5
√

3 ±
√

39 cm

Exercise 1C
1 3, −1, −5, −9 2 t1 = −2, tn = −3tn−1

3 −1, 1, 3, 5
4 1, 1, 2, 3, 5, 8, 13, 21, 34, 55
5 −31 6 −39 366
7 210 8 −9840

9
3
4

10 a 20 b
4
5

c
410

57

11 a(2 +
√

2)

12 a 4
(
1 −

(3
4

)10
)

b i −2 < x < 2 ii ±2
9

10
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13 a
1

1 − sin θ

b
π

6
+ 2kπ,

5π
6

+ 2kπ, for k ∈ Z

14 t2 = 17, t3 = 50, t8 = 12 029
15 y2 = 16, y3 = 38, y10 = 5626

6000

5000

4000

3000

2000

1000

1 2 3 4 5 6 7 8 9 100 n

(1
, 5

)

(2
, 1

6)

(3
, 3

8)

(4
, 8

2)

(5
, 1

70
)

(6
, 3

46
)

(10, 5626)

(9, 2810)

(8, 1402)
(7, 698)

yn

16 a tn = 8
b tn = 8 × 2n−1 + 2

c tn =
28

2n−1 + 12

17 tn = 2n−1 + 5

18 tn =
1
4

(15 × 5n−1 + 17)

Exercise 1D
1 a 8 b 8 c 2 d −2

e −2 f 4

2 a 3, −1 b
7
2

, −
1
2

c
12
5

, −
6
5

d 12, −6

e −1, 7 f
4
3

, −4 g −
2
5

, −4

3 a (−3, 3)

−5 −4 −3 −2 −1 0 1 2 3 4 5

b (−∞,−5] ∪ [5,∞)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

c [1, 3]

0 1 2 3 4 5−5 −4 −3 −2 −1

d (−1, 5)

−5 −4 −3 −2 −1 0 1 2 3 4 5

e (−∞,−8] ∪ [2,∞)

−5−9 −8 −7 −6 −4 −3 −2 −1 0 1 2 3

f [−3,−1]

−5 −4 −3 −2 −1 0 1 2 3 4 5

4 a

−2
−2

x

8

6

4

2 4

2

6 80

y Range [1,∞)

b

x

6

4

2

−2

−4

−6

−5−10 0

y Range (−∞, 2]

c

x

8

6

4

2−2−6−8
−2

0−4

2

y Range [−1,∞)

d

−2
−4
−6

x

6
4

2

2

60 4

y

−2

Range (−∞, 2]

5 a { x : −5 ≤ x ≤ 5 }
b { x : x ≤ −2 } ∪ { x : x ≥ 2 }
c { x : 1 ≤ x ≤ 2 } d { x : − 1

5 < x < 1 }
e { x : x ≤ −4 } ∪ { x : x ≥ 10 }
f { x : 1 ≤ x ≤ 3 }

6 a x ≤ −2 b x = −9 or x = 11

c x = −
5
4

or x =
15
4

7 a

0 2 3 4−1 1−2−4 −3
x

2

4

6

8
9

10

y

b

0 2 3 4−1 1−2−4 −3
x

2

4

6

8

y
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c

0 2 3 4−1 1−2−4 −3
x

2
4

6
8

10
12

y

d

0 2 3 4 5 6 7 8 9−1 1−2−3−4−5−6
x

10

20

30

40

y

e

0 2

2

4

6

8

10

6 84−2−4−6

y

x

f

0 2 64−2−4−6
x

y

2
3
4

6

8

10

8 a

0 2 64−2
−2

−4

4

−4−6

y

x

b

0 2 4−2
1

−4

y

x

c

0 2

12

3 4 6−2−3−4−6

y

x

d

−12

0 2 4 6−2−4−6

y

x

e

0 2 43 6−2

−12

−4−3−6

y

x

f

O

y

x

9 a = 1, b = 1

Exercise 1E
1 a (x − 2)2 + (y − 3)2 = 1

b (x + 3)2 + (y − 4)2 = 25
c x2 + (y + 5)2 = 25
d (x − 3)2 + y2 = 2

2 a Centre (−2, 3); radius 1
b Centre (1, 2); radius 2

c Centre
(3

2
, 0

)
; radius

3
2

d Centre (−2, 5); radius 2

3 a
(
x +

1
4

)2

+

(
y +

1
4

)2

=
1
8

0

y

x

1
4

− 1
4

−,

− 1
2

− 1
2
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b
(
x +

3
2

)2

+ (y − 2)2 =
49
4

0

y

x

3
2

− , 2
2 + √10

2 − √10

1
2 (√33 − 3)

− 1
2 (3  + √33 )

c (x + 4)2 + (y − 5)2 = 25
y

8

y

2
x

0−4

(−4, 5)

d (x − 4)2 + (y − 5)2 = 25

8

y

2
x

0 4

(4, 5)

e (x − 2)2 +

(
y +

5
4

)2

=
9
16

O

y

x

5
4

−2,

f (x + 1)2 +

(
y −

3
2

)2

=
439
12

0

y

x

3
2

−1,

−1 − 103
3

− 1103
3

− 1
2

427
3

3
2

+ 1
2

427
3

3
2

4 a x2 + y2 ≤ 16

O

4

−4

−4

4

y

x

b x2 + y2 ≥ 9

O

3

−3

−3

3

y

x

c (x − 2)2 + (y − 2)2 < 4

0

2

2

y

x

d (x − 3)2 + (y + 2)2 > 16

0

(3, −2)

 

√7 − 2

√33 − 2

√33 + 2

√7 2− −

x

y

e x2 + y2 ≤ 16 and x ≤ 2

4

0 2 4−4

−4

x = 2

x

y

f x2 + y2 ≤ 9 and y ≥ −1

−1

3

0 3−3

−3

y = −1

y

x

5 Centre (5, 3); radius
√

10
6 (x − 2)2 + (y + 3)2 = 9
7 (x − 5)2 + (y − 4)2 = 13

8 a First circle: centre
(15

2
,

19
2

)
; radius

5
√

2
2

Second circle: centre (5, 7); radius 5
b (5, 12), (10, 7)

9 a
(5
√

2
2

,
5
√

2
2

)
,
(
−

5
√

2
2

,−
5
√

2
2

)
b (
√

5, 2
√

5), (−
√

5,−2
√

5)
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Exercise 1F

1 a
x2

9
+

y2

16
= 1, centre (0, 0)

y

x
−3

−4

4

30

b
x2

16
+

y2

25
= 1, centre (0, 0)

y

x
−4

−5

5

40

c
(x − 4)2

9
+

(y − 1)2

16
= 1, centre (4, 1)

(4, 1)

y

x
O

4 − √15
4

3
4 + √15

4
3

d x2 +
(y − 2)2

9
= 1, centre (0, 2)

x
0

2

5

−13
√5−

3
√5

y

e
(x − 3)2

25
+

(y − 2)2

9
= 1, centre (3, 2)

(3, 2)

y

x0

3 + √5
3

5
3 − √5

3
5

22
5

2
5

−

f
x2

25
+

y2

9
= 1, centre (0, 0)

y

x
0−5

−3

3

5

g
(x + 2)2

9
+

(y − 1)2

5
= 1, centre (−2, 1)

y

x
0

(−2, 1) 2 + √5
5

6−

2 − √5
5

6−
2
3

−

8
3

h
(x − 1)2

25
+

(y + 2)2

16
= 1, centre (1,−2)

y

x
0

(1, −2)

2 − √6
5

8−

2 + √6
5

8−

1 − √3
2

5

1 + √3
2

5

i
(x − 2)2

4
+

(y − 3)2

9
= 1, centre (2, 3)

y

x

3

20

j
(x − 2)2

8
+

(y − 1)2

4
= 1, centre (2, 1)

(2, 1)

y

x0

1 + √2

1 − √2

2 − √6

2 + √6
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2 a
x2

16
−

y2

9
= 1, asymptotes y = ±

3
4

x

−4 4

O

y

x

y = x3
4

− y = x3
4

b
y2

16
−

x2

9
= 1, asymptotes y = ±

4
3

x

4

0

y

x

−4

y = x4
3

y = x4
3

−

c
x2

4
−

y2

4
= 1, asymptotes y = ±x

−2 2

0

x

y

y = x− y = x

d
x2

2
−

y2

4
= 1, asymptotes y = ±

√
2x

0

y

x

y =  2x

−  2 2

y = − 2x

e
(x − 2)2

16
−

(y + 1)2

4
= 1,

asymptotes y =
1
2

x − 2, y = −
1
2

x

0

y

x2 − 2√5

(−2, −1) −1

2 4 2 − 2

(6, −1)

y = x − 2
1
2

y = − x
1
2

√5

f
(x − 5)2

25
−

(y − 3)2

9
= 1,

asymptotes y =
3
5

x, y = 6 −
3
5

x

y

x
5 10

3

6

x3
5

y = 6 −

x3
5y =

5 + 5√25 − 5√2

0

g
(x − 2)2

4
−

(y − 3)2

9
= 1,

asymptotes y =
3
2

x, y = 6 −
3
2

x

y

x
2 4

3

6

2 + 2√22 − 2√2

x3
2

y =

x3
2

y = 6 −

0

h
4(x − 1)2

3
−

(y − 1)2

3
= 1,

asymptotes y = 2x − 1, y = 3 − 2x

3
2

y

x
1

2

1 2

3

y = 2x − 1

y = 3 − 2x 

√3
2

1 + , 1

√3
2

1 − , 1

0
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i
(x − 1)2

16
−

(y − 1)2

9
= 1,

asymptotes y =
3
4

x +
1
4

, y =
7
4
−

3
4

x

y

x
1

1

y = 3
4

x 1
4

+y = 3
4

x7
4

−

)1,5()1,3−(

7
3

1
3

−

1
4

7
4

1 −
3

4√10

1 +
3

4 √10

0

j
x2

16
−

y2

25
= 1, asymptotes y = ±

5
4

x

y

x
4−4

y = 
5

4
x

5

4
xy = −

O

3 a
(2
√

3
3

,

√
3

3

)
,
(
−

2
√

3
3

,−

√
3

3

)
b

(√
2,

√
2

2

)
,
(
−
√

2,−

√
2

2

)
6

(
−2
√

2,−
5
√

2
2

)
,
(
2
√

2,
5
√

2
2

)
7 y

x
−3

−3

3

3

O

x2 + y2 = 9

x2 − y2 = 9

y = xy = − x

Exercise 1G
1 x2 + y2 = 4, dom = [−2, 2], ran = [−2, 2]
2 a y2 = 16x b x = 4 c 32

√
2

3
(x − 2)2

9
+

(y − 3)2

4
= 1;

ellipse with centre (2, 3)

4
x2

4
−

y2

9
= 1, x ≤ −2;

left branch of hyperbola with centre (0, 0) and

x-axis intercept (−2, 0); asymptotes y = ±
3x
2

5 a x2 + y2 = 16 b x2 + y2 = 4

c
x2

16
+

y2

9
= 1 d

x2

16
+

y2

9
= 1

e
y2

9
−

x2

4
= 1 f y = x2 − 2x − 3

g y =
1

x − 2
h y = x + 2

i
y2

16
−

x2

4
= 1

6 a x2 − y2 = 1, x ∈ (−∞,−1]

−1

y

y = x

y = −x

x

O

b
x2

9
+

y2

16
= 1

y

−3 O x

−4

3

4

c
(x − 3)2

9
+

(y − 2)2

4
= 1

y

2

O
x

3
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d
x2

9
+

y2

16
= 1, x ∈ [−3, 3], y ∈ [0, 4]

x

y

−3 O 3

4

e x2 − y2 = 1, x ∈ [1,∞)

y = −x 

y = x

y

1

O

x

f (x − 1)2 − (y − 1)2 = 1, x ∈ [2,∞)
y

y = 2 − x

y = x

(1, 1)

O x

2

2

7 a P = (−1,−
√

3)
b
√

3x + 3y = −4
√

3
8 a x = 4 cos t y = 4 sin t

b x = 3 sec t y = 2 tan t
c x = 3 cos t + 1 y = 3 sin t − 2
d x = 9 cos t + 1 y = 6 sin t − 3

9 a = 1, b = 2, c = 3, d = 2
10 x = 4 cos t, y = 3 sin t
11 a x = 2 cos t, y = 6 sin t

b
x2

4
+

y2

36
= 1

12 a x = −2 cos
( t

2

)
, y = 2 + 3 sin

( t
2

)
b

x2

4
+

(y − 2)2

9
= 1

13 a dom = [2, 5], ran = [4, 6]

x

y

O

(2, 6)

(5, 4)

b dom = [2, 5], ran = [2, 6]

x

y

O

(2, 6)

(5, 4)

(2, 2)

c dom = [−1, 5], ran = [2, 6]

x

y

4 + 

O

3
2√5

4 − 
3

2√5

Exercise 1H
1 n← 1

x← 3
while x ≤ 100

n← n + 1
x← 2x + 3

end while

print n

n x
1 3
2 9
3 21
4 45
5 93
6 189

2
define evenprod(n):

product ← 1
for i from 1 to n

product ← product × 2i
end for

return product
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3
define powers(n):

A← [ ]
for i from 1 to n
append 2i−1 to A

end for

return A

4 a
for x from 1 to 22
for y from 1 to 22
for z from 1 to 22
if x2 + y2 + z2 = 500 then
print (x, y, z)

end if

end for

end for

end for

b
for x from 1 to 99
for y from 1 to 99
for z from 1 to 99
if x3 + y3 + z3 = 1 000 000 then
print (x, y, z)

end if

end for

end for

end for

5 a i 0.099 833 ii 0.841 468 iii 0.907 937
6 a

define cossum(x, n):
sum← 0
for k from 1 to n

sum← sum +
(−1)k+1 × x2k−2

factorial(2k − 2)
end for

return sum

b −
19
45
≈ −0.422, cos 2 ≈ −0.416

7 a i strip sum left
0 0

1 1.5 1.5 0.5
2 1.8125 3.3125 1
3 3 6.3125 1.5
4 5.4375 11.75 2
5 9.5 21.25 2.5
6 15.5625 36.8125 3
7 24 60.8125 3.5
8 35.1875 96 4
9 49.5 145.5 4.5

10 67.3125 212.8125 5

b
define f (x):
return x3 + 2x2 + 3

a← 0
b← 5
n← 50

h←
b − a

n
left ← a
right ← a + h
sum← 0
for i from 1 to n

strip← 0.5 ×
(
f (left) + f (right)

)
× h

sum← sum + strip
left ← left + h
right ← right + h

end for

print sum

8 a 1.259 921 b 3.141 593

Chapter 1 review
Technology-free questions
1 fn = 5n

2
(x + 2)2

4
+

(y − 3)2

16
= 1

3
7
√

113

4
9
2

5 a
1
√

2
b −

4
5

c 210◦ is a possible answer

6 tan−1(3
√

2)

7 a
{
−

2π
3

,−
π

3
,
π

3
,

2π
3

}
b

−3(−−π, −3)

, 1−

− −

(π, −3)

O
x

y

2π
3

2π
3

π
3

π
3

−

π
2

, 1π
2

c
[
−π,−

2π
3

)
∪

(
−
π

3
,
π

3

)
∪

(2π
3

,π
]

8 a 90◦ b 45◦, tan−1
(3

4

)
, tan−1

(5
4

)
9 a 3

√
97 nautical miles

b 5
√

97 nautical miles
10 9

√
2
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11 a
AB

C

480 km
45° 45°

90°

b 240
√

2 km c 480
√

2 km
12 y = 3x + 2, y = −3x + 2

13
(x − 2)2

9
+ (y + 6)2 = 1

14 x2 + (y − 4)2 = 4

15 a

x

(π, 2)

(2π, −2)
(2π, −√2)

O

(x −   )y = −2cosy = −2cos x π
4

π
2

7π
4

3π
2

3π
4

, 25π
4 

, −2π
4 

−2
−√2

y

b
{3π

4
,

7π
4

}
c

[
0,
π

2

)
∪

(3π
2

, 2π
]

16 a
π

6
,

5π
6

b
π

6
,

11π
6

c
π

4
,

5π
4

17 a = 1, c = 2, b = d = 3
18 Centre (−4, 6); radius 7
19 (±9, 0), (0,±3)
20 a i n = 7p + 7

ii S n = 70p2 + 147p + 77
21 a tn = 3n−1 b 3190

22 a 9 b
1

400
c 4

d 4 e π − 3 f 4 − π

23 a
(
0,

1
104

)
b (100,∞)

24 x = 0 or x = 2 or x = 4
25 a Range [0, 2]

ππ
2

3π
2

2π
x

1

2

0

y

b Range [−3,∞)

0 1 2 3 4 5

y

x
−2

−3

−1

c Range (−∞, 3]

0 1 2 3 4 5

y

x
−2

−3

−1

Multiple-choice questions
1 B 2 D 3 C 4 A 5 D
6 B 7 C 8 D 9 D

Extended-response questions

1 a a =
√

2, w =
3 −
√

3
2

, x =
1 +
√

3
2

,

y =

√
3 − 1
2

, z = 15

b sin 15◦ =

√
6 −
√

2
4

, cos 15◦ =

√
2 +
√

6
4

,

tan 15◦ = 2 −
√

3

c sin 75◦ =

√
2 +
√

6
4

, cos 75◦ =

√
6 −
√

2
4

,

tan 75◦ =
1

2 −
√

3
= 2 +

√
3

2 a 10.2 km
b 049◦

c i 11.08 km ii 031◦

d 11.93 km
3 a i [−

√
2,
√

2] ii [−3 −
√

5,−3 +
√

5]
iii (0,−3)

b 2, 3, 1, 2 c
(37

13
,

11
13

)
d

(
0,

48
13

)
e

(
x −

1
2

)2

+

(
y −

35
26

)2

=
3890
676

4 d Centre (2, 2) and radius 2;
centre (10, 10) and radius 10

e Gradient undefined; gradient
3
4

f y = 4; y = −
4
3

x +
20
3

5 a y = (tan t)x b (−a cos t,−a sin t)

c y − a sin t = −
cos t
sin t

(x − a cos t)

d A
( a

cos t
, 0

)
, B

(
0,

a
sin t

)
e Area =

a2

2 sin t cos t
=

a2

sin(2t)
;

minimum when t =
π

4
6 a 100◦, 15◦, 65◦ b 2.63 km, 4.56 km

c 346◦ d 14.18 km
7 a (0, 0), (a, 0) b (0, 0)

c
a2

4
d 3, −5
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Chapter 2
See solutions supplement

Chapter 3
Exercise 3A
1 a

0

1

−1

√2
(2π, √2)

2π
x

y

7π
4

5π
4

3π
4

π
4

b

0

1

−1

2 π
x

y

5π
3

7π
6

2π
3

π
6

3
2√3 2π,

3
2√3

c

x

y

2 π5π
3

7π
6

2π
3

π
6

2π,
3

√3
1

−1

0
3

√3

d

0

1

−1

−2

2 ππ
x

y

11 π
6

4π
3

5π
6

π
3

(2π, −2)

e

−1

1

0
2 π

(2π, −1)

π
x

y

3π
2

π
2

f

−1

0

1

x

y

2π

(2π, 1)

π 5π
4

7π
4

3π
4

π
4

2 a

0

−1

1

π

(π, 1)

x

y

3π
4

π
4

π
2

b

0

−1

1

x

y

π5π
6

2π
3

π
6

π
2

π
3

c

0 x

y

π3π
4

3π
8

5π
8

7π
8

π
8

π
2

π
4
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d

3π
4

ππ
4

π

(π, 1)

−1

0

1

y

x

2

e

3π
4

π
2

π
4

π

(π, −1)
−1

0

1

y

x

f

2π
3

5π
12

11π
12

π
6

π
0

y

x

π,
3

−√3
3

√3−

3 a

π

y

x
3π
4

− 3π
4

π
4

π
2

π
2

− π
4

−
−π

−1

1

0

b

x
π

−π,
3

2  3

π,
3

2  3

3
2  3

−π 2π
3

− π
12

π
3

7π
12

5π
6

5π
12

−

11π
12

−
π
6

−

0

y

c y

x

−π,
3

  3

π,
3

  33
  3

−π π2π
3

− −

−−11π
12

5π
12

π
12

7π
12

π
3

5π
6

π
6

0

4 a cot x =
5
8

, sec x =

√
89
5

, cosec x =

√
89
8

b cot x =
2
√

6
5

, sec x =
7
√

6
12

, cosec x =
7
5

c cot x =
7
√

2
8

, sec x =
9
7

, cosec x =
9
√

2
8

5 a
√

3
2

b −
√

2
2

c −1 d 2

e
√

2 f −
√

3 g −
√

2
2

h −
√

3
3

i 2 j
√

2 k 1 l
1
2

6 a 1 b −1 c cosec2 x d sec x
e sin2 x − cos2 x = − cos(2x)
f tan x sec2 x

7 a
√

17 b
√

17
17

c −
√

17
4

8 a −
√

10 b −
√

10
10

c −
√

10
3

9 a −3
√

11 b −
3
√

11
10

10 a −
√

35 b
√

35
6

11 a −
√

3
2

b −
√

3 c 2

12 a −
1
3

b −
2
√

2
3

c −
3
√

2
4

13 a
√

51
10

b −
√

51
7

c −
7
√

51
51

14 a 0.2 b −
2
√

6
5

c −
√

6
12

15 a 0 b
1
2

sin(2θ) c 1 d 1

16 x −
1
x

= −2 tan θ

Exercise 3B

1 a
√

2
4

(
√

3 − 1) b 2 +
√

3

c
√

2
4

(1 −
√

3) d 2 −
√

3
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2 a sin(2x) cos(5y) − cos(2x) sin(5y)
b cos(x2) cos(y) − sin(x2) sin(y)

c
tan x + tan y + tan z − tan x tan y tan z

1 − tan x tan y − tan x tan z − tan y tan z
3 a sin(x − 2y) b cos x c tan B

d sin(2A) e cos y
4 a sin x cos(2x) + cos x sin(2x)

b 3 sin x − 4 sin3 x
5 a cos x cos(2x) − sin x sin(2x)

b 4 cos3 x − 3 cos x

6 a −0.8 b 2.6 c
5
13

d
12
13

e −0.75

f
16
65

g
63
65

h
33
56

i −
837
116

7 a −
√

51
10

b
√

21
5

c 0.40 d −0.36

8 a
1
4

sin(2x) b − cos(2x) c
1
2

tan(2x)

d −1 e −2 tan x f sin(2x)

9 a 0.96 b −0.28 c −
24
7

10 a −
3
4

b
9

13
11 a −0.66 b 0.91
12
√

2 − 1
13 0.97

14 a
12
5

b
2
3

c 3 1
3 m

Exercise 3C

1 a dom = R, ran =

(
−
π

2
,
π

2

)
y

x

π
2

−π
2

0

1

−π
4

0,

b dom = [−2, 0], ran = [0,π]
y

x

π
2

π

−2 0

c dom =

[
−

3
2

,
1
2

]
, ran = [−π,π]

y

x

π
3

1
2

π

−π

1
2

−3
2−

0

d dom = R, ran =

(
−
π

2
,

3π
2

)
y

x
−1 0

3π
2

π
2

π
2

−

e dom =

[
−

1
2

,
1
2

]
, ran = [0,π]

y

x

π

0

π
2

2
1

2
1−

f dom =

[
−

1
3

,
1
3

]
, ran =

[
0,
π

2

]
y

x
0

π
2

π
4

3
1

3
1−

2 a
π

2
b −

π

4
c
π

6
d

5π
6

e
π

3

f
π

4
g −

π

3
h
π

6
i π

3 a
√

3
2

b −
π

3
c −1 d

√
2

2
e
π

4

f
√

3 g
π

3
h −

π

3
i −

π

4
j

5π
6

k π l −
π

4
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4 a f −1 : [−1, 1]→ R, f −1(x) = y,

where sin y = x and y ∈
[
π

2
,

3π
2

]
( f −1(x) = π − sin−1(x))

b i 1 ii
1
√

2
iii −

1
2

iv
3π
2

v π vi
5π
6

5 a [1, 3],
[
−
π

2
,
π

2

]
b

[
−

3π
4

,
π

4

]
, [−1, 1]

c
[
−

5
2

,−
3
2

]
,
[
−
π

2
,
π

2

]
d

[
−
π

18
,

5π
18

]
, [−1, 1]

e
[
π

6
,

7π
6

]
, [−1, 1] f [−2, 0], [0,π]

g [−1, 1],
[
0,
π

2

]
h

[
−
π

3
,
π

6

]
, [−1, 1]

i R,
[
0,
π

2

)
j
(
0,
π

2

)
, R k R,

(
−
π

2
,
π

2

)
l
(
−

√
2π
2

,

√
2π
2

)
, R+ ∪ {0}

6 a
3
5

b
12
5

c
24
25

d
40
9

e
√

3 f
√

5
3

g −
2
√

5
5

h
2
√

10
7

i
7
√

149
149

7 a i
4
5

ii
12
13

8 a [0,π],
[
−
π

2
,
π

2

]
b [0, 1], [0, 1]

c
[
−
π

4
,
π

4

]
, [0,π] d [0, 1], [−1, 0]

e [0, 1], [−1, 1] f [0,π],
[
−
π

4
,
π

4

]
g R+ ∪ {0}, (0, 1] h R, (−1, 1)

11 a [−1, 1]

12 a dom = R, ran =

[
−
π

2
,
π

2

]
b

0

y

x
π
2

−π
2

−π
2

π
2

c

π
2−π

2

−π
2

0

y

x

π
2

π 2π− π

Exercise 3D

1 a
7π
6

,
11π

6
b

π

12
,

17π
12

c
π

6
,

11π
6

d
π

4
,

5π
4

e
5π
6

,
11π

6

f
π

24
,

13π
24

,
25π
24

,
37π
24

2 a
π

6
,

5π
6

b
5π
6

,
7π
6

c
π

3
,

4π
3

d
3π
4

,
7π
4

e
2π
3

,
4π
3

f
5π
4

,
7π
4

3 a x =
π

4
+ 2nπ or x =

3π
4

+ 2nπ, n ∈ Z

b x = 2nπ, n ∈ Z c x =
π

6
+ nπ, n ∈ Z

d x =
(12n − 5)π

12
or x =

(4n + 1)π
4

, n ∈ Z

e x =
(2n − 1)π

3
or x =

2(3n + 1)π
9

, n ∈ Z

f x =
2nπ

3
or x =

(6n + 1)π
9

, n ∈ Z

g x =
(3n − 2)π

6
, n ∈ Z

h x =
nπ
2

, n ∈ Z

i x =
(8n − 5)π

8
, n ∈ Z

4 a ±1.16 b −0.20, −2.94 c 1.03, −2.11

5 a
π

4
,
π

2
,

5π
4

,
3π
2

b 0,
π

3
, π,

5π
3

, 2π

c
π

6
,
π

2
,

5π
6

,
3π
2

d
π

24
,
π

8
,

5π
24

,
3π
8

,
13π
24

,
5π
8

,
17π
24

,
7π
8

,
25π
24

,

9π
8

,
29π
24

,
11π

8
,

37π
24

,
13π

8
,

41π
24

,
15π

8

e 0,
2π
3

,
4π
3

, 2π f
π

6
,

5π
6

,
3π
2

g 0,
3π
4

, π,
7π
4

, 2π h
3π
4

,
7π
4

i
π

3
,

5π
3

j 0,
π

2
, 2π

6 a max = 3, min = 1 b max = 1, min =
1
3

c max = 5, min = 4 d max =
1
4

, min =
1
5

e max = 3, min = −1 f max = 9, min = 5
7 a (−1.14,−2.28), (0, 0), (1.14, 2.28)

b (−1.24,−1.24), (0, 0), (1.24, 1.24)
c (3.79,−0.79) d (0, 0), (4.49, 4.49)

8 2π − q

9 a π + α, 2π − α b
π

2
− α,

3π
2

+ α

10 a π − β, β − π b
π

2
− β, β −

3π
2

11 a 2π − γ, 3π − γ b
3π
2
− γ,

5π
2
− γ
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12 0, 0.33, 2.16 13 1.50
14 b 45.07
15 0.86 16 1.94
17 b 1.113
18 When t = 0, xA = xB = 0;

when t = 1.29, xA = xB = 0.48
19 b 0.94

Exercise 3E

1 a sin(11πt) − sin(3πt) b
1
2
(
sin 60◦ + sin 40◦

)
c

3
2

(
sin(πx) + sin

(πx
3

))
d sin(A) + sin(B + C) e cos

( x
2

)
− cos

(5x
2

)
f cos

(
πx
2

)
+ cos(πx)

2 cos(3θ) − cos(5θ)
3 sin x − sin y
5 a 2 sin 50◦ cos 16◦ b 2 cos 50◦ cos 16◦

c 2 sin 16◦ cos 50◦ d −2 sin 50◦ sin 16◦

6 a 2 sin(5A) cos(3A) b 2 cos
(5x

2

)
cos

(3x
2

)
c 2 sin(x) cos(5x) d −2 sin(4A) sin(A)

11 a −
5π
6

,−
3π
4

,−
π

2
,−
π

4
,−
π

6
,
π

6
,
π

4
,
π

2
,

3π
4

,
5π
6

b −π,−
2π
3

,−
π

2
,−
π

3
, 0,

π

3
,
π

2
,

2π
3

,π

c −π,−
3π
4

,−
2π
3

,−
π

3
,−
π

4
, 0,

π

4
,
π

3
,

2π
3

,
3π
4

,π

d −π,−
5π
6

,−
π

2
,−
π

6
, 0,

π

6
,
π

2
,

5π
6

,π

12 0,
π

6
,
π

2
,

5π
6

, π

13 a
π

6
,

5π
6

b 0,
π

6
,
π

3
,

2π
3

,
5π
6

,π

c 0,
π

12
,
π

3
,

5π
12

,
7π
12

,
2π
3

,
11π
12

,π

d
π

10
,
π

6
,

3π
10

,
π

2
,

7π
10

,
5π
6

,
9π
10

14 a 0 b −1

15 b
π

2
, π,

7π
6

,
11π

6

Chapter 3 review
Technology-free questions

1 a
7

25
b

24
25

c
24
7

d
5
3

e
4
3

2 a 0, π, 2π,
π

3
, −
π

3
,

5π
3

b −
π

2
,
π

2
,

3π
2

,
π

3
, −
π

3
,

5π
3

c −
π

2
,
π

2
,

3π
2

d −
π

2
,
π

2
,

3π
2

e
π

2
, −
π

6
,

7π
6

,
11π

6
, −

5π
6

f 0, 2π,
π

3
, −
π

3
,

5π
3

3 a
7π
6

,
11π

6
, sin−1

(1
3

)
, π − sin−1

(1
3

)
b
π

6
,

5π
6

,
7π
6

,
11π

6
c
π

4
,

5π
4

d
π

4
,

3π
4

,
5π
4

,
7π
4

4 a
2
√

3
3

b 2 c 2 d 1 e −
√

3

5 a −p b −p c
1
p

d −
1
p

e −p

6 a dom = [−1, 1] \ {0}, ran = R
c

0

y

x
1−1

7 a
π

3
b

1
2

c
2π
3

d
2π
3

e
√

3
2

f
√

2
2

8 a
[
−

b
a

,
1 − b

a

]
b

(
−∞,−

2
a

]
∪

[2
a

,∞
)

c
[2
a

,
6
a

]
d

[1
a

,
2
a

]
9 a y

x

π

−π

O

b y

x

π
2

− π
2

0 2 3 4

c y

x

3π

−1 0
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d y

x
1

3

−π

0

e

π
2

y

x
0

−π

π

1

10 0,
π

8
,

3π
8

,
5π
8

,
7π
8

, π

Multiple-choice questions
1 C 2 C 3 E 4 D 5 A
6 A 7 E 8 D 9 E 10 E

Extended-response questions
1 a i x ii

√
1 − x2 iii

x
√

1 − x2

iv 2x v
√

1 − 4x2 vi
2x

√
1 − 4x2

b i 2x
√

(1 − x2) − x
√

1 − 4x2

ii
√

(1 − 4x2)(1 − x2) + 2x2

iii
2x
√

1 − x2 − x
√

1 − 4x2√
(1 − 4x2)(1 − x2) + 2x2

iv
2x
√

1 − x2

1 − 2x2

v 2x
√

1 − x2

vi 1 − 2x2

c ∠B2AB1 = 0.34, 2α = 0.61
2 a y

x0
π 2π

y = cosec x
y = cot x
y = cosec x − cot x

c y = cot
( x

2

)
, y = cosec(x) + cot(x)

y

x0
π 2π

d ii cot
(
π

8

)
= 1 +

√
2, cot

(
π

12

)
= 2 +

√
3

iii
1√

4 + 2
√

2

e cot
(
θ

2

)
− cot(4θ)

3 a i 100 sin θ cos θ
ii R

θ

50

0 π
4

π
2

iii 50 iv
π

4
b ii a = 2000, b = −4000

iii V = 2000p − 4000p2

iv 0 < p <
1
2

v V

θ

250

0 π
3

π
2

V

p

250

0 1
4

1
2

vi Vmax = 250 when p =
1
4

, θ =
π

3

c i V = 1000 sin2
θ, for 0 < θ <

π

2
ii V

θ

1000

0

π
2

, 1000

π
2

iii V is an increasing function: as the
angle θ gets larger, so does the volume
of the cuboid
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4 b p = 8 cos3 θ − 4 cos θ
c iii

π

6
iv 1

d

θ

4

0 π
4

P

e
π

4
5 a ii x = ±

π

4
+ nπ, n ∈ Z

iii y

x
2ππ π

2

3π
2−2

−1
O
1
2

y = cot x
y = tan x

y = cosec 2x

b ii x = nπ ±
π

6
, n ∈ Z

iii y

x
O π 2ππ

2

3π
2

1

−1

−

3
√3

√3
3

y = cot 2x
y = tan x
y = cosec 2x

6 a i ∠BAE = 72◦, ∠AEC = 72◦, ∠ACE = 72◦

ii 36◦

e
√

5 − 1
4

7 a ii

0 90
θ°

V
90, 

500
3

iii V is an increasing function: as the
angle θ gets larger, so does the volume
of the pyramid

b ii θ ∈ (0, 90)

iii V = −
2000

3
a2 +

1000
3

a

iv Vmax =
125
3

when θ = 60

v V

θ
0 30 60 90

60, 
125

3

8 a i V =
500

3
cos(θ◦) sin2(θ◦)

ii Vmax = 64.15 when θ = 54.74
b ii θ ∈ (0, 90)
c Vmax = 24.69 when a = 0.67, θ = 48.19

9 c i x =
a ±

√
a2 − 4b(a + b)

2
ii 1 +

√
2

d 0.62
e i

θ

b0

tan−1 1
5

θ = tan−1
(b + 1

5

)
− tan−1

(b
5

)

b
0

tan θ

1
5

tan θ =
5

25 + b + b2

ii
θ

b
0

tan−1 1
10

θ = tan−1
(b + 1

10

)
− tan−1

( b
10

)

1
10

b
0

tan θ
tan θ =

10
100 + b + b2
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iii
θ

b
0

tan−1 1
20

θ = tan−1
(b + 1

20

)
− tan−1

( b
20

)

1
20

b
0

tan θ
tan θ =

20
400 + b + b2

f Graph of θ = tan−1
(b + 1

x

)
− tan−1

(b
x

)
:

� the b-axis is a horizontal asymptote

� domain is [0,∞); range is
(
0, tan−1

(1
x

))
� the θ-axis intercept is tan−1

(1
x

)
� θ decreases as b increases

0

θ

b

tan−1
1
x

Graph of tan θ =
x

x2 + b + b2 :

� the b-axis as a horizontal asymptote

� the tan θ-axis intercept is
1
x

� domain is [0,∞); range is
(
0,

1
x

]
� tan θ decreases as b increases

0
b

tan θ
1
x

10 a Each triangle has a right angle, and
angle CAD is common to both triangles

b (cos(2θ), sin(2θ))
c i 2 cos θ ii 2 sin θ

12 a t2 = sin2(2θ), t3 = sin2(4θ)
b tn = sin2(2n−1θ)

15 a

√
2 +
√

2
2

b

√
2 +

√
2 +
√

2
2

Chapter 4
Exercise 4A
1 Magnitude =

√
5

2 a = 3, b = 2
3

B

C

A

D

O

E

4 a i 2b ii 4a iii 2a +
3
2

b

iv
1
2

b − 2a v 2a −
3
2

b

b i 4 ii 4 iii
√

13

5 a 6 b
9
2

c
3
2

6 a
21
2

a −
1
2

b − 21c b
1
2

a +
1
2

b +
1
2

c

7 a i
1
4

a ii
1
4

b iii
1
4

(b − a)

iv b − a

b i
1
2

a ii
1
2

b iii
1
2

(b − a)

8 a b − a b
1
2

(b − a) c
1
2

(a + b)

9 a
1
2

(a + b)

10 a a + c − b b a + c − 2b

11 a −c b c c −
1
2

a

d c + g +
1
2

a e c + g +
1
2

a

12 a i b − a ii c − d iii b − a = c − d

b i c − b ii −
1
2

a + b − c

13 a Linearly independent
b Linearly independent
c Linearly dependent
d Linearly independent

14 a k = 3, ` =
1
2

b k =
55
2

, ` = −10

15 a i k(2a − b) ii (2m + 1)a + (4 − 3m)b

b k =
11
4

, m =
9
4

c
11
4

(2a − b)
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16 a i
1
2

(a + b) ii
4
5

(a + b)

iii
1
5

(4b − a) iv
4
5

(4b − a)

b −−→RP = 4
−−→
AR, 1 : 4

c λ = 4

17 a x = 0, y = 1 b x = −1, y =
7
3

c x = −
5
2

, y = 0

18 a
AX
AB

= k c
AX
XB

=
k

1 − k
d k =

m
1 + m

Exercise 4B
1 a i 3i + j ii −2i + 3 j iii −3i − 2 j

iv 4i − 3 j
b i −5i + 2 j ii 7i − j iii −i + 4 j
c i

√
10 ii

√
29 iii

√
17

2 a i + 4 j b 4i + 4 j + 2k c 6 j − 3k
d −8i − 8 j + 8k e

√
6 f 4

3 a i −5i ii 3k iii 2 j iv 5i + 3k
v 5i + 2 j + 3k vi 5i + 2 j

vii −5i − 3k viii 2 j − 3k
ix −5i + 2 j − 3k x −5i − 2 j + 3k
xi 5i + 2 j − 3k xii 5i − 2 j − 3k

b i
√

34 ii
√

38 iii
√

29

c i
5
2

i ii
5
2

i + 2 j iii −
5
2

i + 2 j − 3k

d i −
4
3

j ii
2
3

j iii
2
3

j + 3k

iv 5i −
2
3

j − 3k v
5
2

i +
4
3

j − 3k

e i
√

613
6

ii
√

77
2

iii
√

310
3

4 a x = 3, y = −
1
3

b x = 4, y =
2
5

c x = −
3
2

, y = 7

5 a i −2i + 4 j ii 3i + 2 j iii −2i − 12 j
b (−1, 2)
c (−8,−32)

6
(
3,−

7
2

, 8
)

7 a i 4i − 2 j − 4k ii −5i + 4 j + 9k
iii 2i − j − 2k iv −i − j − 3k

b i
√

30 ii
√

67
c −−→AB,

−−→
CD

8 a i 2i − 3 j + 4k ii
4
5

(2i − 3 j + 4k)

iii
1
5

(13i − 7 j − 9k)

b
(13

5
,−

7
5

,−
9
5

)
10 x =

13
9

11 a i −−→OA = 2i + j ii −−→AB = −i − 4 j
iii −−→BC = −6i + 5 j iv −−→BD = 2i + 8 j

b −−→BD = −2
−−→
AB

c Points A, B and D are collinear

12 a i −−→OB = 2i + 3 j + k
ii −−→AC = −i − 5 j + 8k
iii −−→BD = 2i + 2 j + 5k
iv −−→CD = 4i + 6 j + 2k

b −−→CD = 2(2i + 3 j + k) = 2
−−→
OB

13 a i −−→AB = 2i − j + 2k
ii −−→BC = −i + 2 j + 3k
iii −−→CD = −2i + j − 2k
iv −−→DA = i − 2 j − 3k

b Parallelogram

14 a (−6, 3) b (6, 5) c
(3

2
,−

3
2

)
15 a i −−→BC = 6i + 3 j

ii −−→AD = (x − 2)i + (y − 1) j
b (8, 4)

16 a (1.5, 1.5, 4)

b
( x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

)
17

(17
5

,
8
5

,−3
)

18
(17

2
, 3

)
19

(
−11,−

11
3

)
21 a i i + j ii −i − 6 j iii −i − 15 j

b k =
19
8

, ` = −
1
4

22 a i 2i + 4 j − 9k ii 14i − 8 j + 3k
iii 5.7i − 0.3 j − 1.6k

b There are no values for k and ` such that
ka + `b = c

23 a i
√

29 ii
√

13 iii
√

97 iv
√

19
b i 21.80◦ anticlockwise

ii 23.96◦ clockwise iii 46.51◦

24 a −3.42i + 9.40 j b −2.91i − 7.99 j
c 4.60i + 3.86 j d 2.50i − 4.33 j

25 a −6.43i + 1.74 j + 7.46k
b 5.14i + 4.64 j − 4k
c 6.13i − 2.39 j − 2.39k
d −6.26i + 9.77 j + 3.07k

26 c
1
2

i +
1
2

j +
1
√

2
k

27 a |−−→AB| = |
−−→
AC| = 3 b −−→OM = −i + 3 j + 4k

c −−→AM = i + 2 j − k d 3
√

2

28 a 5i + 5 j b
1
2

(5i + 5 j)

c
5
2

i +
5
2

j + 3k d −
5
2

i −
5
2

j + 3k

e
√

86
2
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29 a −−−→MN =
1
2

b −
1
2

a

b −−−→MN ‖
−−→
AB, MN =

1
2

AB

30 a
√

3
2

i −
1
2

j b
3
√

3
2

i −
3
2

j

c
3
√

3
2

i +
7
2

j d
√

19 km

31 a −−→OA = 50k
b i −80i + 20 j − 10k ii 10

√
69 m

c −80i + 620 j + 100k
32 a 2.66 km

b i −0.5i − j + 0.1k ii 1.12 km
c −0.6i − 0.8 j

33 a −100
√

2i + 100
√

2 j b 50 j
c −100

√
2i + (50 + 100

√
2) j d 30k

e −100
√

2i + (50 + 100
√

2) j + 30k

34 a −−→OP = 50
√

2i + 50
√

2 j
b i (50

√
2 − 100)i + 50

√
2 j ii 337.5◦

35 m =
2n − 9
n + 3

36 a −i − 8 j + 16k b m =
3
4

37 a c = (3m + 1)i − j + (1 − 3m)k b p = −5

Exercise 4C
1 a 66 b 22 c 6 d 11 e 25

f 86 g −43
2 a 14 b 13 c 0 d −8 e 14
3 a 21 b −21
4 a a · a + 4(a · b) + 4(b · b) b 4(a · b)

c a · a − b · b d |a|
5 a −4 b 5 c 5 d −6 or 1
6 a −−→AB = −2i − j − 2k b |−−→AB| = 3

c 105.8◦

7
√

66
8 a i c ii a + c iii c − a

b 0
9 d and f ; a and e; b and c

10 b 109.47◦

11 a −−→AP = −a + qb b q =
13
15

c
(26

15
,

13
3

,−
13
15

)
12 x = 1, y = −3
13 a 2.45 b 1.11 c 0.580 d 2.01

15 a −−→OM =
3
2

i + j b 36.81◦ c 111.85◦

16 a i −i + 3 j ii 3 j − 2k
b 37.87◦ c 31.00◦

17 a i
1
2

(4i + 5 j) ii
1
2

(2i + 7k)

b 80.12◦ c 99.88◦

18 69.71◦

Exercise 4D

1 a
√

11
11

(i + 3 j − k) b
1
3

(i + 2 j + 2k)

c
√

10
10

(− j + 3k)

2 a i
√

26
26

(3i + 4 j − k) ii
√

3
3

(i − j − k)

b
√

78
26

(3i + 4 j − k)

4 a i
1
3

(2i − 2 j − k) ii
1
5

(3i + 4k)

b
√

510
510

(19i − 10 j + 7k)

5 a −
11
18

(i − 4 j + k) b −
1
9

(i − 4 j + k)

c
13
17

(4i − k)

6 a 2 b
√

5
5

c
2
√

21
7

d −
(1 + 4

√
5)
√

17
17

7 a 2i b 2 c

2i

a
2 j

8 a
9

26
(5i − k),

1
26

(7i + 26 j + 35k)

b
3
2

(i + k),
3
2

i + j −
3
2

k

c −
1
9

(2i + 2 j − k), −
7
9

i +
11
9

j +
8
9

k

9 a j + k b
1
3

(i + 2 j − 2k)

10 a i − j − k b 3i + 2 j + k c
√

14
11 a i i − j − 2k ii i − 5 j

b
3

13
(i − 5 j) c

2
13

√
195 d

√
30

12 b i
2
7

(i − 3 j − 2k) ii
1
3

(5i + j + k)

c
1

21
(i + 11 j − 16k)

13 a d =
c · a
a · a

a b e =
c · b
b · b

b

c f = c −
c · a
a · a

a −
c · b
b · b

b

Exercise 4E

1 a
1
3

a +
2
3

b b
2
5

a +
3
5

b

2 a
5
2

i − j +
5
2

k b
5
3

i −
8
3

j

c
10
3

i +
2
3

j + 5k

3 b 2 : 1

4 a
a + x

2
i +

y
2

j b x2 + y2 = a2
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5 b 1 : 5

6 a −−→OB = −i + 7 j b −−→OD = −2i +
17
3

j

c λ =
2
5

7 b i −−→OP = 2i + j + k

ii −−→OP =
18
11

i +
15
11

j −
1

11
k

iii −−→OP =
7
4

i +
5
4

j +
1
4

k

Exercise 4F

12 a i
1
2

(b − a) ii
1
2

(a + b)

b
1
2

(a · a + b · b)

13 c 3 : 1

14 a i
1
3

(a + 2b) ii a + 2b iii 2b

15 a s = r + t

b u =
1
2

(r + s), v =
1
2

(s + t)

16 b −−→AB = i − 3 j,
−−→
DC = i − j c 4i + 2 j

e 4 j

18
2
3

b −
5

12
a

20 b λ =
k + 2

2
, µ =

k + 2
2

c λ =
3
2

, µ =
3
2

21 b 12r2

23 a −−→OX =
c2

a2 + c2 + d2 (a + c + d)

b −−→OY =
a2 + c2

a2 + c2 + d2 (a + c + d)

c i −−→OX =
1
3

(a + c + d),
−−→
OY =

2
3

(a + c + d)

ii 120◦ iii 120◦

26 a −−→OG =
1
3

(a + b)

30 a λ =
1
2

c cos−1
(1

3

)
31 a −−→OG = b + d + e,

−−→
DF = b − d + e,

−−→
BH = −b + d + e,

−−→
CE = −b − d + e

b |−−→OG|2 = |b|2 + |d|2 + |e|2

+ 2(b · d + b · e + d · e)

|
−−→
DF|2 = |b|2 + |d|2 + |e|2

+ 2(−b · d + b · e − d · e)

|
−−→
BH|2 = |b|2 + |d|2 + |e|2

+ 2(−b · d − b · e + d · e)

|
−−→
CE|2 = |b|2 + |d|2 + |e|2

+ 2(b · d − b · e − d · e)

Chapter 4 review
Technology-free questions

1 a 2i − j + k b
√

2
3

2 a i
3
7

(−3i + 2 j + 6k) ii
1
7

(6i − 11 j − 12k)

3 a x = 5 b y = 2.8, z = −4.4

4 a cos θ =
1
3

b 6

5 a
1
9

(43i − 46 j + 20k) b −
61

549
(3i − 6 j + 4k)

6 a i (2 − 3t) j + (−3 − 2t)k
ii (−2 − 3t) j + (3 − 2t)k

b ±1
7 a i 2

√
17 ii 4

√
3 iii −40

b cos−1
(5
√

51
51

)
8 a 3i −

3
2

j + k b i −
1
2

j + 4k c
8
√

5
21

9 a 34 − 4p b 8.5 c
5

13
10 −6.5

11 λ =
3
2

, µ = −
3
2

12 AB ‖ CD, AB : CD = 1 : 2

13
√

19
5

14 a (−1, 10) b h = 3, k = −2

15 a 2c, 2c − a b
1
2

a + c c 1.5

16 h =
2
3

, k =
3
4

17 3(i + j)
18 a c − a

19 a i
1
3

c ii
2
3

a +
1
3

b iii
2
3

a +
1
3

b −
1
3

c

20 a
1
4

a +
3
4

b

b i
λ

4
a +

(3λ
4
− 1

)
b ii

4
3

21 m =
3(n − 6)

n + 2

22 a v =
6
5

i + j −
2
5

k

Multiple-choice questions
1 C 2 D 3 B 4 B 5 C
6 C 7 E 8 E 9 D 10 B

11 C 12 B 13 D

Extended-response questions
1 a i i + j + k ii

√
3

b i (λ − 0.5)i + (λ − 1) j + (λ − 0.5)k

ii λ =
2
3

,
−−→
OQ =

1
3

(8i + 11 j + 5k)

c 5i + 6 j + 4k
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2 a i |−−→OA| =
√

14, |
−−→
OB| =

√
14 ii i − 5 j

b i
1
2

(5i + j + 2k)

c 5i + j + 2k
e i 5i + j − 13k or −5i − j + 13k

iii The vector is perpendicular to the plane
containing OACB

3 a −−→OX = 7i + 4 j + 3k,
−−→
OY = 2i + 4 j + 3k,

−−→
OZ = 6i + 4 j,

−−→
OD = 6i + 3k, |

−−→
OD| = 3

√
5,

|
−−→
OY | =

√
29

b 48.27◦

c i
( 5λ
λ + 1

+ 1
)

i + 4 j ii −
1
6

4 a i b − a ii c − b iii a − c

iv
1
2

(b + c) v
1
2

(a + c) vi
1
2

(a + b)

5 a
1
3

b +
2
3

c c ii 5 : 1 d 1 : 3

6 a i
1
2

(a + b) ii −
1
2

a +

(
λ −

1
2

)
b

7 a i 12(1 − a) ii 1
b i x − 4y + 2 = 0 ii x = −2, y = 0
c i j + 4k ii i − 12 j + 5k
iii 3i − 11 j + 7k

d X has height 5 units; Y has height 7 units

8 a i
3
4

c ii
2
5

a +
3
5

c iii −a +
3
4

c

b µ =
5
6

, λ =
2
3

9 a b = qi − p j, c = −qi + p j
b i −−→AB = −(x + 1)i − y j,

−−→
AC = (1 − x)i − y j

ii −−→AE = yi + (1 − x) j,
−−→
AF = −yi + (x + 1) j

10 a i −−→BC = mv,
−−→
BE = nv,

−−→
CA = mw,

−−→
CF = nw

ii |−−→AE| =
√

m2 − mn + n2,
|
−−→
FB| =

√
m2 − mn + n2

11 a −−→CF =
1
2

a − c,
−−→
OE =

1
2

(a + c)
b ii 60◦

c ii HX is parallel to EX; KX is parallel
to FX; HK is parallel to EF

12 a −−→OA = −2(i + j),
−−→
OB = 2(i − j),

−−→
OC = 2(i + j),

−−→
OD = −2(i − j)

b −−→PM = i + 3 j + hk,
−−→
QN = −3i − j + hk

c −−→OX =
1
2

i −
1
2

j +
h
2

k

d i
√

2 ii 71◦

e ii
√

6

13 a i −−→OM =
a
2

j ii −−→MC = ai +
a
2

j

b −−→MP = aλi +
aλ
2

j,
−−→
BP = a(λ − 1)i +

a
2

(λ + 1) j,
−−→
OP = aλi +

a
2

(λ + 1) j

c i λ =
3
5

, |
−−→
BP| =

2
√

5a
5

, |
−−→
OP| = a, |

−−→
OB| = a

ii
√

5
5

d λ = −1 or λ =
3
5

P O B

A C

M

C

A

B

O

M
P

e −−→OY =
14
15

ai +
29
30

a j +
1
6

ak

Chapter 5
Exercise 5A
1 a Yes b Yes c No
2 a r = i + (1 + 2t) j

b r = i − 3k + t(i + j + 2k)
c r = 2i − j + 2k + t(−i + 2 j − k)
d r = 2i − 2 j + k + t(−4i + 3 j)

3 a r = 3i + j + t(−5i + j)
b r = −i + 5 j + t(3i − 6 j)
c r = i + 2 j + 3k + t(i − 2 j − 4k)
d r = i − 4 j + t(i + 7 j + k)

4 a i x = 3 − 5t, y = 1 + t

ii y =
1
5

(8 − x)

b i x = −1 + 3t, y = 5 − 6t
ii y = −2x + 3

c i x = 1 + t, y = 2 − 2t, z = 3 − 4t

ii x − 1 =
2 − y

2
=

3 − z
4

d i x = 1 + t, y = −4 + 7t, z = t

ii x − 1 =
y + 4

7
= z

5 a r = 3i + 2 j + t(3i − 2 j)
b r = 4 j + t(−9i + 6 j)
c r = 6i + t(−6i + 4 j)

6 a r = 2i + j + t(−3i + j)
b r = 2i + j + t(i + 3 j)

7 a r = t(2 j − k) b r = t( j + 2k)
8 a r = 2i + j + t(−3i + 2 j)

b i No ii No iii Yes
9 a r = j + k + t(3i + j − k)

c m = −
5
3

, n = −
4
3

10 a 4i + 3 j b r = −i + j + t(4i + 3 j)

c
(
−

7
3

, 0
)
,
(
0,

7
4

)
11 a x = 2 − 3t, y = 5 + t, z = 4 − 2t;

2 − x
3

= y − 5 =
4 − z

2
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b x = 2t, y = 2 + t, z = −1 + 4t;
x
2

= y − 2 =
z + 1

4

12 a
11
√

114
38

b
√

23 123
19

c
√

17 d 3

13 c t ∈ [−3, 2]

14
(13

5
,

23
5

, 0
)

15 r = −i − 3 j − 3k + t(2i + j + 3k);
√

5

16
(7

3
,

2
3

,
8
3

)
17 r = (t − 2)i + 2 j + k

18
√

165
3

19 a (−1,−1, 3), (−5, 1, 7)
b (2, 6,−4), (5, 0, 2)

20 a (1, 1, 2) c t = 2
21 a (1 + t)i + (−4 + 2t) j + (1 − t)k

b
√

18 − 16t + 6t2 c
√

66
3

d
√

786
6

Exercise 5B

1
17
2

i +
9
4

j

2 (−1, 2, 3)
4 a i No ii No iii No iv (−7,−6)

b i No ii Yes iii No iv (−1, 1)
c i Yes ii No iii Yes
d i Yes ii No iii No iv None
e i No ii Yes iii No iv (3, 1,−2)
f i No ii No iii No iv None
g i No ii No iii No iv (3, 0,−1)
h i Yes ii No iii Yes
i i No ii No iii No iv (0, 1,−2)
j i Yes ii No iii Yes

5 a (1, 2,−1) b None c None d None
6 a 25.21◦ b 0◦

7 a 30◦

8 a (3, 3, 1) b
1
√

15
9 � Lines `1 and `2 do not intersect
� Lines `1 and `3 intersect at (2, 3,−1)
� Lines `2 and `3 intersect at (4,−5,−1)

Exercise 5C
1 a −3i + 4 j + 19k b i − 7 j − 4k

c i − j d i + 2k
e −9i − 26 j − 12k f 2 j + k
g 2 j + k h i − 2k

2 a a × b b 0 c 2(a × b)
d (a × c) · b e 0 f 0

3
√

10
6

(4i − 5 j − 7k)

4 i + j is a possible answer
5 1

6
√

374
2

Exercise 5D
1 a r · (i + j + k) = 3, x + y + z = 3

b r · (i − 2k) = 3, x − 2z = 3
c r · (2i + 3 j − k) = 0, 2x + 3y − z = 0
d r · (i + 3 j − k) = −8, x + 3y − z = −8

2
1
√

170
(12i + 5 j + k), r · (12i + 5 j + k) = 28

3 r · (i − j − 3k) = −1, x − y − 3z = −1
4 a 5i + 4 j + 13k

b r = −3i + j + k + t(5i + 4 j + 13k)

5
1
√

77
(−6i + 5 j + 4k), r · (−6i + 5 j + 4k) = 11

8 a x = 0 b x = 6 c x = 3 d x = 4
9 6x + 2y + z = 10 10 x − 2y + 8z = 7

11 5x − 3y + 2z = 27 12 13x + 7y + 9z = 61
13 −3x + 8y + 7z = 41 14 x + 2y = 5

Exercise 5E

1 a 2 b
22
9

2
8
3

3 a 80.41◦ b r = 22 j + 14k + t(i − 5 j − 3k)
4 a (−1,−9, 7) b 7.82◦

5 a 7i + j + 5k b i + 3 j − 5k
c 72.98◦

6 a (2,−2,−1), 29.50◦

b
(7

2
,−

3
2

,−
5
2

)
, 32.98◦

c
(1

2
,

3
2

,−
7
2

)
, 79.98◦ d (−7, 4,−3), 7.45◦

7 a r · (i − 2 j + 6k) = −9 b
9
√

41

8 a
7
3

b
1
3

(2i − j − 2k) c 1 d
4
3

9
5
3

10 a (5,−1,−1) b 25.7◦

11 a x + y + z = 4 b 2
√

3

c
4
3

(i + j + k)

12 a 88.18◦

b r = −
5
2

j − 9k + t
(
i +

19
2

j + 30k
)

13 a i − 5 j − 3k b 2i + 3 j + 7k c 43.12◦

14 a −6i − 4 j + k
b r = 2i + j − 2k + t(−6i − 4 j + k)

15 a 2 b
3
√

2
c

4
√

5
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Chapter 5 review
Technology-free questions
1 4i − k 3 4x + 5y + 6z = 32

4 r = (t − 2)i + 2 j + k 5
(7

3
,

2
3

,
8
3

)
6
√

165
3

7 (−1,−1, 4)

8 2i + 7 j + 5k
9 r = 5i + 6k + t(6i + 3 j + 9k); (1,−2, 0)

10
√

3
2

11 2x − 8y + 5z = 18

12 12x + 8y + 20z = 16
13 a r · (i + 10 j + 6k) = 19

b x + 10y + 6z = 19

14 a x − 2y + z = 0 b
√

6
2

c
(
0,

4
3

,
8
3

)
15 (1,−2, 1) or (1, 1,−2)

Multiple-choice questions
1 C 2 D 3 D 4 D 5 D
6 C 7 A 8 D 9 E 10 C

Extended-response questions

1 a (3,−1, 2) b
√

30
3

2 c
√

30 d 47.73◦ e k = 2 or k = 80
3 c r = 3i + 2 j + k + t(5i − 7 j + k)

d (13,−12, 3), 10
√

3
5 a i + 4 j − 4k b

√
19

c 8x − 11y − 9z = 0 d 29.9◦

6 d (x − 2y + 6)2 + (x − 8z − 10)2 = 0
e (x + y − 5)2 + (5x − z − 10)2 = 0

12 a
√

2 b
√

3
2

c x + y + z = 1, x − y − z = −1, cos−1
(1

3

)
13 a

√
2 b

√
3

2
d x + y + z = 1, x − y − z = 1, cos−1

(
−

1
3

)

Chapter 6
Exercise 6A
1 a 6 b −7 c 13
2 a 5i b 3

√
3i c −5i d 13i e 5

√
2i

f −2
√

3 g −1 + 2i h 4 i 0
3 a x = 5, y = 0 b x = 0, y = 2

c x = 0, y = 0 d x = 9, y = −4
e x = −2, y = −2 f x = 13, y = 6

4 a 5 + i b 4 + 4i c 5 − 5i
d 4 − 3i e −1 + i f 2
g 2 h 1 i 3 − 2i

5

−1 −1

1

2

3

0

−2

−3

−4

−2−3−4 4321
Re(z)

Im(z)

3 − i

2(1 + i)

−2 + 3i

−(3 + 2i)

(−4i)

6

−1 −1

1
2
3
4

0

−2
−3
−4

1 2 3 4−2−3−4
Re(z)

Im(z)

z1 − z2

z1

2z1 + z2

z2

7 a 11 + 3i b −23 + 41i c 13
d −8 + 6i e 3 − 4i f −2 + 2i
g 1 h 5 − 6i i −1

8 a x = 4, y = −3 b x = −2, y = 5
c x = −3 d x = 3, y = −3 or x = −3, y = 3
e x = 3, y = 2

9 a

−1−1

1
2

0

−2
−3
−4

1 2 3 4−2−3−4
Re(z)

Im(z)

(1 + i)4

(1 + i)2

1 + i

(1 + i)3

b Anticlockwise turn by
π

4
about the origin;

distance from origin increases by factor
√

2

10 a −−→PQ =

[
−3
−1

]
=
−−→
OR b |−−→PQ| =

√
10

11 1

Exercise 6B
1 a

√
3 b −8i c 4 + 3i

d −1 + 2i e 4 − 2i f −3 + 2i

2 a i b
3
10
−

1
10

i c −3 + 4i

d
17
5

+
1
5

i e
−1 −

√
3

2
+

√
3 − 1
2

i

f 4 + i
4 a 5 − 5i b 6 + i c 2 + 3i

d
2 − i

5
e −8i f 8 + 6i
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5 a a2 + b2 b
a

a2 + b2 +
b

a2 + b2 i

c 2a d 2bi

e
a2 − b2

a2 + b2 +
2ab

a2 + b2 i

f
a2 − b2

a2 + b2 −
2ab

a2 + b2 i

8 b 12 + 82 or 42 + 72

c (n2 + 2)2 + n2 or (n2 − 2)2 + (3n)2

Exercise 6C

1 a 3; π b 5;
π

2
c
√

2;
3π
4

d 2;
π

6
e 4; −

π

3
f 16; −

2π
3

2 a 1.18 b 2.06 c −2.50
d −0.96 e 0.89 f −1.98

3 a
5π
3

b
3π
2

c
5π
6

d
π

4
e −

11π
6

f −
3π
2

4 a −
3π
4

b
5π
6

c
π

8
d −

π

2

5 a
√

2 cis
(
−

3π
4

)
b cis

(
−
π

3

)
c
√

6 cis
(
−
π

4

)
d

2
3

cis
(
π

6

)
e 2
√

2 cis
(
−
π

6

)
f 4 cis

(5π
6

)
6 a −

√
2 +
√

2i b
5
2
−

5
√

3
2

i c 2 + 2i

d −
3
√

3
2
−

3
2

i e 6i f −4

8 a 2 cis
(
−

3π
4

)
b 7 cis

(2π
3

)
c 3 cis

(
π

3

)
d 5 cis

(
π

4

)
Exercise 6D
1 (2
√

3 − 3) + (3
√

3 + 2)i

2 a 12 cis
(
−

7π
12

)
b

1
2

cis
(
−
π

3

)
c

7
6

cis
(
−
π

15

)
d 8 cis

(
−

19π
20

)
e −

1
8

3 a 8 cis
(
π

3

)
b

8
27

cis
(
π

8

)
c 27 cis

(5π
6

)
d −32i e −216

f 1024 cis
(
−
π

12

)
g

27
4

cis
(
−
π

20

)
4 a Arg(z1z2) =

7π
12

; Arg(z1) + Arg(z2) =
7π
12

;

Arg(z1z2) = Arg(z1) + Arg(z2)

b Arg(z1z2) =
7π
12

; Arg(z1) + Arg(z2) = −
17π
12

;

Arg(z1z2) = Arg(z1) + Arg(z2) + 2π

c Arg(z1z2) = −
5π
6

; Arg(z1) + Arg(z2) =
7π
6

;

Arg(z1z2) = Arg(z1) + Arg(z2) − 2π

6 a
π

4
b −

3π
4

c −
π

4

7
(2
√

3 + 3
2

,
3
√

3 − 2
2

)
8 b i cis

(3π
2
− 7θ

)
ii i

iii cis(4θ) iv cis(π − θ − ϕ)
9 b i cis(−5θ) ii cis(3θ)

iii 1 iv cis
(
π

2
− 2θ

)
10 b i cis(6θ − 3π) ii cis(π − 2θ)

iii cis(θ − π) iv −i
11 a i sec θ cis θ

ii cosec θ cis
(
π

2
− θ

)
iii

1
sin θ cos θ

cis θ = cosec θ sec θ cis θ

b i sec2 θ cis(2θ)

ii sin3
θ cis

(
3θ −

3π
2

)
iii cosec θ sec θ cis(−θ)

12 a 64 cis 0 = 64 b
√

2
8

cis
(
−

3π
4

)
c 128 cis

(
−

2π
3

)
d
√

3
72

cis
(
−
π

2

)
= −

√
3

72
i

e
√

2 cis
(
−
π

4

)
f

64
√

3
3

cis
(3π

4

)
g
√

2
2

cis
(
π

2

)
=

√
2

2
i h

1
4

cis
(
−

2π
15

)
i 8
√

2 cis
(11π

12

)
13

1
2

(1 + i)

14 a −32 + 32i c 32 + 33i

Exercise 6E
1 a (z + 4i)(z − 4i)

b (z +
√

5i)(z −
√

5i)
c (z + 1 + 2i)(z + 1 − 2i)

d
(
z −

3
2

+

√
7

2
i
) (

z −
3
2
−

√
7

2
i
)

e 2
(
z − 2 +

√
2

2
i
) (

z − 2 −

√
2

2
i
)

f 3
(
z + 1 +

√
3

3
i
) (

z + 1 −

√
3

3
i
)

g 3
(
z +

1
3

+

√
5

3
i
) (

z +
1
3
−

√
5

3
i
)

h 2
(
z −

1
4

+

√
23
4

i
) (

z −
1
4
−

√
23
4

i
)
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2 a 5i, −5i b 2
√

2i, −2
√

2i
c 2 + i, 2 − i

d −
7
6

+

√
11
6

i, −
7
6
−

√
11
6

i

e 1 −
√

2i, 1 +
√

2i

f
3
10

+

√
11

10
i,

3
10
−

√
11

10
i

g −i, −1 − i h i, −1 − i

Exercise 6F

1 a (z − 5)
(
z +

1
2

+

√
3

2
i
) (

z +
1
2
−

√
3

2
i
)

b (z + 2)
(
z −

3
2

+

√
11
2

i
) (

z −
3
2
−

√
11
2

i
)

c 3(z − 4)
(
z −

1
6

+

√
11
6

i
) (

z −
1
6
−

√
11
6

i
)

d 2(z + 3)
(
z −

3
4

+

√
31
4

i
) (

z −
3
4
−

√
31
4

i
)

e (z + i)(z − i)(z − 2 + i)
2 b z − 1 + i

c (z + 6)(z − 1 + i)(z − 1 − i)
3 b z + 2 + i

c (2z + 1)(z + 2 + i)(z + 2 − i)
4 b z − 1 − 3i

c (z − 1 + 3i)(z − 1 − 3i)(z + 1 + i)(z + 1 − i)
5 a (z + 3)(z − 3)(z + 3i)(z − 3i)

b (z + 2)(z − 2)(z − 1 +
√

3i)(z − 1 −
√

3i)
(z + 1 +

√
3i)(z + 1 −

√
3i)

6 a (z − i)
(
z +

1
2

+

√
3

2
i
) (

z +
1
2
−

√
3

2
i
)

b (z + i)(z − 1 +
√

2)(z − 1 −
√

2)
c (z − 2i)(z − 3)(z + 1)

d 2(z − i)
(
z +

1
4

+

√
41
4

) (
z +

1
4
−

√
41
4

)
7 a 8 b −4 c −6

8 a 3, −2 ±
√

2i b 5,
1 ±
√

23i
2

c −1,
5 ±
√

7i
2

d −2, 3,
1 ±
√

23i
2

9 a a = 0, b = 4 b a = −6, b = 13
c a = 2, b = 10

10 a 1 − 3i,
1
3

b −2 + i, 2 ±
√

2i

11 P(x) = −2x3 + 10x2 − 18x + 10;
x = 1 or x = 2 ± i

12 a = 6, b = −8
13 a z2 − 4z + 5, a = −7, b = 6

b z = 2 ± i or z = −
1
2

14 a P(1 + i) = (−4a + d − 2) + 2(a − 1)i
b a = 1, d = 6
c z = 1 ± i or z = −1 ±

√
2i

15 p = −(5 + 4i), q = 1 + 7i
16 z = 1 + i or z = 2

17 a 3 + i b 2i, ±
√

6

c 1, ±
√

6i d 2,
−1 ±

√
15i

2

e
√

2 ±
√

14i
4

f 0, −1 ± 2
√

2i

Exercise 6G
1 a z = i or z = −i

Re(z)

Im(z)

1

−1

−1

10

z = cis

z = cis 
−π
2

π
2

b z = 3
(√3

2
+

1
2

i
)
, z = 3

(
−

√
3

2
+

1
2

i
)

or

z = −3i

Re(z)

Im(z)

3

−3

−3

30

z = 3 cis
5π
6 z = 3 cis π

6

z = 3 cis 
−π
2

c z =
√

2
(√3

2
+

1
2

i
)

or z =
√

2
(
−

√
3

2
−

1
2

i
)

Re(z)

Im(z)

0

z = √2 cis

√2

√2−√2

−√2

π
6

−5π
6

z = √2 cis

d z =
√

2
(√3

2
−

1
2

i
)

or z =
√

2
(
−

√
3

2
+

1
2

i
)

Re(z)

Im(z)

0

5π
6

−π
6

z = √2 cis

z = √2 cis
−√2

−√2

√2

√2
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e z =

√
3

2
+

1
2

i, z = −

√
3

2
+

1
2

i or z = −i

Re(z)

Im(z)

0

1

−1

−1

5π
6

z = cis π
6

z = cis 

1

−π
2

z = cis

f z =

√
3

2
−

1
2

i, z = i or z = −

√
3

2
−

1
2

i

Re(z)

Im(z)

0

π
2

z = cis  

−π
6

z = cis  

−5π
6

z = cis 

−1

−1

1

1

2 a 2 cis
(
−
π

12

)
, 2 cis

(7π
12

)
, 2 cis

(
−

3π
4

)
b 2 cis

(
π

4

)
, 2 cis

(11π
12

)
, 2 cis

(
−

5π
12

)
c 2 cis

(
−

5π
18

)
, 2 cis

(7π
18

)
, 2 cis

(
−

17π
18

)
d 2 cis

(
−
π

18

)
, 2 cis

(11π
18

)
, 2 cis

(
−

13π
18

)
e 5 cis

(
−
π

6

)
, 5 cis

(
π

2

)
, 5 cis

(
−

5π
6

)
f 2

1
6 cis

(
π

4

)
, 2

1
6 cis

(11π
12

)
, 2

1
6 cis

(
−

5π
12

)
3 a a2 − b2 = 3, 2ab = 4

b a = ±2, b = ±1;
square roots of 3 + 4i are ±(2 + i)

4 a ±(1 − 4i) b ±
√

2
2

(7 + i)

c ±(1 + 2i) d ±(3 + 4i)

5
√

2 cis
(
π

6

)
,
√

2 cis
(
−

5π
6

)
,
√

2 cis
(
−
π

6

)
,

√
2 cis

(5π
6

)
6 a

1
2

(1 ±
√

5) b ±1

8 z =

√
2

2
+

√
2

2
i or z = −

√
2

2
−

√
2

2
i;(

z −

√
2

2
−

√
2

2
i
) (

z +

√
2

2
+

√
2

2
i
)

9 z = cis
(π

8

)
, cis

(3π
8

)
, cis

(5π
8

)
, cis

(7π
8

)
,

cis
(9π

8

)
, cis

(11π
8

)
, cis

(13π
8

)
or cis

(15π
8

)
;(

z − cis
(π

8

)) (
z − cis

(3π
8

)) (
z − cis

(5π
8

))
(
z − cis

(7π
8

)) (
z − cis

(9π
8

)) (
z − cis

(11π
8

))
(
z − cis

(13π
8

)) (
z − cis

(15π
8

))
10 a a + bi = ±

√
2

2

(
(1 +
√

2)
1
2 + (

√
2 − 1)

1
2 i

)
b 2

1
4 cis

(
π

8

)
, 2

1
4 cis

(
−

7π
8

)
c cos

(
π

8

)
=

(2 +
√

2)
1
2

2
, sin

(
π

8

)
=

(2 −
√

2)
1
2

2

d z =
(2 +
√

2)
1
2

2
+

(2 −
√

2)
1
2

2
i,

z = −
(2 −
√

2)
1
2

2
+

(2 +
√

2)
1
2

2
i,

z = −
(2 +
√

2)
1
2

2
−

(2 −
√

2)
1
2

2
i

or z =
(2 −
√

2)
1
2

2
−

(2 +
√

2)
1
2

2
i

Exercise 6H
1 a

Re(z)

Im(z)

5

100

b

Re(z)

Im(z)

1

10

c

Re(z)

2 + 3i

Im(z)

2 50−1

2 − 3i

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



A
ns

w
er

s
6H

792 Answers

d

Re(z)
4 + i

Im(z)

5

0

−3

−4 + i

e

Re(z)

Im(z)

0

3 + √3i

1 + (√3 + 2)i

1 + (√3 − 2)i

−1 + √3i
1 + √3i

f

Re(z)

Im(z)

0−5 − i

1 + 5i

7 − i

1 − 7i

1 − i

2

Re(z)

Im(z)

0 1

1 1 + i

3 The imaginary axis, i.e. { z : Re(z) = 0 }
4 a

0
Re z

Im z

π
4

b
2

0
Re z

Im z

c

Re z

Im z

0

5

Re(z)

Im(z)

0 2

S
2 + √3i 

2 + √3

2 − √3i

2 − √3

6 a Im(z)

Re(z)

2 + 2i2 + 2i 2

4

0

b

−2

0
Re(z)

Im(z)

c

0
Re(z)

Im(z)

5

2

d

Re(z)

Im(z)

0

√5

√5 −√5 

−√5
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e Im(z)

Re(z)

−1

0

1
2

−

1

2
y = − x −

1

2
y = x −

f Im(z)

Re(z)

1

0

π
3

7 a

0 1

Im(z)

Re(z)

b

1

10

Im(z)

Re(z)

8 x2 + y2 = 1

9 Centre
(8

3
,−2

)
; radius

4
√

10
3

10 |z|2 : 1
11 a Circle with centre (1, 1) and radius 1

b y = −x
c Im(z)

Re(z)
0 1

d Im(z)

Re(z)

π
4

1
0

−1

12 Circle with centre 2 + 4i and radius 6
13 a z = −1 ±

√
3i

b i |z| = 2
ii |z − 1| =

√
7

iii z + z̄ = −2
c Im(z)

Re(z)
−2 1 2

2
0

1−   7√

|z| = 2
−1 −   3i√

−1 +   3i√
z + z = −2

1 +    7√

|z − 1| =    7√

Chapter 6 review
Technology-free questions
1 a 8 − 5i b −i c 29 + 11i

d 13 e
6
13

+
4
13

i f
9
5
−

7
5

i

g
3
5

+
6
5

i h −8 − 6i i
43
10

+
81
10

i

2 a 2 ± 3i b −6 + 2i c −3 ±
√

3i

d
3
√

2
(1 ± i),

3
√

2
(−1 ± i)

e 3,
3
2

(−1 ±
√

3i) or 3 cis
(
±

2π
3

)
f −

3
2

,
3
4

(1 ±
√

3i) or
3
2

cis
(
±
π

3

)
3 a 2 − i, 2 + i, −2 b 3 − 2i, 3 + 2i, −1

c 1 + i, 1 − i, 2

4 a 2
(
x +

3
4

+

√
7

4
i
) (

x +
3
4
−

√
7

4
i
)

b (x − 1)(x + i)(x − i)
c (x + 2)2(x − 2)

5 2 and −1; −2 and 1
6 a iv b ii c i d iii
7 −1 and 5; 1 and −5
8 a = 2, b = 5

9
1
2

cis
(
−
π

3

)
10 a =

3
2
−

√
3

2
, b =

1
2

+
3
√

3
2
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11 a 2 + 2i b
1
2

(1 + i) c 8
√

2 d
π

4

12 a = 2 or a =
9
2

13 a i
√

2 ii 2 iii
π

4
iv −

π

3

b
√

2
2

, −
π

12

14 2 cis
(
π

6

)
, −64

√
3 − 64i

15 ±3, ±3i, 1 ± i
16 16 − 16i
17 −2i, i, −2, k = −2 or 1
18 a (z + 2)(z − 1 + i)(z − 1 − i) b 25

19 −1 + 2i, −1 −
1
2

i

20 a (x − 1)2 + (y − 1)2 ≤ 1
b Im(z)

Re(z)

1

0 1

S

21 The real axis, i.e. { z : Im(z) = 0 }
22 a

0

2

2

Im(z)

Re(z)

b Im(z)

Re(z)
0−4

4

4

c Im(z)

Re(z)
0

−1

1

23
(5

6
,−

7
6

)
24 a 4 − 3i

b c = 12 + 3i, d = 9 − i or
c = 4 + 9i, d = 1 + 5i

25 a 2 cis
(
π

3

)
, 2 cisπ, 2 cis

(
−
π

3

)
b 2 cis

(
π

6

)
, 2 cis

(
−

5π
6

)
26 a x6 − 1 = (x + 1)(x− 1)(x2 − x + 1)(x2 + x + 1)

b x6 − 1 = (x + 1)(x − 1)(
x −

1
2

+

√
3

2
i
) (

x −
1
2
−

√
3

2
i
)

(
x +

1
2

+

√
3

2
i
) (

x +
1
2
−

√
3

2
i
)

c −1, 1,
1
2
±

√
3

2
i, −

1
2
±

√
3

2
i

27 a 1 b 1 c 0

28
3
4

29 −
π

4
30 a −2 + 2

√
3i b −3 − 6i

31 a Im(z)

Re(z)

√3 )centre (−2, 2
radius 2

b i 2 ii
5π
6

Multiple-choice questions
1 E 2 C 3 D 4 E 5 D
6 B 7 B 8 C 9 B 10 A

Extended-response questions
1 a |z7| = 16 384; Arg(z7) = −

π

6
b Im(z)

Re(z)

z7

0 π
6

c 2
√

2 cis
(7π

12

)
d z = −2

√
3 + 2i, w = 1 + i,

z
w

= (1 −
√

3) + (1 +
√

3)i

e −2 −
√

3

f
1
√

3
2 b 3, 2 − i

d z5 − 9z4 + 36z3 − 84z2 + 115z − 75
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3 a z =
√

3 ± i
b i Im(z)

1

−1

0
Re(z)

z = √3 − i

z = √3 + i

√3

ii x2 + y2 = 4
iii a = 2
iv P(z) = z2 + 2

√
3z + 4

The solutions of the equation z6 + 64 = 0
are equally spaced around the circle
x2 + y2 = 4, and represent the sixth roots
of −64. Three of the solutions are the
conjugates of the other three solutions.

Im(z)

Re(z)
0

−2i

2i

√3 − i− √3 − i

√3 + i√3 + i−

4 a 8 cis
(
−

5π
6

)
b 2 cis

(
−

5π
18

)
, 2 cis

(7π
18

)
, 2 cis

(
−

17π
18

)
c Im(z)

Re(z)
0

−2

−2

2

2

2 cis
7π
18

2 cis −17π
18

2 cis −5π
18

d i (z −
√

3i)3 = −4
√

3 − 4i

ii 2 cos
(
−

5π
18

)
+

(
2 sin

(
−

5π
18

)
+
√

3
)

i,

2 cos
(7π

18

)
+

(
2 sin

(7π
18

)
+
√

3
)

i,

2 cos
(
−

17π
18

)
+

(
2 sin

(
−

17π
18

)
+
√

3
)

i

5 a −−→XY =
√

3i − j,
−−→
XZ = 2

√
3i − 2 j

b z3 = 1 +
√

3i

c z3 = 2 cis
(
π

3

)
; W corresponds to 6

√
3

d (4
√

3, 0)

6 a Im(z)

Re(z)

−2

−2 0

T

b T = { z : Re(z) > −2 }

∩ { z : Im(z) ≥ −2 }

∩

{
z : −

5π
6
< Arg(z) < −

2π
3

}
7 a k > −

5
4

b k = −
5
4

c −2 < k < −
5
4

8 b Im(z)

Re(z)θ

sin θ
Z

A

1 1 + cosθ

P

Q

1 − cosθ
cosθ

0

−sin θ

c cosec θ + cot θ = cot
(
θ

2

)
9 a Im(z)

Re(z)

N M

L

R

P

Q

−4 4−2 0 2

b |z − 4| = 4

c N is 4 cis
(2π

3

)
; Q is 4 cis

(
−

2π
3

)
d New position of N is 4 cis

(5π
12

)
;

new position of Q is 4 cis
(
−

11π
12

)
10 b z3 =

√
2 cis(tan−1(2 −

√
3)) =

√
2 cis

(
π

12

)
c Im(z)

Re(z)

1

2

1

2

3 − 1√
2

3 + 1√
4

3 + 1√
24

√1 −  3

1

2
−

−1

1

3√
2

−

3√
2

z
1

z
2

z
3

z
4

0
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11 a ii q = 2k3

b b = −1 − i, c = 2 + 2i
12 a i 6

√
2 ii 6

b ii Isosceles
13 a i 13 ii 157.38◦ = 2.75c

b i cosα = −
12
13

, sinα =
5

13

ii r =
√

13, cos(2θ) = −
12
13

, sin(2θ) =
5

13

iii sin θ = ±
5
√

26
26

, cos θ = ±

√
26

26

iv w = ±

√
2

2
(1 + 5i)

d ±
√

2
2

(5 + i); a reflection of the square roots
of −12 + 5i in the line Re(z) = Im(z)

14 a
(
x +

3
2

)2

+ y2 =
29
4

b
(
x +

3
2

)2

+

(
y −

1
2

)2

=
15
2

c
(
x +

β

α

)2

+ y2 =
β2 − αγ

α2

d
(
x +

a
α

)2

+

(
y −

b
α

)2

=
a2 + b2 − αγ

α2 ,

where β = a + bi
15 a (cos5 θ − 10 cos3 θ sin2

θ + 5 cos θ sin4
θ) +

(5 cos4 θ sin θ − 10 cos2 θ sin3
θ + sin5

θ)i
16 a Im(z)

Re(z)

y = x + 1

−1

0

1

b i Im(z)

Re(z)
0

2√
2 

−2

2√2 − 2

2√
2 

+ 
2

2√
2

S

2√2 + 2

2√2

ii max = 6, min = 2

iii max = 75◦ =
5π
12

, min = 15◦ =
π

12

17 a 2 cis
(
±

2π
3

)
c z2 + (2 − 2

√
3i)z − 4

√
3i = 0 or

z2 + (2 + 2
√

3i)z + 4
√

3i = 0
d −4

18 a i z = 2 cis θ + 1
2 cis(−θ)

b i z = 2i cis θ − 1
2 i cis(−θ)

Chapter 7
Technology-free questions
1 a If n is even, then n2 − 6n + 5 is odd.

c If n is odd, then n2 − 6n + 5 is even.
2 b m = 1 and n = 1
8 Many possible answers. For example:

a p = 3 and q = 3 b a = 3

14 a
2 +
√

3
4

b i
√

5 − 1 ii 5 − 2
√

5

15 [−1, 0],
[8 − 3π

2
,

8 + 3π
2

]
16

(3
4

, 2
)
,
(9

4
, 2

)
,
(15

4
, 2

)
,
(21

4
, 2

)
17 x =

(2n + 1)π
2

,
π

6
+ 2nπ,

5π
6

+ 2nπ

18 a
π

12
,
π

4
,

5π
12

,
3π
4

b i
(
π

12
,

2
√

3
3

)
,
(5π

12
,−

2
√

3
3

)
ii

0 π
4

π
2

3π
4

π
x

1

−1

y

c

0 4
x

2π

π

y

19 a
[
−

1 + d
c

,
1 − d

c

]
,
[
a −

πb
2

, a +
πb
2

]
b

02
3

1
3

x

2π

π

3π

4π

y

−−

20 −1
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21 (9, 4,−5), (−1, 6, 1), (−5,−2, 9)

22
2
3

(2i + j + 2k),
1
3

(5i + 4 j − 7k)

23 a −i b
7
√

6
18

c
√

5
2

24 a m = ±5 b m = −
5
4

c 4i + 6 j − 7k

d m =
7
2

25 b λ =
2
7

26 a
√

13
13

(3i + 2 j)

b i
10
13

(3i + 2 j) ii
10
√

13
13

27 a m = −3, n = 2 b λ = −
1
5

28 a m =
1
7

b i
19
7

ii
4
7

(2 j − 2k)

29 3
30 a

√
3 b

√
2

31 a = ±
√

2
32 a r = λ(3i + 4k), λ ∈ R

b r = 2 j + k + λ(−i + j + 3k), λ ∈ R
c r = 3i + 2 j + 4k + λ(−3i + 2 j − 6k), λ ∈ R

33 a r · (i − 2 j + k) = 0 b r · (−2i + 2k) = 6
c r · (4i − 3 j − 3k) = −6

34 a
4
3

b
√

14
7

c 0 d
2
√

3
3

35 (3,−1,−3)

36 a (0, 1, 0) b (2,−1, 2) c
(2

3
,

1
3

,
2
3

)
37 3
38 a a = −3

b r =
1

11
(25 − 14λ)i +

27
11

(λ − 1) j + λk

39 a
√

21
14

b r = j + t(−i − j + k)

40 c r = 8 j + 5k + t(i − 2 j + 2k)

41 a
1
√

51
b

2
29

42 a r = 3i + 5 j + 9k + t(−2i + 4 j + k)

b
x − 3
−2

=
y − 5

4
= z − 9

c x = 3 − 2t, y = 5 + 4t, z = 9 + t
43 z = ±2, z = ±

√
3i

44
π

12
45 z = 1, 2,−2 + i,−2 − i

46 a z = 1,
1
2
±

√
3

2
i

b cis(0), cis
(
π

3

)
, cis

(
−
π

3

)

c

cis 0

−1

−1

1

Re z

Im z

0

cis
π
3

cis
−π

3

47 (−2
√

2,
√

2)
48 cos θ − (sin θ)i

49 z = 2 cis
(
π

6

)
, z2 = 4 cis

(
π

3

)
,

z3 = 8 cis
(
π

2

)
= 8i

z2

z3

z

0−2−4−8 2 4 8
Re z

−2

−4

−8

2

4

Im z

50 b (z − 1 − i)(z − 2 + 3i)(z − 2 − 3i)
51 b i (−1 ±

√
2)i ii i iii ±1 − i

52 a a = 3, b = 4, c = 2 b −
√

3 + i

53 z1 =
10√2 cis

(17π
20

)
, z2 =

10√2 cis
(9π

20

)
,

z3 =
10√2 cis

(
π

20

)
, z4 =

10√2 cis
(
−

7π
20

)
,

z5 =
10√2 cis

(
−

15π
20

)

0

Im(z)

Re(z)

√2
10

z3

z4

z5

z1

z2

2 10√2 
10√−

210√−
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54 a z1 = 2 cis
(
−
π

6

)
, z2 =

√
2 cis

(
−

3π
4

)
b
√

2 cis
(7π

12

)
c
√

2 cis
(
−

7π
12

)
d i Im(z)

Re(z)0

−2
√3 − i 

3 √2 

ii

− 1 − i

Re(z)0

Im(z)

55 a i 2 cis
(
π

3

)
ii 2n cis

(nπ
3

)
iii Multiples of 3 iv None

b z2
1 = −2 + 2

√
3i, z3

1 = −8
c a = 1, b = −2

d z = −
5
2

, 1 +
√

3i, 1 −
√

3i

56 a C = 1 − 2i, D = 3 + 2i b Centre i
59 c = 1, r =

√
2

60 a = 3, k = −30

Multiple-choice questions
1 C 2 B 3 B 4 D 5 C
6 A 7 A 8 E 9 B 10 E

11 D 12 E 13 E 14 C 15 D
16 B 17 D 18 D 19 E 20 B
21 C 22 D 23 B 24 A 25 E
26 D 27 C 28 E 29 A 30 C
31 C 32 B 33 C 34 C 35 E
36 C 37 C 38 B 39 B 40 D
41 E 42 C 43 E 44 C 45 E
46 B 47 E 48 B 49 A 50 C
51 B 52 A 53 D 54 C 55 A
56 B 57 E 58 D 59 E 60 A
61 A 62 C 63 C 64 A 65 C
66 B 67 C 68 E 69 C 70 D
71 B 72 A 73 D 74 C 75 B
76 D 77 C 78 E 79 D 80 C
81 D 82 B 83 E

Extended-response questions

1 a i
3
2

(b − a) ii
1
2

(3b − a)

b i −−→AB = i + 2 j,
−−→
BC = 2i − j iv 3i − j

c x = 4, y = 5, z = 2
2 a z = 1 ±

√
2i

b (x − 1)2 + y2 = 2
c 0 ≤ d ≤ 6

d i z =
b
2a
±

√
4ac − b2

2a
i

ii b2 < 4ac

iii
(
x −

b
2a

)2

+ y2 =
4ac − b2

4a2

3 a i Im(z)

Re(z)

T1

S1

−2

−2

2

2

4

4

0

ii 2
√

2 − 2

b i Im(z)

2

1

210
Re(z)

S2

T2

ii Maximum
√

2 + 1; minimum 1
4 a

0

Im(z)

Re(z)

z

w

z + w

5 a i a + b ii
1
3

(a − b) iii
2
3

(a − b)

b −−→DA = 2
−−→
BD

6 a i 151◦ ii
1
9

(34i + 40 j + 23k)

iii x = 3, y = −2, z = 16

b i b −
1
2

a ii −−→OA = 2
−−→
BQ

7 b 4 : 1 : 3 c 4i + j + 3k
e s = 3, t = −2
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8 a
a · b
|a| |b|

b
√

(a · a)(b · b) − (a · b)2

|a| |b|
10 a Since a × (b − 3c) = 0 and a , 0, we must

have b − 3c = ka for some k ∈ R.
b i 1 ii 2

√
3 iii ±2

√
3

c ±
1
√

3

11 b i p +
(k − p · n)n

n · n

ii
∣∣∣∣∣ (k − p · n)n

n · n

∣∣∣∣∣ =
|k − p · n|
|n|

12 c 8 : 1

13 a i
1
3

(a + 2b) ii
1
6

(2b − 5a)

b i 2 : 3 ii 6 : 1

14 a i 2c − b ii
1
3

(a + 2b) iii
1
5

(a + 4c)

15 c 3 : 1
16 a z2 − 2z + 4

b i 2 cis
(
−
π

3

)
ii 4 cis

(
−

2π
3

)
, −8

iii 1 ±
√

3i, −1
c i

√
7,
√

7 ii Isosceles

17 a −−→AB = i + j,
−−→
AC = 2i − k

b −i + j − 2k c x − y + 2z = 5
d r = i + 2 j + k + t(i − j + 2k)

e
5
3

i +
4
3

j +
7
3

k f
2
√

6
3

18 a p =
1
3

(4 + 2
√

2i), q =
1
3

(2 + 4
√

2i)

b i b − a ii
1
2

(a + b) iii
1
3

(a + b)

iv
1
3

(2a − b) v
1
3

(2b − a)

19 a (z + 2i)(z − 2i) b (z2 + 2i)(z2 − 2i)
d (z − 1 − i)(z + 1 + i)(z − 1 + i)(z + 1 − i)
e (z2 − 2z + 2)(z2 + 2z + 2)

20 a
√

17
b Circle centre 2 − i and radius

√
5

c Perpendicular bisector of line joining 1 + 3i
and 2 − i

21 a 2 + 11i

b i
2
√

5
25

ii
11
√

5
25

22 c i 1 ii −1
d i z2 − 3z + 3 = 0 ii z2 + 2z + 13 = 0
e 0, 3

23 a cis(0), cis
(2π

5

)
, cis

(4π
5

)
, cis

(
−

4π
5

)
, cis

(
−

2π
5

)
e w =

−1 ±
√

5
2

f z = −
1 +
√

5
4

±

√
10 − 2

√
5

4
i,

z =

√
5 − 1
4

±

√
10 + 2

√
5

4
i

24 a 4, 9, −4 b 5
25 b cos(5θ) = cos5 θ (1 − 10 tan2 θ + 5 tan4 θ),

sin(5θ) = cos5 θ (5 tan θ − 10 tan3 θ + tan5 θ)
26 a cis(±θ)

27 a y

x

y = π
2

π
2

1

−1
y = −

2 4
π
4

π π−π −π −π
2

0

11−√ 11√

b i 0.67 ii 0.54
d 0.82

28 a

(1, 0)
−    , −1π

2

   , 1π
2

(−1, π)
y

xO

b i 0.48 ii 0.67
d (0.768, 0.695)

29 a a = 5, d = −10
b i 1.73 metres

ii 8.03 metres
30 a Im(z)

Re(z)

3

S

0
4

3π
√2

b {−1 + i, −1 + 2i, −2 + 2i}
c Im(z)

Re(z)

(−1, 1)

2

0

√2
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31 a

Re(z)

Im(z)

0

B 4 A

(2, 2)

π
4 4

3π

A ∩ B

b Im(z)

−1 1

0
Re(z)

32 a −−→OA = i +
√
λk,

−−→
CA = 2i − 3 j +

√
λk

b 56◦ c 13 + 8
√

3 since λ > 0

33 b i −−→OX = 1
3 (a + b + c),

−−→
OY = 1

3 (a + c + d),
−−→
OZ = 1

3 (a + b + d),
−−→
OW = 1

3 (b + c + d)

ii −−→DX = 1
3 (a + b + c) − d,

−−→
BY = 1

3 (a + c + d) − b,
−−→
CZ = 1

3 (a + b + d) − c,
−−→
AW = 1

3 (b + c + d) − a
iii −−→OP = 1

4 (a + b + c + d)

iv −−→OQ =
−−→
OR =

−−→
OS = 1

4 (a + b + c + d)
v Q = R = S = P, which is the centre

of the sphere that circumscribes the
tetrahedron

38 a Distance
√

3
b −3
c � v · w = 3 if no components differ

(i.e. if v = w)
� v · w = −3 if all components differ

(i.e. if v = −w)
� v · w = 1 if one component differs
� v · w = −1 if two components differ

d cos−1( 1
3 ) ≈ 70.53◦, cos−1(− 1

3 ) ≈ 109.47◦

Algorithms and pseudocode
See solutions supplement

Chapter 8
Exercise 8A

1 a x4(5 sin x + x cos x) b
√

x
( cos x

2x
− sin x

)
c ex(cos x − sin x) d x2ex(3 + x)
e cos2 x − sin2 x = cos(2x)

2 a ex(tan x + sec2 x) b x3(4 tan x + x sec2 x)

c sec2 x loge x +
tan x

x

d sin x (1 + sec2 x) e
√

x
( tan x

2x
+ sec2 x

)
3 a

loge x − 1
(loge x)2

b
√

x
( cot x

2x
− cosec2 x

)
c ex(cot x − cosec2 x)

d
sec2 x
loge x

−
tan x

x(loge x)2

e
cos x

x2 −
2 sin x

x3

f sec x (sec2 x + tan2 x)

g
−(sin x + cos x)

ex

h − cosec2 x
4 a 2x sec2(x2 + 1) b sin(2x)

c etan x sec2 x d 5 tan4 x sec2 x

e
√

x cos(
√

x)
2x

f
1
2

sec2 x
√

cot x

g x−2 sin
(1

x

)
h 2 tan x sec2 x

i
1
4

sec2
( x

4

)
j − cosec2 x

5 a k sec2(kx)

b 2 sec2(2x) etan(2x)

c 6 tan(3x) sec2(3x)

d esin x
(1

x
+ loge x cos x

)
e 6x sin2(x2) cos(x2)

f e3x+1 sec2 x (3 cos x + sin x)

g e3x(3 tan(2x) + 2 sec2(2x))

h
√

x tan(
√

x)
2x

+
sec2(

√
x)

2

i
2(x + 1) tan x sec2 x − 3 tan2 x

(x + 1)4

j 20x sec3(5x2) sin(5x2)

6 a 5(x − 1)4 b
1
x

c ex(3 sec2(3x) + tan(3x))
d − sin x ecos x e −12 cos2(4x) sin(4x)
f 4 cos x (sin x + 1)3

g − sin x sin(2x) + 2 cos(2x) cos x h 1 −
1
x2

i
x2(3 sin x − x cos x)

sin2 x
j
−(1 + loge x)

(x loge x)2

7 a 3x2 b 4y + 10
c − sin(2z) d sin(2x) esin2 x

e −2 tan z sec2 z f −2 cos y cosec3 y

8 a
2

2x + 1
b

2
2x − 1

c cot x d sec x

e
sin2 x − cos3 x

sin x cos x (cos x + sin2 x)
f cosec x

g cosec x h
1

√
x2 − 4

, x , ±2 i
1

√
x2 + 4
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9 a
1
2

b
2
3

c 1

10 a
(
−
π

3
,−
√

3
)
,
(
π

3
,
√

3
)

b y = 4x −
4π
3

+
√

3, y = 4x +
4π
3
−
√

3

11 a
(
−
π

3
, 3
√

3
)

is a local maximum;(
π

3
,−3
√

3
)

is a local minimum

b y

x

π
3

− , 3√3

π
2

−
π
3

−
π
3

π
2

π
3

, −3√3

1

8

1

8
cos−1

−cos−1

0

12 a
√

2e
π

4 b
(
−
π

4
,−

1
√

2
e−

π

4

)

13 ±
1
2

cos−1


√

2 tan
(7π

18

)
tan

(7π
18

)


14 a
1
4

sin
( x

4

)
sec2

( x
4

)
b
√

2
4

c y =

√
2

4
(x − π + 4)

Exercise 8B

1 a
1
2

b
1
2y

c
1

4(2y − 1)

d e−y e
1

5 cos(5y)
f y

g cos2 y h
1

3y2 + 1
i y2

j
1

ey(y + 1)

2 a
64
3

b
4
3

c
1
4

d 1

e
1
4

f ±
1
8

g −
√

3
3

h ±
1
2

3 a
1

6(2y − 1)2 b
1

2e2y+1

c
1
2

(2y − 1) d y

4 a
1

6
3√

x2
b

1
2x

c
1
2

ex d
1
2

ex+1

5 y =
1
6

x −
5
6

, y = −
1
6

x +
5
6

6 a (5,−1), (12, 6) b
(
−

15
4

,
5
2

)
c

(
−

15
4

,
3
2

)
7 a (2, 2) b 8.13◦

Exercise 8C

1 a
1

√
4 − x2

, x ∈ (−2, 2)

b
−1

√
16 − x2

, x ∈ (−4, 4) c
3

9 + x2

d
3

√
1 − 9x2

, x ∈
(
−

1
3

,
1
3

)
e

−2
√

1 − 4x2
, x ∈

(
−

1
2

,
1
2

)
f

5
1 + 25x2

g
3

√
16 − 9x2

, x ∈
(
−

4
3

,
4
3

)
h

−3
√

4 − 9x2
, x ∈

(
−

2
3

,
2
3

)
i

10
25 + 4x2

j
1

√
25 − x2

, x ∈ (−5, 5)

2 a
1

√
−x(x + 2)

, x ∈ (−2, 0)

b
−1

√
−x(x + 1)

, x ∈ (−1, 0) c
1

x2 + 4x + 5

d
−1

√
−x2 + 8x − 15

, x ∈ (3, 5)

e
3

√
6x − 9x2

, x ∈
(
0,

2
3

)
f

−3
2x2 − 2x + 1

g
6√

−3(3x2 + 2x − 1)
, x ∈

(
−1,

1
3

)
h

20√
−5(5x2 − 6x + 1)

, x ∈
(1

5
, 1

)
i

−10
x2 − 2x + 5

j
−2x
√

1 − x4
, x ∈ (−1, 1)

k
−6x

|x|
√

2 − x2

3 a
3

x
√

x2 − 9
b

−5

x
√

x2 − 25
c

3

x
√

4x2 − 9

4 a
a

√
1 − a2 x2

, x ∈
(
−

1
a

,
1
a

)
b

−a
√

1 − a2 x2
, x ∈

(
−

1
a

,
1
a

)
c

a
1 + a2 x2

5 a i [−2, 2] ii
[
−

3π
2

,
3π
2

]
b

3
√

4 − x2
, x ∈ (−2, 2)

c y

x

3
2

−2 2O
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6 a i
[
−

1
3

,
1
3

]
ii [0, 4π]

b f ′(x) =
−12

√
1 − 9x2

, domain =

(
−

1
3

,
1
3

)
c y

x
1

3

1

3 −12

O
−

7 a i R ii (−π,π)

b f ′(x) =
4

x2 + 2x + 5
c y

x

4
5

−1

(−1, 1)

0 y = 0

y = 0 is a
horizontal
asymptote

8 a f ′(x) =
2 sin−1 x
√

1 − x2
, x ∈ (−1, 1)

b f ′(x) = 0, x ∈ (−1, 1)

c f ′(x) =
−x

√
1 − x2

, x ∈ (−1, 1)

d f ′(x) =
−x

√
1 − x2

, x ∈ (−1, 1)

e f ′(x) =
esin−1 x

√
1 − x2

, x ∈ (−1, 1)

f f ′(x) =
ex

1 + e2x

9 a 0.35 b −6.29 c
3
5

10 a ±
√

3
2

b ±
√

391
10

c ±
√

5
3

d −1 ±

√
1599
20

e ±
√

35
4

f
1
2

(1 ±
√

7)

11 a y =
4
√

3
3

x −

√
3

3
+
π

6

b y = x −
1
2

+
π

4

c y = −2
√

3x +

√
3 + π

3

d y = −6x +
√

3 +
π

6
12 a (−∞,−6] ∪ [6,∞)

b f ′(x) =
6

|x|
√

x2 − 36
, x < −6 or x > 6

c y

x
−6 60

π
π
2

Exercise 8D
1 a f ′′(x) = 0 b f ′′(x) = 56x6

c f ′′(x) = −
1

4
√

x3
d f ′′(x) = 48(2x + 1)2

e f ′′(x) = − sin x f f ′′(x) = − cos x

g f ′′(x) = ex h f ′′(x) = −
1
x2

i f ′′(x) =
2

(x + 1)3

j f ′′(x) = 2 sin x sec3 x

2 a
d2y
dx2 =

15
√

x
4

b
d2y
dx2 = 8(x2 + 3)2(7x2 + 3)

c
d2y
dx2 = −

1
4

sin
( x

2

)
d

d2y
dx2 = −48 cos(4x + 1)

e
d2y
dx2 = 2e2x+1 f

d2y
dx2 =

−4
(2x + 1)2

g
d2y
dx2 = 6 sin(x − 4) sec3(x − 4)

h
d2y
dx2 =

4x√
(1 − x2)3

i
d2y
dx2 =

−2x
(1 + x2)2

j
d2y
dx2 = 360(1 − 3x)3

3 a f ′′(x) = 24e3−2x

b f ′′(x) = 8e−0.5x2
(1 − x2)

c f ′′(x) = 0 d f ′′(x) = − cosec2 x

e f ′′(x) =
3x√

(16 − x2)3

f f ′′(x) =
−27x√

(1 − 9x2)3

g f ′′(x) =
−96x

(9 + 4x2)2 h f ′′(x) =
3

4
√

(1 − x)5

i f ′′(x) = −5 sin(3 − x)
j f ′′(x) = 18 sin(1 − 3x) sec3(1 − 3x)

k f ′′(x) =
1
9

sec
( x

3

) (
2 tan2

( x
3

)
+ 1

)

l f ′′(x) =

1 + cos2
( x

4

)
16 sin3

( x
4

)
4 a 1 b −1 c −1 d −

1
2
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Exercise 8E
1 a b c d

2 a Point of inflection (0, 0);
concave up on (0,∞)

b Point of inflection
(1

3
,−

2
27

)
;

concave up on
(1

3
,∞

)
c Point of inflection

(1
3

,
2

27

)
;

concave up on
(
−∞,

1
3

)
d Points of inflection (0, 0),

(1
2

,−
1
16

)
;

concave up on (−∞, 0) ∪
(1

2
,∞

)
3 a (−1, 1), (0, 1) b

(
−

1
2

,
3
2

)
4 a i (2x2 + 1)ex2 ii 2x(2x2 + 3)ex2

e i (0,∞) ii (−∞, 0)

5 a Local min (0, 0); local max
(40

3
,

3200
27

)
b

(20
3

,
1600

27

)
; gradient =

40
3

c y

x

20
3

40
3

, 40
3

0,

20
3

0,

40
3

3200
27

,

(20, −8)
20O

4

(20, −40)

6 a i 6x2 + 12x ii 12x + 12
b Local min (0,−12); local max (−2, 4)
c (−1,−8)

7 a f ′(x) = cos x; f ′′(x) = − sin x;(
π

2
, 1

)
,
(3π

2
,−1

)
, (π, 0)

b f ′(x) = ex(x + 1); f ′′(x) = ex(x + 2);
(−2,−2e−2), (−1,−e−1)

8 a i f ′(a − h) < 0 ii f ′(a) = 0
iii f ′(a + h) > 0

b Non-negative
c f ′′(a) ≥ 0
d i f ′′(0) = 2 ii f ′′(0) = 1
iii f ′′(0) = 0

e No
9 a (3, 1)

b y = −
π

2
+ 1, y =

π

2
+ 1

10 a f ′(x) = ex(10 + 8x − x2),
f ′′(x) = ex(18 + 6x − x2)

b (3 + 3√3, 53 623)

3 + 3√3 10O

(10, –484 582)

y

x

c 3 + 3
√

3, (3 + 3
√

3, 53 623)
11 (0, 0), (π,π), (2π, 2π), (3π, 3π), (4π, 4π)
12 a x = kπ, k ∈ Z b x = kπ, k ∈ Z

c x = 0 d x =
1
2

kπ, k ∈ Z

e x = 1 f x = e−
5
6

14 a
(3

2
, 2

)
b

(
1,

3
2

)
15 a (0, 0), −6 b (−1,−1), 8; (1,−1), −8

c (0, 3), 0 d No points of inflection
e No points of inflection
f No points of inflection

g
(
−
√

3,−

√
3

2

)
, −

1
4

; (0, 0), 2;
(√

3,

√
3

2

)
, −

1
4

h (0, 0), 1 i
(
10,

1
18

)
, −

1
432

16 a x =
π

4
+ kπ, k ∈ Z b x =

π

2
+ kπ, k ∈ Z

18 a f ′(x) = 2x(1 + 2 loge x)
b f ′′(x) = 2(3 + 2 loge x)

c Stationary point at
(
e−

1
2 ,−e−1);

point of inflection at
(
e−

3
2 ,−3e−3)

19 Local minimum at (−3,−3e−1);
point of inflection at (−6,−6e−2)

Exercise 8F

1 a
dr
dt
≈ 0.00127 m/min

b
dA
dt

= 0.08 m2/min

2
dx
dt
≈ 0.56 cm/s

3
dy
dt

= 39 units/s

4
dx
dt

=
3

20π
≈ 0.048 cm/s

5
dv
dt

= −
5
6

units/min

6
dA
dt

= 0.08π ≈ 0.25 cm2/h

7
dc
dt

=
1
2

cm/s

8 a
dy
dt

=
1 − t2

(1 + t2)2 ,
dx
dt

=
−2t

(1 + t2)2

b
dy
dx

=
t2 − 1

2t
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9
dy
dx

=
− sin(2t)

1 + cos(2t)
= − tan t

10 y =

√
3

3
x −

π
√

3
18

+ 1

11 a
dy
dt

= 12 cm/s b
dy
dt

= ±16 cm/s

12 2.4

13 a −
5
√

6
2

cm/s b −4
√

3 cm/s

14 72π cm3/s
15 a 4 b 2 cm/s

16
7

12π
cm/s

17
dV
dt

= A
dh
dt

18 a
dh
dt

= −

√
h

4π

b i
dV
dt

= −

√
10
2

m3/h ii
dh
dt

= −

√
10

8π
m/h

19 a y = −
1
2

x +
√

2 b y =
− cos t
2 sin t

x +
1

sin t

20 a y =

√
2

2
x − 1 b y = −

√
2x + 5

c y =
1

2 sin θ
x −

cos θ
sin θ

21 a 2 cosec t b y = 2
√

2x + 6
√

2 − 2
22 a y = − sin(t)x + 2 tan(t)

b
2 sin t
cos2 t

c
π

3
23 a e−t b (1,∞)

c

0 1
x

1

y

d 4x − 2y = 1

24 a
3(t − 3)(t − 1)

2t
, t , 0

b (2, 4), (10, 0) c
3(t2 − 3)

4t3 , t , 0

d (4, 12
√

3 − 18), (4,−12
√

3 − 18)

Exercise 8G
1 a y

x

x = 2

x = 0 

(1, −1)O y = 0

b y

(1, 2)

x = 0 O
x

(−1, 2)

c y

O
x

(1, 1)
0, 1

2

y = 0

d y

x

y =  x

(−1, 0)

(1, 0)O

e y

x

y =  x

(1, 0)O−3√2
2

3

−√2,
3

f y

x

(1, 3)
y = x + 1

x = 0

(−1, −1)

O

1
−1

g y

x

(−1, 12)

Ox = 0

(√2, 0)
3
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h y

x

(0, 1)

O y = 0

i

x

y

x = −1 x = 1

O

(0, −1) y = 0

j y

x

y = 1

O

k y

x
O

−1 2

, −
4
9

1
2

1
2

−

y = 0

l y

x
O 4−1

1
4

, 4

25

3

2 y = 0

2 a y

y =
(0, 9)

x = −3

y = 0

x = 3

−3 3O
x

1

9 − x2

0,
1

9

b

3−3 2

O

y

x

0,
−1
6

2    , 41
2

y = 0

c

O

y

x

−1,
1
3

0,
1
4

(−1, 3) (0, 4)

y = 0

d y

x

x = −1

y = 0

(0, 1)

0−1

e y

   

x
O

(1, 4)(−1, 4)

x = 0

3 a min
(1

2
, 4

)
; max

(
−

1
2

,−4
)

b y =
15
4

x + 1

4 x = ±
1
2

5 Gradient =
1
2

6 a (1, 0); (4, 0) b x = 0, y = x − 5
c min (2,−1); max (−2,−9)

y

x

(2, −1)

(−2, −9)

y = x − 5

O 1

−5

4
5

x = 0
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7 Least value = 3
8 Least value = 4

y

x

(2, 4)

O

y = x

x = 0

9 a min (3, 0); max (−3,−12)
b y

x

(−3, −12)

0

y = x − 6

−6

3 6

x = 0

10 a min
(1

2
, 6

)
b y

x
O

y = 8x

x = 0

, 61
2

, 01
16

−3

11 Asymptotes: y = x + 3, x = 0;
Intercepts: (−2, 0), (1, 0);
Stationary points: local max (−2, 0)

(1, 0)

(3, 5)

(−2, 0)

y = x + 3

1
x

3

y

12 a R \
{
− 1

2

}
b

8(x2 + x − 2)
(2x + 1)2

c Local min (1, 4); local max (−2,−8)

d x = −
1
2

, y = 2x − 1 e R \ (−8, 4)

13 a x = 4, x = 1, y = 1

b Local max (2,−4); local min
(
−2,

4
9

)

c

O
x19

4−2, )( x = 1
y = 1

x = 4(2, −4)

y

14 a y = 1

b Local min
(
−1,

1
3

)
; local max

(
2,

5
3

)
c Points of inflection

(1
2

, 1
)
,(1 − 3

√
3

2
,

3 −
√

3
3

)
,
(1 + 3

√
3

2
,

3 +
√

3
3

)
d

O
x

1

3
52, )(

2
1 , 1)(

3
1−1,

y = 1

)(

y

15 a

1 x

2

(3, 5)

y = x + 2

(−√3, 0)

(√3, 0)

y

b

0 1
x

2

x = −2 x = 2

y = 1

(−1, 0)

(3, 0)

y

c

O

y = 1
x

x = 0 x = 1

(−1, 0) (2, 0)

2
1 9)( ,

y

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



A
nsw

ers
8H
→

8I
Answers 807

d

O
x

y = 1x = 2x = 0

(1, 9)

(−2, 0) (4, 0)

y

e

O
x

y = 2
4
7− 2

7 )( ,

−2
4
1 )( ,

x = − 2
1

x = 2
3

y

16 a x > 2 b
x − 4

2(x − 2)
3
2

c (4, 2
√

2), local minimum d x = 2

17 a x > −
1
2

b 7

c
3x2 + 3x − 6

(2x + 1)
3
2

d (1, 3
√

3), local minimum e x = −
1
2

Exercise 8H
1 a f ′′(x) = 90x8

b f ′′(x) = 224(2x + 5)6

c f ′′(x) = −4 sin(2x) d f ′′(x) = −
1
9

cos
( x

3

)
e f ′′(x) =

9
2

sin
(3x

2

)
sec3

(3x
2

)
f f ′′(x) = 16e−4x g f ′′(x) =

−1
x2

h f ′′(x) =
x√

(16 − x2)3

i f ′′(x) =
−8x√

(1 − 4x2)3

j f ′′(x) =
−4x

(4 + x2)2

k f ′′(x) =
50 − 12x

(x2 − 8x + 17)2

2 a
dy
dx

= −24x(1 − 4x2)2

b
dy
dx

=
1

2
√

(2 − x)3

c
dy
dx

= − sin x cos(cos x)

d
dy
dx

= −
sin(loge x)

x
e

dy
dx

= −

sec2
(1

x

)
x2

f
dy
dx

= − sin x ecos x g
dy
dx

=
3

3x − 4

h
dy
dx

=
−1

√
x(2 − x)

i
dy
dx

=
−2

√
−4x(x + 1)

j
dy
dx

=
1

x2 + 2x + 2
k

dy
dx

=
9

|x|
√

x2 − 81

3 a
1 − loge x

x2 b
−2x

(x2 + 1)2

c
1

x2 − 2x + 2
d

1
ex + 1

e
2
√

sin y + cos y
cos y − sin y

f
1

√
1 + x2

g
ex

√
1 − e2x

h
ex(cos x − sin x) + cos x

(ex + 1)2

4 a i a −
b
x2 ii

2b
x3

5 a i 2 cos(2x) − 6 sin(2x)
ii −4 sin(2x) − 12 cos(2x)

Exercise 8I

1 a x b −
2y
x

c −
x2

y2 d
2x
3y2

e 2
√

y f
2 − y
x + 3

g
2a
y

h
2

1 − y

2 a
x + 2

y
b −

y2

x2

c
2(x + y)

1 − 2(x + y)
d

y − 2x
2y − x

e
2xey

1 − x2ey f −
sin(2x)
cos y

g
cos x − cos(x − y)
cos y − cos(x − y)

h
sin y

5y4 − x cos y + 6y
3 a x + y = −2 b 5x − 12y = 9

c 16x − 15y = 8 d y = −3

4
dy
dx

=
y
x

5 −
1
4

6 −1 7 −
2
5

8 −
7
5

9 a
dy
dx

= −
x2

y2 c −
1
9

10 y = −1, y = 1

11 a
dy
dx

=
−(3x2 + y)

x + 6y2 d −220 or −212

12 a
dy
dx

=
y − x
2y − x

b (−2,−2), (2, 2)
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13 a
dy
dx

= −
3x2

2y
b (0,−1), (0, 1)

c (1, 0) e y = ±
√

1 − x3

f (0,−1), (0, 1)
g y

x
O

1

1

−1

14 a
dy
dx

=
2 − x
y − 2

b
√

2
4

15
d2y
dx2 = −2(6 − y)3

16 −
4
7

17
12

√
3π − 6

18
dy
dx

= −
5

12
,

d2y
dx2 = −

169
1728

19 9x + 13y = 40

20
dy
dx

= −
4x
y

,
d2y
dx2 = −

16x2 + 4y2

y3

Chapter 8 review
Technology-free questions
1 a tan x + x sec2 x

b
1

1 + x2 sec2(tan−1 x) = 1

c
−x

√
1 − x2

d
1

√
x − x2

2 a 2 sec2 x tan x

b
sec2 x − 2

sin2 x
= −4 cot(2x) cosec2 x =

− cosec2 x + sec2 x

c
2 − x2

(1 − x2)
3
2

d ex(cos ex − ex sin ex)

3 a
(8

3
,−

1024
27

)
b (2, 0)

c
(
2, loge 2 +

1
2

)
d

(
2,

1
8

)
7 f ′ : (−1, 1)→ R, f ′(x) =

1

arccos2(x)
√

1 − x2

8 a y

x
0

(0, π)

(π, 0)

f −1

3π
2

−1,

3π
2

,  −1

b −
1

√
1 − x2

c
(
−

√
3

2
,

4π
3

)
9 a −

2
√

3
3

b −
8
3

10 a y

x

(0, 1)

x = −1 

−2

b

(1, 0)

(0, −1)
y = −2

y

x

11 a i y

x
(1, 0)O

y = f(x) + g(x)

ii

O

x = 1

1

y

x

y =
 f(x) + g(x)
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iii

O

x = 1x = −1

y

x

b f (x) = x2 − 1, g(x) = (x − 1)2

c i f (x) + g(x) = 2x2 − 2x

ii
1

f (x) + g(x)
=

1
2x2 − 2x

iii
1

f (x)
+

1
g(x)

=
2x

(x − 1)2(x + 1)

12 a −1 b
−(x + 1)

y + 3
c −

2y2

x2

d
−(x + 1)

y − 3
e

sin(x)
cos(y)

f −
y loge(y)

x
13 a 324 cm/s b 36 cm/s

14 b (−1, 0),
(
0,−

1
9

)
c x = ±3, y = 0

15 a = −3, b = 12

16
dy
dx

=
3t
2

,
d2y
dx2 =

3
4t

17 e2x arctan(y)
(
2 +

e2x

1 + y2

)
Multiple-choice questions
1 E 2 E 3 B 4 E 5 B
6 D 7 C 8 B 9 D 10 C

11 C 12 B 13 B 14 C

Extended-response questions

1 a i
(
−

1
3

,
19
27

)
, (2,−12) ii

(5
6

,−
305
54

)
b b2 − 4ac > 0

2 a p = −
b
3a

, q = f
(
−

b
3a

)
3 a f ′(x) = (x + 1)ex, f ′′(x) = (x + 2)ex,

f (3)(x) = (x + 3)ex

b f (n)(x) = (x + n)ex

d f (n)(x) = (x2 + 2nx + n2 − n)ex

5 a f (x) =
x
2

+

√
3

2

√
1 − x2,

dom = (0, 1), ran =

(1
2

, 1
]

b y = 1

c
(1

2
, 1

)
6 a A =

√
3

2
x2 + 3xy b y =

8000
√

3
3x2

c A =

√
3

2
x2 +

8000
√

3
x

d A

x
O

y =      x2
√3

2
(20, 600√3)

e Minimum surface area = 600
√

3 cm2

7 a i y =
100
x2

ii S = 60x2 +
3000

x
iii S (cm2)

(2.92, 1539)
S = 60x2

x (cm)
O

b 521 13
27 cm2/s

c 1.63 cm or 4.78 cm

8 a A =
p
√

p2 + 4
2

− p

b i
dA
dp

=
p2

2
√

p2 + 4
+

√
p2 + 4

2
− 1

ii

p

A

O

iii 10.95
c i 0.315 sq. units/s ii 0.605 sq. units/s
iii 9.800 sq. units/s iv 15.800 sq. units/s

9 a y

x
0

4
100

27
5,

b i
16x

(2 + x2)2 ii
16

(2 + x2)2

(
1 −

4x2

2 + x2

)
c
√

6
3

d y

x
0

4

5−5

100

27
5,

100

27
−5,
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10 a 3ax2 + 2bx + c
b 6ax + 2b
c b2 ≤ 3ac

d i x = −
b
3a

ii max a < 0, min a > 0

e −
b
3

f i b2 < 4c ii 3c < b2 < 4c

11 a ii
4(3x2 − 1)
(1 + x2)3

b

x
1

1−1

−1

0

y

Horizontal asymptote at y = −1
c

10−1−2

−1

1

2

y

x

−2, 
−3

5
2, 
−3

5

y =
1 − x2

1 + x2

y

x
−1 1

2
1

0
−1

−2

8
25

−2,

−8
25

2,

3√3
4

− √3
3

,

−3√3
4

√3
3

,

dy

dx
=

−4x

(1 + x2)2

y

x

44
125

2,44
125

−2, (−1, 1)

−2

√3
3

, 0− √3
3

, 0

−1

−4

0

1

1 2

(1, 1)

d2y
dx2 =

4(3x2 − 1)
(1 + x2)3

d i y = x + 1, y = −x + 1

12 a i
dV
dh

=
3000πh

1 − h
ii dV

dh
(m3/m)

(0.9, 84 823)

h(m)
0.90

b i 13 219 litres
ii y

x0

y = −3000π [loge(1 − x) + x] 
(0.9, 13 219)

y = −3000π loge(1 − x)
(0.9, 21701)

0.9
(0.9, −8482)

y = −3000πx

c 0.0064 m/min

13 a i f ′(x) = 0 ii f (x) =
π

2
iii f (x) = −

π

2

b i
dy
dx

= − cosec2 x ii
dy
dx

= −(1 + y2)

c
−1

1 + x2

d − cosec2 x + sec2 x

14 a f ′(x) = −
16
x3 +

16
x

b f ′′(x) =
48
x4 −

16
x2

c (1, 16 loge 2 − 24) d x =
√

3
e (1,∞) f x = 3.55

g y

O
x0.5

3.55

 2, 8 loge (12) −

(1, 16 loge 2 − 24)

88
3

15 b i
(
3,

2 − 2 cos θ
sin θ

)
c i M =

( 3
2 cos θ

,
1

sin θ

)
ii

9
4x2 +

1
y2 = 1

d i y =
2 sin θ
3 cos θ

x +
6

3 cos θ
ii Z = (3(cos θ − sin θ), 2(cos θ + sin θ))
iii (2x + 3y)2 + (3y − 2x)2 = 144

16 a
∣∣∣∣∣ ab
sin(2θ)

∣∣∣∣∣
b θ = (2n + 1)

π

4
, n ∈ Z; minimum area = ab

17 b Q =

( a
sec θ − tan θ

,
b

sec θ − tan θ

)
;

R =

( a
sec θ + tan θ

,
−b

sec θ + tan θ

)
c Midpoint = (a sec θ, b tan θ)
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18 a
9 sin θ cos θ

4
b Maximum area =

9
8

when θ =
π

4

c M =

(3 cos θ
4

,
3 sin θ

2

)
d

16x2

9
+

4y2

9
= 1

19 a
x2

4
+ y2 = 1

Chapter 9
Exercise 9A

1 a −
1
2

cos
(
2x +

π

4

)
b

1
π

sin(πx)

c −
3

2π
cos

(2πx
3

)
d

1
3

e3x+1 e
1
5

e5(x+4)

f −
3
2x

g
3
2

x4 −
2
3

x3 + 2x2 + x

2 a 0 b 20 c 1

d
5

24
e

1
√

2
+
π2

16
f

e3

3
+

1
6

g 0 h 0 i 1

3 a
1
2

loge |2x − 5| b
1
2

loge

(3
5

)
c

1
2

loge

(7
9

)
4 a

1
3

loge

(5
2

)
b

1
3

loge

( 5
11

)
c

1
3

loge

(7
4

)
5 a

(3x + 2)6

18
b

1
3

loge |3x − 2|

c
2
9

(3x + 2)
3
2 d −

1
3(3x + 2)

e 3x − 2 loge |x + 1| f
2
3

sin
(3x

2

)
g

3
20

(5x − 1)
4
3 h 2x − 5 loge |x + 3|

6 a f (x) = 2x, F(x) = x2 + 3

b f (x) = 4x2, F(x) =
4
3

x3

c f (x) = −2x2 + 8x − 8,

F(x) = −
2
3

x3 + 4x2 − 8x +
28
3

d f (x) − e−x, F(x) = e−x + 3
e f (x) = 2 sin x, F(x) = 2 − 2 cos x

f f (x) =
2

4 + x2 , F(x) = tan−1
( x

2

)
+
π

2
7 a y

y = F(x)

O
2

x

b y

0

y = F(x)

1

−1
x

c y

0

y = F(x)

1
x

d y

x0

−1−3−5

y = F(x)

e y

y = F(x)

x
1

0

2

f y

y = F(x)

x
30

2
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Exercise 9B

1 a sin−1
( x

3

)
+ c b

1
√

5
tan−1

( x
√

5

)
+ c

c tan−1(t) + c d 5 sin−1
( x
√

5

)
+ c

e
3
4

tan−1
( x

4

)
+ c f

1
2

sin−1
( x

2

)
+ c

g 10 sin−1
( t
√

10

)
+ c h

1
12

tan−1
(4t

3

)
+ c

i
√

2
2

sin−1
( x
√

10
5

)
+ c

j
7
√

3
tan−1

( y
√

3

)
+ c

2 a
π

2
b
π

2
c

5π
6

d
3π
10

e
π

8
f
π

16
g
π

6
h
π

8

i
π

2
j

1
√

3
tan−1(2

√
3)

Exercise 9C

1 a
(x2 + 1)4

4
+ c b −

1
2(x2 + 1)

+ c

c
1
4

sin4 x + c d −
1

sin x
+ c

e
1

12
(2x + 1)6 + c f

5
3

(9 + x2)
3
2 + c

g
1

12
(x2 − 3)6 + c h −

1
4(x2 + 2x)2 + c

i −
1

3(3x + 1)2 + c j 2
√

1 + x + c

k
1

15
(x3 − 3x2 + 1)5 + c

l
3
2

loge(x2 + 1) + c m −
3
2

loge |2 − x2| + c

n
1
2

(loge x)2 + c o −
1
8

e−4x2
+ c

2 a tan−1(x + 1) + c

b
2
√

3
3

tan−1
(√3(2x − 1)

3

)
+ c

c sin−1
( x + 2

5

)
+ c d sin−1(x − 5) + c

e sin−1
( x + 3

7

)
+ c

f
√

3
6

tan−1
(√3(x + 1)

2

)
+ c

3 a
1
2

sin2 x + c b −
1
2

cos2 x + c

d c = 1; Pythagorean identity

4 a −
1
2

(2x + 3)
3
2 +

1
10

(2x + 3)
5
2 + c

b
2(1 − x)

5
2

5
−

2(1 − x)
3
2

3
+ c

c
4
9

(3x − 7)
3
2 +

28
3

(3x − 7)
1
2 + c

d
4

45
(3x − 1)

5
2 +

10
27

(3x − 1)
3
2 + c

e 2 loge |x − 1| −
1

x − 1
+ c

f
2

45
(3x + 1)

5
2 +

16
27

(3x + 1)
3
2 + c

g
3
7

(x + 3)
7
3 −

3
4

(x + 3)
4
3 + c

h
5
4

loge |2x + 1| +
7

4(2x + 1)
+ c

i
2

105
(x − 1)

3
2 (15x2 + 12x + 8) + c

j
2
√

x − 1
15

(3x2 + 4x + 8) + c

Exercise 9D

1 a
61
3

b
1

16
c

1
3

d
25
114

e
4
15

f loge 2 g
4
3

h 1 i
1
2

j loge 2 k loge

(√6
2

)
l loge

(15
8

)
m loge

( e + 1
e

)
= loge(e + 1) − 1

2 loge 2

Exercise 9E

1 a
1
2

x −
1
4

sin(2x) + c

b
1

32
sin(4x) −

1
4

sin(2x) +
3
8

x + c

c 2 tan x − 2x + c d −
1
6

cos(6x) + c

e
1
2

x −
1
8

sin(4x) + c f
1
2

tan(2x) − x + c

g
1
8

x −
1

32
sin(4x) + c

h
1
2

sin(2x) + c i − cot x − x + c

j
1
2

sin(2x) −
1
6

sin3(2x) + c

2 a tan x (c = 0) b
1
2

tan(2x) (c = 0)

c 2 tan
(1

2
x
)

(c = 0) d
1
k

tan(kx) (c = 0)

e
1
3

tan(3x) − x (c = 0)

f 2x − tan x (c = 0) g −x (c = 0)
h tan x (c = 0)

3 a
π

4
b

1
2

+ loge

(√2
2

)
=

1
2
−

1
2

loge 2

c
1
3

d
1
4

+
3π
32

e
4
3

f
π

4

g
π

24
+

√
3

64
h 1
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4 a sin x −
sin3 x

3
+ c

b
4
3

cos3
( x

4

)
− 4 cos

( x
4

)
+ c

c
1
2

x +
1

16π
sin(8πx) + c

d 7 sin t
(
cos2 t +

3
5

sin4 t −
1
7

sin6 t
)

+ c

e
1
5

sin(5x) −
1
15

sin3(5x) + c

f 3x − 2 sin(2x) +
1
4

sin(4x) + c

g
1
48

sin3(2x) −
1
64

sin(4x) +
x

16
+ c

h sin x −
2 sin3 x

3
+

sin5 x
5

+ c

5 a −
1

12
(
sin(6x) − 3 sin(2x)

)
b

1
12

(
sin(6x) + 3 sin(2x)

)
c −

1
12

(
cos(6x) + 3 cos(2x)

)
d −

1
4
(
cos(2x) + 2 cos x

)
e

1
4
(
sin(2x) + 2 sin x

)
f −

1
4
(
sin(2x) − 2 sin x

)
6 a −

2
15

b 0 c −
4
9

Exercise 9F

1
1
3

tan−1
( x

3

)
+ c 2 cos−1

( x
2

)
+ c

3 2 loge(
√

x + 1) + c 4
1
2

loge(4
√

x + 3) + c

5 sin−1
( x

3

)
+ c

6
9
2

sin−1
( x

3

)
+

x
√

9 − x2

2
+ c

7 loge

∣∣∣∣∣ x
( 3√x + 1)3

∣∣∣∣∣ + c 8
x

√
1 − x2

+ c

Exercise 9G

1 a
2

x − 1
+

3
x + 2

b
1

x + 1
−

2
2x + 1

c
2

x + 2
+

1
x − 2

d
1

x + 3
+

3
x − 2

e
3

5(x − 4)
−

8
5(x + 1)

2 a
2

x − 3
+

9
(x − 3)2

b
4

1 + 2x
+

2
1 − x

+
3

(1 − x)2

c
−4

9(x + 1)
+

4
9(x − 2)

+
2

3(x − 2)2

3 a
−2

x + 1
+

2x + 3
x2 + x + 1

b
x + 1
x2 + 2

+
2

x + 1

c
x − 2
x2 + 1

−
1

2(x + 3)

4 3 +
3

x − 1
+

2
x − 2

5
1

x − 10
−

1
x − 1

; loge

∣∣∣∣∣ x − 10
x − 1

∣∣∣∣∣ + c

6 x2 − 4x + 12 −
32

x + 2
+

17
(x + 2)2 ;

x3

3
− 2x2 + 12x −

17
x + 2

− 32 loge |x + 2| + c

7
7

x + 2
−

13
(x + 2)2 ; 7 loge |x + 2| +

13
x + 2

+ c

8
5

18(x − 4)
−

5x
18(x2 + 2)

−
10

9(x2 + 2)
;

1
36

(
5 loge

( (x − 4)2

x2 + 2

)
− 20
√

2 arctan
(√2x

2

))
+ c

9 a loge

∣∣∣∣∣ x − 2
x + 5

∣∣∣∣∣ + c b loge

∣∣∣∣∣ (x − 2)5

(x − 1)4

∣∣∣∣∣ + c

c
1
2

loge |(x + 1)(x − 1)3| + c

d 2x + loge

∣∣∣∣∣ x − 1
x + 1

∣∣∣∣∣ + c

e 2 loge |x + 2| +
3

x + 2
+ c

f loge |(x − 2)(x + 4)3| + c

10 a loge

∣∣∣∣∣ (x − 3)3

x − 2

∣∣∣∣∣ + c

b loge |(x − 1)2(x + 2)3| + c

c
x2

2
− 2x + loge

∣∣∣(x + 2)
1
4 (x − 2)

3
4
∣∣∣ + c

d loge
(
(x + 1)2(x + 4)2) + c

e
x3

3
−

x2

2
− x + 5 loge |x + 2| + c

f
x2

2
+ x + loge

∣∣∣∣∣ (x − 1)4

x3

∣∣∣∣∣ + c

11 a
1
2

(
loge

( x2 + 2
(x + 1)2

)
+ 2
√

2 arctan
(√2x

2

))
b

1
2

loge

( (x + 1)2

x2 + 1

)
−

1
x + 1

c
1
5

(
loge

(
(x2 + 4)2|x − 1|

)
− 8 arctan

( x
2

))
+ 5x

d
1
2

loge

( x2 + 4
(x − 2)2

)
− 8 arctan

( x
2

)
−

18
x − 2

e 2 loge

( (x + 2)2

x2 + 2

)
+ 4
√

2 arctan
(√2x

2

)
f

1
2

loge

∣∣∣∣∣ x − 1
x + 1

∣∣∣∣∣ +
3x2 + 9x + 10

3(x + 1)3
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12 a loge

(4
3

)
b loge

(4
3

)
c

1
3

loge

(625
512

)
d 1 + loge

(32
81

)
e loge

(10
3

)
f loge 4 + 4 g

1
2

loge

(7
4

)
h loge

(2
3

)
i

1
4

loge

(1
3

)
j 5 loge

(3
4

)
− loge 2 k loge 2 +

1
6

13 a −
5
4
(
2 loge 2 − π

)
b 2 loge 2 + π +

√
3

c 1 −
π

2
d −

1
3
(
3 loge 3 + π

√
3
)

14 a
3

x − 2
−

1 + 2x
x2 + x + 1

b loge

(
|x − 2|3

x2 + x + 1

)
+ c c 2 loge

(9
8

)
16 b loge

∣∣∣∣∣1 + t
1 − t

∣∣∣∣∣ + c = loge

∣∣∣∣∣1 + tan( x
2 )

1 − tan( x
2 )

∣∣∣∣∣ + c

c 2 tan−1 t +
2

1 + t
+ c = x +

2
1 + tan( x

2 )
+ c

Exercise 9H
1 a (−x − 1)e−x b x loge x − x

c sin x − x cos x d x arccos(x) −
√

1 − x2

e
1
9

cos(3x) +
1
3

x sin(3x)

f loge |cos x| + x tan x

g −
1
2

x2 + x tan x + loge |cos x|

h x arcsin(2x) +
1
2

√
1 − 4x2

i x arctan x −
1
2

loge(1 + x2) j (−x − 2)e−x

k
1
2
(
−x + arctan x + x2 arctan x

)
l

1
4

x2(2 loge x − 1
)

m
1
9

x3(3 loge x − 1
)

n 2
√

x
(
loge x − 2

)
o (x + 2)ex

p
1
36

x6(6 loge x − 1
)

q
1
4

(2x − 1)e2x+1

r
1
4

x2(2 loge(2x) − 1
)

2 a −(x2 + 2x + 2)e−x

b (2 − x2) cos x + 2x sin x

3 a
1
2

ex(sin x − cos x
)

b
1

13
e2x(3 sin(3x) + 2 cos(3x)

)
c −

1
10

e3x(cos x − 3 sin x
)

d −
2
5

ex
(
cos

( x
2

)
− 2 sin

( x
2

))

4 In =
1
2
(
xne2x − nIn−1

)
, n ∈ N;

I3 =
1
8

(4x3 − 6x2 + 6x − 3)e2x + c

5 In = x(loge x)n − nIn−1, n ∈ N;
I3 = x

(
(loge x)3 − 3(loge x)2 + 6 loge x − 6

)
+ c

6 b −
1
15

cos x
(
3 sin4 x + 4 sin2 x + 8

)
+ c

7 b
1

15
sin x

(
3 cos4 x + 4 cos2 x + 8

)
+ c

8 a I0 = 1, I1 =
2
3

c I2 =
8

15
, I3 =

16
35

9 a
1
4
(
1 + 3e4) b −

π

2
c −

1
8

d
2
9
(
1 + 2e3)

e −12 + 38
√

2 − 8
√

2π f
−2 + 5e3

27e
g loge(12) − 1 h

1
4
(
5e4 − 1

)
i 3 loge(27) −

26
9

Exercise 9I

1 p =
4
3

2 a
1

24
b e − 1 − loge

(1 + e
2

)
c

9
64

d
1
3

loge 5

3 c =
3
2

4 −
1

18
cos6(3x) + c

5 p =

(3
2

) 1
2

6 p =
8
5

7 a −
1

2 sin2 x
+ c b

1
20

(4x2 + 1)
5
2 + c

c
1
3

sin3 x −
1
5

sin5 x + c

d
1

1 − ex + c

8 1

9 a
1
2

tan−1
( x + 1

2

)
+ c b

1
3

sin−1(3x) + c

c
1
2

sin−1(2x) + c d
1
6

tan−1
(2x + 1

3

)
+ c

10 a −
1

2x
√

x − 1
b
π

6

11 a
1
3

( f (x))3 + c b −
1

f (x)
+ c

c loge( f (x)) + c d − cos( f (x)) + c

12
dy
dx

=
8 − 3x

2
√

4 − x
; 4
√

2

13 a = 2, b = −3, c = −1; x2 − 3x +
1

x − 2
+ c

14 a
π

8
b 42 c 0 d loge 2

e 1 −
π

4
f loge

(3
2

)

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



A
nsw

ers
9

review
Answers 815

15 a
1
2

sin2 x + c b −
1
4

cos(2x) + c

16 a
1

√
x2 + 1

; loge |x +
√

x2 + 1| + c

b
1

√
x2 − 1

17 a
1
2

tan−1
( x

2

)
b

1
4

loge

∣∣∣∣∣ x + 2
2 − x

∣∣∣∣∣
c 4 loge |x| +

1
2

x2 d
1
2

loge(4 + x2)

e x − 2 tan−1
( x

2

)
f

1
2

tan−1(2x)

g
1
3

(4 + x2)
3
2

h
2
5

(x + 4)
5
2 −

8
3

(x + 4)
3
2

i −2
√

4 − x j sin−1
( x

2

)
k −8

√
4 − x +

2
3

(4 − x)
3
2

l −
√

4 − x2

18 c =
5
2

, d =
3
2

19 a f ′(x) = −(n − 1) sin2 x cosn−2 x + cosn x

c i
3π
16

ii
5π
32

iii
π

32
iv

4
3

20 a
1

2 − n
(x + 1)2−n −

1
1 − n

(x + 1)1−n + c

b
1

n + 2
+

1
n + 1

21 a
1
3

a2 + a + 1 b −
3
2

22 a
a2 + b2

(a cos x + b sin x)2 b
1
ab

23 a Un + Un−2 =
1

n − 1
24 a 1 c

π

4

26 a
3x
8
−

3
8

sin x cos x −
1
4

sin3 x cos x + c

b
3x
8
−

1
4

sin(2x) +
1
32

sin(4x) + c

c sin(4x) = 4 sin x cos x − 8 sin3 x cos x

Chapter 9 review
Technology-free questions

1 a
1
6

sin(2x)
(
3 − sin2(2x)

)
b

1
4
(
loge(4x2 + 1) + 6 tan−1(2x)

)
c

1
4

loge

∣∣∣∣∣1 + 2x
1 − 2x

∣∣∣∣∣ d −
1
4

√
1 − 4x2

e −
1
4

x +
1
16

loge

∣∣∣∣∣1 + 2x
1 − 2x

∣∣∣∣∣ f −
1
6

(1 − 2x2)
3
2

g
1
2

x −
1
4

sin
(
2x −

2π
3

)
h (x2 − 2)

1
2

i
1
2

x −
1

12
sin(6x)

j
1
6

cos(2x)
(
cos2(2x) − 3

)
k 2(x + 1)

3
2

(1
5

(x + 1) −
1
3

)
l

1
2

tan x

m
x
e
−

1
3e3x+1 n

1
2

loge |x
2 − 1|

o
x
8
−

sin 4x
32

p
1
2

x2 − x + loge |1 + x|

2 a
1
3
−

√
3

8
b

1
2

loge 3 c
1
3

(5
√

5
8
− 1

)
d

1
6

loge

(7
4

)
e 2 + loge

(32
81

)
f

2
3

g
π

6
h
π

4

i
π

4
j
π

16
k loge

(3
√

2
2

)
l 6

3
1
2

loge |x
2 + 2x + 3| −

√
2

2
tan−1

(√2(x + 1)
2

)
+ c

4 a
1

2
√

x(1 − x)
; 2 sin−1(

√
x) + c

b
2x

√
1 − x4

; sin−1(x2) + c

5 a x sin−1 x +
√

1 − x2 + c
b x loge |x| − x + c

c x tan−1 x −
1
2

loge(1 + x2) + c

6 a −
1
8

cos(4x) b
1
9

(x3 + 1)3

c
−1

2(3 + 2 sin θ)
d −

1
2

e1−x2

e tan(x + 3) − x f
√

6 + 2x2

g
1
3

tan3 x h
1

3 cos3 x
i

1
3

tan(3x) − x

7 a
8

15
b −

39
4

c
1
2

d
2
3

(2
√

2 − 1) e
π

2
f

1
3

loge

(1
9

)
8

(
x2 +

1
x

)− 1
2

(2x − x−2);
√

2

9 a 1, 1 b 3, 2

10 a
1
4

e−2x
(
sin(2x + 3) − cos(2x + 3)

)
b loge |cos x| + x tan x

c
1
37

e3x
(
12 cos

( x
2

)
+ 2 sin

( x
2

))
11 a

8
3

loge 2 −
7
9

b
1
2

(loge 2)2

c
1
4
−

3
4e2
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Multiple-choice questions
1 D 2 C 3 C 4 D 5 A
6 C 7 C 8 C 9 A 10 D

Extended-response questions
1 c i I2 = tan x − x + c

ii I3 =
1
2

sec2 x + loge |cos x| + c

iii I4 = x +
1
3

tan x (sec2 x − 4) + c

iv I5 =
1
4

sec4 x − sec2 x − loge |cos x| + c

d
∫

sec x dx = loge |sec x + tan x| + c

e In =
1

n − 1
tan x secn−2 x +

n − 2
n − 1

In−2, n ≥ 3

f i I3 =
1
2
(
tan x sec x + loge |sec x + tan x|

)
+ c

ii I4 =
1
3
(
tan x sec2 x + 2 tan x

)
+ c

iii I5 =
1
8

(
2 tan x sec2 x + 3 tan x sec x

+ 3 loge |sec x + tan x|
)

+ c

2 d i
π

8
+

1
4

ii
3π
32

+
1
4

iii
5π
64

+
11
48

3 a
(2k − 1) · (2k − 3) · (2k − 5) · · · · · 3 · 1

2k · (2k − 2) · (2k − 4) · · · · · 4 · 2
·
π

2

Chapter 10
Exercise 10A

1 Area = sin−1
(2

3

)
square units

y

0−1 1
x

0, 
1
3

x = −3
2 x = 3

2

2 Area =
9π
4

square units

0−2 2

y

x

0, 9
4

3 Area =
3
2

+ 2 loge 2 square units

0
1

y = x 

x

y

2

4 a Area =
π

4
− loge

√
2 square units

y

x
O

y = π
2

y = −π
2

1, π
4

b Area =
1
2

square units

y

x
O

0, π
2

, π−1
2

− 1
2

1
2

c Area =
π

2
square units

d Area = π − 2 square units

O 1

(1, π)

(−1, −π)

y

x

e Area = π − 2 square units

2, π
2

2, −π
2

O 2

y

x
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f Integral =
5π
6
−
√

3

y

x

2, π
2

−1, −π
6

−1

0 2

5 Area =
4
3

loge 5 square units

0−2−3

x = −3 x = 3

2 3

y

x

0, 4
9

6 a (0, 1) b y = −1 c π − 2 square units

7 a
(
0,−

4
3

)
, (−4, 0), (1, 0)

b y = x, x = −3
c y

x

x = −3 y = x

0, −4
3

(−4, 0) (1, 0)O
−1

d Area = 31 1
2 + 4 loge

( 4
11

)
square units

8 a R \ {1, 2}
b y

y = 0
x

O 1 2

, 43
2

0,
1

2
−

c R− ∪ [4,∞)

d Area = − loge

(3
4

)
= loge

(4
3

)
square units

9 Integral = −
π

2
y

x
O

−1 1
(0, −3)

10
π

12
square units

11 Area =
π
√

3
3
− loge 2 square units

x
O √3 

√3, π
3

y = π
2

y = −π
2

y

12 1 square unit 13
2
3

square units

14
1
3

square units

15 Area = 6 loge 2 square units
y

x

x = −3 

y = 2

O 3

16 b
(1

4
, 2 2

3

)
local minimum

c y

x

1
4

2
3

, 2

x = 1

(0, 3)

O

x = −1
2

d
3
2
− loge 4 square units

17 a 1 b
√

3π
6
−

1
2

c
1
4

d
π

4
e π2 − 4

18 a3
(1

3
−

√
3

8

)
19 π + 1 − loge 2

Exercise 10B

1 (3, 3), (2, 0);
1
3

square units

2
1
3

square units

3 a
17
24

square units b
5
6

square units
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4 Area = 8 loge 3 −
22
3

square units
y

x

y = f(x)

O

(0, −4)

x = 2x = −2 

5 a = e2

6 a 4 1
2 square units b

11
6

square units

c
11
6

square units

7 a Area = 4 square units
y

x
O

y = 2 sin x

y = sin 2x
–1

1

2

π

b Area = 2 1
2 square units
y

x
O

1

−1

y = sin 2xy = cos x

π
2− π

6
π
2

c Area = 2 1
6 square units

y

x

y = 6 – x

(4, 2)

(5, 1)(1, 1)

6

O 6

y = √x

d Area = π − 2 square units
y

x
O 1−1

1

2

e Area =
π

12
− 1 +

√
3

2
square units

y

x
O 1

2

1
2

π
6

,

π
2

1,

−π
2

−1,

f Area = 2 +
π

3
−
√

3 square units

x
O

y = cos 2x

y = 1 − sin x

(π, 1)

−1

1

1
2

π
6

5π
6

π

y

g Area ≈ 4.161 square units

x2 + 1

y

x
O

y = (x2 + 1)1
3

1
3

0,

y = 
3

√2 √2 –

8 a f ′(x) = ex + xex b x = −1

c y

x
O

−1, −1
e

d y = −
1
e

e Area =
3
e
− 1 square units

Note: As f ′(x) = ex + xex,∫
xex dx = xex − ex + c

9 y

x

y = logex + 1

(1, 1)

2

O
2

(e−1, 0)

a y = 2 − x

b Area =
1
2

+
1
e

square units
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10 a (−1, 6), (1, 0), (3, 2)
b y

x

(−1, 6)

(0, 2)
(3, 2)

21O

y = 3 

c Area =
16
3
− 3 loge 3 square units

12 a (−2
√

2, 1), (2
√

2, 1) b 33.36

13
9
2

14 3.772
15 a a = 4, b = 2

√
5 b 5.06

16 4

Exercise 10C

1 a
9π
4

b
324 − 108

√
6

5

c 3 loge(10) − 2 arctan
(1

3

)
+ π − 6

2 a
π

4
−

1
2

b 2 loge 2 − 1 c
π

8
−

loge 2
4

3 a 4.24 b 3.14 c 1.03 d 0.67
e 1.95 f 0.66 g 0.64 h 0.88
i 1.09 j 0.83

4 a loge x b − loge x c ex − 1

d 1 − cos x e tan−1(x) +
π

4
f sin−1(x)

5 a y

x
O

b

x
O

y

c y

x
O

d y

x
O

e y

x
O

(1, 0.84)

Exercise 10D

1 Area =
32
3

square units;

Volume = 8π cubic units

2 a 8π cubic units b
364π

3
cubic units

c
343π

6
cubic units d

π2

4
cubic units

e
π

2
(e4 − 1) cubic units

f 36π cubic units

3
2π
3

cubic units

4 a
3π
4

cubic units b
28π
15

cubic units

c 2π cubic units d
4πa3

3
cubic units

e 36π cubic units f 18π cubic units

5
1088π

15
cubic units 6

π

2
cubic units

7
21π

4
cubic units 8

3π
10

cubic units

9
32π

3
cubic units

11

O
x

y = sin 2x

y = sin x

, 1π
4

, 1π
2

π
2

y
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12 b =
4
13

13
7π
6

14 a
16π

3
b π

( e4

2
− 4e2 +

23
2

)
15 a

e
2
− 1 b

π

6
(e2 − 3)

16
16π
15

cubic units 17
π2

2
cubic units

18
7π
10

cubic units 19
19π

6
cubic units

20 π

(
loge 2 −

1
2

)
cubic units

22 8π − 2π2 cubic units

24 a
π

3
tan−1

(4
3

)
b 4π

25 176 779 cm3

26 a
4πab2

3
b

4πa2b
3

27 a x + y = 8

b i
64π

3
ii

64π
3

28 a

x

3√2
2

,  −6 √2−

3√2
2

, 6√2 y = 2x

O

y

b
482π

3

29 2.642 cubic units 30 4π
(4π

3
−
√

3
)

31
√

3π
4

32 4π(3 − 4 loge 2)

33
π2 + 2π

4
34

3π2

2
35 π

(
4 loge

(4
5

)
+ 3 tan−1

(3
4

))
Exercise 10E

1 a
1

27
(20
√

10 − 2) b 3
√

5 c 78

2 a
1

27
(13
√

13 − 8) b 13
√

26 − 8
√

2

c
16
3
− 2
√

3 d
7
3

3 π 4 8 5 6

6
√

5(eπ − 1) 7
64
9

8
23
24

9 2
√

2 + π

Exercise 10F

1 a 60π b 9π
√

10 c
61π
432

d 4π

e 8π f
263π
256

2 a
2000π

9
b

160π
9

c
π

6
(37
√

37 − 17
√

17)

d 2π e
π

9
(17
√

17 − 1)

f
π

6
(37
√

37 − 5
√

5)

3
π

6
(17
√

17 − 5
√

5)

4
π

6
(5
√

5 − 1)

5 64π

6 a
32π

3
(17
√

17 − 1) b
8π
3

(2
√

2 − 1)

c
48π

5
d
π

6
(17
√

17 − 1)

e
2π
3

(13
√

13 − 1) f 2π(3π + 4)

g 4π
(
28 − 9 loge 3 − (loge 3)2)

7 4π(2π + 1) 8
6π
5

9 2a2π 10 πr
√

h2 + r2

12
4π
5

(
9
√

5 cos−1
(2
3

)
+ 10

)
13 2π2rR
14 a

0

y

x
1

1

( 1
M )M,

b

0

y

x

1

e Volume→ π; surface area→ ∞
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Chapter 10 review
Technology-free questions

1
1
3

2 a
π

2
− 1 b 1

3 a π b
π

8
(π − 2) c

π

8
(π + 2)

d
2048π

15
e 40π

4
119π

6

5 a 12π b
20
√

10π
3

−
2π
3

6 Volume = 2π

x

y

π
2x =  π

2
x = − 

(0, 1)
O

7 a (0, 0), (2, 4) b
16π

3
8 a y

x

(0, 1)

(1, 0)(−1, 0)

O

b
4
3

9 a A = (−1, 1), B = (1, 1), C = (0,
√

2)

b
44π
15

10 a y

x
O

(2, 0)

b
4
3

c
16π
15

11 a i
πb5

5
ii
πb4

2
b b = 2.5

12 a y

x

(0, 1)

O

b
dy
dx

=
−8x

(4x2 + 1)2 , x + y = 1 c
π − 3

8

13 a y

x

y = x 

f + g 

O

y

x
(−3, 0)

O

(3, 0)
f  − g 

y = x 

b 18 loge 3
14 Area = 7.5 − 4 loge 4

y

x

y = x − 5

(1, 0) (4, 0)

O

15 Area =
1
2
−

1
3

loge 4

y

x

x = 2

O

x = −1

0, 1
2

16
π(π2 + 4)

64
17 4(2 +

√
3)

18
3
4

19
(e2 − 1)π

4
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Multiple-choice questions
1 C 2 D 3 B 4 C 5 C 6 E
7 B 8 D 9 E 10 E 11 C 12 A

Extended-response questions
1 a

x

y = 1

x = −2

2O−1

1
2

y

b 2 − loge 2 square units

c 2π
(9

8
− loge 2

)
cubic units

2 a i x(loge x)2 − 2x loge x + 2x + c
ii π(e − 2) cubic units

b y

x
O

(0, 1)

(2, e2)(−2, e2)

y = e−x y = ex

c V = 2π(e2 − 1) cm3 ≈ 40 cm3

3 a
π

2
cubic units

b
4R
π

units per second

c i
π

8
cubic units ii

√
2

2
units

4 a y

x

y = 16 sin2 x

y = 3 sec2 x

, 6π
4

, 8π
4

π
4

O

3

8

b
(
π

6
, 4

)
c 3
√

3 −
4π
3

5 b i a = 1 ii
2
√

2
3

c
πa

2(a2 + 1)
6 a f (x) =

√
4 − (x − 3)2;

domain = [3, 5]; range = [0, 2]
b y = −x + 3 + 2

√
2 c π

e 8π + 4π = 12π

7 a a = 1; f (x) = loge(x − 1) + 1
b y

x
O 1 + e−1

x = 1

c Domain = R; range = (1,∞) d 2 − e−1

e e−1

9 a a = 2π
b i Domain = [−3, 3]; range = [0, 2π]

ii f −1(x) = 2 cos−1
( x

3

)
iii y

x
(3, 0)O

π

(−3, 2π)

−3

c −
2
3

d V1 = V2 =
9π2

2
cubic units

10 a Area = π(r2 − y2)

11 a
4πab2

3
b 4
√

3πa2b

12 b
π

6
−

3
16

c
π

2

(
−3
16

+ loge 3
)

= π

(
−3
32

+ loge(
√

3)
)

13 a
2aπ

3
b k =

√
3

3
;

2π
√

3
27

cubic units

14 a i d = 0

125a + 25b + 5c = 1

1000a + 100b + 10c = 2.5

27 000a + 900b + 30c = 10

ii a =
−7

30000
, b =

27
2000

, c =
83
600

, d = 0

b
273

2
c i V =

π

900 000 000

×
∫ 30

0
(−7x3 + 405x2 + 4150x)2 dx

ii
362 083π

400
d i w = 16.729335

ii
1978 810 99π

2 500 00
≈ 2487

e
(135

7
,

1179
196

)
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15 a
πH
3

(a2 + ab + b2) cm3

b
πH
24

(7a2 + 4ab + b2) cm3

c V =
πH(r3 − a3)

3(b − a)

d i
dV
dr

=
πHr2

b − a
ii h =

H(r − a)
b − a

e i
dV
dr

= 2πr2

ii
dr
dt

=
1

96π
;

dh
dt

=
1

48π

Chapter 11
Exercise 11A
1 a y = 4e2t − 2 b y = x loge |x| − x + 4

c y =
√

2x + 79
d y − loge |y + 1| = x − 3

e y =
1
2

x4 −
1
2

x + 2 f y =
11
5

e2x +
4
5

e−2x

g x = 3 sin(3t) + 2 cos(3t) + 2
3 −2, 5
4 a = 0, b = −1, c = 1

5 a = 0, b =
1
2

6 a = 1, b = −6, c = 18, d = −24

Exercise 11B

1 a y =
1
3

x3 −
3
2

x2 + 2x + c

b y =
1
2

x2 + 3x − loge |x| + c

c y = 2x4 + 4x3 + 3x2 + x + c
d y = 2

√
x + c

e y =
1
2

loge |2t − 1| + c

f y = −
1
3

cos(3t − 2) + c

g y = −
1
2

loge |cos(2t)| + c

h x = −
1
3

e−3y + c i x = sin−1
( y

2

)
+ c

j x =
1

y − 1
+ c

2 a y =
1
4

x5 + cx + d

b y =
4

15
(1 − x)

5
2 + cx + d

c y = −
1
4

sin
(
2x +

π

4

)
+ cx + d

d y = 4e
x
2 + cx + d

e y = − loge |cos x| + cx + d
f y = − loge |x + 1| + cx + d

3 a y =
x − 1

x
b y = 1 − e−x

c y =
1
2

x2 − 4 loge x + 1

d y =
1
2

loge |x
2 − 4|

e y =
1
3

(x2 − 4)
3
2 −

95
√

3
12

f y = sin−1
( x

2

)
+
π

6

g y =
1
4

loge

∣∣∣∣∣2 + x
2 − x

∣∣∣∣∣ + 2

h y =
1
2

tan−1
( x

2

)
+
π

4

i y =
2
5

(4 − x)
5
2 −

8
3

(4 − x)
3
2 + 8

j y = loge

( ex + 1
2

)
4 a y = e−x − ex + 2x b y = x2 − 2x3

c y = x2 +
1
4

sin(2x) − 1

d y =
1
2

x2 − 2x + loge |x| + 3

e y = x − tan−1 x +
π

4
f y = 8x3 + 12x2 + 6x

g y = sin−1
( x

2

)
5 a y =

3
2

x2 + 4x + c b y = −
1
3

x3 + cx + d

c y = loge |x − 3| + c
6 a y = 2x + e−x

b y =
1
2

x2 −
1
2

cos(2x) +
9
2

c y = 2 − loge |2 − x|
7 4
√

2

Exercise 11C

1 a y =
1
3

(Ae3x + 5) b y =
1
2

(Ae−2x + 1)

c y =
1
2
−

1
2

loge |2c − 2x|

d y = tan−1(x − c) e y = cos−1(ec−x)

f y =
1 − Ae2x

1 + Ae2x g y = tan(x − c)

h x =
5
3

y3 + y2 + c i y =
1
4

(x − c)2

2 a y = ex+1 b y = ex−4 − 1

c y = e2x−2 d y = −
1
2

(e2x + 1)

e x = y − e−y + 1 f y = 3

g y =
3(e6x−7 − 1)

e6x−7 + 1

h y =
1
3

tan(3x), −
π

6
< x <

π

6
i y =

4
e−x − 2
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3 a y = Aex − 3 for A ∈ R

b y = Ae2x +
1
2

for A ∈ R

c y = −1 or y =
Aex

1 − Aex for A ∈ R

d y = 3 or y =
3Aex − 4
Aex − 1

for A ∈ R

Exercise 11D

1 a
dx
dt

= 2t + 1, x = t2 + t + 3

b
dx
dt

= 3t − 1, x =
3
2

t2 − t +
1
2

c
dx
dt

= −2t + 8, x = −t2 + 8t − 15

2 a
dy
dx

=
1
y

, y , 0 b
dy
dx

=
1
y2 , y , 0

c
dN
dt

=
k

N2 , N , 0, k > 0

d
dx
dt

=
k
x

, x , 0, k > 0

e
dm
dt

= km, k < 0 f
dy
dx

= −
x

3y
, y , 0

3 a i
dP
dt

= kP

ii t =
1
k

loge P + c, P > 0

b i 1269 ii P = 1000(1.1)
t
2 , t ≥ 0

P

t

1000

O

4 a i
dP
dt

= k
√

P, k < 0, P > 0

ii t =
2
√

P
k

+ c, k < 0

b i 12 079 ii P

t

15 000

O

5√6 − √135
25 √6 15√10 + 50 =

5 a i
dP
dt

=
k
P

, k > 0, P > 0

ii t =
1
2k

P2 + c

b i P = 50 000
√

21t + 400, t ≥ 0
ii

1000 000

O t

P

6 y = 10e
x

10 7
420

9
◦C

8 θ = 331.55 K 9 23.22

11 a x =
1
3

(
20 − 14e

−t
10

)
b 19 minutes

12 y = 100 − 90e
−x
10

y

10

100

O
x

13 13 500
14 a 14 400 b 13 711 c 14 182

15 a
dV
dt

= 0.3 − 0.2
√

V , V > 0

b
dm
dt

= 50 −
6m

100 − t
, 0 ≤ t < 100

c
dx
dt

=
−5x

200 + t
, t ≥ 0

16 a
dm
dt

=
1
4

(1 − 4m) b m =
1
4

(1 − e−t)

c

t

4
1

m

O

d
1
4

(1 − e−2) kg

17 a
m

100
kg/min b

dm
dt

= −
m

100
c m = 20e

−t
100 , t ≥ 0

d m

t

20

O

ISBN 978-1-009-11057-0 
Photocopying is restricted under law and this material must not be transferred to another party.

© Michael Evans et al 2023 Cambridge University Press



A
nsw

ers
11E

Answers 825

18 a 0.25 kg/min b
m

100
kg/min

c
dm
dt

= 0.25 −
m

100

d m = 25
(
1 − e

−t
100

)
, t ≥ 0

e 51 minutes
f m

t

25

O

19 a
dx
dt

=
10 − x

50
b 11.16 minutes

20 a
dx
dt

=
80 − x

200
, x = 80 − 70e

−t
200

b
dx
dt

= 0.4 −
x

400 + t

21 a
dx
dt

= −
x

10
b x = 10e

−t
10

c x

t

(0, 10)

O

d 10 loge 2 ≈ 6.93 minutes

22 a N = 50 000
(
99e

t
10 + 1

)
, t ≥ 0

b At the end of 2026

Exercise 11E

1 P =
2et

2et − 1

2 a P =
500e0.02t

4 + e0.02t

b

O
t

100

500

P

c 250

3 a P′(t) = 0.3P
(
1 −

P
10 000

)
b P(t) =

10 000e0.3t

3 + e0.3t

c

O
t

10 000

2500

P

d 5990

e
10
3

loge 3 ≈ 3.66 years

4 12.5 wasps per month

5 P =
3000e0.05t

7 + 3e0.05t

6 a 5 b 400 c t =
5
4

loge 79
d 80 cases per week e 60 cases per week

7 a P =
3000e0.1t

3e0.1t − 1

O t

1000

1500

P

b P =
1000e0.1t

e0.1t + 4

O
t

1000

200

P

c P = 1000

O
t

1000

P
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8 a P =
50 000e0.1t

23 + 2e0.1t

b i 3419 ii 24 307
c 24 months d 38 months
e

O
t

25 000

2000

P

9 a y =
30 − 10e−0.1x

3 − 2e−0.1x , x ≥ 0

b y =
30 + 10e−0.1x

3 + 2e−0.1x , x ≥ 0

c y =
20 − 35e−0.1x

2 − 7e−0.1x , 0 ≤ x ≤ 10 loge

(7
4

)
Exercise 11F

1 a y = Ae
x2

2 b y2 = x2 + c

c y = Ae
x3

12 d y2 = 2 loge |x| + c

2 y = 0 or y = −
2

x2 + c
3 y = Ae− cos x + 1

4 y = 1 or y = 1 −
1

x2 + c
5 a y =

√
2 − x2 b y = x

c

x

y

−√2 √2

√2

0

6 y =
1
2

(x2 + 1)2 7 y2 − x2 = 5

8 Circles centre (−1, 3) 9 y3 = c −
3

2x2

10 y =
−2x2

2Ax2 − 2x + 3
11 a y = Aeex+x b y = Ae3x3

c y2 = −
2

loge x
+ c d y2 = (loge x)2 + c

e y = 0 or loge |y| =
1
2

ex2
+ c

f y = 0 or y =
3

2(1 − x2)
3
2 + c

12 a y =

√
2x3

3
+ 2x + 1 b tan y = 2 −

1
x

13
y3

3
−

y2

2
=

x3

3
−

x2

2
+ c

14 b x = A(t − 25)2 c
9

25

15 b
13
25

e
72
5 N0

16 y = 2xe
x2

2

17
−3

sin3 x − 1
− 1

Exercise 11G

1 a
dh
dt

= −
2000
πh2 , h > 0

b
dh
dt

=
1
A

(Q − c
√

h), h > 0

c
dh
dt

=
3 − 2

√
V

60π
, V > 0

d
dh
dt

= −
4
√

h
9π

, h > 0

2 a
dy
dt

= 5 sin t b y = −5 cos t + c

3 a t = −
2π
25

h
5
2 + 250π b 13 hrs 5 mins

4 a
dx
dt

= −
1

480
√

4 − x
b t = 320(4 − x)

3
2

c 42 hrs 40 mins

5 a
dr
dt

= −8πr2 b r =
2

16πt + 1

6 a
dh
dt

=
1000

A
(Q − kh), h > 0

b t =
A

1000k
loge

( Q − kh0

Q − kh

)
, Q > kh0

c
A

1000k
loge 2 minutes

7 a i
dh
dt

=
1

10πh2 ii h =

( 3t
10π

) 1
3

b h =

(
1 −

1
5π

t
3
2

) 1
3

Exercise 11H

1 a
3
2

b
e4

2
−

e2

2
+ 3 c

1
2

loge

(7
3

)
+ 2

2 a 1.7443 b 1.8309 c 4 d 3.2556

Exercise 11I
1 a y3 ≈ 1.2975 b y4 ≈ 0.0388

c y3 ≈ 1.3144 d y3 ≈ 0.0148
2 a i 1.8415 ii Euler 1.8438
b i 0.5 ii Euler 0.5038
c i 2.2190 ii Euler 2.2169
d i 0.4055 ii Euler 0.4076
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3 a tan(1) + 2 ≈ 3.5574
b i 3.444969502 ii 3.498989223
iii 3.545369041

4 2.205 5 30.69
6 1.547 7 0.7031
8 a b Pr(Z ≤ z)

z Euler CAS
0 0.5 0.5
0.1 0.53989423 0.53983
0.2 0.57958948 0.57926
0.3 0.61869375 0.61791
0.4 0.65683253 0.65542
0.5 0.69365955 0.69146
0.6 0.72886608 0.72575
0.7 0.76218854 0.75804
0.8 0.79341393 0.78814
0.9 0.82238309 0.81594
1 0.84899161 0.84134

c i 0.69169538 ii 0.84212759

Exercise 11J
1 a

y = x3 − 1

b

y = 1 − cos x

c

y =
1
2

(3 − e−2x)

d

y =
1

2 − x
, x < 2

e

y = −
1
x

, x > 0

f

y =
1

1 − 2ex , x > − loge 2

g

y =
2

2 − ex , x < loge 2

h

y = − loge(cos x), −
π

2
< x <

π

2
2 a

b

Chapter 11 review
Technology-free questions

1 a y = x −
1
x

+ c

b y = e10x+c

c y = −
1
2

( sin(3t)
9

+
cos(2t)

4

)
+ at + b

d y =
e−3x

9
+ e−x + ax + b

e y = 3 − e−
x
2 +c

f y =
3x
2
−

1
4

x2 + c

2 a y =
1
2

sin(2πx) − 1

b y =
1
2

loge |sin(2x)|

c y = loge |x| +
1
2

x2 −
1
2

d y =
1
2

loge(1 + x2) + 1

e y = e−
x
2

f x = 64 + 4t − 5t2
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3 a k = 2, m = −2

4 a
2
√

3
− 1 b

8
3

5 n = −3, n = 5

6 a y = 3 tan
(
3x + arctan

(4
3

))
− 4 b 5

7 a 0.6826 b y =
3
2
−

1
x

c
2
3

8 b y = 2 tan
(
2x − arctan

(1
2

)
− 4

)
9 a k =

1
10

loge

(5
4

)
b 78.67◦C

10 y = 43 −
2(25 − x2)

3
2

3
11 k = −1

12
dx
dt

=
3

πx(12 − x)

13
dC
dt

=
8π
C

14 100 loge 2 ≈ 69 days

15
dS
dt

= −
S
25

, S = 3e
−t
25

16 a θ = 30 − 20e
−t
20 b 29◦C c 14 mins

17 a
dA
dt

= 0.02A b 0.5e0.2 ha

c 89 1
2 h

18 x =
2L
3

; maximum deflection =
L3

216

19
dh
dt

=
6 − 0.15

√
h

πh2

Multiple-choice questions
1 C 2 D 3 B 4 A 5 E 6 C
7 D 8 E 9 A 10 C 11 A 12 E

13 D 14 E 15 C 16 C

Extended-response questions

1 a i
dx
dt

= −kx, k > 0

ii x = 100e
−t loge 2

5760 = 100 · 2
−t

5760 , t ≥ 0
b 6617 years
c x

t

100

0

2 a
dx
dt

=
3k
16

(8 − x)(4 − x)

b t =
1

loge(
7
6 )

loge

( 8 − x
8 − 2x

)
c 2 mins 38 secs d

52
31

kg

3 a
dT
dt

= k(T − Ts), k < 0

b i 19.2 mins ii 42.2◦C

4 b t =
1
k

loge

( kp − 1000
5000k − 1000

)
, kp > 1000

c ii 0.22

d p =
1
k
(
ekt(5000k − 1000) + 1000

)

t

5000

O

P

5 a
dN
dt

= 100 − kN, k > 0

b t =
1
k

loge

(100 − 1000k
100 − kN

)
c 0.16

d N =
1
k
(
100 − ekt(100 − 1000k)

)
N

t

1000

0

100
k

e
100

k

6 a
2L
3

b
L
60

7 a
dT
dt

=
100 − T

40
b T = 100 − 80e

−t
40

c 62.2◦C d

0

20

100

t

T
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8 a i t = 25 loge

( W
350

)
, W > 0

ii W = 350e
t

25

W

t

350

0

iii 2586
b 0
c i t = 25 loge

( 9W
7(800 −W)

)
, 0 < W < 800

ii W =
5600e

t
25

9 + 7e
t

25

W

t0

800

350

iii 681

9 a ii x =
R
k

(1 − e−kt)

b i x

t0

1000

ii 4.46 hours
c i 13.86 hours after drip is disconnected

ii x =


1000

(
1 − e

−t
20

)
0 ≤ t ≤ 20 loge

(5
4

)
250e−

t
20 t > 20 loge

(5
4

)

t0

100

200

5

x

20 loge(
5
4 ) 20 loge(

5
2 )

Chapter 12
Exercise 12A
1 a t = 0, x = 0; t = 1, x = 2; t = 2, x = 2;

t = 3, x = 0; t = 4, x = −4

x
210−1−2−3−4

b −6 m c −1 m/s d v = 3 − 2t

e −2 m/s f x =
9
4

, t =
3
2

g
17
2

m h
17
8

m/s

2 a

0 4
t

8

x 5( ),
3

49
3

b v = −6t + 10

0 5
3

t

10

v

c a = −6

t

−6

a

O

d

2 4 6 8 10 12 14 16 18 20

t = 0, x = 8

t = 6, x = −40

t = , 5
3

49
3

x =

e −5 m

f
41
3

m

3 a 2, 4 b 12 m/s2 c 10 m/s d 6 m/s
4 a −3 m/s b 1, 3 c 12 m/s2

5 0,
4
3

6 a
25
4

m/s b
56
3

m

7 a −30 m/s2 b 4, 6 c 4 m
d 120 m
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8 a 20 m/s b 32 m
9 a 42 m/s b 6 s c 198 m

10 a i v = 9.8t ii x = 4.9t2

b 19.6 m
c 19.6 m/s

11 a x = 2 sin
( t

2

)
+ 0.5

b x

t

2.5

0.5

−1.5

0
π 2π 3π 4π

(4π, 0.5)

Object is stationary at t = π, 3π

c a = −
1
2

sin
( t

2

)
d i x = −4a + 0.5

ii (x − 0.5)2 = 4 − 4v2

iii v2 = 1 − 4a2

12 a l s and 15.5 m; 4 s and 2 m b −6.5 m/s
c −6 m/s d 9 m e 2 m

13 a 9 m/s b 2π s
14 a 585.6 m b 590.70 m

15 x =
1
6

t −
1
4

loge

(2t + 3
3

)
16

(3
√

3
2
−
π

3

)
m

17 a 0 m/s b
1
2

m/s c
1
2

loge 2 m

d x =
1
2

loge(1 + t2) e ẍ =
1 − t2

(1 + t2)2

f −0.1 m/s2 g −
1
8

m/s2

18 5.25 s
19 1.1 s
20 18.14 m/s

Exercise 12B
1 3 m/s2

2 a 12 960 km/h2 b 1 m/s2

3 a 3 m/s2 b
175

2
m c

10(
√

7 − 1)
3

s

4 −5 m/s2

5 a 12 m b 14 m/s c 2.5 s d 37 m
6 a i 22.4 m ii 22.5 m

b i 5 s ii −28 m/s

7 a
10
7

s b 10 m c
20
7

s

8 a 200 s b 2 km

9 a
10
√

10
7

s b 14
√

10 m/s

10 a 4.37 s b −6
√

30 m/s
11 a 1.25 s b 62.5 cm
12 a a = 0.23 b 5 1

3 s
13 −0.64 m/s2

14 a 4 s b
1
2

m/s2

Exercise 12C
1 a 60 m b 20 m c 30 m d 55 m

e 44 m f
70
3

m g
165

2
m h

49
2

m

2 a v = −
1
2

t + 5; a = −
1
2

; x = −
t2

4
+ 5t

b v = −
2
5

t2 + 10; a = −
4
5

t; x = −
2

15
t3 + 10t

c v = 2t − 10; a = 2; x = t2 − 10t

d v = 6(t − 1)(t − 5); a = 12(t − 3);
x = 2(t3 − 9t2 + 15t)

e v = 10 sin
( π
10

t
)

+ 10; a = π cos
( π
10

t
)
;

x = 10
(
t +

10
π
−

10
π

cos
( π
10

t
))

f v = 10e2t; a = 20e2t; x = 5e2t − 5
3 3589.89 m
4 a v (m/s)

t (s)

5(T − 4)

0

20

10 14 T + 10

b 23.80 s

5 189 m v

t

14

1330 17

6 v

t
12096O

8
1
3

a =
25

288
, ẋmax = 8 1

3 m/s

7 68 1
3 s
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8 10 s, 150 m
9 10(3 +

√
3) s, 200(2 +

√
3) m

10 a 2 s b 7 1
3 m

11 36 s
12 a 3600 m, 80 km/h

b 90 s after A passed B, 200 m
13 a ẏ = k(1 − e−t)

v

t

k

O

b Limiting velocity of k m/s

Exercise 12D
1 a 7 m b 4 m

2 a x =
1
2

loge(2e2t − 1) b −
100
2401

m/s2

3 a v = 3(et − 1) b a = 3et

c x = 3(et − t − 1)

4 a v =
g
k

(1 − e−kt) b
g
k

5 a v = tan
(
π

3
−

3t
10

)
b x =

10
3

loge

(
2 cos

(
π

3
−

3t
10

))
6 v = 450

(
1 − e

−t
50

)
7 v = 15 cos

(
cos−1

(4
5

)
+

2t
5

)
8 a x = 5e

2t
5 b 273 m

9 a t = 50 loge

( 500
500 − v

)
b v = 500

(
1 − e

−t
50

)
10

1
k

loge 2

11 v = 8e
−t
5 ; 3.59 m/s

12 a v =
90

2t + 3
b 91.66 m

Exercise 12E
1 −2 m/s2

2 a v = ±4 b t = − loge 2
c x = 2(1 − loge 2)

3 a v =
1

x + 1
b i x = et − 1 ii a = et iii a = v

4 x = −
5
2

loge

(g + 0.2v2

g + 2000

)
;

xmax =
5
2

loge

(g + 2000
g

)

5 a x = cos(2t) b a = −4x
6 a v = loge(1 + t) b v2 = 2 loge(1 + x)

c v =
√

2t + 1 − 1

7 v2 =
x

2 + x
8 a 4 b 2 loge 2 − 1
9 a 9.83 m b 1.01 s

Chapter 12 review
Technology-free questions
1 a After 3.5 seconds

b 2 m/s2

c 14.5 m
d When t = 2.5 s and the particle is 1.25 m to

the left of O

2 x = 215
1
3

, v = 73

3 a 57.6 km/h
b After 1 minute 6 2

3 seconds c a = 0.24

4 a
25 000

3
m/s2 b 0.4125 m

c 10 000 m/s2 d 0.5 m
e 37 500 m/s2 f 0.075 m

5 a 44 m/s b v = 55 − 11t m/s c 44 m/s
d 5 s e 247.5 m

6 16 m

7 a 2 s b v =
−t

√
9 − t2

, a =
−9

(9 − t2)
3
2

c 3 m d t = 0
8 a 20 m/s b 32 m

9 a x = 20 b
109

8
m/s

10 a i v = 35 − 3g up ii v = 5g − 35 down

b
352

g
m

c −35 m/s
11 v

t

(5, 10) (11, 10)

(13, 0)

Distance = 95 m

12 v =
4

t − 1
, a = −

4
(t − 1)2

13 a 80 + 0.4g m/s b
80 + 0.4g

g
s

c
(80 + 0.4g)2

2g
m d

2(80 − 0.4g)
g

s

Multiple-choice questions
1 A 2 C 3 A 4 D 5 B
6 C 7 C 8 C 9 A 10 E
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Extended-response questions
1 a 10 m/s2

b v = 50
(
1 − e

−t
5
)

c i v (m/s)

t (s)

50

0

ii 14.98
d i x = 50

(
t + 5e

−t
5 − 5

)
ii

x = 50(t − 5)

t (s)
5

O

x (m)

iii 1.32 s
2 a i

e − 0.5
1 + loge2

0 t (s)

v (m/s)

ii 1.27 m iii 1.47 m
b B = 10, A = 4.70

3 a 30 minutes
b i a = −k

(
sin(πt) + πt cos(πt) − 1

)
ii From 0 h to 0.18 h

c k = 845
4 a i v = 4 − 10t − 3t2 ii a = −10 − 6t

iii t = 0.36 iv t = 0 or t = 0.70
v t = 2.92

b i x = t2 − t3 + 2t ii
7
3

s iii Yes

5 a i v = −
5π
4

sin
(
π

4
t +

π

3

)
ii a = −

5π2

16
cos

(
π

4
t +

π

3

)
b i v = ±

π

4

√
25 − x2 ii a = −

π2 x
16

c 3.4 cm/s
d −1.54 cm/s2

e i 5 cm ii
5π
4

cm/s iii
5π2

16
cm/s2

6 0 m

7 a v =
300(1 − 4510t)

12 300t + 1
, 0 ≤ t ≤

1
4510

b v (m/s)

t (s)0

300

4510

1

c i x = −110t +
1

30
loge(12 300t + 1)

ii x =
1

30

(
loge

( 410
v + 110

)
−

110
v + 110

+
11
41

)
iii 19 mm

d i t =

√
110

33 000
×(

tan−1
(3
√

110
11

)
− tan−1

( v
√

110
1100

))
ii v = 10

√
110 ×

tan
(
tan−1

(3
√

110
11

)
− 300

√
110t

)
,

for 0 ≤ t ≤

√
110 tan−1

(3
√

110
11

)
33 000

iii v (m/s)

t (s)0

300

33000

√110tan−1
11

3√110

iv 20 mm
8 a v1 = 30.05

b i
dv
dt

=
−3
10

(
3t2 − 42t +

364
3

)
, 4 ≤ t ≤ 10

ii t = 7 (Chasing for 3 s)
c

t (s)0

30.05
25

4 10

Vp

Vm

v (m/s)

d i 90.3 m
ii xp = − 3

40 t4 + 21
10 t3 − 91

5 t2 − 1281
20 t − 401

5 ,
for t ∈ [4, 10]

e 41.62 s
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9 a V (km/h)

t (h)0

9
8

31 7

VB

VA

b t = 1 or t = 7
c i 11.7 h ii 1.7 h

10 a i t = 1 or t = 5
ii

t
0

2

51

VQ

VP

3
4

V

b i 2.2 ii 0 < t < 2.2, t > 6.8
11 a i 4.85 m/s ii 0.49 s

b i v = 9.8t −
1
2

t2 ii x = 4.9t2 −
1
6

t3

iii 0.50 s
c i x = 1.2 − 2.45t2 ii 6 cm

12 a 3 s

b v =


2t, 0 ≤ t ≤ 3
6, 3 < t ≤ 13
8e13−t − 2, 13 < t ≤ 13 + loge 4

c 14.4 s
d v (m/s)

t (s)
0

6

3 13 13 + loge4

e 72.2 m

13 a v

t0

2

2 3

b
19
3

c T = 5.52

Chapter 13
Exercise 13A
1 a y = 2x; dom = R; ran = R

b x = 2; dom = {2}; ran = R
c y = 7; dom = R; ran = {7}
d y = 9 − x; dom = R; ran = R

e x =
1
9

(2 − y)2; dom = [0,∞); ran = R

f y = (x + 3)3 + 1; dom = R; ran = R

g y = 3
x−1

2 ; dom = R; ran = (0,∞)
h y = cos(2x + π) = − cos(2x);

dom = R; ran = [−1, 1]

i y =

(1
x
− 4

)2

+ 1;

dom = R \ {0}; ran = [1,∞)

j y =
x

1 + x
;

dom = R \ {−1, 0}; ran = R \ {0, 1}

2 a
x2

4
+

y2

9
= 1; dom = [−2, 2]; ran = [−3, 3]

y

x

3

−3

−2 2O

b 3x + 2y = 6; dom = [0, 2]; ran = [0, 3]
y

x

3

0 2

c y = 3x2; dom = [0,∞); ran = [0,∞)
y

x
O

(5, 75)
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d y = 3x
2
3 ; dom = [0,∞); ran = [0,∞)

y

x
O

(1, 3)

e x2 + y2 = 1; dom = [0, 1]; ran = [0, 1]
y

x
O

1

1

f
x2

9
−

y2

4
= 1; dom = (3,∞); ran = (0,∞)

y

x
O 3

2
3

y =    x

g x2 + y2 = 16; dom = [−4, 4]; ran = [0, 4]
y

x
O−4 4

4

h 3y = 2x − 6; dom = [3,∞); ran = [0,∞)
y

x
0

(6, 2)

3

i y = 5x2 − 36x + 63;
dom = R; ran = [− 9

5 ,∞)

y

x

63

0 3 21
5

18
5

, − 9
5

3 a r(t) = t i + (3 − 2t) j, t ∈ R
b r(t) = 2 cos t i + 2 sin t j, t ∈ R
c r(t) = (2 cos t + 1)i + 2 sin t j, t ∈ R

d r(t) = 2 sec t i + 2 tan t j, t ∈
(
−
π

2
,
π

2

)
e r(t) = t i +

(
(t − 3)2 + 2(t − 3)

)
j, t ∈ R

f r(t) =
√

6 cos t i + 2 sin t j, t ∈ R
4 a r(θ) = (2 + 5 cos θ)i + (6 + 5 sin θ) j

b (x − 2)2 + (y − 6)2 = 25

Exercise 13B
1 a x2 + y2 = 1

b

x

1

1

−1

−1 O

y

c t =
π

2
,

3π
2

,
5π
2

, . . .

i.e. t =
(2n − 1)π

2
, n ∈ N

2 a i x =
y2

64
− 9

ii y

x

24

−9

−24

O

iii t = 3
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b i y =
1

1 + x
, x > −1

ii y

x

1

−1

O

iii t = −1

c i y = 1 − x, x < 1
ii y

x
O

1

1

iii t = 1

3 a Position vector i + 4 j; coordinates (1, 4)
b (1, 4), (7,−8) c

√
65

4 a
9
2

i −
3
2

j,
(9

2
,−

3
2

)
b (6,−1),

(9
2

,−
3
2

)
c 5
√

2
5 a

√
137 b t = −

2
5

,−1
6 a 3i + 6 j − 3k b 3

√
6

c 4i + 8 j − 3k d i + 2 j
7 a 3i + j + 4k b

√
14

8 a =
2
3

, b = 7

9 a
x2

9
+

y2

4
= 1 b 3i

c i 303.69◦ ii 285.44◦

10 a y =
1
x

, for x ≥ 1 b i + j

c y

x

(1, 1)

O

11 a r(0) = 2i b
5
2

i +
3
2

j c x2 − y2 = 4

12 a r(0) = 0, r(20
√

3) = 2000
√

3i

b y =
√

3x −
x2

2000
, 0 ≤ x ≤ 2000

√
3

c y

x
O √3 (2000     , 0)

13 Collide when t =
3
2

; r
(3

2

)
=

27
2

i −
81
4

j

14 Particle is moving along a circular path, with
centre (0, 0, 1) and radius 3, starting at (3, 0, 1)
and moving anticlockwise; always a distance
of 1 above the x–y plane. It takes 2π units of
time to complete one circle.

z

y

x

O

(0, 0, 1)

(0, −3, 1) (0, 3, 1)

(3, 0, 1)

(−3, 0, 1)

15 Particle is moving along a straight line, starting
at (0, 0, 0), and moving ‘forward 1’, ‘across 3’
and ‘up 1’ at each step.

z

y

x

0

1

1
2

2

3

3

3 6 9

16 a
(x − 1)2

4
+

(y − 3)2

25
= 1

b i (−1, 3) ii (1,−2) iii (3, 3)
c π units of time
d Anticlockwise

17 a i y = 2x, 0 ≤ x ≤ 1
ii y

x
0 1

2

iii Particle starts at (1, 2) and moves along
a linear path towards the origin. When
it reaches (0, 0), it reverses direction
and heads towards (1, 2). It continues
in this pattern, taking 1

3 units of time to
complete each cycle.
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b i y = 2x2 − 1, −1 ≤ x ≤ 1
ii y

x
0−1

√2
1

√2

iii Particle is moving along a parabolic path,
starting at (1, 1) and reversing direction
at (−1, 1). It takes 1 unit of time for each
cycle.

c i y =
1
x2 , x ≥ 1

ii y

x

1

10

iii Particle is moving along a ‘truncus’ path,
starting at (1, 1) and moving to the ‘right’
indefinitely.

Exercise 13C
1 a ṙ(t) = et i − e−t j, r̈(t) = et i + e−t j

b ṙ(t) = i + 2t j, r̈(t) = 2 j
c ṙ(t) = 1

2 i + 2t j, r̈(t) = 2 j
d ṙ(t) = 16i − 32(4t − 1) j, r̈(t) = −128 j
e ṙ(t) = cos t i−sin t j, r̈(t) = − sin t i−cos t j
f ṙ(t) = 2i + 5 j, r̈(t) = 0
g ṙ(t) = 100i + (100

√
3 − 9.8t) j, r̈(t) = −9.8 j

h ṙ(t) = sec2 t i − sin(2t) j,
r̈(t) = (2 sec2 t tan t)i − 2 cos(2t) j

2 a r(t) = et i + e−t j
y

x

1

(1, 1)

xy = 

O

r(0) = i + j, ṙ(0) = i − j, r̈(0) = i + j

b r(t) = t i + t2 j
y

x

y = x2

O

r(1) = i + j, ṙ(1) = i + 2 j, r̈(1) = 2 j
c r(t) = sin t i + cos t j

y

x
O

1

1−1

−1

r
(
π

6

)
=

1
2

i +

√
3

2
j, ṙ

(
π

6

)
=

√
3

2
i −

1
2

j,

r̈
(
π

6

)
= −

1
2

i −
√

3
2

j

d r(t) = 16t i − 4(4t − 1)2 j
y

x

−4

4

0

r(1) = 16i − 36 j, ṙ(1) = 16i − 96 j,
r̈(1) = −128 j

e r(t) =
1

t + 1
i + (t + 1)2 j

y

x

(1, 1)

O

r(1) =
1
2

i + 4 j, ṙ(1) = −
1
4

i + 4 j,

r̈(1) =
1
4

i + 2 j
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3 a −1 b Undefined c −2e−3

d 1
2 e 4 f 2

√
2

4 a r(t) = (4t + 1)i + (3t − 1) j
b r(t) = (t2 + 1)i + (2t − 1) j − t3 k

c r(t) =
1
2

e2t i + 4(e0.5t − 1) j

d r(t) =

( t2 + 2t
2

)
i +

1
3

t3 j

e r(t) = −
1
4

sin(2t) i + 4 cos
(1

2
t
)

j

6 a t = 0, 2
b ṙ(0) = 2i and r̈(0) = 96 j;

ṙ(2) = 2i and r̈(2) = −96 j
7 a y

x
O

1
4

y = x2 ; t > 0

b t =
2
a

8 a y

x

t > 0

(4, 0)

(0, −4)

O

y = x2

4
− 4

b 45◦ c t =
√

3
9 a ṙ = 3i + t2 j + 3t2 k b |ṙ| =

√
9 + 10t4

c r̈ = 2t j + 6tk d |r̈| = 2t
√

10

e t =
4
√

10
5

10 a ṙ = V cosα i + (V sinα − gt) j b r̈ = −g j

c t =
V sinα

g

d r =
V2 sin(2α)

2g
i +

V2 sin2
α

2g
j

Exercise 13D
1 a 2t i − 2 j b 2i c 2i − 2 j
2 a 2i + (6 − 9.8t) j

b 2t i + (6t − 4.9t2 + 6) j
3 a 2 j − 4k

b 3t i + (t2 + 1) j + (t − 2t2 + 1)k
c
√

20t2 − 8t + 10

d i t =
1
5

ii
1
5

√
230 m/s

4 a (10t + 20)i − 20 j + (40 − 9.8t)k
b (5t2 + 20t)i − 20t j + (40t − 4.9t2)k

5 Speed = 10t
6 45◦

7 Minimum speed = 3
√

2; position = 24i + 8 j

8 a t = 61 11
49 s b 500 m/s c

225 000
49

m

d 500 m/s e θ = 36.87◦

9 a r(t) =
( 1

3 sin(3t) − 3
)
i +

( 1
3 cos(3t) + 8

3

)
j

b (x + 3)2 +
(
y − 8

3

)2
= 1

9 ; centre
(
−3, 8

3

)
10 Max speed = 2

√
5; min speed = 2

√
2

11 a Magnitude

√
11 667

9
m/s2;

direction
1

√
11 667

(108i −
√

3 j)

b r(t) = ( 4
3 t3 + 2t2 + t)i + (

√
2t + 1 − 1) j

12 a r(t) = V cos(α) t i +

(
V sin(α) t −

gt2

2

)
j

13 a t = 6 b 7i + 12 j
14 a −16i + 12 j b −80i + 60 j
15 a 8 cos(2t) i − 8 sin(2t) j, t ≥ 0

b 8 c −4r

16 a (t2 − 5t − 2)i + 2 j b −
33
4

i + 2 j
c y = 2 for x ≥ −8.25

17 a
x2

36
−

y2

16
= 1

b 6 tan(t) sec(t) i + 4 sec2(t) j, t ≥ 0

18 a
x2

16
+

y2

9
= 1

y

3

4O
x

−4

−3

b i t = 0,
π

2
,π,

3π
2

, 2π

ii r(0) = 4i, r
(
π

2

)
= 3 j, r(π) = −4i,

r
(3π

2

)
= −3 j, r(2π) = 4i

c i
√

9 + 7 sin2 t ii
√

16 − 7 cos2 t
iii Max speed = 4; min speed = 3

19 2
√

37

20
π

2
21 a 6.086 b

√
37 ≈ 6.083

22 a 2.514 b 2.423
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Chapter 13 review
Technology-free questions
1 a 2i + 4 j, 2 j

b 4y = x2 − 16
2 a ṙ(t) = 4t i + 4 j, r̈(t) = 4i

b ṙ(t) = 4 cos t i − 4 sin t j + 2tk,
r̈(t) = −4 sin t i − 4 cos t j + 2k

3 0.6i + 0.8 j

4 a 5
√

3i +
5
2

j b
2
√

7
7

5 cos t i + sin t j
6 a 5(− sin t i + cos t j) b 5

c −5(cos t i + sin t j)
d 0, acceleration perpendicular to velocity

7
3π
4

s

8 a |ṙ| = 1, |r̈| = 1

b (x − 1)2 + (y − 1)2 = 1 c
3π
4

9 −2i + 20 j

10 a r =

( t2

2
+ 1

)
i + (t − 2) j b (13.5, 3)

c 12.5 s
11 a ṙ = t i + (2t − 5) j

b r =

( t2

2
− 1

)
i + (t2 − 5t + 6) j

c −i + 6 j, −5 j
12 a i ṙ2(t) = (2t − 4)i + t j

ii ṙ1(t) = t i + (k − t) j
b i 4 ii 8 iii 4(i + j)

13 b i ṙ(t) = et i + 8e2t j ii i + 8 j
iii loge 1.5

14 b i x = 2 for y ≥ −3.5 ii (2,−3.5)

Multiple-choice questions
1 E 2 E 3 B 4 E 5 C
6 C 7 C 8 E 9 C 10 E

Extended-response questions
1 a Speed of P is 3

√
13 m/s;

speed of Q is
√

41 m/s
b i Position of P is 60i + 20 j;

position of Q is 80i + 80 j
ii −−→PQ = (20 − 4t)i + (60 − 2t) j

c 10 seconds, 20
√

5 metres

2 a −−→AB =
(
(v + 3)t − 56

)
i +

(
(7v − 29)t + 8

)
j

b 4
c i −−→AB = (6t − 56)i + (8 − 8t) j

ii 4 seconds

3 a −−→BF = −3i + 6 j − 6k
b 9 m c 3 m/s
d (−i + 2 j − 2k) m/s
e 2 seconds, 2

√
26 metres

4 a i 200 s ii
1
2

iii 5 m/s iv (1200, 0)

b 8 seconds, 720 metres

5 a i −−→OA = (6t − 1)i + (3t + 2) j
ii −−→BA = (6t − 3)i + (3t + 1) j

b 1 second

c i c =
1
5

(3i + 4 j) ii d =
1
5

(4i − 3 j)

iii 6c + 3d
6 a y

x
1O

−1

b i a = 16 ii b = −16 iii n = 2
iv v(t) = −32 sin(2t) i − 32 cos(2t) j

a(t) = −4(16 cos(2t) i − 16 sin(2t) j)
c i −−→PQ = 8

(
(sin t − 2 cos(2t))i

+ (cos t + 2 sin(2t)) j
)

ii |−−→PQ|2 = 64(5 + 4 sin t)
d 8 cm

7 a (2 sin t) i +
(
cos(2t) + 2

)
j, t ≥ 0

b 2i + j

c i y = 3 −
x2

2
, −2 ≤ x ≤ 2

ii y

x

3

0 2

1

−2

d |v|2 = −16 cos4 t + 20 cos2 t,

max speed =
5
2

e
3π
2

f ii t =
(2k − 1)π

2
, k ∈ N

8 a a i + (b + 2t) j + (20 − 10t)k
b at i + (bt + t2) j + (20t − 5t2)k c 4 s
d a = 25, b = −4 e 38.3◦
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9 a i Particle P is moving on a circular path,
with centre (0, 0,−1) and radius 1,
starting at (1, 0,−1) and moving
‘anticlockwise’ a distance of 1 ‘below’
the x–y plane. The particle finishes at
(1, 0,−1) after one revolution.

z

y

x
(0, 0, −1)

(1, 0, −1)

O

ii
√

2
iii − sin(t) i + cos(t) j, 0 ≤ t ≤ 2π
v p̈(t) = − cos(t) i − sin(t) j, 0 ≤ t ≤ 2π

b i −−→PQ =
(
cos(2t) − cos t

)
i

+
(
− sin t − sin(2t)

)
j + 3

2 k

iii
5
2

iv
π

3
, π,

5π
3

v
3
2

vi 0,
2π
3

,
4π
3

, 2π

c ii
√

10
5

(
cos(3t) −

1
2

)
iii 162◦

10 a 4α

b A: y =
x
2

for x ≥ 0;

B: (x − 4)2 + y2 = 16
c y

x

A’s
starting
point 

B’s starting
point path of A

path of B

0
4

(8, 4)

−4

4

 8

d (0, 0),
(32

5
,

16
5

)
e 1.76

11 a i −9.8 j ii 2i − 9.8t j iii 2t i − 4.9t2 j

b i
2
√

2
7

seconds ii
4
√

2
7

metres

12 a i 6i − 3 j ii
√

5
5

(2i − j)
b 4i − 2 j, (4,−2)
c i −→LP = (1 − 7

2 t)i + (7 − 2t) j ii 1:05 p.m.

iii
9
√

65
13

km

Chapter 14
Technology-free questions

1 a
−1

√
1 − x2 (arcsin x)2

b
−1

(x2 + 1)(arctan x)2

c
−2

√
1 − x2 (arcsin x)3

2 a
dQ
dt

= −
Q

10 + t
b Q =

10
t + 10

3 y =
1
2

loge

( 5
x2 + 4

)
+ 2

4 a 6π b 6π2

5 a
1
3

, −
7
3

b 3x − 7y = −11

6 a x =
2

cos(2t) + 3

b 1 cm, t =
(2n − 1)π

2
, n ∈ N

7 Asymptotes y = −
x
3

, x = 0;

axis intercept ( 3√4, 0); stat point (−2, 1)

O 22/3 x

y

8 a −1 +
5

4(x + 2)
−

5
4(x − 2)

b
1
2
(
5 loge 3 − 4

)
9 a

π

2
b f (x) =

√
x(2 − x), dom = [1, 2], ran = [0, 1]

c 2π

10 a
1
4

loge |cos(2x)| +
1
2

x tan(2x) + c

b (x + 5) loge(x + 5) − x + c

c
1
5

e2x (
2 sin x − cos x

)
+ c

11 y = −
1
2

loge(cos(2x))

12 y = 2(1 + x2)

13
[
−1,−

√
2

2

]
∪

[√2
2

, 1
]
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14 Asymptote y = 4; stat point (0, 5)

O
x

4

5

y

15
dy
dx

= − tan t, −1

16 e

17 a 6πa b
56πa2

3

18 a
1
2
(
sin(e2) − sin(1)

)
b

4
15

c loge

(27
32

)
d −

6
√

5
5

loge(2 +
√

5) e
38
3

f
2
√

2 − 1
3

19 1.27 20 8πa5

21
1
2

loge(1 + u2) 22 A =
5g
2

, B =
2
5

23 x = 10 000 loge

(5
6

)
+ 2000

24 b (0, 0),
(√

3,

√
3

2

)
,
(
−
√

3,−

√
3

2

)
25 a v(t) = cos t i + cos(2t) j

b a(t) = − sin t i − 2 sin(2t) j
c d(t) = |sin t|

√
2 − sin2 t

d s(t) =
√

2 − 5 sin2 t + 4 sin4 t
e y2 = x2(1 − x2)

26 a
x2

4
− 4y2 = 1, x ≥ 2, y ≥ 0

b v(t) = 2 tan t sec t i + 0.5 sec2 t j
c 2
√

13 m/s

27 x(loge 2) =
5
2

i + j −
19
8

k

28 b y =
√

3x −
g

200
x2

29 a r(t) = (cos(2t) + 1)i + (sin(2t) − 1) j

b (x − 1)2 + (y + 1)2 = 1 c t =
π

4
,

5π
4

30 a
28
g

seconds b y =

√
3

3
x −

g
1176

x2

c
98
g

= 10 metres

31 a y =
e−

1
2 (x−1)2

2 − e−
1
2 (x−1)2

or y = 0,−1 b (1, 1)

32 e − e−1

33 a 3.2 metres b 4 seconds

34 b
π

4

Multiple-choice questions
1 D 2 D 3 B 4 C 5 A
6 C 7 C 8 A 9 E 10 B

11 A 12 B 13 E 14 A 15 A
16 A 17 C 18 C 19 B 20 D
21 B 22 B 23 B 24 E 25 E
26 E 27 A 28 C 29 B 30 A
31 D 32 C 33 C 34 B 35 C
36 A 37 E 38 D 39 D 40 A
41 E 42 A 43 C 44 B 45 B
46 A 47 C 48 B 49 D 50 C
51 D 52 A 53 E 54 D 55 A
56 E 57 C 58 B 59 B 60 D
61 C 62 D 63 C 64 C 65 E
66 E 67 D

Extended-response questions
1 a 1250π

b ii k =
10π

3
iii h = −

5t
6

+ 25

iv V = 2π
(
25 −

5t
6

)2

c i V

h
O

(25,1250π)

ii V

t
(30, 0)

(0, 1250π)

O

2 b I0 =
π

4
−

1
2

loge 2, I1 =
π

4
−

1
2

d i I2 =
1

12
(
2 loge 2 + π − 2

)
ii I3 =

1
6

iii I4 =
1

20
(
−2 loge 2 + π + 1

)
iv I5 =

1
180

(
15π − 26

)
3 a I0 = 2 loge 2 − 1
4 a (0, 0), (0, 2), (2, 0)

b (0, 0)
c Interchanging x and y does not change the

equation for the graph
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d i
dy
dx

=
x − y − 1
x − y + 1

,
d2y
dx2 =

4
(x − y + 1)3

ii x =
3
4

, y = −
1
4

iii x = −
1
4

, y =
3
4

iv
1
2

f
[
1 −1
1 1

]
5 a

O

y 

x 
(3, 0)

(0, −9)

x = 1

y = −3

b (2, 3), (3, 0) c 4.5 − loge 64
d y = −3x + 6

√
2, y = −3x − 6

√
2

6 a k = 1180 b 129 000

7 e i
dv
dh

= π

(25h
3

+ 100
)

ii
dh
dt

=
−9
√

h
625π2(h + 12)2

f 65 days 19 hours
8 a ii 6.355 cm

d k = 15.7

e i

h

dV
dt

O

a,
2T

3π a3

dV
dt

=
−3πa2

2T
h

ii

h

dh
dt

O

a, 
2T
−3a

0, 
4T

−3a

dh
dt

=
−3a2

2T (2a − h)

f i −
a
T

cm/s ii −
6a
7T

cm/s

g −0.37 cm/s
9 a N = 500

√
5t + 4

b i N =
4000

5e−0.2t − 1

ii After 5 loge

(15
11

)
≈ 1.55 weeks

10 a f ′(x) =
−2ax − b

(ax2 + bx + c)2

b
(
−

b
2a

,
4a

4ac − b2

)
i max ii min

c i

O

,
4ac − b2

4a
2a
−b

0, c
1

y

x

Asymptote y = 0
ii y

x
O

0, c
1

,
4ac − b2

4a
2a
−b

Asymptote y = 0
d i

x
O

2a
bx = −

0, c
1

y

Asymptotes y = 0, x = −
b

2a
ii y

x
O

2a
bx = −

0, c
1

Asymptotes y = 0, x = −
b

2a
e y

x
O

0, c
1

,
4ac − b2

4a
2a
−b

Asymptotes y = 0, x =
−b ±

√
b2 − 4ac

2a
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11 a
dy
dx

= 2ax −
2b
x3

b
( 4√

a3b
a

, 2
√

ab
)
,
(
−

4√
a3b
a

, 2
√

ab
)
;

both are minimum if a, b ∈ R+

12 a
{
π

4
,

5π
4

,
9π
4

,
13π

4

}
b e−2π

c Max:
(
π

4
,

√
2

2
e
−π

4

)
,
(9π

4
,

√
2

2
e
−9π

4

)
;

Min:
(5π

4
,−

√
2

2
e
−5π

4

)
,
(13π

4
,−

√
2

2
e
−13π

4

)
d

1 + eπ

2eπ

e
1 + eπ

2e3π

13 a
1
5

14 b p =
9

25
c p =

1

9
(2

3

)t

+ 1

d t > 5.419
e p

t
(0, 0.1)

O

p = 1 

15 b
3
√

k2 p
k

16 a θ = tan−1
(8

x

)
− tan−1

(2
x

)
, x > 0

b
dθ
dx

=
−8

x2 + 64
+

2
x2 + 4

c 0 < θ ≤ tan−1
(3

4

)
d

x (m)
O

4, tan−1 3
4

θ

e 0.23

18 b

x (m)

A (m2) 

O

A = x2

c x = 6.51 or x = 46.43 d x = 20
19 288 cm2

20 a y =
2
5

x2

b V = 40
√

10y
3
2

c 252 mm

d
dy
dt

=

√
10y

10y
, t =

2
√

10
3

y
3
2

e i 3 mins 9 secs ii 5 mins 45 secs

21 a vA =
20

√
2t + 1

, vB =
100

t + 10

b xA = 20(
√

2t + 1 − 1), xB = 100 loge

( t + 10
10

)
c

t (s)

x (m)

O 14 44

xA
xB

d 14 s and 44 s

22 a v = 50 − 50e
−t
5

b 49.9963
c

t
O

v = 50

v

d i x = 50
(
t + 5e

−t
5 − 5

)
ii 125.2986

23 a y =
Ne2t

3 + e2t ,
dy
dt

=
6Ne2t

(3 + e2t)2

b N

c
dy
dt
> 0 for all t

d When population is
N
2
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e i

y
O

dy
dt

(N, 0)

N
2

N
2

,

N
4

3N
8

,

ii At t =
1
2

loge 3 ≈ 0.549306

24 a i v2 =
2gR2

x
+ u2 − 2gR

ii x =
2gR2

2gR − u2

iii u ≥
√

2gR
b 40 320 km/h

25 a 0 b 1 c −1 d f ′(x) =
4

(ex + e−x)2

e

x

y = 1 

y = −1 

y

f f −1(x) =
1
2

loge

(1 + x
1 − x

)
, −1 < x < 1

g g′(x) =
1

1 − x2

h g¢(x)

x

x = 1 x = −1

(0, 1)

26 a i y = 2r sin
(1

2
θ

)
ii cos θ =

r
r + h

b i
dy
dθ

= r cos
(1

2
θ

)
;

dy
dt

=

r cos
(1

2
θ

)
cos2 θ sin t

sin θ
ii 6000 km
iii 1500 km/h

28 a V =
4
3
πr3 b 4πr2 dr

dt
= −t2

c r =
3

√
4000π − t3

4π
d 23.2 mins

29 a 2i − 10 j m/s b ṙ1(t) = 2i − 2t j
c i − 3 j d t = 0 e t = 5
f Yes; t = 2

30 a r = (cos(4t) − 1)i + (sin(4t) + 1) j
b −i + j c ṙ · r̈ = 0

31 a 6π s

b i −(3
√

3i + 2.25 j) ii i −
3
√

3
4

j

c i 1.5
√

9 + 7 sin2
( t

3

)
ii t = 3

(
π

2
+ nπ

)
, n ∈ N ∪ {0}

d r̈ = −
1
9

r, t = 3nπ, n ∈ N ∪ {0}

32 a i 3
2 sin(2t) i − 2 cos(2t) j

ii −6 sin(2t) i + 8 cos(2t) j

iii t =
nπ
4

, n ∈ N ∪ {0}

iv 16x2 + 9y2 = 36

b a =
(2n + 1)π

4
, n ∈ N ∪ {0}

33 b i r2 = (0.2t − 1.2)i + (−0.2t + 3.2) j + k
ii t = 16 at 2i + k

34 a i h j, for 0i + 0 j at the base of the cliff
ii V cosα i + V sinα j

b i V cosα i + (V sinα − gt) j

ii Vt cosα i +

(
h + Vt sinα −

gt2

2

)
j

c t =
V sinα

g
35 c i −(i + j), 0 iii −0.43i − 0.68 j
36 a i 0i + 0 j ii 10i + 10

√
3 j, 20, 60◦

iii −9.8 j

b i
x

10
ii xi + (x

√
3 − 0.049x2) j

iii 10i + (10
√

3 − 0.98x) j
iv −8i + (10

√
3 − 0.98x) j

c i −8i + (10
√

3 − 0.98x − 9.8t1) j
ii r = (x − 8t1) i +

(
x
√

3 − 0.049x2

+ t1
(
10
√

3 − 0.98x − 4.9t1
))

j

d
20
√

3 − 0.98x
9.8

e x = 15.71
37 a 5i

b i (5 − 3t1)i + 2t1 j + t1 k,
(5 − 3t2)i + 2t2 j + t2 k,

ii −3(t2 − t1)i + 2(t2 − t1) j + (t2 − t1)k
c −3i + 2 j + k
d i 36.70◦ ii 13.42
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38 a i T1 ii t0

b ii
2
√

5
5

Vt0

iii
O T1

T2

39 a y = 5 − 2x, x ≤ 2
b i r1(t) = 2i + j + t(−i + 2 j)

ii a = 2i + j is the starting position;
b = −i + 2 j is the velocity

c i c = −13i + 6 j ii 5
√

10
40 a 13i + j + 5k

b
√

14
14

(−3i + j + 2k),

√
6

6
(2i + j − k)

c 40.20◦ d 7i + 3 j + 9k

e 13i − j − 8k + t(−5i + 3k) f
√

1190
34

Algorithms and pseudocode
See solutions supplement

Chapter 15
Exercise 15A
1 a C = 450 + 0.5X

b c 950 1200 1450
Pr(C = c) 0.05 0.15 0.35

c 1700 1950 2450
Pr(C = c) 0.25 0.15 0.05

c 0.05
2 a W = 2.5X − 5

b w −5 −2.5 0 2.5

Pr(W = w)
1
8

3
8

3
8

1
8

c
1
8

3 a 0.027 b 0.125
4 a 0.3827 b 0.2929
5 a 0.5078 b 1
6 a E(Y) = 77, Var(Y) = 81

b E(U) = −45, sd(U) = 6
c E(V) = −8.5, Var(V) = 2.25

7 a m = 2, n = −5 b 35
8 a E(X) = 0.4 b Var(X) = 0.2733

c E(4X + 2) = 3.6, sd(4X + 2) = 2.0913
9 a 424.1 mL b 32.0 mL2

10 a $110 000 b $1000
11 a $5650 b $4650 c $537.63

Exercise 15B
1 0.45
2 a E(X1) = 3 b Var(X1) = 2

c E(X1 + X2) = 6 d Var(X1 + X2) = 4
3 a 20 b 18 c 4.243
4 a 35 b 20 c 4.472
5 a 1.7 b 0.287 c 0.535
6 a s 3 4 5 6 7

Pr(S = s)
1
6

1
9

7
18

2
9

1
9

b
2
3

7 a
1
6

b
1
36

8 a E(S ) = 5 b sd(S ) = 1.202
9 Mean 49 mins, sd 8.5446 mins

10 a Mean 195 mL, sd 11.1803 mL
b Mean $1.08, sd 6.40 cents

11 a = 5, b = 3
12 a Mean $6.75, sd 3.52 cents

b Mean 4250 g, sd 13.23 g

Exercise 15C
1 0.1729 2 0.0548
3 0.3410 4 0.4466
5 0.0771 6 0.0512
7 7 people 8 0.0127
9 a 0.0019 b 0.0062

10 0.6554

Exercise 15D
1 Mean 74, sd 4.6188
2 Mean 25.025, sd 0.0013
3 a 0.0478

b 0.0092
c Much smaller probability for the mean than

for an individual
4 a 0.0912

b 0.0105
c Much smaller probability for the mean than

for an individual
5 0.0103 6 0.0089
7 0.0478 8 0.0014
9 0.0786 10 0.0127

Exercise 15E
1 Answers will vary
2 Answers will vary
3 a Answers will vary b Mean 1, sd 0.002
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Exercise 15F
1 a 0.5 b 0.0288
2 0.0153
3 0.0228
4 a 0.7292 b 0.9998
5 0.0092
6 0.8426
7 0.000005
8 a 0.7745 b 0.7997

Chapter 15 review
Technology-free questions
1 a E(Y) = 31, Var(Y) = 100

b E(U) = −35, sd(U) = 15
c E(V) = −39, Var(V) = 400

2 a 0.45 b
9
14

3 a 27 cm3 b 0.0081 cm6 c 54 cm2

4 a Mean 200 mL, sd 13 mL
b Mean $1.14

5 a = 3, b = 1
6 a Mean 125 g, sd 2.5 g

b Mean 65 g, sd 2 g
c Mean 3255 g, var 183 g2

7 Mean 1.6
8 Mean 65, sd 1.4
9 At least 17 nails

Multiple-choice questions
1 D 2 C 3 A 4 E 5 A
6 B 7 B 8 B 9 D

Extended-response questions
1 a 0.3821

b a = 20.8, b = 99.2
c i 0.2512 ii 0.2512 iii 0.2870
d c = 42.47, d = 77.53

2 µ = 7.37, σ = 1.72
3 a 0.0062 b 0.0000884

c 0.0000317 d 0.0075
4 a 0.1151 b 50 batteries

Chapter 16
Exercise 16A
1 (6.84, 7.96)
2 90%: (32.62, 38.78); 95%: (32.03, 39.37);

99%: (30.87, 40.53)
3 (66.84, 75.36) 4 (14.25, 14.95)
5 (25.54, 39.79) 6 (35.32, 43.68)
7 (3.10, 3.47)

8 a (127.23, 132.77) b (126.36, 133.64)
c Increasing the level of confidence results in

a wider confidence interval
9 a (3.02, 5.03) b (2.82, 5.23)

c Increasing the level of confidence results in
a wider confidence interval

10 a (28.18, 30.82) b (27.64, 31.36)
c Increasing the level of confidence results in

a wider confidence interval
11 a 80 b 85 c 90
12 a 0.9025 b 0.9975
13 a (24.75, 26.05) b (25.01, 25.79)

c A larger sample results in a narrower
confidence interval

14 a Increase by a factor of 4
b Increase by 56.25%
c Reduced by a factor of 2

3
d Increased by a factor of 4

15 97 16 62
17 166 18 153
19 a 217 b 374

Exercise 16B
1 H0 : µ = 2.4; H1 : µ < 2.4
2 H0 : µ = 2.66; H1 : µ > 2.66
3 p-value = 0.000 02
4 p-value = 0.0924
5 a Good evidence against H0

b Insufficient evidence against H0

c Strong evidence against H0

d Strong evidence against H0

e Very strong evidence against H0

6 Good evidence that the mean is less than 50
7 Insufficient evidence that the mean is greater

than 10
8 Good evidence that the mean is less than 40
9 a H0 : µ = 2.9; H1 : µ > 2.9

b p-value = 0.003
c Yes, since the p-value is less than 0.05, we

reject H0 and conclude that the average
monthly weight gain has increased.

10 a H0 : µ = 3.6; H1 : µ < 3.6
b p-value = 0.003
c Yes, since the p-value is less than 0.05,

we reject H0 and conclude that the mean
number of residents per household has
decreased.

11 a H0 : µ = 42 150; H1 : µ < 42 150
b p-value = 0.118
c No, since the p-value is not less than 0.05,

there is insufficient evidence that the average
income in this town is lower than for the rest
of the state.
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12 a H0 : µ = 3.5; H1 : µ > 3.5
b p-value = 0.009
c Yes, since the p-value is less than 0.05, we

reject H0 and conclude that the average
service time has increased.

13 H0 : µ = 20; H1 : µ > 20; p-value = 0.0003.
Yes, since the p-value is less than 0.01, we
reject H0 and conclude that the average score
is higher for students who sleep for 8 hours.

Exercise 16C
1 a H0 : µ = 0.5; H1 : µ , 0.5

b p-value = 0.012
c Yes, since the p-value is less than 0.05,

we reject H0 and conclude that the mean
diameter of the ball bearings has changed.

2 H0 : µ = 2; H1 : µ , 2; p-value = 0.025.
Yes, since the p-value is less than 0.05, we
reject H0 and conclude that the average weight
of the bags has changed.

3 H0 : µ = 40; H1 : µ , 40; p-value = 0.025.
Since the p-value is less than 0.05, we reject
H0 and conclude that the average length of stay
in this hospital differs from other hospitals.

4 H0 : µ = 484; H1 : µ , 484;
p-value = 0.0003. Yes, since the p-value is
less than 0.01, we reject H0 and conclude that
the average number of visitors has changed.

5 H0 : µ = 2; H1 : µ , 2; p-value = 0.0015.
Since the p-value is less than 0.05, we reject
H0 and conclude that the average hours that
children watch television in this town has
changed.

6 H0 : µ = 60; H1 : µ , 60; p-value = 0.0062.
Yes, since the p-value is less than 0.05, we
reject H0 and conclude that the mean battery
life has changed after the new process.

7 a p-value = 0.2636. No, insufficient evidence
to conclude that the mean number of hours
children sleep has changed.

b (7.62, 9.38)
c Do not reject H0, since the hypothesised

value (9) is in the confidence interval.
8 a p-value = 0.0279. Yes, conclude that the

average starting salary for graduates of this
university differs from the rest of the state.

b (52 059, 54 831)
c Reject H0, since the hypothesised value

(55 000) is not in the confidence interval.

Exercise 16D
1 a 0.3173 b 0.3829 c 0.0801

d 0.9643 e 0.3179

2 0.3173 3 0.1842
4 0.02145 5 0.3711
6 a 0.0149 b 0.5428
7 a 0.1148 b 0.0739
8 0.0321 9 0.1138

10 a 0.0736
b H0 : µ = 15; H1 : µ , 15. Do not reject H0,

since 0.0736 is greater than 0.05.
c More than 2.19 minutes

Exercise 16E
1 a Concluding that weight gain is higher on the

special feed when in fact it is not
b Concluding that weight gain is the same

when in fact it is higher on the special feed
2 a Type I error

b Showing that the patient did not have TB
when in fact they did – Type II error

3 a 25.647 b 0.074
4 a 57.697 b 0.586
5 a x̄ > 24.251 b 0.187
6 a x̄ > 2260 b 0.188
7 a 0.0024 b 0.6804

c No, by requiring the sample mean to be
more than 29.3 seconds, there is a very
small probability of rejecting H0, and hence
there is a high probability that any increase
in the mean time due to the blood alcohol
content will be missed.

Chapter 16 review
Technology-free questions
1 a 160 b (140, 180)
2 a At least 226

b Decrease the width by a factor of
√

2
3 a x̄ = 2480, n = 64

b 100
4 a 57 b (0.95)60

5 a i Do not reject H0 ii Do not reject H0

b i Reject H0 ii Do not reject H0

c i Reject H0 ii Reject H0

d i Reject H0 ii Reject H0

6 a H0: time to complete the puzzle is the same
when it is noisy as when it is not
H1: time to complete the puzzle is longer
when it is noisy

b p-value = 0.02. Since the p-value is less
than 0.05, we reject H0 and conclude that
the time to complete the puzzle is longer
when it is noisy.

c 2% of the time
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7 a H0 : µ = 4; H1 : µ > 4
b p-value = 0.001
c Since the p-value is less than 0.01, we

reject H0 and conclude that children who
receive praise are happier.

8 a H0 : µ = 50; H1 : µ < 50
b p-value = 0.003
c Since the p-value is less than 0.05, we reject

H0 and conclude that the time to learn the
new technology has reduced.

9 a Decrease b Decrease
c No effect d Increase

10 a 0.1336 b 0.9108
11 a 18 or 22 b p-value = 0.044

c Reject H0 and conclude that the population
mean is not 20.

Multiple-choice questions
1 D 2 A 3 E 4 C 5 B 6 D
7 E 8 C 9 E 10 A 11 B 12 B

13 C 14 A 15 E 16 B 17 C 18 E
19 D 20 B 21 D

Extended-response questions
1 a 0.8243

b i (11.45, 13.55) ii (12.83, 14.17)
iii (12.65, 13.78) iv At least 89

2 a (14.51, 16.09)
b i H0 : µ = 11.3; H1 : µ > 11.3

ii p-value = 0.063
iii Since the p-value is greater than 0.05,

we do not reject H0. There is insufficient
evidence to conclude that the mean job
satisfaction score has increased.

c i x̄ > 12.320 ii 0.136
3 a (37.12, 42.88)

b i H0 : µ = 42; H1 : µ < 42
ii p-value = 0.037
iii Since the p-value is less than 0.05, we

reject H0 and conclude that the assembly
time for the new bookcase is quicker.

c 40.160
d 0.002

4 a H0 : µ = 70; H1 : µ > 70
b p-value = 0.006
c Since the p-value is less than 0.05, we reject

H0 and conclude that the new batteries last
longer between charges.

d 73.289 e k = 75.0
5 a i H0 : µ = 8.2; H1 : µ , 8.2

ii p-value = 0.012
iii Since the p-value is less than 0.05, we

reject H0 and conclude that the mean
plant growth has changed.

b i c = 7.808 ii d = 8.592 iii 0.516

Chapter 17
Technology-free questions
1 a E(Y) = 14, Var(Y) = 144

b E(U) = −7, sd(U) = 8
c E(V) = 42, Var(V) = 832

2 a 1 cm3 b 0.0001 cm6

3 Mean 30 g, sd 0.3 g
4 a = 3, b = 4
5 a Mean 100 g, var 5 g2

b Mean 20 g, var 1.25 g2

c Mean 1480 g, var 80 g2

6 a E(Y) = 1, Var(Y) =
1
2

b E(V) = 1, Var(V) =
1
6

7 Mean 68, sd 2
8 At least 65
9 (80.08, 87.92)

10 a x̄ = 440, n = 25 b 625
11 a Reject H0 and conclude that the population

mean is less than 20.
b i p-value = 0.09

ii Do not reject H0. There is insufficient
evidence to conclude that the population
mean is not 20.

12 a H0 : µ = 95; H1 : µ < 95
b p-value = 0.023
c Since the p-value is less than 0.05, we reject

H0 and conclude that students who first
meditate complete the puzzle more quickly.

Multiple-choice questions
1 C 2 B 3 A 4 A 5 B
6 A 7 D 8 D 9 E 10 B

11 D 12 D 13 D 14 E 15 B

Extended-response questions

1 a 0.0384 b 0.0256 c 50 d
100

3
e 0.04

2 µ = 1.001, σ = 0.012
3 a k1 = 40.8, k2 = 119.2

b c1 = 71.2, c2 = 88.8
c (76.2, 93.8)

4 a i H0 : µ = 1000; H1 : µ > 1000
ii p-value = 0.074
iii Since the p-value is greater than 0.05,

we do not reject H0. There is insufficient
evidence to conclude that the machine
overfills the bags.

b 1000.91
c 0.024
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5 a i H0 : µ = 55; H1 : µ < 55
ii p-value = 0.0008
iii Since the p-value is less than 0.05, we

reject H0 and conclude that the average
riding time has decreased.

b 52.399
c 0.400

Algorithms and pseudocode
See solutions supplement

Chapter 18
Technology-free questions
2 a −−→CA = 2(i + j + k),

−−→
CB = 3(−i + j + k)

b 12(− j + k) c 6
√

2 d 12
√

2

4
4
√

91
9

5 r = −
3
10

(2t − 115)i +
1

10
(2t + 35) j + tk

6
3
√

2
5

7 a If n is a perfect square, then n has an odd
number of factors.

b If n is not a perfect square, then n has an
even number of factors.

c n has an odd number of factors and n is not
a perfect square.

9 a
1
22

b 3π

10 a [0, 1] b [0, 4π] c 2π

d
1
2

(
1 −

1
√

2

)
e y = 4 + 2π − 8x

11 a 20 mins b
dm
dt

= −
3m

20 − t
, m(0) = 10

c m =
(20 − t)3

800
d 20 − 8

√
5 mins

12 a y = 0

b
(
−3 − 2

√
3,

1
2
−

1
√

3

)
,
(
−3 + 2

√
3,

1
2

+
1
√

3

)
c

π
√

3
+ loge 2

13 a
85
√

85 − 8
243

b
√

10

14 a i 19 + 9i ii −7 −
√

3i

iii −
11
8
−

1
4

i iv 1.48 + 0.8i

b i (ab − 1) + (a + b)i

ii b =
a + 1
a − 1

iii

−1 0
a

−1

b

15 a
1
9

b
13
36

c
1
3

d E(Y) =
1
3

16 Mean 750 kg, sd
√

1220 kg

17 a P
(
e,

1
e

)
, Q(1, 0) b

1
2

18 At least 26
19 a y = − loge

(
e + e−1 − ex)

b
(
−∞, loge(e + e−1)

)
c y =

x
e + e−1 − 1

− loge(e + e−1 − 1)

20 a y = 2 tan
(
x2 +

π

4

)
b R\

{√
(4n + 1)π

2
, n ∈ Z

}
c y = −

x
8

√
3
π

+ 2
√

3 +
1
16

21 a
1

(1 − x)2 −
1

1 − x
b

2
3

+ loge 3

22 b π

(1
2

a2 + a + loge(a − 1) − 4
)

23 Axis intercepts (−2, 0), (1, 0);
asymptotes x = 0, y = x + 3;
local maximum (−2, 0)

0−1−3
x

3

y

24 a ±
1
√

2
(i − j)

b m + n = 1,
−−→
OP = mi + (1 − m) j

c m =
3 ±
√

3
6

25 a −
2
9

b −4
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26 a a = 1, b = 1 b c = 3, d = 2
27 a m = 3, n = 5 b 1 + 3i, 2 − i

28 a 2(x − 4)ex b
1
4

x2(2 loge(2x) − 1
)

c
1
3

x tan(3x) +
1
9

loge |cos(3x)|

d −
1
2

x2 + x tan x + loge |cos x|

30 b
[

7 × 2n − 6 × 3n 2 × 3n − 2 × 2n

21 × 2n − 21 × 3n 7 × 3n − 6 × 2n

]
31 a $1.70 b ($1.50, $1.90)
32 a H0 : µ = 8.3; H1 : µ > 8.3

b p-value = 0.067
c Since the p-value is greater than 0.05,

we do not reject H0. There is insufficient
evidence to conclude that the new batteries
last longer.

Multiple-choice questions
1 A 2 C 3 D 4 C 5 B
6 D 7 B 8 E 9 B 10 A

11 C 12 D 13 A 14 D 15 D
16 B 17 D 18 A 19 E 20 D
21 B 22 A 23 E 24 C 25 E
26 C 27 E 28 D 29 E 30 A
31 B 32 B 33 B

Extended-response questions

2 a −
2
5

b 2x + 5y = 17 c b = d =
√

29

d i 29π(
√

3 − 1) −
2
√

29π2

3

ii 29π(
√

3 − 1) −

√
29π2

3
e −5

3 b n← 0
sum← 0
while sum < 10 000

n← n + 1
sum← n3(n2 + 1)

end while

print n

4 a r = 2i + j + 2k + t( j − k)
b r · (i + 2 j + 2k) = 9 d 1.43
e 2i − 3 j + 2k; 61.9◦

5 b (−2, 4, 3) c −x + 2y + z = 13

d
(4

3
,

7
3

,
29
3

)
e r = −2i + 4 j + 3k + t(2i − j + 4k)

6 a r = 2i + j + 4k + t(2i + 3 j) b (0,−2, 4)
c 21.85◦ d (0,−2, 7)

7 a 0.655 b 0.314

8 a Mean 0.8 mm, sd 0.014 mm
b Mean 0.8 mm, sd 0.04 mm

9 a 0.5 b 0.5
c Mean 200 cm, variance 1.3 cm2

10 a f ′(x) = loge x − 2 b A(e3, 0)
c y = x − e3 d 2 : 1

11 a i
dy
dx

=
(b2 − a2) cos x
(b + a sin x)2

ii 1, −1

b i
(
0,

1
2

)
ii

(
−

5π
6

, 0
)
,
(
−
π

6
, 0

)
,
(7π

6
, 0

)
,
(11π

6
, 0

)
iii

(
−
π

2
,−1

)
,
(
π

2
, 1

)
,
(3π

2
,−1

)
iv

−π,

π

1
2

6
5π
6

1
2

0

2π, 1
2

π
2

−

−

−

, −1

π
2

, 1

3π
2

, −1

11π
6

7π
6

y 1 + 2 sin x
2 + sin x

x

y =

v 2π(3 −
√

3)

12 a r = 2, a =
π

3
b [−2, 2] c (0, 1)

d
(5π

6
, 0

)
,
(11π

6
, 0

)
e

π

12
,

7π
12

f
1
4

loge(21 + 12
√

3) g (10π + 3
√

3)
π

6

13 a i
∫ 5

10

−50
v(1 + v2)

dv

ii 25 loge

(104
101

)
seconds

b ii x = 50
(
tan−1(10) − tan−1 v

)
iv 74 m

14 a i p = π

b y

0 1  
x

(1, π)

c
(2π2 + 15)π

6

d k = 2 e 1.066 f 0.572

15 a z4 + z3 + z2 + z + 1 c cis
(
−

2π
5

)
d cis

(
±

2π
5

)
, cis

(
±

4π
5

)
, 1

e
(
z2 − 2 cos

(2π
5

)
z + 1

) (
z2 − 2 cos

(4π
5

)
z + 1

)
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16 a m =
√

3
b i −−→OC = −

−−→
OA

c ii 2i − j + 2k,
8
3

i −
1
3

j +
4
3

k

d
±3√

18 − 2
√

3

(
(2 +
√

3)i + (−1 +
√

3) j

+ (2 −
√

3)k
)

e t =
3
4

, k =
1
2

, ` =
13
√

3
12

f Particle lies outside the circle

17 a i
x2

9
+

(y + a)2

36
= 1 ii ±

√
36 − a2

2
b f (x) = 2

√
9 − x2 − a

c
√

9 − x2 −
x2

√
9 − x2

d i A = 9

e
1
2

(
x
√

9 − x2 + 9 arcsin
( x

3

))
f 18 arcsin

(√36 − a2

6

)
−

a
2

√
36 − a2

g 18π
h 144π

18 a y2 = x
( x

3
− 1

)2

b
(
1,

2
3

)
,
(
1,−

2
3

)
c

8
√

3
5

d
3π
4

19 a y2 = 16x2(1 − x2)(1 − 2x2)2

b
dx
dt

= cos t,
dy
dt

= 4 cos(4t),
dy
dx

=
4 cos(4t)

cos t

c i
π

8
,

3π
8

,
5π
8

,
7π
8

,
9π
8

,
11π

8
,

13π
8

,
15π

8

ii − 1
2

√
2 −
√

2, − 1
2

√
2 +
√

2, 1
2

√
2 −
√

2,
1
2

√
2 +
√

2

iii
(
− 1

2

√
2 −
√

2, 1
)
,

(
− 1

2

√
2 −
√

2,−1
)
,(

− 1
2

√
2 +
√

2, 1
)
,

(
− 1

2

√
2 +
√

2,−1
)
,( 1

2

√
2 −
√

2, 1
)
,

( 1
2

√
2 −
√

2,−1
)
,( 1

2

√
2 +
√

2, 1
)
,

(
− 1

2

√
2 +
√

2,−1
)

iv
dy
dx

= ±4 when x = 0;

dy
dx

= ±4
√

2 when x = ±
1
√

2

d
16
15

(
√

2 + 1)

e
64π
63

20 a f ′(x) =
x4 + 3ax2

(x2 + a)2 , f ′′(x) =
6a2 x − 2ax3

(x2 + a)3

b (0, 0) stationary point of inflection

c
(
−
√

3a,−
3
√

3a
4

)
,
(√

3a,
3
√

3a
4

)
d y = x
e y

x
O

y = x

y = f (x)

f a = 1

21 a f ′(x) =
x4 − 3ax2

(x2 − a)2 , f ′′(x) =
6a2 x + 2ax3

(x2 − a)3

b
(
−
√

3a,−
3
√

3a
2

)
local maximum,(√

3a,
3
√

3a
2

)
local minimum,

(0, 0) stationary point of inflection
c (0, 0)
d y = x, x =

√
a, x = −

√
a

e

−5 5

−10

−20

10

20

y

x

f a = 16
22 a f ′(x) =

x
√

1 − x2
+ arcsin(x),

(0, 0) local minimum
(Note: It is easy to see f (x) ≥ 0 for all x,
as x and arcsin(x) have the same sign for
all x, and f (x) = 0 if and only if x = 0.)

b f ′′(x) =
x2
√

1 − x2 + 2(1 − x2)
3
2

(x2 − 1)2 =
√

1 − x2 (2 − x2)
(x2 − 1)2 ≥ 0 for all x ∈ (−1, 1)
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c f (x) ≥ 0 for all x, as x and arcsin(x) have
the same sign for all x

d x = 0, 1
e

−1.0 −0.5

−1.5

−1.0

−0.5

0.5

1.0

1, π
21.5

0.5 1.0

y

x

−1, −π
2

f
3π
8
− 1

23 a x =
3
4

sin(2t), y = −
1
2

cos(2t)

b
16x2

9
+ 4y2 = 1 c

2
3

tan(2t)

d y = −
1
2

sec(2t), x =
3
4

cosec(2t)

e
3
8
|cosec(4t)|, minimum area =

3
8

when

t = ±
π

8
, ±

3π
8

, . . .

f x =
3
4

sin(2t), y =
3
4

cos(2t)

(infinitely many possible answers)

g
5π
16

24 a 0.0808
b k1 = 45.2, k2 = 64.8
c i 0.0008 ii 0.0289 iii 0.0598
d c1 = 51.90, c2 = 58.10

25 a E(X) =
b
2

, sd(X) =
b
√

12

b E(X̄) =
b
2

, sd(X̄) =
b
√

12n
c (2.4 − 0.067b, 2.4 + 0.067b)
d 4.23 < b < 5.54 with 90% confidence

27 a 0.0679
b 0.5
c i (2.991, 3.009)

ii Machine A, since the confidence interval
contains the mean for machine A but not
machine B

28 a
dP
dt

= k(P − 0.5P0) b P = 500
(
1 +

(6
5

)t)
c 144 goats d 6.03 years

29 a rA(t) = 30
√

3t i +
(
30t − 1

2 gt2) j
rB(t) =

(
100 − 50t cos β

)
i

+
(
50t sin β − 1

2 gt2) j

b β = sin−1
(3

5

)
≈ 36.87◦

c 1.09 seconds
d (56.90, 26.83)

30 a µ = 112.8
b i H0 : µ = 112.8; H1 : µ < 112.8

ii p-value = 0.073
iii Since the p-value is greater than 0.05,

we do not reject H0. There is insufficient
evidence that the mean lifetime of the
light bulbs is less than that claimed by
the manufacturer.
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